
– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

داده هاي حجيم: فصل دهم
)Big Data(

.)حذف مي باشد ١٠از فصل ٤و ٣زير بخش هاي (

درس پايگاه داده
دانشگاه صنعتي نوشيرواني بابل

مهدي عمادي
m.emadi@nit.ac.ir

1.2 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Motivation

 Very large volumes of data being collected

 Driven by growth of web, social media, and more recently internet-of-things

 Web logs were an early source of data

 Analytics on web logs has great value for advertisements, web site
structuring, what posts to show to a user, etc

 Big Data: differentiated from data handled by earlier generation databases

 Volume: much larger amounts of data stored

 Velocity: much higher rates of insertions

 Variety: many types of data, beyond relational data

1.3 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Big Data

 Transaction processing systems that need very high scalability

 Many applications willing to sacrifice ACID properties and other database
features, if they can get very high scalability

 Query processing systems that

 Need very high scalability, and

 need to support non-relation data

1.4 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Big Data Storage Systems

 Distributed file systems

 Sharding across multiple databases

 Key-value storage systems

 Parallel and distributed databases

1.5 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Distributed File Systems

 A distributed file system stores data across a large collection of machines, but
provides single file-system view

 Highly scalable distributed file system for large data-intensive applications.

 E.g. 10K nodes, 100 million files, 10 PB
 Provides redundant storage of massive amounts of data on cheap and unreliable

computers

 Files are replicated to handle hardware failure

 Detect failures and recovers from them
 Examples:

 Google File System (GFS)

 Hadoop File System (HDFS)

1.6 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Hadoop File System Architecture

 Single Namespace for entire
cluster

 Files are broken up into
blocks

• Typically 64 MB block
size

• Each block replicated on
multiple DataNodes

 Client

• Finds location of blocks
from NameNode

• Accesses data directly
from DataNode

1.7 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Hadoop Distributed File System (HDFS)

 NameNode

 Maps a filename to list of Block IDs

 Maps each Block ID to DataNodes containing a replica of the block

 DataNode : Maps a Block ID to a physical location on disk

 Data Coherency

 Write-once-read-many access model

 Client can only append to existing files

 Distributed file systems good for millions of large files

 but have very high overheads and poor performance with billions of
smaller tuples

1.8 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Sharding

 Sharding: partition data across multiple databases

 Partitioning usually done on some partitioning attributes (also known as
partitioning keys or shard keys e.g. user ID

 E.g. records with key values from 1 to 100,000 on database 1,
records with key values from 100,001 to 200,000 on database 2, etc.

 Application must track which records are on which database and send
queries/updates to that database

 Positives: scales well, easy to implement

 Drawbacks:

 Not transparent: application has to deal with routing of queries, queries that
span multiple databases

 When a database is overloaded, moving part of its load out is not easy

 Chance of failure more with more databases

 need to keep replicas to ensure availability, which is more work for
application

1.9 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel Databases and Data Stores

 Supporting scalable data access

 Approach 1: memcache or other caching mechanisms at application
servers, to reduce database access

Limited in scalability

 Approach 2: Partition (“shard”) data across multiple separate database
servers

 Approach 3: Use existing parallel databases

Historically: parallel databases that can scale to large number of
machines were designed for decision support not OLTP

 Approach 4: Massively Parallel Key-Value Data Store

 Partitioning, high availability etc completely transparent to
application

 Sharding systems and key-value stores don’t support many relational
features, such as joins, integrity constraints, etc, across partitions.

