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CHAPTER ONE

An Introduction to Turbulence

This book, intended as an introductory course in turbulence, presumes the reader to
be well acquainted with basic fluid mechanics and to have a reasonable level of
mathematical sophistication (the General References following the Preface include
some textbooks on fluid dynamics to which the reader may want to refer if neces-
sary). In this chapter we take a critical look at the concepts underlying a description
of turbulence and lay the foundations for the chapters to follow.

Most flows occurring in nature and in industrial applications are said to be
turbulent. Everyday life gives us an intuitive understanding of turbulence in fluids
and thus the concept is often accepted without further discussion. Among other
properties, typical turbulent flows have apparently random velocity fluctuations
with a wide range of different length and time scales. Thus, for instance, a graph
of turbulent velocity as a function of time at a fixed point in space shows random
variations. The graph has a “furry” appearance and successively higher magnifica-
tions of the “fur” show smaller fluctuations of shorter time scales, until finally the
shortest is reached and the velocity is revealed as a smooth function. The same is true
if the velocity is plotted as a function of one of the spatial coordinates at fixed time.
However, these characteristics of turbulence do not provide a rigorous definition
allowing one to objectively distinguish turbulence from a complicated laminar flow.
In fact, it is difficult to give a watertight definition of turbulence, although it is easy to
give specific examples in which turbulence is present in at least part of the flow:

* the rapid flow of fluid around a bluff body or airfoil,

* the majority of terrestrial atmospheric and oceanic currents,
* the motion of the atmospheres of the sun and planets,

¢ the flow inside most industrial plant,

It would certainly help in the systematic study of turbulence if there were a
complete and succinct definition of a turbulent flow, but no fully satisfactory one
has been found to date and so, rather than attempt a strict definition, we will
describe specific examples and some general properties of turbulence in the course
of this chapter. We begin by considering how turbulence arises in the first place, via
the instability of laminar flows.

The term laminar is used to describe a flow which is not turbulent. Typically, one
has in mind simple flows, such as are described in basic textbooks on fluid
mechanics. For instance, consider the case of incompressible flow in a long circular
pipe driven by a constant pressure difference between the ends, an example that was
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studied experimentally by Reynolds in his path-breaking work on turbulence
towards the end of the nineteenth century. In the laminar regime, the flow far
from the ends of the pipe takes on an asymptotic limiting form, known as
Poiseuille flow, which is steady and axisymmetric. The velocity is parallel to the
pipe axis with a parabolic distribution as a function of distance from the pipe
axis, while the pressure is a linear function of streamwise distance. This simple
flow is always a mathematical possibility in an infinite pipe, since it is an exact
solution of the Navier-Stokes equations, but, in reality, it is subject to perturbations
coming from the inlet,! even if these are small. Viscosity tends to damp out flow
perturbations as they are convected downstream and, in the laminar regime, the
perturbations are indeed attenuated, resulting in Poiseuille flow asymptotically at
large downstream distances. However, once a certain flow rate is exceeded, the
perturbations no longer decay and may instead be amplified, a phenomenon
known as instability. In the case of the pipe, instability leads to the breakdown of
Poiseuille flow to turbulence and the resulting turbulent flow is no longer approxi-
mately steady, parallel, or parabolic. The change from laminar to turbulent flow due
to instability of the laminar state is referred to as transition.

The parameter that, along with the amplitude and type of perturbations, deter-
mines the onset of pipe turbulence is the Reynolds number, UD/v, where U is the
averaged flow speed (volumetric flow rate divided by cross-sectional area), D the
pipe diameter, and v the kinematic viscosity of the fluid. Viscosity provides a dis-
sipative mechanism that attempts to damp out perturbations, but its effects diminish
as the Reynolds number rises. In consequence, the tendency to instability increases
with the Reynolds number. For sufficiently large perturbations, the flow becomes
unstable as soon as the Reynolds number exceeds a critical value of around 2,000.
The flow then enters a transitional regime in which sporadic bursts of turbulence
alternate with laminar flow. As the Reynolds number is further increased, turbulence
becomes less intermittent and eventually occurs continuously, yielding the fully
developed turbulent regime. However, if the amplitude of perturbations is small
enough, Poiseuille flow remains stable at Reynolds numbers above 2,000, and, in
fact, is stable to infinitesimal perturbations at all Reynolds numbers. Thus, Poiseuille
flow becomes sensitive to perturbations at Reynolds numbers higher than 2,000, but
the appearance of instability depends on the amplitude and type of the flow pertur-
bation if the perturbation is sufficiently small. Experimentally, taking great care to
suppress perturbations, the Reynolds number at which turbulence arises has been
increased by more than an order of magnitude above 2,000, but the flow is increas-
ingly sensitive to perturbations the higher the Reynolds number and eventually
becomes turbulent in any case. This illustrates the fact that transition from laminar
to turbulent flow need not be simply a function of the base flow considered, but also
of the amplitude and type of perturbations.

Another example of a flow instability is provided by an infinite, circular cylinder
placed in uniform, steady flow perpendicular to the axis of the cylinder. The
Reynolds number is defined using the uniform flow velocity (far from the cylinder)
and cylinder diameter as scales. At Reynolds numbers below the critical value for

! Perturbations may also arise from imperfections and vibrations of the pipe walls.
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instability, the flow is steady and symmetric under reflection in a plane through the
cylinder axis parallel to the uniform flow. As the Reynolds number is increased prior
to instability, two symmetrically placed, attached eddies develop behind the cylinder,
whose extent grows with Reynolds number (see, e.g., Batchelor (G 1967), figure
4.12.1). Boundary layers form on the cylinder surface, extending from the forward
stagnation point to symmetrically placed separation points on the sides of the cylin-
der, from where the shear layers resulting from boundary-layer separation skirt the
recirculating eddies and feed the wake with vorticity. Once the critical Reynolds
number of around forty-five is exceeded, although the above steady flow remains
a possible solution of the equations of motion, it is unstable even to infinitesimal
perturbations and hence not observable in practice. However, in contrast with pipe
flow, the result of this instability is not a step change in the qualitative character of
the flow, as in transition to turbulence, but another laminar flow whose spatial
structure is rather similar to the one described above and in which the cylinder
wake undergoes time-periodic, wavelike oscillations. Also unlike pipe flow, the
onset of the instability can be predicted using the theory of infinitesimal perturba-
tions, in which the equations governing the flow perturbation (derived from the
Navier-Stokes equations) are linearized. In consequence, the critical Reynolds num-
ber does not depend on the amplitude of the perturbation and is a definite number,
calculable from linear theory. As the Reynolds number is further increased, the new,
time-periodic, flow develops into the well-known and beautifully regular Von
Karman vortex street shown in Figure 1.1, in which the vortex wake results from
oscillatory shedding of vorticity by unsteady separation of the boundary layers on
the two sides of the cylinder. As the Reynolds number is increased again, turbulence
is usually found to begin in the far wake, no doubt due to an instability of the vortex
street. The zone of turbulence approaches the cylinder at still higher Reynolds num-
bers, while, above a Reynolds number in the thousands, the entire wake of the
cylinder has become turbulent. The flow is then aperiodic, although it retains rem-
nants of the cyclic vortex shedding process, and apparently organized spatial struc-
tures can be discerned within the turbulent wake up to much higher Reynolds
numbers (see Figure 1.2). A region
of fine-grained turbulence is pre-
sent immediately behind the cylin-
der, giving way to more organized
turbulent vortices further down-
stream. Qutside the wake, the
flow is still laminar, showing that
turbulence can coexist with lami-
nar flow, and furthermore, that
the two may alternate, as bulges
of wake turbulence are convected
past a given point in space. The
cylinder boundary layer stays lami-
nar up to a Reynolds number of
about 10°-10°, at which point
the attempt by the laminar bound-

Figure 1.1. The Von Karman vortex street behind a cylinder placed
ary layer to separate, which suc- in a uniform flow. (Courtesy of Sadotoshi Taneda.)
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Figure 1.2. Visualizations of a turbulent cylinder wake; (b) shows a close-up. ((a) Courtesy of Thomas
Corke and Hassan Nagib; (b) ONERA photograph, Werlé and Gallon (1972), reproduced with
permission.)

ceeds in shedding the layer into the wake at lower Reynolds numbers, instead trig-
gers transition of the layer, leading to a turbulent boundary layer that remains
attached to the surface and extends considerably further along the cylinder surface
until it too separates. As the Reynolds number is increased still more, boundary-layer
transition takes place further and further upstream.

The above example shows that not all instabilities of laminar flow lead to transi-
tion. Furthermore, transition may never occur in some parts of a flow, while in
others turbulent and laminar flow alternate even at very large Reynolds numbers.
Among those regions that eventually become turbulent with increasing Reynolds
number, transition may take place at different stages, depending upon which region
is considered. Thus, in the example, transition first occurs in the far wake, spreading
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Figure 1.3. Grid-generated turbulence.
(Courtesy of Thomas Corke and Hassan
Nagib.)

progressively to the near wake, then in the boundary layer, progressively moving
upstream. As an aside, the wakes of cylinders (not necessarily circular) are often
experimentally exploited to generate grid turbulence. A grid of rods is placed in a
uniform flow at high Reynolds number, leading to a double system of horizontally
and vertically aligned wakes, whose complicated interactions fill the fluid far down-
stream of the grid with turbulence. The result is illustrated in Figure 1.3 and exhibits
a clearly random character. Far downstream of the grid, the resulting flow is found
to be a good approximation to statistically homogeneous turbulence without mean
shear, a theoretical ideal to which we will often return later in this book. In so doing,
we hope and expect that at least some of the properties of the homogeneous case
extend to more general turbulent flows.

Boundary-layer transition, which, as described above, occurs as the final step in
the development of the cylinder flow with increasing Reynolds number, is an impor-
tant topic in its own right, of which the simplest example consists of a semi-infinite
flat plate placed in an infinite, steady, uniform flow aligned with the plate and
perpendicular to its upstream edge. In this case, one refers to streamwise, normal,
and spanwise directions. The Reynolds number that is found to characterize the
instability is formed from the uniform velocity outside the layer and a boundary-
layer thickness scale, usually taken to be the displacement thickness of the boundary
layer. Sufficiently far downstream from the leading edge of the plate, the basic,
steady laminar flow whose instability is considered is described by the Blasius simi-
larity solution of the boundary-layer equations, which indicates a growth of layer
thickness proportional to the square-root of distance from the leading edge. Thus,
the Reynolds number, and hence the tendency to instability, increases with stream-
wise distance. Classical linear theory, which uses a parallel-flow approximation,
predicts instability once the Reynolds number exceeds a value of about 500, in
agreement with careful experiments in which upstream and other perturbations
are kept to low enough levels. The result of the instability is Tollmien—Schlichting
waves, which propagate and grow in amplitude downstream of the location for onset
of instability and whose wavecrests are aligned in the spanwise direction. The com-

2 Homogeneity means that the statistical properties of the turbulent velocity fluctuations are independent
of spatial position. We will discuss this and other symmetries in more detail in the next chapter.
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bined flow, consisting of the steady Blasius sclution and the unsteady waves, itself
becomes unstable once the amplitude of the waves has reached a sufficient, rather
small, amplitude. This secondary instability is to perturbations which vary with
spanwise position across the flow, and their growth produces a complicated, aper-
iodic three-dimensional flow, which is not yet turbulent (the interested reader may
refer to the review by Kachanov (1994)). The remainder of the boundary-layer
transition process is less well understood, but is observed to eventually give rise to
sporadic turbulent spots, which appear at apparently random locations and spread
out as they are convected downstream. The spots become more and more frequent
with increasing downstream distance until they fill the boundary layer with turbu-
lence (see Figure 1.4, which shows a fully turbulent boundary layer visualized by
smoke injection).

The above description applies to sufficiently small perturbations, but is not what
is observed when the perturbation amplitude is larger than a certain quite small
threshold. For larger perturba-
tions, transition is found to occur
upstream of the location predicted
by classical theory and appears to
depend on the amplitude and type
of perturbations, as for the case of
the pipe discussed earlier. Such
“bypass” transition has not yet
been as fully elucidated as that
based on Tollmien-Schlichting
waves described above, but a
likely candidate is the amplifica-
tion of upstream perturbations
by a linear mechanism of alge-
braic growth (see the brief review
by Henningson and Reddy
(1994)). This mechanism is active
at lower Reynolds numbers than
the Tollmien—Schlichting instabil-
ity and is not captured by the clas-
sical theory because that concerns
itself only with exponential
growth or decay of the perturba-
tions. If the amplitude of pertur-
bations incident on the boundary
layer from upstream is sufficient,
algebraic amplification may gen-
erate large enough perturbations
that secondary instability and
breakdown to turbulent spots
can occur upstream of the classi-
cal location for instability, indu-

Figure 1.4. Smoke visualization of a fully developed turbulent bound-
ary layer; (b) shows a close-up. (Courtesy of F. Ladhari; see Ladhari 1
(1983) for experimental details.) cing bypass transition. Theory
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predicts that algebraic growth is accompanied by elongation of the perturbations in
the streamwise direction, leading to perturbations whose spatial structures are
aligned with the flow, rather than the spanwise direction, as for Tollmien—
Schlichting waves. Clearly, the physical mechanisms responsible for the initial
growth of perturbations (and no doubt those implicated in secondary instability)
differ in the two cases, illustrating the possibility of multiple paths to transition
through different sequences of laminar flow instabilities depending on the amplitude
(and type) of perturbations.

We could continue to give other examples of laminar flow instabilities and transi-
tion, but the main points should by now be clear. Turbulence is thought to arise via
the instability of laminar flow as the Reynolds number® is increased, though not all
instabilities lead to transition and both the onset of and route taken to transition may
vary depending on the amplitude and nature of the perturbations. Research on the
transition’ problem, which presents an important theoretical challenge, continues
apace, but we now turn to the question of the description of turbulence once it
has arisen, which will occupy us for the remainder of this book. A change of pace
is also in order as we review the equations which govern the flow, partly as a
reminder to the reader and partly to define the notation used.

Turbulent flow appears random in time and space and is not experimentally
reproducible in detail. It might be thought that precise mathematical analysis of
such flows would be irrelevant or even impossible; however, this point of view proves
too pessimistic. We have no reason to believe that the basic dynamical equations
governing laminar flows somehow do not apply to turbulent ones, and experience
suggests that turbulence is governed by the same fundamental equations as laminar
flows. The source of disorder in turbulent flow is to thus be looked for as a conse-
quence of the equations rather than in a breakdown of the quantitative model.

In this book, we will restrict attention to the flow of incompressible, Newtonian
fluids, whose viscosity and density are taken constant, and which are not acted on by
body forces. Of course, in reality these assumptions will not be respected exactly.
They are commonly used approximations, which simplify the flow description, but
whose validity depends on the flow and fluid considered, as indeed does the con-
tinuum approximation that underlies the entire description. With these approxima-
tions, the velocity and pressure are described by the celebrated Navier-Stokes
equation

3y, U, 18P U,
__t ; —t 1y ! (1.1)
ot ox;  pox; 0o 0o
N o -
Nonlinear Viscous
convective term term
and the incompressibility condition
aU;
‘=0 (1.2)
8xi .

3 In the above examples there is one dimensionless parameter — a Reynolds number — describing the base
flow, but it should be borne in mind that several such parameters are needed in general.
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which are often referred to collectively as the Navier-Stokes equations, and which
should be supplemented by appropriate boundary and initial conditions to form a
complete description of the fluid velocity and pressure fields, U(x, ) and P(x, ). In
the above equations, x; are Cartesian spatial coordinates and p, v are the constant
density and kinematic viscosity of the fluid. Here and throughout this book, we
denote vectors by bold symbols and use subscript notation for the Cartesian com-
ponents of vectors and tensors, with subscripts taking the values 1, 2, or 3. The
summation convention is employed, that is, a single term containing one or more
repeated subscripts represents an implied sum over all three values of each repeated
subscript. The nonlinear term in (1.1) is due to momentum convection by the flow
and plays a very important role in the generation and maintenance of turbulence.
Viscosity dissipates kinetic energy of the flow as thermal energy of the incompressible
fluid at the rate

L1 (3U; AU\ (aU; ,

“?(a?*a?)(ax,*ﬁ;) -
per unit mass of fluid, where there is an implied sum over i and ;.

Thanks to their mathematical simplicity, many classical solutions of equations
(1.1) and (1.2) are special flows for which the nonlinear convective term is zero or
negligible. These include parallel flows, for example, Poiseuille flow and that gener-
ated by in-plane oscillations of an infinite flat plate, and flows having very low
Reynolds number, often referred to as Stokes or creeping flows. Important though
such examples are, they are not representative of more general flows, which can have
important effects of nonlinearity. The very simplicity of such solutions means that
they tend to occupy pride of place in most basic courses on fluid mechanics and it is
rarely pointed out that, in this respect, they are rather special cases. This might lead a
naive student to the conclusion that the nonlinear terms are of secondary impor-
tance, whereas nonlinearity is essential to the dynamics of turbulent flow and its
importance is stressed here.

The momentum and continuity equations take the particularly simple forms (1.1)
and (1.2), with constant p and v, under the assumptions made above. However,
although we do not consider the possibility in this book, these equations may be
complicated by effects we have excluded, such as variable density, compressibility,
body forces, or the non-Newtonian nature of the fluid, and one may also need to take
the thermodynamics of the fluid into account via an energy equation and equation of
state, together with yet further equations if the fluid is a mixture or has other internal
degrees of freedom (see Bird, Warren, and Lightfoot (1960) for further information).
Even under the simplifying assumptions made in this book, which allow us to
describe the velocity and pressure fields using (1.1) and (1.2) alone, one may still
be interested in the heat transfer properties of the flow, which require consideration
of thermodynamics. We will briefly discuss the turbulent mixing and dispersion of
scalar fields such as fluid temperature later in this chapter.

The Navier-Stokes equations, (1.1) and (1.2), should be supplemented by appro-
priate boundary and initial conditions. For instance, the velocity is. prescribed
according to the no-slip condition at solid boundaries and at infinity for a body
placed in an infinite flow. In such cases, the only parameter which the fluid brings
to the party is the kinematic viscosity, v, since one can absorb the density into the
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pressure field by working with the quantity P/p. To the extent that the above
mathematical model accurately describes many real flows, both turbulent and lami-
nar, thé precise nature of the fluid, for example, liquid or gas, is thus of secondary
importance to the flow. In fact, since only nondimensional parameters can be of
fundamental significance, v, which is dimensional, should be combined with geome-
trical and other parameters arising from the boundary and initial conditions to form,
for example, a Reynolds number, as we saw in the examples of flow instabilities
given earlier. More complicated boundary conditions can appear, for instance, those
involving the stress at the interface between two fluids, and which can introduce
other fluid properties, such as surface tension.

In general, initial conditions on the velocity field are also needed for (1.1) and
(1.2). Mathematically, the solution of these equations with prescribed initial and
boundary conditions on the velocity is unique.* However, turbulent flow is not
experimentally reproducible in detail and a different flow occurs each time the
same experiment is performed. The source of this lack of reproducibility is extreme
sensitivity of the flow to small changes in the initial and/or boundary conditions,’
which the experimentalist cannot, of course, control with infinite precision. In the-
oretical analyses of turbulence one usually imagines an experiment performed many
times under nominally the same conditions, leading to an ensemble of different
realizations of the turbulent flow. Ensemble averages and probability distributions
can then be defined by considering a large (in principle infinite) number of different
realizations, thus introducing a statistical description of turbulence. For instance, the
mean flow velocity is defined as the average of the velocity over a large number of
realizations, while the departure of the velocity in a given realization from the mean
is known as the velocity fluctuation of that realization and is usually identified with
the turbulence itself. Flow statistics are assumed to be reproducible, even though
individual realizations are not, which is the fundamental reason for adopting a
statistical description. This is not to say that the dynamics of individual realizations
are unimportant, and indeed the basic governing equations of fluid motion, (1.1) and
(1.2), describe single realizations rather than the statistics of the ensemble. One
approach to a theoretical description of turbulence consists of first determining the
properties of individual realizations, usually via brute-force numerical simulation of
the governing equations, and then to calculate the statistical properties of the flow
from these. A second way forward is to work with equations for the statistics
themselves, but, as we shall see in Chapter 4, these equations are not closed, a
fundamental problem that is usually resolved by the expedient of introducing addi-
tional heuristic approximations, known as closure models or hypotheses.
Independently of the approach used, the ultimate aim of most studies of turbulent
flows is to describe their statistics.

In many cases, the flow is found to eventually forget its initial conditions and to
become steady, where, in the case of turbulent flow, steady means that its statistical
properties are independent of time, not that the flow is steady in any one realization.

* However, existence, which is generally believed to hold, has, to the authors’ knowledge, yet to be
proven.

S Sensitivity of turbulent flow to these conditions is no doubt related to the flow instabilities discussed
earlier.
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The statistical properties of steady turbulence are taken to be independent of the
initial conditions, which the flow forgets, and, as for turbulent flows in general,
insensitive to small changes in the boundary conditions. Thus, whereas one cannot
predict the flow in any given realization, it is a reasonable goal to describe the
statistical properties of the ensemble, both experimentally and theoretically. For
statistically steady turbulence, one may also define averages and probabilities by
sampling at a large number of times over a long enough period (in principle
infinite), which forms the basis for most experimental measurements of flow sta-
tistics. It is usually assumed that the results of performing repeated experiments
(ensemble) and time sampling a single flow lead to the same results for steady
flows. This question, among others, is addressed in Chapter 2, which is devoted
to statistical methods, in part to remind the reader of some of the analytical
techniques involved, but also to set them in the context of the theory of turbulence
for the remainder of the book.

1.1 The Physical Nature of Turbulence

Since the subject matter of this book is turbulent flows, we consider it important that
the reader have some understanding of the properties of turbulence from the start. It
is thus the intention of this section to provoke and enlarge on the knowledge of the
reader. In lieu of a precise definition of turbulence, we shall discuss some important
characteristics of turbulent flows. Some of the concepts are probably unfamiliar to
the reader and we do not want to interrupt the presentation by fully defining all
terms here. Detailed discussion will be given in later chapters. In particular, the first
two of the properties listed below, namely apparent randomness and the possession
of a wide continuum of space and time scales at high Reynolds number, are probably
the most important characteristics of turbulence and form the subject matter of the
next two chapters of this book.

TURBULENCEISA RANDOM PROCESS

Turbulent flow is time and space dependent with a very large number of spatial
degrees of freedom. The random nature of the flow is easily observed using, for
instance, hot-wire or laser anemometry. Such probes produce signals which show
random fluctuations and, at high turbulent Reynolds number (defined below), have
“furry” graphs as functions of time. As discussed above, although turbulence is
unpredictable in detail, its statistical properties are supposed reproducible and it is
fruitful to consider averages and probability distributions of flow quantities, as we
shall do throughout this book.

TURBULENCE CONTAINS AWIDE RANGE OF DIFFERENT SCALES

The “fur” apparent in velocity measurements at high Reynolds number (see
Figure 3.1a) reflects the existence of a continuum of different space and time scales
of the flow. The large scales are evident in the overall fluctuations of a graph of
velocity versus spatial position or time, whereas small ones are apparent through
the fine-scale fur. The dynamics of turbulence involve all scales, as we shall see in
the course of this book. Different scales coexist and are superimposed in the flow,
with smaller ones living inside larger ones. The continuum of scales forms one of
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the main topics of Chapter 3 and, like the statistical description, recurs throughout
this book.

Measurements of turbulent fluctuations from two spatially separated probes seem
unrelated at first sight, but statistical analysis reveals that they are correlated. The
degree of statistical correlation can be measured using the velocity correlations,
which are averages of the products of velocity fluctuations at the two probes and
are found to fall off® as the distance between the probes increases, indicating that the
velocities become less and less closely related the more they are separated. At small
separations, the velocities at the two probes have essentially the same values and
their correlations are large, being close to the value at zero separation, whereas, as
the probe separation increases, the difference of velocity fluctuations between the
two probes grows and the correlations are less. The characteristic length scale, L, for
decorrelation, or correlation length, provides an important measure of the distance
over which the velocity fluctuations differ significantly and hence of the size of the
large scales of turbulence. A number of precise definitions of correlation length can
be given, but the correlations do not drop off suddenly at a definite separation, and
what we have in mind here is the order of magnitude of the separation required for
significant decorrelation. ,

In addition to correlation lengths, one may define temporal correlations by aver-
aging products of velocity fluctuations at a single point and two distinct times,
leading to correlation times that characterize the time delay needed for significant
temporal decorrelation. More generally, correlations involving separations in both
space and time can be studied.

A measure of the smallness of viscous effects on the large scales of turbulence is
provided by the turbulent Reynolds number, Re; = u'L/v, where #’ characterizes
the overall turbulent velocity fluctuations (#' is usually taken as the root-mean-
squared velocity fluctuation of one of the components of velocity) and L is a length
scale representing the order of size of the large scales (e.g., a correlation length).
The quantities #' and L, and hence the turbulent Reynolds number, Re;, are
characteristic of the large scales of turbulence. The Reynolds number, Re;, is
typically high for turbulent flows, implying little direct effect of viscosity on the
large scales, although, as we shall see, this does not mean that viscosity can be
neglected. Indeed, viscous effects play an important role in the dynamics of the
smallest scales.

As noted above, a graph of velocity as a function of position is furry when the
large scales of a high-Reynolds-number flow are considered. Applying higher and
higher magnifications,-one eventually finds a scale at which the velocity is revealed to
be a smooth function, defining the smallest scales of the flow. Smoothness reflects
viscous action and thus the size of the smallest scales depends on the viscosity,
decreasing relative to the large scales as the Reynolds number is increased. The
size of the large scales is typically fixed by the overall geometry of the flow, for
example, the width of a turbulent jet, whereas that of the smallest ones adjusts itself
according to the viscosity.

¢ Not necessarily monotonically, however.
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TURBULENCE HAS SMALL-SCALE RANDOM VORTICITY

Turbulent flow is rotational, that is, it contains vorticity, and not just any vorti-
city. Laminar flows can, of course, possess vorticity, but, a characteristic of high-
Reynolds-number turbulence is that the vorticity has intense, small-scale, random
variations in both space and time. The magnitude of these vorticity fluctuations is
much larger than the mean vorticity and they are randomly orientated in direction.
The vorticity is defined as the curl of the velocity, @ = V x U, and thus involves its
spatial derivatives. Taking the derivative brings out the fine-scale fur in the velocity
field and, as a result, the spatial scale for vorticity fluctuations is the smallest in the
continuum of turbulent scales. That is, velocity derivatives are dominated by the
smallest scales of turbulence, at which the velocity field appears as smooth (and, in
particular, differentiable) when examined at a sequence of higher and higher magni-
fications. This scale is known as the Kolmogorov length scale, and viscosity, which
has little influence on larger scales at high Re;, is important at these, the smallest.

Notice that, in such descriptions of the different length scales of turbulence, we are
only really concerned with orders of magnitude. Thus, the correlation length, which
gives the order of spatial separation over which velocities decorrelate, and the
Kolmogorov length, which describes the scale at which there are significant viscous
effects, are both order-of-magnitude quantities, forming the upper and lower ends of
the continuum of turbulent scales.

The reader will recall (see, e.g., Batchelor (G 1967), section 2.3) that the vorticity
can be physically interpreted by expanding the instantaneous velocity field as a
spatial Taylor’s series up to linear terms about some point in the flow. In this
way, the instantaneous velocity inside a small particle can be written as the sum
of the velocity of its centroid, simple strainings along three perpendicular axes, and
rotation at angular velocity €/2. Thus, the vorticity represents rotation of small fluid
particles about their centroid. An evolution equation for the vorticity can be derived
by taking the curl of (1.1) and using (1.2), leading to

% o2 U, R,
AT § Mt S o Wi | : 1.4
ot Dok, T kg T axn, (14)
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Convection Stretching (\i]'ifsfco'us
1ftusion

which describes the time evolution of the vorticity vector, €. Both the terms labeled
convection and stretching arise from the convection term in (1.1). If these terms are
neglected, we have the simple diffusion equation, hence the labeling of the viscous
term. On the other hand, in the absence of viscosity, the convection term in (1.4)
causes vorticity to move at the fluid velocity, although the stretching term is
responsible for changes in both the magnitude and direction of the vorticity vector
as it is convected. Vortex lines, defined as everywhere tangential to the vorticity
vector, are carried by the flow, that is, a given vortex line always consists of the
same fluid particles. As the flow convects the vortex line, it generally changes in
orientation and the vorticity vector obviously does likewise. Stretching of a vortex
line by the flow causes the vorticity to be amplified,” its magnitude increasing in

7 The importance of vortex stretching as a means of amplifying vorticity appeared early in the develop-
ment of fluid dynamics in the work of Kelvin, Lagrange, Helmholtz, and Cauchy on inviscid rotational
flows.
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proportion to the distance between two infinitesimally separated fluid particles
among those making up the line. Convection and stretching are inviscid mechan-
isms and, with nonzero viscosity, vorticity diffuses due to the viscous term in (1.4).

Qualitatively, vortex convection and stretching may be thought of as the mechan-
isms by which the intense, fine-scale verticity fluctuations of high-Reynolds-number
turbulence are generated and maintained. In this view, the intensity of vorticity
fluctuations is due to amplification by stretching, whereas their fine scale reflects
transverse reduction in size of a blob of vorticity that is drawn out along the direc-
tion of stretching. These are inviscid mechanisms, stemming from the nonlinear
convective term in (1.1), and are continuously going on inside high-Reynolds-num-
ber turbulence. However, the viscous diffusive term in (1.4) is called into play at
sufficiently small scales because the viscous term in (1.4) contains second derivatives
and thus increases in relative importance as the scale considered decreases. Since
viscous diffusion tends to cause vorticity to spread, it counteracts both the amplify-
ing and scale-reducing effects of vortex stretching. Thus, viscous diffusion of vorti-
city places a lower limit (the Kolmogorov scale) on the size of vortical structures
attainable by stretching, resulting in the velocity field being smooth when viewed at
such scales, and an upper limit on the amplification of vorticity fluctuations. Because
viscosity is called into play, there is associated dissipation of mechanical energy to
heat at the smallest scales of turbulence.

We will return to the subject of vorticity in turbulent flows in Chapter 4.

TURBULENCE ARISES AT HIGH REYNOLDS NUMBERS

We saw earlier that transition to turbulence occurs due to instability of laminar
flow at large Reynolds number. With rising Reynolds number, the nonlinear con-
vective term in the Navier-Stokes equation assumes increasing importance compared
with the viscous term, and the tendency to instability, which is damped by viscosity,
increases. Thus, a large Reynolds number is a prerequisite for the production of
turbulence.

Once a turbulent flow is established at high Reynolds number, flow instabilities
are responsible for continued generation of turbulence, producing large-scale eddies,
which are themselves unstable, giving rise to smaller ones, and so on, until viscosity
becomes important at the smallest scales, as described above. This cascade process,
by which small scales are produced from larger ones, is going on incessantly inside
high-Reynolds-number turbulence and extracts energy from large scales, passing it
down via smaller and smaller ones until it is dissipated by viscous action at the
smallest scales. The continuum of spatial scales generated by the energy cascade,
between the large ones, over which fluid velocities are correlated, and the much
smaller viscous scales of the vorticity fluctuations, at which energy is dissipated as
heat, gets wider as the turbulent Reynolds number increases. The size of the large
scales is generally determined by the environment of the flow, with the correlation
length scaling on, but being somewhat smaller than, for instance, the width of a
turbulent wake or jet. On the other hand, the smallest, dissipative scales change in
size with the fluid viscosity, becoming smaller at larger Reynolds numbers.

If the turbulent Reynolds number drops too low, the cascade can no longer
operate. There are then only the large scales of turbulence, whose velocity fluctua-
tions decay due to direct viscous damping, rather than indirect loss of energy via the
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cascade, followed by dissipation at the Kolmogorov scale. This is the eventual fate of
turbulence left to decay without an energy source to continuously replenish the large
scales. Its Reynolds number falls, and with it the range of turbulent scales, until,
eventually, the turbulence decays passively under viscosity, at which point it is
essentially dead. There appears to be little to distinguish a random laminar flow
from such an end result of turbulent decay and, in studies of turbulent flows, one
is usually more interested in the behavior of high-Reynolds-number turbulence. We
will concentrate on the case of high Reynolds number throughout much of this book.

TURBULENCE DISSIPATES ENERGY

Since a high-Reynolds-number cascade is essentially inviscid, it conserves mechan-
ical energy. Thus, as smaller scales are formed, they can be thought of as sapping
some of the mechanical energy of their larger parents and transmitting it to their own
offspring. As a result, the cascade generating the smaller scales is associated with a
mean flux of energy from large to small turbulent scales, a flux which is controlled by
the dynamics of the large scales, with viscous dissipation as heat at the smallest
scales. Because the small scales are only responsible for fine wiggles of velocity
graphs, it is the large scales that contribute most to the overall turbulent fluctuations
of velocity. That is, the large scales contain the major part of the turbulent kinetic
energy. They continuously feed energy via the cascade to the smallest eddies, where it
is dissipated. Since the intermediate scales contain only a small fraction of the overall
turbulent kinetic energy, they should not be thought of as hoarding the energy that is
passed to them by the large scales, but rather as quickly passing it on via the cascade
to yet smaller scales.

As a result of the cascade, turbulent flows dissipate energy rapidly as the viscous
stresses act on the fine scales. For example, under otherwise similar conditions, the
energy lost in a circular pipe is roughly one hundred or more times larger if the flow
is turbulent than if it is laminar. Statistically steady turbulence thus requires a con-
tinuous supply of energy. Overall, a steady turbulent flow can be considered as
driven by the existence of a large-scale source of energy, namely extraction from
the mean flow by instability, the cascade of energy through smaller and smaller
scales, and the dissipation of energy at the smallest scales. If there is no energy supply
to maintain the flow, turbulence decays and eventually ceases to be active because
the Reynolds number is no longer large enough.

For homogeneous turbulence, quantification of the above qualitative ideas of
different scales of turbulence, their contributions to the turbulent energy, and the
cascade of energy from large to small scales is provided by spectral theory, developed
in Chapters 6 and 7.

TURBULENCEISACONTINUUM PHENOMENON

The smallest scales associated with turbulence are those dictated by viscosity.
These scales are typically many orders of magnitude larger than the molecular free
paths.® Thus, turbulent flows can be described by a continuum approximation, such
as the Navier-Stokes equations. '

¥ Exceptions may occur for gases and plasmas if the turbulent Mach number is large enough. We do not
consider such cases in this book.
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TURBULENCE IS INTRINSICALLY THREE-DIMENSIONAL

For a strictly two-dimensional flow, that is, one which is independent of x3, say,
and has U; = 0, vorticity is directed in the x;3-direction and the vortex stretching
term in (1.4) is zero. Thus, stretching does not act in two-dimensional flow and, in
the absence of viscous diffusion, the vorticity is passively convected, unchanged by
the flow. The high-Reynolds-number cascade of energy to smaller scales cannot take
place and turbulence, as we understand the term in this book, is not initiated. While
it is true that such flows can exhibit complicated flow structures with a degree of
randomness, they do not possess the ubiquitous fine scales associated with three-
dimensional turbulence at high Reynolds numbers, and correlations tend to be pre-
sent throughout the flow. Numerical simulations of high-Reynolds-number two-
dimensional flows with random initial conditions suggest that small-scale structures
coalesce to form larger ones. This contrasts with the three-dimensional case, for
which large structures produce smaller ones, leading to intense random vorticity
and energy dissipation on a small scale at which viscosity intervenes. It should be
made clear that turbulent flow can nonetheless be two-dimensional in a statistical
sense (statistical properties independent of x3 with zero mean-velocity component in
that direction), but that the turbulence in any given realization is three dimensional.
Furthermore, turbulent flows may show larger correlation lengths in some direction,
thus resembling the two-dimensional case, as they tend to when subjected to strong
rotation, for instance.

In summary, although many respected authors have talked of two-dimensional
turbulence, in our view turbulent flow proper can only occur if the random fluctua-
tions are three dimensional. We do not intend to suggest by these remarks that the
study of random two-dimensional flow is unimportant, indeed it has stimulated much
interesting work, but to point out that the physical mechanisms that govern such flows
are sufficiently different from what is usually meant by turbulence that they should be
placed in a different category. We will briefly return to this subject in Chapter 4.

THE LARGE SCALES OF TURBULENCE ARE INSENSITIVETO VISCOSITY AT HIGH

ENOUGH REYNOLDS NUMBER

If the turbulent Reynolds number is high enough, the dynamics of the large scales
are essentially inviscid and hence insensitive to the precise value of the large
Reynolds number. While the size of the smallest scales adjusts to changes in the
fluid viscosity so as to dissipate energy at an appropriate rate, controlled by the
large scales, the smallest scales are thought to have little direct effect on the large
scales, which interact mainly with scales immediately below them in the cascade.
Thus, those properties of turbulence which are determined by the large scales should
be largely unaffected by changes in the viscosity. This leads to the conjecture that, for
instance, the mean energy dissipation rate, mean velocity and root-mean-squared
velocity fluctuations of a turbulent flow approach limiting values as the Reynolds
number tends to infinity (or at least that they ought to vary much more slowly with
changes in the Reynolds number). One would, for example, expect the mean velocity
and root-mean-squared turbulent fluctuations of a turbulent jet or wake to approach
limiting profiles at high Reynolds numbers. Furthermore, although viscous energy
dissipation is dominated by the smallest scales, the average rate of energy dissipation

15



16

AN INTROOUCTION TO TURBULENCE

reflects the mean rate of energy supply from the large scales and is consequently also
believed to tend to a limit as the viscosity goes to zero.

Insensitivity of the large-scale properties of turbulence to changes in viscosity at
large Reynolds number is borne out experimentally. Wall-bounded flows are more
subtle than free-shear ones, such as jets or wakes, owing to the existence of thin
viscous layers at solid boundaries, within which the turbulent Reynolds number
takes moderate values even when the overall Reynolds number is very large. Thus,
viscosity affects the large scales within the viscous layers and, even outside, their
existence may mean that (at least some) large-scale properties of wall-bounded flows
do not approach limiting values, but rather continue to be weakly (perhaps loga-
rithmically) dependent on the viscosity. Viscous layers are discussed in more detail in
Chapters 4 and 5 and should not be confused with turbulent boundary layers, of
which they form a comparatively thin sublayer at the wall.

1.2 Some Practical Consequences: Energy Loss, Drag, and
Dispersion

We have already noted the greater energy dissipation of turbulent flow and so we will
concentrate on the related issue of drag and on the dispersion of heat and material. The
existence of turbulence results in more rapid dispersal of momentum, heat, and mater-
ial compared with laminar flows, leading to substantially different properties for
turbulent flows (see, e.g., Figure 1.5a). Increased momentum transfer is usually unde-
sirable because it gives rise to greater skin friction and hence drag. Figure 1.5b shows
the drag coefficient of a flat plate for the idealized cases in which the boundary layer is
either laminar or turbulent over the whole plate, illustrating the greater skin friction of
the turbulent regime. In practice, below a certain value (typically between 10° and 107)
of the Reynolds number, Re, based on the plate length, the boundary layer is indeed
entirely laminar and the lower line in the figure applies. However, it becomes turbulent
over the downstream part of the plate at higher Reynolds numbers. The layer is then
laminar upstream and turbulent downstream of a transition zone, leading to a value of
¢s intermediate between the two shown in the figure. Thus, as the Reynolds number
increases, the downstream part of the boundary layer becomes turbulent and the
resulting measured curve of ¢/ as a function of Re departs from the lower line in the
figure, rising towards the upper line, to which it asymptotes at large enough Re.

Unlike increased drag due to momentum dispersal, the turbulent dispersion of
heat or material is often a positive and crucial aspect of many practical flows.
Without it, the reactants in a chemical reactor would take a very long time to become
sufficiently mixed to undergo a reaction and pollution released into the atmosphere
would remain undiluted by the mixing process. In any case, turbulence is an una-
voidable feature of most industrial flows, because high throughputs imply large
Reynolds numbers.

DISPERSAL OF MOMENTUM

At high Reynolds number, close to a solid boundary, a boundary layer is formed.
Visualization of turbulent boundary layers shows the existence of complicated struc-
tures of all scales within the layer and a convoluted boundary separating the external
laminar flow from the turbuient flow inside the layer (see Figure 1.4). Irregular
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bulges form on the boundary and
engulf and entrain fluid from outside,
taking it into the layer. Measure-
ments of instantaneous velocities
within the layer show large gradients
and strong fluctuations. The skin fric-
tion coefficient is much higher for a
turbulent than for a laminar bound-
ary layer (see Figure 1.5b), hence the
tendency to increased drag due to
turbulence. The greater skin friction
is a reflection of faster dispersal of
momentum as the turbulent layer
entrains fluid from outside, slowing
it down as it is engulfed by the
layer and becomes turbulent itself.
The entrainment process is far more
efficient at spreading a boundary
layer than the viscous molecular dif-
fusion that acts in a laminar bound-
ary layer.

Let us first consider a flat plate. A
laminar boundary layer on the plate
evolves with downstream distance, x,
in response to two processes. Firstly,
fluid particles are convected by the
flow; secondly, viscous diffusion
causes the layer to grow in thickness.
If the external flow velocity is U,, a
characteristic time for convection to
the position x is
x
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Figure 1.5. Turbulent vs. laminar flows: (a} effects of turbulence
on the mean-velocity profile in a pipe; (b) the drag coefficient of a
flat-plate boundary layer. Both are reflections of more efficient
momentum transfer in turbulent flow. In (b}, Re = U,L/v is the
Reynolds number based on the length of the plate, L, and U, is the
free-stream velocity, while ¢f = 2F; /(pU?L) defines the drag coef-
ficient, Fpy being the drag force.

whereas for viscous diffusion to produce a layer of thickness § requires a time of

order
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(1.6)

where v is the kinematic viscosity. Setting T, & Ty gives us the thickness

b\ 12 )
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(U) ¥

(1.7)

at downstream distance x. We observe that § « x'/? (so that the laminar layer
spreads at a steadily decreasing rate) and that this expression can also be written
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X
8~ R (1.8)
where
Re, = va (1.9)

is the Reynolds number based on x and U,. Thus, a large Reynolds number implies a
layer thickness much less than x, growing like x'/2.

The spreading of a turbulent boundary layer is not controlled by viscous diffu-
sion, but by entrainment. A measure of entrainment is the velocity # of turbulent
fluctuations within the layer. Supposing that the layer grows at a constant velocity /',
we have a characteristic time for entrainment to thickness § of

T,~2 (1.10)
Uu

Setting T, =~ T, as before we have

’

5~ —%x 1.11)
which makes 8 o . The linear growth with streamwise distance means that, at large
x, the turbulent layer will be much thicker than the laminar one, which only grows
like x'/2. Figure 1.6 sketches the growth of both laminar and turbulent boundary
layers on a flat plate. We should observe that the above argument assumes constant
', whereas there is in fact a slow decrease of turbulent velocities with increasing x.
As ' falls the turbulent layer spreads at a gradually decreasing rate, but still much
more rapidly than the equivalent laminar layer. In consequence, a turbulent layer is

considerably thicker than its laminar coun-
terpart at the large values of Re, which are
typically required for turbulence to occur.
Overall, the boundary layer on a long flat
plate evolves as follows (recall the discus-

sion towards the beginning of the chapter).
As the layer thickens, the effective
Reynolds number increases. A length of
laminar flow near the leading edge of the
plate is followed by a range over which
transition takes place and the layer
becomes turbulent. Its thickness is subse-

quently larger and grows more rapidly

0
than would a corresponding laminar

turb & X

Figure 1.6. Sketches of the thickening of flat-plate laminar
and turbulent boundary layers. For clarity, the scale has
been expanded normal to the plate: boundary layers are
very thin at the high Reynolds numbers presumed here.
For instance, the angle of growth of a turbulent boundary
layer is typically of order 1°.

layer. Such behavior is typical of stream-
lined bodies for which there is no separa-
tion, at high enough Reynolds numbers
that transition to turbulence occurs in the
boundary layer.
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For flow past more general bodies boundary-layer separation may occur (see
Figure 1.7). This results from a sufficiently large adverse pressure gradient in the
flow external to the layer, which decelerates the fluid near the surface to rest, produ-
cing a separation point to which fluid converges from both sides and at which the
boundary layer leaves the surface. Laminar layers are less resistant to separation than
turbulent ones. This is essentially because a turbulent layer disperses momentum
faster than a laminar one and hence the effective viscosity is higher. Thus, an adverse
pressure gradient finds it harder to produce the reversed flow shown in Figure 1.7
and which characterizes separation.

The total drag on a body can be considered as the sum of a form drag (due to
pressure forces) and skin drag (due to viscous friction). Skin drag is increased by
turbulence, but form drag can be decreased because separation is delayed. The total
drag on a bluff body may often be decreased by provoking transition earlier than it
would occur naturally. In Figure 1.8a, which shows a sphere, the boundary layer is
laminar up to the separation point and skin friction is small. Separation occurs
rapidly where the pressure gradient becomes adverse and consequently the form
drag is high. A trip wire on the surface of the sphere provokes early transition in
Figure 1.8b and the flow remains attached much longer. The form drag is reduced,
but the skin drag increased. The total drag is reduced.

A jet flow is shown in Figure 1.9. This flow can be roughly divided into three
regions as a function of downstream distance. Close to the outlet of the jet, fluid is
only weakly entrained from outside. There, the entrainment process depends
strongly on the state of the boundary layer coming from inside the pipe. Next, the
outer parts of the jet, which are essentially shear layers, begin to roll up due to
Kelvin-Helmbholtz instability, producing ordered structures similar to vortex rings
and external fluid is entrained more strongly. Finally, the ordered vortical structures
break down and the flow becomes complicated and turbulent throughout. A wide
range of eddy sizes are then apparent and the jet rapidly entrains external fluid. The

Z

Separation /

point

4

Figure 1.7. Sketches of the velocity profiles at different positions near boundary-layer separation on a

bluff body.
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Figure 1.8. A solid sphere placed in uniform flow: {a) the boundary
layer is laminar and separates to form the wake behind the sphere; (b)
a trip wire has triggered boundary-layer transition upstream of where
flow separation occurs in Figure 1.8a and hence delayed separation.
(ONERA photograph, Werlé (1980), reproduced with permission.)

Figure 1.9. Visualization of a jet. (Courtesy of Robert Drubka and
Hassan Nagib.)

location of breakdown to turbu-
lence tends to move upstream
with increasing jet Reynolds num-
ber and is also sensitive to the level
and type of perturbations (recall
the discussion of transition at the
beginning of this chapter).

Since turbulence is a result of
the dynamics of the flow, if it can
be described as having an objec-
tive, this would be the dispersal
of momentum rather than mate-
rial. The dispersion of fluid
momentum is essential at high
Reynolds number because viscos-
ity can no longer relieve the high
strain rates sufficiently quickly as
to avoid instabilities and overturn-
ing of the larger structures. Such
overturning transfers momentum
quickly and helps to reduce the
high shear which produces the
instability, and hence the turbu-
lence, in the first place. As
described earlier, it also leads to
a cascade of energy and vorticity
to smaller scales and hence the
characteristic intense, small-scale
vorticity and viscous energy dissi-
pation.

DISPERSAL OF MATERIAL

AND HEAT

A by-product of turbulence is
the mixing of material, which, as
noted above, is vital to many
industrial processes and to the
dilution of pollutants in the envir-
onment.

As an example of the poten-
tially unexpected effects of pollu-
tant dispersal in the atmosphere,
consider the situation shown in
Figure 1.10a. A stably stratified
layer exists above an unstable
layer near the surface. The flow
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Stably stratified layer

{b)

Figure 1.10. (a) Sketch of pollutant release, illustrating trapping by a stably stratified layer some distance
above the ground; (b) measured and visualized concentrations of scalar released by a jet into a cross-
stream. The dotted line represents the concentration level along the continuous line. {{(b) Courtesy of F.
Ladhari; see Ladhari (1984) for experimental details.)

in the lower layer is turbulent and there is rapid dispersion of pollutants from a
source in that layer. However, little of the pollution gets carried into the upper layer,
because there is no turbulence there. As a result the pollution is spread rapidly in the
lower layer, but is trapped there.

Atmospheric turbulence tends to dilute pollutant releases. A laboratory simulation
which illustrates this effect is shown in Figure 1.10b. A round jet, simulating a
pollutant release, exhausts vertically into a cross-stream. The instantaneous distribu-
tion of pollutant concentration along the continuous horizontal line is represented by
the dotted line.

Heat transfer is perhaps even more important than the dispersion of material in
industrial applications. The enhancement of heat transfer by turbulence is due to the
same effects of convective transport by turbulent flows that result in mixing of
materials and dispersal of momentum. For example, the following empirical formu-
lae for heat transfer from a flat plate in flow indicate the greater transfer which
occurs at high Reynolds number in turbulent flows:
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laminar Nu, o Rel/2pr!/3 (1.12)

turbulent Nu, o Re}/*prl/3 (1.13)

Here, Nu, is the Nusselt number, characterizing the efficiency of heat transfer, and
Pr is the Prandtl number of the fluid. The higher exponent of the Reynolds number
indicates that turbulent heat transfer is more efficient than laminar transfer when Re,
is large.

As remarked earlier in the chapter, the detailed analysis of heat transfer requires
consideration of the energy equation even in cases in which the flow itself may be
described by the incompressible Navier-Stokes equations (1.1) and (1.2), as sup-
posed in this book. In many flows, the equation for the internal energy of the fluid
may be approximated by (see Landau and Lifshitz (G” 1987); Bird et al. (1960)) the
convection—diffusion equation

or 0T _, T
ot "Ox;  ox;ox;
[ e’

Convection Diffusion

(1.14)

for the fluid temperature T, where « is a constant thermal diffusivity. Equation (1.14)
is often employed, together with appropriate thermal boundary conditions, in heat
transfer calculations, but, since it involves a number of approximations of the ori-
ginal energy equation, its validity should be checked in particular cases, as indeed
should that of (1.1), (1.2). In this formulation, the flow is governed by (1.1) and
(1.2), independent of the temperature field, but the velocity appears in the evolution
equation, (1.14), for the temperature. Thus, there is coupling between the flow and
heat transfer problems in one direction only (temperature acts as a passive scalar).
According to (1.14) without heat conduction (x = 0), the temperature of the fluid is
convected unchanged following a fluid particle, while conduction introduces thermal
diffusion, tending to produce a uniform temperature. There is a certain qualitative
similarity with the convection and viscous diffusion of momentum; however, the
analogy is far from exact because, comparing the ‘evolution equations, (1.1) and
(1.14), for the velocity and temperature fields, it is evident that the former contains
a pressure gradient term and describes a vector quantity, whereas the latter concerns
the evolution of a scalar. Furthermore, the associated diffusivities, v and «, are
generally not the same, with their ratio, Pr = v/«, defining the Prandtl number. In
problems such as that of the heat transfer of a flat plate considered above, there is a
thermal layer at the surface, in which, like the velocity, the temperature adjusts from
its value at the surface to that of the external stream. For gases, the Prandtl number is
typically of order 1, making the thickness of the thermal layer comparable with that
of the boundary layer of the velocity field. More generally, the combined effects of
turbulent convective mixing and thermal diffusion by conduction, both represented
by terms in (1.14), try to make the temperature field uniform, while nonuniformities
of temperature may, for instance, be introduced by heating the boundaries, via the

? Recall that, as explained in the preface, “G” with a date refers to the “General References™ following the
preface.
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initial conditions on the temperature, or by volumetric heat sources, such as chemical
reactions, which would add a source term to the right-hand side of (1.14).

We can illustrate the enhancement of dispersion of heat by flow via a simple
calculation. Consider a room of size L. Under pure molecular diffusion, with diffu-
sion coefficient «, a time of order L?/« is required for dispersal, as can be seen from
equation (1.14), dropping the convective term and performing order-of-magnitude
estimates of the derivatives. On the other hand, the time taken for turbulence of
fluctuating velocity #' to disperse heat through the room may be estimated as of
order L/#'. The ratio of the two times is L#'/x, a quantity referred to as the Peclet
number and which is analogous to the Reynolds number, with the scalar diffusivity,
k, instead of the viscosity, v. If we take L = 5 m and ' = 0.05 m/s, the Peclet number
is about 10*, that is, it takes around ten thousand times longer for molecular diffu-
sion than for turbulent convection to transfer heat through a room-sized region.
Using the above parameters, the time taken for pure conduction is of order 10°s,
while that for turbulent convection is about 100s.

Evidently, the enhancement of heat transfer by the flow is due to the large Peclet
number. At high Peclet numbers, the convective term in (1.14) dominates the diffu-
sive one, at least for the large scales of the temperature field, which means that the
overall heat transfer is mainly due to convection by the flow. At the same time as heat
is dispersed in this way, convective stirring by turbulence tends to generate smaller
and smaller scales of the temperature field, a process similar to the energy cascade in
the velocity field, bringing conduction into play at the smallest scales and dissipating
thermal nonuniformities in a fashion analogous to the dissipation of mechanical
energy by viscosity. Thus, there are simultaneous processes of dispersal and mixing
of temperature in turbulent flows, accompanied by thermal diffusion at the smallest
scales.

Equation (1.14} describes the convection and diffusion of scalar quantities other
than the temperature, such as the concentration of dissolved substances in a liquid,
provided T is replaced by the given scalar and « by its diffusivity. Thus, one may use
(1.14) to study the mixing, dispersion, and diffusion of passive scalars in general, for
instance the problems of pollutant dispersal referred to above. Various techniques
may be used to analyze the scalar field, including the spectral methods that will be
developed for the velocity field in Chapters 6 and 7. However, detailed discussion of
the properties of passive scalars convected by turbulence lies beyond the scope of this
introductory volume,

1.3 Remarks on Mathematical Chaos

It has been proposed that there may be some connection between turbulence and
mathematical “chaos,” whose onset marks a definite and well-defined change in the
properties of systems of differential equations in which it appears. Chaotic systems
exhibit a form of deterministic randomness that is reminiscent of turbulent flows.
Furthermore, nonlinearity is crucial to the appearance of chaos and is also important
in generating and maintaining turbulence. The mathematical theory of chaos may in
the future contribute to our understanding of turbulent flow. Even at this stage in
their development, the concepts are interesting and provocative when viewed from
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the standpoint of turbulent flows, although, to our knowledge, they have yet to
contribute new and concrete results.

Many attempts have been made to analyze the mathematical properties of the
Navier-Stokes equations, in particular the existence and uniqueness of their solu-
tions. Pioneering work in this area is described by Ladyzhenskaya (1969). We take
the existence and uniqueness of solutions to the Navier-Stokes equations with pre-
scribed boundary and initial data for granted, even though it has never been proved.
If, however, one specifies the boundary conditions alone, the solution need not settle
down to a unique limiting flow as t — co0. Assuming that the boundary conditions
are steady, at sufficiently low Reynolds numbers the asymptotic flow at large times is
also steady and uniquely determined by the boundary conditions: it is then said to be
globally stable. Statistically steady turbulence is at the opposite extreme and is highly
nonunique, producing a different flow each time the experiment is performed.
Starting from two slightly different initial conditions, the two flows diverge rapidly
and quickly bear no resemblance to one another. However, although steady turbu-
lent flow is nonunique in detail, its statistical properties {probabilities and averages)
do seem to be uniquely determined by the boundary conditions alone, that is, the
flow forgets its initial conditions and always settles into the same statistical state.
Thus, even though the Navier-Stokes equations provide a deterministic model of
turbulent fluid flow (because exactly specified boundary and initial conditions lead to
a unique flow), at later times the resulting solution may still be extremely sensitive to
the precise conditions used. In this case, although mathematically deterministic, the
detailed flow can appear experimentally unrepeatable and unpredictable, as is found
to be the case for turbulence. These are among the fundamental reasons for using
statistical methods, as noted earlier in the chapter.

