
– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

پيشرفته SQL: فصل پنجم

)Advanced SQL(

درس پايگاه داده
دانشگاه صنعتي نوشيرواني بابل

مهدي عمادي
m.emadi@nit.ac.ir

1.2 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Outline

 Accessing SQL From a Programming Language

 Functions and Procedures

 Triggers

 Recursive Queries

 Advanced Aggregation Features

1.3 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Accessing SQL from a Programming Language

 Not all queries can be expressed in SQL, since SQL does not
provide the full expressive power of a general-purpose
language.

 Non-declarative actions -- such as printing a report,
interacting with a user, or sending the results of a query to a
graphical user interface -- cannot be done from within SQL.

A database programmer must have access to a general-purpose
programming language for at least two reasons

1.4 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Accessing SQL from a Programming Language (Cont.)

 A general-purpose program -- can connect to and communicate
with a database server using a collection of functions

 Embedded SQL -- provides a means by which a program can
interact with a database server. The SQL statements are
translated at compile time into function calls. At runtime, these
function calls connect to the database using an API that provides
dynamic SQL facilities.

There are two approaches to accessing SQL from a general-
purpose programming language

1.5 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC

1.6 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC

 JDBC is a Java API for communicating with database systems
supporting SQL.

 JDBC supports a variety of features for querying and updating
data, and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries
and fetch results

 Exception mechanism to handle errors

1.7 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try (Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement();
)

{

… Do Actual Work ….

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);

}

}

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.
Resources opened in “try (….)” syntax (“try with resources”) are automatically closed
at the end of the try block

1.8 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC Code for Older Versions of Java/JDBC

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {

Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement();

… Do Actual Work ….

stmt.close();

conn.close();

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);

}

}
NOTE: Classs.forName is not required from JDBC 4 onwards. The try with resources
syntax in prev slide is preferred for Java 7 onwards.

1.9 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC Code (Cont.)
 Update to database

try {
stmt.executeUpdate(

"insert into instructor values('77987', 'Kim', 'Physics', 98000)");
} catch (SQLException sqle)
{

System.out.println("Could not insert tuple. " + sqle);
}

 Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)
from instructor
group by dept_name");

while (rset.next()) {
System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));
}

1.10 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC SUBSECTIONS

 Connecting to the Database

 Shipping SQL Statements to the Database System

 Exceptions and Resource Management

 Retrieving the Result of a Query

 Prepared Statements

 Callable Statements

 Metadata Features

 Other Features

 Database Access from Python

1.11 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC Code Details

 Getting result fields:

 rs.getString(“dept_name”) and rs.getString(1) equivalent if
dept_name is the first argument of select result.

 Dealing with Null values

int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

1.12 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Prepared Statement

 PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

 WARNING: always use prepared statements when taking an input from the
user and adding it to a query

 NEVER create a query by concatenating strings

 "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' +
dept name + " ', " ' balance + ')“

 What if name is “D'Souza”?

1.13 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

SQL Injection

 Suppose query is constructed using

 "select * from instructor where name = '" + name + "'"

 Suppose the user, instead of entering a name, enters:

 X' or 'Y' = 'Y

 then the resulting statement becomes:

 "select * from instructor where name = '" + "X' or 'Y' = 'Y" + "'"

 which is:

 select * from instructor where name = 'X' or 'Y' = 'Y'

 User could have even used

 X'; update instructor set salary = salary + 10000; --

 Prepared stament internally uses:
"select * from instructor where name = 'X\' or \'Y\' = \'Y'

 Always use prepared statements, with user inputs as parameters

1.14 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Metadata Features

 ResultSet metadata

 E.g.after executing query to get a ResultSet rs:

 ResultSetMetaData rsmd = rs.getMetaData();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

 How is this useful?

1.15 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Metadata (Cont)

 Database metadata

 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause

ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),

rs.getString("TYPE_NAME");

}

 And where is this useful?

1.16 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Metadata (Cont)

 Database metadata

 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getTables: Catalog, Schema-pattern, Table-pattern,
// and Table-Type
// Returns: One row for each table; row has a number of attributes
// such as TABLE_NAME, TABLE_CAT, TABLE_TYPE, ..
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause
// The last attribute is an array of types of tables to return.
// TABLE means only regular tables

ResultSet rs = dbmd.getTables (“”, "", “%", new String[] {“TABLES”});

while(rs.next()) {

System.out.println(rs.getString(“TABLE_NAME“));

}

 And where is this useful?

