
– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

داده هاي حجيم: فصل دهم
)Big Data(

.)حذف مي باشد ١٠از فصل ٤و ٣زير بخش هاي (

درس پايگاه داده
دانشگاه صنعتي نوشيرواني بابل

مهدي عمادي
m.emadi@nit.ac.ir

1.2 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Motivation

 Very large volumes of data being collected

 Driven by growth of web, social media, and more recently internet-of-things

 Web logs were an early source of data

 Analytics on web logs has great value for advertisements, web site
structuring, what posts to show to a user, etc

 Big Data: differentiated from data handled by earlier generation databases

 Volume: much larger amounts of data stored

 Velocity: much higher rates of insertions

 Variety: many types of data, beyond relational data

1.3 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Big Data

 Transaction processing systems that need very high scalability

 Many applications willing to sacrifice ACID properties and other database
features, if they can get very high scalability

 Query processing systems that

 Need very high scalability, and

 need to support non-relation data

1.4 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Big Data Storage Systems

 Distributed file systems

 Sharding across multiple databases

 Key-value storage systems

 Parallel and distributed databases

1.5 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Distributed File Systems

 A distributed file system stores data across a large collection of machines, but
provides single file-system view

 Highly scalable distributed file system for large data-intensive applications.

 E.g. 10K nodes, 100 million files, 10 PB
 Provides redundant storage of massive amounts of data on cheap and unreliable

computers

 Files are replicated to handle hardware failure

 Detect failures and recovers from them
 Examples:

 Google File System (GFS)

 Hadoop File System (HDFS)

1.6 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Hadoop File System Architecture

 Single Namespace for entire
cluster

 Files are broken up into
blocks

• Typically 64 MB block
size

• Each block replicated on
multiple DataNodes

 Client

• Finds location of blocks
from NameNode

• Accesses data directly
from DataNode

1.7 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Hadoop Distributed File System (HDFS)

 NameNode

 Maps a filename to list of Block IDs

 Maps each Block ID to DataNodes containing a replica of the block

 DataNode : Maps a Block ID to a physical location on disk

 Data Coherency

 Write-once-read-many access model

 Client can only append to existing files

 Distributed file systems good for millions of large files

 but have very high overheads and poor performance with billions of
smaller tuples

1.8 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Sharding

 Sharding: partition data across multiple databases

 Partitioning usually done on some partitioning attributes (also known as
partitioning keys or shard keys e.g. user ID

 E.g. records with key values from 1 to 100,000 on database 1,
records with key values from 100,001 to 200,000 on database 2, etc.

 Application must track which records are on which database and send
queries/updates to that database

 Positives: scales well, easy to implement

 Drawbacks:

 Not transparent: application has to deal with routing of queries, queries that
span multiple databases

 When a database is overloaded, moving part of its load out is not easy

 Chance of failure more with more databases

 need to keep replicas to ensure availability, which is more work for
application

1.9 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel Databases and Data Stores

 Supporting scalable data access

 Approach 1: memcache or other caching mechanisms at application
servers, to reduce database access

Limited in scalability

 Approach 2: Partition (“shard”) data across multiple separate database
servers

 Approach 3: Use existing parallel databases

Historically: parallel databases that can scale to large number of
machines were designed for decision support not OLTP

 Approach 4: Massively Parallel Key-Value Data Store

 Partitioning, high availability etc completely transparent to
application

 Sharding systems and key-value stores don’t support many relational
features, such as joins, integrity constraints, etc, across partitions.