Formally, sensitivity to initial conditions can be expressed using the concept of
“state space.” At any given time, the flow can be represented by its velocity compo-
nents U; at each point in space. If the number of points of physical space were finite
{which it is not, of course) we could use the corresponding velocities U, as coordi-
nates in a state space. A point in state space would then represent the flow. This idea
may be taken over to the infinite number of points of physical space that are actually
present. Thus, a point in {infinite-dimensional) state space represents an entire flow
at a given time. If the velocity is specified at time ¢, that is, the point in state space
representing the flow is given, then the flow is uniquely determined thereafter by the
Navier—Stokes equations (and the given boundary conditions). The point in state
space can be thought of as moving along a trajectory which is fixed by the initial
position of the point. This is the point of view adopted in the mathematical theory of
dynamical systems. The main difficulty in applying that theory to flows is that almost
all of the theory is restricted to finite-dimensional state spaces and, indeed, practical
calculations have only been carried out for rather low-dimensional spaces, whereas
for the flows we have in mind the number of effective degrees of freedom is very large
and the dimension of the state space infinite. However, we provisionalty adopt the
idea of thinking in terms of state space to try and explain the possible relevance of
mathematical chaos to turbulence. _

The sensitivity of a flow to the initial conditions can be expressed in state space
as follows. Two points representing different flows that are initially close together
move rapidly apart with time (here we have not defined distance in state space, but
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we have in mind some suitable norm). That the points are initially close together
expresses the idea that the initial flows should be nearly the same. That they move
apart rapidly indicates that the slight differences in initial conditions lead to large
differences later. In finite-dimensional systems, the separation of two points with
infinitesimal separation is an exponential function of time at large times. The
coefficient (or growth rate) of the exponential is known as the Liapounov exponent
and is positive for systems in which initially close points of state space move apart.
The Liapounov exponent is necessarily positive for chaotic systems, representing
exponential divergence of neighboring points, but this is not a sufficient condition
for mathematical chaos.

Dynamical systems with dissipation (like viscosity in fluid flow) usually have
subsets of state space called attractors (see, e.g., Bergé et al. (1984)). An attractor
is such that points of state space that lie within another subset, called the domain of
attraction, are drawn towards it, approaching the attractor ever more closely as
t — oo. The point representing the system is still free to wander around the attractor
at large times. The importance of the attractors of a system is that the ultimate
behavior, as t — 0o, can be characterized by their study.

The interest in these concepts has increased sharply since it was discovered that
even relatively simple nonlinear systems could have remarkably complicated attrac-
tors. The classic example is the Lorenz system of three equations in three unknowns,
which Lorenz derived as a simple model of thermal convection. Results of numerical
integration of the Lorenz system are shown in Figure 1.11 and illustrate mathema-
tical chaos, which has now been identified in many low-dimensional dynamical
systems, including ones that represent physical systems. The attractor is indicated
by the “A” in the upper part of the figure and has an overall “butterfly” shape.
Within the butterfly, however, the attractor has a complicated structure known as a
fractal (for fractional dimension). Fractals cannot be represented by conventional
smooth surfaces and have intricate fine structure of ever decreasing scales. Many
fractals exhibit self-similarity at small scales, that is, structures repeatedly recur with
smaller and smaller sizes.'® Such attractors are called strange and the motion within
the attractor is complicated, has an element of randomness, and may be described by
statistical methods.

These ideas are suggestive when we come to consider turbulence and have stimu-
lated a considerable amount of research (see, e.g., Lumley (1990)). The sensitivity to
initial conditions and deterministic randomness are indeed characteristic of turbu-
lence. Might it be that, if one could find the correct mathematical description, tur-
bulence would appear as a strange attractor of the flow? Statistical properties of the
turbulence might then be deduced from the properties of the attractor. As pointed
out by Lesieur (G 1990), there is no a priori contradiction in philosophy between
chaos theory and the point of view usually adopted in the theory of turbulence.
However, as previously stated, turbulence has a very large number of degrees of
freedom and an infinite-dimensional state space. It shows randomness in both space
and time, whereas the finite-dimensional chaos of dynamical systems theory has only

10 Fractals will briefly crop up again in Chapter 7. There they will represent objects in physical space,
rather than in state space. The two concepts are quite different and should not be confused, despite the
similarity in mathematical description.
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Figure 1.11. Illustrations of the Lorenz
attractor. (Bergé et al. (1984), reproduced
with permission.)

a rather limited number of degrees of freedom and is thus chaotic in time only. The
theory of mathematical chaos is tantalizing, but it is as yet unclear whether it will
prove useful in the study of turbulence, and, to the authors’ knowledge, no signifi-
cant new results have so far been obtained from its application to turbulence. For
these reasons we will not discuss chaos theory further in this book. Nonetheless, it
may be instructive to give a simple example of one of the difficulties in putative chaos
theory modeling of decaying, rather than steady turbulence.

Consider viscous fluid inside a fixed container. The fluid is vigorously stirred,
leading to what would usually be called turbulence, and then left to itself. Any
initial flow can be shown to eventually approach the state of rest, which is there-
fore the only attractor, whose domain of attraction is the whole state space.
Clearly this global attractor is not chaotic, but despite this, the flow can be turbu-
lent. Turbulence is not described by the attractor because the flow first becomes
turbulent and then tends towards the attractor (state of rest) by turbulent decay. In
such cases, the flow might be assumed to approach a subset of phase space or
“turbulent slow manifold,” similar to an attractor, but evolving with time due to
statistical unsteadiness of the turbulence. However, giving precise meaning to such
a concept, let alone constructing a useful theory from it, would appear to be far
from obvious.
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1.4 Miscellany

An important and relatively recent method for the study of turbulence is by direct
numerical solution of the Navier-Stokes equations. Such solutions have become
possible at moderately high Reynolds numbers in the last decade owing to the
rapid development of both the speed and memory of computers. Direct simulation
allows one to conduct numerical experiments, often permitting better control of the
flow parameters and the “measurement” of variables within flows that are hard to
envisage in the laboratory. Furthermore, flow “codes” can be designed to be more
flexible, allowing one to simulate quite a wide class of flows with minimal changes.
As for laboratory measurements, it is important to design numerical experiments to
answer real questions and to analyze the results intelligently, so that the end
product is not simply a set of numbers or pretty pictures in color, but increased
understanding of the flow. Direct simulation does not obviate the continuing need
for laboratory experiments, still less for theoretical analysis, but provides a com-
plementary and increasingly powerful set of tools for studying turbulence as com-
puter technology advances. We shall occasionally refer to results obtained using
direct simulation, but such results should not be accepted uncritically, any more
than one would regard an experimental measurement or theoretical result as defi-
nitive without considering the errors and limitations implicit in the method used.
Turbulence, being unsteady and having structures of very diverse spatial scales, is a
particularly difficult case for numerical simulation and one often has few cross-
checks on the validity of the results. No doubt computers will continue to evolve
rapidly and this will open up more flows to direct simulation, although such
progress is likely to be rather slow, since the computer time involved appears to
increase rapidly with the Reynolds number used. We shall have more to say about
this and other essentially numerical prediction methods, such as large-eddy simula-
tion, in the final chapter of this book.

A classical method for theoretical description of turbulence is the decomposition
of the flow into Fourier components, known as spectral analysis. Spatial Fourier
analysis allows one to give precise meaning to the important notion of different
scales of turbulence and their nonlinear interactions (e.g., the cascade) and will be
developed in detail for homogeneous turbulence in Chapters 6 and 7. We illustrate
the procedure using the simple nonlinear equation

oU ;U _

-~ = =0 1.15
ot ox ( )

Let us suppose that initially, at time ¢ = ¢, the “velocity” U has the sinusoidal form
U(x, ty) = Bcos kx (1.16)

For small ¢ — ¢,, the solution can be found as follows:

Ulx,t) = Ulx, tg) + (£ — to)%

+...
4

=Ulx,ty)) — (t — to)[Ugil +...
ox

to

= Bcoskx + (¢t — ty)B*ksinkx coskx + . .. (1.17)

27



28

AN INTRODUCTION TO TURBULENCE

which shows the development of a term in sin 2kx. This is the first result of non-
linearity.
If we go to a slightly more complicated example which models a two-dimensional

field:
U oUu oU

el il == 11
o +U o +V 3 0 (1.18)
v 1% 1%

—+U—+V—=0 1.19
at m T gy (1.19)

with

U(x, tg) = B cos kx cosly (1.20)
V(x,t)) = B cosk'x cosl'y 1.21)

then for small ¢ — ¢,

U(x, t) = B cos kx cos ly + (t — to)(B*k sin kx cos kx cos® ly

/ ’ : / (122)
+ BB’lcoskxcosk'xsinlycosl'y)+...

V(x,t) = B’ cosk’xcosl'y + (t — ty)(BB'k’sink x cos kx cosly cos 'y

1.23
+ B"*'cos® k'xsinl'ycosI'y) + ... (1.23)

of which the terms in ¢ — ¢y can be expressed as a sum of terms, each of which is a
product of sines or cosines, such as,

sin(k + k)x cos(I + ")y (1.24)

The wavenumbers of this term are k£ 4+ &’ and [ 4 /', whereas those of the original
disturbance were k, [ and k', I'. In general, one finds that quadratic nonlinear inter-
actions generate sums and differences of the original wavenumbers. Thus nonlinear-
ity has the effect of generating different wavenumbers and so leading to disturbances
of both shorter and longer wavelengths than those present initially. From these
examples, we see that the effect of nonlinearity is to couple together the Fourier
components. Thus, if a turbulent flow is decomposed into such modes, they interact
with one another, and given sufficient time all modes will have acted on all other
modes. Such modal interactions are an expression of the fundamental difficulties
resulting from nonlinearity.

The spatial Fourier analysis considered above turns out to be especially useful in
the study of homogeneous turbulence. Likewise, it can be convenient to describe
statistically steady turbulence in terms of its frequency spectrum, that is, to decom-
pose the flow into Fourier components in time. The spectrum, either spatial or
temporal, describes the contribution of each component to the total energy of the
flow. The Fourier modes are supplied with, or yield energy by, nonlinear interactions
with other modes, and also lose energy by viscous dissipation. The evolution of each
mode depends on its nonlinear interactions with all other modes, as will be seen in
detail in Chapter 6, which introduces Fourier analysis of turbulence.

In the presence of a mean flow, it is usual to carry out statistical splitting of the
flow field, the total field being expressed as the sum of a mean flow and a fluctuation,
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generally identified with the turbulence. This splitting can be usefully carried out
whether or not the turbulence is homogeneous. There is generally strong coupling of
the mean and fluctuating components due to nonlinearity, with mean-flow gradients
appearing in the equations for the turbulent fluctuations, while inhomogeneity of the
turbulence occurs in the mean-flow equations via a forcing term, known as the
Reynolds stress term, as we will see in Chapter 4. Observe that it is the nonlinear
term in the Navier-Stokes equation that produces coupling of the mean flow and
fluctuations, as it does for Fourier components in spectral analysis of homogeneous
turbulence.

A special class of mean flows can coexist with homogeneous turbulence, namely
those that have velocity fields that are linear functions of the spatial coordinates. This
allows one to carry out statistical splitting and spatial Fourier analysis. Homogeneity
makes the Reynolds stress term zero, so there is no forcing of the mean flow by the
turbulent fluctuations, and one may study the distortion of turbulence by a pre-
scribed mean flow.

1.5 Conclusions

This chapter has presented an introduction to turbulence, which we hope will prove
useful to the beginner and of interest to specialists in fluid dynamics. The number
and diversity of disciplines in which turbulence is important are impressively large:
combustion, chemical engineering, multiphase flows, meteorology, stellar dynamics,
pollutant dispersal, and so on ~ indeed, almost anywhere that fluids flow.

A brief summary of the remainder of the book may be found in the preface, while
the next chapter gives an overview of those statistical methods we will need later in
the book and is intended as a review of a subject whose elements are already familiar
to the reader.
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CHAPTER TWO

Statistical Tools

The apparently random character of turbulent flows strongly suggests that statistical
methods will be fruitful. In this chapter, we discuss some statistical techniques, in
preparation for later chapters. The reader is presumed to have a modest background
in probability theory and this chapter summarizes the main elements, while placing
statistical ideas in the context of turbulent flows (those whose knowledge of the basic
theory is rusty or nonexistent should perhaps keep one of the many textbooks on the
mathematics of probability and statistics to hand; Lumley (1970) and Monin and
Yaglom (G 1971) describe the theory as applied to turbulence).

As discussed in Chapter 1, despite being generally considered as deterministic,
turbulent flows are highly nonunique in practice. Thus, if an experiment is repeatedly
carried out, a different velocity field is obtained in each realization, even if the
experimental conditions are nominally the same (i.e., the experimenter endeavors
to reproduce the same flow). This is because the detailed behavior of the flow in any
one realization is extremely sensitive to small changes in the initial or boundary
conditions, which the experimenter cannot control to infinite precision. This type
of problem is ideally suited to statistical methods. Indeed, it was the nonrepeatability
of an experiment such as tossing a coin that led to the idea of probabilities in the first
place. By looking at the statistical properties of an ensemble of different flow realiza-
tions, all obtained using the same nominal conditions, one hopes to extract useful
quantities, namely probabilities and averages, which depend only on parameters that
the experimenter controls. To take an example, the detailed behavior of the turbulent
wake of a sphere placed in a uniform flow may vary with tiny perturbations in the
incoming stream and small vibrations of the sphere, to name just two possible
extraneous factors, but one hopes and expects that, for instance, the average velocity
is well defined. Of course, the flow statistics depend on the gross experimental
conditions used, for example, a turbulent boundary layer can have quite different
thickness and drag with suction than without, but we expect them not to change
significantly with small variations in those conditions.

Given an ensemble of different flow realizations, we can define the associated
probabilities of flow variables' taking on particular values, or more precisely, ranges
of values, since they are generally continuous variables. Thus, we imagine an experi-
ment performed very many times under nominally the same conditions, each time
producing a different realization of the flow, and use the frequency with which a

! Flow variables range from simple ones, such as the pressure at a single point and time, to more
complicated ones that are tensorial or obtained from the flow at many points and times.
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given flow variable falls into a given range of values as a definition of the probability
for that range.

Mean (or average) values are of particular importance in the theory of turbulence.
We can define means by taking the average over an increasingly large number of
realizations of the flow under the same nominal conditions. The mean value can also
be calculated in the usual way from a knowledge of the probabilities of the given
quantity as a sum (or integral for continuous variables) over all possible values,
weighted by their probabilities. In particular, the mean flow is defined as having
the average values of the velocity and pressure (together with the density and perhaps
other fluid properties if the fluid is compressible, a case which is not considered in
this book). The departure of any given realization from the mean can be calculated
by subtracting the mean flow and is conventionally identified with turbulence. That
is, the total flow is split into a mean part and a fluctuating component, whose
average is zero and which is usually thought of as representing the turbulence. For
instance, the mean values of the squared fluctuating velocities are often used to
characterize the intensity of turbulence. We shall come across numerous other
important quantities defined by averages during the course of this book.

2.1 Probabilities and Averaging

Consider any flow variable U, which might represent a velocity component or the
pressure at a given position and time, or a more complicated quantity derived from
different points and times. U will take on different values in different experiments.
One may average the quantity U by summing over experimental realizations, divid-
ing by the number of realizations, and letting that number go to infinity. Thus we
obtain the mean of U, variously denoted as U or (U) (or sometimes E(U), then called
the expectation of U). The probability distribution function, P(U), can also be
defined so that

Uy

J P(U)dU 2.1
gives the proportion of realizations in the ensemble for which U takes on values in
the range U_ < U < U, that is, the probability that it falls in that range. The idea
here is that P(U)dU gives the probability of U lying between U and U + dU and that
we should sum up such elementary contributions over the range U_ to U, to deter-
mine the overall probability that U_ < U < U,. The probability of a given event is
thus the proportion of the ensemble for which it occurs and (2.1) gives the prob-
ability that U_ < U < U, .

Since U must always take on some value,

Jm P(U)dU = 1 2.2)

—00

is an identity which the distribution function, P(U), must always satisfy. The mean of
U can also be calculated from P(U) via

U= rw UP(U)dU (2.3)
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which expresses the fact that the average can be computed by taking the proportion
of the sample in the range U to U + dU, which is P(U)dU, multiply it by U and sum
over all possible values of U. We can likewise determine the mean of any function of
U from

. 400
70) = j AU)P(U)dU 2.4)

Given U_ < U, if we take f(U) as the window function

(=1 i U.<U<U, @2.5)
f(U)=0 if U<U_.orU=>U,

the average value of f(U) is
- U+
70 = J P(U)dU 2.6)
U_

that is, the probability that U falls in the range U_ < U < U,, from which P(U) can
be obtained by differentiation with respect to U_ or U,. Thus, knowledge of the
probability distribution function allows calculation of average values from (2.4),
while, working in the other direction, averaging can be used to derive the distribu-
tion function. Because mean values are often easier to determine experimentally,
averaging of window functions has formed the basis of a popular experimental
technique for the measurement of probability distributions. In this method, an
experimental signal, U(#), is sent through an electronic device whose output is 1
for a certain range of values and O outside that range, followed by averaging to
obtain the probability that U(z) lies in the given range. Experimentally, time aver-
aging is usually employed for steady flows, whereas we have defined both probabil-
ities and mean values via an ensemble of experiments. Conditions under which the
two approaches give the same results will be discussed in the next section.

An obvious property of averaging is that it is a linear operation, that is, if A is any
constant

AU =AU 2.7)
and, if V is any flow quantity
U+V=U+V 2.8)

Since flow quantities are usually functions of spatial location and time (e.g., a velo-
city component), governed by differential equations, we will frequently need to take
averages of their derivatives. Linearity allows one to write

Ux+ h) — Ux) _ Ulx +h) - Ulx)

- = - 2.9)
and taking the limit as » — 0 we have
U _ 3y (2.10)
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which indicates that one can take averages inside derivatives, an operation we will
often perform in later chapters without explicitly noting the fact. Note that this holds
for both space and time derivatives and that similar results apply to integrals over
either space or time. Mathematically, we might say that averaging commutes with
differentiation and integration.

Most quantities occurring in the theory of turbulence are continuous variables,
that is, they take on a continuum of values and the value in one experiment is never
exactly the same as that in any other. This behavior may be contrasted with that of
discrete variables (e.g., the number of times the velocity exceeds a certain critical
value in a given time range), which can only take on values within a certain coun-
table set of numbers and thus tend to repeat themselves. The distribution function of
a discrete variable consists of Dirac functions, whose amplitudes give the associated
probabilities. For instance, the trivial case in which the variable U takes the same
value Uy in all realizations is described by P(U) = 8(U — Uy), where the amplitude is
1 since that gives the probability that U = Ujy. One can also consider variables which
are part continuous and part discrete, whose distribution functions consist of Dirac
functions embedded within a non-Dirac continuum. Notice that, although the prob-
ability distributions of continuous variables derived from turbulence are usually
smooth functions, in general the probability distribution of a continuous variable
may be a discontinuous function. For example, a uniformly distributed random
variable in the range 0 < U <1 has P(U)=1 in that range, and zero outside.
However, we do not intend to open the door on the various mathematical pathol-
ogies which might arise and, at worst, the distribution functions we have in mind for
continuous variables show isolated jump discontinuities of the type illustrated by this
example.

Examples of continuous U(t) and their probability distributions are shown in
Figures 2.1-2.3. In interpreting these figures, we assume that mean values can be
calculated using time averaging, detailed conditions for which are given in the next
section. The first example, Figure 2.1, is typical of a turbulent quantity in a steady
flow (statistical steadiness being
one of the conditions for use of
time averaging). The figure shows
the time history, U(#), the prob-
ability distribution of U, and the
result of conversion of U(¢) to 0
and 1 values, with 1 when U lies
in some range U_ < U < U,, an
operation that might, in practice,
be performed by an electronic
gate. As discussed above, the

s

|
i

mean value of the resulting signal
should give the probability that U

Figure 2.1. Sketch of the time history of a typical turbulent random lies in the given range. This mean,
quantity with its probability distribution function. Also shown is the  and hence the probability that

result of passing the signal through a device that produces an output
of 1 if the quantity lies in a given range and O if it lies outside the
range. The average of the device output is the probability that the

U.<U-<U, can be obtained
by time averaging the output of

quantity lies in the range. the gate. The distribution function,
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P(U), perhaps determined in the ;4 =
above manner, is shown in the
figure and has a single hump,
typical of many turbulent flow
quantities. The tails of the distri-
bution, which represent rare
values of U, are the most difficult
to measure accurately, since such
values only occur infrequently
and so very long sampling times Figure 2.2. Time history and distribution function of a random quan-
are needed to obtain converged  tity having a double-hump probability distribution.
statistics. Figure 2.2 illustrates a
less common type with a double-
humped, strongly asymmetric distribution. Figure 2.3 shows a sine wave, which
might come from a nonrandom periodic flow if the amplitude and phase of the
wave are repeatable from one experiment to another. In that case, U takes the
same value in all realizations and is not truly random (nor statistically steady, so
one cannot use time averaging to obtain mean values). It is then a discrete variable
with only one possible value whose probability is 1, yielding a distribution function
consisting of a single Dirac function, whose position is a sinusoidal function of time. If,
on the other hand, and as implicit in the figure, the phase of the wave varies randomly
from one realization to another with uniform probability over the range 0 to =, then
the signal is statistically steady, with the probability distribution shown in the figure
and mean value equal to zero. One could also allow the phase to vary between
realizations over a different range of values or nonuniformly, in general yielding
statistics that vary periodically with time. At first sight, such sine waves appear to
have little to do with turbulence, but if one imagines adding a certain amount of the
signal in Figure 2.1 to that in Figure 2.3, the result resembles a periodically modulated
turbulent flow, such as that produced by blowing across the mouth of a bottle to
produce a tone. A turbulent shear layer is produced over the mouth of the bottle,
which, coupled to the Helmholtz resonance of the bottle, yields a turbulent flow with
nearly periodic, self-sustained oscillations. If the phase of the oscillations varies
uncontrollably from realization to realization of the flow, as is likely unless the
oscillations are somehow phase locked, the oscillations themselves will appear as
random fluctuations, whereas if
the phase is the same in all realiza- A
tions, they appear as a periodic ve
mean flow superimposed on a per-
iodically modulated random com-
ponent due to turbulence in the
shear layer. We will return to
this example in the next section.

Given several flow quantities,
one can define a joint probability
distribution function. For exam-

ple, in the case of two .Varlables’ Figure 2.3. Time history of a single realization and probability distri
U, and U,, the proportion of the  bution for an ensemble of randomly phased sinusoids.
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ensemble in which U; takes values between U; and U, + dU;, and U, takes values
between U, and U, + dU, is given by P(U;, U,)dU;dU,. Thus,

U2+ U1+
J J P(Uy, Uy) dU,dU, @2.11)
U, Ju,_
gives the probability that U;_ < U; < Uy, and U,_ < U, < U,,. Clearly
+oo p+o0
J J P(Uy, Uy)dU,dU, =1 (2.12)
and
—+00
PiU) = | P(UL UL, 2.13)
—+00
Py(U,) = J P(Uy, Uy)dU, (2.14)

give the distribution functions of U; and U, individually. The average of any func-
tion f(Uy, U,) can be obtained as

+00 400
OO = [ AU Upbws, Uy dusdv, 2.15)
—o00 J—00
The quantity P(Uy, U,) is often referred to as the joint distribution of U; and U,,
while the expression “joint statistics” is also sometimes used. Note that nothing stops
us taking U; and U, as the values of a single flow quantity at different fixed times, #;
and t,, or at different spatial locations. It should be apparent how the above ideas
can be extended to an arbitrary number of flow variables. The joint probability
distribution of N variables, U;, ..., Uy, is a function of those variables and can
be thought of as a scalar field in the N-dimensional space with coordinates
Ui, ..., Uy. For instance, the probability distribution, P(U), of the vector velocity,
U = (U,, U,, U3), at a given point and time in a turbulent flow is a scalar function in
the three-dimensional space spanned by the vector U. Thus, the probability that the
vector U falls within a small volume element, d*U, of that space is P(U)d*U.
Conditional probabilities and averages may be introduced as follows. The basic
idea is to restrict attention to those realizations in which some flow quantity, U, say,
takes on a particular value, that is, experiments in which U, has values other than
the given one are ignored. Within this subensemble, the proportion of experiments in
which U, has values between U; and U, + dU; is denoted by P(U,{U,)dU;. Thus,
P(U,|U,) is the probability distribution of U,, conditional on U, having the given
value, When U, is a discrete value of the random variable on which the statistics are
conditioned, this definition is satisfactory, but, as it stands, it does not work other-
wise, because U, will never have the given value exactly. In that case, one allows U,
to take on a small range of values between U, and U, + dU,, and defines P(U;|U,)
as the proportion of such experiments that also give U; in the range U; and
U; + dU;. Now, the proportion of the total ensemble satisfying both conditions is
P(Uy, U,)dU,dU,, while the proportion of the total in which U, lies in the range U,
to U, 4+ dU, is P,(U;)dU,. It foliows, after a little thought, that
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P(Ul’ Ul)
P, (Uy)

which can be taken as the definition of the probability distribution of U, conditional
on a nondiscrete value of U,. Thus, given the joint distribution function, P(U;, U,),
of continuous variables, one can calculate the conditional distribution functions
from (2.14) and (2.16). Notice that there is a difficulty when P,(U;) = 0, mathema-
tically apparent through division by zero. Suppose, for instance, that P,(U,) =0
over some range of values. It is evident that there is little sense in trying to define
statistics conditional on values of U, in that range, since they never occur. Thus,
P(U;|U,) is undefined when U, is a continuous value of the conditioning variable
and P,(U,) = 0. From (2.13) and {2.16), we obtain

P(UL|Uy) = (2.16)

00
Py = [ PUIUPAU U, 2.17)
—0Q
showing that the single-variable distribution function can be calculated by combin-
ing the conditional distributions for all possible values of the conditioning variable,
weighted by their probabilities. One may extend the above ideas to the joint dis-
tribution of any number of random variables with multiple conditioning variables.
Conditional averages can also be defined. Thus, the mean of U, taken only over
realizations in which U, has a given value, is

+00
(i) = | Ui Uy 2.18)
—00
and can be used to construct the unconditional average via
00
Ui ZJ (U | Us)P2(Uy) dU, (2.19)

This result shows that one may calculate the average of U; in two stages. First
determine the conditional averages with U, fixed, then average of all possible values
of U,. This may seem like a rather indirect way of proceeding, but such an approach
sometimes proves the easiest way of determining average values. Once again, exten-
sion to multiple conditioning variables is straightforward.

Conditional averages are often useful in interpreting data from turbulent flows.
Consider, for instance, the example of a boundary layer shown in Figure 2.4. The
frontier of turbulence is sharp and mobile. Sometimes a given point finds itself inside
the turbulence and sometimes it is outside. Data obtained inside and outside will be
quite different in character and, if one simply takes the average of some flow quan-
tity, the result does not generally reflect what is happening in either region, but
instead gives some intermediate value. However, provided one can experimentally
identify when a given sensor lies inside and outside the turbulent region, two con-
ditional averages may be calculated: the first giving the average value inside the
turbulence, the second outside. These conditional values will provide more detailed
information than the unconditional average and the technique can be applied when-
ever one suspects statistics that differ significantly under identifiably different cir-
cumstances. In the case of the boundary layer, the variable, U,, on which the
averages are made conditional is discrete. Thus, although the frontier of turbulence
is not really infinitely thin, a threshold value for some measure of turbulence intensity
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TURBULENT REGION
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&

Figure 2.4. Sketch of a turbulent boundary layer at two different times, illustrating the use of conditional
averaging. The hatched region represents the zone of turbulence. The dashed line is the mean location of
the frontier between turbulent and laminar flow, while the continuous line is its instantaneous location.

is employed and one declares the measurement point to be inside the turbulence if it
exceeds the threshold. The results should be insensitive to the choice of threshold,
since the frontier of turbulence is thin.

Conditional averaging is often implemented by gating the signal, U;(¢), whose
conditional average one wishes to measure. Suppose, for instance, that we wanted to
determine the average of some flow variable U; at a point in a boundary layer,
conditional on being inside the turbulence. Let U, = 0 outside the turbulence and
U, = 1 inside, denoting the probability of the latter by p. Thus p is the probability of
turbulence at the given point. Gating simply takes U; and U, as inputs and outputs
U, if U, = 1, and zero otherwise. The average of the gate output can be calculated as
follows. In a large number, N, of realizations, the number in which the output is
nonzero is pN. The average of the output over those nonzero realizations is
(U1 | U = 1), so the total sum of the different outputs over all N realizations is
pN(U; | U, = 1). Dividing by N, we obtain the average output

U0, =plUy | Uy = 1) (2.20)

while, as discussed earlier, p = U,. Thus, we can calculate the conditional average as

U, U, =1)= 10 (2.21)
U,

This result indicates that we should divide the averaged gate output by the prob-
ability that the given measurement point lies inside the turbulence, which can be
obtained by averaging U,, to determine the required conditional average. The prob-
ability that a given point lies inside the turbulence is often called the turbulent
intermittence and, in the case of the boundary layer, decreases with distance from
the body surface owing to the decreasing frequency of turbulence, from a value very
close to 1 in the region near the wall, to 0 outside the layer. The increasing rarity of
turbulence at larger distances means that longer time samples are needed to obtain
convergence of the averages in (2.21). Given that one can measure conditional mean
values, conditional probabilities can be obtained by conditionally averaging func-
tions which are 1 inside some range and 0 elsewhere, as for unconditional prob-
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ability distributions. As the range used becomes narrower, one again needs to sample
for longer to obtain converged statistics.

From (2.16), if U; and U, are statistically independent of one another, that is,
specifying U, does not affect the distribution of U; and vice versa, we have

P
Pi(UY) = PUIU) =T 12 2.22)
or
P(UL, Up) = Py(UDPA(U) (2.23)

which expresses the important fact that the joint distribution function of independent
variables is simply the product of their individual distribution functions. One con-
sequence of (2.23) is that

+00 p+00
Uluzzj j UL U, Py (Uy)P5(Uy) dUs dU,

. o0 - 2.24)
=j ULPy(Uy) dU; j U,Po(Uy) dU, = T7 0
—00 —00

showing that the mean of a product of statistically independent factors is the product
of their means. In many turbulent flows, it is found that the velocity at widely
separated times appears to approach statistical independence as the temporal separa-
tion increases. That is, if U(z;) and U(#,) are velocity components at the two times,
they approach independence as |t; — 1| — oc. Put another way, knowledge of the
flow at the earlier time does not tell us much about its later behavior, which can be
expressed by saying that the flow has only limited statistical memory. We will return
to this topic in the next section when discussing correlation functions.

2.2 Statistical Moments and Correlations

Given a quantity U, the mean value of any power,

—+00
a,=0"= J U"P(U)dU (2.25)
is called the moment of order v or vth moment of U. The moment of order 1 is, of
course, the mean of U. The central moments are defined by

+00

w,=U-0)"= J (U-10)"PU)dU (2.26)

and, apart from u4, which is zero, are generally more important than the g, in the
theory of turbulence. Distribution functions exist for which the integrals in {2.25)
and (2.26) fail to converge for some values of v, which means that the corresponding
moments do not exist. However, this is not usually the case for variables derived
from turbulent flows, at least not for the positive orders of moments we have in mind
here. The most important central moment is obtained for v =2 and is called the
variance, given by

o* = Var(U) = u, = (U = U)? (2.27)
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where o > 0 is the standard deviation of U and measures how far about its mean U
varies, that is, the magnitude of the random fluctuations in U. Furthermore, if U,
and U, are statistically independent, it is not difficult, using (2.24), to derive

Var(U; + U,) = Var(U;) + Var(U,) (2.28)

which can be extended to show that the variance of the sum of any number of
independent variables is the sum of their variances.

The next two central moments can be nondimensionalized using o to obtain the
skewness

T3
s=t WUy (2.29)
(o2 (o2
and flatness factor (or kurtosis)
T
y Y Ul (2.30)
(o} (o}

of U. These higher-order moments are of considerably less importance than the
variance, but the skewness is one possible, if coarse, measure of lack of symmetry
of the distribution of U about its mean, whereas the flatness factor provides limited
information about how extensive the tails of the distribution are.

Given two variables, U; and U,, we can define their correlation

R=(U, - U)(U, - Ty) (2.31)

and, expressing the same quantity in nondimensional form, the correlation coeffi-
cient

R (U -U)U, -0y

_(71(72 g10)

(2.32)

which always lies between —1 and +1 and is zero for statistically independent
variables. To derive the bounds on p, let u; = U; — Uy, u, = U, — U, be the fluc-
tuations in U; and U,, so that R = #7u;. Since

(i1 + A > 0 (2.33)
for any constant A, expanding the square leads to

o532 +2RA 402> 0 (2.34)
for any A, which implies that

IR] < 010, (2.35)
or, in other words, |p| < 1, as stated above. Observe that if p takes on one of its
limiting values, p = %1, then the above argument shows that o,%; = +0,u, and the
random variables are deterministically related, since their fluctuations have the same

ratio in all realizations. To show that R = p = 0 when the variables are statistically
independent, we note that

R=m1; = (U — U(U, = Up) = (U — U (U, = Uy) = 0 (2.36)



2.2 STATISTICAL MOMENTS ANO CORRELATIONS

where we have used (2.24) to write the mean of the product as a product of the
means. It follows that R and p are measures of statistical dependence, although it
should be noted that they might be zero even if the variables are not statistically
independent.

As remarked at the end of the last section, many turbulent flows are thought to
asymptotically approach statistical independence at wide temporal separations. This
is reflected in correlation coefficients that go to zero at large temporal separation,
though not necessarily monotonically. Thus, if U(z) is some velocity component,
U; = U(#;) and U, = U(z) decorrelate as |t; — £;| — oo, that is, the correlation
coefficient p(¢{,%) — 0. At zero time separation, p(f{,%;) = 1 takes its maximum
value, from which it falls away at nonzero |t; — £,|. The order of magnitude, ©, of
the temporal separation required for significant decorrelation is referred to as the
correlation time. Decorrelation is also often observed between the velocities at two
points in space at a single time as a function of spatial separation. The distance
required for significant spatial decorrelation, or correlation length, is an important
measure of the size of the large scales of turbulence, as discussed in Chapter 1.
Chapter 3 examines the different time and space scales present in turbulent flows
in some detail, but for the moment we want to consider the process of time averaging
of flow quantities. :

We noted earlier that time averaging is often used for experimental determination
of the statistical properties of steady flows and we now want to pose the question as
to when this leads to the same results as the ensemble definition. The flow is assumed
statistically steady, for otherwise time averaging will mix together differing statistics
from different times and there is no real hope that it will yield ensemble averages
corresponding to a specific time. Consider some time-dependent flow quantity U(z)
and define the time average as

T
UD = H U(t)dt (2.37)
0

whose ensemble average yields

T
oo :% J Udt =T (2.38)
0

since the flow is supposed statistically steady. This shows that the ensemble average
of UMD agrees with the ensemble average of U. Subtracting (2.38) from (2.37),
squaring and ensemble averaging, we find

Var(Um) = (%Jj udt)2 = %LT J: u(ty)u(ty) dtydt, (2.39)

where u(t) = U(t) — U is the fluctuation in U. Introducing the correlation function
u(t)u(tz) = R(t; — 1) (2.40)

which is a function of the temporal separation t; — t, alone, thanks to statistical
steadiness of U(¢). Changing integration variables to ¢; and T = t; — f,, instead of #
and t,, the integral over #; can be performed to give

a9
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Var(flm) :U—TZJTT ( e ') p(t)dt (2.41)

where p(7) = R(1)/0? is the correlation coefficient at time separation t and o is the
standard deviation of U. Suppose that p(tr) — 0 sufficiently rapidly as |r| — oo that
the integral

0= J lo(D)l dt (2.42)

converges, yielding a correlation time.? One can then bound the integral in (2.41) to
obtain

o(0M) < (.?)1/20 (2.43)

where o(U™) is the standard deviation of U™, It follows that o(UD) > 0 as
T — o0, that is, the random fluctuations of the finite time average, U™, about its
mean value, U, can be made as small as one likes by i mcreasmg the averaging time, T.
That is, if T is taken large enough, the fluctuations in U? are very.small and the time
average is a good estimate of the ensemble average. We conclude that time averaging
over a sufficiently long period yields the same results as ensemble averaging for
steady flows provided that there is rapid enough decorrelation that (2.42) converges.
In that case, equation (2.43) can be used to estimate the error involved in the time
average. The error decreases only slowly with increasing averaging time, propor-
tional to T2, This type of calculation is often made when designing statistical
measurements of turbulent flows. One asks how long an averaging time is needed
for convergence of the average to within an acceptable margin of error. As we saw
earlier, the determination of probability distributions can be reduced to the calcula-
tion of appropriate averages.

The time average (2.37) is inappropriate for unsteady flows; for instance, in the
case of turbulent flow generated by an explosion, one must repeatedly carry out the
experiment to produce the ensemble statistics. If a time average is employed it
includes all stages of the explosion and neither converges nor yields results which
meaningfully describe any given stage. However, consider the example sketched in
Figure 2.5 of a cylinder inside a piston engine that is turning at constant speed and
load. In such a flow, there are turbulent fluctuations from one cycle to the next, so a
single realization of the flow is not periodic, but we might expect the statistical
properties of the flow, for instance the mean velocity, to vary periodically with
time. That is, the flow statistics vary throughout the cycle, but those at time ¢ are
the same as those at time ¢ + 1, where 7 is the period of oscillation of the piston. In
that case, a time average can be defined by

N-—
UM = %Z U(t + nt) (2.44)
0 .

2 Although precise expressions, such as (2.42), for correlation times arise in particular circumstances, in
general it is better to think of them as order of magnitude scales. The same is true of correlation lengths.



rather than (2.37) and an argument
very similar to that used above
shows that, provided N is suffi-
ciently large and there is rapid de-
correlation of U(t+#nt) with
increasing temporal separations,
(2.44) will yield a good approxima-
tion to the ensemble average. As
before, probabilities can be deter-
mined by appropriate averaging.
Blowing across the mouth of a
bottle at high Reynolds number to
produce an audible tone provides
an example in which, if one had
never done the experiment, one
might expect the flow to be non-
oscillatory, whereas, in fact, it has
important, nearly periodic oscilla-
tions, together with fluctuations
from cycle to cycle of the oscillations
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Figure 2.5. Illustration of a periodic turbulent flow. The two times
shown, #; and ¢;, are an integral number of periods apart so that
the flow is nominally the same. It will, in fact, be different in detail
because of turbulent fluctuations, as we have attempted to show
schematically. The turbulent-velocity fluctuations sketched are
superimposed on a periodic mean flow, which is the same at the

due to turbulence in the periodically =~ two times.

modulated jet/shear-layer over the

mouth of the bottle. In this example, the flow itself generates self-sustained oscilla-
tions, in contrast with that of Figure 2.5, whose periodic variations are externally
imposed by the piston. Repetition of the experiment to provide an ensemble yields
oscillations whose phase varies from realization to realization, as in the earlier
example of the randomly phased sine wave and reflecting the fact that the experi-
menter does not control the phase. As with the sine wave, the statistics may turn out
to be independent of time, owing to random phasing, but this does not accurately
reflect our intuition about the flow. The periodic oscillations, which are not really
random in the intuitive sense, are lumped in with the turbulence as part of the
random fluctuations and, in consequence, correlations extend to large temporal
separations (in principle, to infinite separations if the oscillations were precisely
periodic, although exact periodicity is unlikely in practice, given the possibility of
random phase drifting over many cycles). This is an unsatisfactory situation because
one would like to separate the physically distinct fluctuations due to the oscillations
from those occurring from cycle to cycle, which one might identify with turbulence.
One way of doing this is feasible if the phase of the oscillations can be experimentally
identified in particular realizations, for the flow statistics may then be conditioned by
restricting attention to the subensemble of realizations in which the phase has a
particular value (or even by time-shifting the data so that the phase becomes the
same in all realizations). The pressure fluctuations at some point within the bottle
provide a good measure of the oscillations because they strongly focus attention on
the Helmholtz resonance, rather than on the turbulent fluctuations in the jet. Thus, if
the statistics are conditioned by the internal pressure fluctuation, we expect the
oscillations to appear as a periodically varying mean flow, while periodically modu-
lated fluctuations about the mean reflect turbulence within the jet and may now
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decorrelate rapidly with temporal separation. One can then use phase-locked sam-
pling to calculate averages from (2.44). Conditioning the statistics in the above
manner effectively makes the phase a controlled parameter and the flow becomes
fundamentally similar to that of Figure 2.5, having statistics which vary periodically
with time, more closely expressing our intuition about the nature of the flow. We
should also remark that Fourier analysis in time allows one to identify periodic, or
nearly periodic, components of a flow, which appear as sharp peaks in the Fourier
transform, corresponding to the oscillation period and its harmonics.

The problem of uncontrolled parameters, like the phase in the above example,
appears in spades when one considers naturally occurring flows, such as the atmo-
spheric boundary layer in which we live. Furthermore, other than in the imagination,
one cannot repeat the experiment to generate an ensemble of realizations, unless
laboratory or numerical simulations of sufficient fidelity can be constructed, a pos-
sibility we ignore for the sake of argument. Thus, we are reduced to passive specta-
tors, although the flow can be observed at different times and locations. In the case of
the atmospheric boundary layer, Fourier analysis of the wind velocity with respect to
time shows that its transform has well-separated peaks corresponding to time scales
of the order of one minute and four days, which represent boundary-layer turbulence
and the passage of meteorological systems. It is thus reasonable to employ time
averages of the velocity with an averaging time large compared to the smaller of
these scales and small compared with the larger, allowing statistical properties of
boundary-layer turbulence to be measured. This procedure makes the longer time
scales part of the average, while the shorter ones become fluctuations, hopefully
decorrelating at temporal separations larger than a few minutes, if not to zero,
then at least to small values. The layer statistics depend on the wind speed above
the layer and its thermal stratification, to name but two time-varying parameters that
the experimenter has no control over. In a theoretical model, one might consider an
ensemble of realizations in which all such parameters are held fixed, presumably
avoiding the difficulties associated with uncontrolled parameters and multiple time
scales for variation of the real flow. Provided the parameters do not vary too rapidly
in reality, one would expect such ensemble statistics to agree with those measured
using appropriate conditioning or time averaging.

In summary, when ensembles of realizations are used to define the statistics of
turbulence they should not be defined blindly, but with the physical properties of the
flow in mind. In particular, all important parameters of the flow ought to be fixed,
otherwise one may end up with fluctuations that include components of the flow
other than turbulence and correlations that extend over large time or space separa-
tions.” This being said, most fundamental studies of turbulence concern more
straightforward cases than those envisaged above, for instance, simple jets and
boundary layers at high Reynolds numbers, or turbulence generated by passage of
a uniform, steady flow through a grid. For these relatively simple flows, in which the
experimenter is presumed to control all important parameters, it suffices to consider
a full ensemble of realizations generated by repeating the experiment, or equiva-
lently, since the flows are usually steady and decorrelate with temporal separation,

3 To caricature, it has jokingly been said that, once one has eliminated all features of a flow that one
understands, what remains is turbulence.
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time-averaged statistics. One hopes and expects that experience gained with such
flows will extend, at least in part, to turbulence in more complicated situations, such
as atmospheric and oceanic flows.

We now turn to more mundane matters, namely the definition of characteristic
functions and cumulants. The significance of cumulants lies in the fact that those of
order higher than two are zero for Gaussian variables, an important class of statistics
we discuss in the next section, but, for the moment, the definition of cumulants is
purely formal.

The first characteristic function, ¢(s), of a random variable U is the complex-
valued quantity given by

_— +m ;,
o(s) = e*U = cos sU +isin sU = J e*UP(U)dU (2.45)

—00

which will be recognized as the Fourier transform of the distribution function P(U).
Some mathematical properties of ¢(s) are as follows. Given ¢(s), we can determine
P(U) by Fourier inversion, so that ¢(s) contains the same information as the distribu-
tion of U. It is easily seen that ¢(0) =1 and ¢(—s) = ¢*(s), where “x*” denotes
complex conjugation, while if P(U) = P(—U) then ¢(s) is real and go( s) = ¢(s).

Writing the exponential in (2.45) as a power series, we obtain

_ @is)"
o(s) = ;aT (2.46)
where a,, are the moments of U, while a similar procedure using &V = U is(U-0)

leads to
o(s) = &7 Z (’S) (2.47)

where p,, are the central moments. The second characteristic function is defined by
Y(s) = log ¢(s) (2.48)

where a principal value for the logarithm is implied. The power series expansion of
W(s) is

W(s) = log’ 'SUZ (’S)} i ,,(’3 (2.49)

where «,, are referred to as the cumulants of U. After some algebra, it can be shown
that -

K1:U
K2=;L2=u2=O’2
— )

K3=p3=u

— (2.50)
K4=,u4—3,u% =u4—3u2
= us — 10uap3 = o — 10u? 1’

~ —— —3
ke = tig — 1003 — 15pame + 3013 = w8 — 1047 — 15u2 # + 302
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The cumulants are mainly significant because they are zero, apart from «; and «;
(i.e., W(s) is a quadratic function), in the case of a Gaussian probability distribution,
an important class of statistics we will discuss in the next section. They therefore
allow one to test whether a given variable is Gaussian or close to being Gaussian. It
should be noted that there are many distributions which lead to divergence of the
power series (2.49), but that, even in such cases, the cumulants are defined by the
{(now formal) process described above, leading to perfectly definite formulas, (2.50),
for the cumulants, always presuming convergence of the moments.

Extensions can be made to the case of multiple variables. For instance, with two
variables,

_ +oo p+00
o5y, 5,) = @O U200 — J J Ui U p, U,) dU,dU, 2.51)
—00 J—o00
is the first characteristic function, the Fourier transform of P(U;, U,). The expansion
of ¢ is

L (s1)"(i2)™ (e, Tr4s,T, (is1)" (is2)"

90(517 52) - n;O Aom 3 4 nlm! ( ) nmzo nlm' (252)
where

Aum = mv MHpm = W (253)

are two-variable moments. For statistically independent variables

@(s1, 5p) = e1Urei2lz = Ui e2Ua = gy (51 )y (s,) (2.54)

and, more generally, the characteristic function of any number of independent vari-
ables is the product of their characteristic functions. A second characteristic function
is obtained by taking the logarithm of ¢(sq, ..., sn) and its (possibly formal) power
series expansion yields the cumulants

O =T,

(’)—uu,

(ifk)

K3 = Wy
WD — e — T g — T, ] — T 555
4 = Wl — W U] — Wiy W) — W) Wiy, (2.55)

as coefficients. For Gaussian variables, all cumulants above Kg’) are zero, as for a

single variable. Among other uses, this provides a basis for testing how near to joint
Gaussian a given set of variables are.

2.3 Gaussian Statistics and the Central Limit Theorem
A single variable is said to be Gaussian (or normal) if P(U) has the form

1 _w=0?

PO === = (2.56)
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which is shown in Figure 2.6a and has the well-known symmetric bell shape with a
single hump centered on U. The mean, U, and standard deviation, o, are the only
parameters defining the Gaussian distribution and, if we multiply a Gaussian vari-
able by a constant or add a constant to it, the result remains Gaussian, with different
mean and standard deviation. From (2.56) it can be shown that the skewness and
flatness factors of a Gaussian variable are S = 0, T = 3, departures from which can
be used as measures of lack of normality of a given variable (although one can have
§ =0, T = 3 for a non-Gaussian distribution). Figures 2.6b and 2.6¢ illustrate dis-
tributions with S % 0 and T # 3. Two random variables are jointly Gaussian if

1 1 1 u% uy 770
PU,U)=——— expl—2a—|M1 12,12 2.57)
b 2701054/ 1 — p? 21-p%|0? oF 010,

where u,, = U, — U, o, is the standard deviations of U,, and p is the correlation
coefficient of the two variables. Thus, in addition to the two means and standard
deviations, the correlation coefficient enters as a parameter.

In general, an arbitrary number of random variables, Uy, ..., Uy, are said to have
joint Gaussian (or normal) statistics if their joint probability distribution function
has the form exp q(U,,), where g(U,) is a quadratic function of the U,. The distribu-
tion function is then

[det(ZnR)]_l/zexp{—%uTR_lu} (2.58)

where u represents the column vector formed from the N fluctuations u, = U, — U,
and R,,, = %4, is the positive-definite, symmetric matrix of correlations. Thus, the
means and correlations of jointly Gaussian variables suffice to fix their probability
distribution function and hence the full statistics of the variables. The distribution
(2.58) has a single maximum at the mean value, U, = U,, and drops off rapidly as
|U, — U,|/o, increases, as in Figure 2.6a. It can be shown that the sum of jointly
Gaussian variables is Gaussian, while if Uy, ..., Uy are independent variables that
are individually Gaussian, they are also jointly Gaussian, since the joint distribution
of independent variables is the product of the individual distributions and the pro-
duct of exponentials is the exponential of the sum.

Suppose that the time-dependent variable U(z) is statistically steady and Gaussian.
By saying that the process U(z) is Gaussian, we mean that, no matter what N is used,
the values U(z;), ..., U(ty) of U(t) at any N times are jointly Gaussian. Steadiness
implies that U is independent of time and that the correlation matrix
R,.. = R(t, — t,,), where u(t + t)u(t) = R(z) is the correlation function of U(z).
Thus, for steady Gaussian processes, giving U and R(t) suffices to determine the
full (i.e., N-time, for any N) statistics of U(¢). From u(¢ + t)u(t) = R(7), it is easily
shown that R(—t) = R(t), but considerably harder to demonstrate Kinchin’s theo-
rem that R(7) is the Fourier transform of a positive function, known as the frequency
spectrum. Provided R(t) has these properties, it can also be shown that a statistically
steady, Gaussian process, U(t), can be constructed that has the given R(t). Similar
results hold for statistically steady vector functions of space and time, such as the
velocity, Ui(x, t), in steady flow.
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Figure 2.6. Comparison of (a) the normal distribution
(for which T = 3, § = 0) with two other distributions,
illustrating the cases (b} S < 0 and (¢} T > 3. All distri-
butions have zero mean and variance 1. The distribu-
tion in (b} is skewed, while that in (¢} has more
extensive tails than a Gaussian distribution, hence
T> 3.

As noted in the previous section, the cumu-
lants of a Gaussian distribution are zero at
orders above two. This follows from taking
the Fourier transform of (2.58) to obtain the
first characteristic function. The result is the
exponential of a quadratic function of the
transform variables, so the second character-
istic function yields that quadratic function
and its series expansion terminates at order
two. Setting the fourth line of (2.55) to zero
yields

Uity = W Uty + U, Uity + Ul Uy,

(2.59)

which allows us to express fourth-order cen-
tral moments in terms of second-order corre-
lations for jointly Gaussian variables. This
result forms the basis of the so-called quasi-
normal approximation for closing the statis-
tical equations of turbulence, in which the
turbulent velocity fluctuations are assumed
to be a sufficiently good approximation to
Gaussian variables that (2.59) can be used
to express their fourth-order moments.

The importance of Gaussian statistics
derives from a profound result of the theory
of probability which concerns sums of inde-
pendent variables: the celebrated central limit
theorem. Let Uy, ..., Uy, be statistically
independent variables with identical distribu-
tions functions, then U=U;+ .-+ Uy
approaches a Gaussian distribution as
N — o0. The requirement that the variables
be identically distributed, present in this, the
basic version of the theorem, can, in fact, be
relaxed considerably.* The more important
condition is that of independence and what
the theorem says is that the sum of a large

number of independent variables will be close to Gaussian. When the variables have
different distributions one can determine the limiting distribution from (2.56) with

o} (2.60)

-

T

U=YT, o=

N
i=1

* Proofs of the theorem require that the distribution functions of the random variables in the sum should
satisfy certain mathematical conditions, the details of which we do not go into.
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where a large number of terms must contribute significantly to the second sum,
otherwise one can ignore the effects of all but the small number of variables
which do, in which case there is no reason why U should be close to Gaussian.

There is a potentially important, and not widely appreciated, restriction on the
central limit theorem, which is that the asymptotic description as a Gaussian dis-
tribution, although accurate over the most probable part of the distribution of
U=U; +---+ Uy, is generally invalid in the tails of that distribution. This non-
uniformity occurs when U — U is of order N, much larger than the standard devia-
tion, O(N'/?), of U and therefore representing rarely attained departures from the
mean. Study of the asymptotic behavior when U — U = O(N) is known as large
deviations theory (see, e.g., Varadhan (1984)), which has important applications
to statistical mechanics and, more importantly for present purposes, to the statistical
properties of the small scales of turbulence (see, e.g., Frisch (G 1995), section 8.6.4).

The reader may care for an example, demonstrating both the central limit
theorem and its large deviation restriction. As assumed in the simplest version of
the theorem, let U; be identically distributed, independent random variables and
UN =U;+ .-+ Uy be the sum of the first N, so that UNtV = g™ 4 Uns
gives UNTD a5 the sum of two independent variables. The reader can show
that, if V; and V, are independent, with distributions P;(V;) and P,(V;), then
the distribution of V =V, +V, is given by

OO
PV = | PUVORLV - ViV, 2.61)
bale e}

which is the convolution integral of P; and P, (hint: owing to independence, the joint
distribution of V¢, V; is P(Vy, V,) = P;(V1)P,(V;), while P, (V)dV is the integral of
P(Vy, V,) over the infinitesimal strip V < V; + V, < V 4+ dV in the (Vy, V;) plane).
That is, the distribution of a sum of independent variables is the convolution of their
distributions. Applying this result with V; = UN) and V, = Uy, we have

{o¢]
PNy = J PN(WVYP(U - V)dV (2.62)
where PN is the distribution of the sum U™ = U; + .- + Uy and P denotes the

distribution function of the U,. In other words, each time an extra term is added to
the sum, its distribution is convolved with P, beginning with PO(U) = P(U). In the
example we have in mind, the terms, U;, in the sum have the Poisson distribution
P(U)=e"Y for U > 0, P(U) =0 when U < 0, and the reader may verify that

UNvle—U
N-1!

for U> 0, PM(U)=0 when U < 0, reduces to P(U) if N =1 and satisfies the
recurrence relation (2.62). The reader is encouraged to calculate and plot the prob-
ability distribution, N'Y2P™M(NV2(V + N)), of the normalized variable V =
(U—N)/N'? a5 a function of V for a series of increasing values of N, using a
computer (the normalization is based on the mean, UN) = N, and standard devia-
tion, N'/2, of U™N)). This bears out the central limit theorem graphically, with quite
small N sufficient for a roughly Gaussian-looking curve, although later convergence
is rather slow.