1.17 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Finding Primary Keys

 DatabaseMetaData dmd = connection.getMetaData();

// Arguments below are: Catalog, Schema, and Table
// The value “” for Catalog/Schema indicates current catalog/schema
// The value null indicates all catalogs/schemas
ResultSet rs = dmd.getPrimaryKeys(“”, “”, tableName);

while(rs.next()){
// KEY_SEQ indicates the position of the attribute in
// the primary key, which is required if a primary key has multiple
// attributes
System.out.println(rs.getString(“KEY_SEQ”),

rs.getString("COLUMN_NAME");
}

1.18 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Transaction Control in JDBC

 By default, each SQL statement is treated as a separate
transaction that is committed automatically

 bad idea for transactions with multiple updates

 Can turn off automatic commit on a connection

 conn.setAutoCommit(false);

 Transactions must then be committed or rolled back
explicitly

 conn.commit(); or

 conn.rollback();

 conn.setAutoCommit(true) turns on automatic commit.

1.19 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Other JDBC Features

 Calling functions and procedures

 CallableStatement cStmt1 = conn.prepareCall("{? = call some
function(?)}");

 CallableStatement cStmt2 = conn.prepareCall("{call some
procedure(?,?)}");

 Handling large object types

 getBlob() and getClob() that are similar to the getString()
method, but return objects of type Blob and Clob, respectively

 get data from these objects by getBytes()

 associate an open stream with Java Blob or Clob object to
update large objects

blob.setBlob(int parameterIndex, InputStream
inputStream).

1.20 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

JDBC Resources

 JDBC Basics Tutorial

 https://docs.oracle.com/javase/tutorial/jdbc/index.html

1.21 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

SQLJ

 JDBC is overly dynamic, errors cannot be caught by compiler

 SQLJ: embedded SQL in Java

 #sql iterator deptInfoIter (String dept name, int avgSal);

deptInfoIter iter = null;

#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };

while (iter.next()) {

String deptName = iter.dept_name();

int avgSal = iter.avgSal();

System.out.println(deptName + " " + avgSal);

}

iter.close();

1.22 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

ODBC

1.23 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate
with a database server.

 application program interface (API) to

open a connection with a database,

 send queries and updates,

get back results.

 Applications such as GUI, spreadsheets, etc. can use
ODBC

1.24 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of programming
languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language comprise
embedded SQL.

 The basic form of these languages follows that of the System R embedding of
SQL into PL/1.

 EXEC SQL statement is used in the host language to identify embedded SQL
request to the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with END-
EXEC

 In Java embedding uses # SQL { …. };

1.25 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect to
the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be
established.

 Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from SQL
variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section, as
illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;

EXEC-SQL END DECLARE SECTION;

1.26 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the

declare c cursor for <SQL query>

statement. The variable c is used to identify the query

 Example:

 From within a host language, find the ID and name of students
who have completed more than the number of credits stored in
variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for
select ID, name
from student
where tot_cred > :credit_amount

END_EXEC

1.27 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query and to
save the results within a temporary relation. The query uses the value
of the host-language variable credit-amount at the time the open
statement is executed.

 The fetch statement causes the values of one tuple in the query result to
be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

1.28 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to '02000' to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

1.29 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update,
insert, and delete)

 Can update tuples fetched by cursor by declaring that the
cursor is for update

EXEC SQL

declare c cursor for
select *
from instructor
where dept_name = 'Music'
for update

 We then iterate through the tuples by performing fetch
operations on the cursor (as illustrated earlier), and after
fetching each tuple we execute the following code:

update instructor
set salary = salary + 1000
where current of c

1.30 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Functions and Procedures

1.31 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Functions and Procedures

 Functions and procedures allow “business logic” to be stored in the
database and executed from SQL statements.

 These can be defined either by the procedural component of SQL or
by an external programming language such as Java, C, or C++.

 The syntax we present here is defined by the SQL standard.

 Most databases implement nonstandard versions of this syntax.

1.32 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Declaring SQL Functions

 Define a function that, given the name of a department, returns the count
of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

 The function dept_count can be used to find the department names and
budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

1.33 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Table Functions

 The SQL standard supports functions that can return tables as results; such
functions are called table functions

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),
name varchar(20),

dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

 Usage

select *
from table (instructor_of ('Music'))

1.34 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

 The keywords in and out are parameters that are expected to have
values assigned to them and parameters whose values are set in the
procedure in order to return results.

 Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc('Physics', d_count);

1.35 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

SQL Procedures (Cont.)

 Procedures and functions can be invoked also from dynamic SQL

 SQL allows more than one procedure of the so long as the number of
arguments of the procedures with the same name is different.

 The name, along with the number of arguments, is used to identify the
procedure.

1.36 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

 Warning: most database systems implement their own variant of the
standard syntax below.

 Compound statement: begin … end,

 May contain multiple SQL statements between begin and end.

 Local variables can be declared within a compound statements

 While and repeat statements:

 while boolean expression do
sequence of statements ;

end while

 repeat
sequence of statements ;

until boolean expression
end repeat

1.37 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Language Constructs (Cont.)

 For loop
 Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department
where dept_name = 'Music'

do
set n = n + r.budget

end for

1.38 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Language Constructs – if-then-else

 Conditional statements (if-then-else)

if boolean expression
then statement or compound statement

elseif boolean expression
then statement or compound statement

else statement or compound statement
end if

1.39 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Example procedure

 Registers student after ensuring classroom capacity is not exceeded

 Returns 0 on success and -1 if capacity is exceeded

 See book (page 202) for details

 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin
…
end

 The statements between the begin and the end can raise an exception by
executing “signal out_of_classroom_seats”

 The handler says that if the condition arises he action to be taken is to
exit the enclosing the begin end statement.

1.40 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

External Language Routines

 SQL allows us to define functions in a programming language such as Java,
C#, C or C++.

 Can be more efficient than functions defined in SQL, and computations
that cannot be carried out in SQL\can be executed by these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name '/usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept_count'

1.41 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

 more efficient for many operations, and more expressive
power.

 Drawbacks

 Code to implement function may need to be loaded into
database system and executed in the database system’s
address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of
potentially worse performance.

 Direct execution in the database system’s space is used when
efficiency is more important than security.

1.42 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

 Use sandbox techniques

That is, use a safe language like Java, which cannot be
used to access/damage other parts of the database code.

 Run external language functions/procedures in a separate
process, with no access to the database process’ memory.

Parameters and results communicated via inter-process
communication

 Both have performance overheads

 Many database systems support both above approaches as well as
direct executing in database system address space.

1.43 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Triggers

1.44 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Triggers

 A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be
executed.

 Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

 Syntax illustrated here may not work exactly on your
database system; check the system manuals

1.45 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as extra
constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row

when (nrow.grade = ' ')
begin atomic

set nrow.grade = null;
end;

1.46 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

1.47 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a
transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new table to
refer to temporary tables (called transition tables)
containing the affected rows

 Can be more efficient when dealing with SQL statements
that update a large number of rows

1.48 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
 Maintaining summary data (e.g., total salary of each

department)
 Replicating databases by recording changes to special

relations (called change or delta relations) and having
a separate process that applies the changes over to a
replica

 There are better ways of doing these now:
 Databases today provide built in materialized view

facilities to maintain summary data
 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in
many cases
 Define methods to update fields
 Carry out actions as part of the update methods

instead of
through a trigger

1.49 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example,
when
 Loading data from a backup copy
 Replicating updates at a remote site
 Trigger execution can be disabled before such

actions.
 Other risks with triggers:

 Error leading to failure of critical transactions that
set off the trigger

 Cascading execution

1.50 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Recursive Queries

1.51 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Recursion in SQL

 SQL:1999 permits recursive view definition

 Example: find which courses are a prerequisite, whether directly
or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select
from rec_prereq;

This example view, rec_prereq, is called the transitive closure of
the prereq relation

1.52 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

The Power of Recursion

 Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or iteration.

 Intuition: Without recursion, a non-recursive non-iterative
program can perform only a fixed number of joins of prereq with
itself

This can give only a fixed number of levels of managers

Given a fixed non-recursive query, we can construct a
database with a greater number of levels of prerequisites on
which the query will not work

Alternative: write a procedure to iterate as many times as
required

– See procedure findAllPrereqs in book

1.53 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

The Power of Recursion

 Computing transitive closure using iteration, adding successive
tuples to rec_prereq

 The next slide shows a prereq relation

 Each step of the iterative process constructs an extended
version of rec_prereq from its recursive definition.

 The final result is called the fixed point of the recursive view
definition.

 Recursive views are required to be monotonic. That is, if we add
tuples to prereq the view rec_prereq contains all of the tuples it
contained before, plus possibly more

1.54 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Example of Fixed-Point Computation

– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

پايان فصل پنجم