1.10 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value storage systems store large numbers (billions or even more) of small
(KB-MB) sized records

 Records are partitioned across multiple machines and

 Queries are routed by the system to appropriate machine

 Records are also replicated across multiple machines, to ensure availability even
if a machine fails

 Key-value stores ensure that updates are applied to all replicas, to ensure
that their values are consistent

1.11 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value stores may store

 uninterpreted bytes, with an associated key

 E.g. Amazon S3, Amazon Dynamo

 Wide-table (can have arbitrarily many attribute names) with associated key

– Google BigTable, Apache Cassandra, Apache Hbase, Amazon
DynamoDB

– Allows some operations (e.g. filtering) to execute on storage node

 JSON

MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON

 Some key-value stores support multiple versions of data, with
timestamps/version numbers

1.12 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Data Representation

 An example of a JSON object is:
{

"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}

1.13 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value stores support

 put(key, value): used to store values with an associated key,

 get(key): which retrieves the stored value associated with the
specified key

 delete(key) -- Remove the key and its associated value

 Some systems also support range queries on key values

 Document stores also support queries on non-key attributes

 See book for MongoDB queries

 Key value stores are not full database systems

 Have no/limited support for transactional updates

 Applications must manage query processing on their own

 Not supporting above features makes it easier to build scalable data storage
systems

 Also called NoSQL systems

1.14 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel and Distributed Databases

 Parallel databases run multiple machines (cluser)

 Developed in 1980s, well before Big Data

 Parallel databases were designed for smaller scale (10s to 100s of machines)

 Did not provide easy scalability

 Replication used to ensure data availability despite machine failure

 But typically restart query in event of failure

 Restarts may be frequent at very large scale

Map-reduce systems (coming up next) can continue query execution,
working around failures

1.15 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Replication and Consistency

 Availability (system can run even if parts have failed) is essential
for parallel/distributed databases

 Via replication, so even if a node has failed, another copy is available

 Consistency is important for replicated data

 All live replicas have same value, and each read sees latest version

 Often implemented using majority protocols

 E.g. have 3 replicas, reads/writes must access 2 replicas

– Details in chapter 23

 Network partitions (network can break into two or more parts, each with active
systems that can’t talk to other parts)

 In presence of partitions, cannot guarantee both availability and consistency

 Brewer’s CAP “Theorem”

1.16 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Replication and Consistency

 Very large systems will partition at some point

 Choose one of consistency or availability

 Traditional database choose consistency

 Most Web applications choose availability

 Except for specific parts such as order processing

 More details later, in Chapter 23

1.17 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

STREAMING DATA

1.18 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Streaming Data and Applications

 Streaming data refers to data that arrives in a continuous fashion

 Contrast to data-at-rest

 Applications include:

 Stock market: stream of trades

 e-commerce site: purchases, searches

 Sensors: sensor readings

 Internet of things

 Network monitoring data

 Social media: tweets and posts can be viewed as a stream

 Queries on streams can be very useful

 Monitoring, alerts, automated triggering of actions

1.19 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Streaming Data

Approaches to querying streams:

 Windowing: Break up stream into windows, and queries are run on windows

 Stream query languages support window operations

 Windows may be based on time or tuples

 Must figure out when all tuples in a window have been seen

 Easy if stream totally ordered by timestamp

 Punctuations specify that all future tuples have timestamp greater that
some value

 Continuous Queries: Queries written e.g. in SQL, output partial results based on
stream seen so far; query results updated continuously

 Have some applications, but can lead to flood of updates

1.20 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Streaming Data (Cont.)

Approaches to querying streams (cont.):

 Algebraic operators on streams:

 Each operator consumes tuples from a stream and outputs tuples

 Operators can be written e.g. in an imperative language

 Operator may maintain state

 Pattern matching:

 Queries specify patterns, system detects occurrences of patterns and triggers
actions

 Complex Event Processing (CEP) systems

 E.g. Microsoft StreamInsight, Flink CEP, Oracle Event Processing

1.21 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Stream Processing Architectures

 Many stream processing systems are purely in-memory, and do not persist data

 Lambda architecture: split stream into two, one output goes to stream
processing system and the other to a database for storage

 Easy to implement and widely used

 But often leads to duplication of querying effort, once on streaming system
and once in database

1.22 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Stream Extensions to SQL