PN = (2.63)

a9
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At large N, one may rewrite (2.63) using UN"'e™V = N-DWogU=U " oypand the
argument of this exponential as a Taylor’s series about its maximum at U = N — 1,
and employ Stirling’s formula to express (N — 1)!, thus obtaining a Gaussian
function for P™(U) in  which the modified normalized variable
V' =(U—-N+1)/(N-1)"* appears, rather than V. Of course, in the limit
N — oo, the variables V and V' coincide, confirming the central limit theorem.
However, although the Taylor’s series expansion gives a good approximation to
the most probable part of the distribution of U™ at large N, it fails to describe
the behavior sufficiently far from the mean, breaking down when the departure from
the mean is large, of O(N). This is the region studied by large deviations theory and
corresponds to events of low probability, but which, as noted above, can nonetheless
be important in some applications, in particular the theory of small-scale turbulent
intermittency.

Despite its large deviation restriction, the central limit theorem is the fundamental
reason why Gaussian variables play an important role in the theory of probability
and statistics. One can cite the classical example of experimental errors that are of
multiple origins and can often be considered as many, independent, and additive,
leading to a Gaussian distribution for the overall error in a measurement. Note,
however, that, not only must the variables be independent, but it is their sum
whose distribution is considered. Suppose, for instance, that some physical quantity
is the product of positive, independent variables. Taking logarithms, the log of the
result is the sum of the logs and hence should tend to a normal distribution as the
number of terms, N, in the product increases. The standard deviation of the sum of
logarithms increases proportional to N'/?; thus, if N is large, widely different orders
of magnitude can occur, once we take exponentials to reconstitute the product.
Alternatively, one may say that the product, taken to the power N2 to suppress
the rapidly growing fluctuations in its value, approaches a log-normal distribution
(U is log-normal if log U is normal), rather than becoming Gaussian. While perhaps
not as well known as the Gaussian distribution, the log-normal,” and other distribu-
tions are not without their uses. Indeed, log-normal behavior arises naturally in the
theory of the small scales of turbulence at high Reynolds numbers when the energy
cascade is modeled as a multiplicative random process (see, e.g., Frisch (G 1995),
section 8.6.3). Departures from log-normality due to the large-deviation limitations
of the central limit theorem also form an important aspect of such models, as alluded
to above. Many other distribution functions have been investigated in the theory of
probability, including the x*, Poisson, binomial, and gamma distributions, but are
not used in this book. The interested reader may find details in any standard text-
book on probability.

Consider the calculation of the time average, (2.37), of a statistically steady ran-
dom quantity, U(#), which decorrelates rapidly with temporal separation. As we saw
in the last section, if the averaging time, T, is large enough, the time average is a good

5 In fact, there is not a single log-normal distribution, but a family of log-normal distributions, correspond-
ing to different variances for the Gaussian distribution of log U. It is often forgotten that, strictly speaking,
Gaussian distributions form a two-parameter family with different means and variances. While changes in
these parameters have a trivial effect on a normally distributed random variable, corresponding merely to
shifts and rescalings, different variances for log U lead to distinctly dissimilar distributions for U.
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approximation to the ensemble average. We now make the stronger assumption that
U(t) approaches statistical independence at large time separations. Given large
enough T, the integration range in (2.37) can be split into many equal intervals,
each of sufficient length that it is plausible to neglect statistical dependence between
different intervals. Thus, we have an approximation to the case envisaged in the
central limit theorem, namely the sum of a large number of independent variables. It
is therefore reasonable that the time average should tend towards a Gaussian dis-
tribution, whose mean we know to be U and whose standard deviation is given
asymptotically by the right-hand side of (2.43). In other words, the time average
should approach the ensemble average through a sequence of narrower and nar-
rower Gaussian distributions, despite the fact that U itself need not be Gaussian.

2.4 Turbulent Mean Flow and Fluctuations

It is time to discuss the application of statistical methods to turbulent flow in a little
more detail. We should first note that, whereas in earlier sections, U; was used in a
generic sense to represent any flow variables (velocities, pressures, etc.), here and
throughout the remainder of this book, U; will denote the fluid velocity. Since U; is a
function of position and time, it is a random vector field, varying from realization to
realization of the flow within the supposed ensemble of different experiments. Its
value at any particular position and time, U;(x, t), yields a random vector, consisting
of three components, which are single random variables. The full statistical proper-
ties of U; are characterized by the joint probability distribution functions of its
components at an arbitrary finite number of different points and times. That is, to
specify the complete statistics of velocity requires that one give the joint distributions
of the 3N components Uj(x;, ), ..., Uixn, ty) at all points x;, ..., Xy and times
t1,...,tn, and this for arbitrary values of N. Furthermore, one could also introduce
the pressure field and consider its joint distributions with velocity. It is apparent that,
in principle, a vast amount of statistical information is contained in a turbulent flow,
but one is usually concerned with only a few of its simpler statistics, of which the
mean-flow velocity is perhaps the simplest.

As its name implies, the mean velocity field at given x and ¢, denoted Uj(x, t), is
just the average of U,(x, t) over the ensemble of flow realizations and is independent
of time for a steady flow. The fluctuation of velocity is defined by

w, = U, ~T, (2.64)

and is usually interpreted as representing the turbulence, whose intensity in different
directions can be measured by the standard deviations

. \172
= (u) (2.65)
or overall by the turbulent kinetic energy per unit mass

3
7 :1;732%(u;2+u52+u32) (2.66)

M|

The related quantity «’, defined by
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u' :%W:%(u{z +uj? +u§2) 2.67)
as an average over the three mean-squared components of velocity, is the most
common quantitative measure of turbulent intensity. Observe that, since
U,U; = U, U; + w;, the average of the total kinetic energy of the fluid consists of
components arising from the mean and fluctuating flows. The latter component is
usually identified with the energy of turbulence.

One can define velocity correlations, R; =%, at a single point and time, or
introduce two-point or two-time correlations such as

Ri/'(x, t1, tz) = M,'(X, tl)uj(x, tz) (268)

which, as discussed earlier, is generally taken to tend to zero as |t; — | — oo,
reflecting asymptotic statistical independence of the flow at widely separated times
and leading to the idea of a correlation time. The same is true of velocity correlations
between different points, giving rise to correlation lengths.

Higher moments of the #; may also be introduced, such as their skewness and
flatness factors

T, =2 (2.69)

which respectively measure asymmetry of the distribution of U; about U; and the
prominence of the tails of the distribution. For a Gaussian distribution (Figure 2.6a),
§=0and T = 3, while Figures 2.6b and 2.6¢ sketch possible distributions with § <
0 and T > 3. Some turbulent fields have highly asymmetric distributions for one or
other of the velocity components, giving S; # 0 and, when one examines such velo-
city components as a function of time, there is a tendency towards shorter fluctua-
tions of higher amplitude in one direction, as illustrated in Figure 2.7. The case
T; > 3 represents tails of the distribution that are more prominent than with
Gaussian statistics, so atypically large velocity fluctuations are more frequent. It
should be remarked that turbulent velocities are not usually Gaussian, although
the large scales of grid turbulence are found to be approximately so. Moments of
the u; of any order involving many points and times may also be considered.
Statistical measures of turbu-
U lence, such as #, are usually
taken to characterize orders of
§>0 §<0 magnitude in #ypical realizations
of a turbulent flow. In particular,
W alaWalalaAw we will often suppose that realiza-
V \/ \Z V \/ \ tions have turbulent velocity fluc-
tuations of order «, although the
precise values of the fluctuating
velocity components vary ran-
— *  domly from realization to realiza-
tion. This requires that the

Figure 2.7. Sketch of the effects of nonzero S on a typical time history turbulence in different realiz‘ations
of a turbulent quantity. of the flow be sufficiently similar,
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so that the overall statistics of the ensemble describe the orders of magnitude in
typical individual realizations. However, it is not difficult to construct examples in
which the properties of typical realizations are not well represented by the statistics.
For example, consider an infinite flow without mean velocity in which each realiza-
tion consists of widely separated, well-defined, independent patches of turbulence
distributed throughout the flow, whose positions vary randomly from realization to
realization, so that the resulting flow is statistically homogeneous (one may imagine
generating the patches using small, randomly placed and orientated, stirring devices,
introduced into the fluid and then removed to form the initial conditions of the flow).
Since, at a given point in space, a turbulent patch is only present for a small propor-
tion of the ensemble of realizations, the average value, #'%, will greatly underestimate
the intensity of turbulence within a patch, while overestimating it for the many
realizations in which there is no patch present. Thus, #'> is not a good measure of
turbulence in typical realizations of such a flow. One result is that the time evolution
of the turbulence, whose rate depends on the typical intensity within a patch, rather
than the average #'?, is considerably more rapid than it would be if turbulence had
the same value of #'?, but was spread more uniformly in individual realizations (for
instance, by taking an initially Gaussian velocity field). This example may appear
somewhat artificial,’ and indeed this type of gross variability of turbulence from
realization to realization is not what one usually envisages in a turbulent flow. Such
grossly variable flows are not properly accounted for by much of the theory, which is
based on a few low-order statistics. Thus, for the most part, we implicitly exclude
them from consideration in this book, although the above example of homogeneous
turbulence consisting of sparse patches will be used several times as an illustrative
thought experiment. Another interesting aspect of the above flow is that it does not
show the usual asymptotic statistical independence at temporal separations large
compared with the correlation time. Briefly put, the reason for this is that, in parti-
cular realizations, turbulent patches remain near their initial locations, leading to
long-term statistical memory, rather than relaxation of conditional statistics back
towards those of the full ensemble.

As a concrete application of statistical ideas, let us consider an infinitesimal par-
ticle transported at the fluid velocity in a statistically steady, random flow that is
assumed to approach statistical independence at large temporal separations. The
particle position, x(t), satisfies

= _ U 1) (2.70)

dt
which can, in principle; be solved for x(¢) if we know the velocity field U(x, t) and the
initial position x(0), assumed the same in all realizations. Formally one can write

x(#) = x(0) + J; Ux(t'), ') dt’ (2.71)

¢ This idealized example resembles the isolated, highly sporadic turbulent patches found to occur ran-
domly in the oceanic thermocline, apparently due to occasional breaking of internal waves propagating
in the density stratification, a process analogous to the familiar formation of intermittent whitecaps on
the ocean surface in a wind just sufficient to produce breaking. However, the oceanic flow involves much
else besides turbulent patches, whereas the example does not.
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which is not an explicit solution for x(¢) since it contains the unknown as an argu-
ment of U inside the integral. However, we now use an argument similar to that
employed at the end of the last section when we showed that time averages are
asymptotically Gaussian at large averaging times. Supposing ¢ to be sufficiently
large, we split the integral in (2.71) into a large number, N, of equal intervals of
time, long enough that one can neglect statistical dependence of the flow between
different intervals. Thus,

N nt/N
x(H) =x(0)+ Y J Ux(t), t')dt’ (2.72)

= Jon—uyN

and, as we did earlier for the time average, it might be argued that this expresses x()
as the sum of a large number of approximately independent random variables, and
so should be asymptotically Gaussian. It is indeed observed that the positions of
particles released from a source become approximately Gaussian in some cases;
however, the above argument has a flaw, as becomes apparent if one considers
turbulence within a closed volume, such as a vigorously stirred cup of coffee. A
Gaussian distribution would imply that there was a finite probability of finding
the particle outside the cup, which is clearly absurd. Furthermore, this probability
grows with time, as the number of terms in the sum, and hence the variance of x(¢),
increases. This difficulty persists even if the physical velocity field in (2.70)-(2.72) is
replaced by a mathematically ideal flow that is strictly statistically independent at
different times (white noise), so the problem does not lie in the assumption of
statistical independence of U(x, t) between component intervals of time. The fallacy
in the argument is that x(¢") in (2.71) and (2.72) depends on the entire bistory of the
flow up to time ¢'. Thus, even if U(x, t;) and U(x, #,) are statistically independent at
any fixed x, U(x(#;), ;) and U(x(%,), t;) need not be, since they share memory of the
flow history via their dependence on the particle position. Different terms of the sum
in (2.72) need not then be statistically independent, which vitiates application of the
central limit theorem. However, if the flow is statistically homogeneous, dependence
on x(#) is of no account, and in this case we expect the position of a particle released
at fixed position into a steady, homogeneous flow” that is statistically independent at
large time separations to asymptotically approach a Gaussian distribution. Neither
the requirement of steadiness, nor that of asymptotic independence, is satisfied for
the example of the flow with sparse patches of turbulence considered above, so one
would not expect Gaussian behavior in that case.

2.5 Steadiﬁess, Homogeneity, Isotropy, and Other
Statistical Symmetries

Steady turbulent flows have already been defined as ones whose statistical properties
do not change with time, as has homogeneous turbulence, in which the fluctuation
statistics are the same at all spatial positions. These are examples of statistical sym-
metries, of which we now want to describe a number of important types.

7 Homogeneous turbulent flows are generally statistically unsteady. Nonetheless, steady flows are often
approximated as homogeneous when studying particle dispersion because it simplifies the analysis.
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Homogeneity is first discussed in more detail, then we introduce a number of other
classes of statistical symmetry.

Homogeneity implies more than uniformity of the one-point, single-time statistics
of u;, requiring, as it does, that, given any number of different spatial points and
times, the joint probability distribution function of #; will remain unchanged if all
points are shifted by the same constant displacement. Implicit in this definition is that
the flow domain should be infinite with no boundaries. It is also worth emphasizing
that homogeneity refers to the fluctuations and not to the mean flow itself, which can
be nonuniform. Although a general function U(x, ¢) is incompatible with homoge-
neity, as we shall see in Chapter 4, it is quite possible to have homogeneous turbu-
lence with a spatially linear mean velocity (i.e., with Uj(x,?) varying as a linear
function of x).

The reason why the assumption of homogeneous turbulence is often made in
theoretical studies is that it simplifies the equations and, more importantly, makes
spectral analysis possible. Spectral analysis is introduced in Chapter 6 and is a
powerful theoretical technique, allowing quantitative description of the continuum
of different spatial scales of turbulence. However, no turbulent flow is really homo-
geneous and it has sometimes been said to be an academic case, irrelevant in practice.
This is an extreme view and it is, in fact, possible to produce quite close approxima-
tions to homogeneity, for instance, in the turbulent flow behind a grid, many grid
spacings downstream of the grid. The theory can be developed much further in the
homogeneous case, while experience gained with such idealized turbulence, in parti-
cular the properties of the small scales, provides a basis for understanding some, but
not all, of the features of more realistic, inhomogeneous flows. We shall often spe-
cialize to homogeneous turbulence in later chapters of this book.

Grid turbulence is approximately homogeneous in the sense that variations in its
statistical properties take place over distances large compared with the length scales
of the turbulence itself. Owing to the mean flow, which is nearly uniform, turbulence
generated by the grid is convected downstream, decaying in intensity as it goes. It is
in this frame of reference, moving with the mean velocity, that grid turbulence can be
modeled as a homogeneous flow, decaying with time and of zero mean velocity. The
change in reference frame causes the statistically steady flow seen in the laboratory
frame to appear as unsteady, in agreement with the fact that homogeneous turbu-
lence decays in the absence of a mean-flow gradient, as we will see in later chapters.

One may construct examples in which homogeneous turbulence has highly non-
uniform properties in individual flow realizations, for instance, the flow with sparse,
randomly located, turbulent patches described earlier. In that case, the flow statistics
are uniform, despite gross nonuniformity in particular realizations. Although such
flows fit the definition of statistical homogeneity, they are not what one generally has
in mind when using the term homogeneous turbulence. Thus, as for grid turbulence,
or the rather more academic case of a homogeneous velocity field whose initial
statistics are Gaussian,® rough uniformity of turbulence properties in individual
realizations is often implicitly assumed when considering homogeneous flows.

There are cases in which homogeneity occurs in just one or two spatial directions,
rather than in all three dimensions, as assumed above. Thus, if all statistical proper-

8 Although the statistics may be chosen Gaussian at the initial time, they will not remain Gaussian later.
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ties of u; remain the same when the flow is imagined displaced by an arbitrary
distance in x;, say, then the turbulence is homogeneous with respect to x;. For
example, sufficiently far from the entrance of a cylindrical pipe, the flow becomes
essentially independent of position, x;, along the pipe and is then referred to as
developed (although the mean pressure is a linear function of x4, of course, since
it is this mean pressure gradient which drives the flow). Developed turbulent flow in
a cylindrical pipe is thus homogeneous in x, but not with respect to position across
the pipe. In other cases, there can be homogeneity with respect to two directions
(developed plane channel flow between parallel walls being an obvious example).

Another important statistical symmetry is isotropy. In isotropic turbulence, all
statistics of u,; are unchanged if we rotate the coordinate system by an arbitrary
amount about an arbitrary line, or reflect the flow in any plane. Put another way,
the turbulence has no preferred direction — it is rotationally (or spherically) sym-
metric. The definition also requires it to be statistically invariant under reflection, a
condition that is really independent of the rotational symmetries, but forms part of
the usual definition of isotropic turbulence. Isotropic turbulence is, in many ways, an
even more idealized case than homogeneity, but again isotropy is often adopted
because it simplifies the analysis. »

Symmetry under reflection is part of the definition of isotropy, but can occur in the
absence of rotational symmetry. Turbulence is symmetric under reflection in a plane
if all statistics of u; are unchanged when the flow field is imagined reflected in the
plane. For instance, developed flow in a plane channel (a case we will consider in
some detail in Chapter 4) is symmetric with respect to the center plane of the channel
as well as being homogeneous with respect to in-plane translations. Obviously, one
could consider other symmetries and combinations of symmetries, for instance,
developed flow in a circular pipe possesses statistical symmetry with respect to
rotation about the pipe axis, as well as being homogeneous in the direction of the
pipe axis and, if there is no swirl, is also symmetric under reflection in any plane
through the pipe axis. All such symmetries can potentially be used to infer properties
of the turbulence without detailed calculation and hence simplify analysis, as we
shall see in later chapters.

2.6 Conclusions

In this chapter we have tried to give the reader a basic understanding of statistical
methods as applied to turbulence. Use of such methods will be made throughout the
remainder of this book and they are amongst the most important elements in the
repertoire of techniques for treating turbulent flows.
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CHAPTER THREE

Space and Time Scales of Turbulence

Besides its apparent randomness, one of the important characteristics of turbulent
flows at high Reynolds number (which we presume throughout this chapter) is the
wide range of different space and time scales which they contain. As illustrated in
Figure 3.1a, the velocity measured at a given point within a turbulent flow fluctuates
randomly and does not yield a smooth function of time, but rather one with fine-
scale “fur.” If part of such a graph is examined at successively higher magnifications,
instead of approaching a straight line, as would a smooth function, the fur is revealed
as being itself “furry,” and so on, through a succession of smaller and smaller time
scales, until eventually the smallest of all is reached. At this scale, the velocity finally
appears as a smooth function of time, with no further structure revealed by addi-
tional magnification. On the other hand, the largest time scales of turbulence are
characterized by the time interval required for statistical decorrelation of the turbu-
lent velocity fluctuations.! At high Reynolds number, the separation of scales
between the largest and smallest is wide, and gets wider as the Reynolds number
increases.

The continuum of time scales described above is also reflected in the spatial
structure of the flow. The order of size of the largest spatial scales of turbulence is
measured by the velocity correlation length L, which characterizes the spatial separa-
tion required for significant decorrelation of the velocity fluctuations. Successively
higher magnification of the spatial structure of the velocity field shows smaller and
smaller scales down to the smallest, known as the Kolmogorov scale, at which it
appears smooth. Thus, turbulence contains a continuum of scales, ranging from the
large ones, whose size is of order the correlation length, to those of order the
Kolmogorov scale. Both the Kolmogorov scale, n, and correlation scale, L, are
best considered as orders of magnitude: one talks of scales comparable with, much
smaller than, or much larger than these quantities. The spatial and temporal “furri-
ness” of the velocity field are related; indeed, one can think of the small time scales as
resulting from convection of fine spatial structures past the measurement probe, as
we will see later.

If one attempts to take the derivative of the velocity field, either with respect to
time or one of the spatial coordinates, its furry nature becomes markedly more
apparent. The spatial derivative of the velocity is the limit of the gradient,

1 As elsewhere in this book, we presume decorrelation with temporal and spatial separation throughout
the chapter.
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| m '\PH\[VN\WN Figure 3.1. Measured time histories at a
v ||‘ given point in space of (a) turbulent velo-
city, and (b) its time derivative in grid

turbulence. Plots as a function of any
of the spatial coordinates at fixed time
are qualitatively similar. (Courtesy of F.

AU/Ax, but, because of the furry nature of the velocity field, rather than approach-
ing a limit, this quantity fluctuates as Ax is decreased, until Ax becomes comparable
with 7, at which point a well-defined derivative begins to appear, finally tending to a
limit for Ax small compared with 1. As Ax is reduced, a typical velocity difference,
AU, at separation Ax, shows decreasing fluctuations, but initially more slowly than
Ax. Thus, before reaching the Kolmogorov scale, the gradient not only fluctuates
with Ax, rather than approaching a limit, but has typical values which grow in
magnitude as Ax decreases. When finally Ax is much smaller than n, the derivative
obtained is considerably larger than would be estimated based on typical gradients at
the correlation scale, and varies from point to point on the scale 5 (see Figure 3.1b).
When examined on scales larger than 7, the velocity seems to be continuous, but not
differentiable (furry). Naturally, it is in fact differentiable, but the derivative is
determined by the smallest scales of turbulence.

As discussed in Chapter 1, the kinetic energy of the flow is dissipated by viscous
heating at the rate

1 (au; oU\N /U, adU;
A=_ / ! / 1
2 <3x, + 3x,-)<8x,- + Bx,v) (3 )

per unit mass, where v is the kinematic viscosity and U the velocity field. Since A is a
function of the velocity derivatives, it is determined by the smallest scales of turbu-
lence, which therefore dominate the dissipation of energy. On the other hand, the
kinetic energy of the flow, U;U;/2 per unit mass, does not contain derivatives and so,
although like U, itself it has fine scale fur, it is mainly determined by the large scales
of the flow. Thus, we have an essentially large-scale quantity, the kinetic energy,
which is dissipated by viscosity at the smallest scales. The link between the two is
provided by the turbulent energy cascade from large to small scales. The appearance
of the viscosity in the expression, (3.1), for the dissipation rate reflects the impor-
tance of viscous effects at the smallest scales. It is the small, but nonzero viscosity
(small in the nondimensional sense of high Reynolds number) which determines the
Kolmogorov scale. Everything else being equal, the smaller the viscosity, the smaller
the Kolmogorov scale required to make viscosity significant at scale 7.




INTRODUCTION

As was first done by Reynolds over a century ago, one may adopt statistical
splitting of the velocity field as

U=U +uy (3.2)

where U, is the ensemble average velocity and #; is the fluctuation, usually identified
with the turbulence. In general, the mean velocity varies with time and spatial posi-
tion, but, like all single-point, single-time averages, it does not show the furriness of
particular realizations of the velocity, which disappears under averaging. The time
and space scales over which Uj(x, t) changes are characteristic of the flow as a whole,
for instance the period of oscillation of the piston for turbulence subjected to peri-
odic compression and rarefaction inside a cylinder, or the width of the wake of a
body placed in a stream. Thus, the small-scale fur is contained in #; rather than U,
when one carries out the splitting (3.2) and is therefore interpreted as a property of
the turbulence. The large scales of turbulence are measured by statistical decorrela-
tion of the fluctuating velocities, #;, whereas variations of U; may take place over
larger space and/or longer time scales. For instance, a statistically steady flow will
have a steady mean velocity field, U;(x), which has an effectively infinite time scale
for variations, while the turbulent velocity fluctuations nonetheless decorrelate over
a finite time.
The average kinetic energy of the flow can be expressed as

I 1——
U,'U,' = Z U,‘U,' + u;u; (33)
[ i— —
Energyof  Turbulent

mean flow energy

1
2

per unit mass. The second term in (3.3) is the average turbulent energy and is an
important measure of the intensity of turbulence. Related measures of the intensity of
the turbulent velocity fluctuations are given by the mean-squared value g* = #; or
by u', defined by u"* = g?/3 (the factor of one-third gives an average over the three
components of velocity when we write #'* = (u 4+ u3 + u2)/3). These quantities are
insensitive to the small-scale fur on the velocity graph in Figure 3.1a and are thus
characteristic of the large scales of turbulence.? Combining #’, L, and v as a non-
dimensional parameter, we have the turbulent Reynolds number Re; = u’L/v,
which is a measure of the significance of viscosity for the large scales of turbulence.
The larger Re;, the smaller the effects of viscosity on the large scales and the wider
the range of scales present inside developed turbulence. In this chapter, we presume a
large value of Re; .

To see how the continuum of scales described above might arise, imagine setting
up an initial high-Reynolds-number flow consisting of an ensemble of realizations
containing only scales of order L, with velocity fluctuations of O(x'). Evidently, such
an initial flow does not have the wide range of small scales described above, but,
provided it gives rise to turbulence, it will develop them spontaneously. The large
initial value of Re; implies that the viscous term in the Navier-Stokes equation

2 Here, as in most of this book, we implicitly assume that statistics such as %’ are representative of typical
realizations of the flow. This excludes “pathological” cases in which there is gross large-scale intermit-
tency, such as the example with sparse turbulent patches discussed in Section 2.4.
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is small compared with the convective term. At this stage, the flow evolves as if there
were no viscosity. As discussed in Chapter 1, without viscosity, vortex lines move
with the flow, and are stretched and folded by convection, while their vorticity may
be amplified by stretching. In a high-Reynolds-number flow which is in the process of
becoming fully turbulent, this complex process, which is far from being fully under-
stood, leads to the appearance of small scales. The initial large vortical scales are
believed to develop smaller-scale structures, conserving energy as they do so because
viscosity is negligible at this stage. It should be understood that the small scales do
not arise instantaneously. They do so progressively, taking a time of O(L/u") to
appear through evolution of the large scales. The small scales that are generated
within the large scales are subject to the same mechanisms as their larger parents and
they in turn give rise to yet smaller scales, and so on until viscosity is called into play
at the smallest scales. Viscosity becomes more significant as the scale decreases
because the viscous term in (3.4) grows relatively more important, thanks to its
second spatial derivative, and the effective Reynolds number is no longer large at
the smallest scales. Viscosity acts to damp the smallest scales, stopping the appear-
ance of yet smaller scales. The above process generates smaller and smaller scales
down to a minimum size determined by viscosity and eventually leads to developed
turbulence having the continuum of scales described earlier. We will assume that the
turbulence has been given the time to develop a full range of scales throughout the
remainder of this chapter.

In developed turbulence, it is thought that a similar cascade process is continu-
ously going on in which small scales are produced inside large ones, yet smaller ones
form inside the small scales, and so on. At each stage, some of the energy of the
parent eddy goes into creating its smaller-scale children, so there is an associated flux
of energy from large to small eddies that cascades down to the smallest scales where
viscosity is important and the energy flux is dissipated. A large-scale eddy evolves on
a time scale® O(L/u’), acting as a continuous source of smaller eddies that evolve
more quickly. Evolution of the large eddies is the slowest step in the cascade and
controls the rate at which energy is fed through to be dissipated. The dissipation rate
adjusts itself, via the size of the smallest eddies, and hence the velocity derivatives
appearing in (3.1), according to the energy flux from the large scales. An internal
equilibrium is set up in which the statistical properties of the small scales evolve at
the rate determined by the large ones, even though a particular small-scale eddy
evolves more rapidly. If turbulence is allowed to decay without any input of turbu-
lent energy, the large scales decay progressively in intensity on a time scale O(L/u’),
while they produce weaker and weaker small-scale offspring. That is, the whole
turbulent flow decays at the rate dictated by evolution of the large scales. On the
other hand, in a statistically steady flow, instabilities of the mean flow constantly

3 1t is possible for turbulence to evolve more rapidly if mean-flow velocity gradients are large compared
with u'/L, leading to rapid distortion of turbulence by the mean flow. In this chapter we implicitly
assume mean-flow gradients are O(#'/L) or less.
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replenish the large scales of turbulence, to which they supply energy, which is passed
via the cascade to the dissipative scales. Note that large scales are always present in
turbulent flow, representing most of the turbulent kinetic energy of the flow and
acting as a continuous source of smaller, shorter-lived eddies.

The existence of the energy cascade from large to small turbulent scales was first
conjectured by Richardson (1922) and, although the above description without
doubt contains the essential physics of the phenomenon, it is evidently qualitative
in nature. Such qualitative ideas, supported by quantitative theories based on them,*
have proven very useful in understanding turbulence, but turbulent flows have pro-
ven tenaciously resistant to theoretical analysis. Little progress has been made on
deriving rigorous, general theories of turbulence from the Navier-Stokes equations,
rather than based on ad hoc hypotheses, for reasons which will appear in the course
of this book. However, a considerable amount is known about particular turbulent
flows, and some of the characteristics of general ones, thanks to a combination of
measurements, analysis, inspired heuristics, and, more recently, numerical simula-
tion,

For the moment, let us consider the definition of the velocity correlation functions,
which allow us to develop a more quantitative description of the different spatial
length scales present inside turbulence. ’

3.1 Velocity Correlations and Spatial Scales

One of the simplest classes of turbulent flows, and one we will return to repeatedly in
this book, is homogeneous, that is, having velocity fluctuations whose statistical
properties that do not depend on position. Strictly homogeneous flows are not
usually met in practice, where flows are often steady (statistical properties independ-
ent of time), but inhomogeneous. However, a good approximation to homogeneity is
provided by grid turbulence, which has consequently received considerable attention.
The reason for studying homogeneous turbulence is its relative simplicity, in the hope
that at least some of the features of more realistic flows can be understood from the
simpler, homogeneous case. This hope will be borne out in later chapters in which
the spectral analysis of homogeneous turbulence without mean flow is developed,
providing a quantitative underpinning for the concept of different scales.
Homogeneous turbulence can also coexist with special mean flows having a constant
velocity gradient, as we shall see in the next chapter.

Consider then a field of homogeneous turbulence, u(x, #), and define the velocity
correlations as

Ri(x, x', 1) = u(x, tiu,-(x’, 1) 3.5

By homogeneity, R; should not be changed if we shift both x and x’ by the same
constant vector, which implies that R; is solely a function of the separation,
r=x-x':

ui(x, Du;(x’, t) = Ry(r, 1) (3.6)

* Primarily Kolmogorov’s theory, which we sometimes refer to in this chapter, but wait to discuss in detail
in Chapter 7, after we have developed spectral theory.
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The velocity correlations, R;;, form a 3 x 3 matrix of correlations between different
velocity components. It is a tensor having the elementary property that

Ry(—1,t) = u(x", yuj(x, £) = Ry(r, 1) (3.7)

that is, the matrix at —r is the transpose of that at r. In particular, the diagonal
components of R; are even functions of r, for instance, Ryi(—r, t) = Ry;(r, t). The
trace, R = R; = Ry; + Ry2 + Ry, of R;; is, of course, a scalar function of r:

Riy(r,t)=ux,t). ux’, t) (3.8)

The turbulent velocity fluctuations are generally found to have the property that
the values at two points, u(x, #) and u(x’, ¢), decorrelate as the separation between
the points, |x — x|, increases. That is,

Rii(r, 1) = ui(x, Hu;(x’, t) — 0 (3.9

as |r| — oo. As the separation, r = |r|, increases, the correlation functions, R, go
from

R;(0,t) = u#; _ (3.10)

the one-point correlation matrix, which applies at r = 0 and is symmetric, positive
definite, through some functional form that is characteristic of the spatial structure of
turbulence, to tend to zero at infinite separation. The order of magnitude of |r| over
which Ry(r, ¢) falls to zero is known as the correlation scale and represents the largest
length scales present in the turbulence. Figure 3.2 illustrates typical behavior of one
of the diagonal components of R, showing various order of magnitude scales,
including the correlation length, L. Since it is difficult to show the behavior of all
nine components of R;; as a function of
the three-dimensional quantity, r, we
have chosen to sketch just one diago-
nal component, Ry;(r{,7, =r3; = 0),
say, as a function of . The order of
separation over which decorrelation
occurs is L, the correlation length.
The reader should bear in mind that
this figure gives a particular line sec-
tion through a three-dimensional
field: the behavior is similar along
other directions in r-space. One can
imagine surfaces of constant Ry; (or
other components) in that space.

We can define a nondimensional
version of the velocity correlations:
the correlation coefficient of the ran-

Figure 3.2. Sketch of the spatial velocity correlations as a func-
tion of r = (r, 0, 0), illustrating the correlation length, L, the
microscale, A, and the Kolmogorov scale, n. The dissipative
range is shown magnified in the center of the figure and
decreases in relative size as Re; increases.

dom variables u;(x, ) and ui(x’,?).
The standard deviations, #; and u]
(where u; = u_%, etc., do not depend
on the spatial location at which the
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average is performed, by homogeneity) characterize the magnitude of turbulent
velocity fluctuations in the x;- and x;-directions and all such components are typically
of the same order of magnitude, O(x"). The correlation coefficients are

py(e, ) = N0 D (3.11)

u/u]
not to be confused with fluid density, p. These coefficients always lie between —1 and
+1, as we showed in Chapter 2. The diagonal elements of p;; take on the limiting
value +1 at r = 0, representing complete correlation of #;(x, t) with itself. The coef-
ficients are simply a scaled version of the correlations, R;;, and Figure 3.2 is equally
illustrative of p;1(ry, 7, = r3 = 0). Evidently, the order of separation over which the
correlation coefficients are significantly nonzero is L.

Since the p; are nondimensional, their integral with respect to any of the coordi-
nates, r; say,

o0

L= [ pii(r1, 12 = r3 = 0)dry (3.12)
has the dimensions of length. Similar definitions can be glven for L and L[3 by
integration over r, and r3, respectively. The quantities L[ ! provide a quantltatlve
measure of the correlation length scale and their deﬁmtlon in terms of integrals
explains the terminology “integral scale” which is often used. The advantage of
such scales is that they provide definite numbers, which can be measured and com-
pared between different flows. However, the definiteness of these integral scales
should not hide the fact that the correlation scale is not really a precise number,
but an order of magnitude. Thus, for instance, which of the many Lg?] should one
choose, why not integrate along lines in r other than the coordinate axes, and so on?
When we use the terms correlation scale (or even integral scale) in this book, we will
have an order of magnitude in mind, unless otherwise stated. All the Lgf] are sup-
posed to be of the same order of magnitude, I., which characterizes the largest scales
of turbulence.

More detailed examination of the p;; as a function of r reveals that their behavior
changes significantly in a region of [r| small compared with the overall scale for
decorrelation, L. As apparent in the magnified zone of Figure 3.2, any of the diag-
onal elements of p;, p11 say, has zero derivative at the origin, r = 0 (as follows from
p11(r) = p11(-r)). The graph curves downwards from p;; =1 at |[r| =0, as |1
increases (recall that |p;| < 1), but reaches a maximum gradient and then begins
to curve in the other direction. This behavior occurs for |r| of order the Kolmogorov
scale, n, defining the smallest scales of turbulence and is represented in the magnified
part of the full correlation curve of Figure 3.2. The existence of this scale is due to
(small) viscosity and the ratio /L decreases® as the turbulent Reynolds number,
Re; = u'L/v, increases. That is, the wide range of scales is asymptotic in large Re;.

The mean-squared value of the difference of velocity at two points is the sum of
components, such as

(1(x, 1) — 1 (x', 1)* = 2(u1? — Ry1(r, 1) = 2u1 (1 — pyy(x, 1)) (3.13)

~3/4

5 In.fact, according to the Kolmogorov theory from Chapter 7, n/L = O(Re; ") at sufficiently large Re; .
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whose sum gives

3
(Aw)* = lulx, ) —u(x’, HF =2 u*(1 = py(r, ) (3.14)
i=1

Atr =0, py; = p32 = p33 = 1 and Au = 0, as of course it must be, since there is no
difference of velocity at zero separation. When |r| = O(L), the correlations, p;;, have
decreased significantly from the value 1 (recall that L was defined via decorrelation)
and so Au = O(u’). Thus, the typical difference of velocity between two points
separated by O(L) is comparable with the overall turbulent velocity fluctuations.
As |r| - 00, p; = 0 and Au — 6'u’. Between frl =0 and |r| = O(L), the p;
decrease continuously from 1, as shown in Figure 3.2; thus Ax increases continu-
ously from 0 up to O(u") as [r| increases from 0.

For very small separations, r = |r| <« 5, the correlation functions can be expanded
as a Taylor’s series about r = 0, leading to the dashed parabola shown in Figure 3.2.
For such very small 7, 1 — p;; is proportional to #* and hence Au is proportional to 7,
according to (3.14). This linear dependence of the velocity difference on 7 is a con-
sequence of the fact that the velocity field is smooth when looked at on scales of O(n)
or smaller. Thus, when 7 < 7, the velocity field itself can be expanded as a Taylor’s
series in r, giving leading-order proportionality of the velocity difference on separa-
tion. We see that the behavior of the correlation functions at » = O(n), illustrated in
the magnified part of Figure 3.2, reflects the change from an apparently furry velocity
field at scales larger than 7, to a smooth velocity field at  and below.

At scales intermediate between the smallest, n, and largest, L, the velocity field
appears furry and, although the difference of velocities, Au, decreases with separa-
tion, it does so more slowly than would be the case if it were a smooth function at
these scales. In other words, Au/r increases with decreasing r. Looked at on these
and larger scales, the velocity field appears to be a continuous, but nondifferentiable
function of position (and, indeed, time). Of course, the velocity is really differenti-
able, but one needs to consider scales 17 and below for that to become apparent. The
magnitude of the fur on a graph of velocity is measured by Au.

According to Kolmogorov’s theory of the cascade (described in Chapter 7), as Re;.
is increased, an interval of r appears in n <« r « L, within which Au 73 This
interval is known as the inertial range of separations; it appears at sufficiently large
Re; and grows in width as Re; is further increased. Turbulence can exist at lower
{(but still large) Reynolds numbers without an inertial range, but the Re; — oo
asymptotic behavior only becomes evident with the appearance of the inertial
range. The correlation functions and velocity differences then show asymptotic struc-
ture consisting of three ranges of separation: dissipative scales, » = O(n), intermedi-
ate inertial-range scales, for which power laws apply, and large, energy-containing
scales, r = O(L).

We shall use the notation Az, to indicate a typical velocity difference at separation
r. Since each of the terms in the sum of (3.14) has the same order of magnitude, we
have 1 — p; = O((Au,/ u’)z), linking the correlation coefficients and velocity differ-
ence at separation r. According to Kolmogorov’s inertial range theory, 1 — p; is
proportional to #*/* and Au, is proportional to #'/3. This dependency of 1 — p; on
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r leads to an infinite gradient at r = 0 for graphs such as Figure 3.2, singular beha-
vior which is resolved at the Kolmogorov scale.

For future reference, we summarize the behavior of Au, and p;; as a function of r
at large Reynolds number and n « r <« L as follows:

Quantity General Bebavior Inertial Range
Au, : : r\1/3
7 increases with ~ <_>
u L
Au, L L : L\*?
— decreases with increasing r ~|=
r o u ’
. . r\2/3
1—p; increases with r ~ <Z>

All the above quantities are O(1) for the large scales (r = O(L)) and either small (for
the first and third quantities) or large (for the second quantity) at smaller scales. We
stress again that the existence of an inertial range within n « r « L, and hence the
applicability of the third column in this table, requires a sufficiently large value of
RCL.

The second derivatives of R; at r = 0 are directly related to the mean-squared
velocity gradients. Thus, taking the derivative of

ui(x, Hui(x', 1) = Ry(x — x',t) 3.15)
with respect to x, and x; and evaluating at x = x’ yields
oy By PRy (3.16)
Bxk 3x1 31‘1231‘1 =0
which gives, for instance,
9\ 2
(ﬂ — azpz“ (3.17)
axq oy o

Referring to Figure 3.2, it is apparent that this second derivative is to be taken in the
region of the Kolmogorov scale, reflecting the importance of the smallest scales in
determining the mean-squared velocity derivatives, which increase as the viscosity,
and hence 75, decreases.

For |r| « 1, we can expand any of the diagonal elements of p;(r, t) as a Taylor’s
series in r. For instance:

- 2
T
pu(rl,r2=r3:0)=1—k—;+~~ (3.18)
so that
ou \> 2u'*
@) =% o1

according to (3.17). The quantity A has the dimensions of length and is referred to as
a Taylor microscale. From (3.19), it appears that the mean-squared velocity deriva-
tives can be written using the overall turbulent fluctuating velocity and the micro-
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scale. Of course, since there are nine different velocity derivatives, there are generally
a corresponding number of different possible microscales and, like L and 7, it is
usually better to think of microscales as orders of magnitude. From this point of
view, the Taylor microscale is defined by the order of magnitude of the velocity
derivatives:

Ou,; u' :
Z_oll 3.20
or from the energy dissipation as
12
v

where the turbulent part of the energy dissipation rate, ¢, is defined by (3.1) with the
total velocity, U, replaced by the fluctuating velocity, u. In fact, since velocity deri-
vatives are, in any case, dominated by the fluctuating component, ¢ equals A to a
good approximation at the high Reynolds numbers we have in mind here. Thus, for
present purposes it is unnecessary to make the distinction between the two and the
reader can think of either one as representing viscous energy dissipation by the
smallest scales of the flow. We will return to a detailed discussion of turbulence
energetics in Chapter 4, from which it will appear that the mean value of ¢ is an
important quantity, representing the average dissipation of turbulent kinetic energy.

As their name suggests, the microscales are typically small compared with the
correlation length, L, defining the overall length scale of turbulence. However, it is
important to recognize that they are not of the same order as the smallest scale, 7.
The velocity field is smooth at the Kolmogorov scale, , and so we can estimate the
velocity derivatives as

; A
w o(—“”) (3.22)
ax,- n

which can be compared with (3.20), leading to

X u'

—=0|— 1 3.23
n (Aun) > ( )
which is large, since the velocity differences, Au,, at separation 5, much less than L,
are small compared with those, Au; = O(u'), at separation L. It follows that the
microscale, A, is large compared with 7. One can also rewrite the estimate, (3.23), as

A Aup  [Au,
Z_O( T / ; )<<1 (3.24)

which is small since, as noted previously, Au,/r is a decreasing function of r. Thus,
n <« . « L, showing that the Taylor microscales are intermediate in order of mag-
nitude between n and L and lie in the inertial range if Re; is large enough If the
Kolmogorov inertial range power law

Au, = O(u'(%)lﬂ) (3.25)
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is applied at the extreme limits, r = O(n) and r = O(L), we find
= o(n2/3L1/3) (3.26)

according to (3.24).

Whereas there are definite physical processes associated with scales n and L, it is
unclear what, if any, physical significance should be ascribed to 4. The definition,
(3.20), in terms of velocity derivatives determined at the smallest scales, and #’,
which is an overall velocity scale associated with the large scales, makes A an inter-
mediate quantity, as is also apparent from the mix of  and L in (3.26). It is because
A contains quantities appropriate to both scales n and L that it is itself intermediate
as Re; — oo. The microscales often appear in analyses of turbulence, usually to help
estimate the energy dissipation via equations such as (3.21). A geometrical interpret-
ation of the microscale is shown in Figure 3.2 and based on the Taylor’s expansion,
(3.18). A parabola is fitted to the correlation function at ; = 0 and intersects the
r; axis at r; = A.

As we noted earlier, the root-mean-squared fluctuating velocity, #’, is mainly
determined by the large scales of the velocity field, being insensitive to the small-
scale fur apparent in Figure 3.1a. On the other hand, the root-mean-squared differ-
ence, Au,, is dominated by the fur at scales of order r and characterizes such scales of
the flow. In other words, if one imagines the turbulence as a continuum of different
spatial scales produced by the cascade, the quantity Au, gives the velocity scale
associated with those of size r and is small compared with ', when r < L. It is
believed that the differences of velocity, Au,, together with r itself, characterize the
dynamics of turbulence at scales of order . For instance, one can define a Reynolds
number at scale r, based on Au,, as rAu,/v. This Reynolds number is a decreasing
function of , large of O(Rey ) at scale L and proportional to 7*/? in the inertial range,
according to the Kolmogorov theory. It falls to O(1) at the Kolmogorov scale,
r = O(n), which is another way of saying that viscosity is important there.

In the course of describing the behavior of the correlation function, we have been
obliged to illustrate three-dimensional behavior (as a function of r) by plotting
graphs as a function of just one spatial dimension. In the case of isotropic turbulence,
statistical properties of #; are independent of direction and reflection in any plane. As
we shall see in Chapter 6, this allows us to write all the correlation components,
R;i(r), in terms of just two scalar functions of » = |r|. For the moment, however, we
simply note that the one-point correlations have the form

— u's, | (3.27)

when the turbulence is isotropic. This is a consequence of a general mathematical
result that a tensor (such as %), whose components are unchanged under arbitrary
rotation of axes, is a multiple of §;;. We shall use symmetry considerations similar to
these in the next chapter, but we have no real need to assume isotropy here.
Although we have assumed homogeneity to make the presentation of correlation
properties more definite, many of the concepts explored above do not depend on this
assumption in any essential way. For instance, the correlation scale can be defined as
the separation required for significant turbulent velocity decorrelation, and repre-
sents the large scales of inhomogeneous turbulence. Furthermore, it is observed that
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the properties of turbulence become more like the homogeneous case the smaller the
scale considered. That is, even if it is inhomogeneous at the largest scales, smaller
separations usually give approximately homogeneous results. It is as if the process of
generation of small scales, described earlier, forgets the inhomogeneities present at
the large scales, apart from large-scale nonuniformities of the rate of turbulent
energy supply. This idea of a cascade to small scales, coupled with loss of memory
of the specifics of the particular large-scale turbulent flow, forms one of the main
elements of Kolmogorov’s theory to be described in Chapter 7.

Notice that the correlation length, although obviously of the same order as, or
smaller than, the total size of the region of turbulence, may in fact be much smaller.
For instance, grid turbulence, which is a good approximation to homogeneity, has a
correlation length which scales on the grid spacing, but occupies a much larger
region overall. Strictly homogeneous turbulence is the extreme case: it occupies all
space, but has a finite correlation length.

3.2 Temporal Correlations and Time Scales

Velocity correlations can be defined at a single fixed point and different times:
RO(x, 1, 1) = u(x, uj(x, 1) (3.28)

Decorrelation takes place as the delay |t — | — oo, with the turbulence at widely
differing times generally behaving as if it were taken from independent realizations of
the flow, as for widely separated points in space.

Steady flows are the temporal analog of homogeneous turbulence. If the flow is
steady, the correlations become functions of the delay, t =t —¢":

u(x, Du;(x, 1) = RP(x, 7) (3.29)
and one finds that

RO(x, —1) = u(x, 1 )u(x. 1) = RP(x, 7) (3.30)

so that the diagonal elements of RE;) are even functions of 7. The correlations at zero
delay are, of course, just the one-point velocity moments

RO(x,t = 0) = mm; (3.31)

and coincide with the spatial correlations at zero separation. Correlation coefficients
can again be defined by normalization as

R® X, T
9= L2 632

[
uiu/-

and lie between —1 and +1, with the diagonal components being 1 at T = 0.

A plot of any of the diagonal terms of pg)(x, 1) as a function of 7 is very similar to
Figure 3.2. Overall, decorrelation takes place on a correlation time scale, ®, while
the smallest time scales, at which the velocity field becomes a smooth function of
time, appear as a distinct region of small time delays. One can define integral corre-
lation times as, for instance,
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®; = J p(x, T) dt (3.33)
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which vary with position in the flow unless it is homogeneous as well as steady.

All in all; a discussion of temporal correlations and time scales for steady flows
closely parallels that of spatial ones given earlier. Time scales and correlations such
as these, which are defined at a fixed point in space are known as Eulerian and, in
many cases, reflect the spatial structure of turbulence being convected past the given
point by the flow, rather than time evolution of the turbulence itself. Consider, for
instance, the case of turbulence generated by uniform flow passing through a grid of
wires.

The turbulence produced downstream of the grid exists in an approximately
uniform mean flow of velocity U and has a fluctuating velocity, #’, small compared
with U. The uniform flow serves merely to convect the turbulence, whose large
spatial scales are characterized by #’ and a correlation length L. From these scales,
one can construct a time scale, L/u’, which describes the evolution of the large scales
of turbulence. However, spatial scales of size L are convected past a fixed point in a
time of order L/U, and since #’ « U, this is much shorter than the time for evolu-
tion. Thus, to a first approximation, the turbulence can be thought-of as simply
convected at constant speed U without evolution. This approximation is often
referred to as the Taylor hypothesis and the turbulence is said to be “frozen.” A
fixed, point sensor in the flow samples the velocity field along the line that is con-
vected through the sensor at velocity U. Time correlations at delay 7 are then directly
related to spatial correlations at separation Ut in the direction of the mean flow. In
particular, the correlation time is related to the spatial correlation scale by ® = L/U.
In this example, convection by the mean flow causes nearly frozen spatial structure
of the turbulence to appear as time variations at a fixed point. This is typical of flows
with significant mean velocity.

It should be made clear that Eulerian time scales depend on the frame of reference
used. If, for instance, one examines the grid-generated turbulence in a frame of
reference moving with the velocity U, time variations no longer include the effect
of convection at speed U. Time scales are then considerably longer than in the frame
of reference of the grid, being those for dynamics of the turbulence, O(L/u"). Of
course, the flow is no longer steady when viewed in the new frame of reference:
turbulence decays as it is convected downstream away from the grid, which is the
source of the turbulence.

Even in the absence of significant mean flow, the small scales of turbulence (sizes
small compared with- L) are convected by the large scales, leading to Eulerian time
scales short compared with their evolution times. The velocity differences at scale ¢
are O(Au,) giving a time scale for evolution O(£/Au,), since, as remarked earlier,
Auy is believed to characterize the turbulence dynamics at scale £. That is, turbulent
scales of size € are thought to evolve on the intrinsic time scale £/ Au,, which is often
referred to as the eddy lifetime at scale £. As we have seen, £/Au, decreases with
decreasing ¢, leading to the conclusion that smaller eddies have shorter lifetimes.
However, to see the time evolution of the small scales, rather than simply the effects
of convection by the large ones or by the mean flow, one needs to move with the
fluid. Choosing an infinitesimal fluid particle, one may follow it by moving at the
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fluid velocity U and examine a region of size ¢ centered on the particle. Time evolu-
tion in that region takes place on the time scale, O(¢/Au,), the intrinsic scale for
turbulence dynamics at scale £, but a Lagrangian description of the flow has been
introduced by the requirement that one move with the chosen particle.

The large scales of turbulence produce convection velocities of O(x"). Thus, in the
absence of significant mean flow, an eddy of size ¢ takes a time O(£/u") to be swept
past a fixed point. This time is short compared with the eddy lifetime, O(¢/Au,), by a
factor of O(u,/u’), which is small when £ <« L. That is, small scales do not have the
time to evolve significantly in the time taken for convection past a fixed point. It
follows that short-scale Eulerian time variations are mainly due to convection of
nearly frozen small-scale spatial structures past a fixed point, as for the case with
significant mean flow. However, it is the large eddies, rather than the mean flow, that
now provide the convective sweeping.

In general, there is convection by both the mean flow and by the overall turbulent
velocity fluctuations. If U > u’, as is often the case, the mean flow wins and the time
variations at a fixed point are mainly due to mean convection, even at the largest
scales. On the other hand, when U is comparable to or small compared with #’, short
time-scale fluctuations result from convection of small spatial structures by larger
scales, but the time scales for convection and evolution of the largest scales are both
O(L/u"). Writing #, = max(|U|, #') as the dominant convection velocity, mean or
turbulent, the Eulerian time scale associated with size ¢, is T = O(¢/u.). Thus, the
largest and smallest Eulerian scales are ® = O(L/u,) and O(n/u.).

The smaller the spatial structure considered, the shorter the Eulerian time scale,
with 7= O(£/u,) giving rough proportionality between corresponding time and
space scales. Within an inertial range, the velocity differences at scale £ are propor-
tional to £/ from Kolmogorov’s theory and hence to t!/? according to the relation-
ship 7 = O(¢/u.). The analog of (3.14) for differing times, rather than points in
space, indicates that 1 — p(fi (x, 7) = O((Au/u’)*), which is proportional to %3 in
Kolmogorov’s theory. Thus, at time delays corresponding to n « r <« L, the behav-
ior of pfit)(x, 7) as a function of 7 is similar to that of p;(r, ) as a function of |r|.
Temporal behavior at a fixed point directly reflects spatial structure.

The intrinsic time scale, O(€/Au,), characterizes evolution of eddies of size £ in
particular realizations of the flow. In contrast, small-scale averaged properties of the
flow, such as Ay, for £ « L, do not evolve on this time scale in developed turbu-
lence. Instead they may only change on the time scale, O(L/u"), for evolution of the
large scales, while the case of a steady flow shows that such statistics may not evolve
at all. The entire continuum of scales is in statistical equilibrium with the large scales
once the turbulence has fully developed, while the small eddies in any particular
realization evolve faster than this,

The mean kinetic energy contained in the largest scales is O(x'*) per unit mass and
is transferred to the smaller scales in a time O(L/u’), thus giving an average energy
flux O(u"?/L) per unit mass and time. The smallest scales rapidly adapt to dissipate
this energy flux, requiring a mean dissipation rate Z = O(x'?/L). We can combine
this estimate with (3.21) to obtain

A

1= O(Re; ') , (3.34
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again showing that A « L when Re; is large. The result, # = O(#’3/L), which we
obtained in the process of deriving (3.34) is often useful when one wants an estimate
of the rate of energy dissipation of turbulence, as is the time scale, O(L/«"), for its
decay in the absence of energy input.

In the literature on turbulence, one often sees a Reynolds number, Re;, = u'A /v,
constructed from A and #', used instead of Re;. According to (3.34), we have

Re, = O(Re}’?) (3.35)

showing that Re, is large, but not so large as Re; . Use of Re, carries the same caveats
as X itself: it involves a mix of small- and large-scale quantities. On the other hand, it
is relatively straightforward to translate between Re, and Re; using expressions such
as (3.35),° and Re; does have a well-defined physical interpretation as a measure of
the lack of importance of viscosity at the largest scales.

In the absence of an energy supply to the largest scales, it might be thought that
the loss of energy of those scales to form smaller ones would cause the overall
length scales of the turbulence to become shorter, thus making the correlation
scale, L, decrease with time, but this is not the case. Amongst the largest-scale
eddies, the larger ones live longer and it is these that determine the large-scale
structure of later turbulence. Thus, in fact, the correlation length tends to increase
as the turbulence decays. Of course, in a steady flow, the continuous supply of new
eddies at the largest scale keeps the correlation scale constant, like all other sta-
tistical quantities.

As we saw earlier, temporal variations of turbulent velocity at a fixed point are
often due to convection of nearly frozen spatial structures and not to the intrinsic
time evolution of turbulent eddies. It is thus natural to look for a means by which the
evolution itself might be observed. The effects of convection are due to flow and, if
we imagine a point sensor that moves with the flow, such convective effects would be
eliminated. This is one of the ideas behind Lagrangian descriptions of turbulent flow,
which consider the time history following particles of fluid in their motion. Of
course, it is experimentally well nigh impossible to take point measurements follow-
ing the flow and so, whereas Eulerian fixed-point measurements are routinely made,
Lagrangian time histories are inferred and often play the role of thought experi-
ments, rather than real ones.

We do not want to enter into the detailed definition of Lagrangian velocity cor-
relations here, since the technical points that raises are outside the scope of an
introductory chapter. However, briefly put, the basic idea is that decorrelation of
velocity following an infinitesimal fluid particle as it moves with the flow yields a
Lagrangian correlation time scale that measures the evolution time of the large scales
of turbulence and can be considerably longer than its Eulerian counterpart if the
mean flow dominates. The Lagrangian correlation time may also be thought of as the
order of magnitude of duration of statistical memory of the flow, which forgets its
past behavior at longer temporal separations.