1.10 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value storage systems store large numbers (billions or even more) of small
(KB-MB) sized records

 Records are partitioned across multiple machines and

 Queries are routed by the system to appropriate machine

 Records are also replicated across multiple machines, to ensure availability even
if a machine fails

 Key-value stores ensure that updates are applied to all replicas, to ensure
that their values are consistent

1.11 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value stores may store

 uninterpreted bytes, with an associated key

 E.g. Amazon S3, Amazon Dynamo

 Wide-table (can have arbitrarily many attribute names) with associated key

– Google BigTable, Apache Cassandra, Apache Hbase, Amazon
DynamoDB

– Allows some operations (e.g. filtering) to execute on storage node

 JSON

MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON

 Some key-value stores support multiple versions of data, with
timestamps/version numbers

1.12 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Data Representation

 An example of a JSON object is:
{

"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}

1.13 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Key Value Storage Systems

 Key-value stores support

 put(key, value): used to store values with an associated key,

 get(key): which retrieves the stored value associated with the
specified key

 delete(key) -- Remove the key and its associated value

 Some systems also support range queries on key values

 Document stores also support queries on non-key attributes

 See book for MongoDB queries

 Key value stores are not full database systems

 Have no/limited support for transactional updates

 Applications must manage query processing on their own

 Not supporting above features makes it easier to build scalable data storage
systems

 Also called NoSQL systems

1.14 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel and Distributed Databases

 Parallel databases run multiple machines (cluser)

 Developed in 1980s, well before Big Data

 Parallel databases were designed for smaller scale (10s to 100s of machines)

 Did not provide easy scalability

 Replication used to ensure data availability despite machine failure

 But typically restart query in event of failure

 Restarts may be frequent at very large scale

Map-reduce systems (coming up next) can continue query execution,
working around failures

1.15 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Replication and Consistency

 Availability (system can run even if parts have failed) is essential
for parallel/distributed databases

 Via replication, so even if a node has failed, another copy is available

 Consistency is important for replicated data

 All live replicas have same value, and each read sees latest version

 Often implemented using majority protocols

 E.g. have 3 replicas, reads/writes must access 2 replicas

– Details in chapter 23

 Network partitions (network can break into two or more parts, each with active
systems that can’t talk to other parts)

 In presence of partitions, cannot guarantee both availability and consistency

 Brewer’s CAP “Theorem”

1.16 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Replication and Consistency

 Very large systems will partition at some point

 Choose one of consistency or availability

 Traditional database choose consistency

 Most Web applications choose availability

 Except for specific parts such as order processing

 More details later, in Chapter 23

1.17 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

STREAMING DATA

1.18 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Streaming Data and Applications

 Streaming data refers to data that arrives in a continuous fashion

 Contrast to data-at-rest

 Applications include:

 Stock market: stream of trades

 e-commerce site: purchases, searches

 Sensors: sensor readings

 Internet of things

 Network monitoring data

 Social media: tweets and posts can be viewed as a stream

 Queries on streams can be very useful

 Monitoring, alerts, automated triggering of actions

1.19 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Streaming Data

Approaches to querying streams:

 Windowing: Break up stream into windows, and queries are run on windows

 Stream query languages support window operations

 Windows may be based on time or tuples

 Must figure out when all tuples in a window have been seen

 Easy if stream totally ordered by timestamp

 Punctuations specify that all future tuples have timestamp greater that
some value

 Continuous Queries: Queries written e.g. in SQL, output partial results based on
stream seen so far; query results updated continuously

 Have some applications, but can lead to flood of updates

1.20 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Querying Streaming Data (Cont.)

Approaches to querying streams (cont.):

 Algebraic operators on streams:

 Each operator consumes tuples from a stream and outputs tuples

 Operators can be written e.g. in an imperative language

 Operator may maintain state

 Pattern matching:

 Queries specify patterns, system detects occurrences of patterns and triggers
actions

 Complex Event Processing (CEP) systems

 E.g. Microsoft StreamInsight, Flink CEP, Oracle Event Processing

1.21 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Stream Processing Architectures

 Many stream processing systems are purely in-memory, and do not persist data

 Lambda architecture: split stream into two, one output goes to stream
processing system and the other to a database for storage

 Easy to implement and widely used

 But often leads to duplication of querying effort, once on streaming system
and once in database

1.22 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Stream Extensions to SQL