 SQL Window functions described in Section 5.5.2

 Streaming systems often support more window types

 Tumbling window

 E.g. hourly windows, windows don’t overlab

 Hopping window

 E.g. hourly window computed every 20 minutes

 Sliding window

Window of specified size (based on timestamp interval or number of
tuples) around each incoming tuple

 Session window

 Groups tuples based on user sessions

1.23 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Window Syntax in SQL

 Windowing syntax varies widely by system

 E.g. in Azure Stream Analytics SQL:
select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1)

 Aggregates are applied on windows

 Result of windowing operation on a stream is a relation

 Many systems support stream-relation joins

 Stream-stream joins often require join conditions to specify bound on timestamp
gap between matching tuples

 E.g. tuples must be at most 30 minutes apart in timestamp

1.24 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Algebraic Operations on Streams

 Tuples in streams need to be routed to operators

 Routing of streams using DAG and publish-subscribe representations

 Used e.g. in Apache Storm and Apache Kafka respective

1.25 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Publish Subscribe Systems

 Publish-subscribe (pub-sub) systems provide convenient abstraction for
processing streams

 Tuples in a stream are published to a topic

 Consumers subscribe to topic

 Parallel pub-sub systems allow tuples in a topic to be partitioned across multiple
machines

 Apache Kafka is a popular parallel pub-sub system widely used to manage
streaming data

 More details in book

1.26 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

GRAPH DATABASES

1.27 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model

 Graphs are a very general data model

 ER model of an enterprise can be viewed as a graph

 Every entity is a node

 Every binary relationship is an edge

 Ternary and higher degree relationships can be modelled as binary
relationships

1.28 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model (Cont.)

 Graphs can be modelled as relations

 node(ID, label, node_data)

 edge(fromID, toID, label, edge_data)

 Above representation too simplistic

 Graph databases like Neo4J can provide a graph view of relational schema

 Relations can be identified as representing either nodes or edges

 Query languages for graph databases make it

 easy to express queries requiring edge traversal

 allow efficient algorithms to be used for evaluation

1.29 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model (Cont.)

 Suppose

 relations instructor and student are nodes, and

 relation advisor represents edges between instructors and student

 Query in Neo4J:
match (i:instructor)<-[:advisor]-(s:student)
where i.dept name= 'Comp. Sci.’
return i.ID as ID, i.name as name, collect(s.name) as advisees

 match clause matches nodes and edges in graphs

 Recursive traversal of edges is also possible

 Suppose prereq(course_id, prereq_id) is modeled as an edge

 Transitive closure can be done as follows:

match (c1:course)-[:prereq *1..]->(c2:course)
return c1.course id, c2.course id

1.30 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel Graph Processing

 Very large graphs (billions of nodes, trillions of edges)

 Web graph: web pages are nodes, hyper links are edges

 Social network graph: people are nodes, friend/follow links are edges

 Two popular approaches for parallel processing on such graphs

 Map-reduce and algebraic frameworks

 Bulk synchronous processing (BSP) framework

 Multiple iterations are required for any computations on graphs

 Map-reduce/algebraic frameworks often have high overheads per iteration

 BSP frameworks have much lower per-iteration overheads

 Google’s Pregel system popularized the BSP framework

 Apache Giraph is an open-source version of Pregel

 Apache Spark’s GraphX component provides a Pregel-like API

1.31 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Bulk Synchronous Processing

Bulk synchronous processing framework

 Each vertex (node) of a graph has data (state) associated with it

 Vertices are partitioned across multiple machines, and state of node kept in-
memory

 Analogous to map() and reduce() functions, programmers provide methods to be
executed for each node

 Node method can send messages to or receive messages from neighboring
nodes

 Computation consists of multiple iterations, or supersteps

 In each superstep

 nodes process received messages

 update their state, and

 send further messages or vote to halt

 Computation ends when all nodes vote to halt, and there are no pending
messages;

– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

پايان فصل دهم