® Though note that there are O(1) numerical factors hiding behind estimates such as (3.35).

n
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3.3 Conclusions

In this chapter, we have attempted to introduce the reader to some important,
fundamental properties of turbulence: the plethora of time and space scales that
are characteristic of turbulent flows and the underlying physical mechanisms that
produce them. The material given here forms a qualitative background for future
chapters, which build and expand on the discussions given here.

From an experimental point of view, the existence of space and time scales down
to the Kolmogorov scale means that one must use probes having a sufficiently high
resolution and fast time response if one wants to fully capture a high-Reynolds-
number turbulent flow. Depending upon the particular flow, this can place rather
exacting requirements on the experimenter.

Reference
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CHAPTER FOUR

Basic Theory and lllustrative Examples

Statistical averaging methods for turbulent flows were introduced by Reynolds
{1894) over a century ago and remain crucial in the theory of turbulence. Such
techniques may be used to study mean values involving any number of points in
space and time; however, the simplest are the single-point, single-time averages. By
considering one-point statistics, information about the flow is reduced to what might
be presumed its essentials {e.g., mean velocities, root-mean-squared fluctuations) and
the flow description is consequently simplified. However, one-point quantities do not
encompass the full statistics of the flow, since multipoint, multitime averages cannot
be deduced from one-point data. Statistical information is thus lost in going to one-
point averages, information that may be crucial to an understanding of certain
aspects of the flow. Even so, one-point averages include many of the more important
physical measures of turbulent flow, for instance, the mean-flow velocity, U;, and
turbulent kinetic energy per unit mass, #;3#;/2. The main aim of this chapter is to
provide an introduction to one-point methods and to give the reader a feel for their
use via simple, but representative examples. Flows cannot be fully described using
such an approach (for instance, one-point methods do not capture the contributions
of different scales to the overall energetics of turbulence, unlike the spectral analysis
of later chapters) and we make no pretence at completeness here. Nonetheless, one-
point techniques are fundamental to an understanding of the overall properties of
turbulent flows, for example their energetics.

The simplest one-point averages are U; and P, where U, and P are the velocity and
pressure of the fluid. These quantities define a notional flow, known as the mean
flow, the departures from which are called fluctuations and are generally identified
with the turbulence. Thus, the statistical splitting consists of

Ui = ﬁt + u; ) (41)
and
P=F+p 42)

where #; and p are the fluctuating velocity and pressure respectively. Note that, since
we are assuming an incompressible fluid throughout this book, there is no need to
introduce splitting of other quantities, such as the density, as we would need to for a
compressible fluid. The mean values U; and P in (4.1) and (4.2) are ensemble
averages, that is, a number of separate, independent experiments are imagined as
being carried out with the same nominal flow conditions, and the results averaged.
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For a nominally steady flow one can also usefully define time averages, which usually
yield the same results as ensemble averages, as explained in Chapter 2.

By averaging the Navier-Stokes equations, one obtains those for the mean flow.
As we shall see, the mean-flow equations contain what are called Reynolds stress
terms involving second-order moments of the fluctuating velocity field (recall from
Chapter 2 that moments are averages of products of random variables, their order
being the number of terms in the product). Thus, the mean flow is coupled to the
fluctuations by these terms, that is, it cannot, in general, be calculated independently
of the turbulence.! The Reynolds stress terms arise from averaging the nonlinear
convective term in the Navier-Stokes equation and are not truly part of the fluid
stress, but rather represent the average momentum flux due to the turbulent velocity
fluctuations. However, they appear formally like stress terms in the equations for the
mean flow. The fact that the mean-flow equations are not closed in general, because
they involve the fluctuations via the Reynolds stress terms, reflects incompleteness of
the mean flow as a description of the one-point statistics, which, as noted above, do
not encompass the full, multipoint, multitime statistics of the flow. Thus, the mean
flow does not contain anything like full statistical information on the turbulent flow
and the mean-flow evolution equations involve some lost one-point information, in
the form of second-order moments of the fluctuating velocity.

In an attempt to complete the mean-flow equations, one may derive evolution
equations for the second-order moments of fluctuating velocities. However, it turns
out that, owing to the quadratic convective term in the Navier-Stokes equation,
these equations contain third-order velocity moments, and so on for the evolution
equations at all orders. The evolution equations for velocity moments of order #
involves moments of order # + 1, and no finite set of moment equations is closed.
This closure problem is the main obstacle to the development of a rigorous theory of
turbulence using averaging methods, and no fully satisfactory solution is known. The
problem can be dealt with heuristically by completing the system of moment equa-
tions up to order # by assuming additional semiempirical relations for moments of
order n+ 1 in terms of the lower-order ones. No rigorous justification has been
found for any of the numerous closure assumptions which have been proposed
and, although this type of approximate model may work quite well within a
restricted class of flows for which it was intended and for which it has been para-
meterized, from a fundamental point of view, it is not a very satisfactory solution.
However, until (and if) some better one is found, or computers grow powerful
enough that reliable numerical simulation of the Navier-Stokes equations can be
carried out for realistic Reynolds numbers and flow geometries, such closure models
will no doubt be used when quantitative predictions of particular turbulent flows are
required.

There is another problem associated with the use of the moment evolution equa-
tions, perhaps of less fundamental significance, but nonetheless creating technical
difficulties. The evolution equations for second- and higher-order velocity moments
at a single point involve two-point moments, those at two points introduce three-
point moments, and so on. This is often referred to as nonlocality and means that

1 An exception occurs for homogeneous turbulence, which leads to Reynolds stress terms in the mean-flow
equations which are zero, as we will see later.
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one cannot, for instance, restrict attention to single-point moments when formulat-
ing evolution equations for the velocity moment at orders above the first.
Nonlocality is due to the fact that the Navier-Stokes equation contains pressure
gradient and viscous terms, of which the former gives rise to pressure—velocity cor-
relations when one formulates equations for velocity moments above the first order,
while the latter produces a milder form of nonlocality that will be discussed later.
The pressure can be expressed in terms of the velocity field, as we shall see in Section
4.3, but the pressure at a single point involves an integral over the entire flow field.
Thus, when one derives evolution equations for the moments of velocities at a single
point in space, they contain spatial integrals of two-point velocity moments via the
velocity—pressure correlations. If one considers n-point velocity moments of order #,
the evolution equations for the moments of all orders constitute an infinite hierarchy
of integro-differential equations,” which appears to be thoroughly intractable unless
closure hypotheses are introduced. The fact that this system is inextricably coupled
leads to the closure problem, whereas the integrals appearing in the moment equa-
tions reflect nonlocality.

Of itself, nonlocality does not lead to any problems of principle and, once a
closure approximation has been adopted, the resulting truncated set of moment
evolution equations, involving z-point velocity moments up to some finite value of
n, although perhaps technically demanding to solve, is at least complete.
Nonetheless, when one restricts attention to one-point averages, as many routine
turbulence prediction schemes do, quantities, such as pressure—velocity correlations,
occur in the one-point equations that, in principle, require two-point velocity statis-
tics for their evaluation. There is thus considerable practical interest in heuristic
approximations of such quantities in terms of one-point ones, approximations that
are often also referred to as closure hypotheses {or models), since they serve to close a
set of one-point equations. The reader should nonetheless keep in mind the distinc-
tion between the fundamental closure problem, which is due to nonlinearity of the
Navier-Stokes equations, leading to the appearance of moments of order # + 1 in the
equations for those of order », and incompleteness of the one-point equations as a
result of nonlocality, which can be resolved, in principle, by considering multipoint
moments. Fourier (or spectral) analysis, introduced in Chapter 6, allows nonlocality
to be handled in a relatively straightforward way for homogeneous turbulence, but
does not resolve the underlying closure problem due to nonlinearity of the Navier—
Stokes equations.

Although they are fundamentally less satisfactory, because they require additional
assumptions to make good the lack of two-point information, one-point turbulence
prediction models are simpler, requiring less computational effort than multipoint
ones. For this reason such methods are extensively used in industrial applications,
where, due to the complex architecture of, for instance, piston engines, compressors,
and turbines, practical multipoint models have yet to be developed. We shall describe

% There is another approach to the analysis of turbulence, describing the time evolution of all single-time
statistics of the velocity field by a single linear equation, known as the Hopf equation, which is, however,
a functional differential equation, i.e., it involves derivatives taken in a space of functions.
Unfortunately, finding useful solutions of the Hopf equation is very difficult and little real progress
seems to have been made using this approach. The interested reader is referred to Monin and Yaglom (G
1975), chapter 29, but should be prepared for some mathematical brain stretching.
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one of the simplest and most commonly used one-point closure models, the k—¢
model, in Chapter 8.

In this chapter, we shall develop the basic theory of turbulence using a physical
space, rather than a spectral, formulation, mainly focusing on low-order, one-point
moments. The aim is to provide physical interpretations and, via specific examples,
to show the reader how one may extract useful information. Thus, the primary goal
is not turbulence modeling, although closure and nonlocality problems are necessa-
rily not far from the surface and, along the way, we will introduce some modeling
ideas.

4.1 The Mean Flow

The motion in any realization of the turbulent flow obeys the incompressible Navier—
Stokes equation

ay; ay; 1P &0,
_t = ! 43
ot T dx; P ox; T dx;0x; (4.3)
Rp— Sm——— e
Convection Pressure Viscosity
gradient

where v is the kinematic viscosity, and the incompressibility condition

au;

=0 (4.4)

A turbulent flow is thus considered as an ensemble of different solutions of the
Navier-Stokes equations, (4.3), (4.4).
Since (4.4) is linear, its average is closed and we have

T _,

ox, 4.5)

for the mean flow. Here and elsewhere, it should be recalled that ensemble averaging
commutes with space and time derivatives (see Chapter 2). We will frequently change
the order of partial differentiation and averaging without drawing special attention
to the fact. Subtracting (4.5) from (4.4) yields the continuity equation for the fluc-
tuations

ou;
Hi_ (4.6)
8x,-
Thus both the mean and fluctuating velocities satisfy the incompressible continuity
equation as if they were independent flows.

This decoupling does not extend to the nonlinear Navier-Stokes equation, (4.3),
which yields

U, —oU, ~ow;  10P ?U;

T M 2
ot T ax; T dx; pox;  dx;dx;

4.7)

where, in the convective term, we have used (4.1) and the fact that the average of the
product of a fluctuating and an averaged quantity is zero. This equation contains
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both the mean and fluctuating velocities and is not closed. Because we wish to regard
(4.7) as the equation for the mean flow, we prefer to shift the term

u; 8

it — =
7 9. .
Bx, Bx,

(#7%) (4.8)
in which we have used (4.6), to the right-hand side of the equation which becomes
the mean-flow equation

R
ot Tox; pox;  dxox;  Ox;
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Mean Reynolds

pressure Mean viscous stress tensor

stress stress tensor

The convective term, arising from the fluctuating velocity, can be seen to appear here
as an additional fictitious stress tensor, the Reynolds tensor, —p#;, by which the
fluctuating part of the flow interacts with and forces the mean flow, giving a force
—du;u;/dx; per unit mass which the turbulence can be thought of as exerting on the
mean flow. Although the Reynolds stress formally appears similar to the genuine
stress terms of (4.9), it is not really part of the fluid stress, but instead represents the
average momentum flux due to turbulent velocity fluctuations. The Reynolds stress
tensor is one of the most important basic concepts in the theory of turbulence, whose
divergence can be interpreted as forcing of the mean flow by turbulence. In all other
respects, the equations for the mean flow, (4.5) and (4.9), are as if the mean flow was
the whole flow and there were no turbulent fluctuations.

Thus, the nonlinear, convective term in the Navier-Stokes equation introduces
coupling between the mean and fluctuating (or turbulent) parts of the velocity field
through the Reynolds stress tensor, —p#;#;, which is a second-order moment of the
velocity components at a single point in space. In fully developed turbulence, the
Reynolds stress tensor can easily be as much as 500 times larger than the mean
viscous stress tensor, that is, we have
au; N 3y,
ox;  Ox;

ol | > u (4.10)

as first recognized by Boussinesq (1877). This is a consequence of the generally
large-Reynolds-numbeér turbulent flow, as we now briefly explain. In the last chap-
ter, we saw that the velocity gradients of turbulence are associated with small
dissipative scales of the flow, whose size decreases with the viscosity of the fluid
(and hence with increasing Reynolds number). This has the effect of making the
total velocity gradient 3U;/ax; grow large at high Reynolds numbers, but the mean
flow gradient, 8U;/dx;, appearing in (4.10), does not, because, like all averages, U;
varies over length scales determined by the overall flow, not the small viscous
scales of turbulence. Rather than U, it is the other component of the total velocity,
u;, which develops small scales and large gradients, becoming a “furry” function of
space and time. As the viscosity is progressively reduced, and the Reynolds number
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rises, the left-hand side of (4.10) does not drop to zero, being determined by the
intensity of the turbulence, whose velocity fluctuations are typically some small,
but significant fraction of the mean-flow velocity and do not tend to zero with the
viscosity. The net result is that the term on the right of (4.10), which is multiplied
by the viscosity of the fluid, goes to zero, but the left-hand side does not. Thus, at
large Reynolds numbers, the viscous stress may generally be neglected compared
with the Reynolds stress, as far as the mean-flow equations are concerned
(although the viscous terms cannot be dropped in the equations for the fluctuating
velocity, as we will see later).

There is, however, one important case (apart from the obvious one in which
there is no turbulence) for which (4.10) ceases to hold. Towards boundaries of
the flow, mean velocity gradients grow larger and there are very thin layers at
solid surfaces in which viscous effects must be included in the mean-flow equa-
tions. That is, the right-hand side of (4.10) increases as the surface is approached
and becomes comparable to the left-hand side in the viscous layer at the surface.
Such viscous layers are obviously related to, but should not be confused with,
turbulent boundary layers. As we shall see in the next chapter, there is a viscous
layer within a turbulent boundary layer, which is considerably thinner than the
overall boundary layer and will be referred to as the viscous sublayer.® Outside
the viscous sublayer, but within the boundary layer, viscosity is negligible as
regards the mean flow, and mean momentum transfer is dominated by the tur-
bulent Reynolds stress terms. Turbulent boundary layers are discussed in detail in
the next chapter.

The boundary condition at a solid surface is one of no-slip, that is, the total fluid
velocity equals the velocity of the surface. Thus, if we assume that solid surfaces
move in the same way in all realizations of the turbulent flow, or at least that the
fluctuation in their positions and velocities are negligible, the fluid velocity at such a
surface is independent of the realization considered and gives the mean velocity at the
surface. It follows that the boundary conditions for the mean velocity are ones of no-
slip, while the fluctuating velocity is zero. Imposition of the no-slip conditions
requires viscosity, which is another way of seeing the need for a viscous layer at
solid surfaces.

Note that if the turbulence is homogeneous, so that all one-point averages are
independent of position, the Reynolds stress term in (4.9) is zero, and so homo-
geneous turbulence has no effect on the mean flow, which evolves as if there were
no turbulent fluctuations. This illustrates the simplifications that can occur in
homogeneous flows. However, not all mean flows will allow homogeneous turbu-
lence: nonuniform generation and distortion of turbulence by a general mean flow
will lead to inhomogeneous turbulence. This shows the need to examine the effects
of the mean flow on the turbulence, as well as those of the turbulence on the mean
flow.

% Note that we use the term viscous sublayer to mean the region in which viscosity is significant as regards
the mean flow, thus encompassing the zone often called the buffer layer.
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THEEDDY-VISCOSITY APPROXIMATION AND ONE-POINT MODELING

The Reynolds equation, (4.9), for the mean flow, shows that, in general, it is not
possible to determine the mean field without knowing %, an ensemble average of
the turbulent field. This reflects the closure problem, discussed in the introduction to
this chapter. To close the problem, the crudest approach is to express the Reynolds
stress tensor in terms of the mean velocity itself. The simplest such closure scheme is
to draw an analogy between the Reynolds stress and the viscous stress in a
Newtonian fluid. The idea of employing such an eddy-viscosity assumption to repre-
sent turbulence is one of the oldest in the subject (Boussinesq (1877)) and was
developed further in the mixing-length theories of Taylor and Prandtl (discussed
in, e.g., Hinze (G 1975), section 5.2). In those theories an analogy was sometimes
drawn between the mean transfer of momentum by turbulent fluctuations, expressed
by the Reynolds stress, and that by the chaotic motion of molecules of a gas accord-
ing to the classical kinetic theory of viscosity. In kinetic theory, viscous stresses arise
at a microscopic level from the mean transfer of momentum by random molecular
motion, leading to Newtonian macroscopic behavior. Similarly, under the eddy-
viscosity approximation one supposes that the turbulent Reynolds stress has a
Newtonian expression In terms of the mean velocity gradients, a questlonable
assumption.

Supposing then that the Reynolds stress is analogous to that resulting from vis-
cosity, one might at first sight be tempted to write

au; oU;
—W,:VT( Uiy ’> (4.11)

ox;  Ox;

where v is a coefficient, similar to the kinematic viscosity, called the turbulent eddy
viscosity. The difficulty with (4.11) is that it implies

=u; = —2vp— 3U =0 (4.12)
ax;

Sl

u%+u%+u

from (4.5). Thus this rather naive version of the approximation implies that the
turbulent velocity is zero, that is, that there is no turbulence! This objection can
easily be catered for by changing (4.11) to read

aU; ay;
—'it,-_u, = 3 q28,, +vr (5— + E) (413)

where g2 = 3u’* = w; is the total, mean-squared turbulent velocity. Thus, there
appears a term analogous to the pressure in the usual stress tensor for a viscous
fluid, which can be absorbed into the real pressure term when (4.13) is used to close
(4.9). Naturally, it is (4.13) rather than (4.11) that is used in practice, with an eddy
viscosity, v, which is positive, may vary with position and time and must be spe-
cified before (4.13) gives definite predictions for the Reynolds stress. ‘

No matter what form for vr is used, there are several difficulties with the above
approximation, one of which is that for a parallel shear flow (such as a channel flow,
which we examine later), it implies that the three components of turbulent velocity
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have equal mean-squared values, which is observed not to be true. Thus, suppose
that the mean flow is in the x,-direction and varies only with the cross-stream
coordinate, x,, as is the case for fully developed channel flow. From (4.13), we have

— 1= oU 1—

= ——? g .
uy 3q +2vr o, 3q 4.14)
— 1— U 1—

—_ 2:-—— 2 —2:—— 2 .
us 3q +2vr o, 3q 4.15)
— 1= aU 1=

—u2 = —_g42 i )
uy=—34 + 2vr o, 39 (4.16)

so that all mean-squared values are predicted to be equal. This result is far from
being in accord with experimental data on such flows.

A second failing of the approximation appears if we look at the components of
(4.13) with i # 4, again in a parallel shear flow, which are zero unless i = 1,7 = 2, or
vice versa. For the nonzero component, we have

R (4.17)

sz
giving the turbulent shear stress in
terms of the mean-flow gradient.
This result implies that the shear
stress, —u7#;, should be zero where

the mean-flow velocity has an extre-
mum. In a wall jet, admittedly not a
strictly parallel flow, but approxi-
mately so, the location of maximum
velocity and zero Reynolds shear
stress were found to be noncoincident
more than forty years ago (Mathieu
(1959), see Figure 4.1). The same was
later discovered to be the case for
flow in an asymmetric channel with
one rough and one smooth wall

Z

Figure 4.1. Sketch of a wall jet, with its mean velocity and shear
stress, illustrating the noncoincidence of the locations of maxi-

¥, (Hanjalic and Launder (1972)),
which is a good approximation to
parallel flow at distances from the
rough wall large compared to the
roughness elements. Such noncoinci-
dence is not in agreement with the
eddy-viscosity approximation.

From the above discussion, it is
apparent that the eddy-viscosity
approximation has significant defects

mum mean velocity and zero shear stress, indicated by the dashed when compared with experiment.

lines.

Furthermore, theoretical arguments



4.1 THE MEAN FLOW

by analogy with the kinetic theory of gases are not really justified, since, among other
things, the clear separation of scales between microscopic and macroscopic which
underlies kinetic theory is not present in turbulent flows, where the size of the large
eddies is typically comparable with the distances for variation of the mean flow. The
assumption (4.13) is thus one of many heuristic closure hypotheses which, although
reflecting some aspects of the physics of turbulence, are quantitatively only approx-
imate and may differ sufficiently from reality that important effects are missed for
some flows. Attempts were made by Prandtl and Karman to go beyond the eddy-
viscosity approximation, allowing the Reynolds stress to also depend on higher
spatial derivatives of the mean velocity, in the manner of a Taylor’s series.
Introducing higher derivatives has the effect of making the description “less local,”
but the results remain unsatisfactory and such models are now of mainly historical
interest.

Despite the significant shortcomings of the eddy-viscosity approximation, it forms
one of the main ingredients of the classical semiempirical theory of jets, wakes, and
mixing layers, described in Chapter 5, and is one of the building blocks of the most
commonly used turbulence prediction model, namely the k—s model. As noted above,
to employ (4.13) as part of a quantitative model, one needs to know the eddy
viscosity vy, which is expected to be determined by the properties of the turbulence,
since it characterizes mean momentum transfer by turbulent fluctuations. The
expression used for vy depends on the particular model employed. In the k—¢
model, vr is supposed to be a certain function of the turbulent kinetic energy,
k = %;u;/2, and the mean dissipation rate of turbulent energy, z, defined precisely
below. This, in turn, leads to the introduction of model equations for the time evolu-
tion of the turbulent quantities k£ and z, of which that for k is based on the turbulent
energy equation derived later, together with a number of closure hypotheses, while
the equation for  is written down by analogy with that for k. Thus, in addition to
supposing the eddy-viscosity closure (4.13), the k—¢ model involves several other
heuristic approximations, in the process introducing a variety of adjustable constants
which can be tuned to fit the results of experimental observations in the best tradition
of pragmatic engineering practice.

A class of more sophisticated one-point models, related to k— and known as
u#i—¢, do not assume (4.13), but instead use the components of %, as basic vari-
ables of the turbulence model. That is, the mean-flow equations are not approxi-
mated, but, since the evolution equation for #z;, derived later in this chapter,
contains a variety of terms that are not exactly expressible in terms of #3; and the
mean flow, closure hypotheses are needed. Some of these closure approximations
will be touched on in the course of this chapter, but a more detailed description of
the k—¢ and #;z;—¢ models is deferred to Chapter 8 (in which the more sophisticated,
but more computationally expensive direct and large-eddy simulation techniques are
also discussed). We have nonetheless mentioned them at this stage to make the
reader aware of the many heuristic assumptions implicit in such one-point modeling,
assumptions aimed at overcoming the nonlinearity and nonlocality difficulties dis-
cussed in the introduction to this chapter, but which are questionable and should not
be adopted uncritically.
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BASIC THEORY AND ILLUSTRATIVE EXAMPLES

ENERGETICS OF THE MEAN FLOW
We begin with the mean-flow equation, (4.9), which can be written

au;  —oU; 9Ty

EA I § B 4.18

ot ! Bx, Bx, ( )
where
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T, = —; — ;3,-,- + ”(ax,- + g’) (4.19)
is the effective stress tensor of the mean flow, divided by the fluid density.

We write

d 3 — 9
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to denote a material derivative, here with respect to the mean flow. We multiply
(4.18) by U, to find
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which can be integrated over a material volume of the mean flow, to give
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where d/dt is now a straightforward time derivative. Note that assuming a mean-
flow material volume (i.e., one whose boundary moves at velocity U;) allows us to
move the time derivative outside the volume integral to derive (4.22).

Assuming a closed flow volume with zero velocity at its boundary, the mean flow
is also zero on the boundary, allowing us to use the divergence theorem to show that
the first term on the right-hand side of (4.22) is zero. The second term on the right of
(4.22) can also be rewritten using the definition of T; and the incompressibility
condition, (4.5), to show that

d[1—— aU; 1 aU. aU\[aU. aU;
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D —

Rate of change Mean flow

Viscous dissipation

of energy of the coupling to rate of mean flow

mean flow turbulence
The form of the viscous dissipation here is the same as if the turbulence were absent,
and is usually negligible, away from the thin viscous layers at solid surfaces discussed
earlier, while the coupling term expresses the rate of working of the Reynolds stress,
due to the fluctuating field, on the mean flow. This term represents energy taken from
the mean flow to supply the turbulence.

Note that in the above derivation we assumed a closed volume with stationary
boundaries. One can also allow for boundaries that move and can therefore do work
to maintain the flow, or consider open flows, where energy can be supplied from
outside. Taking these into account complicates the presentation needlessly for pre-
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sent purposes and we shall continue to assume zero velocity at the boundaries of the
flow whenever we integrate the equations to perform global energy audits. The
reader is invited to reconsider the various audits, allowing for moving boundaries.
As noted earlier, the boundary conditions at a moving, solid boundary are no-slip for
the mean velocity and fluctuating velocity zero. One finds that work done by motion
of solid surfaces appears in the energy accounting for the mean flow, rather than for
the turbulence. Open flows allow the further possibility of supply to both the mean
flow and turbulence, coming from outside the flow domain considered.

ENERGETICS OF THETOTAL FLOW

The energy budget of the total flow is derived in most textbooks on fluid
mechanics. Thus, multiplying (4.3) by U; and integrating over the flow volume,
using (4.4) and the divergence theorem with the assumption that the flow velocity
is zero on the boundary, we obtain

d 1 1 (/aU, 8UN/[aU, aU,
U dv=—= ! ! : / = —J 4.24
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showing the viscous energy dissipation. Here, A is the rate of energy dissipation by
viscosity per unit mass. Within the flow, kinetic energy is transferred from place to
place by convection and work done by part of the fluid on neighboring fluid through
the pressure and viscous stresses. This does not appear in (4.24), which, like (4.23)
for the mean flow, gives the overall (integrated) rate of change of energy.

Using the decomposition, (4.1), into a mean and fluctuating velocity, one may
write the average dissipation rate as

— 1 {au;, U\ {[oU;, U, 1 [0u; ou)\ [Ou; Ou;
A =— ' / 4 / = = L 425
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showing the neat split of the overall average dissipation into mean and turbulent
components, a decomposition that may be used to express the right-hand side of the
averaged version of (4.24) as a sum of mean-flow and turbulent parts. The quantity
appearing inside the average of the second term of (4.25) will be denoted &, defined
by
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appears in (4.25) and plays an important role in the theory of turbulence.
Splitting into mean-flow and turbulent components and averaging, (4.24)
becomes
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(4.28)

showing how the total mean energy of the flow decays at a rate determined by the
sum of the mean-flow and average turbulent dissipations. The dissipation of the total
flow energy due to the mean-flow component is usually negligible compared to the
turbulent contribution at the high Reynolds numbers associated with many turbulent
flows, that is,

1 (aU; oU;\(aU; dU; 1 (Bu; Ou\ (Ou; Ou,
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because, as discussed earlier, the fluctuating velocity gradient, 8u,/dx;, grows large as
the Reynolds number increases, whereas the mean velocity gradient does not. That is,
one can usually neglect the mean-flow contribution when calculating the overall
dissipation rate because the mean-squared velocity derivatives are dominated by
the small scales of turbulence, as explained in Chapter 3, rather than by the
longer-scale variations of the mean flow. However, an exception occurs very close
to a solid boundary of the flow, in the viscous layer or the sublayer inside a boundary
layer, which we mentioned earlier. There, the derivative of the mean velocity in the
direction perpendicular to the wall becomes comparable with the derivatives of the
fluctuating velocity and (4.29) ceases to apply. However, such cases, although
important, concern only a small part of any flow and (4.29) is true elsewhere.

The average kinetic energy itself also splits into a mean flow and turbulent con-
tribution and, indeed, the same is true of each component of the tensor TU, Thus,

Uy, :U;Uj‘*—ﬁz—'u_j (4.30)

which, with 7 = §, can be used to write the left-hand side of (4.28) as a sum of mean
and turbulent terms, like the viscous dissipation. It follows that the total energy
equation contains a sum of mean-flow and turbulence contributions. The two
parts of the flow are coupled together energetically by the first term on the right
of (4.23), which does not appear in the total energy equation because it represents
transfer of energy between the mean flow and turbulence, rather than a change in the
total energy of the flow. As we shall see shortly, this coupling appears in the ener-
getics of the turbulence as a production term.

4.2 Equations of the Second-Order Moments: Turbulence
Energetics

We begin by considering the equation satisfied by the fluctuating field. This is
obtained by subtracting the mean-flow equation, (4.7), from the equation for the
total field, (4.3), using {4.6), (4.8) and the splits, (4.1) and (4.2). The result is the
equation for the fluctuating part of the flow
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which, with (4.6) and the boundary condition that #; = 0 on solid boundaries,
governs the turbulent part of the field. Notice that the mean flow occurs in the
equation for the fluctuations, and vice versa. The two are coupled together and
calculation of the mean flow and turbulence cannot be performed separately, in
general.

The nonlinear, convective term in the original equation, (4.3), has given rise to
both linear and nonlinear terms in the equation for the fluctuating velocity. Here we
follow the usual convention of referring to terms involving products of mean and
fluctuating velocities as linear, because they are indeed linear in the fluctuating
velocity. As we shall see later, when the fluctuating pressure, p, is expressed in
terms of the velocity field, it contains two components, one of which is linear in
the fluctuating velocity, the other nonlinear. Consequently, the pressure term in
(4.31) implicitly involves both linear and nonlinear terms. The linear terms in
(4.31) are thus: direct coupling of mean and fluctuating velocities, the gradient of
the linear pressure component, both of which represent the influence of the mean
flow on the turbulence, and lastly the viscous term, responsible for turbulent dis-
sipation. The nonlinear terms consist of the one appearing explicitly in (4.31) and the
gradient of the nonlinear pressure component, both of which can be thought of as
representing the action of turbulence on itself.

The matrix of one-point velocity correlations, %7, is a positive-definite, sym-
metric tensor, directly related to the Reynolds stress tensor, —p##,. To obtain equa-
tions for the time evolution of ##%, we multiply (4.31) by #;, add the result of
interchanging the indices 7 and j, take the average, and use (4.6) to derive

(')u,-ui -{-F (')uiu,- _

3t k" ox,
g
I i
aU; oU, dwmuy 1 op ap Fu; Fu;
I I gt VR, T it . / ) '
itk Uik e T oy {”‘ ox, x| ) axpang Y dgag
m v N B

(4.32)

which is the evolution equation for the second moments of velocity at a single point,
governing the time development of the Reynolds tensor. The role of each of the terms
in this equation may be identified as follows:

(I) is the time rate of change of #; and allows for statistically unsteady flows.
{II) accounts for advection of the Reynolds stress by the mean flow, not the total
flow.

(I} gives the interaction of the mean and turbulent parts of the flow and can be
interpreted as responsible for the production and reorientation of the
Reynolds stresses. This very important term will be considered in more detail
later.
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(IV) accounts for advection by the fluctuating part of the flow.

(V) describes the effects of the pressure. Pressure effects are complicated, because
they are nonlocal and the consequence of both linear and nonlinear effects,
as we shall describe later. The pressure is related to the velocity field non-
locally, by an integral over the flow domain, as we shall also see later. The
domain of significant contributions to this integral is, in fact, limited in size
because the velocity correlations between a pair of points tend to zero as the
distance between the points increases, a property which is characteristic of
turbulence.

(VI) represents dissipative and diffusive viscous effects and is dominated by the small
scales of turbulence.

We saw in Section 4.1 that the equations for the mean flow are not closed because
they contain second-order velocity moments. In an attempt to close the mean-flow
equation (4.9), one may use (4.32) for the second-order moments. However, the term
(IV) involves third-order velocity moments, as does (V) when the pressure is
expressed in terms of the velocity, as we will see later. Thus, both (IV) and the
nonlinear part of (V) introduce the next highest order of velocity moments, reflecting
the fundamental closure problem discussed in the introduction to this chapter. These
terms containing third-order moments arise from the nonlinear term in (4.31), which
in turn comes from the convective term in (4.3), the ultimate source of the closure
problem. Such terms in the moment evolution equations, arising from the nonlinear
term of (4.31), are themselves referred to as nonlinear.

Observe that one cannot express the viscous term, (VI), which is linear in the above
sense, in terms of single-point moments because it contains a second spatial derivative
and is thus nonlocal. It can, however, be written using the second derivatives of the
two-point moments, #;(xX)u;(x'), evaluated at x' = x. Thus, a mild form of viscous
nonlocality is present, which is severely compounded by the pressure term, (V), when
it is expressed in terms of the velocity moments, introducing an integral over the entire
flow field, as we shall see later.

None of the three terms (IV), (V), and (VI) is expressible in terms of the one-
point moments #;;, thus (4.32) is not closed. However, if one is willing to work
with two-point moments, deriving the equivalent of (4.32) for u,(x, t)u,(x/, t), then
all linear terms are closed, leaving the fundamental closure problem due to non-
linearity, expressed via third-order terms equivalent to (IV) and the nonlinear part
of (V). On the other hand, if one sticks with one-point moments, as here, non-
locality of (VI) and the linear parts of (V) introduce an additional closure
difficulty.

We can derive the equation for the turbulent kinetic energy by setting j =/ in
equation (4.32) (with implicit summation over §) and dividing by 2. Thus we obtain
the very important turbulent energy equation

algr __3i4? U, dig? 1 3 %u;
S At & B et B b Bl S AN 28 (4.33)
ot X, axy, axy, p o ox; 0,0,
S’ ————— e’ M N e

I 1 1l v A VI



4.2 EQUATIONS OF THE SECOND-ORDER MOMENTS: TURBULENCE ENERGETICS

Once again one can interpret the different terms:

(I) rate of increase of turbulent energy at a fixed point; zero for steady flow

(I) convection of turbulent energy by the mean flow

() production of turbulent energy by interaction between the mean flow and
turbulence

(IV) advective transport of turbulent energy by the fluctuating motion (turbulent
mixing)

(V) transfer of turbulent energy by pressure effects (work done by fluctuating
pressure)

(VI) viscous effects (dissipation, diffusion)

The sum of terms (I) and (II) is the time rate of change of turbulent energy per unit
mass, g%/2, following a point moving with the mean flow. Term (IIl), which is
especially important, describes the production of turbulence. As we shall see from
specific examples later, it can be either positive, leading to generation of turbulence,
or (more rarely in practice) negative, representing extraction of turbulent energy.
Notice that, if one were to use the eddy-viscosity assumption (4.13) in the production
term of (4.33), the turbulent energy production is directly related to the mean-flow
gradients and can be shown to be always positive. While often the case, this is not
true of some flows, which is a further warning that the eddy-viscosity approximation
should be treated with caution. By analogy with energy production, the correspond-
ing term (III) in (4.32) is also interpreted as representing turbulence production, but
contains more information about the nature of turbulence production owing to its
tensorial nature. The final term (VI) can be rewritten as
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where ¢ is defined by (4.27) and, as indicated by the labeling, is interpreted as the
average turbulent energy dissipation rate. The viscous transfer term integrates to zero
over the whole flow by the divergence theorem. Thus, it does not lead to any net
change in the turbulent energy, hence its description as a transfer term. This term is
sometimes also referred to as diffusive, because it is zero for homogeneous turbu-
lence and can be thought of as roughly analogous to diffusion, which produces
transfer due to inhomogeneities of concentration. In the analogy, turbulent energy
replaces concentration. As we shall shortly see, the viscous transfer term is negligible
at high Reynolds numbers, except within the thin viscous layers very near any solid
surfaces that we referred to earlier. On the other hand, the dissipative term is of
crucial importance to turbulence energetics everywhere and is definitely not negligi-
ble. Thus viscosity enters into the turbulence energetics in an important way, even if,
as we saw earlier, it can be dropped in the mean-flow equations outside of viscous
layers. .

Equation (4.33) can be reexpressed using (4.34) and incompressibility of the mean
and fluctuating flows, (4.5) and (4.6), to give the following useful form of the
turbulent energy equation
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2
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In this form it is apparent that, when integrated over the flow, the term labeled as
transfer yields zero by the divergence theorem (the fluctuating velocity being taken as
zero at the boundaries). This term results in transfer of turbulent energy from place
to place, but cannot change it overall. Thus, globally, the turbulent energy increases
or decreases due to the difference between production, represented by the integral of
the first term on the right of (4.35), and dissipation, given by the integral of the
second. Equation (4.35) lends precise meaning to the production, dissipation, and
transfer of turbulent energy. The sum of equations (4.23), for the mean-flow energy,
and the integrated version of (4.35), for the turbulence energy, gives (4.28) for the
total energy, after using (4.30) with i = j. This is, of course, as it should be: overall,
energy supplied to the turbulence via the production term in' (4.35) depletes the
mean flow. For statistically steady flows, the right-hand side of (4.35) is zero. Thus,
statistically steady turbulence is subject to balancing production, dissipation, mean-
flow convection, and diffusion of energy due to inhomogeneity.

Multiplying (4.35) by the fluid density, integrating over an arbitrary fixed volume
and using the divergence theorem on the transfer term, we may interpret the result as
showing that transfer is represented by a vector
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which gives the average flux of turbulent energy due to mean-flow convection and
“diffusion™ processes. In addition to this flux, there is turbulence production and
viscous dissipation of turbulence over the volume considered. The transfer terms in
(4.35), the divergence of the flux vector (4.36), are zero for homogeneous turbulence
and, with the exception of the mean-flow convection term, are often thought of as
diffusive in nature because they give a turbulent energy flux due to nonuniformities
of the turbulence properties (inhomogeneities). The analogy with diffusion suggests
that the term labeled “diffusion” in (4.36) should produce a flux of turbulent energy
from regions in which it is high to those in which it is lower. This is usually the case,
but is not universally true.
If the turbulence is homogeneous, (4.35) becomes

dlg* aU;
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showing the roles of the remaining three terms very clearly. In particular, it is
obvious that the term we have called production is the one responsible for gen-
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erating (or destroying) turbulent energy, depending upon its sign (usually positive,
corresponding to production of energy, rather than its destruction), and that the
viscous dissipation term is always positive, producing a drain of turbulent energy
via the fine-scale structures, which are responsible for most of the mean-squared
velocity gradients, and hence the dissipation. Without mean velocity gradients,
there is no production and the turbulent energy decreases continuously. The turbulent
energy is g2/2 = 3u’?/2, while its dissipation rate is 7, leading to the time scale u'? /g
for turbulent decay in the absence of production. As the turbulence decays due to
dissipation, both %2 and & change, as usually does the time scale #'?/7 (this simply
means that the decay of turbulent energy is not an exponential function of time).
This time is characteristic of the decay of the large spatial scales of turbulence, a
process which determines the energy supply for dissipation at the small scales, as
discussed in Chapter 3. As described there, a second time scale, L/#', can be con-
structed from the large-scale quantities #’ and L, L being the correlation length.
Again in the absence of production, this second time scale also characterizes the
decay of the large-scale turbulent structures. For the two time scales to be consistent,
we must have £ = O gud /L) as the rate of energy supply by the large scales, via the
small-scale cascade described in Chapter 3, to be dissipation at the Kolmogorov
scale. Thus energy dissipation is controlled by the large-scale energy supply, while
the dissipation rate and viscosity in turn determine the velocity gradients and size of
the dissipative scales.

By definition, the statistical properties of isotropic turbulence have no preferred
direction. In particular, the quantity, %z, should have the same components if the
coordinate system is given an arbitrary rotation. By a well-known mathematical
result of the theory of tensors, it is therefore a scalar multiple of §;, that is,
uu; = u'28ii, where the multiplier has been fixed using the definition, #'* = @;/3,
of #'. Thus, for isotropic turbulence, the Reynolds stress tensor is diagonal and all its
diagonal elements are equal. This is often used as a criterion of isotropy, although
the fact that Tui/u’z approaches §; does not guarantee isotropy of other statistical
quantities. As we shall see later, mean velocity gradients tend to induce anisotropy of
u;;, whereas homogeneous turbulence left to itself (i.e., in a uniform mean flow)
usually* shows decreasing anisotropy as it decays. Assuming homogeneity, (4.32)
becomes
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which can be used to investigate the development of anisotropy in initially isotropic
turbulence under the influence of gradients in the mean flow, as we will see in later
examples. It may also be employed to study initially anisotropic, homogeneous
turbulence in the absence of mean-flow gradients, for which the evolution of ##;
is determined by the pressure—rate-of-strain correlations and viscous terms in (4.38),
both of which will shortly be discussed further. :

* Cases are known in which, following rapid straining of homogeneous turbulence, ##; shows transitory
growth of anisotropy.
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THETURBULENT ENERGY DISSIPATION RATE

Here, we want to derive a number of expressions for the mean rate of turbulent
energy dissipation that are essentially equivalent for large-Reynolds-number turbu-
lence, away from viscous layers. We have already noted that, because velocity deri-
vatives are dominated by the small scales of turbulence, the overall energy dissipation
rate, A, is dominated by the turbulent part, £, and so one does not usually need to
distinguish between them, Similar reasoning is employed here. Using the relation

O By _ i, (4.39)
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which follows from (4.6), we can rewrite (4.27) as

— 2__
ou; ou; 0" u;

O i 4.40
Uax,- ax, Y 3x,~8x,- ( )

and a similar expression can be found in terms of the fluctuating vorticity,
w = V x u, using the definition of the curl operator and some straightforward alge-
braic manipulation (see the appendix to Chapter 6). Thus, we find

£ = Vo, + 20— (4.41)

For homogeneous turbulence, the spatial derivatives of #; are zero and (4.40),
(4.41) give

R i G (4.42)

which are the expressions, equivalent to (4.27) for homogeneous turbulence, that we
wished to derive. In fact (4.42), which is strictly valid in homogeneous turbulence, is
generally true to a good approximation away from viscous layers, provided the
overall Reynolds number is large (as it is for a typical turbulent flow). This is
because, as described in Chapter 3, the mean-squared velocity derivatives are domi-
nated by the small scales of turbulence, whereas the derivatives of an averaged

quantity, such as %z, scale on the overall size of the flow, which is much bigger
when the Reynolds number is large. Thus, for example, the first term on the right of
(4.40) is much larger than the second. The vorticity, being defined in terms of
derivatives of the velocity, also has the property that its mean-squared values are
dominated by the fine structures of turbulence and one can neglect the second term
on the right of (4.41). Similar reasoning shows that, if desired, one may replace the
fluctuating velocity in (4.40) (or vorticity in (4.41)) by the total velocity (or vorticity),
again assuming a large Reynolds number. Clearly then, a number of expressions for
the dissipation can be given, differing only by terms which are negligibly small away
from viscous layers. Much the same arguments show that the viscous part of the
transfer term in (4.35) can be neglected outside of viscous layers.

A more quantitative formulation of such ideas can be given in terms of a length
scale of turbulence known as the Taylor microscale, A. As described in the previous
chapter, this is defined by the magnitude of the squared derivatives of velocity
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The derivative of an averaged quantity has an associated length scale of order L or
greater, where L is the turbulent correlation length. Thus, for instance
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or less, and the ratio of (4.44) to (4.43) is O(A*/L?) or smaller which, as we saw in
the previous chapter, is small, of order Re;', where Re; is the turbulent Reynolds
number, based on the root-mean-squared fluctuating velocity, # = \/#u;/3, and
correlation length scale, L, that is, Re; = #'L/v. Since Re; is large, the derivative
estimated by (4.44) is small compared with (4.43). In fact, (4.44) estimates the
derivatives using the correlation length of the turbulence, whereas the length scale
for variation of averaged quantities, although of the same order of size or larger than
L, can be much bigger (becoming infinite in the extreme case of homogeneous
turbulence). This can make the derivative, (4.44), even smaller.

In summary, the overall energy dissipation rate is dominated by the fine scales of
turbulence when the Reynolds number is large and, to a good approximation, away
from viscous layers, is unaffected by whether one takes into account the mean-flow
contribution or not. The turbulent dissipation may be calculated from a number of
essentially equivalent expressions, such as (4.27) and (4.42) (some more such expres-
sions are given as an appendix to Chapter 6), as if the turbulence were homogeneous.
However, within the viscous layers at a surface, one must carefully distinguish
between these different expressions. Note that the turbulent energy equation,
(4.33), only contains the mean flow via the convection and production terms, not
in the viscous term. Within a viscous layer, the latter is not equivalent to z: there is
also the viscous transfer term in (4.34) to take into account. In other words, viscous
layers require careful analysis.

When the Reynolds number is large, turbulent energy dissipation can be thought
of as due to a cascade of energy from larger to smaller scales, as discussed in the
previous chapter. The large scales give up their energy progressively to form smaller
ones, which, in turn, pass the energy through a cascade of still smaller ones to be
dissipated at the smallest scales. Schematically:

(4.44)

Kinetic energy of mean flow

!

Kinetic energy of large scales
N
Energy flux through small scales

1

Dissipation by viscosity

of which the first step represents turbulent energy production by mean-flow instabil-
ities. However, we cannot distinguish between different scales of turbulence using the
one-point methods of this chapter, still less give quantitative meaning to energy
transfer between those scales. We will develop the necessary theory to do this in
Chapter 6. Within the single-point theory of this chapter, the cascade appears simply
via its net result, which is energy dissipation. As noted earlier, the dissipation rate can
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generally be estimated as & = O(x*/L), which brings out the fact that it is the large
scales that determine the rate of energy supply to the cascade, and hence the dissipa-
tion rate.

One final implication of the small-scale origin of dissipation at high Reynolds
numbers should be mentioned. This concerns the equations for the Reynolds stress,
{(4.32) and (4.38). Tensorial viscous terms occur at the end of these equations. In
calculating these terms, for reasons similar to those given above, it does not matter
whether we consider homogeneous or inhomogeneous turbulence at large Reynolds
number. Adopting the homogeneous form, (4.38), the viscous dissipation term is
dominated by the small scales of turbulence. As we shall see in Chapter 7, at the
small scales, turbulence is believed to be approximately isotropic when the Reynolds
number is sufficiently large. This comes about through the process of production of
smaller and smaller scales by the progressive drain of energy from large ones. During
this process, the details of the large-scale properties of turbulence, which depend on
the specific flow considered, are thought to be progressively forgotten and the small
scales to become more and more closely isotropic. That is, even if it is anisotropic at
the large scales, it may approach isotropy for the small ones. If we suppose such
isotropy, the viscous term in (4.38) will be approximately given by the isotropic form

ou; 3147‘ 2
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an expression that is often used when modeling the Reynolds stress equation.
Observe that this form is fixed by isotropy to within a constant and the constant
determined from equation (4.42). This approximation is expected to hold at large
enough Reynolds numbers, away from boundaries, and to improve the greater the
Reynolds number.

4.3 The Effects of Pressure

Taking the divergence of the Navier-Stokes equation, (4.3), and using the incom-
pressibility condition, (4.4), yields a Poisson equation for the pressure in terms of the
velocity. In this way we can elucidate the close connection between the mean and
fluctuating pressures and velocities. The Poisson equation obtained is

FUU;
VP = —p ! (4.46)
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which can be averaged, using (4.30), leading to
2
2T T7 7T N
V'P=—p e (U U + wm;} (4.47)
for the mean pressure, which, when subtracted from (4.46), gives
.
V2P = —p—— {Uin; + U, + uju; — w7115 (4.48)
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for the fluctuating pressure. In general, in addition to (4.47) and (4.48), one requires
boundary conditions on the pressure at any boundaries of the flow. For instance, the
normal component of (4.3) at a boundary gives the normal derivative of the pressure
in terms of the velocity field, thus leading to Neumann boundary conditions for
(4.47) and (4.48) when split into mean and fluctuating parts.

The solution of the above Poisson equations and boundary conditions may be
determined using Green’s function techniques, with which the reader is assumed
familiar. Thus, with a boundary condition of Neumann type, one may use the
Green’s function of the Laplace equation having zero normal derivative at the
boundaries. The Green’s function solution consists of two parts: a volume integral,
representing the volumetric sources on the right of (4.47) or (4.48), and a surface
integral over the boundaries, giving a solution of the Laplace equation satisfying the
pressure boundary conditions. The simplest case, and the only one we consider in
detail here, is that of unbounded, infinite flow. The solutions of (4.47) and (4.48)
without boundaries can be expressed in terms of the standard Green’s function of the
Laplace equation as
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respectively. Here, the Cauchy kernel, |x — x'|”1, accounts for the diminution with
distance of the effects of a “pressure source,” situated at x’, whose strength is
determined by the velocity field.

Using these expressions for the pressure, it is straightforward to calculate the one-
point pressure~velocity correlations, which occur in equations such as the turbulent
energy equation, (4.33). In fact, in (4.33) it is the correlation of the pressure deriva-
tive and velocity which is needed, but the derivative can be taken outside the average
since u has zero divergence. Thus it is the divergence of the quantity

oo = 2[5 3; (D00 i) + T oo g )
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which occurs in the turbulent energy equation. Equation (4.51) gives the one-point
pressure-velocity correlation in terms of double and triple velocity correlations at
two points. Similar behavior is found if one expresses the pressure—velocity term in
(4.32) using (4.50). The appearance of third-order moments reflects the closure
problem, while that of two-point quantities is due to nonlocality. This naturally
leads to interest in methods that deal in multipoint moments, since the calculation
of a one-point pressure~velocity correlation requires such moments. Integrals such as

that occurring in (4.51) are limited in spatial extent because the velocity moments in
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the integrand drop to zero as the separation between the two points, x and X/,
increases beyond the correlation length of the turbulence. Boundary terms in the
pressure—velocity correlation, if boundaries there were, would no doubt decay for
similar reasons, and can thus be neglected many correlation lengths away from
boundaries.

According to (4.48) and as reflected in (4.50) and (4.51), the fluctuating pressure
is determined by two types of source terms. The first type consists of products of the
mean and fluctuating velocities and is linear in the fluctuating velocity. The second
type is quadratic (ronlinear) in the fluctuating velocity. The two types of source
terms produce two components of the fluctuating pressure, which we denote by
pY for the part due to the linear source term and p® for the nonlinear part. Thus

¥
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The two pressure components, p') and p'*), can have quite different effects on the
evolution of turbulence, as we shall see from examples later. The nonlinear pressure
component, p'¥, does not depend on the mean flow directly and will be present even
in the absence of a mean flow (i.e., turbulence decaying alone). It is represented by
the triple velocity correlation of equation (4.51).

Assuming homogeneous turbulence, there is no pressure term in the turbulent
energy equation, (4.37), and thus the effects of pressure fluctuations only make
themselves felt in the progressive redistribution of turbulent energy among different
directions, either towards or away from isotropy. This is shown by the appearance of
the pressure—rate-of-strain correlation term in the equation, (4.38), for the velocity
correlation tensor, %#;, whose departure from the isotropic form #u; = g*8;/3 is an
important measure of anisotropy. We can write the pressure-rate-of-strain term in
(4.38) as
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using the decomposition into linear and nonlinear parts of the fluctuating pressure.

If the turbulence happens to be isotropic at some instant of time and there are no
boundaries, then the second term in (4.54), which arises from the nonlinear pressure,
is zero. This comes about because p'* does not depend on the mean flow, but only on
the turbulence, and so the second term in (4.54) will be an isotropic tensor and hence
has the form of a constant multiplying §;. We also know that the trace of that tensor
is zero because of incompressibility, (4.6), of the fluctuating velocity field. It follows
that the second term in (4.54) is indeed zero if the turbulence is isotropic and it has
often been supposed that, for anisotropic turbulence, there is a direct relationship
between the tensor formed by this term and %z,. This is a closure hypothesis, since
the term we are interested in is third order in the fluctuations and we are trying to
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relate it to a second-order quantity. The explicit form of this closure hypothesis (first
proposed by Rotta (1951)) is
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where C is a numerical constant, and

by ==L~ ~5; (4.56)

is a nondimensional measure of anisotropy. The term in §;; is included in the defini-
tion, (4.56), so that the trace of by is zero, like the pressure-rate of strain on the left
of (4.55), which is thus satisfied identically when its trace is taken. The factor £ on
the right of (4.55) is the mean energy dissipation, representing the rate of energy
transfer by the turbulent cascade towards the small dissipative scales. The nonlinear
pressure-strain term on the left of (4.55) has the same dimensions as the dissipation
rate, g, and both are characteristic of the internal dynamics and intensity of turbu-
lence. Furthermore, the two sides of (4.55) are zero in the case of isotropic turbulence
in the absence of boundaries. They are each a measure of anisotropy, and it is thus at
least plausible that they could be proportional for anisotropic turbulence.
Nonetheless, (4.55) is merely a hypothesis and has not been justified rigorously,
any more than other closure assumptions.

To see the consequences of the above closure of the nonlinear pressure—strain term
for homogeneous turbulence, we suppose that there is no mean flow so that the
turbulence is decaying alone. Without mean flow, 'V = 0 and so the fluctuating
pressure consists of the nonlinear component, p = p(z), alone. We introduce (4.55)
into equation (4.38) and use (4.45) to express the dissipative term. The result can be

rewritten as an equation for the tensor by, using the energy equation (4.37). Thus we
find that

ab;; 3
dt’ =—(C- 2)?@, (4.57)

which shows that each component of b;; is decaying in magnitude if C > 2 and
growing if C < 2. Since b;; is a measure of anisotropy and it is thought that homo-
geneous turbulence, left to itself, will usually tend to move in the direction of iso-
tropy, rather than away from it, we infer that C > 2. More specifically, integration of
(4.57) using (4.37) yields the solution b;; c_ﬁ(c_z)/z and, since g* = 0 as t — oo,
each nonzero component of b; grows without bound if C < 2, but decays to zero if
C > 2. It can then be shown that, except in the isotropic case, b; = 0, C < 2 leads to
a correlation matrix, ##;, which eventually ceases to be positive definite, thus violat-
ing a fundamental requirement and again showing that C > 2 for the closure to be at
all believable. Observe that the pressure—strain term in (4.38) is essential to avoid
increasing anisotropy in the absence of a mean flow, for without it C= 0 and we
obtain unboundedly growing values of b;; unless the initial #;; is precisely isotropic.
On the other hand, the viscous term tries to amplify anisotropy of #;z;, because,
according to (4.45), it produces decay of its diagonal components, but not of the off-
diagonal ones. If C =2, the closure approximation predicts that the two terms
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balance and that b;;, and hence Tui/qz, do not change with time, but when C > 2, as
it should be, b; tends towards zero and ## approaches an isotropic form. We
should perhaps emphasize again the approximate nature of the closure hypotheses
underlying (4.57) and caution the reader not to place too much confidence in the
detailed results, which nonetheless give a qualitative feel for the behavior of homo-
geneous turbulence without mean flow and the general effects on its anisotropy of
the viscous and pressure—strain terms in (4.38).

The linear pressure component, p', results from interaction of the turbulence
with the mean flow and, in the presence of mean flow, the corresponding part of the
pressure—strain correlation (the first term on the right of (4.54)) has no reason to be
zero even for turbulence which happens to be isotropic at some instant of time. There
is no real need to introduce a closure hypothesis for this term, since it is linear in the
fluctuation velocity and so its correlation with the strain can be expressed in terms of
second-order velocity moments, that is, moments of the same order as those whose
evolution equation, (4.38), we are considering. Nonetheless, as was observed follow-
ing equation (4.51), the pressure~strain correlation at a single point is an integral
over the two-point velocity correlations, a fact that takes the detailed analysis
beyond the one-point models considered in this chapter and into the realm of the
spectral methods described in later chapters. For present purposes, it suffices to
describe two limiting cases, for which one does not require any knowledge of later
work.