 SQL Window functions described in Section 5.5.2

 Streaming systems often support more window types

 Tumbling window

 E.g. hourly windows, windows don’t overlab

 Hopping window

 E.g. hourly window computed every 20 minutes

 Sliding window

Window of specified size (based on timestamp interval or number of
tuples) around each incoming tuple

 Session window

 Groups tuples based on user sessions

1.23 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Window Syntax in SQL

 Windowing syntax varies widely by system

 E.g. in Azure Stream Analytics SQL:
select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1)

 Aggregates are applied on windows

 Result of windowing operation on a stream is a relation

 Many systems support stream-relation joins

 Stream-stream joins often require join conditions to specify bound on timestamp
gap between matching tuples

 E.g. tuples must be at most 30 minutes apart in timestamp

1.24 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Algebraic Operations on Streams

 Tuples in streams need to be routed to operators

 Routing of streams using DAG and publish-subscribe representations

 Used e.g. in Apache Storm and Apache Kafka respective

1.25 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Publish Subscribe Systems

 Publish-subscribe (pub-sub) systems provide convenient abstraction for
processing streams

 Tuples in a stream are published to a topic

 Consumers subscribe to topic

 Parallel pub-sub systems allow tuples in a topic to be partitioned across multiple
machines

 Apache Kafka is a popular parallel pub-sub system widely used to manage
streaming data

 More details in book

1.26 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

GRAPH DATABASES

1.27 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model

 Graphs are a very general data model

 ER model of an enterprise can be viewed as a graph

 Every entity is a node

 Every binary relationship is an edge

 Ternary and higher degree relationships can be modelled as binary
relationships

1.28 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model (Cont.)

 Graphs can be modelled as relations

 node(ID, label, node_data)

 edge(fromID, toID, label, edge_data)

 Above representation too simplistic

 Graph databases like Neo4J can provide a graph view of relational schema

 Relations can be identified as representing either nodes or edges

 Query languages for graph databases make it

 easy to express queries requiring edge traversal

 allow efficient algorithms to be used for evaluation

1.29 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Graph Data Model (Cont.)

 Suppose

 relations instructor and student are nodes, and

 relation advisor represents edges between instructors and student

 Query in Neo4J:
match (i:instructor)<-[:advisor]-(s:student)
where i.dept name= 'Comp. Sci.’
return i.ID as ID, i.name as name, collect(s.name) as advisees

 match clause matches nodes and edges in graphs

 Recursive traversal of edges is also possible

 Suppose prereq(course_id, prereq_id) is modeled as an edge

 Transitive closure can be done as follows:

match (c1:course)-[:prereq *1..]->(c2:course)
return c1.course id, c2.course id

1.30 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Parallel Graph Processing

 Very large graphs (billions of nodes, trillions of edges)

 Web graph: web pages are nodes, hyper links are edges

 Social network graph: people are nodes, friend/follow links are edges

 Two popular approaches for parallel processing on such graphs

 Map-reduce and algebraic frameworks

 Bulk synchronous processing (BSP) framework

 Multiple iterations are required for any computations on graphs

 Map-reduce/algebraic frameworks often have high overheads per iteration

 BSP frameworks have much lower per-iteration overheads

 Google’s Pregel system popularized the BSP framework

 Apache Giraph is an open-source version of Pregel

 Apache Spark’s GraphX component provides a Pregel-like API

1.31 – ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition

Bulk Synchronous Processing

Bulk synchronous processing framework

 Each vertex (node) of a graph has data (state) associated with it

 Vertices are partitioned across multiple machines, and state of node kept in-
memory

 Analogous to map() and reduce() functions, programmers provide methods to be
executed for each node

 Node method can send messages to or receive messages from neighboring
nodes

 Computation consists of multiple iterations, or supersteps

 In each superstep

 nodes process received messages

 update their state, and

 send further messages or vote to halt

 Computation ends when all nodes vote to halt, and there are no pending
messages;

– ١٣٩٨Database System Concepts -ترجمه و تغيير توسط مهدي عمادي 7th Edition,

پايان فصل دهم