Firstly, turbulence alone (i.e., with no mean flow) has no linear pressure compo-
nent. This provides one limiting case. On the other hand, a mean flow will strain and
distort the turbulence and, if mean-flow straining is sufficiently strong, there will be
no time for interaction of the turbulence with itself during the rapid mean-flow
straining of the turbulence. This is the opposite limit, resulting in rapid distortion
theory of turbulence. It makes the nonlinear pressure component negligible and
indeed, the evolution of the turbulence is then described by a linear theory, in
which the term, wu;u;, — %, which is nonlinear in the fluctuations, is ignored in
equation (4.31). That is, the nonlinear terms are dropped in rapid distortion theory,
as also is viscosity, in keeping with the large Reynolds number of turbulence. We
will consider rapid distortion theory in one of our examples later in this chapter and
will find that the result is a reversible straining of the turbulence by the mean flow. It
is the self-interaction of turbulence which leads to irreversible evolution of the
turbulence, but such self-interaction is absent in the rapid distortion approximation,
although it is the only mechanism for evolution of turbulence in the absence of mean
flow and viscosity. The above remarks explain the nomenclature “rapid” and
“slow” pressure terms, which are sometimes used to refer to the terms arising
from the linear and nonlinear parts of the fluctuating pressure field.

It is also interesting to note that, given a turbulent field in a mean flow, if the mean
flow is suddenly changed by, for instance, applying an impulsive mean pressure at
the boundaries (see, e.g., Batchelor (G 1967) for a discussion of impulsive changes in
incompressible flows, which represent limiting cases of rapid changes), the turbu-
lence will remain the same. An impulsive mean pressure can instantaneously alter the
mean velocity by any irrotational amount, but leaves the mean vorticity and fluctu-
ating velocity the same. In principle, one could also envisage impulsive mean body
forces, allowing arbitrary step changes in the mean velocity, although it is less
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obvious how such impulses might be achieved in practice. In these cases, the non-
linear fluctuating pressure field, which does not depend on the mean flow, will
remain unchanged, while the linear part of the fluctuating pressure field undergoes
a sudden change. This step change will result in a corresponding change in the
Reynolds stress production, (4.54). The fact that part of the pressure term (the linear
part) can be made to change suddenly, but the other cannot, indicates that the two
play rather different roles in the development of the turbulence. We will return to
questions of linear and nonlinear pressure effects in a later example. It should also be
noted that terms (II) and (IIl) in the Reynolds stress equation, (4.32), are also linear
(they arise from terms of (4.31) that are linear in the fluctuating velocity) and, like
the linear pressure term, can undergo impulsive changes.

4.4 The Vorticity

Before deriving the equations governing the mean and fluctuating parts of the vor-
ticity, we want to remind the reader of the means by which the vorticity in an inviscid
fluid is amplified by stretching of vortex lines. This is thought to be one of the main
physical mechanisms by which the small scales of turbulence are produced and
maintained. The description we give here is not intended as a presentation to the
reader who has never met the ideas before and provides an overview (see any basic
textbook on fluid dynamics for more details). Although these concepts are not
directly related to one-point averaging methods, they are of general importance
for an understanding of the role of vorticity in turbulent flows.

In the basic equations of incompressible fluid flow, (4.3) and (4.4), both velocity
and pressure terms occur and one can choose to focus on one quantity or the other,
since both are interrelated. In Section 4.3, we took the divergence of (4.3) to derive
the Poisson equation for the pressure in terms of the velocity. One can also take the
curl of (4.3) to eliminate the pressure and obtain the Helmholtz equation, (4.63),
which contains the velocity and vorticity fields. Since both the vorticity, @ = V x U,
and the velocity, U, are present, one needs to express one in terms of the other to
close the problem. The velocity can be written as an integral over the vorticity field
(Cauchy’s formulation), from which a nonlinear integro-differential equation for the
vorticity is obtained. The integral nature of this equation reflects the underlying
nonlocality of the Navier—Stokes equations, which we saw in the previous section
from consideration of the pressure. The equation is apparently more complicated
than the original system, (4.3), (4.4). Nonetheless, the vorticity appears in several
appealingly visual formulations of inviscid fluid dynamics.

In the absence of viscosity, Kelvin’s circulation theorem tells us that the circulation
of a closed curve that moves with the fluid is constant. For instance, if the curve
shrinks in size due to flow convergence, and hence becomes shorter, the circulation
stays the same and the velocity around the curve must increase to compensate. Some
classical corollaries of this result can be described in terms of vortex lines, which are
defined as everywhere tangential to the vorticity vector, and vortex tubes, which are
thin tubelike surfaces made up of vortex lines. Vortex lines and tubes can be thought
of as moving with the fluid flow as if they consisted of fluid particles. Furthermore, the
strength of a tube can be defined as the circulation in a closed path on its surface going
once around the tube and remains unchanged with time as the tube is convected. The
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circulation equals the strength of vorticity inside the tube times its cross-sectional
area. In an incompressible fluid, if a tube is stretched by the flow, its diameter will
decrease by conservation of volume, the velocity due to the tube will increase at the
tube surface, and the vorticity it contains will be amplified. Both the reduction of
diameter and the amplification of vorticity are precursors of the cascade process of
turbulence.

As noted above, although these results are physically very appealing, the velocity
field that convects vortex lines (or tubes) is itself, at least in part, generated by the
vorticity they represent. Thus, one cannot, in general, specify the velocity field in
advance and work out the effects on vorticity: motion of the vortex lines changes the
velocity field by which they are, in turn, convected. This severe coupling is expressed
by the integro-differential equation we mentioned above.

We want to briefly show the basic results that, in an inviscid fluid, vortex lines can
be thought of as convected by the flow and that vorticity is amplified through
stretching of vortex lines by the flow.

The vorticity is defined by € = V x U, while a vortex line is a curve that is
everywhere parallel to ©. Consider the material points making up a vortex line at
time ¢ = ¢y. These material points move at the flow velocity and we want to demon-
strate that they continue to form a vortex line. This suffices to show that vortex lines
can be thought of as being convected by the flow. Let two of the material points
making up the initial line be separated by the infinitesimal vector displacement ér.
We need to prove that, as the two material points move with the flow, &r remains
parallel to Q, and, that |Q|/|dr] does not vary with time. Thus, if |8r| increases,
corresponding to stretching, then || grows proportionately, representing amplifica-
tion of vorticity. Of course, if a vortex line is shortened, rather than stretched, the
same result shows that the vorticity is reduced.

The vorticity in an inviscid, incompressible fluid satisfies the equation
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is the material derivative, now with respect to the total flow, U. The vector displace-
ment, dr, of material points evolves with time due to the difference in velocity
between the two points considered. Thus we have

d(ST,‘ — ar/a—[],
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(4.59)

where we have expressed the difference in velocity at the two points by a one-term
Taylor’s series. Equation (4.59) has exactly the same form as (4.58) (it is this fact that
allows us to derive the required result). Suppose that §r is parallel to Q at time ¢ = ¢,
and define a vector, a, by a;(t) = ;(¢)|8r|y/1€2]y, where the subscript 0 indicates
t = ty. Thus, we have a = ér at ¢ = t3 because the vectors §r and Q are parallel.
From (4.58), we find that a satisfies
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which is the same equation as governs 8r. Since a = r at t = ¢, and the two vectors
satisfy the same first-order equations, (4.59) and (4.60), they are equal at all times
and the material line remains a vortex line with
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from which it follows that |8r|/|Q| = |8r|y/|€l, by taking the magnitudes of the two
sides of the equation. Hence |€| increases or decreases in proportion to |8r|, which is
the required result.

Amplification of vorticity by vortex line stretching can be important in laminar
flows at high Reynolds number. For instance, the well-known bathtub vortex, which
occurs when water runs out of the bottom of a container, is a result of this mechan-
ism. Approximating the flow as axisymmetric about a vertical axis and imagining a
horizontal circle, centered on the axis and moving with the fluid, this circular mate-
rial curve is drawn towards the outlet, its radius decreases, and conservation of
circulation implies that the circulating velocity increases. Alternatively, one can
think of vortex lines as drawn out vertically and compressed in horizontal projec-
tion, which causes vortex lines starting far from the outlet to be reorientated toward
the vertical by flow convection as they approach the outlet. At the same time,
vorticity is amplified by vertical stretching of the vortex lines. It is, of course, vor-
ticity preexisting in the container that is amplified by this mechanism, since vorticity
cannot be created in an inviscid fluid. This example shows that even laminar flows
can amplify existing vorticity by vortex line stretching, but the process is much more
extreme and complicated in the development of turbulence.

Imagine a very high-Reynolds-number flow without solid boundaries, consisting
of an intense, localized region of disorganized, large-scale vorticity, which has been
produced by external forces and will become turbulent, but for which the velocity
field as yet varies only over large scales. Owing to the assumed high Reynolds
number at these scales, the effects of viscosity have not so far been called into
play, and, thanks to the fluid motion, vortex line stretching may cause amplification
of vorticity and thinning of vortex tubes. In such developing turbulence, convection
stretches, distorts, and folds the thinning vortex tubes. Amplification of vorticity
results in increasing velocity gradients (recall the definition of vorticity in terms of
velocity derivatives) and thinning leads to smaller and smaller scales. This process,
which is far from being fully understood, despite its central importance to turbulence
dynamics, preserves the kinetic energy of the flow, because viscous dissipation has
yet to act. The velocity itself cannot rise dramatically because the kinetic energy per
unit mass is U;U;/2 and, when integrated over the flow, is constant. However,
velocity gradients greatly increase, reflecting the appearance of smaller and smaller
scales by vortex tube thinning and amplification. That is, the velocity field develops
large derivatives and may become “furry,” in the language of the previous chapter.

Through vortex stretching, the vorticity can be greatly amplified locally. If, how-
ever, the vorticity is integrated over some large-scale volume of the flow, the volume
integral can be expressed in terms of a surface integral of the velocity field using the
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definition of the vorticity and vector calculus. Since, owing to energy conservation,
the velocity field remains of the same order of magnitude during the production of
the small vortical scales, it is clear that the volume-averaged vorticity cannot increase
greatly, despite large amplification of the magnitude of local vorticity. The large-
amplitude, small-scale vorticity variations average out when a large-scale volume
integral is performed.

As the smallest length scales present in the flow decrease, viscosity eventually
becomes important because it is represented in the equation of motion, (4.3), by a
term that contains second derivatives, rather than first-order ones. In other words,
the effective Reynolds number is then no longer large when determined at the smal-
lest scales. Viscosity limits the amplification of vorticity and sets a lower bound for
the smallest scale attainable by stretching. It introduces a diffusive term in the vor-
ticity equation, which becomes (4.63) for a viscous fluid, rather than its inviscid
version, (4.58): this diffusive term counterbalances the effects of vortex stretching
at the finest scales, whose size is measured by the Kolmogorov scale, 7. Viscosity also
leads to kinetic energy dissipation at the smallest scales (see equation (4.42), which
relates the dissipation rate and the turbulent vorticity fluctuations). Once such scales
have come into existence, which takes a certain time, developed turbulence appears.
The velocity field is furry and contains all sizes from the correlation scale down to the
Kolmogorov scale, as described in the previous chapter. The vorticity is dominantly
at the finest scales, like other quantities involving velocity derivatives, and there is a
continuous flux of energy through the cascade from the decay of large-scale eddies,
which is dissipated by viscosity at the smallest scales. Vortex line stretching is
thought to play an important role in setting up, and no doubt in maintaining, the
continuum of scales characteristic of high-Reynolds-number turbulence.

There is an important class of flows for which no vortex stretching occurs. Any
strictly two-dimensional flow has vortex lines perpendicular to the plane of the flow
and hence no line stretching is possible. In such a flow, vorticity is convected
unchanged with the flow. The absence of vortex stretching and the associated vor-
ticity amplification makes two-dimensional flows a very special case. Turbulence, as
we understand the term, cannot take place in two dimensions. The case of a strictly
axisymmetric, inviscid flow, although it may involve vortex stretching, is also rather
special: vortex lines are circles centered on the axis and, as any one of these circles is
convected by the flow, the associated vorticity increases or decreases proportional to
its radius (as in the bathtub example). These flows are too special to produce the
continuum of scales required for a turbulent flow. This is not to say that two-
dimensional or axisymmetric mean flows cannot be turbulent; the intrinsically
three-dimensional phenomenon of turbulence can occur in such mean flows.

Once turbulence has fully developed, the vorticity field has random variations on
small length scales, comparable to the Kolmogorov scale, and fluctuates radically
over such distances, both in magnitude and direction. Alongside the large-amplitude
small-scale vorticity fluctuations there is small-scale dissipation of energy, supplied
from the large scales of turbulence via the cascade. The two processes, vortex stretch-
ing and the cascade of energy, go hand-in-hand, but the precise relationship between
them is far from clear in developed turbulence. It is much harder to identify the role
of large-scale vortex stretching in developed turbulent flow, because there is already
small-scale vorticity present and one cannot follow the process of vortex stretching
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of larger scales through to the production of smaller ones with higher vorticity, as the
flow develops in time. Indeed, since vorticity is defined via derivatives of the velocity,
which are dominated by the small scales, those scales are predominant when one
considers the vorticity field. The vorticity is mainly associated with the small scales of
turbulence and such intense, fine-scale vorticity variations mask the weaker, larger-
scale vorticity field in developed flow. Naturally, one may speculate that vortex
stretching should continue to play an important role in the generation and main-
tenance of the small scales.

The above discussion was aimed at turbulent flows in the absence of boundaries.
Solid boundaries are often an important source of turbulence, and ultimately, all
vorticity arises at boundaries, even if it is subsequently amplified greatly by vortex
stretching in the body of the fluid. The dynamics of turbulence in the viscous layer at
a wall are rather different from those away from the surface. The effective Reynolds
number is relatively low, and both turbulent energy dissipation and production are
high, the latter due to the large mean shear. However, it is still vortex stretching that
is thought to amplify turbulent vorticity and produce smaller-scale vortical struc-
tures. The range of sizes present is comparatively limited, owing to the low Reynolds
number. Qutside the viscous layer, the effective Reynolds number grows with dis-
tance from the wall and the turbulence becomes qualitatively similar to that occur-
ring well away from the wall, although it may still be significantly affected by the
presence of the surface. In particular, it contains a growing range of scales, reflecting
the increasing value of Re; . If distance from the wall becomes large compared with
the turbulent correlation length, L, the effects of the wall can be neglected.

Having now set the scene, we consider the equations for the mean, Q,, and
fluctuating part, w;, of the vorticity in a turbulent flow. The fact that the vorticity
is defined as a curl means that it has zero divergence

0 _ (4.62)
Bx,-

which, being a linear equation, implies that both ©; and w; have zero divergence
considered separately. For the same reason, €; is the curl of U; and w; is the curl of #;.
From earlier discussions, we expect that, at high Reynolds number, w; will be deter-
mined by the small turbulence scales and be large compared with ;, because w; and
Q; are respectively defined in terms of velocity derivatives of #; and U, via the curl
operator.

With viscosity, the Helmholtz equation for vorticity is

o, 3%, U, FQ;
il B § A R S/ SN 4.63
ot ! ox; ! bx; + dx;0x; (4.63)
S — S — [
Convection  Stretching Viscous
diffusion

where, as indicated by the annotation, the first term on the right is the vortex-
stretching term, as in (4.58), and the second is due to viscous diffusion. Taking
the average of (4.63), and using the spiit into mean and fluctuating velocities and
vorticities gives
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Qa0 —aUu, 9 P
L4 U 2= ou — uww; § +v ! (4.64)
i f it iWj
at ox; Ox; | ——  —— x;0x;
M N—— N—— Turbulent Turbulent N e’
Unsteady Mean flow Mean flow advection stretching Viscous
flows advection strecching diffusion

which is the equation for the mean vorticity. The terms labeled turbulent advection
and turbulent stretching represent the effects of the turbulence on the mean-flow
vorticity {analogous to the Reynolds stress term in (4.9)). All others are as if there
were no turbulence. An equation for the square of the mean vorticity can be easily
obtained by multiplication of (4.64) by Q,. The result can be expressed as

lo. O, 19. 0. 77,
QT AL T
ot ax, ax,
Unsteady Mean flow Mean flow
flows advection stretching
3 PG o o
— 0w — w2 (4.65)
ax, —— N ax,-ax, 8x,~ ax,-
Turbulent  Turbulent —_— ——
advection stretching Viscous Viscous
transfer dissipation
The equation for the fluctuating vorticity is
aa),‘ + - a(l)i
ot 4 ax, o
TT You 2
— Oy aU; 0, 0 " w;
Q—+ wi—— —thj— — — wu; — wu; + ww; — W} + v : 4.66
Tox;  Tox; T ox;  dx ity =y + @it — @i} dx; 0 (466

which we can multiply by w;, average, and rearrange to obtain the equation for the
mean-squared vorticity fluctuation. Thus, we obtain the somewhat lengthy equation
U, — o CIoN

ax,- + 1(1)1 ax, ax,

8%(1),—(1),— - a%wiwi
ot ! ax,

- wiui

= (1),‘(1)1'

Mean flow/turbulence
coupling

I S S N L
ok, 0x; A x;0%; dx; 0x;
——r’

Turbulent stretching Transfer terins Viscous
of fluctuating due to inbomogeneity dissipation
vorticity

(4.67)

which is sometimes called the turbulent emstrophy equation — enstrophy being
defined as ©;Q;/2 = Q; Q;/2 + @,w;/2, in which the component due to the mean
vorticity is generally negligible in high Reynolds turbulence because, as noted
above, the fluctuations contain the small scales, which dominate the velocity deri-
vatives, and hence the vorticity. We leave it to the reader to determine which of the
nonviscous terms in (4.67) arise from stretching and which from advection.
Naturally, the term labeled dissipation does not represent energy dissipation, but
rather the tendency of viscosity to damp out vorticity fluctuations {Taylor (1938)).
This is related to energy dissipation, of course, since both processes occur at the finest
scales of turbulence, where the vorticity fluctuations themselves take place. The fact
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that the spatial derivatives of fluctuating velocities in general, and @; in particular,
are properties of the small scales of turbulence, whereas derivatives of mean-flow
quantities are determined by the largest scales, means that different terms of (4.67)
have widely disparate orders of magnitude, once the cascade has had time to create
the small scales. This is thanks to the large Reynolds number which, as we have
noted before, leads to large derivatives at the smallest scale, 5. The fourth and final
terms on the right-hand side of (4.67) can be shown to dominate the others in the
limit Re; — oo. The fourth is dominant because it consists of a product of three
velocity derivatives taken at the fine scales, whereas the other nonviscous terms
contain at most two (note that the derivatives implicit in ; need to be accounted
for here). Of the viscous terms, the second is a product of two second-order velocity
derivatives at the small scales, thereby dominating the first of the viscous terms. If
only the dominant terms are retained on the right of (4.67), the result is

Moo, —dlow, du;  Ow; dw;
2! 1+U/ Pl '_—_a)ia)i—'—v——' ! (468)
at 3x, Bx, 3x, Bx,
B e
Tutbulent Viscous
strerching dissipation

of which the right-hand side is now precisely as obtained if we were to assume
homogeneous turbulence without mean-flow gradients in (4.67).° This is because
the terms on the right of (4.68) are dominated by the dissipative scales, whereas
inhomogeneities or mean-flow gradients produce variations of the flow on much
longer scales. Indeed, equation (4.68) tells us nothing about the dynamics of turbu-
lence at larger scales: by considering the vorticity, one focuses on the small-scale
properties of turbulence. For strictly homogeneous turbulence, the second term on
the left of (4.68) is also zero. We stress that, with mean-flow gradients or in the
absence of homogeneity, accuracy of the approximation leading from (4.67) to
(4.68) requires a large Reynolds number.

One can go one step further in simplifying the enstrophy equation, once turbu-
lenge is fully developed and again assuming Re; — co. The time evolution of the
statistical properties of all turbulence scales are then controlled by that of the large
scales, via the cascade. The left-hand side of (4.68), in which @;@; has only two small-
3cale velocity derivatives, is consequently negligible compared with the first term on
the right, which contains three such derivatives. It follows that, to a good approx-
imation, we may drop the left-hand side of (4.68), which becomes an expression of
equilibrium between turbulent stretching and viscous destruction of vorticity fluctua-
tions. Notice that, for these two terms to balance, the stretching term must be
positive, that is, vortex stretching amplifies turbulent vorticity in the mean, as
expected. Stretching is responsible for counteracting viscous diffusion of vorticity
at the small scales that are described by (4.68). The stretching term presumably plays
an important, if as yet poorly understood, role in the complex interactions of turbu-
lence with itself. It is cubic in the velocity derivatives and, from a probability theory
point of view, is a sum of velocity-derivative cubic moments. Thus, turbulent vortex-

5 Bearing in mind the second equality of (4.42), multiplying the right-hand side of (4.68) by the twice the
viscosity gives the time derivative of €. However, it seems to us that the interpretation in terms of
vorticity is more physical.
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stretching effects on vorticity fluctuations depend on rather subtle statistical proper-

ties of du;/dx;.

While we are on the subject of small-scale vorticity in developed turbulence, we
should mention the apparently ordered vortical structures first observed in numerical
simulations (Figure 4.2a) and experimental visualizations of turbulent flows (Figure
4.2b). These structures take the form of persistent, long, thin filaments of concen-
trated vorticity, whose widths appear to be of order n and whose lengths are much
greater than that. The existence of such structures is surprising because, as discussed

(b)

Figure 4.2. Ordered structures in the form of long vortex fila-
ments, which are observed at small scales in (a) direct numer-
ical simulation of turbulence, and (b) experimental
visualization. (Reproduced with permission: {a) She, Jackson,
and Orszag (1991); (b) Bonn et al. (1993).)

above, one usually thinks of vorticity as
randomly varying over the smallest
scales, rather than showing structures
extending over significant distances,
albeit with small-scale widths. It is as
yet far from clear what, if any, signifi-
cance these filaments have for the over-
all dynamics of turbulence (see the
discussion and references in Frisch (G
1995), section 8.9). They seem to
carry little of the overall turbulent
kinetic energy and, perhaps more sur-
prisingly, little dissipation. Moreover,
clearly identifiable, long filaments
appear to become less frequent as the
Reynolds number increases.

In the context of vorticity formula-
tions, we should also mention the
many studies of two-dimensional “tur-
bulence” (for more details and refer-
ences, see Lesieur (G 1990) and Frisch
(G 1995), section 9.7). We have already
made clear our view that strictly two-
dimensional random flows are suffi-
ciently different in nature from turbu-
lence, as the term is usually
understood, as to fall into a different
category. In two dimensions and in the
absence of viscosity, vorticity is con-
vected unchanged by the flow (since
there is no vortex stretching or reorien-
tation) and the initial vortical structures
are simply deformed by convection in
the plane of the flow. High-Reynolds-
number numerical simulations with
random initial conditions show the
development of thin, folded, sheet-like
structures in which vorticity gradients
are large, separating regions in which
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the vorticity gradients are lower. Overall, such two-dimensional flows appear to be
quite highly organized. The sheets of high vorticity gradient tend to become thinner
due to stretching in the plane of the flow and diffuse under viscosity, which limits the
size of the vorticity gradients that can develop. At first sight, there would appear to
be some similarity with the turbulent energy cascade in three dimensions, and indeed
there is believed to be an associated cascade to smaller scales: not of energy, but of
enstrophy, €,Q2;/2 (Kraichnan (1967)). In the absence of viscosity, enstrophy, like
energy, is conserved in two dimensions, and there appears to be an enstrophy cas-
cade, formally similar to the energy cascade in three dimensions, with dissipation of
enstrophy by viscosity at the smallest scales. However, although vorticity of smaller
and smaller scales develops from an initially smooth vortical distribution, with the
smallest scales limited by viscosity, it is found that the energy of the flow does the
opposite: it goes into larger and larger scales of the motion, formed by agglomeration
of the smaller scales of the velocity field. There are therefore two cascade processes at
work in two dimensions, with energy (associated with the velocity field) going to
larger scales, and enstrophy (associated with the vorticity field) to smaller ones.
These and many other interesting results on two-dimensional “turbulence” are of
considerable fundamental interest, but it should be recalled that strictly two-dimen-
sional flow is generally unstable at high Reynolds numbers and breaks down to
become three dimensional, at which point turbulence proper has different properties.
Sufficiently strong constraints, such as stratification, can, however, produce flows
that are at least approximately two dimensional at high Reynolds numbers and this
remains an area of active research, particularly with atmospheric and oceanic appli-
cations in mind.

4.5 Some Examples of Simple Turbulent Flows

In this section we shall examine a number of relatively simple flows that are chosen
because they illustrate behavior found in more general flows and, in some cases, lead
to considerable simplifications in the averaged equations, thereby allowing a clearer
view of the underlying physics.

-~ TWO-DIMENSIONAL CHANNEL FLOW

The channel consists of two parallel, solid walls, occupying the planes x, = 0 and
x5 = 2D, at which the no-slip condition implies that the velocity is zero. The flow is
assumed two dimensional, that is, U; = 0 with all statistical properties independent
of x3 and uhchanged under reflection in the plane x3 = 0. This does not imply that
single realizations of the flow are two dimensional, indeed the turbulence will be
three dimensional, but simply that it is two dimensional in the mean. Overall, flow
occurs in the x;-direction, driven by a mean pressure gradient in that direction (see
Figure 4.3). At the inlet of the channel, the flow profile may have any form inde-
pendent of x;, but at distances from the inlet of about x; = 100D and greater, the
flow takes on limiting asymptotic behavior independent of the inlet conditions.
There, and further along the channel, the mean properties of the turbulent flow,
with the exception of the mean pressure (which must have a streamwise gradient to
drive the flow), depend only on x,, there being no further evolution with streamwise
distance, x;, and everything being supposed independent of x3. This flow, which is
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" effectively infinite and homoge-

N neous in x; and x3, is approached

in a long rectangular duct, sub-
2D ject to a constant pressure differ-
ence between its ends, and which
is much wider in one transverse

\
[
y Y
!
|

direction (x3) than in the other
(x3). Well away from the
entrance and side walls (those
> with constant x3), the flow is in
the direction of xi, that is, along

AN\

Figure 4.3. Coordinate system and sketch of the mean-flow profile for
channel flow.

Y .
N AMRTRRivw N % the duct, and is as if the duct were
indeed infinite in x; and x3.

The flow is symmetric under
reflection in the plane x; =0,
from which it follows that 7723 =
0 and w3 = 0 (by symmetry, the value of 3 associated with any given #; and u; is
as likely to be negative as positive). Thus, the only off-diagonal element of the
Reynolds stress which is nonzero is —p##,, which like other average quantities,
depends only on x,. Furthermore, the mean flow is in the x;-direction and so
U, = U; = 0 and U depends only on x,. The mean-flow equation, (4.9), therefore
takes on the simpler forms
d*U, P  dum

,U«d_x% = Wl +p dx, (4.69)

oP duf

and
aP
=0 (4.71)

Observe that the mean-flow continuity equation, (4.3), is automatically satisfied by
the channel flow.

From (4.71), we infer that P(x;, x5, x3) does not depend on x3, while from (4.70)
we see that

P =P, (x;) = pud(xy) (4.72)

where P, (x;) is the mean pressure at the walls, where #, = 0 according to the no-slip
condition, and depends only on the streamwise coordinate x;. It is the gradient of P,
with respect to x; which drives the flow.

Substituting (4.72) into (4.69) we find that we can rewrite the equation as

dp, dr

i (4.73)

where
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™(xz) = ui—% — puiy (4.74)
is total mean shear stress: a combination of the Reynolds shear stress and the viscous
shear stress. In equation (4.73), the left-hand side depends only on x, whereas the
right-hand side is solely a function of x,. Thus both sides are constant: the mean
gradient of wall pressure, dP,,/dx;, which drives the flow, is constant (and negative
since the flow is being driven in the direction of increasing x;). The mean wall
pressure is a linear function of x;. Constancy of dt/dx, implies that

dP
T:de—xl:}JrTw (475)
where
o0
w deZ xz:o

is another (positive) constant, the value of the mean viscous shear stress at the wall,
x, = 0 (recall that the velocity is zero at the walls).

The channel is symmetric about its center plane, x, = D, and so 7-at the other
wall, x, = 2D, must be —1,,. Thus, from (4.75), we find that

v, = —DFw (4.76)

dx,
relating the constant mean wall stress to the constant streamwise wall pressure
gradient. This condition reflects a balance of forces: the mean pressure gradient
drives the flow and is resisted by the mean viscous stress (friction) at the walls.
From (4.76), it follows that (4.75) reads
T %)

—=1-3 (4.77)
showing that 7 = 0 on the channel center plane, x, = D, and varies linearly across
the channel. Observe that we have expressed both the total shear stress, t, and the
mean pressure gradient solely in terms of the single constant, 7,,, using equations
#.76) and (4.77).

Using (4.74) and (4.77), we obtain the equation
dU;

dx;

The large overall Reyholds number implies that the viscous term in (4.78) is small,
except very close to the walls, in thin viscous layers for which the effective Reynolds
number is lower. If we set the right-hand side of (4.78) to zero, we find a linear
relation, —p#125; = 1,,(1 — x5 /D), for the Reynolds shear stress as a function of x,.
Outside the viscous layers (i.e., over most of the channel), mean velocity gradients
result in only small departures from this linear behavior, as borne out by measure-
ments. Measurements further indicate that U, (x,) is approximately constant in the
central part of the channel, so the derivative on the right of (4.78) is relatively small
and the linear expression for the Reynolds stress is an even better approximation than
one might at first think. Near the walls, there are steep gradients of U;(x,), similar to

rw(l - %) VPTG = (4.78)
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turbulent boundary layers, and the shear stress, although still approximately linear
in x, until we enter the viscous layers, is not quite as close to linearity, becoming less
and less so as the wall is approached. Within the viscous layers, the Reynolds shear
stress is not even approximately linear and, like Uj(x;,), goes to zero at the wall to
satisfy the no-slip condition. The mean velocity gradient at the wall is large and equal
to 7,,/U, according to (4.78) with #z; = 0 and x, = 0.

We can also examine the equation, (4.32), for the Reynolds stress. The left-hand
side is zero, because the flow is statistically steady, the mean flow has only the one
component, Uy, and #; depends solely on x,. The diagonal components (i = j) of
equation (4.32) are

du, dddu, 2 3 u,
VY it il e P AP ,
0 2001 dx, dx, ,ou1 x4 + v dxp, 9, (4.79)
d&g 2 ap 32142
0=——2—"u,— :
e L L (4.80)
and
du2u2 2 ap &
0= 372 Zy 3 4.81
dx, ,ou3 dx3 2y dxy, (4.81)

which are the equations corresponding to the Reynolds stress components —pu?,
—pu3, and —pu3, respectively. The first term in equation (4.79) describes the inter-
action of the mean and turbulent fields, and represents feeding of turbulence by the
mean flow. All the other terms in (4.79)—(4.81) contain only fluctuating quantities
and describe interaction of turbulence with itself and dissipation/diffusion by vis-
cosity. They have a similar form in all three equations.

Since the mean flow occurs only in the first term of equation (4.79), which corre-
sponds to the component u3, there is direct driving of #; by the mean flow, but not of
the other turbulent components. The mean-flow driving term is observed to have a
maximum within the viscous layer close to each wall, where it is considerably larger
than towards the middle of the channel, owing to the high mean shear near the walls.
Under these circumstances, it would be reasonable to expect that ] would also have
a maximum within each viscous layer and that

Uy > uh X uf (4.82)

where #’ denotes root-mean-squared fluctuation (#]% = 2, etc.). The maximum of
u is indeed found within the viscous layers and has an observed value

uy ~ 3u, (4.83)

while the other two components are lower than #7, and ordered as #> < u}, rising
from zero at a wall (due to no slip) to about

uh Xy, (4.84)
and
uy ~ 1.5u, (4.85)

just outside the viscous layers. The quantity, #,, occurring above is given by
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N
u, = (—“’) (4.86)

and is known as the turbulent friction velocity. This quantity gives a velocity scale,
directly related to the wall shear stress (friction), which describes the magnitude of
the turbulent velocity fluctuations within a turbulent boundary layer, as we shall see
in the next chapter, and also within the channel flow considered here. The above
disparity between the three components of fluctuating velocity in the viscous layers
clearly shows lack of isotropy, which is not surprising given the proximity of the wall
and the high mean shear near the wall, which provides a strong orientating effect on
the turbulence. The turbulent velocity components decrease further from the wall,
but remain of order u, throughout the channel. Their values are more nearly the
same towards the middle of the channel, although still different. This indicates that
the turbulence may be more nearly isotropic there, but remains anisotropic none-
theless.

Either directly from (4.35), or by adding equations (4.79)—(4.81) and dividing by
2, we obtain the turbulent energy equation, which contains the following terms that
sum to zero:

i T2 (4.87)

dxz

which gives (minus) the rate of turbulent energy production and is directly related to
the mean-flow driving term in (4.79):
d 1—
2 4.88

+ dxz 2 q-uy ( )
represents transfer of turbulent kinetic energy by the x;-component of the fluctuating
velocity (this is nonzero due to inhomogeneity of the turbulence in the x,-direction
and, together with the next two terms, is diffusive);

1d___
— 4.89
+ 0 de pu; ( )
expresses turbulent energy transfer across the channel due to pressure-velocity cor-
relations and inhomogeneity in the x,-direction (here, we have used the incompres-
sibility condition for #;, (4.6), to sum the pressure terms in (4.79)—(4.81));

d’ (1—2 —
—v—s|=g +u2) (4.90)
dx3 \2 z)

represents viscous diffusion effects (again due to inhomogeneity in x,);

1 [0u; Oup\[ou; 0Ouy
Z Mi | Ok 4.91
+2 ”(axk + 8x,-)(6xk + ox; ( )
is the turbulent energy dissipation. As described earlier, viscous diffusive terms such
(4.90) can usually be neglected compared to dissipative terms, such as (4.91),
because the Reynolds number is large. In fact, the viscous diffusive term is only

needed very near the walls, in the viscous layers where the effective Reynolds number
of the flow is lower.
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If we integrate the turbulent energy equation with respect to x,, across the duct,
using the fact that the velocity at the walls is zero, we obtain

JZD 4 JZD 1 (ou; N ouy,\ [ Ou; N
Xy = =V -
0 2 0 2. 8.‘X,'k 8x,- 8.X'k

which expresses equality of the integrated rates of production and dissipation of
turbulent energy. This is, of course, as it should be.

Among the most reliable and well-documented measurements of channel flow are
those of Laufer (1951) and Comte-Bellot (1965). The detailed energy budget, that
the sum of (4.87)—(4.91) is zero, should hold at each point in the channel. Figure 4.4
shows the measured values of each term in the energy budget, not for channel flow,
but for the equivalent energy budget in the qualitatively similar case of flow in a
circular pipe (Laufer 1954). One of the important features is that both the turbulence
production and dissipation, (4.87), rise steeply as the wall is approached from the
central part of the channel/pipe. The maximum production occurs close to the walls
within the viscous layers (not apparent in the figure, since they are so thin), owing
largely to the much higher values of mean shear there. This indicates that intense
turbulence is generated near the walls, but is also primarily dissipated there, with the
relatively small excess of production over dissipation serving to feed the middle part
of the channel/pipe with turbulence via the diffusive terms, (4.88) and (4.89). On the
other hand, dissipation exceeds production in the central part of the flow, where the
mean shear is lower, absorbing the turbulent energy coming from near-wall region.
Turbulence behaves somewhat differently
in the wall region than in the middle part
of the channel/pipe: near the boundaries it
is dominated by the presence of the wall
and is rather similar in character to other
. wall flows, such as the near-wall parts of
Pressure turbulent boundary layers (see the next
chapter for detailed treatment of turbu-
lent boundary layers and a brief return

dU,
_uluz [PU——

de

Suk

2D
) de = J del (492)
0

8x,-

Dissipation

to the channel problem considered here).

T - ] 2 particular, it is strongly anisotropic

Pt Diffusion and inhomogeneous in the direction nor-

,/f mal to the wall. However, away from the

,’\ walls the flow differs from a boundary
! Production layer .

As in all inhomogeneous turbulent
flows, it is interesting to identify the
regions of turbulence production, usually
found near locations of maximum mean

Figure 4.4, Measured terms in the turbulent-energy budget
for circular pipe flow. Here, x, denotes distance from the
pipe wall and the curves extend from the wall to the pipe
axis. The budget for channel flow is qualitatively the same.
The terms labeled “Diffusion™ and “Pressure diffusion™ are
the pipe-flow equivalents of (4.88) and (4.89), respectively.
(Laufer (1954), redrawn.)

shear, which lie close to the walls for the
channel flow. Measuring instruments in
the middle part of the channel register
turbulent activity coming from the two
production centers, situated on either
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side of the channel. These events, &
in which turbulence originating at

the w'allls traverses a pr(?be situ- i, > 0
ated in the middle region, are
clearly identifiable in the time

records via rapid jittering of the
measured velocities and are sepa-
rated by periods of relative inac-

tivity. Thus, turbulent activity in <0
. . u

the middle part of the channel is b

found to be sporadic, but the main

contributions to the Reynolds
shear stress, —puy#;, evaluated
as a time average since the flow is
statistically steady, come from
such intermittent turbulent events (see Sabot and Comte-Bellot (1976)). As we have
seen, the Reynolds stress is highly significant because it determines the effects of tur-
bulence on the mean flow. Turbulent events are observed to be associated either with
positive or negative #, . If one makes the reasonable assumption that turbulence coming
from the wall at x, = 0 is associated with positive u, (since it has been ejected from the
wall towards increasing x;), while that arising from the other wall is associated with
negative #,, one may identify the source of turbulent events, and implement condi-
tional sampling using the sign of the measured u, to trigger an electronic gate. As
regards the Reynolds stress, either #,u4, < 0, which is found to be associated with
events originating at the wall x, = 0, or u;u, > 0, which is associated with the other
wall (see Figure 4.5). Thus, turbulent eddies coming from the two walls tend to produce
canceling contributions to the time average giving #7#;,, which is zero on the channel
center plane, by symmetry (recall (4.78) and note that, by symmetry, dU; /dx, = O on
the center plane, x, = D). Nearer the wall x, = 0, #7#; < 0 because it is the eddies
from that wall which tend to win, while, on the other side of the center plane, 7z, > 0,
owing to turbulence originating at the other wall, x, = 2D. The nearly linear distribu-
tion of the mean, #7#;, which we found earlier, is therefore the result of rather subtle
sprocesses when examined in detail.

e

Figure 4.5. Turbulence production in a channel flow is sporadic and
orginates at both walls with differently signed contributions to ##;.

HOMOGENEOUS TURBULENCE SUBJECTTO UNIFORM SHEAR

Here we imagine a steady, infinite mean flow with uniform shear, and which, like
the channel flow, only has a velocity component, Uj(x,), in the x;-direction
(U, = U; = 0). The mean profile is taken to be linear in x,, with

U, = sx, (4.93)

where s > 0 is a constant, whose reciprocal has the dimensions of time. Thus, s™' gives

a time scale associated with the mean shear. We can see that this introduces the

nondimensional time, st, which is a measure of the cumulative mean strain of the fluid.
The turbulence is supposed homogeneous, so that, in particular

ouu;

ax i

=0 (4.94)
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and the turbulence does not enter into the mean-flow equation (4.9). In fact, the
given mean flow is a solution of (4.5) and (4.9) with uniform mean pressure and
therefore represents a possible mean velocity field. Moreover, initially homogeneous
turbulence will remain so because a shift in the origin of coordinates, followed by a
change to a new inertial frame based on the mean velocity at the new origin leaves
the initial fluctuation statistics and the evolution equation, (4.31), for the fluctuations
unchanged. Thus, the problem posed is self-consistent, giving a possible homoge-
neous turbulent flow. Similar reasoning applies to homogeneous turbulence in any
mean flow for which the velocity derivatives are independent of position: such a
mean flow will permit homogeneous turbulence to evolve as homogeneous turbu-
lence, which, in turn, does not affect the mean flow. This fact forms the basis for the
spectral analysis of homogeneous turbulence in mean flows with uniform velocity
derivatives, of which the present flow is an example.

The turbulence will evolve with time, while remaining homogeneous, and it is this
evolution which we wish to study: the effects of the mean-flow shear on the turbu-
lence. We will suppose that the Reynolds number is sufficiently large that one can
neglect the effects of viscosity on the large scales of turbulence, although one needs to
take it into account at the small, dissipative scales, of course. The turbulent energy
equation, (4.37), is

dlg
dt

— s — (4.95)

which gives an indication of the importance of the quantity #j7;, which occurs in the
term representing turbulence production by interaction with the mean flow. The
other term corresponds to viscous dissipation and would lead to continuously decay-
ing turbulence in the absence of the mean shear. In deriving (4.95), we have used the
fact that only one component of the mean-flow gradient tensor is nonzero to simplify
the equation.

The equation governing #%;, (4.38), becomes

AT 2wy W | 7 o ou; ou;
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mu; 00 !
We are mainly interested in the case in which the turbulence is initially isotropic. Of
course, it will lose isotropy under the straining and orientating action of the mean
shear. However, since, by initial isotropy, the problem is initially symmetric under
reflection in the plane, x3 = 0, it remains so at all times and hence ##3 = w03 = 0
(symmetry implies that we are equally likely to find a positive as a negative value of
u3 associated with any given values of #; and #, and therefore that these moments
are zero). Initially, we also have 777, = 0 (so that the turbulent energy at first decays,
according to (4.95)) and #} = u3 = u3, but these relations will cease to hold once
anisotropy due to the mean shear begins to take effect. In particular, the quantity,
#y#;, which is zero for isotropic turbulence, is a measure of the anisotropy, although
i, = 0 does not necessarily imply isotropy. This component of #;4; corresponds to
i=1,j=2in (4.96), which can be written as
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of which the viscous term is usually found to be small because it is dominated by the
small scales at high Reynolds numbers, which are approximately isotropic (recall the
discussion leading to equation (4.45); according to (4.45), the off-diagonal elements
of the viscous term, including that corresponding to #j#;, are zero and we would
therefore expect them to be small in practice). We will neglect the viscous term in
(4.97) in what follows.

The evolution of an initially homogenous, isotropic turbulent field under the
effects of a uniform mean shear, s > 0, has been widely studied experimentally
and theoretically (see, e.g., Champagne, Harris, and Corrsin (1970) and other refer-
ences in Tavoularis and Karnik (1989)). At sufficiently large Reynolds number, it is
indeed observed that the viscous term in (4.97) is small and furthermore that %7,
becomes negative, due to the first term in (4.97), which represents the direct action of
the mean shear on the Reynolds stress and is negative, since s > 0. Once %%, has
become negative, the production term in (4.95) begins to offset the dissipative term
and the turbulence decays less rapidly. Eventually, 7%, is found to become suffi-
ciently negative that production exceeds dissipation and the turbulence grows in
intensity.

The second term in {4.97) tends to act in the opposite direction to the first, thus
trying to reduce the positive —#7#; which is created by the first term. The second
term contains the fluctuating pressure, which obeys the Poisson equation, (4.48),
namely

duy  Ou; 0
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in the present case. Here, the first term on the right is linear in the fluctuating velocity
and is responsible for the so-called rapid rate of strain—pressure correlation contri-
bution to (4.97); the second term on the right is nonlinear in the fluctuating velocity.
As described in Section 4.3, both terms produce contributions to the fluctuating
pressure, but have fundamentally different effects on the evolution of the turbulence.
We write the linear fluctuating pressure component as p'"’ = sT1, including the factor
of s occurring in (4.98) in the definition of 1, and p(z) for the contribution due to
nonlinearity. Corresponding to IT and p'® there will be two components of the
pressure~velocity gradient correlation in (4.97). Thus, (4.97) becomes

duu, — S _(0u; Ouy 1 ouy  oup
=— “— 4+ =)+ -pD | —+—= 4.99
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Linear Nonlinear

where we have neglected the viscous term because, as noted above, it leads to only a
small contribution in the equation for #,#,. Equation (4.99) shows the linear and
nonlinear parts of the pressure-rate-of-strain correlation term explicitly.

The effects of the two pressure terms in (4.99) can be partially understood as
follows. As explained in Section 4.3, the nonlinear pressure term is zero for isotropic
turbulence and is therefore initially zero here. This term is one result of the interac-
tion of the turbulence with itself and tends to act to make the turbulence less aniso-
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tropic. If desired, an approximate quantitative description of the nonlinear pressure
term can be obtained using the closure hypothesis {4.55) with i = 1, j = 2 (we stress
that this is only a hypothesis and has no fundamental justification). Since C is
positive, the closure shows explicitly that the nonlinear term in (4.99) resists the
growth of —##; implied by the term —su3. The linear pressure term is nonzero when
there is mean shear and, together with the term —su3, represents the effects of the
mean shear on the turbulence. The linear term is called into play immediately,
whereas the nonlinear term increases as the anisotropy of the turbulence increases,
but both pressure terms tend to resist the growth of —#7;.

To better understand the differing roles of linear and nonlinear terms, we intro-
duce the idea of rapid distortion of turbulence, which may apply when the mean-flow
straining is so large that the characteristic time, s, for straining is short compared
with the typical time, O(L/u'), for the large scales of turbulence to act on themselves
and to decay in the absence of production. If sI./«’ is large, the straining is so rapid
that large-scale turbulence does not have the time to act on itself, nonlinearity and
viscosity become negligible, and the turbulence may be described by linearizing the
basic equation (4.31) for the fluctuations and ignoring the viscous terms. Another way
of saying the same thing is that the turbulence is so weak that the quadratic terms in
{(4.31) are negligible. Linear equations are mathematically more tractable and better
understood and are consequently easier to analyze. They may also be applied to
describe cases other than strongly sheared mean flows, such as flows with strong
rotation (discussed later in this section) or density stratification.

The effects of mean-flow straining of turbulence are sometimes thought of as
being similar to those produced by straining a solid material (Townsend G (1976);
Lumley (1970)), for reasons to be made apparent. The cumulative strain of the
“turbulent material” increases with time and is measured by the nondimensional
time, sz, in the case of the steady mean shear flow considered above. The idea behind
the analogy with straining of a solid material is that the effects of rapid straining on
turbulence are only apparent through the cumulative mean strain and will thus undo
themselves if the straining is reversed and the “material” returned to its initial state of
strain. If the turbulence were initially isotropic there would then be a return to
isotropy at the instant when the material is brought back to its original state of
strain. There is no doubt that initially isotropic turbulence tends to go back towards
isotropy when an initial straining is later reversed, independently of any suppression
of anisotropy by the nonlinear action of turbulence on itself, but, as we shall see, the
effects of shear are never fully undone by reversing the shear and there is irreversi-
bility of straining of the turbulent material, whose state is not simply a function of its
cumulative mean strain. Below, we shall describe the effects of changing mean shear
in more detail, but it should first be made clear that the temporal variations in mean
shear that are envisaged are not easily achievable in practice, since they involve
changes in the mean vorticity. This normally requires viscous diffusion from bound-
aries, which are not present in the infinite flow considered. One might imagine
applying an appropriate mean rotational volume force to the fluid, but exactly
how this might be achieved in practice is unclear. However, this is unimportant
because what we have in mind here is more of a thought experiment, intended to
illustrate a general principle. It is certainly the case that, from the point of view of a
packet of turbulence being convected by the flow, changing mean shear is present in
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more realistic flows and the example given here is aimed at understanding the beha-
vior of turbulence with such variable mean strain, rather than as a real-life flow.

In any case, we now allow s to vary with time and ask what effect this has on the
turbulence. The easiest case to handle is the rapid-distortion limit in which the mean
shear is so strong that the interaction of turbulence with itself and the effects of
viscosity can be neglected. In the present case, linearization and neglect of viscosity in
(4.31) yield
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which, together with the condition, (4.6), that u have zero divergence, form the
governing equations for the turbulence. All viscous and nonlinear terms in the fluc-
tuations have been thrown away in going to (4.100)-(4.102) and this means that it is
an approximation whose validity needs to be carefully tested in any given case.
However, regardless of the applicability of the theory in any particular flow, our
objective here is to study the basic mechanism of mean shear effects on turbulence, a
mechanism which is embodied in (4.100)-(4.102).

We set o = ['s dt as a new dimensionless time variable which measures the cumu-
lative strain, just as the variable st does with constant shear. At the same time we
introduce a new variable, = = p/s, to replace the pressure. The result is that (4.100)—
(4.102) become

My oy = 8 (4.103)

e R i (4.104)
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which have exactly the same form as (4.100)-(4.102), as if s had the constant value
1. The continuity equation, (4.6), is unchanged. It is not easy to solve these equa-
tions, even though they are closed and linear, but we do not need the detailed form of
the solution for our purposes. All we need do is to remark that, according to (4.103)-
(4.105), the fluctuating field, «;, can be considered as a function of x and ¢ only. We
now imagine beginning with a given initial turbulent field and allowing it to evolve
with changing mean shear, in such a way that the net strain due to the shear is zero at
some later time. In that case the variable o has the same value at the start as at the
later time and, since u; is a function of o, the turbulence will have returned precisely
to its initial state. There is thus no hysteresis according to rapid distortion theory and
the turbulence depends solely on the cumulative strain, just as it would for a
hypothetical turbulent material subjected to straining.
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This no longer holds true when nonlinear terms in the fluctuation equations are
allowed for. Nonlinearity leads to memory of the past history of strain. Rapid
distortion theory, and hence reversibility of turbulent straining, may apply when
the straining effects (in our case the effects of shear) are sufficiently strong, so that
the elapsed time is insufficient for turbulence to have significantly evolved in the
absence of the imposed strain. According to the theory, reversing the shear should
tend to undo the effects of the initial shear and this is generally true, even when rapid
distortion theory itself is inapplicable. Furthermore, within the theory, it does not
matter how one gets from one state of strain to another, it is only the value of o,
representing the cumulative strain, that counts. Thus the turbulence does indeed
behave like a material under strain, within the approximations of rapid distortion
theory. These results apply equally to inhomogeneous and homogeneous turbulence.
Rapid distortion theory, that is, linearization of the equation of the fluctuating
velocity and neglect of viscosity, can obviously be applied to more general flows
than the simple one described here and similar conclusions reached.

If one assumes homogeneity and derives an equation for the Reynolds stress from
rapid distortion theory, one can easily show that the result is equation (4.96) (which
is exact) without the viscous term, which is in any case small. However, the rapid-
distortion equivalent of the pressure equation does not have the exact form, (4.98),
because it is missing the nonlinear term, which is not included in rapid distortion
theory. As we have seen, this term has no effect on (4.96) when the turbulence is
isotropic and so we might expect rapid distortion theory to describe the initial
evolution of turbulence, which begins as isotropic, rather well, since it reproduces
{4.96) precisely. Of course, (4.96) and (4.98) are not a closed set and we cannot
really assert, when we recover these equations from some approximate model, that
the model gives a good approximation to the exact solution of the turbulence pro-
blem we had in mind in other respects.

To go beyond rapid distortion theory, we need to include the effects of nonlinear-
ity. We cannot then solve the equation (4.31) analytically for the fluctuations, but we
can get an idea of how the solution might behave from a simple argument, as
follows. Suppose that we begin with a constant mean shear, s > 0, applied to initially
isotropic turbulence. We know, from our previous discussion, that the growth of
—u 4, is due to the first term on the right of {4.99), resisted by both the pressure—
strain correlation terms of the same equation. Suppose now that the shear is sud-
denly reversed, so that, according to rapid distortion theory, —# %, would begin to
decrease, retracing its steps in the opposite direction. Immediately after the sign of s
is changed, the fluctuating velocities will be the same as they were just before and the
first and second terms on the right of (4.99), which contain s, will change sign, but
the third term will not, because it originates in the quadratic term on the right of
{4.98), which does not contain the mean flow. Since the unchanged term in (4.99) is
tending to reduce —#7#;, that quantity will return more quickly to zero than was
implied by rapid distortion theory, as illustrated in Figure 4.6. The effect is one of
hysteresis: the cumulative strain no longer completely describes the turbulence and
there is no full return to isotropy, despite the fact that —7,%; goes back towards zero.
It is clear that, in general, there is a complicated interplay between the mechanisms of
direct mean-flow—turbulence interaction, linear pressure effects, and nonlinear pres-
sure effects.
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Returning to the problem of constant
shear that we set ourselves earlier, if the e
. . U3

mean shear is sufficiently strong that -t

rapid distortion theory applies, it can /’

ui4y

be shown, based on that theory, that
the turbulence becomes increasingly ani-
sotropic and the turbulent energy grows A
proportional to st asymptotically as /
st — 00. As the turbulence rises in
intensity, nonlinear terms become more /
important and eventually the rapid dis-
tortion approximation breaks down. At —)
this point, nonlinearity is significant and [sdt
the evolution of turbulence changes
character. At large times, it is observed

Figure 4.6. |#y%;|/u 1, for a thought experiment in which
> . uniform mean shear is suddenly reversed. The rising part of
to finally settle into a sort of equili- (he cyrve represents experiments with constant shear and has
brium state in which the ratio of the an asymptote of about 0.5.

different components of ##; tend
towards limiting values (see, e.g., Tavoularis and Karnik (1989)). In particular,
the correlation coefficient, |#175;|/u}u), is found to have a limiting value around
0.5, typical of shear flows and apparent in Figure 4.6.

This asymptotic regime is also approached if the initial turbulence is insufficiently
weak that one can apply rapid distortion theory in the initial phase and nonlinearity
is important for turbulence evolution at all times. In the opposite limit to that of
rapid distortion, for which the turbulence is so strong that one may initially neglect
the mean shear, it decays to begin with, as if there were no mean flow, until the
effects of the shear become significant, that is, sL/4" = O(1), and the turbulence
subsequently tends towards the above asymptotic regime. It therefore appears
that, no matter what the initial conditions, high-Reynolds-number, homogeneous
turbulence subject to a constant mean shear without boundaries will eventually
approach the “equilibrium” state, thus forgetting its origins.

The asymptotic state of the flow is observed to have continuously growing corre-
lation lengths and turbulent velocity fluctuations. Experimental results seem to be
consistent with the idea that the large scales of turbulence become statistically self-
similar, that is, that the large-scale statistical properties of

u(L(@)y, )

=T

(4.106)

become mdependent of time, where y =x/L(¢) is the similarity variable. For
instance, although #' continues to increase, the normalized components uu,/q
approach asymptotic limits at large times, as noted above. The quantities #" and L
are found to be exponential functions of time® (see Tavoularis and Karnik (1989)).

® Tt is interesting to note that the growth of turbulent energy proportional to ¢ predicted by rapid distor-
tion (i.e., linear) theory appears to become exponential when nonlinear effects are important. One often
finds exponential growth in the linear theory of hydrodynamic stability, which is usually assumed to be
limited by nonlinearity.
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As a consequence of increasing L, the large scales of turbulence grow in size without
bound and, in practice, become comparable in size with the overall dimensions of the
flow volume. Thus, the finite size of experimental flows sets an upper limit on the
length of time for which a reasonable approximation to the ideal flow can be
obtained. Afterwards, the flow can no longer be regarded as infinite, the turbulence
in the middle of the flow volume senses the boundaries, and ceases to be approxi-
mately homogeneous. This takes us beyond the scope of the problem considered here
and obviously limits the growth of quantities such as L.

The model discussed above supposes infinite, homogeneous turbulence in a uni-
form mean shear. Although the shear introduces a characteristic time scale, s, there
are no length scales, other than those defined by the initial turbulence itself. The
existence of boundaries and associated length scales in more complex flows can
significantly modify the evolution of turbulence. Furthermore, within the model,
turbulence production is spread out uniformly over space {due to homogeneity)
and the complication of having several spatially disparate turbulence production
centers, which is another feature of more complex flows, is not present here. The
model is simple and limited, but nonetheless representative of some facets of the
evolution of more general turbulent shear flows. For instance, values similar to,
though not identical with, @7/, 1) ~ 0.5, obtained for the asymptotic state of
the above model flow, are typical of general shear flows.

The concept of nonlinear memory effects, which was introduced above, can be
used to better understand the noncoincidence of the positions of maximum mean
flow and zero ##; for a wall jet (Figure 4.1) which was briefly commented on when
we described the eddy-viscosity approximation in Section 4.1. When following a
packet of turbulence in the jet, which we think of as convected by the mean flow,
the mean shear will change with time. Suppose that we can regard the evolution of
the turbulence in this packet of inhomogeneous flow as similar to the homogeneous
flow with variable mean shear described above. A packet of fluid that is convected by
the flow will encounter the maximum of the mean flow, where the mean shear goes
through zero, but will require further time, with reversed mean shear, to reduce the
value of %1%, to zero. Thus we would expect the zero of #7#; to occur nearer the wall
than the maximum of the mean flow, which is exactly as observed in practice. These
ideas have been used as the basis of a quantitative model by Jeandel, Brison, and
Mathieu (1978).

HOMOGENEOUS TURBULENCE SUBJECTTO SUCCESSIVE PLANE STRAINS

The flow considered here is, in some respects, similar to the sheared one of the
previous subsection and we again consider issues of rapid distortion versus nonlinear
reversibility. However, whereas a mean shear that varies with time requires rota-
tional body forces, the mean flow considered here is irrotational and changes can be
brought about in the straining field by pressure forces alone. This makes it possible
to produce variations in the straining field in an experimentally straightforward
manner and to carry out measurements designed to investigate the effects of such
variable straining fields using flow in a duct.
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The mean flow is the plane straining field
U, =constant  Ug = Dg,x, (4.107)

where the indices, 8 and y, can take on the values 2 and 3, and the summation
convention applies to repeated indices as usual (but with summation over the values
2 and 3 only when 8 or y is repeated). Thus, the mean strain takes place in the x,—x;
plane. In general, the rate of strain components, Dg,(t), can depend on time and are
symmetric, that is, D3 = Dj;, so that the mean vorticity is zero. The trace, Dgg =
D;; + D33 = 0 in order that the mean-flow continuity equation, (4.5), is satisfied.
Observe that, since Dp, is symmetric, it can be diagonalized at any given instant of
time by a suitable rotation of the coordinate system about the x;-axis and, since it
has zero trace, it then takes on the diagonal form D,, = —D;3; =D and
D3 = D3, = 0. Thus, the straining field Dg () may be specified by giving the
time history of D and of the orientation of the principal axes of Dg, in the x,—x;3
plane. The turbulence is homogeneous and therefore does not contribute to the
mean-flow equation, (4.9), which is satisfied by the flow with P a quadratic function
of x; and x;. The given mean flow is such that turbulence remains homogeneous if it
is initially so, for the same reasons as the shear flow in the previous subsection. It
follows that the flow envisaged is a possible one (here, as noted above, the changes of
the mean flow with time, being irrotational, can be brought about by the mean
pressure field and need not involve rotational, external body forces). Our objective
is to study how turbulence evolves under such plane mean straining.
Experimentally, this type of turbulent flow has been considered by Townsend
(1954), Tucker and Reynolds (1968), and others for a constant straining field Dy,
while Gence and Mathieu (1979, 1980) investigated the interesting generalization in
which the principal axes of straining undergo a sudden rotation with |D| maintained
constant. In these experiments, grid-generated turbulence is carried by flow along a
duct whose cross-section changes in shape along its length in such a way as to gen-
erate a close approximation to the mean flow (4.107), where x; measures distance
along the duct axis and x,, x3 are transverse coordinates. For instance, Figure 4.7
shows a sketch of the Gence and Mathieu apparatus, in which turbulence produced
by a grid enters an elliptical duct of varying eccentricity, subjecting the turbulence to
teansverse straining. Grid turbulence is locally nearly homogeneous, once near-grid
effects have disappeared (i.e., many mesh spacings downstream of the grid, hence the
initial section of uniform duct in the figure upstream of the nonuniform working
section), but evolves continuously with downstream distance, and therefore cannot
be exactly homogeneous. Provided the size of the large turbulent eddies, which scales
on the mesh spacing of the grid, is small compared to the length scale for evolution of
the turbulence (in particular U, /|D|, which is the distance for significant straining
effects), one may imagine following a packet of turbulence moving along the duct: the
elapsed time t is related to distance along the duct by x; = U;t. At any given duct
position, the turbulence is locally homogeneous, and, to a good approximation,
evolves with ¢ = x;/U; as if it were exactly homogeneous. Thus, grid turbulence in
an appropriately designed duct allows approximate realization of the idealized homo-
geneous turbulent flow described above, with x;/U; playing the role of time. In the
absence of mean straining and once near-grid effects have disappeared, grid turbu-
lence is found to be approximately isotropic, but, once it enters the mean straining
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Figure 4.7. Sketch of the duct used by Gence and Mathieu (1979) to realize plane straining of turbulence.

field, it is distorted and loses isotropy. An appropriate theoretical model of the experi-
ments is thus initially homogeneous, isotropic turbulence evolving in the mean flow
described by (4.107).

To begin with, we consider the case of constant Dy, yielding a fixed orientation
for the principal axes of straining. For simplicity sake, the coordinate system is
chosen so that these principal axes lie in the x,- and x3-directions, corresponding
to stretching at constant rate D > 0 in the x,-direction and compression at rate D in
the x;-direction. The quantity, D™", has the dimensions of time, and the cumulative
strain can be measured by the product Dt in the same way as st was used in the
previous subsection. Given the symmetry of the initial turbulence and of the mean
straining field under reflection in each of the coordinate planes, #%# = 0, i # j, and

hence #, 43, and 4 are the only nonzero components of ##;, whose principal axes

are consequently xy, x,, x3, those of straining. Initial isotropy implies that #? = u3 =
u3 and, in particular, that the initial turbulence is statistically axisymmetric about the

xq-axis. The nondimensional quantity

)
K=5"% (4.108)
3 +uj

measures the extent to which axisymmetry of the turbulence has been removed by
straining. Figure 4.8 shows experimental results for K as a function of ¢, initially
close to zero owing to axisymmetry, becoming positive under the effects of straining
and approaching an equilibrium value at large times. The small departures of K from
zero apparent in some of the curves for e = 1, that is, = 0, representing the start
of the distorting duct, reflect lack of exact axisymmetry of the initial turbulence. A
simple qualitative argument can be used to explain the observed sign of K at later
times, based on the ideas of vortex stretching that were described earlier. The mean
vorticity is zero and thus we have only to take account of turbulent vorticity. The
mean flow produces stretching at rate D in the x,-direction and compression at rate



D in the xj;-direction, whereas
there is no mean straining in the
x,;-direction. Vortex stretching in
the x,-direction tends to cause
the x,-component of vorticity to
increase (it behaves like eP*
according to rapid distortion the-
ory, i.e., using equation (4.31)
without the nonlinear and vis-
cous terms). Likewise, the x;-
component of vorticity tends to
decrease (as P! under rapid dis-
tortion theory). The x;-compo-
nent of vorticity shows no such
trends. Now, each component of
vorticity is associated with the
velocity components in the two
other directions, for instance
wy = 0u;/dx3 — duz/dx, accord-
ing to the definition of vorticity.
Thus, increase of w, due to
stretching will tend to induce
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Figure 4.8. Plane strains applied to initially axisymmetric turbulence
produce growing departures from axisymmetry, illustrated by the
experimentally determined growth of the quantity K. In this and
Figures 4.9-4.11, ¢ is the time taken for convection at speed U, to
reach the measurement point from the beginning of the distorting
duct. (Results of Townsend (1954); Tucker and Reynolds (1968);

corresponding growth in the Maréchal (1967); Gence and Mathieu (1979).)
magnitudes of #; and u3, while o
decrease of w; tries to decrease the magnitudes of #; and u,. It follows that 23 should
increase, while #3 should decrease, and, since K = 0 initially, K > 0 at later times, as
observed. The effects of straining on u? are less clear cut, because there is both a
tendency to increase, due to stretching in the x,-direction, and to decrease, owing to
compression in the x3-direction. Viscous dissipation means that all turbulent velocity
components tend to decay, a tendency which is superimposed on the increasing or
decreasing trends due to mean straining that we have just described.

Coming back to the experiment of Gence and Mathieu (1979, 1980), only the
ronuniform duct in Figure 4.7 concerns us here. Thanks to the circular cross-section
at the duct center, the second half of the duct can be turned through an arbitrary angle
(fixed in any given run of the experiment) about the duct axis. This corresponds to a
discontinuous change in the principal axes of Dy, which suddenly rotate through an
angle 0 <a < /2, while the strain rate | D] remains constant. When « = 0, there is no
change in the straining field at the center of the duct and one naturally recovers the
results for constant Dy, described above. No matter what the value of «, straining in
the first half of the duct is as for constant D g, and consequently, prior to encountering
the duct center, the turbulence is as before, taking on the initial principal axes of
straining, xq, X, X3, with u% > uZ. However, after undergoing the sudden change in
straining field, the turbulence begins to readjust to the new axes of strain and, in
general, the principal axes of 73z rotate about the x;-axis in an attempt to realign
themselves with the new principal axes of straining. Note, however, that, if « = 0 or
o = 1/2, the principal axes do not change. The case @ = /2 corresponds to switch-
ing the sign of D, while maintaining the same axes of mean strain.
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The quantity K, defined by (4.108), is not a tensor invariant and, whereas for the
earlier experiments x, and x3 remain principal axes throughout the duct, so this does
not matter greatly, tensor quantities are preferable in the general case. For this
reason, we introduce the symmetric, traceless, nondimensional tensor

by =22 5, (4.109)

which is zero for isotropic turbulence and is a convenient measure of anisotropy.
Since b;; is symmetric, it can be diagonalized by rotation of coordinates to its princi-
pal axes, which are the same as those of #;#;, namely the three coordinate axes prior
to the sudden change in straining, making b; diagonal then. This is no longer the
case after the rotation of principal axes of strain, when the off-diagonal element
uu3, and hence b3, acquire a nonzero value in general, representing rotation of
the principal axes of turbulence following those of straining. Observe that, since

K > 0, we have #3 > u3 and so

b33 — bzz >0 (4110)
prior to the sudden change of straining field. Equation (4.37) for the turbulent energy
becomes

dlg? —

2L = Dby~ by)d? — & (4.111)

in the present case, before the sudden rotation of the axes of straining. According to
(4.110), the first term in (4.111), representing turbulence production, is positive and
energy is fed to the turbulence, offset by viscous dissipation.

After the sudden rotation of axes, the behavior of the turbulence depends on the
angle «. Let us first consider the simplest case, @ = /2, so that one can think of the
change of straining in terms of maintaining the same principal axes, but switching
the sign of D. The straining in the x,-direction becomes a compression instead of
stretching and that in the x3-direction, a stretching rather than a compression. Thus,
the new straining motion attempts to undo the effects of the old one and, according
to rapid distortion theory, would restore the turbulence to its initial state at the end
of the second half of the duct. However, as described in the previous subsection,
hysteresis (nonlinear and viscous) effects stop such complete reversibility in practice.
Nonetheless, the trend should be towards reversal of the effects of the previous
straining. In particular, the turbulence should move in the direction of isotropy.
The energy equation, (4.111), still holds with the reversed straining, but, since D
is now negative, the turbulent energy decreases rapidly in the second part of the duct,
due both to the effects of straining and to the dissipation, which now act in consort,
rather than opposing each other as before. Leaving aside dissipation, energy is
extracted from the turbulence via the first term in (4.111) (so long as b33 > by,).
This type of behavior, in which energy flows away from turbulence, may, at first
sight, appear paradoxical, since one is used to thinking of turbulence as a random
phenomenon whose state of disorder would preclude (in some poorly defined Second
Law of Thermodynamics sense) the extraction of energy. However, as we see here,
such reverse transfers can and do occur.
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Figure 4.9 shows the measured O~ by; e =0
evolution of b, and b33 in the case i \' . 855 mtrt
=0, that is, when there is no S Teey 5
change in straining field, and ¥ L8 @=a2

field reverses at the duct center.
When « = 0, an asymptote is appar- -

a=mn/2, for which the straining */* . s e

* ok koW o =0

ently approached at large time, con- 03— :
firming the behavior apparent in 0 1
Figure 4.8. The results with reversal
of straining are remarkably sym-
metric about the duct center, a sym-
metry predicted by rapid distortion
theory and corresponding to reversibility of the effects of straining. Figure 4.10
illustrates the evolution of the turbulent energy for different values of «, showing
a general decrease due to dissipation, upon which the effects of straining are super-
imposed. Thus, for the case @ = 0, in which the turbulence is continuously amplified
by straining, the energy decreases initially, due to dissipation, but is subsequently so
amplified that it returns to its original level by the end of the duct. The equality of the
initial and final energies in this case is coincidental: the relative size of the effects of
dissipation and straining depend on how rapidly the strain is applied. The net effect,
along the whole duct, can be either an increase in turbulent energy, if straining wins,
or a decrease if dissipation dominates. In the opposite extreme, @ = /2, in which the
strain is reversed at the center of the duct, the turbulent energy obviously follows the
same curve as for @ = 0 until the duct center is reached, but subsequently declines
rapidly as the combined effects of straining and dissipation both cause it to decrease.
The other values of @ show behavior intermediate between these two extreme cases.
In the limit of strain applied infinitely rapidly, rapid distortion theory would predict
continuous amplification with « = 0 and exact symmetry about the duct center for
a = /2. The fact that an irreversible process, such as dissipation by the turbulent
energy cascade, is important in the experiment, as evident from Figure 4.10, suggests
that rapid distortion theory ought to do rather poorly. However, as shown by Figure
4.9, the quantities b,, and b33 are remarkably symmetric about the duct center, a
result in good accord with rapid distortion theory. As apparent from the definition,
(4.109), of by, it represents the relative magnitudes of the components of the
Reynolds stress tensor. Why rapid
distortion theory should yield reason-

Mathieu (1979, 1980).)

2

ably satisfactory predictions of nor- 7 LTy .- i
malized Reynolds stresses when N TP ' Lo
dissipation is significant (and hence Tl e
the basis of the theory is suspect) is - L.
not fully understood. e

In the above flow, with & = 7/2, T
the turbulent production term is posi- o ! o

tive in the first half of the duct and
anisotropy increases there, whereas in

Figure 4.10. Experimental evolution of? = #;1; in the
the second part, the turbulence pro-

duct.
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Figure 4.9. Experimental evolution of b,; and b33 in the distort-
ing duct. (Figures 4.9-4.12 are based on results of Gence and
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« = m/4

a = 37/8
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duction is negative and anisotropy decreases. There is, in fact, a close connection
between the two for flows, such as this one, in which there are important effects of
turbulent distortion by the mean flow. To see the relationship between turbulent
energy production and increasing anisotropy more clearly, let us introduce the quan-
tity I = b;b;;, a scalar invariant under rotations of the coordinate system, which is
the sum of squares of the components of b;; and is therefore a measure of anisotropy.
We wish to derive an equation for I, to approximate it, assuming the turbulence to be
close to isotropy, and to compare the results with those for the turbulent energy. We
consider a general, steady mean flow of the form

containing homogeneous turbulence. Here, in order that the mean flow satisfy the
incompressibility condition, (4.5), we must have A; = 0.
: To derive an equation for I, we first use (4.112) to rewrite (4.38) as

du; 1 (0u; Oy u; Ou;
= —A: . A_ l —2v 1 ] )
dt Rkttt — Ayttt + p[ax, ax,-] 2 dx, Oy, (4.113)

which describes the evolution of the turbulent velocity moments in the mean flow
given by (4.112). We suppose that the small scales of turbulence, responsible for the
dissipation at large Reynolds number, are isotropic so that (4.45) holds. We can also
write the energy equation, (4.37), as

dig?
fit = — A, — E (4.114)
From the definition, (4.109), of b; and (4.45), (4.113), and (4.114), we obtain
db; 1 1 1
dtf = — A (b;'k + §3fk> = Ak <bik + g&‘k) + ZAklbkl<bﬁ + g&'j)
W (4.115)
+2= b,, +—=p
g* P> ax, ax;
Recalling that what we are after is an equation for I, we write
dl db;;
5= ZbﬁI (4.116)
and use (4.115) to find that
dil 4 . 2b; [ou; Oy
B WY/ SO Sl APy i A I .
7 340 [ax,- + 8x,-] 4A,kb,,b,k + 4( ,,b,, + 2 ) (4.117)

where we have exploited symmetry of b;.

The flows we have in mind here are those for which the turbulence is close to
isotropy. Thus, b; is small and the last two terms on the right of (4.117), which are
of quadratic order in b; (recall that I is a quadratic function of b;), may be neglected
compared with the first term. Furthermore, for the second term, we adopt a closure
model due to Lumley (1975) and Launder, Reece, and Rodi (1975), which implies
that
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1 3ui 814/ 1 3 3Ut 3U/
el i G —t 4118
pp[Sx,-+8xi} 3Cq <3x,-+3xi v ( )

where C’ is a numerical constant of the closure and ¥ — 0 as b; — 0 and may be
neglected here because b;; is assumed small. Thus, using (4.112), (4.117) becomes
dl 4
Yo T(1-C)
dt 3 (1-¢)
in which the bracketed expression is positive, since it is observed that C" < 1. This
may be compared with the turbulent energy equation, (4.114), which can be written

bi (4.119)

if

dig?
dt

when the definition, (4.109), of b;; is used. The first term on the right-hand side
represents turbulence production and has the same sign as dI/dt, according to
(4.119) with C’ < 1. It follows that the turbulence moves towards isotropy, in the
sense that I, and hence b;;, decreases, when there is transfer of turbulent energy to
the mean flow, but away from isotropy when there is positive turbulence produc-
tion. Note that the use of a closure model (4.118) and the assumption that flow is
already close to isotropy mean that this result should be regarded as qualitatively
enlightening, rather than as providing an exact, quantitative description of the
experiments.

In the case of the straining field considered in this subsection, Figure 4.11 shows
the measured evolution of I for a number of different angles of rotation, a. Increasing
I in the first half of the duct corresponds to positive production of turbulent energy
there, whereas, depending on the value of «, I can either continue to increase, or
begin to decrease in the second half, reflecting the sign of the energy production.
Once again, we see the remarkable symmetry about the duct center when o = 7/2,
while the dashed curves show the results of rapid distortion calculations for ¢ = 0
and « = n/2, further illustrating the surprisingly good, if clearly approximate,
description of the normalized Reynolds stresses obtained using a rapid-distortion
approach.

Just after the first half of the duct, when the new principal axes of straining have
come into effect, the principal axes of the Reynolds stress are still aligned with those
of the first straining. When « differs from 0 and /2, they rotate about the x;-axis in
the second half of the duct in an

= —hjb; — % (4.120)

i

attempt to realign themselves with 0.1~ T a=0,8
the new axes of straining. This is Tt ea=ni4
illustrated in Figure 4.12, which = et e

shows the evolution of the angle of ﬁ" L P

the principal axes of #%# in the sec-  ~ T T I L
ond half of the duct. The angle Lae bl I

plotted, ¢, is that of the principal 027" : Lt a=a
axes of the Reynolds stress, relative 0 1 Dt

to t,he princip al axes of the new Figure 4.11. Experimental evolution of the quantity I=b;b;,
strain (thus ¢ =« at the duct cen- measuring anisotropy. The dashed lines are the results of rapid
ter). Complete readjustment of the distortion calculations for @ = 0 and a = /2.
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Figure 4.12. Experimentally determined evolution of the
direction of the principal axes of turbulence following a
sudden change of the direction of straining at the center of
the duct. Here, unlike in previous figures, the time origin
corresponds to the duct center. The dashed lines represent
the results of a rapid distortion calculation.

ROTATING TURBULENCE

principal axes to the new straining is not
possible given the limited length of the
duct (the distance from the center to the
end of the duct represents a cumulative
strain of only Dt ~ 0.7).

In summary, initially axisymmetric tur-
bulence placed in a constant straining field
tends to lose axisymmetry and to adopt the
principal axes of that field. If the orienta-
tion of the field is suddenly changed, the
turbulence slowly adjusts to the new prin-
cipal axes. More importantly, energy can
be extracted from the turbulence if the
new straining field acts in the opposite
sense to the original one. When this hap-
pens, the anisotropy developed during the
original straining is partially removed.
Straining of turbulence is thus somewhat
reversible and is increasingly so the more
rapidly the straining is applied.

We consider turbulent flows in a steadily rotating fluid, such as found in rotating
turbomachinery or in the earth’s atmosphere and oceans, although without allowing
for the effects of stratification which are important in geophysical applications.
Sufficiently strong rotation is observed to considerably alter the turbulence
dynamics, in particular leading to anisotropic structuring of turbulent eddies,
which tend to be elongated in the direction of the axis of rotation. The importance
of rotation for the large scales of turbulence is determined by the reciprocal of the
turbulent Rossby number, Ro = #'/QL, where Q is the angular velocity of rotation.
The Rossby number is the ratio of a rotation time scale, 2", to a characteristic time,
L/u, for evolution of the large scales of the turbulence in the absence of rotation.
Thus, a large Rossby number corresponds to small effects of rotation and if it is
sufficiently high one may neglect rotation altogether. On the other hand, a small
enough Rossby number implies strong rotation and the large scales of turbulence do
not have time to act on themselves significantly during a rotation period. One may
then envisage applying rapid distortion theory, at least over intervals of time com-
parable with the rotation period. However, it turns out that rapid distortion theory
predicts no development of anisotropy in initially homogeneous, isotropic, rotating
turbulence without mean flow, a difficulty that it shares with a number of other
turbulence models of varying degrees of sophistication. This and other characteristics
make rotating turbulence somewhat of a challenge for turbulence modeling. We give
an introduction to rotating turbulence here based on one-point methods, although
the limitations of the description using one-point statistics will become apparent,
thus illustrating the need for the more sophisticated multipoint techniques. Such
techniques will be addressed in Chapter 6, albeit for the simplest case of turbulence
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in the absence of additional effects such as mean rotation and shear, whose detailed
analysis goes beyond the scope of this volume.

A rotating fluid is most straightforwardly described using a frame of reference
rotating with the fluid and we choose the coordinate system so that the rotation takes
place about the x3-axis. The angular velocity of rotation is constant and denoted by
2, not to be confused with a vorticity component (we do not use the vorticity in this
subsection). The effect of rotation is to introduce fictitious centrifugal and Coriolis
forces into the equations of motion, as described in most textbooks on elementary
mechanics. The Navier-Stokes equation in the rotating frame takes the form

AU, AU, 18P U,

it WU § i W 2QU 4.121
3t I ox; oo, TV ox,0%; e ( )
au, 1P &U

30, ’.3_‘]2:___“ 2 _ QU (4.122)
ot ax; p0x, 0x; 0x;

aU 1P ?

aU; ’8U3 __lap ol (4.123)
ot ax; p 0x3 0x;0x; .

where the pressure has been adjusted, P =P - pQ*R%/2, to take account of the
fictitious centrifugal force and R = (x + x5)"/? is distance from the axis of rotation.
All effects of the centrifugal force are allowed for simply by this redefinition of the
pressure. Equations (4.121)—~(4.123) should be compared with (4.3): the additional
terms on the right-hand side represent the Coriolis force. It is straightforward to
allow for the new (Coriolis) terms when averaging, because they are linear. The
continuity equation, (4.4}, is unaffected by rotation.
Taking the average of (4.121)—(4.123) gives the mean-flow equations

U, —oU, 14P U, emm

U a1, °T, _ b, 1200, (4.124)
at 0x; 0 0xq 00 ox;

U, o0, 1P T, omm .

a2 Ul_a_Uz __lop 2T, dmm —2QT; (4.125)
at 0x; 0 0x; 00 ax;

aU;  — 1 P ‘U, omsu;

80, U’8U3 )2 U dusu (4.126)
at 0x; ,o 8x3 0x;0x; ax;

which are the equivalent of (4.9) in a rotating fluid. Observe that, as in the absence of
rotation, the only effects of turbulence on the mean flow appear via the divergence of
the Reynolds stress tensor.

We can obtain equations for the fluctuating field in the same way as we derived
the equivalent, (4.31), without rotation. Thus,
—8141 8U1 1 8p

Ll By ol B G ity = +v
— — — —uu —mu -
ot 8x kaxk 1%k 1%k 00X

20
axka T et

(4.127)
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duy ——du, au, 9 1 8p Fuy
e T i SRt SRR P - ~20
ot T Dk, T M, T 2 T R = e T 2

(4.128)
duy;  —ous auU;, @ 1 8p Fus
M T 0, 3 g, — -2 4.129
ot T D, T, g e T = e Y e (4.129)

The equations for the Reynolds stress components can now be obtained by multi-
plying (4.127)—-(4.129) by different components of #; and averaging. We find that

77PN TE TR aU. oU, dugay
1% 1% —_ / —_— 1 1
U =208 — W —L —ir _ TR
ot oy By e T e T g
- (4.130)
1 ap n ap n Bzuf n u,
—— ;i —+u— viu; u;
ol fax, 7 ox Ixpx, ) dxpdxy
where the rotational term contains the matrix
2141142 2 - ;% Uy
ﬂif = M% — M% —ZM]MZ —UiUy (4.131)

75%7] —u,u 0
2U3 143

Equation (4.130) is the equivalent of (4.32) with the inclusion of fluid rotation. In
many practical flows the Rossby number is large enough for the rotational term in
(4.130) to be neglected, rotation having a significant effect on the mean flow only, if
at all. However, in compressors, to name one example, the rotational terms are often
of the same order of size as the production terms, that is, the first two terms on the
right-hand side of (4.130). From here on, we suppose that the rotation is sufficiently
strong that it affects the turbulence significantly.

The turbulent energy equation can be derived by setting j = 7 in (4.130), with an
implied summation. The result is equation (4.33), as before, and so rotation does not
change the turbulent energy equation. This is a reflection of the fact that the Coriolis
force is perpendicular to the fluid velocity and hence does no work. Rotation only
enters into the energetics of turbulence because it changes the various correlation
terms which appear in equation (4.33). For homogeneous turbulence we obtain
equation (4.37), that is,

did oy,
dr = e
X

-z (4.132)

as if there were no rotation. Rotation can, however, modify both the production and
dissipation terms in this equation by acting on the mean and fluctuating motions.

When the turbulence is homogeneous, as assumed from here on, equation (4.130)
can be rewritten as

du; aU; U, 1 [bu; Ou, u; ou,;
=208, — i — —way—— - —pl 2 I n e T
dt By — ity axy "tk axy + pp[Hx, + ax; vaxk axy

(4.133)
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which is the equivalent of (4.38) with rotation. To bring out the effects of rotation
more clearly, we take the mean flow to be zero from now on, so that there is no
longer any mean-flow—turbulence interaction, such as the distorting effects which
dominated the previous two examples (since the turbulence is homogeneous, there is
no Reynolds stress forcing of the mean flow, which consequently remains zero if it is
so initially). Note, however, that zero mean velocity in the rotating frame is equiva-
lent to a nonzero mean velocity in the nonrotating frame, representing solid-body
rotation at angular velocity Q. Without mean flow, equation (4.133) becomes

du; 1 (0w, Ou du; ou;
=208, +-pl L TV 5,2 4134
dt Pi+ pp{ax,- + 0x; dxy, O, ( )

which now contains only the rotational, pressure-rate-of-strain correlation, and
viscous terms. When, as here, the mean flow is zero, so there is no turbulence
production, the turbulent energy equation, (4.132), simply tells us that the turbulent
energy decays under the effects of dissipation, as also follows from (4.134) withj = i
and ﬂii =0.

If the turbulence is initially isotropic,

_ 1 — 814,» ou; 1 _
u,»u,» = ngéﬁ, Véx—k'é;i = 586,7, and ﬂ,] =0

according to (4.131). Thus, on examining (4.134), we see that the turbulent velocity
correlations, #;, can only become anisotropic via the pressure-velocity term.
Symmetry implies that initially isotropic turbulence with no mean flow will maintain
w3 = u} and %1, = uyu3 = wyu;3 = 0 at all times. Thus, the only effect of developing
anisotropy on ##%; is to make the values of the mean-squared velocities, #% and
u? = u3, respectively parallel and perpendicular to the axis of rotation, different.
In fact, it is found experimentally (Jacquin et al. (1990)) that initially isotropic
turbulence leads to only relatively minor departures of ##; from an isotropic form
at later times. That is, although the internal structure of turbulence is rendered very
significantly anisotropic by rotation, this is not apparent if one restricts attention to
#;14;, but other quantities, for instance correlation lengths parallel and perpendicular
to the axis of rotation, are found to reflect the development of gross anisotropy. In
particular, larger axial correlation lengths indicate elongation of turbulent structures
parallel to the rotation vector. This illustrates the limited scope of the one-point
moments ##; as a measure of turbulence and should caution one against assuming
that, because the Reynolds stress tensor is close to ##; = ¢*8;;/3, or equivalently b;; is
small, the turbulence is nearly isotropic. Two-point, spectral formulations contain
considerably more statistical information and allow a much more complete descrip-
tion of turbulent anisotropy, including its distribution over differently sized and
orientated turbulent eddies.

Another important experimental observation is that rotation tends to reduce the
rate of decay of turbulence by inhibiting the cascade of energy to small scales and
hence the dissipation. As discussed earlier, turbulence left to itself decays on a time
scale of O(L/#'), but in the presence of strong rotation (i.e., small Rossby number)
decay takes considerably longer than this. The detailed explanation of this phenom-
enon requires spectral analysis, but can be roughly understood as follows. A rotating
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fluid supports waves (Greenspan (1968)), known as inertial waves, which oscillate in
time with frequencies of order €2. At high rotation rates, turbulence can be usefully
thought of as a superposition of plane inertial waves (Fourier analysis) whose non-
linear interactions produce transfer of energy among different wave orientations and
wavelengths, leading to the development of anisotropy, noted above, and to the
energy cascade to smaller scales. However, the nonlinear terms inherit the inertial-
wave oscillations and the cumulative effects of these oscillations tend to be nearly
self-canceling except for a restricted class of wave pairs, whose nonlinear interaction
happens to drive a third wave, producing significant cumulative energy transfer, a
process known as wave resonance. Resonance (or near resonance) yields efficient
exchange of wave energy, but, being confined to only certain wave interactions, the
net effect of rotation is to inhibit energy transfer. One result of this is that the energy
cascade, and hence the dissipation, are reduced. It should be clear from this brief
discussion that the main observed consequences of rotation applied to initially iso-
tropic turbulence, namely the development of anisotropic structuring and the reduc-
tion in the dissipation rate, involve rather subtle effects that are beyond the scope of a
one-point description, thus pointing the way toward the need for spectral formula-
tions.

To further understand the characteristics and limitations of one-point descriptions
of rotating turbulence, we may apply one-point closures to express the pressure and
viscous terms in (4.134) in terms of ##;. The pressure fluctuation, p, satisfies a
Poisson equation which is derived by taking the divergence of (4.127)-(4.129).
Thus we find that, in place of (4.48), we have

1 Bu,
SV = 29(% - 3&> _ i 0y (4.135)
o

ax,; 0xy 0x; 0x;

where we have again assumed homogeneous turbulence and no mean flow. The
rotational term in (4.135) will be recognized as proportional to the x3;-component
of the vorticity, while the second term on the right is nonlinear in the fluctuation. As
before, we write the corresponding two components of the fluctuating pressure as
pY, for the linear part due to rotation, and p® for the nonlinear component. The
pressure—rate-of-strain term in (4.134) can be decomposed into linear and nonlinear
components and the traditional one-point closure hypothesis for the nonlinear part is
given by (4.55). The usual one-point closure for the linear pressure term {Launder et
al. (1975)) assumes that it is proportional to the production term” in (4.134), i.e.,

1 ou; Ou;
PNAPY B ST | (N Yo ToY" ) 4136
pp [Bxi+3xi] CQp; ( )

where C' is a numerical constant of the model. Employing the closures (4.45), (4.55),
and (4.136) to express the viscous and pressure terms in (4.134) gives a one-point
model for rotating homogeneous turbulence. It is convenient to express the resulting
system of equations for %z using the variables

7 Actually the closure involves the traceless part of the Reynolds-stress production, but, in the case of
solid-body rotation, the production term is already traceless, since 8; = 0.
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[ 1 S —
ry=u}-> (17 +13) (4.137)

which is the difference between the mean-squared velocities parallel and perpendi-
cular to the axis of rotation, and the complex quantities

1/~ — e 177
Fz Z—Z'(M% —M%) +ZM1 2 :E(Ml +ZM2)2 (4138)
and
I's = wus + ity u3 = uz(uy + iuy) (4.139)

where, as usual, { = ~/—1. In terms of these variables, the model takes the form

ah_ _cEip (4.140)
dt q*

ah_ _cfr, 4i(1 - C)ar, (4.141)
dt P2

a's _ _cfr,_ 2i(1 - C)Qr; L (4.142)
dt P

with the exact energy equation
d = =, =5\ _di¢ . _
E("% +u +1ad) ==L =2 (4.143)

In the case of initially isotropic turbulence, I'y = T', = I'; = 0 remains so at all times,
according to (4.140)—(4.142). Thus, the model predicts that 7 retains the isotropic
form w; = g*3;;/3, a prediction which is not far from the truth, as discussed above.
Equation (4.143) is then the only nontrivial member of the system (4.140)-(4.143),
describing the decay of turbulent energy under dissipation. In addition to the closure
hypotheses introduced above for the terms in the equation for #z; which are not
exactly expressible in terms 737 itself, traditional one-point models include an evolu-
tion equation for & {Launder et al. (1975)), based, like the closures, on heuristic

assumptions. In the present case, this takes the form

t ﬂqz

(4.144)

where C" is a further numerical constant of the model, supposed, like C and C', to
be universal, but adjustable to fit experimental data. To make (4.144) reproduce
the reduction in the dissipation rate in the presence of rotation noted above, the
supposedly universal constant C” may be increased. However, it should be recalled
that, although we have here applied the model to a specific flow, namely rotating
homogeneous turbulence, it is supposed to apply to general flows with the same
constants.® Ad hoc adjustment of the constants of one-point models depending on
the particular flow considered is a rough and ready way of allowing for physical

8 Although we have formulated the problem in the rocating frame, it should perhaps be reiterated that, in
the nonrotating frame of reference, fluid rotation merely appears as a special type of mean flow.
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effects which are not properly accounted for by the models and illustrates the need
for more refined approaches. Of course, from a practical engineering point of view,
adjustment of the modeling constants for particular classes of flows using empirical
data fitting may be the best way of producing reasonably accurate flow predictions,
but it is fundamentally unsatisfactory and does not necessarily help to explain the
physics, unlike, for instance, the description in terms of inertial waves, outlined
above.

Anisotropic initial values for #%#; bring into play equations (4.140)—(4.142) of the
model in a nontrivial way. There are two types of terms, namely those containing z,
which arise from the nonlinear pressure and dissipative terms in (4.134) and are
assumed to be controlled by & under the one-point closures (4.45) and (4.55), and
those involving €2, which come from the production and linear pressure terms of
(4.134) and represent the effects of rotation according to the model. The former
terms may be neglected in the limit of rapid rotation (small Rossby number) over
intervals of time comparable to the rotation period, leading to

I, = I(0) exp]—4i(1 — C')t} (4.145)

I’y = I'3(0) exp]—2i(1 — C')z} (4.146)

together with a constant value of I'; and, neglecting dissipation in (4.143), of u3 +
u5 + u3 as well. Thus, the mean-squared velocities, #5 and #? + u3, parallel and
perpendicular to the axis of rotation are predicted by the model to be constant in
this, the rapid distortion limit. The exponentials in (4.145) and (4.146) can be
written in terms of sines and cosines, indicating oscillations of #7 — u3 and the off-
diagonal components of %z via (4.138) and (4.139). Such oscillations of the
Reynolds stresses are indeed to be expected, owing to the presence of inertial
waves, but the model predicts that they are undamped in the small Rossby number
limit, whereas rapid distortion calculations show that the oscillations are in fact
damped in this limit. Furthermore, although #3 + 43 + 2 is obviously constant in
the above limit, since dissipation can be neglected over times comparable to the
rotation period, individual constancy of #3 and u3 + u is not borne out by rapid
distortion theory, thus allowing rapid exchange of energy between axial and trans-
verse turbulent motions, again with damped oscillations. In conclusion, the usual
one-point models do not describe the evolution of anisotropic #; for rapidly rotat-
ing turbulence at all well. Cambon, Jacquin, and Lubrano (1992) have examined the
problem of one-point modeling of rotating turbulence using rapid distortion theory
and more sophisticated spectral closure techniques, suggesting some modifications to
improve the one-point description.

As implied above, rapid distortion theory, based on linearizing equations (4.127)-
(4.129) for the fluctuations and neglecting viscosity, may be employed in the limit of
small Rossby number. Rapid distortion analysis of homogenous flows, including
rotating turbulence, can be carried out based on spectral theory, which describes
two-point moments and hence provides a more complete description of the turbu-
lence. In the case of a rotating fluid, rapid distortion theory expresses the turbulent
fluctuations as a superposition of noninteracting inertial waves and, as noted above,
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leads to damped oscillations” if one calculates 7z; for initially anisotropic turbu-
lence. However, it predicts no generation of anisotropy from initially isotropic tur-
bulence, not even anisotropy of more subtle statistics than #;z;, such as correlation
lengths. In consequence, rapid distortion theory alone, although more sophisticated
than one-point descriptions, is also insufficient to explain the observed appearance of
anisotropy. Anisotropic, nonlinear spectral formulations, allowing interaction of
inertial waves and leading to the appearance of anisotropy and the cascade of energy
to smaller wavelengths, are needed before a fully satisfactory description of rotating
turbulence is obtained. As was briefly explained earlier, nonlinear exchanges of
energy mainly involve certain resonant families of waves in the limit of small
Rossby number. Thus, anisotropy and the energy cascade in rotating turbulence
are brought about by a subtle combination of linear and nonlinear effects acting
together.

This example has indicated the difficulties associated with the construction of one-
point models of turbulence and, we hope, has shown the need to go to multipoint
models and hence spectral methods. This need is not confined to rotating fluids, for
the pressure is always a nonlocal function of the velocity field and one-point pres-
sure-velocity moments are determined by integrals over the two-point moments of
velocity, both second order, for the linear component of pressure, and third order for
the nonlinear part. Of course, the appearance of third-order moments due to non-
linearity implies closure. However, the need to go to multipoint formulations is a
quite separate issue from nonlinearity, increasing the mathematical complexity, but,
unlike the closure problem, does not present a fundamental restriction on our ability
to describe turbulence using averaging methods. For instance, linear theory allows
spectral calculations to be carried through in detail without explicit closure assump-
tions or, more accurately, employs the simplest closure of dropping the nonlinear
terms entirely.

4.6 Conclusions

Despite suffering from significant limitations, single-point statistical formulations are
among the most important techniques in the study of turbulence. As we have seen,
they provide useful and physically appealing methods for analyzing such quantities
as the mean-flow, turbulent energy, and Reynolds stresses. An appreciation of these
methods, their application and their limitations is essential for anyone who wants to
undertake work in the field of turbulence, from fundamental research through to
industrial applications. This being said, multipoint statistics contain more informa-
tion about the flow and, although multipoint theory, usually based on spectral
analysis for homogeneous flows, is technically more demanding, it is, in many
cases, essential to a fuller understanding of turbulent flows. In particular, a descrip-
tion of the contributions of differently sized and orientated turbulent structures to
overall, one-point statistics such as the average kinetic energy ##;/2 requires multi-

® Damping of the oscillations of #;u; originates, not from dissipation of wave energy, which is neglected
in rapid distortion theory, but from the fact that these one-point moments are integrals over all possible
Fourier components, representing waves of all frequencies whose destructive interference produces

decaying oscillations.
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point methods, as does the theory of the energy cascade via which turbulent dissipa-
tion takes place.

The separation into a mean and fluctuating field, of which the latter is identified
with turbulence, is the basis of statistical methods, be they single or multipoint. The
mean flow sees the turbulence as like an externally applied stress field, the Reynolds
stress, which dominates the viscous stress outside of thin viscous layers near bound-
aries. The Reynolds stresses are proportional to the one-point velocity correlations
u;, for which an evolution equation, (4.32), is derived using the equations of
motion. This equation reduces to (4.38) in the homogeneous case and contains
terms representing Reynolds stress production due to the mean-flow gradients, dis-
sipation by viscosity, and a pressure-rate-of-strain contribution whose nonlocality
when the pressure is expressed in terms of the velocity severely complicates the
problem and underscores the need for multipoint formulations. Inhomogeneity
leads to a variety of additional terms which are usually lumped together and loosely
regarded as “turbulent diffusion,” an expression of the fact that they are less well
understood than those present in homogenous flows.

The turbulent energy equation can be obtained by taking the trace of the equation
for #a;. It contains a production term involving the mean flow which is usually
positive, representing turbulent energy production, but can be negative, expressing
destruction of turbulent energy. Viscous dissipation represents a drain on the turbu-
lent energy and, although not apparent from a one-point description, takes place via
the cascade from large scales, where production occurs, to the smallest scales, where
viscosity acts and the energy is dissipated. Additional terms appear in inhomoge-
neous flows, which can be expressed as the divergence of a turbulent energy flux
vector and therefore represents transfer of energy from place to place, rather than its
creation or destruction. As for the Reynolds stress equation, this term is normally
thought of as diffusive in character, expressing the average flow of turbulent energy
due to nonuniformity of statistical properties.

The trace of the tensor ##, yields the turbulent energy, but it also contains
information on anisotropy of turbulence. Anisotropy is present in most flows and
develops from initially isotropic turbulence under the action of mean velocity grad-
ients, as we have seen in a number of examples. In the isotropic case, %z, = u'26,~,~ and
the nondimensional, traceless tensor b;; = w;#;/g* — 8;;/3, which along with the tur-

bulent energy suffices to determine %, is often used as a measure of anisotropy.
However, as we saw in the case of rotating turbulence, it is quite possible for the
form of #;#; to be approximately isotropic, or equivalently for b; to be small, while
other statistics show gross anisotropy. This illustrates one of the limitations of 7% as
a description of turbulence, pointing again to the need for more complete descrip-
tions, such as two-point ones. Indeed, rotating turbulence introduces wave dynamics
into the flow physics, whose natural mathematical expression is via Fourier decom-
position.

Nonlinearity leads to lack of closure of the velocity moment equations even in
multipoint formulations. The simplest approach to this closure problem is to linear-
ize the equations for the fluctuating field, which, combined with neglect of viscosity,
yields rapid distortion theory. The rapid distortion approximation describes the
distorting effects of the mean flow on the turbulence, but not the interactions of

the latter with itself. Thus, it is only strictly applicable in the limit in which the mean
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velocity gradients (or other linear effects, such as gravity combined with density
stratification) are sufficiently strong that one can neglect such self-interactions.
This.not only limits the allowable intensity of turbulence, but the length of time
for which rapid distortion theory holds, since nonlinear effects, for instance the
energy cascade or the appearance of anisotropy in rotating turbulence, can be sig-
nificant given sufficient time, even if they are negligible over shorter time scales.
However, as we saw from the example of straining by mean stretching in one direc-
tion and compression in another, it is found that rapid distortion results, in parti-
cular reversibility of the effects of straining, can hold surprisingly well for certain
quantities, such as the normalized Reynolds stresses, outside the range of formal
applicability of the theory. When the effects of nonlinearity are important, the clo-
sure problem must be tackled head on, generally by introducing heuristic hypotheses
to close the moment equations.

Nonlocality means that the one-point moment equations are incomplete, a differ-
ent type of closure difficulty which is present even if one neglects nonlinearity, as in
rapid distortion theory. The production term is the only one in the evolution equa-

tion, (4.32), for %7z that is closed and one-point turbulence modeling based on %%
(i.e., at the level of sophistication above k—¢ type models) consists of supposing
heuristic expressions for the other terms, with the pressure-rate-of-strain being
first decomposed into linear and nonlinear parts. In so doing, incompleteness of
the one-point moment equations owing to nonlocality and the more fundamental
closure problem due to nonlinearity are tackled together. The closure hypotheses
involve the turbulent energy dissipation rate g, for which a model evolution equation
is also assumed, and introduce a variety of adjustable constants, providing flexibility
to match experimental data. Such models are of great practical utility, since they
allow routine calculations of flows in complicated geometries, but are fundamentally
questionable owing to the many hypotheses they entail.

As we have previously implied and will see in detail in later chapters, beginning
with Chapter 6, spectral analysis describes the way in which the energy and aniso-
tropy of turbulence are distributed over the differently sized and orientated scales of
turbulence. It allows the relatively straightforward treatment of two-point equations
for homogeneous flows via Fourier analysis. The three-dimensional spatial Fourier
transforms of the two-point velocity moments yield a spectral tensor, which is a
function of the wavenumber vector k, whose direction and inverse magnitude,
|k|_1, may be thought of as representing the orientation and size of the correspond-

ing structures of turbulence. The one-point correlations %7 can be calculated from
the spectral description by integrating the spectral tensor over all wavenumber direc-
tions and magnitudes, showing that 77 lumps together scales of all sizes and orien-
tations, whose dynamics may differ significantly. Furthermore, two flows can have
the same #;iz;, yet differ significantly in the form of their spectral tensors, again
showing the limitations of #iz alone as a measure of turbulence. Whereas the spec-
tral tensor has infinite degrees of freedom corresponding to the three-dimensional
spectral space of different wavenumbers, 7% has but six. Turbulence has still more,
since the spectral tensor only contains information about second-order, one-time
velocity moments, not higher-order moments and those involving two or more
times.
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Finally, as discussed in Section 4.4, the vorticity is an appealing quantity because
it allows one to think in terms of amplification by stretching of vortex lines and the
reduction of scale of turbulence that occurs in the cascade. However, because vor-
ticity is defined in terms of velocity derivatives, once the turbulence has developed,
vorticity is dominantly a small-scale quantity, making it quantitatively difficult to
identify large-scale vortices, whose stretching might give rise to the smaller scales.
Furthermore, the equations for the mean and fluctuating vorticity, given in Section
4.4, are relatively poorly understood.
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CHAPTER FIVE

Classical Models of Jets, Wakes, and Boundary
Layers

Three important classes of statistically steady turbulent flows will be examined in
some detail in this chapter, namely jets, wakes, and boundary layers. These flows are
of considerable practical interest and are illustrated in Figure 5.1, together with a
shear layer, which is not specifically considered here, but whose treatment is not
essentially different from that of jets and wakes. Much is known about these flows
from numerous experimental and theoretical studies, stretching back over many
decades, and the resulting theoretical models are semiempirical, being based on
the experimentally observed properties of the flows, such as the small angles of
divergence of jets and wakes and the existence of self-similar behavior far down-
stream of the nozzle, in the case of jets, or body, in the case of wakes. We attempt to
give a unified presentation of these models, emphasizing their common origins in the
boundary-layer approximation and various types of mean-flow self-similarity.

The basis of the theories developed in this chapter is the mean-flow equations,
(4.9}, to which simplifying assumptions, similar to those of laminar boundary-layer
theory, are applied, leading to neglect of some of the terms in the equations. This
turbulent boundary-layer approximation, which applies to jets and wakes as well, is
justified by slowness of mean-flow development with streamwise distance, as wit-
nessed by the small angles of divergence of turbulent jets and wakes. Since the
approximations used are similar to Prandtl’s theory of laminar boundary layers,
with which we assume the reader is familiar, and since, despite their quite different
mechanisms of growth, the behavior of turbulent boundary layers in many ways
resembles that of laminar ones, we devote Section 5.1 to reminding the reader of the
principal characteristics and theory of laminar boundary layers, before developing
the turbulent analog of Prandtl’s theory in Section 5.2.

Having applied the boundary-layer approximation to simplify the mean-flow
equations, one is still faced with their lack of closure, apparent from the Reynolds
stress terms. Here, empirical information is introduced, whose details depend on the
class of flows considered. In the case of jets and wakes, we use the observed fact that
the mean flow becomes self-similar sufficiently far downstream, together with an
eddy-viscosity approximation and an assumed eddy viscosity! that does not vary
across the flow, but only with streamwise distance. This allows us to solve for the
mean flow in far jets and wakes, as we shall do in Sections 5.3 and 5.4.

! This is the simplest assumption and the one we adopt. However, more complicated eddy-viscosity
models exist, such as those based on mixing-length ideas (see, e.g., Hinze (G 1975)).
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Figure 5.1. Illustrations of a turbulent (a) jet, (b) wake, (c) shear layer, and (d) boundary layer. The streamw
mean-flow profiles are also shown. The rate of spreading of the boundary layer has been exaggerated for clarity;

reality, the angle of spreading is only of the order of 1°.

Turbulent boundary layers are treated in Section 5.5 and are more complicated
because they possess internal structure, with an outer layer, in which one may neglect
the viscous terms in the mean-flow equations, as for jets and wakes, and a very thin
viscous sublayer at the surface of the body,” whose existence was noted in Chapter 4.
For a flat plate at zero incidence in a uniform stream, the mean flow is found to be
self-similar in both the outer layer and viscous sublayer, having universal forms for
the velocity profiles, although, needless to say, the similarity variables and velocity
profiles are different in the two regions. The two expressions for the mean flow, one
for the outer region, one for the viscous sublayer, agree with one another at inter-
mediate distances from the wall, small compared with the overall boundary-layer
thickness and large compared with the viscous sublayer thickness, a zone known as
the inertial layer. As we shall see, if one wants to think in those terms, one can regard
the two expressions as matched asymptotic expansions, applicable in distinct asymp-
totic regions — the outer region and viscous sublayer — whose asymptotic separation
of scale results from a large boundary-layer Reynolds number. In any case, the net

2 As remarked in Chapter 4, we choose to include the conventionally named buffer layer in the definition
of the viscous sublayer, for reasons of parsimony. Thus, the viscous sublayer is the zone in which
viscosity is important in the mean-flow equations.
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result is that, for the flat plate, one has the form of the mean flow in the boundary
layer expressed in terms of two universal, empirically determined functions, with just
one unknown parameter (e.g., the boundary-layer thickness) remaining to determine.
The evolution of this parameter with streamwise distance is governed by a momen-
tum balance equation, known as the Von Karman equation, which is obtained by
integration of the streamwise mean-flow equation across the boundary layer and is
the only input provided by the equations of motion to the model. Once one has
solved the Von Karman equation, one has the solution for the mean flow throughout
the boundary layer.

As we will see in Section 5.5, in which the details of boundary-layer modeling are
described, the case of turbulent boundary layers over surfaces with curvature, or
having external pressure gradients or vorticity, is more complicated and, indeed, it
will involve us in first deriving a more sophisticated version of the turbulent bound-
ary-layer approximation. It turns out that the outer part of the boundary layer is
considerably more sensitive to such complicating influences than the viscous sub-
layer, for which the universal flat-plate form of the mean velocity may continue to
apply, allowing us to describe the viscous sublayer even when the outer layer has
been significantly affected. The main difficulty in such cases is that the outer part of
the layer is no longer self-similar and one has no equivalent of the universal func-
tional form that describes the outer region of the flat-plate boundary layer.

Figure 5.1 illustrates the three classes of statistically steady, turbulent flows con-
sidered in this chapter, as well as a shear layer, which will not be discussed in detail.
One can identify a streamwise direction, such that the streamwise component of
mean velocity is dominant, and a cross-stream (or transverse) direction, in which
turbulent statistical properties vary most rapidly. For instance, in a boundary layer,
the transverse and streamwise directions are respectively normal and tangential to
the body surface, and therefore vary with position if the surface is curved. We will
mostly restrict attention to two-dimensional® plane flows in this chapter, that is,
flows whose statistical properties depend only on the coordinates x; and x,, with
U3 = 0.

The flows considered are turbulent inside a well-defined interface which separates
laminar fluid outside from turbulent fluid within. This boundary moves randomly as
bulges of turbulent fluid, whose size is comparable to the large scales of the turbu-
lence, are convected downstream, as we have tried to indicate in Figure 5.1. Laminar
fluid is engulfed by these turbulent bulges and itself becomes turbulent, a process
known as entrainment. The entrained fluid is accelerated in the case of jets, or
decelerated in wakes and boundary layers. There is transfer of mean momentum
across the flow, due to the turbulence, which causes the mean velocity profile (also
shown in Figure 5.1) to develop with streamwise distance, spreading out down-
stream. This cross-stream transfer of mean momentum by turbulent mixing appears
in the mean-flow equations, (4.9), via the Reynolds stress term. It attempts to make
the mean velocity profile uniform as it develops downstream, producing lateral
spreading and, in the case of jets and wakes, a decreasing difference between the
mean velocity outside and at the center of the jet or wake. ‘

3 Needless to say, the turbulence in any one realization is three-dimensional. It is the statistical properties
of the flow, such as the mean velocity, which are two-dimensional.
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At the same time as the turbulence affects the mean flow through transfer of
streamwise momentum across the flow, mean shear acts as a source of turbulence,
which would otherwise decay rather quickly. The turbulence is symptomatic of
mean-flow instabilities, occurring in regions of high mean shear, which are conse-
quently centers of turbulent production. For boundary layers, turbulence production
is concentrated near the wall (where the mean shear is high), and in a less localized
manner around the points of maximum mean-velocity gradient in jets and wakes.
Because the maximum of mean shear is much less intense in the absence of a wall,
turbulence production is more evenly distributed across the flow, but still tends to
peak where the mean shear is high.

Thus, there is a two-way interaction between mean flow and turbulence: the
turbulence is produced by local mean-flow instabilities near positions of high
mean shear, while the resulting turbulence tends to reduce the mean shear which
created it, through mean momentum transfer.* The distance required for streamwise
development of the flow due to mean momentum transfer by turbulence is consider-
ably greater than the transverse length scale (width) of the flow. This is a reflection of
the relative slowness of momentum transfer across the flow, compared with stream-
wise convection by the mean flow. That is, the mean flow convects the turbulence
downstream considerably faster than the mean-velocity profile can develop sideways.
The net result of rapid streamwise convection and slower cross-stream spreading is a
statistically steady flow in which streamwise distances are long compared with trans-
verse ones. Transverse transfer of streamwise mean momentum is slow because
turbulent velocities are small compared with streamwise mean velocities. It is the
small ratio of the turbulent root-mean-squared velocity,” %', to an appropriate mean-
velocity scale (to be made more precise later) which makes transverse gradients larger
than streamwise ones.

The larger gradients in the transverse direction(s) are reminiscent of laminar
boundary layers, with which we shall suppose that the reader is acquainted (a
short review is given in Section 5.1; for more information, see chapter 5 of
Batchelor (G 1967), or the more extensive treatment in Schlichting (1987)). If a
body is placed in a stream at high Reynolds number, it develops a thin boundary
layer at its surface in which the fluid moves more slowly than outside the layer. The
layer is laminar provided that the Reynolds number is not too high. Viscosity is
important within the layer, despite the large Reynolds number, owing to large velo-
city gradients. The higher the Reynolds number, the thinner the layer compared with
the body dimensions, and hence the larger the velocity gradients across the layer. The
length scale for variations along the surface is determined by the overall body size,
whereas, normal to the surface, it is dictated by the small layer thickness. Thus,
transverse variations are more rapid, a property which is exploited in the Prandtl
theory of laminar boundary layers to simplify the Navier-Stokes equation by
neglecting terms which are small. The result is the Prandtl equations for laminar
boundary layers, which we review in Section 5.1.

4 The result of the instability tries to alleviate its cause, as is often the case.
5 Although #’ varies across the flow, the notation #” is used as a characteristic velocity scale for turbulence
in this chapter. In so doing, we have in mind some cross-stream averaged value of #’.
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The laminar layer comes about because of the small, but nonzero, viscosity of the
fluid. At the body surface, a viscous fluid must satisfy the no-slip condition. The
boundary layer allows adjustment of the essentially inviscid flow outside the layer,
which would not satisfy this condition, so that no-slip is respected at the surface.
Viscosity is thus crucial to the existence of the layer and the manner in which it
evolves with streamwise distance along the surface. It provides a mechanism for
diffusion of streamwise momentum across the layer and tends to cause the boundary
layer to thicken with downstream distance. Viscosity produces friction between
neighboring sheets of fluid due to their differential motion, which tries to equalize
the velocities of the fluid within the boundary layer as it travels downstream. This
process is analogous to that of cross-stream momentum transfer by turbulence,
described above, although its physical origins are quite different.

The other physical mechanism controlling the development of a laminar boundary
layer is the streamwise pressure gradient, which is imposed from outside the layer
and tends to accelerate or decelerate the fluid, as dictated by the external flow.
Denote the velocity and pressure just outside the layer by U,(x) and P (x),
where x is streamwise distance along the body surface. Since the essentially inviscid
flow external to the boundary layer has the surface as a streamline, Bernoulli’s
theorem implies that P., + pUZ% /2 is constant to a good approximation (more pre-
cisely, the external flow approaches an inviscid limit having the surface as streamline
when the Reynolds number goes to infinity). Thus, the pressure gradient is directly
related to the derivative of Uy (x) by dP,,/dx = —pU,, dUy /dx, which shows that a
pressure gradient is synonymous with nonuniformity of U,,. That is, according to its
sign, a pressure gradient causes the fluid to accelerate or decelerate outside the layer
as it flows downstream. It also attempts to accelerate/decelerate the fluid within the
boundary layer, although viscous friction between neighboring sheets of fluid is
important there also. Such pressure gradient effects are also present in the turbulent
flows of this chapter when there is significant streamwise variation of the pressure
external to the flow. However, for jets and wakes, we will be concerned with cases in
which there is no external pressure gradient, so that streamwise development of the
flow is due solely to cross-stream transfer of mean momentum.

In the turbulent flows of this chapter, transverse transfer of streamwise mean
momentum results primarily from turbulent mixing, rather than viscosity. In fact,
for the high-Reynolds-number flows considered here, the viscous terms in the mean-
flow equations are negligibly small, except in the viscous sublayer of a turbulent
boundary layer. Elsewhere, turbulent momentum transfer, represented in the mean-
flow equations by Reynolds stress terms, dominates over viscous transfer, and the
rate of transfer of momentum is dictated by the turbulent intensity, measured by #’.
Whereas, for a laminar boundary layer, smallness of the viscosity (or equivalently a
large Reynolds number) is responsible for weak momentum transfer, and hence a
thin layer, it is the small ratio of #’ to a mean-flow velocity scale that leads to thin
turbulent boundary layers, as well as to jets and wakes whose streamwise develop-
ment takes place slowly on a transverse length scale (or width).

Based on the more rapid variation of the statistical properties of the flow in the
transverse direction, a turbulent analog of the Prandtl equations can be developed, as
we will see in Sections 5.2 and 5.5. In carrying over ideas from laminar boundary-
layer theory to turbulent flows, they must be applied to the equations for statistical
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quantities, not to the raw Navier-Stokes equation, for it is the statistics of turbulence
which show slow variations in the streamwise direction, not the turbulence in any
one realization. Although the turbulence is somewhat anisotropic in the flows con-
sidered here, even the largest eddies have roughly similar properties in different
directions and are by no means as strongly elongated in the streamwise direction
as would be required for direct application of the boundary-layer approximations to
the Navier-Stokes equation.

The turbulent analog of Prandtl’s theory, applied to the statistical equations, will
be referred to as the “turbulent ‘boundary-layer’ approximation.” We will mainly be
concerned with applying the approximation to the mean-flow equations, for which,
as noted above, one can neglect the viscous terms compared with the Reynolds
stresses, except within viscous sublayers. However, even outside viscous sublayers,
viscous terms cannot be neglected when we come to consider the equations describ-
ing the statistical properties of the turbulence itself (e.g., energy and Reynolds stres-
ses). This is as one might expect, because the loss of turbulent energy via the cascade
and its dissipation by viscosity at the smallest scales is crucial to the dynamics of
turbulence. There is nothing specific to the boundary-layer approximation in this;
indeed, we saw in Chapter 4 that viscosity could generally be neglected for the mean
flow at high Reynolds number outside viscous wall layers, but not for the turbulent
energy and Reynolds stress equations.

The basic turbulent “boundary-layer” approximation is developed in Section 5.2
for jets and wakes. An order-of-magnitude analysis is carried out for the mean-flow
equations, based on slow streamwise versus transverse variations of the turbulence
statistics, and the result is a simplified set of equations, similar to the Prandtl’s
equations, but with a Reynolds stress term in place of the viscous one. These equa-
tions are intended to describe turbulent jets, wakes, and shear layers, although we do
not discuss the latter class of flows. It might be remarked that, although Prandtl’s
equations are usually associated with boundary layers, they can also be employed for
laminar jets, wakes, and shear layers at high Reynolds number (not to mention pipe
and channel flows).

The reason why “boundary layer” appears within quotes in this context is that the
basic approximation to the mean-flow equations, as developed in Section 5.2, turns
out to be inadequate to describe general turbulent boundary layers, having signifi-
cant surface curvature or mean vorticity of the flow external to the boundary layer.
This is in contrast with laminar boundary layers, for which the corresponding basic
approximation, namely Prandtl’s equations, suffices. One of the main differences
between turbulent and laminar boundary layers is that the former have an internal
structure consisting of a thin viscous sublayer at the surface, an outer layer which
occupies most of the total boundary-layer thickness, and an intermediate region
known as the inertial layer. The variations of mean velocity in the outer layer are
found to be small, of the same order of magnitude as the turbulent velocities. The
small parameter on which the turbulent boundary-layer approximation is based is
u' /Uy, where Uy is a typical value of the mean-flow velocity. Thus, the variations of
the mean flow in the outer layer, O(x’), are formally of higher order, that is, the
mean flow is uniform at leading order. To describe the outer-layer variations in the
mean flow, which are crucial to the theory, one therefore needs either to introduce
higher-order boundary-layer approximations of the mean-flow equations, or, more

143



144 CLASSICAL MODELS OF JETS, WAKES, AND BOUNDARY LAYERS

simply, to work with the equations governing the velocity defect. The velocity defect
is defined as the difference between the actual mean flow and a notional, inviscid
velocity field obtained by suitably extrapolating the velocity field from outside the
boundary layer to the surface. The variations in mean velocity, although small, then
show up at leading order even in the outer layer and, as in deriving Prandtl’s equa-
tions for the laminar case, one examines the governing equations for the velocity
defect, neglecting small terms, to obtain a refined turbulent boundary-layer approx-
imation. In the absence of significant curvature and external mean vorticity, this
refined approximation turns out to give the same equations as the basic approxima-
tion. However, to correctly describe the outer region of general turbulent boundary
layers, the refined formulation, developed in Section 5.5, is required.

The mean-flow equations of the boundary-layer approximation are considerably
simpler than the original ones, but they still contain a Reynolds stress term, repre-
senting cross-stream transfer of streamwise mean momentum by turbulence. The
presence of this Reynolds-stress term means that the mean-flow equations are incom-
plete, reflecting the closure problem discussed in the previous chapter, which appears
whether or not one adopts the boundary-layer approximation: the equations describ-
ing the moments of order # contain those of order # + 1. Thus, the mean-flow
equations depend on the Reynolds stresses, while if one formulates the equations
for the Reynolds stresses, in an attempt to obtain a complete system, third-order
moments and nonlocal terms show up and the combined mean-flow and Reynolds
stress equations are still not closed.

For the flows considered here, the usual approach to overcoming the difficulty of
lack of closure, and the one we adopt, is to introduce experimental information. For
instance, jets exhausting into infinite, quiescent fluid and wakes in an infinite, uni-
form external stream are found to become self-similar sufficiently far downstream of
the nozzle, in the case of a jet, or the body, in the case of a wake. In the self-similar
region of a wake, the cross-stream profile of the velocity defect (i.e, the difference
between the external velocity and the streamwise mean velocity in the wake) has the
same form at different streamwise locations, but its width and velocity scaling vary
with the streamwise coordinate according to simple power laws. Likewise, the mean-
velocity profile of a jet exhausting into stationary fluid becomes self-similar far from
the nozzle and has power law behavior there. Thus, the streamwise development of
these flows can be supposed known and the problem becomes that of the determina-
tion of the cross-stream profile. A variety of approaches exist and we adopt the
simplest, consisting of a turbulent eddy-viscosity closure (see “The Eddy-Viscosity
Approximation and One-Point Modeling,” Section 4.1} for the Reynolds-stress term,
in which the eddy viscosity is assumed only to depend on the streamwise coordinate.
When the supposed similarity behavior and eddy-viscosity approximation are used
in the mean-flow equations resulting from the boundary-layer approximation, the
mean-flow similarity profile can be solved for analytically, as we shall see in Sections
5.3 and 5.4. The results agree quite well with experiments on jets and wakes, but,
from a fundamental point of view, the lack of theoretical explanations for self-
similarity and (approximate) transverse uniformity of the eddy viscosity is somewhat
less than fully satisfactory.

For turbulent boundary layers, the use of experimental information to overcome
the lack of closure is somewhat different. As noted earlier, a turbulent boundary
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layer has an internal structure with a thin viscous sublayer at the surface and an
outer region taking up most of the overall thickness of the layer. Within the viscous
sublayer it is found that the mean-velocity profile has a universal form when suitably
scaled and expressed in terms of an appropriately nondimensionalized distance from
the body surface. Specifically, the scaling used for the streamwise velocity, U,, is the
wall friction velocity, #,, which is defined in terms of 1,,, the mean tangential stress at
the surface (or skin friction), by #, = /[1,,[/p, where p is the fluid density, as usual.
The distance, y, from the wall is nondimensionalized on the laminar sublayer thick-
ness scale, v/u,. Thus, when the scaled mean velocity, U, /4,, is plotted as a function
of y, = u,y/v, known as inner scalings, the experimental data for viscous sublayers
is found to collapse to a universal form, U, /u, = f(y.) (except close to a boundary-
layer separation point, as we shall see later). The behavior in the viscous sublayer is
therefore determined by #, and v alone, at least as far as the mean flow is concerned.

The outer region of a turbulent boundary layer without significant pressure gra-
dient, surface curvature, or external vorticity (for instance, the classical problem of a
flat plate at zero incidence in a uniform stream) is observed to have universal beha-
vior when the velocity defect, nondimensionalized using #,, is expressed in terms of
n = y/8, where y, is distance from the surface and § is the overall thickness of the
boundary layer. Thus, for the flat-plate boundary layer, if U, is the streamwise
mean velocity outside the boundary layer, (U, — Uy)/u, = F(n), where F(n) is a
universal function (which is negative, since fluid moves more slowly in the layer).
Turbulent velocities are found to be of order #, in both the viscous sublayer and
outer layer. That is, they have the same order of magnitude throughout the boundary
layer, although they are somewhat larger near the surface.

The ratio of thicknesses of the outer layer and viscous sublayer is the Reynolds
number Re, = #,8/v, a large parameter, responsible for the separation of scales
between the two regions. Thus, the viscous sublayer is a rather small fraction,
Re; !, of the overall layer thickness. In fact, the entire theory of turbulent boundary
layers, described in Section 5.5, is based on a large Reynolds number, that is, the
theory is asymptotic in large Re,. In particular, flat-plate universality of the scaled
velocity defect in the outer region, noted above, requires that the Reynolds number
be sufficiently large.

For the experimentally observed universal forms in the outer layer and viscous
sublayer to agree on the form of the mean-velocity profile at distances from the
surface intermediate between v/#, and 8, it will be shown in Section 5.5 that the
mean velocity there must have a logarithmic form as a function of distance from the
wall. This is the celebrated log law. Such intermediate distances are collectively
known as the inertial layer and, indeed, a log law is found to describe the mean
velocity for v/u, <« y <« 8. The argument leading to the log law is very similar to the
application of the matching principle in the method of matched asymptotic expan-
sions and those readers acquainted with that technique may like to regard the theory
as based on two matched asymptotic regions: an inner viscous sublayer, described by
the variable y, = vy/u,, and an outer layer, characterized by n = y/é, with the small
parameter Re;! controlling the asymptotic separation of scales.® The limit of the

¢ We do not mean to suggest that an analytical theory of turbulent boundary layers, matched expansions
or otherwise, exists. However, it may be helpful to some readers to think informally in these terms.
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mean velocity in the outer region at small n = y/§ and that of the inner region at
large y, = vy/u, coincide as the inertial-range log law. Thus, the inertial layer
plays the role of a region of overlap between the inner and outer asymptotic
regions.

For a boundary layer without pressure gradient, surface curvature, or external
vorticity, the velocity defect law, (U, — Uy)/u, = F(n), implies that the depar-
tures of U, from the uniform value Uy are of order u, in the outer layer and
consequently of the same order of magnitude as the turbulence velocities. The
ratio, u, /U, measures the relative magnitudes of the turbulent and mean velo-
cities and is small. Indeed, as well as the log law, matching of the viscous sublayer
and outer layers turns out to imply that Uy /u, is a logarithmically increasing
function of Re,, and since the latter is large, so is the former {though less so,
since the dependence is logarithmic). Smallness of «, /U, and hence of the turbu-
lent velocities compared to the mean ones, is thus a consequence of the large
Reynolds number. As noted earlier, slow development of the boundary layer,
which is the basis of the boundary-layer approximation, comes about because
the turbulent velocities are small, that is, it is due to small u,/U,. At the same
time, this implies that the departures of U, from U, are small within the outer
layer, which is the motivation for using a formulation of the boundary-layer
approximation in terms of the velocity defect U, — U, rather than U, itself.
One consequence is that, as one traverses the whole boundary layer, most of the
changes in streamwise mean velocity, from zero at the surface (due to the no-slip
condition), to U, at the edge of the boundary layer, occur near the surface, rather
than in the outer part of the layer.

So far, the above description of turbulent boundary layers consists of experimen-
tal observations and a matching-style argument. No use has been made of the equa-
tions describing the flow. Those equations are now employed in an integrated,
momentumn balance form, known as the Von Karman equation, to determine the
streamwise development of the boundary layer, as described in detail in Section 5.5.
It turns out that, given the observed universal forms in the viscous sublayer and outer
region, together with the matching condition relating U, /u, to Re,, the only
remaining unknown quantity is the boundary-layer thickness, 8. The Von Karman
equation can be used to derive a differential equation governing the streamwise
evolution of 8, and hence the boundary-layer flow is completely determined in the
absence of pressure gradients, surface curvature, or external vorticity. The Von
Karman equation also holds in the presence of such complicating effects, but the
mean velocity defect in the outer layer is no longer described by flat-plate univers-
ality, and there is insufficient information to determine the streamwise evolution of a
general turbulent boundary layer. However, as we shall see, some progress can be
made for a special class of layers with pressure gradients for which the outer-layer
velocity defect profile is self-similar. Such self-preserving turbulent boundary layers
are somewhat analogous to the Falkner-Skan similarity solutions of the Prandtl
equations for laminar layers with pressure gradients.

The first effect of significant pressure gradients, surface curvature, or external vor-
ticity is to modify the outer region of the boundary layer. That is, the viscous sublayer
is comparatively insensitive to such complicating factors, except via the resulting
modifications of u,, and hence the sublayer scalings. In developing the general theory
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of turbulent boundary layers in Section 5.5, we will implicitly suppose that the mag-
nitude of the pressure gradient, curvature, and external vorticity are such that their
effects on the outer layer are not dominant, implying that they only perturb the viscous
sublayer a little. As we shall see, nondimensional parameters can be constructed which
measure the importance of these complicating effects in the outer region. These para-
meters should not be too large, for otherwise the outer-layer scalings and viscous
sublayer mean velocity profile may be completely different. This happens, for instance,
near separation, where the properties of the boundary layer are quite different from
those of a flat plate, more closely resembling a shear layer. For this reason, apart from a
qualitative discussion, we will implicitly exclude from consideration layers near
separation.

The Prandtl equations of laminar boundary layers do not contain surface-curva-
ture terms, which are of higher order. At first sight, the same is true of the leading-
order turbulent boundary-layer equations for the mean velocity defect. However, as
implied earlier, curvature can have an effect at leading order, even when the radius
of curvature is large compared with the layer thickness. As we shall see, it does so by
modifying the turbulence, and hence the mean-flow equations, via the Reynolds-
stress term. The same is true of external vorticity and pressure gradients, although,
since the pressure gradient occurs explicitly in the leading-order mean-flow equa-
tions, it has more far-reaching effects than either curvature or external vorticity,
which enter only indirectly through the Reynolds stresses.

We shall mainly consider two-dimensional, plane flows, that is, ones for which the
statistical properties are independent of x; and Us = 0. It is not, of course, implied
that the turbulence is two-dimensional in particular realizations of such a flow, but
rather that its statistical properties are independent of x3. This requires that the
body, in the case of wakes and boundary layers, or the nozzle, for jets, be effectively
infinite in the x3-direction. The analysis of two-dimensional flows is simpler than
their three-dimensional counterparts, especially for boundary layers, but illustrates
most of the features of the corresponding three-dimensional flows. The theory of
three-dimensional boundary layers is beyond the scope of this book, but we will
discuss nonplanar jets and wakes (resulting from finite-width nozzles and bodies),
and in particular the important case of axisymmetric ones.

5.1 Laminar Boundary Layers

In studying the turbulent flows of this chapter, especially turbulent boundary layers,
it is often helpful to have the theory of laminar boundary layers in mind.
Consequently, we include a brief review here. The reader will find further material
on this subject in chapter 5 of Batchelor (G 1967) and a much more extensive
treatment in Schlichting (1987).

If a streamlined body is placed in a steady flow at high Reynolds number, the
small viscosity means that the flow behaves as inviscid away from the body surface.
However, the inviscid solution of the problem does not satisfy the no-slip condition
at the surface, and a thin boundary layer, in which viscosity is called into play,
develops, starting from the upstream stagnation point, downstream along the surface
(see Figure 5.2). Outside the boundary layer, the flow can be determined by inviscid
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Figure 5.2. Laminar boundary layer on a streamlined body at high Reynolds number.

theory, while the boundary layer contains large velocity gradients so that viscosity is
important, allowing satisfaction of the no-slip condition at the surface.

In terms of vorticity, which always originates at a boundary for incompressible
flow without body forces, the boundary layer represents a balance between two
competing mechanisms. On the one hand, vorticity is convected by the flow and,
on the other, it diffuses away from the surface due to viscosity. The two effects can be
estimated as follows. Let Uy be a typical velocity scale in the (inviscid) flow away
from the surface, for instance the velocity far from the body if, as is often supposed, it
has been placed in a uniform stream. The velocity tangential to the surface within the
boundary layer is also of O(Uj) (whereas the normal velocity is smaller, owing to the
proximity of the surface). The time taken for a fluid particle in the boundary layer to
move a distance O(D), comparable to the body scale D, is t = O(D/U,). Recall (see
equation (4.63)) that viscosity causes diffusion of vorticity. In the time #, vorticity,
like any quantity diffusing outwards from the surface with diffusivity v, will have
diffused a distance O((vt)'/?) from the surface.” Thus, a boundary layer of thickness
8 = O((vD/Up)'"?) forms. The ratio of layer thickness to body size is 8/D =
O(Re™'/?) where Re = UyD/v is the body-scale Reynolds number, assumed large
so that an identifiable boundary layer exists. The Reynolds number based on the
boundary-layer thickness is Res = Uys/v = O(Re'/?) and increases proportional to
Re'/?. A typical boundary-layer Reynolds number, Re;, is therefore large, but none-
theless small compared with the body-scale Reynolds number.

For simplicity sake, we consider two-dimensional flow, independent of x3, with
U; = 0. Three-dimensional boundary layers are more complicated and beyond the
scope of this book. For any point in the boundary layer, let y denote the distance of
the nearest point of the surface, and x the distance of that surface point from some
arbitrary origin near the front of the body,® measured along the surface in the
streamwise direction (see Figure 5.3). The coordinates x and y are generally curvi-

7 This discussion does not allow for the effect of vorticity convection by the normal velocity, which is
present in the Prandtl equations. It nonetheless contains the essential physics and gives a correct order of
magnitude estimate.

# Usually taken as the upstream stagnation point.
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linear, and the corresponding components  *2
of velocity, parallel and normal to the sur-
face, are written U, and U,,. The continuity

y
equation takes the approximate form
U
9Us +—2=0 (5.1
ax dy x

since, for a thin laminar boundary layer,
any curvature of the surface can be
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neglected to a first approximation.
Equation (5.1) is the first of the Prandtl
boundary-layer equations, asymptotically
valid even for curved surfaces when the
Reynolds number is large and, conse-
quently, the layer is thin. The remaining Prandtl equations arise from the two com-
ponents of the steady momentum equation, parallel and normal to the surface. To
leading order in the large Reynolds number, they are

face, y normal to the surface.

auU au 19P  JU
U, —Z=+U == X 5.2
*ox T dy p3x+v 3y? (3.2)
and
oP
Lo (5.3)
ay

We do not give detailed derivations of these approximate equations here. The most
systematic technique which has been found for the analysis of laminar boundary
layers is the method of matched asymptotic expansions, which we now summarize
(see Van Dyke (1975) for details of the method).

The objective of the method is to obtain asymptotic expansions for the velocity
components and pressure in the limit Re — oc. Two expansions in power of Re™!/?
are developed, the first {outer expansion) is valid outside the boundary layer, at
body-scale distances from the surface, the second (inner expansion) applies inside
the layer. The inner expansion employs the coordinates x and a scaled version of y,
which is chosen according to the boundary-layer thickness, O(Re™'/>D). More
precisely, as before, let D be a body-size scale and U, be a velocity scale in the
outer region, for instance the velocity far from the body if it has been placed in a
uniform stream. The body-scale Reynolds number is then Re = UyD/v, while the
velocity and pressure are nondimensionalized on U, and pU3. In the inner region,
nondimensional velocity and pressure are considered as functions of the coordinates
x* =x/D and y* = Re!/?y/D, whereas, in the outer region, they are treated as
functions of %, = x,/D, %, = x,/D. Expansions in powers of Re™'/? for both
regions are introduced into the governing equations and coefficients of powers of
Re™'/? equated. At leading order, the outer region yields the inviscid (Euler) equa-
tions, while the inner region gives the Prandtl equations (5.1)—(5.3), once it is
recognized that the inner expansion for U, begins with a term in Re™ 2, unlike
the other expansions, which all start with a Re” term. This procedure allows the

Figure 5.3. Boundary-layer coordinates: x along the s
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systematic determination of equations for the two regions at any order in Re” /2, but
the two expansions remain to be matched.

In the inner (boundary layer) region, the no-slip condition implies that the velocity
is zero at y* = 0, while another boundary condition applies as y* — oo and is
obtained by matching to the outer (inviscid at leading order) flow. We do not
want to go into the details of asymptotic matching here (see Van Dyke 1975), but
the idea is the following. The inner expansion applies in the boundary layer and the
outer expansion at distances O(D) from the surface. They are both assumed to hold
in a region of overlap, at distances from the surface small compared with the body
scale, D, but large compared with the boundary-layer thickness, Re™'/2D. The
requirement that the two expansions give the same result in this overlap region yields
the matching conditions and hence completes the problem.

The matching conditions can be applied at any order, but become increasingly
cumbersome and difficult to interpret physically as the order is increased. At leading
order, matching yields the usual inviscid boundary condition, U, = 0 at y = 0, for
the outer problem. It also gives following boundary conditions for the inner problem:

U, > Uy

54
P— P 54

as y* — 00, where, Uy (x) and P (x) are the velocity and pressure at the surface,
obtained from an inviscid calculation (i.e., from the leading-order outer flow). The
matching conditions, (5.4), supplement (5.1)—(5.3) and the no-slip conditions

Uy =0)=0

5.5
Uy =0)=0 (5-3)

thus completing the leading-order boundary-layer problem. The meaning of (5.4) is,
of course, that the boundary-layer flow should approach the inviscid solution as one
leaves the boundary layer and emerges into the outer region. This is the sense in
which one should interpret the limit y* — oo. It might be thought that there should
also be a condition on Uy, but the corresponding matching condition is, in fact,
automatically satisfied. A second thought might be that it is not the inviscid solution
precisely at the surface, but at some small distance away, which should appear in
(5.4). However, such small corrections are regarded as higher-order effects in the
asymptotic theory and thus do not appear at leading order.

From (5.3), we see that the pressure is a function of streamwise position, x, only.
Applying (5.4), we have

P=P (x) - (5.6)

and the pressure in the layer is thus imposed from outside and can be considered as
known. Furthermore, since the leading-order flow in the outer region is supposed
inviscid and steady, Bernoulli’s theorem applied to the surface streamline of that flow
implies that Py, + pUZ% /2 is constant. Hence, (5.2) can be rewritten as

U,
Ox

L U _ dUoo+v32Ux
y 8)/ - dx 8)12
which, together with (5.1), (5.5), and

U, U. (5.7)
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U, - Uy(x) (5.8)

as y* — 00, give the final version of the laminar boundary-layer problem. Of the
boundary-layer equations, (5.1) and (5.7), the former can be thought of as playing
the subsidiary role of determining’ U, in terms of U,, whereas the latter describes the
evolution of the velocity profile, U,(y), with streamwise distance, x.

Before carrying out a boundary-layer calculation, one must first determine the
steady inviscid flow away from the surface. This provides the input data, U, (x), for
the boundary-layer problem, (5.1), (5.5), (5.7), and (5.8). Unlike the full Navier—
Stokes equations, which are elliptic in nature, the boundary-layer equations are
parabolic and, although a few similiarity solutions (e.g., Blasius, Falkner-Skan; see
Batchelor (G 1967), sections 5.8 and 5.9) are known, solutions are generally
obtained numerically by marching downstream in x. The profile, U,(y), is specified
at some initial value of x (for instance, derived from one of the above self-similar
profiles), allowing the marching process to begin. The boundary layer then develops
with x according to the prescribed external velocity, U, (x). Note that, apart from
the initial profile, only U,(x) is needed as input data, differentiating one laminar
boundary layer from another.

It can be objected that the steady, boundary-layer flow considered here becomes
unstable and eventually turbulent as the boundary-layer Reynolds number,
Re; = O(Re'/?), grows larger with increasing body-scale Reynolds number, Re.
That is, the large value of Re on which boundary-layer theory is based leads to
large Re;, and hence to possible instability of the steady boundary-layer flow. This
is certainly true for sufficiently large Re;, but the critical value of Re; for instability is
found to be large, and the corresponding body-scale Reynolds number,
Re = O(Re)), is still larger. Thus, there is, after all, a range of large Re in which
the asymptotic theory describes the boundary layer without instability. Furthermore,
the boundary layer thickens as we go downstream from the forward stagnation
point. The Reynolds number, Re;, based on the layer thickness is thus smaller
near the stagnation point and grows as the layer develops downstream. In conse-
quence, the boundary-layer flow is usually stable at the nose of the body, even if it
becomes unstable downstream. If the body-scale Reynolds number is sufficiently
large that the critical value of Re; is exceeded at some point, the layer initially
develops with distance from the nose according to Prandtl’s theory until the instabil-
ity arises and the flow becomes unsteady, generally followed by transition to turbu-
lence further' downstream. The theory of laminar boundary-layer stability and
transition is beyond the scope of this book (see, e.g., Schlichting (1987) for further
information, although somewhat dated), but we might note that linear stability calcu-
lations are routinely used to predict transition even though the fundamental justifica-
tion for such calculations is far from clear because the transition process is essentially
nonlinear. It should also be remarked that the critical value of Re; for instability is not
a fixed universal number, but depends on the details of the particular flow considered,
hence the need for stability calculations. The theory of boundary-layer stability and
transition remains an area of active research and a fully satisfactory transition model

® In practice, this is most easily expressed by introducing a stream function, rather than working with the
velocity components themselves.
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has yet to be developed. Of course, steady laminar boundary-layer theory does not
apply beyond the point of instability.

Boundary-layer separation should not be confused with transition. Separation
occurs when the boundary layer leaves the body surface at some location, in the
manner sketched in Figure 5.4. There is then a stagnation point on the surface,
characterized by 8U, /3y = 0, and called the separation point. Reverse flow occurs
near the surface, downstream of the separation point, and a dividing streamline
branches out from that point, separating fluid coming towards the separation
point from upstream and downstream. The vorticity of the boundary layer is
swept off the surface and enters the outer flow as a thin shear layer. Separation is
always present in high-Reynolds-number flow past a bluff body, such as a sphere (see
Figure 1.8a). There is a thin boundary layer over the front part of the body surface,
which separates to form the wake behind the body. Streamlined bodies, such as the
wing illustrated in Figure 5.2, are designed so that there is no separation at small
enough angles of attack, but the boundary layer can separate if the angle of attack
becomes too large (leading to stalling in the case of the wing).

If separation occurs, the boundary layer upstream of, but not too close to, the
separation point is still governed by the Prandtl equations given above, but the
determination of the appropriate U, (x) is far from straightforward. Away from
the body surface, a simple inviscid flow calculation that does not take into account

separation (e.g., solution of Laplace’s

\_,/\ equation for the velocity potential in the
\//—\ irrotational case) will not allow for the
\/_\ wake, whose existence affects the whole
flow. Thus, one can no longer perform a

calculation of the outer flow first, fol-

s lowed by a boundary-layer computation.
The two flows are coupled together in a

complicated way: boundary-layer devel-

7 opment is conditioned by the flow away
from the surface, which, in turn, depends
on boundary-layer vorticity shed by
separation to form the wake. However,
one can, for instance, imagine using mea-
sured values of U,(x) upstream of the
separation point. Whatever method is
used to obtain Uy(x), it is found that
the solution of the Prandtl equations gen-
erates a singularity at or near separation.
This is symptomatic of a breakdown in
the approximations used to derive the
Figure 5.4. Sketches of streamlines near a separation point Prandtl equations, Wh.lCh copsequeptly
of a boundary layer: (a} at boundary-layer thickness dis- €annot be used to describe the immediate
tances, (b) at body-scale distances. vicinity of the separation pOint.lO A vari-

—
£
~

b)

/

19 In fact, the theory also needs refinement near the upstream stagnation point, but this does not affect the
calculation elsewhere (see Batchelor (G 1967), section 5.5b).
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ety of attempts have been made to develop a more sophisticated asymptotic theory of
boundary layers for cases, such as separation, in which the usual theory breaks
down. The resulting methodology is known as “triple deck” theory and the inter-
ested reader is referred to Smith (1982) for a general review, and to Smith (1979) for
an analysis of separation in particular. Such techniques are well beyond the scope of
this book and we continue to use the Prandtl equations, thus restricting attention to
boundary layers upstream and away from the separation point (if there is separation
at all).

The fact that separation is often unsteady, owing to global instability of the steady
flow, further complicates the issue. A striking example is provided by the periodic
shedding of vortices forming the Von Karman vortex street behind a cylinder (see
Figure 1.1). This is an instability of the steady flow, which sets in once the Reynolds
number exceeds a certain critical value (about Rep = 45), and in which wake oscil-
lations couple to periodic fluctuations of the separation point, leading to unsteady
shedding of boundary-layer vorticity into the wake. This instability is 7ot localized in
the boundary layer, as is the one described above which gives rise to boundary-layer
transition, but involves the whole flow. Furthermore, the critical Reynolds number is
much lower (transition of the boundary layer on a cylinder happens at around
Rep = 10°). Although this instability does not lead to boundary-layer transition,
the laminar boundary layer upstream of separation becomes unsteady, a case
which is not described by the steady Prandtl equations given above, but may be
allowed for by including the time-derivative term from the Navier-Stokes equation
in (5.7). Calculation of the flow field away from the surface, to determine U, (x, t), is
even harder than for the steady case.

The two terms on the right of (5.7) represent the pressure gradient and viscosity,
while the second term on the left accounts for convection by the normal velocity.
Taken together, these three terms determine 3U, /dx, while (5.1) plays the secondary
role of allowing U, to be calculated in terms of U,. The sign of dU,/dx, and hence
the pressure gradient term in (5.7) (or (5.2)), is particularly important in determining
the qualitative behavior of the boundary layer. Starting at the upstream stagnation
point, where the pressure, P, is a maximum according to Bernoulli’s theorem the
fluid is accelerated by the pressure gradient term in (5.7). So long as this acceleration
continues, the layer remains relatively thin and does not separate.

Let U;i"”) (x, ¥) denote the normal component of the leading-order outer flow (here
the superscript (inv) stands for inviscid), so that the outer region continuity equation
at the surface can be written

3U;inv) dU.-
= 2-» 5.9
By I (5.9)
y=0
At the surface we have U;i"”) = 0 and a one-term Taylor’s series reads
; du
Ui = - —= 5.10
y P (5.10)

describing the behavior of the normal component of velocity as the boundary layer is
approached from outside.
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When the sign of the pressure gradient is such that the fluid just outside the layer is
accelerated (a favorable pressure gradient), dU,, /dx > 0. In that case, fluid is drawn
in from outside the layer, because U;i"”) < 0 near the surface according to (5.10), and
transverse convection fowards the surface (represented by the second term in (5.7))
tends to keep the layer from thickening too quickly under the competing effect of
viscous diffusion and may actually result in thinning of the layer if the pressure
gradient is sufficiently strong. Thus, for a favorable pressure gradient, thinning
due to the gradient and viscous thickening are working in opposition. If, on the
other hand, the sign of the pressure gradient changes (becoming “adverse” in the
jargon), the fluid just outside the layer is decelerated, dU. /dx < 0, U;,i"”) > 0, and
transverse convection away from the surface acts with viscosity to cause the layer to
thicken rather quickly. At the same time, the adverse gradient tends to decelerate the
fluid within the layer. If an adverse pressure gradient is sufficiently intense and
applied for sufficiently long, the slower moving fluid near the surface in the layer
can be decelerated to the point where it comes to rest, so that reverse flow and
separation occur. An adverse pressure gradient therefore favors separation by decel-
erating the fluid near the surface, but must act against viscous friction with the
external flow, which is still moving forwards outside the boundary layer and trying
to drag the fluid nearer the surface along with it. In summary, a favorable gradient
does not induce separation and can produce thinning of the boundary layer, whereas
an adverse gradient leads to rapid thickening of the layer and possible separation. In
practice, laminar boundary layers cannot resist much in the way of an adverse
gradient before they separate. As described earlier, separation, when it occurs,
means that the boundary-layer approximation breaks down in the neighborhood
of the separation point and a more sophisticated model is needed there. The outer
flow also needs to be reassessed, because of the shear layer of shed vorticity gener-
ated by separation.

The classical example of a flat plate in a uniform stream at zero incidence (the
Blasius problem) is a rather special case, since it has no pressure gradient. The
solution of Prandtl’s equation has a similarity form in that case, with similarity
variable y/x/? (i.e., the layer thickens proportional to x/2). No separation occurs
on the plate, but transition may come about if the Reynolds number based on the
layer thickness grows large enough. The layer is still attached when it reaches the
trailing edge of the plate, where it continues to form the wake. This is not usually
called separation, but is similar in nature: the vorticity from the boundary layer
leaves the body and enters the outer flow. Such shedding of vorticity at a sharp
edge is an important feature of wings and turbomachinery. Needless to say, the
boundary-layer approximation breaks down near such a sharp edge, where a
more complicated asymptotic representation is necessary, if indeed the layer is still
laminar. In the wake of a flat plate, away from the trailing edge, a Prandtl-type
description can again be applied, although there is now no solid surface. This is
similar to the approach for turbulent jets and wakes that we use later.

The point of the above review of laminar boundary layer is to provide the reader
with general background when we come to consider the turbulent flows that are the
main subject of this chapter. However, some major dissimilarities between the tur-
bulent and laminar cases should be noted. Firstly, the mechanism for transverse
diffusion of momentum in a laminar layer is viscosity, whereas turbulent mixing
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plays that role in the turbulent flows of this chapter. Physically, the two mechanisms
are quite different, even though many simple models make them appear similar in
mathematical structure using the concept of an eddy viscosity.

Mathematically, the mean-flow equations of turbulent flow are incomplete
because they contain Reynolds stress terms representing turbulent momentum trans-
fer, rather than the viscous terms of laminar flows. If one is to solve the equations,
they must first be closed, using one of the many heuristic closure approximations
which have been proposed. However, rather than relying entirely on such closures, in
this chapter we will introduce experimental information, as discussed in the intro-
duction. In the case of jets and wakes, a simple eddy-viscosity closure is used to
determine the transverse structure of the mean flow, with its streamwise development
constrained to be self-similar, as indicated by measurements. For boundary layers, no
closure is used. The transverse structure of the layer is dictated by experiments, while
its streamwise development is determined by applying an integrated momentum
balance derived directly from the mean-flow equations. This is not to say that closure
models cannot be used to completely calculate the flows in turbulent jets, wakes, and
boundary layers, but, given the approximate and semiempirical nature of existing
closures for inhomogeneous flows, such as these, it is probably better to rely directly
on experimental information where available. Fortunately the flows considered have
been much studied experimentally, so their general properties are known.

A second difference between laminar boundary layers and the turbulent flows of
this chapter is that Prandtl’s theory can be derived as the first term of an inner
expansion in the small parameter Re™1/2, The larger the Reynolds number, the better
the approximation becomes. This is in contrast with the corresponding approxima-
tions for turbulent jets and wakes, to be described shortly, which rely upon the
smallness of u'/U, (where U, is a suitable mean-velocity scale), a parameter
which describes the relative rates of turbulent mixing and streamwise convection.
The flow itself selects the intensity of turbulence, u’, and #’/Uj just happens to be
small. The errors committed in going to the boundary-layer approximation are fixed
by the size of #'/U, and cannot be decreased asymptotically to zero:'! we just have
to live with them or go to a more accurate model.

In summary, two levels of approximation are involved in this chapter. The first is
a consequence of the general closure problem for turbulence and appears unavoid-
able unless numerical simulation of the Navier-Stokes equations is invoked. To get
around this difficulty, one can either use a closure approximation alone, or, as here,
combine closure with experimental input. The second approximation is specific to
dominantly unidirectional, slowly developing flows of the type considered here. The
turbulent boundary-layer approximation is analogous to that used for laminar
boundary layers and simplifies the equations, but unlike the closure model, is a
convenience rather than the result of a fundamental difficulty of the theory. The
turbulent-boundary-layer approximation for jets and wakes, unlike its laminar coun-
terpart, is not a truly asymptotic theory, but is nonetheless a rational approximation,
based on smallness of #'/U,. Closure approximations, on the other hand, are heur-

' As noted in the introduction, the value of the corresponding parameter for boundary layers, #, /U,
decreases slowly (logarithmically) with increasing Reynolds number, so the boundary-layer approx-
imation is formally asymptotic in that case.
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istic assumptions, whose worth is judged by results when compared with experiment
or more exact theories.

5.2 The Turbulent-"Boundary-Layer’’ Approximation for
Jets and Wakes

For the sake of simplicity, in this section we restrict attention to fwo-dimensional jets
and wakes, that is, ones whose statistics are independent of x3 and have U; = 0.
Furthermore, we suppose that the streamwise direction is the same everywhere and
choose x; as the streamwise coordinate. The remaining coordinate, x,, represents the
transverse direction, in which the flow properties vary more rapidly. We will exam-
ine the order of magnitude of terms in the mean-flow equations to eliminate those
which are of lower order. To this effect, streamwise and transverse length scales, d
and A, are introduced, where A « d expresses the more rapid variations across the
flow, width O(A), than those produced by streamwise development over distances of
O(d). Thus, derivatives with respect to x; will be estimated as O(d™!), whereas
3/8x, = O(A™") is larger in order of magnitude. We also introduce a mean-flow
velocity scale, Uy, which characterizes the order of magnitude of the x;-component
of the mean velocity, U;. In the course of the analysis, it turns out that the small
quantity A/d is related to #’ /Uy and smallness of A/d is in fact a consequence of the
weakness of turbulence compared with the mean flow, as discussed earlier.

It should first be made clear that the name turbulent-“boundary-layer” approx-
imation does not mean that the approximation developed in this section is necessa-
rily adequate for turbulent boundary layers! The name ‘boundary-layer”
approximation is used because it is similar to Prandtl’s approach for laminar bound-
ary layers. The basic approximation, derived in this section, describes jets and wakes,
but is not sufficiently accurate for turbulent boundary layers with significant surface
curvature or external vorticity and needs to be refined to handle such general turbu-
lent boundary layers. Such a refined approximation is described in the later section
devoted to boundary layers.

Our starting point is the mean-flow equations

— U, 1 0P omw 8T,
g v _ _1of oy 9U; (5.11)
]
X pdx; Ox; 0o ;0
R — N e’
Convection Reynolds Viscosity
stress
and
au;
=0 (5.12)
8x,~

where the Reynolds stress term on the right of (5.11) represents the effect of turbu-
lence on the mean flow.
Since U; = 0 and 3/3x3 = 0, equation (5.12) gives
au; au,
i S
3x1 3x2

in which we can estimate 8/8x; = O(d™') and U; = O(Up), so that

-0 O (5.13)
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3, _ o(%) (5.14)

0x 2

and 8/8x, = O(A™), leading to the estimate
[ o(% U0> (5.15)

for the transverse mean velocity, which is of smaller order than U; = O(U,) since
A &« d. Equation (5.13), which is exact, is the first of the turbulent-*boundary-
layer” equations. It is identical in form with its laminar equivalent, (5.1), except
that we are now dealing with the mean velocity of a turbulent flow.

The streamwise (/ = 1) component of (5.11) is

3U1 -— 3U1 1 3? Bulu,' 32U1
U, +U, == _ 5.16
L x1 2 sz P 3x1 Bx, Y Bx,ax, ( )

and we immediately neglect the viscous term by virtue of the assumed large Reynolds
number. Viscosity can become important for the thin viscous sublayer at the surface
in a boundary layer, but is otherwise negligible for the mean-flow equations at high
Reynolds number (see the discussion in Section 4.1). Neglect of viscosity in the mean-
flow equations is independent of the “boundary-layer” approximation and is gen-
erally considerably more accurate.

Both terms on the left of (5.16) can be estimated as O(U2/d), using (5.15) for the
second term. The Reynolds stress contribution to (5.16) is the sum of two terms:

o o G
G _ Buy | Gy (5.17)
axf 3x1 axz

The diagonal components of #;; are found to be of the same order of magnitude
O(u’z), while off-diagonal components, such as u{i;, are somewhat smaller, parti-
cularly for jets. In any case, the order of the first term in (5.17) is #'*/d, which is
O(u'?/U3) smaller than the terms on the left of (5.16). Thus, since #’/ Uy is small, we
can neglect this term, leading to

I O—T 1 0P Oujuy
U, +U)—=———— 5.18
1o, 3x1 ) 2 sz P 3x1 sz ( )

which is the second of the turbulent-“boundary-layer” equations. The quantity
Py is the average turbulent flux of the x;-component of momentum in the x,-
direction. Variations of this flux across the flow transfer mean-flow momentum, as
appears from (5.18). Comparing equation (5.18) with its laminar equivalent, (5.2),
we see that the turbulent Reynolds stress has replaced the viscous term. Turbulent
transport of streamwise momentum across the flow takes over from transverse vis-
cous diffusion, as one might intuitively expect.

Since turbulent momentum transport is expected to be important in the flows
considered here, the Reynolds stress term on the right of (5.18) should be compar-
able to those on the left. Equating the orders of magnitude, U%/d of the left-hand side
and 777,/ A of the Reynolds stress term, gives
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A f7rey u'?
2_ o2 " 5.19
d ( U2 ) = O<U3> (5-19)

showing that smallness of A/d, which we have assumed in deriving the “boundary-
layer” approximation, is a consequence of small #'/U,. Smallness of #’/Uj is the
fundamental requirement of the “boundary-layer’” approximation developed here.
. As discussed earlier, because turbulent velocities are small compared with the mean

velocity, the flow spreads slowly in the transverse direction. Observe that together
(5.15) and (5.19) give

TT I4
LE3e O(“—) <1 (5.20)
u U,
and so the ordering is U, « #’ « Uy, that is, the turbulent velocities are intermedi-
ate in magnitude between the transverse and streamwise mean-flow velocities. The
transverse mean flow is therefore rather small, smaller even than the turbulent velo-
cities. If one follows a packet of fluid as it is convected downstream at speed O(Uy),
the velocity of transverse spreading of the turbulence is O(U, A/d), which is the same
order as U,, according to (5.15). Thus, the mean-velocity profile and turbulent
statistical properties spread out at a velocity small compared with #'. This is perhaps
surprising because one might expect turbulence to spread out at speed O(u#") due to
entrainment. However, turbulence cannot continuously spread faster than the mean-
flow profile because it gets its sustenance from mean shear and decays rather rapidly
in its absence.

As a final consequence of the streamwise momentum equation, assuming that the
pressure gradient term in (5.18) is of the same order of magnitude, O(U;/d), as all
the other terms, we find

P = O(pU3) (5.21)

as an estimate of the mean pressure variations in the flow.
We now turn to the transverse (i = 2) component of (5.11), which becomes

— 3U2 -_— 3U2 1 3? Bﬁzui
G PAne Ty g e S 5.22
! o, T 0x pdx, Ox; (5.22)

when we neglect the viscous term. One can again estimate the order of different

terms, using (5.15) and (5.21). Those on the left are O(A U3 /d?), while the first term

on the right is O(U3/A). The left-hand side of (5.22) is thus O(A%/d?%) smaller than

the pressure gradient term and can therefore be neglected compared with the latter.
The Reynolds stress term in (5.22) can be written as

o _ v | o

5.23
Bx,- 3JC1 3JC2 ( )

of which the first term is O(u'%/d) or smaller, while the second is O(#'*/A) and
dominates. This Reynolds stress term is smaller than the pressure gradient term in
(5.22) by a factor O(u'*/U3) and, to leading order, (5.22) gives

7

=0 (5.24)
sz
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which is the third turbulent-“boundary-layer” equation, to be compared with its
laminar counterpart, (5.3).

Equations (5.13), (5.18), and (5.24) form the turbulent-“boundary-layer” equa-
tions and, as for the laminar case, require boundary conditions determined by (now
informal) matching to an outer flow. For the jets and wakes we consider, these take
the form

Ui — Uq(x1) (5.25)

P P (x) (5.26)

as x, — oo, where U, and P, are the streamwise velocity and pressure outside the
jet or wake.!? A boundary condition should also be imposed on U at some value of
x, as the analog of the surface boundary condition U,(y =0)=0 in a laminar
boundary-layer calculation. Again, by analogy with the laminar boundary layer,
one should also specify the velocity profile, U;(x;), at some value of x;. For instance,
the profile could be imposed at the nozzle of a jet or from the measured wake profile
behind a body. This is not usually critical, however, because the flow appears to
“forget” the details of such upstream conditions as it spreads and develops down-
stream. :

From (5.24) and (5.26), we deduce that
P=P.(x)) (5.27)

that is, the mean pressure is imposed from outside, as for the pressure in laminar
boundary layers. This can be used in (5.18) to obtain
U, = oU;  1dPy owm

7, U _1dPs .
! Bxl + U2 sz P dxl sz (5 28)

which, combined with (5.13), give the turbulent-“‘boundary-layer” approximation.
Equation (5.28) shows that any streamwise gradient of external pressure would tend
to make the flow accelerate or decelerate. However, we will mainly be concerned
with wakes in an infinite, uniform stream and jets exhausting into infinite fluid at
rest, for which the external pressure is uniform and the pressure gradient term in
(5.28) is zero. In that case it is the Reynolds stress term alone, representing turbulent
momentum transfer across the flow, which causes streamwise development of the
mean flow. Equations (5.13) and (5.28), without pressure gradient, form the basis
for the analysis of plane jets and wakes in Sections 5.3 and 5.4.

It is enlightening to consider higher-order corrections to the turbulent-“boundary-
layer” approximation, partly for their intrinsic interest, but mainly to determine the
limitations of the approximation. First consider the transverse momentum equation,
{5.22), which, as we have seen, leads to (5.24) at leading order. Terms other than the
pressure gradient can be estimated and compared. Of the two terms making up the
Reynolds stress contribution, (5.23), the second dominates and is larger than the left-
hand side of (5.22) by a factor O(u'2d? /A*U3). This factor can in turn be estimated,
using (5.19), to be at least O( U3/ #'?), and therefore large. We conclude that, among

12 More generally one could have different limiting values for U; as x, = —oc and x, — 400, represent-
ing a turbulent shear layer, for example.
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the lower-order terms of (5.22), the second term in (5.23) is the largest, and so the
next higher order version of (5.24) is

o (P+pud)=0 (5.29)

Thus, P + pg is uniform across the flow and
P =P (x;) — pu2 (5.30)

where P, is the externally imposed pressure, since turbulence is supposed absent (or
at least of much smaller intensity) outside the jet or wake. According to (5.30), the
mean pressure should drop slightly as one enters the turbulent flow from outside.
The term pu? gives the next order correction to (5.27).

For the streamwise component of momentum, the next order approximation to
(5.16) above (5.18) keeps both Reynolds stress terms in (5.17), but one continues to
neglect the viscous term. Thus, the improved version of (5.18) is
U, _aU1 1P  duyuy; ou?

+ 0, e e P (5.31)

d
U,
Vox, 0x1 6x2 p 0xq 0%, 0x1

which we can combine with (5.30) to obtain the next order equivalent of (5.28):

Ul 8U1 +v 8U1 _ _l dPoo . 8141142 d (u% _ u%)

5.32
02 0x, p dx, o, | ox; ( )

Equation (5.32) and the exact equation (5.13), give the improved turbulent-“bound-
ary-layer” equations. Compared with the leading-order equation (5.28), an addi-
tional term has appeared, whose smallness, relative to the other terms, should
indicate the accuracy of the leading-order form of the equations. It is because this
additional term is small compared with the other ones that the approximation (5.28)
is useful The new term depends on u% u?, which is usually noticeably smaller than
either u? or u3 taken separately, so the leading-order approximation, (5.28), is some-
what better than one might expect.

The main difficulty in applying the “boundary-layer” equations, (5.13) and
(5.28), is that the Reynolds stress, #;#,, occurring in (5.28) is unknown. If we
want to use the equations to predict flows, this term must be evaluated in some
way, for instance, by a closure hypothesis. In the context of jets and wakes, the
most commonly used closure is the eddy-viscosity approximation

1— au;, aU;
um; = < g 5 UT(axl + a’i) (5.33)

discussed in the previous chapter, where vy is the turbulent eddy viscosity, which
generally varies with position in the flow. We have already given a number of health
warnings concerning this closure in Chapter 4. In the present case, we use (5.33) with
i=1,j =2, neglecting the term 8U,/dx;, since it is of lower order than 8U; /dx,.
Thus, we find '
_ U,
Uiy = —Vr ——

5% (5.34)
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and so (5.28) becomes

U, U
o U, g Uy _ 1dPy, , 3 (U 9 1)
axz

— 5.35
ox X1 2 axz P dx1 axz ( )

according to the eddy-viscosity closure. Comparison with the laminar boundary-
layer equation, (5.2), shows a strong formal similarity. The difference between the
Prandtl equations and the turbulent-mean-flow “boundary-layer” equations with
eddy-viscosity closure is that, unlike the real viscosity, vr is not a physical property
of the fluid and can vary with position in the flow in a way which is not known a
priori. Observe that, since only one component, namely #7%3, of the Reynolds stress
enters into the mean-flow equations in the “boundary-layer” approximation consid-
ered here, one may regard (5.34) as an exact definition of v, rather than a closure
approximation. However, in many flows, such as the wall jet considered towards the
end of this chapter, the resulting eddy viscosity has pathological behavior, with
regions of negative values and infinite singularities where 8U; /8x;, = 0. Such beha-
vior happens not to occur for the self-similar free jets and wakes which are the
subject of Sections 5.3 and 5.4 because symmetry implies that the quantities %73
and 8U; /dx, are both zero at x, = 0.

If the eddy-viscosity model is accepted, there remains the problem of determining
vr. Analogies with the calculation of viscosity in the kinetic theory of gases were
often employed in the early work on turbulence, leading to the concept of a turbulent
mixing length, analogous to the molecular mean free path, and expressions for vr in
terms of the mean flow (see, e.g., the cases of jets and wakes described in Hinze (G
1975)). Such mixing-length theories had some success, but were never very satisfac-
tory from a fundamental point of view. Qualitatively, the idea that mean momentum
transfer by turbulent mixing has similarities with that due to the random motion of
molecules may be conceptually helpful, but the analogy is not upheld in detail.
Stripped of their kinetic-theory ideas, mixing-length theories are eddy-viscosity clo-
sures, with particular expressions for v in terms of the mean flow.

Rather than using a mixing-length, or still more complicated model, we adopt a
simple form of eddy viscosity to describe jets and wakes, independent of x, and
consistent with self-similarity. As noted above, experimental measurements may be
used to determine #;7%; and 89U, /dx, in (5.34), allowing vy to be calculated. The
resulting vr is indeed found to vary little with respect to x, across the central regions
of free jets and wakes and can thus be approximated as a function of the streamwise
location, x1, alone. The dependence of the eddy viscosity on streamwise distance is
determined using self-similarity, another observed feature of these flows.

For the wakes of bodies placed in an infinite, uniform stream, it is found that the
velocity defect takes on a self-similar form sufficiently far downstream, in which the
width of the wake increases according to a power law as a function of streamwise
distance. Similarity also holds for jets exhausting into infinite, quiescent fluid.!?
Thus, near the body in the case of a wake, or the nozzle for a jet, self-similarity

13 The case of a jet exhausting into an infinite, uniform flow parallel to the jet leads to different self-
similarity far downstream. This flow is rather similar to a wake, although there is a velocity excess,
rather than a deficit. It is the velocity excess profile which becomes self-similar and the theory of the
self-similar jet in a coflowing stream is much the same as for wakes, but with a change of sign.
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does not apply, but in the far wake or jet, the streamwise development of the mean
flow is determined by similarity. As we shall see in Sections 5.3 and 5.4, if one
substitutes the self-similar mean flow into the turbulent-“boundary-layer” equations
without a pressure gradient, adopting the closure (5.34) with the form of vp(x,;)
chosen to be consistent with similarity, the self-similar mean-velocity profile can
be calculated analytically. For the moment, however, we leave the question of closure
to one side.

Consider the turbulent wake of a body placed in an infinite, uniform stream, Uy,
in the x;-direction. The fluid in the wake is slower moving than the external stream,
U, but turbulent momentum transport across the wake causes the difference to
decrease with increasing streamwise distance from the body. The velocity defect
introduced by the wake falls and the uniform flow ‘“heals” itself after the passage
of the body, that is, U; — U,, as x; — o0o. Thus, in the far wake, not only is the
mean velocity defect self-similar, but Uj is close to Uy, a feature which can be used
to obtain a simplified form of (5.28) for far-wake calculations, as we now show.

We briefly reexamine the order of magnitude estimates with the case of the far
wake of a body in an infinite, uniform stream in mind. Let V = U; — U, so that —V
gives the velocity deficit in the wake and tends to zero as x; — co. In the far wake,
|V| « Uy and we adopt a velocity scale, Vg, for V, small compared with U,,. From
(5.13), written in terms of V, rather than U, we obtain the estimate

U, = o(% VO) (5.36)
instead of (5.15).

Dropping the viscous term in (5.16), as usual, we may estimate the orders of mag-
nitude of the remaining terms. The first term on the left-hand side is O(Uy V,/d) and
dominates the second one, which is O(V3/d) according to (5.36). One may also
approximate the first term by U, (8U,/dx,), since U is close to U,. Of the
Reynolds stress terms in (5.17), the second is larger, for the same reasons as before.
Thus, (5.16) becomes

871_ 1 0P oy

U

©0x,  pox; oxy (5-37)

to leading order. This is a simplified far-wake version of (5.18}), in which transverse
mean-flow convection has disappeared, and the streamwise convection velocity has
been approximated by the uniform value U,

To make the Reynolds stress term of (5.37), which is O(zu;/A), of the same
order, O(Uy, Vy/d), as the left-hand side,

A ) u'?
2_0 ® .
1=0(72%,) < O(Uoovo) -39

showing that A/d is small, as assumed in the “boundary-layer” approximation used
here, provided u’ « (U, V,)"/?, which is a more stringent requirement than that of
small #'/U,, for jets exhausting into fluid at rest. However, the basic reason for the
requirement, that the turbulence be sufficiently weak that transport of mean momen-
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tum across the flow be slow, remains the same. The condition, #’ <« (U, V)2, is
found to be well verified in far wakes.

For the pressure gradient term in (5.37) to be significant, we find that

P = O(pUy Vy) (5.39)

Order of magnitude analysis of (5.22) in the far wake, using (5.39), shows that
(5.24) still holds to leading order. Thus, P = P.,(x;) and we can replace the pressure
derivative in (5.37) by dP, /dx;. Since the pressure, P, in the external flow is
constant for wakes in a uniform stream, (5.37) becomes

U, _ dupn

e (5.40)

which is the simplified form of (5.28) for the far wake of a body placed in an infinite,
uniform stream. Observe that, if one uses the eddy-viscosity closure, (5.34), in (5.40),
a linear differential equation for U, results, containing the unknown diffusivity vr.
Equation (5.40) forms the basis of the treatment of self-similar wakes in Section §.4,
where it is assumed that v; is a function of x; alone.

Note that, aside from allowing us to use the simplified “boundary-layer” equation
(5.40), far wakes have scalings different from those of jets or near wakes. For
instance, the ratio of the width to downstream spreading distance becomes (5.38)
for the far wake, instead of (5.19). The transverse velocity scale is also changed from
(5.15) to (5.36) for the far wake. These different scalings reflect the differing physics
of a jet exhausting into external fluid at rest, which must do its own streamwise
convection, and a far wake which rides on the back of the external stream.'*

Until now we have been concerned with the mean-flow equations, (5.11) and
(5.12). The boundary-layer approximation also has something to say about the
turbulent energy equation, which we can write as

+ 939 aU; 9 1 p du; O

U 22 — g~ 8 ——lyl=-g?>+2) = | =+ 5S4

P Tox; T Mk T <= T, "’<2q +p) ””’(ax-’Lax,- (5.41)
/ 7, Dissipation ! !

Convection Production

"Diffusive” transfer

for a steady flow (equation (4.35), bearing in mind (4.5)), where

1 [ou;  ou\ (ou; ou;
t=cv|—+ )=+ 5.42
) v(ax,- + ax,-) <8xi ax; ( )
is the usual turbulent energy dissipation.
According to the boundary-layer approximation, the production term can be
approximated by noting that 8U; /9x; is of higher order than the other mean velocity
derivatives, so we drop all but the i = 1,j = 2 contributions in the implied sum. The

diffusive transfer term is likewise simplified by neglecting all but j = 2 in the implied
sum, on the grounds that 3/dx, is greater than 8/dx;. Finally, since we are here

4" At first sigh, it might be thought that the wake can be turned into a jet by changing to a frame of
reference moving with velocity U,,. However, it should be recalled that the flows considered here are
steady and the change of reference frame turns a steady flow into an unsteady one.
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concerned with jets and wakes, there is no viscous sublayer and we can ignore the
viscous transfer term to obtain

— 3lg® . 3l au a 1 P
0,97, 0,99 - g il s 2 b, (el 5.43
! x4 + U ax; 1t ax; *‘?-‘ 9x, e Zq + P ( )
Dissipation
Convection Production

Transverse ”diffusive” transfer

This equation shows that, as a small packet of turbulence is convected by the mean
flow, it gains energy by production, loses it by dissipation and that there is diffusive
transfer of turbulent energy across the flow due to turbulent mixing and work done
by the fluctuating pressure.

Note the important general point that, even outside a viscous sublayer, where we
can neglect viscosity as far as the mean-flow momentum equations are concerned,
viscous energy dissipation associated with the smallest scales of turbulence remains
important. This energy dissipation is apparent in equations, such as (5.41) and
(5.43), for the turbulence itself.

Further order-of-magnitude analysis of (5.43) would tend to indicate that the
production term is larger than both the left-hand side and diffusive transfer term,
leading to approximate local equilibrium between production and dissipation. This
is not true for jets and wakes. The reasons for this vary, depending upon the flow
considered: for instance, in the case of a jet exhausting into quiescent fluid, #;%; is
considerably smaller than %2, so production is actually less than one would naively
estimate. Thus, although order-of-magnitude estimation correctly gives the form,
(5.43), the differences of magnitude between the terms of (5.43) are too subtle to
be captured by such estimation and all terms of (5.43) can be, and often are, needed.

As we shall see in Section 5.5, the boundary-layer approximation, (5.43), for the
turbulent energy equation needs to be refined in the outer part of a turbulent bound-
ary layer if there is a significant pressure gradient, wall curvature, or external vorti-
city. In addition, the viscous transfer term

ad 814,‘ 8142
v E M,‘(axz +5;) (544)

should be added to (5.43) within the viscous sublayer of a turbulent boundary layer.

5.3 Jets

In this section, we consider the case of a jet exhausting into infinite, quiescent fluid,
beginning with the case of a plane jet. We first want to show that the jet momentum
flux is constant. To this effect, we rewrite (5.28), using (5.13) and constancy of P,
as

0 —2 0 — —
a, (Uy) = T, (U1Uy +m1uy) 4

which can be integrated with respect to x,, that is, across the jet, using the fact that
U, and the turbulent velocities tend to zero outside the jet, to show that
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dQ _

=0 (5.46)
where Q,, is the jet momentum flux (divided by the fluid density)

O = J Tidx, (5.47)

It follows that the momentum flux, Q,,, is independent of streamwise position,
according to the “boundary-layer” approximation, and is thus fixed by its value
at the nozzle, supposed given. The reader is encouraged to rederive (5.46) via a
momentum audit (starting from the x;-component of the exact, volume-integrated
mean momentum equation) using a control volume consisting of a slice of fluid
bounded by two planes of constant x; and noting the terms that must be neglected
in the process.

Constancy of the jet momentum flux can be contrasted with streamwise variation
of the volume flux. Integration of (5.13) with respect to x;, gives

d - —
dQ” = Ty(xy = —00) — Uy(xy = +00) (5.48)
X1
where
0, = J U, dx, (5.49)

is the volume flux (equal to the mass flux divided by the density). In general, the
transverse velocity, U,, is nonzero outside the jet, representing entrainment of fluid
that must be swept in to increase the mass flux of the jet as it develops downstream.
Such entrainment is a characteristic feature of jets and creates a large-scale, relatively
slowly moving flow in the region external to the jet (see Figure 5.5 and bear in mind
that the transverse velocity, U,, is small compared with the turbulent fluctuations,
which are themselves small compared with the streamwise mean velocity of the jet).
Entrainment is also a feature of laminar jets and it is illuminating to read the dis-
cussion given in Batchelor (G 1967, section 4.6) of an exact solution of the Navier—

Stokes equations. That solution describes an axisymmetric jet rather than the plane
lines illustrating entrainment flow caused

by a jet. Note that the incoming flow out-
side the jet is comparatively weak, /// f—

Figure 5.5. Sketch of mean-flow stream-
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otential core

Figure 5.6. Sketch of a jet flow near the
nozzle. For clarity, the horizontal scale
has been compressed: the end of the
potential core is located at about five noz-
zle widths, as stated in the text.

Shear layers

one considered here and has many features in common with the axisymmetric tur-
bulent jet we discuss later.

To proceed further, we introduce some experimental observations of the plane
turbulent jet. Such observations indicate that the flow becomes self-similar suffi-
ciently far downstream of the nozzle, with similarity variable & = x;/(x; — xq),
where x is a constant that scales on the nozzle width and corresponds to an arbi-
trariness in the origin of x; for the self-similar jet. The value of x, is not fixed by
imposing conditions at the nozzle, because similarity only applies many nozzle
widths downstream. More precisely, it is found that of the order of twenty nozzle
widths or more are required for similarity of the mean flow, considerably further for
turbulent quantities such as %z;. Caution must therefore be exercised in assuming
full statistical similarity of the flow just because the mean flow is self-similar,

The flow at the nozzle has a comparatively low level of turbulence and is often
supposed approximately uniform across the nozzle exit. It emerges into the external
fluid, creating shear layers originating at the lips of the nozzle. These layers separate
the fast-moving jet from the quiescent external fluid and, presuming the jet Reynolds
number is sufficiently high, they break down rapidly to turbulence.” The shear
layers spread out by entrainment until they meet at the center plane of the jet (see
Figure 5.6} about five nozzle widths downstream (the approximately laminar zone
between the mixing layers is often referred to as the “potential core’’). Subsequently,
the jet develops as a whole, with a bell-shaped velocity profile, U;(x,), which spreads
and evolves with downstream distance until it eventually becomes self-similar.
Incidentally, it should be no surprise that the streamwise evolution of the jet takes
many nozzle widths: this is the basis of the approximation developed in the previous
section and, as we saw there, is due to smallness of '/ U.

Assuming self-similarity, the jet streamwise velocity profile has the form

Uy = (1 —x0) (&) (5.50)
where the factor (x; — x)”/? is required to make the jet momentum flux, Q,,,

independent of x;. If the form, (5.50), is introduced into (5.13), we may integrate
with respect to x, to obtain '

15 Figure 1.9 illustrates a lower Reynolds number for which transition occurs further downstream.
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U, = (x; — x0) " g(®) (5.51)

The self-similar plane jet considered here is supposed symmetric about x, = 0 and so
f(&) is an even function of &, while g(£) is an odd function of &, given by

1 '3
g&) = E£(®) — JO F&')de’ (5.52)

2
Note that the above use of symmetry imposes the boundary condition U, =0 at
x, = 0. Applying (5.50) and (5.51) in (5.28) with zero pressure gradient, we can
integrate with respect to x, and again use the symmetry of the flow (which makes
.43 an odd function of x;) to obtain

ity = (x; — x) ' h(&) (5.53)
where
1 &
h(§) = 3 iG] JO f(&Hdg' (5.54)

We choose to express #7#, according to the eddy-viscosity approximation, that is,
using (5.34), so that :

vr = (x1 — x0)"/* x(§) (5.55)
where
df B
xggth=0 (5.56)

Equation (5.55) gives the form of the turbulent eddy viscosity required for self-
similarity. As noted earlier, it is remarkable that measurements are rather well
described by assuming a value of vy which does not depend on x,, that is, constant

X-
Let us therefore suppose that x is a constant. Elimination of b between (5.54) and
(5.56) gives

3
2x a9 +f@&) | f(€)dE' =0 (5.57)
d& 0

or, if we set
.
R = | A6 (5.58)
and integrate,
dF . 52, o
4xd—§_16a x°—F (5.59)

where « is a nondimensional constant of integration. The integral of this equation
yields :
F(&) = 4axtanh ag (5.60)

so that
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(&) = j—g = 402 y sech® ot (5.61)

gives the streamwise velocity profile via (5.50),

g(&) = &f — % F=4a X(as sech? a& — %tanh ag) (5.62)
provides the transverse velocity from (5.51), and, finally,

h(E) = % fF = 8a’ x* sech® a& tanh o (5.63)

gives w11, from (5.53).
The jet momentum flux is

) 64 3 ,
On = Plode=a'y (564
—00

which can be used to calculate x if Q,,, measuring the intensity of the jet, and «o,
which determines its rate of spreading, are known. The solution then depends only
on Q,,, which is fixed by the jet momentum flux at the nozzle, «, which is a purely
numerical parameter, and x, giving the apparent origin of ‘the self-similar jet.
Experimentally, it is found that « = 8 fits the data quite well.

The jet described by the above similarity solution spreads out to form a wedge
with straight sides, its width being proportional to x; — x5. The wedge semiangle at
which the streamwise velocity is one half its maximum at the same streamwise
location (i.e., on the center plane) is about 6° (assuming « = 8), which gives an
idea of the extent of the jet. Mean velocities decrease with streamwise distance
proportional to (x; — x4)” /%, as do turbulent velocities, such as #’ (although the
measurements of turbulent velocity moments are less conclusive than those for mean
velocities). For this reason, quantities, such as #7%;, which are quadratic in the
turbulent velocities, are proportional to (x; — x,)~". Figure 5.7 shows a comparison
of the streamwise velocity profile derived from (5.61) with some experimentally
determined points. The reasonable agreement should not be surprising, since the
underlying assumption that vy is independent of x, was originally ascertained
from such data. Note that the measured profile drops off considerably faster than
{5.61) toward the outskirts of the jet, where the vy required to fit the data decreases.
In fact, it could be argued that the agreement is spurious: given that the parameter «
is available to produce a fit, different curves with the overall bell shape of (5.61) can
produce results that are as good or better, for instance a Gaussian distribution. On
the other hand, the assumption of vy independent of x, is relatively simple and
appears to apply to other wake and jet flows.

Regardless of the precise form of f(§), the fact that the jet approaches self-simi-
larity is perhaps surprising in itself. One interpretation is that the jet eventually
forgets about the details of its production and that the only parameter remaining
far downstream is the constant momentum flux, Q,,. If Q,,, x,, and x; — x; are
taken as the only dimensional parameters, dimensional analysis indicates that the
flow velocity must be of the form (5.50), (5.51), with f and g proportional to Q}/%.

The observed self-similarity of the mean properties of the far jet suggests that the
large scales of turbulence are self-similar. Thus, for instance, the correlation lengths
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of turbulence ought to be proportional
to x; — x9. However, this similarity of
turbulence properties cannot extend to
the smallest scales of turbulence in the
plane jet because the turbulent
Reynolds number, Re;, of the jet, based
on a correlation length scale increasing
as x; —xp and a turbulent velocity

decreasing proportional to
(1 — x0)" V2, grows like (x; — xq)'/2. P
This increase of Reynolds number with X

downstream distance must be reflected in
a decrease of /L, where n and L are the Figure 5.7. Comparison of theoretical (continuous line,

Kol d lati length %= 8) and measured (points) streamwise velocity profiles in
OlMOgorov — an correfation  leng the self-similar region of a plane turbulent jet (the points are

scales (see Chapter 3), so that the smal-  based on experimental results of Bradbury (1965)).
lest (dissipative) scales do not share the

self-similarity of the large ones.

Presumably, this lack of similarity of the dissipative scales has little effect on the
large ones responsible for mixing, for otherwise the observed overall similarity of the
jet would not occur. This suggests that the large-scale structure of the turbulent jet is
insensitive to Reynolds number, provided it is large enough. That is, viscosity deter-
mines the size and dynamics of the smallest scales of turbulence, but little else.
Incidentally, the increase of Reynolds number with x; indicates that the jet should
remain turbulent indefinitely far downstream.

Two features of the self-similar plane jet are observed to apply to self-similar jets
and wakes in general. Both mean and turbulent velocities are proportional to the
same power of x; — xg, for instance (x; — x5)" /2 in the case of the plane jet. This is
found to be true in general, although the exponent of the power law depends on the
particular flow considered, and for wakes, the appropriate mean velocity, whose
variation with x; —x, mirrors that of the turbulence, is the difference,
V = U, — U, rather than U, itself. This is natural, since it is the variations of
mean velocity across the flow (mean shear) that generate and maintain turbulence.
The jet considered above, which exhausts into fluid at rest, has U,, = 0, so that
V = U, in that case. In all cases, the turbulent velocities and mean-flow variations
across the flow are found to have the same power-law dependence on x; — x in the
self-similar regime. A second general property is the observed approximate indepen-
dence of v on x;. Based on these two properties, which are purely empirical, and the
turbulent-“boundary-layer” equations, one can calculate the mean-velocity profile in
the self-similar range for all the jets and wake flows considered here.

The case of a circular jet is of considerable practical interest, but for this flow we
need the axisymmetric equivalents of (5.13) and (5.28). One can use cylindrical polar
coordinates, r, ¢, x, based on the jet axis and express the averaged Navier-Stokes
equations, (5.11) and (5.12), in terms of these coordinates (see Batchelor (G 1967),
appendix 2). Axisymmetry implies that the flow statistics are independent of ¢ and

we further assume no swirl, that is, Uy = 0. The mean-flow continuity equation,
(5.12), gives
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19rU, aU
- ! =0 5.65
r or +8x (5-63)

After order-of-magnitude estimation of the steady, axisymmetric momentum equa-
tions, using the “boundary-layer’ approximation as before, one finds that, to leading
order,

P =P, (x) (5.66)
is imposed from outside, as in the plane case, and that

+ U, = U 1dP,, 1 oriuy
9Yx Ix 100 1 OTHMU 567
Us ax +U or pdx r O (567

is the axisymmetric equivalent of (5.28). Equations (5.65)—(5.67) are the inviscid,
axisymmetric turbulent-“boundary-layer” equations. The pressure gradient term is
zero for the circular jet exhausting into infinite, quiescent fluid considered here.

From (5.65) and (5.67) with zero pressure gradient, one can show that the jet
momentum flux (divided by the density):

Rl |
Q,, = J 2nrU, dr (5.68)
o ,
is a constant, fixed by its value at the nozzle.

The similarity variable for the far, circular jet is & = r/(x — x() and, to obtain
constancy of Q,,,

U, = (x~x0) ') (5.69)
while (5.65) and (5.67) imply

U, =(x —x) ' g&) (5.70)
and

wit; = (x — x0) "h(E) (5.71)

of which (5.71) is consistent with proportionality of turbulence velocities to
(x — x0)~", like the mean flow. As noted above, this appears to be a general property
of such self-similar flows. In fact, if one assumes self-similarity with the general
similarity variable & = r/W(x), so that

U, = W) (5.72)
to make Q,, constant, the requirement that -
wt, = Wh(E) (5.73)

(which follows from imposing the same dependency of turbulent and mean velocities
with respect to x), together with (5.65) and (5.67) without pressure gradient, imply
that W(x) is a linear function of x. Thus, requiring the same dependency of mean and
turbulent velocities with respect to x vyields the correct similarity variable.
Alternatively, one can assume that the jet forgets its origins and depends only on Q,,,,
r, and x — x; in the far jet. Dimensional analysis then leads to the forms (5.69)-
(5.71), with f and g proportional to Q}/? and b to Q,),.
Using (5.69)—(5.71) in (5.65) and (5.67), we can show that
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58(5) = £1(§) — F®) (5.74)
and

£h(§) = [(F(®) (5.75)
where

£

F&) = | £feds (5.76)

The eddy-viscosity approximation, (5.33), in cylindrical coordinates leads to

U, = —vr a;" (5.77)
to leading order and so

d -1
vr = ~h(§)(d—g> (5.78)

is automatically independent of x. If we further suppose it independent of &, vr is a
constant. We can substitute for b(£) in (5.78), using (5.75), and integrate to obtain

dF F?
Integrating again leads to
o Avp(ag)
Fg) = 557 5.80
&) Tt @) (5.80)
from which we obtain
foy =S (5.81)
(14 (et)D)? '
4vra’s(1 — (a8))
_ 5.82
= s e (5:82)
32v%a4£§
hg) = -T2 5 5.83
© (1 + (a&)?y’ (-83)
and the jet momentum flux,
O = AP (5.84)

3

which can be used to calculate vr, given Q,, (determined at the nozzle) and a, a
nondimensional constant characterizing the rate of spread of the jet.

The circular jet begins at the nozzle as a cylindrical shear layer that spreads out to
fill the jet, in much the same way as for the two shear layers of the plane jet (see
Figure 5.6). The potential core disappears about six diameters from the nozzle and
the jet develops downstream, attaining mean-flow similarity at distances of about
twenty diameters and greater. In the self-similar regime, the jet spreads in a conical
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fashion and the velocity profile is well represented by (5.81) with a = 8, apart from
the outskirts of the jet where the approximation by a uniform v no longer fits the
data well. The cone on which the streamwise velocity is one-half its maximum at the
same streamwise location has a semiangle of about 5°.

It will be noted that the circular jet has much in common with the plane one, in
particular, they share the same linear dependence of jet width on downstream dis-
tance in the self-similar zone and nearly the same angle of spreading. However, the
velocities now decrease like (x — x0)~!, which has the effect of maintaining a con-
stant (large) Reynolds number. This means that the smallest scales of turbulence may
form part of the similarity solution for the circular jet. The fact that the Reynolds
number remains large suggests that the jet will remain turbulent indefinitely far
downstream.

Whereas the eddy-viscosity model for the plane jet had vr proportional to
(x1 — x0)"/2, the circular jet has constant vy. This makes the turbulent mean flow
appear like a laminar one in a fictitious fluid having a much greater viscosity than the
real one. The solution represented by (5.81), (5.82) is, in fact, equivalent to that for a
laminar jet (as described in Batchelor (G 1967), section 4.6) at high Reynolds num-
ber, when the jet angle becomes small, so that the “boundary-layer”” approximation
can be applied (as assumed in deriving (5.81), (5.82)). The Reynolds number of the
equivalent laminar jet, based on the maximum streamwise velocity, the distance from
the axis of the half-velocity point, and the viscosity vy is a numerical constant,
proportional to «, of about 40. The true Reynolds number of the jet is much higher
than this, of course (by a factor that equals the ratio of vy to the real viscosity of the
fluid). A similar calculation for the plane jet gives a constant value of the “Reynolds
number” based on vy of about 30. Self-similar turbulent jets thus appear to select an
eddy viscosity that makes the “apparent Reynolds number” constant and not too
large, even though the eddy viscosity must change with jet momentum flux and in the
case of the plane jet, with streamwise location, to achieve this.

Entrainment of fluid from outside plane and circular self-similar jets can be inves-
tigated using (5.62) and (5.82) in the limit £ — oo. For the plane jet, fluid is swept
towards the jet at velocity

2ax(xy ~ x0)"? (5.85)

which is a factor 1/(2a) ~ 6% of the maximum streamwise velocity. To the fluid
outside the jet, it looks like a surface distribution of volume sinks of strength twice
(5.85) per unit area, resulting in a flow like that sketched in Figure 5.5. For the
circular jet, we find that

U, ~ - dvr (5.86)

r
outside the jet. This corresponds to a semi-infinite uniform line sink of volume
flux 87vy per unit length of jet. The flow will again be qualitatively as shown in
Figure 5.5.

Turbulent jets that are neither axisymmetric nor plane have an interesting feature
that neither of the two more widely studied special cases possess. For such flows, one
can no longer use the two-dimensional “boundary-layer” equations derived pre-
viously, but must allow for general variation of averaged quantities with respect
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to the transverse coordinates, x, and x3. We saw earlier that an improved turbulent-
“boundary-layer” approximation for the transverse-momentum equation leads to
(5.29) for a plane flow, and a similar equation can be derived for the axisymmetric
case. These equations express a balance between the transverse mean pressure gra-
dient and the transverse part of the Reynolds stress force, d(#;#;)/dx;. The latter is in
the x,-direction for plane flow and the r-direction for axisymmetric flow. In either of
these special cases, the Reynolds stress can be balanced by a pressure gradient in the
corresponding direction. However, in general, the transverse part of d(#;)/dx; will
not be expressible as the transverse part of a scalar gradient because there is no good
reason why it should be irrotational.

In mathematical terms, the nonplanar “boundary-layer” approximation for the
transverse momentum equations, taken to the next order above the basic approx-
imation (which gives P independent of x, and x3) leads to

1 0P w3 mms

;%_ 3.X'2 3.X'3

(5.87)

1 3? _ 3142 Uz 314_%

;% - 3.X'2 3.X'3

(5.88)

Differentiating (5.87) with respect to x3, (5.88) with respect to x, and subtracting
(which is the same as taking the x{-component of the curl), we find

¥ & ¥ 5
IR 7 7 — 5.89
(3x§ ax3 H2t3 x5 0x3 (u3 uz) (5.89)

and there is no pressing reason why the turbulence should arrange itself so that the
velocity moments satisfy this equation (they “just happen” to do so for plane and
axisymmetric flows). Without (5.89), equations (5.87) and (5.88) are inconsistent
and something must go wrong with the reasoning leading to these equations. Clearly
we should make terms in the transverse momentum equations, other than those
present in (5.87), (5.88), play a role.

To resolve this difficulty, we reassess the order-of-magnitude arguments leading to
the standard form of the turbulent-“boundary-layer”” approximation. The mean-flow
continuity equation is

9, 9y s

5.9
3.X'1 3.X'2 3.X'3 ( 0)
and, as before (equation (5.15)), we take the transverse velocity scale
— = A
- Uy, Uz = O(E UO) (5.91)

so that all three terms of (5.90) are of the same order. The x,-component of the
transverse momentum equation is
3U2 3U2 -— 3U2 o 1 3? 3141142 314_% 3142143

U, —=+0, = =——— s = = 5.92
Us 0x1 T x, +Us 0x3 0 0x; 0x1 x, ax3 ( )
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after neglecting the viscous term. Of the Reynolds stress terms, the first is of lower
order because it involves a streamwise rather than a transverse derivative, and we
therefore drop this term. The right-hand side of (5.92) then gives (5.87) if it is
equated to zero, while (5.88) arises from the x3-component in a similar fashion.

To avoid the problem described above, the left-hand side of (5.92) must be of the
same order as the terms on the right, which are dominant under the standard
“boundary-layer” approximation. One can estimate the left-hand side as
O(AU3/d%), using (5.91), while the second of the Reynolds stress terms is
O(u'*/A). Equating these order of magnitudes, we have

A !
i O(Uo) (5.93)

to be compared with (5.19) for the standard approximation. Adopting (5.93), the
only term we drop in (5.92) is (z#7%;)/ 9%, and likewise for its x3-component analog.
The x;-component of the inviscid momentum equation is

— 8U1 — 3U1 Ul 1 8? 8; auluz 8u1u3
U +0, 040, L= = 2 T B 5.94
Vo, X1 2 ox X + 8x3 P 8x1 8x1 8x2 8x3 ( )

of which the Reynolds stress terms are at most O(u'%/A), while the left-hand side is
O(U3/d). From (5.93), their ratio is O(u'/U,), which makes the Reynolds stress
terms negligible in (5.94) at leading order, whereas they are present in the standard
approximation. Indeed, earlier we based our order-of-magnitude estimates on the
assumption that the Reynolds stresses should appear in the streamwise momentum
equation at leading order, whereas now we find that they are negligible unless the
flow is close to being planar or axisymmetric. As before, equating the order of
magnitude of the pressure gradient term to that, O(U§/d), of the left-hand side of
(5.94) gives

P = O(pU}) (5.95)

as an estimate for the mean pressure.

Returning to the transverse momentum equation, (5.92), we find that (5.95)
makes the pressure gradient term dominant, as in the standard approximation.
Thus, to leading order

P = Po(x1) (5.96)

is still imposed from outside the flow. The next order approximation to (5.92)
involves a corrected form

P = Po(x;) + Plxq, %3, x3) (5.97)

of (5.96), where P is of lower order than P.,. We can use this expression in (5.92),
dropping the term (u72;)/9x; compared to the other Reynolds stresses, to obtain
UZ — aUZ 8U2 1 813 au_% 8u2u3

— 0
U +U, —+U; == . 5.98
Vo, X1 2 ox b + ax3 pOx; 0x; 0x3 ( )

with a similar equation for the x3-component of momentum, while neglecting all
Reynolds stress terms in (5.94) gives
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— U, — U, — AU, 1 dP.,
U, —4U, —+0; —=--=-= 5.99
! 3x1 + U 3x2 5 8x3 P dx1 ( )

Equations (5.90), (5.98) (with its x3 analog), and (5.99) are the final set of modified
turbulent-“boundary-layer” equations describing jets that are not plane or axisym-
metric. Observe that P = O(pu'?) to make the pressure gradient term in (5.98)
comparable with the Reynolds stress contribution. From (5.90) and (5.99), one
can show that, as before, the streamwise momentum flux

O = “dexzdxa (5.100)

is constant in a jet having no external pressure gradient.

Let us interpret the new equations. There is no direct effect of the turbulence on
the streamwise mean velocity of the jet at leading order, as is apparent from (5.99);
however, the Reynolds stress forcing of the transverse mean flow via (5.98) will set
up transverse mean motions within the jet. These mean motions change the stream-
wise velocity profile through the convective terms in (5.99). Observe that the mean
transverse velocities created are O(u"), according to (5.91) and (5.93), and are thus
considerably stronger than those present in plane and axisymmetric jets (recall that
the transverse mean velocity was small compared with the turbulent velocities for
those cases). The distance over which the jet now develops is O(Uy/u’) times its
width, according to (5.93), compared with the rather greater O((Uy/#')?) (or more)
of standard type jets (from (5.19)). Thus, the asymmetric jet develops more rapidly
downstream (though still slowly on a jet width scale, so the “boundary-layer”
approach remains valid), under the effects of transverse mean flow, driven by the
transverse Reynolds stress gradients of the turbulence. Such transverse mean circula-
tions are well known to exist in turbulent flow through ducts which are not circular
or plane (see Schlichting 1987).

We might have guessed that the result of transverse Reynolds stress forcing which
cannot be balanced by a pressure gradient would be significant transverse mean flow.
Experiments on elliptic jets exhausting into infinite, quiescent fluid show that such
jets quite rapidly approach axisymmetry (see, e.g., Hussain and Husain 1989). The
induced transverse mean flow thus appears to bring the jet back towards the circular
case, but in the process it may also lead to more rapid mixing of the fluid in the jet,
which can have beneficial effects in some applications. Once the jet is close to
axisymmetry, the transverse forcing mechanism described above becomes weaker
and the jet develops more slowly. It should then approach the regime of applicability
of the standard “boundary-layer” aproximation, no doubt passing through an inter-
mediate range of small eccentricities in which the Reynolds stress terms,
—0(s7%3)/ 0x, — 8(sq#3)/0x3, should be included in (5.99), and the jet is nearly,
but not quite, circular. It should eventually approach the self-similar circular jet con-
sidered earlier. Incidentally, we might expect that elliptic jets with very large eccentri-
cities would also develop towards axisymmetry, but more slowly than less eccentric
ones because they locally approximate a plane jet as the eccentricity becomes large.

A wide rectangular jet would usually be considered as plane, well away from its
edges, but near the edges of the jet there will be transverse mean motions due to
Reynolds stress gradients, which cause the jet to develop more rapidly there. Such a
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jet may therefore need a considerably larger aspect ratio than might at first be
thought to avoid nonplanar effects at its center. In practice, side walls are often
used to reduce end effects in measurements on nominally plane jets.

Until now, we have been concerned with the mean flow of the jet, and have only
considered the turbulence in as much as the Reynolds stress enters into the mean-flow
equations. We now want to briefly consider the behavior of the turbulence itself.
Downstream of the nozzle, at a Reynolds number high enough that transition occurs,
turbulence is present in the shear layer(s) and the turbulent region expands with the
layer(s) to fill the jet. Sufficiently far downstream, the turbulence approaches similar-
ity, but is observed to do so rather more slowly than the mean flow. In the self-similar
regime, the turbulent intensity, as measured by g for instance, has a bell-shaped
profile with a single maximum at the jet axis for a circular jet, and a symmetric
double-humped profile whose maxima lie off the central plane of symmetry for a
plane jet. Of course, in both cases, g> goes to zero outside the jet.

A more detailed picture of the turbulence in the self-similar regime emerges from
consideration of the various terms in the turbulent energy equation, (5.41) or, after
simplification using the “boundary-layer’” approximation (5.43), or its axisymmetric
equivalent. Figure 5.8 shows the various measured contributions to (5.41) for a
circular jet. The sign of the production term has been switched in the figure to
make the sum of all contributions shown zero. Turbulent energy production is

~ Dissipation
~— p

Pressure
diffusion

.
I'\
.

Production

/‘\ Convection
L

Figure 5.8. Different terms in the turbulent energy balance of a
circular jet in the self-similar regime. Note that the sign of the pro-
duction term has been switched here to make the contributions
shown sum to zero. The viscous contribution to the diffusive term
in (5.41) is negligible outside the viscous sublayer, as here, while the
remainder is the sum of a pressure-velocity term (“Pressure diffu-
sion” in the figure) and a cubic velocity term (“Diffusion” in the
figure). (Wygnanski and Fiedler (1969), redrawn.)

positive everywhere and has a
peak near the location of maximum
shear, that is, maximum [8U,/dr]|.
This can be interpreted qualita-
tively in two ways. Firstly, high
mean shear is usually associated
with turbulence production and,
indeed, we can see from (5.43) (or
better, its axisymmetric analog),
that the production term contains
the mean shear as a factor.
Secondly, the velocity profile has
an inflection point when the shear
is a maximum and such inflections
are destabilizing according to lami-
nar-flow stability theory. Thus,
localized instability may be thought
of as leading to turbulence produc-
tion. This explanation, although
often employed, has not been
given a rigorous justification for
turbulent flows. The production
term for a plane jet shows similar
behavior. In that case, the peak in
production feeds through into an
off-center maxima in turbulent
intensity, noted above.
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Viscous dissipation occurs fairly uniformly across the jet, but, of course, decreases
to zero at the outskirts. Despite being able to neglect viscosity in the mean-flow
equations it is crucial for the turbulence energetics.

Turbulent “diffusive” transfer occurs mainly in the cross-stream, rather than in
the streamwise direction, due to the greater inhomogeneity of the turbulence across
the jet. This is apparent in (5.43), where only the transverse diffusion term is
retained. There are two contributions in (5.43). One, due to work done by the
turbulent pressure and velocity, is comparatively small over most of the jet, accord-
ing to Figure 5.8. The other is more significant and is the result of turbulent advec-
tion (it is referred to simply as “diffusion” in the figure). Taken together, the sum of
these two terms is positive in the central part of the jet and negative in its outer part.
Given the sign convention of the figure, this represents transfer of turbulent energy
from the center to the outside, which is reasonable for a diffusive process, since the
turbulent intensity is larger towards the jet axis. Via diffusive transfer, turbulent
energy is lost from the jet center and transferred to its outer part.

Finally, the convection term, which equals minus the sum of the three considered
above, can be interpreted in two ways. In the frame of reference of the nozzle and
external fluid, the jet is statistically steady and the convective term represents the net
rate at which a small fixed element of volume gains turbulent energy by mean-flow
convection through its boundaries. This point of view is expressed mathematically by
rewriting the convective term in (5.41), using (5.12), as

d (1—-—
!

corresponding to a flux equal to U;q?/2 (cf. equation (4.35)). For instance, if a small,
cylindrical volume lies on the axis of the jet, on the average more turbulent energy
arrives through its upstream face than leaves via its downstream face or through its
curved sides (recall that the intensity of turbulence diminishes downstream and away
from the jet axis). This net influx of turbulent energy due to mean-flow convection is
augmented by some production inside the volume, and the two are balanced by
dissipation in the volume and diffusion away from the jet axis through the sides.
The result is that the mean turbulent energy in the small cylinder remains constant, as
it must, since the flow is statistically steady. Similar descriptions of the energy bal-
ance can be given off-axis, of course.

A second interpretation of the convection term is that it represents the rate of
change of the average turbulent intensity following a packet of turbulence under-
going mean-flow convection. The fact that the convective term is negative on the axis
is not then surprising because turbulent intensity decreases with streamwise distance.
Following a packet of turbulence convected downstream along the axis by the mean
flow, turbulence is produced on the average, but this is more than offset by dissipa-
tion and transverse diffusion away from the axis. The result is that the mean intensity
of the packet decreases with streamwise distance. Needless to say, the two interpre-
tations of the convective term given above are actually different ways of expressing
the same thing, but the reader may intuitively prefer one or the other.

When considering results such as those described above for turbulence energetics,
it is easy to forget that averaging can create a somewhat misleading impression of the
behavior of a turbulent flow. As noted at the beginning of the chapter, at any instant
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of time, a wake or jet has a quite well-defined boundary separating turbulent fluid
inside from laminar fluid outside (Figure 5.1a). This boundary has a randomly
corrugated form, with large-scale bulges that are convected downstream, causing
the position of the boundary to fluctuate with time. The bulges develop and engulf
laminar fluid as they are convected, leading to entrainment. When looked at more
closely, the boundary is seen to have corrugations at finer and finer scales, down to a
small limiting scale at which one can no longer distinguish a sharp boundary. For
flows like the jets considered above, which take place in irrotational external fluid,
the turbulence can, in principle, be distinguished from the laminar flow by its non-
zero vorticity. One can imagine an experimental probe capable of measuring the
vorticity'® at a point. As the turbulence boundary moves past the probe, it will
register a rapid change in the level. A threshold value of vorticity could be defined
to distinguish between turbulent and laminar flow at the probe. Of course, the
boundary is not infinitely sharp (no doubt owing to viscosity) and both the fine-
scale fluctuations of vorticity inside the turbulent zone and fine-scale corrugations of
the boundary as it passes the probe would cause rapid flickering of the measured
vorticity, making it hard to determine exactly when the turbulence boundary passes
the probe. Nonetheless, one can obtain quite precise experimental results showing
intervals of time in which there is turbulence at the probe, separated by intervals in
which the flow is laminar there.

Such turbulence is said to be intermittent and the proportion of the time for which
it is turbulent is known as the intermittence (often denoted 2 and not to be confused
with the notation €2, used in this book for vorticity, or Q, which is often used to
denote the rotation rate when studying rotating fluids). For jets, the intermittence is
indistinguishable from 1 at the jet axis, indicating that the flow is always turbulent
there, and drops off continuously to zero well outside the jet. It remains close to 1 in
the central part of the jet and only falls off in the outer part of the jet where the
turbulence boundary spends most of its time.

Average turbulent quantities, such as g2, include contributions from both the
turbulent and laminar parts of the flow as the turbulence boundary crosses and
recrosses a given point. The contribution from the laminar phases is nor zero
(which is perhaps a weakness of considering all fluctuations in velocity as “turbu-
lence”), but appears to be considerably smaller than that of the turbulent phases. It
has been proposed that a significant proportion of the decrease in g* with distance
from the axis can be explained by the decreasing proportion of the time for which the
flow is turbulent. This suggests that the turbulence may be rather more homogeneous
than appears from averaged quantities like ¢2.

5.4 Wakes

The wake of a bluff body in an infinite uniform stream at high Reynolds number
originates by separation of thin boundary layers'” that develop on the front part

16 Although the vorticity is probably the best choice here, in practice it is hard to measure, since it involves
spatial derivatives of all components of velocity (see, e.g., Sunyach and Mathieu (1969)). Thus, other
quantities involving velocity derivatives are often used instead.

17 The boundary layer itself can be either laminar or, if the Reynolds number is large enough (above about
10° for a circular cylinder or sphere) turbulent over at least part of the body surface prior to separation.
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of the body. As the Reynolds number is increased, the steady laminar flow
becomes unstable and the position of separation begins to fluctuate, leading to
an oscillating wake. For cylindrical bodies, the (plane) wake takes the form of a
vortex street if the Reynolds number is not too high. As the Reynolds number is
increased, the vortex street becomes turbulent, and the transition zone approaches
the body with growing Reynolds number until the entire wake is turbulent (at
about Rep ~ 2,500 for a circular cylinder). In the case of an axisymmetric bluff
body, such as a sphere, there appears to be no identifiable vortex street and
separation leads to a region of slowly recirculating fluid behind the body if the
Reynolds number is not too high, which begins to oscillate as the Reynolds
number is increased, eventually giving way to a turbulent wake. However, as
we shall see, the Reynolds number of the turbulent wake of a finite-sized body,
such as a sphere, falls slowly with downstream distance and such a wake event-
ually becomes laminar very far downstream.

In the turbulent regime, although oscillations may still be discernible in the wake,
the flow is steady in a statistical sense. Separation produces shear layers that divide
the fast-moving fluid outside the wake from slowly moving fluid behind the body. As
for jets, the shear layers entrain fluid and spread both outwards into the external
flow and inwards towards the axis of the body. In so doing, the slower-moving fluid
near the axis is accelerated by turbulent momentum transfer (i.e., via the Reynolds
stress term in the mean-flow equations). Eventually, it is found that the wake
becomes self-similar, but this takes a much longer distance than for a jet {of the
order of 100 body widths, or more). The profile of streamwise mean velocity has a
bell shape, as for jets, but now it approaches the free stream velocity, U, outside the
wake rather than zero as it does for jets exhausting into fluid at rest. Furthermore,
the fluid in a wake obviously moves more slowly than that outside the wake, whereas
for a jet the opposite is true. Needless to say, when we later consider the self-similar
turbulent wake of a finite body, we assume a sufficiently large streamwise distance
that the wake is self-similar, but not so far that the Reynolds number of the wake has
become too low to maintain turbulence.

We begin by considering a plane wake, that is, one produced by a body that is
infinite in the x3-direction and whose cross-section does not vary with x;. Thus, the
flow is supposed to have statistical properties that do not vary with respect to x3 and
U; = 0. In the far wake, we adopt V = U; — U, to represent the streamwise velo-
city variations across the wake (note that V is negative). Equation (5.40) applies
sufficiently far downstream that |V| « U, that is,

av el
== 5.102
U 0xq 0xy ( )
whose integral with respect to x, gives
40, =0 (5.103)
dx1

where
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O, = —J Vdx, = J (Uo, — Ty)dx; (5.104)
is the (constant) volume flux deficit of the wake. Writing (5.13) in terms of V we
have

AL T (5.105)

8x1 8x2

whose integral yields

U,(x; = +00) — Uy(xy = —00) = cig“’ =0 (5.106)
1

according to (5.103). Thus, to leading order, there is no entrainment in the far wake

and one can take U, — 0 as x, — +oo if there is no external cross-flow velocity

(which would be represented by the common value of U,(x, = 00)).

It should be clear that constancy of Q,, in the far wake is a consequence of
momentum, not mass, conservation: after all, it was derived from (5.102), which
is the simplified form of the momentum equation in the x;-direction. A momentum
audit (using the x;-component of momentum) on a rectangular control region whose
boundaries are lines of constant x; and x, far from the body, and which includes the
body, vields the result that the average drag force on the body (per unit length} is

Fp = pUsxQu (5.107)

This value is the difference between the momentum deficit, 2pU,Q,,, of the far
wake, and an efflux of momentum, pU, Q,,, distributed around the remainder of
the boundary external to the wake. The former corresponds to the integral of the
momentum flux deficit, p(U2%, — U?) ~ 20Uy (Uy — Uy), across the far wake. The
latter is the result of a mass efflux, 0Q,,, from the vicinity of the body, which is
needed to balance the mass flux deficit of the wake. That is, far from the body and
external to the wake, the body appears like a line source of volume flux Q,,. The
velocity due to this line source is much smaller than the velocity deficit of the wake,
since their volume fluxes are equal, whereas line-source effects are spread over all
directions. Thus, the line source is negligible when we restrict attention to the wake
region, but nonetheless enters into the overall mass and momentum audits. The
reader is encouraged to carry out these mass and momentum audits in detail.
Formally, the quickest way of obtaining the total momentum flux is to use the
(unaveraged) mass audit

%U,‘ﬂ,‘ds =0 (5108)

where #; is a unit vector normal to the boundary of the control region. Thus, the
total instantaneous outflow of the x;-component of momentum can be written

pi;Ul Uinids = p%(Ul - Uoo)UiﬂidS (5109)

which can be evaluated by restricting attention to the wake region and the approx-
imation Un; =~ U,,. This leads to (5.107) for the mean drag force, via the momen-
tum audit, after averaging and neglecting small terms. The formulation, (5.109), by
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which a multiple of (5.108) is subtracted from the momentum flux, takes account of
the body line source, placing all significant contributions to the overall momentum
flux in the wake.

In the frame of reference of the body, which we are using here, and which makes
the flow steady, the far-wake deficit and line-source velocity fields appear as small
corrections to a uniform flow, U,,. The uniform flow disappears if we instead use a
frame of reference in which the fluid at infinity is at rest and the body moves. The
flow is unsteady in this second frame, but what were perturbations to uniform flow
now show up as the flow itself. As the body moves, it lays down a wake in which the
fluid is in motion in the direction of body movement. The fluid moves outwards from
the body in all other directions owing to the body line source (see Figure 5.9). The
reader may find the description of a laminar wake (which is similar in many respects)
given in Batchelor (G 1967, section 5.12} helpful. Observe that if the body had a lift
force (i.e., a component of force perpendicular to the line of motion), this implies
circulation about the body.'® In that case, outside the wake the body appears as a
combination of a line source and a line vortex; the velocity field of the latter causes
the wake to be deflected sideways, owing to cross-flow. We exclude lift forces and
cross-flow in the remainder of this section and revert to using a frame of reference in
which the body is fixed and the fluid moving (forming a steady flow).

Turning now to the self-similar behavior of the wake sufficiently far from the
body, we adopt the similarity variable & = x,/W(x;), so the wake velocity excess
{(which is negative) is given by

V=W (5.110)

where the factor, W7l s
required to make Q,, indepen-
dent of x;. Integrating the conti-
nuity equation, (5.105), we find \

— aw
U,=w" ot ARNCHEEY
X1
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Wake

assuming no cross-flow (ie.,
U, — 0 as x; — F00). The sim- ' «

plified momentum equation, —_—

{5.102), can likewise be used to
show that
_ L dW ' L
iy = Uy W o Ef (€)
X1
(5.112)

gives the Reynolds shear stress.
Suppose that the turbulent

Figure 5.9. Instantaneous streamlines far from a body moving through
stationary fluid (unsteady flow). In the text, we mainly consider the

velocities decrease with x; in the frame of reference in which the body is fixed and the fluid moving

same way as the velocity defect (steady flow, Figure 5.1b).

18 A long, but finite-length lifting body also generates trailing vortices which are very persistent and
obviously outside the scope of the present discussion.
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(an assumption that we found to hold for self-similar jets, with velocity defect
replaced by total velocity, since the fluid external to the jets considered was at
rest). Because #1#; is a quadratic moment of turbulence, it should be proportional
to W2, and so, from (5.112) we obtain W2 «« W™ 'dW/dx,. Integrating with
respect to x; gives W o (x; — xo)"/? so that we take

W(x;) = (x1 — x0)"/? (5.113)

as a measure of the wake width. The resulting similarity variable, &=
x5 /(x1 — x0)/%, is in agreement with experiment, which is the real reason for believ-
ing in proportionality of turbulent velocities and velocity defect.

As for jets, we now suppose an eddy viscosity, so that

av

to leading order and hence

1 -1
vr =~3 Us sf@)(j—’;) (5.115)

from (5.110) and (5.112). Finally, assuming v is independent of & and therefore
constant, we obtain

(& = _Ae_UcoEZ/4‘)T (5.116)

where A is a constant that is related to the drag force on the body per unit length by
Fp = 2Ap(rvrUq)?, according to (5.104), (5.107), (5.110), and (5.116). This
allows the constant A to be determined, given Fp and vr.

The self-similar plane wake flow is characterized by

A

Ve B Ut/ (5.117)
(61 — x0)"/?

_ A 2

O — —Un 8 vy 5.118
S T A 1Y

and
i = — AU U
= te (5.119)

Rather than spreading as a wedge-shaped region, like the plane jet, the self-similar
plane wake Has a parabolic shape, x, o« (x; — x0)!/%. This reflects the combined
effects of convection at the constant speed, U, and wake spreading at a steadily
decreasing rate, due to reducing turbulence levels, " o (x; — x4) /2. The Reynolds
number, based on a velocity scale proportional to (x; — x)” /% and a length scale
proportional to (x; — x¢)"/? is constant (and large), as for the axisymmetric jet (the
plane wake therefore remains turbulent indefinitely, like jets). Furthermore, the tur-
bulent dissipative scales may participate in the self-similarity of the mean flow and
large scales of turbulence.

The Gaussian wake profile, {5.117), resulting from assuming a constant eddy
viscosity is in good agreement with measurements behind a circular cylinder.
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Fitting of the Gaussian form to the measurements allows determination of vr.
Constancy of vy means that the resulting mean flow is equivalent to a laminar
wake flow in which the fluid viscosity is vy, rather than the much smaller true
viscosity of the fluid in the turbulent flow. The Reynolds number based on v, the
maximum velocity deficit, and the distance of the half—veloc1ty point from the center
plane of the wake is

1/2
Rey = (l°g2> i (5.120)
T Uy

for the Gaussian distribution, (5.117). In the case of a circular cylinder, the measured
values of Fp, and vt give Rep &~ 15, which is of the same order of magnitude as the
values obtained for jets, although noticeably smaller.
For an axisymmetric far wake, we use (5.65) and
av 1 oruu,

L 21
* x r o or S )

where V = U, — U, as before. Integration of (5.121) yields constancy of the
volume flux deficit

o ,
Q. = —J 2arVdr (5.122)
0

expressing the momentum balance with a drag force, Fp = pU, Q,,. Using (5.65) we
conclude that there is no leading-order entrainment in the far wake, as for the case of
a plane wake. A near-body source of volume flux Q,, must again be included if one
does a momentum audit to calculate the drag force; however, this time it is a point,
rather than a line source (see Batchelor (G 1967), section 5.12 for details of the
corresponding laminar case). Figure 5.9 again illustrates the flow field in the frame of
reference of the fluid far from the moving body.

In the self-similar regime, sufficiently far from the body, we suppose similarity
variable § = r/W(x) and obtain

V= W2 (5.123)
to maintain Q,, constant. This gives
Tty = U W2 —— il — Ef(©) (5.124)

from (5.121). Proportlonahty of V and the turbulence velocities leads to
W(x) = (x — x0)'° (5.125)

as the wake width dependency on streamwise distance, x.
The eddy viscosity is

N X
L s ie (5.126)
where
—1 .
U &f(8) (df> (5.127)

Assuming constant x results in
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]((&-) — _Ae—UooEZ/6X (5128)

and the axisymmetric wake has a Gaussian profile as for the plane wake, according
to this model and in agreement with experiment except near the outskirts of the
wake. The constant A can be related to the drag force, F = 6 xpA.

The Reynolds number based on a velocity scale proportional to (x — x4)™/°, and
a length scale, proportional to (x — xg)"/ 3. decreases proportional to (x — x¢)~" 3,
Thus, as stated earlier, the wake should eventually become laminar, although this
may take a very long distance, owing to the rather slow decay of (x — x5)""/% and the
initially high value of the Reynolds number. Since the Reynolds number is not
constant, the smallest scales of turbulence cannot share similarity with the large
scales and mean flow. The slowly decreasing Reynolds number should cause /L
to increase slowly with streamwise distance.

The “Reynolds number” based on vr is again constant. Using the maximum
velocity deficit and half-velocity distance from the axis (calculated from (5.128)),

we find

log2 \'*Fp

2/3

which is Re &~ 15 according to measurements, and thus near the value for the plane
wake.

The quantities p and Uy, are fixed by the fluid and ambient flow respectively. The
drag force, Fp, can be regarded as determined from empirical values of the drag
coefficient of the body (drag coefficients have been tabulated for many body shapes
and Reynolds numbers). If the effective “Reynolds number,” Rer, is known, then the
far-wake similarity solution is fully determined. Thus, for a plane wake, one can
calculate vr from (5.120) and A from A = Fp/2p(mvrUy,)'/2, while, for an axisym-
metric wake, x is given by (5.129) and A by A = Fj/67xp. As we have seen, the
value of Ret seems to be about 15 for wakes.

It should perhaps be reiterated that the assumptions made in the above calcula-
tions, namely self-similarity, that vy is a function of x; only, and that the turbulent
velocities have the same dependence on x; as the velocity defect, are empirically
based and only justified through agreement with experimental results.

The turbulence energetics of self-similar wakes are broadly similar to those of jets,
described earlier, and, as before, can be analyzed via measurements of the various
terms in the energy equation. Production has a maximum near the inflection point of
the mean velocity profile, while dissipation is largest in the wake center. Diffusion
acts to transfer energy from the central part of the wake, where the turbulent energy
is higher, to its outskirts. The net effect is that the turbulent intensity of the wake
decreases with streamwise distance from the body, while showing spreading consis-
tent with self-similarity.

The intermittency of self-similar wakes is also similar to that of jets, increasing
away from the wake center, although intermittency makes itself felt nearer the center
of a wake than a jet, reflecting the larger excursions of the turbulence boundary
about its average position compared to jets. Since these excursions are caused by the
convection of bulges of turbulence whose size is determined by the large turbulent
eddies, this implies that the large scales of turbulence are bigger in wakes than in jets.
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Turbulent jets exhausting into infinite fluid moving at nonzero uniform velocity
U, in the same direction as the jet (rather than the quiescent fluid we considered in
Section 5.3) are rather similar to wakes, at least far enough downstream. In parti-
cular, the self-similar theory of jets in comoving fluid is the same as for wakes, being
based on (5.102). However, rather than the expression, (5.107), for Q,, in terms of
the drag force, one uses constancy of the jet momentum flux excess

Om= Joo U,(U; — Uy )dx, (5.130)

—00

which follows from (5.13) and (5.28) for plane jets (with an expression similar to
(5.130) in the axisymmetric case). The constant, Q,,, is fixed by its value at the
nozzle, while in the far jet we have Q,, = —-0Q,,/U,,, allowing determination of
the constant Q,, occurring in the self-similar wake-like theory. Clearly, the behavior
of the far jet is quite different when there is external flow. For instance, the plane far
jet without such flow spreads proportional to x; — x(, whereas in comoving uniform
flow its width is proportional to (x; — x¢)"/?, like a plane wake.

It might be asked how the differing similarity behavior of jets exhausting into
stationary and comoving fluid can be reconciled as the external velocity, U, is
reduced to zero. Clearly, if U, is much smaller than the nozzle exit velocity, the
jet will not notice the external flow during its initial development, which will thus
take place as if the fluid were stationary. However, as the velocity excess of the jet
falls with downstream distance, there will come a time when it becomes comparable
with U, and the jet begins to be affected by the external stream. Still further away,
V « Ug, as assumed when using the far-wake simplification, (5.102), which was the
basis of the wake analysis given above. Thus, there will be a changeover from the one
type of behavior to the other when V is of order U, which occurs further and
further downstream as U, — 0. If this changeover takes place after establishment of
self-similarity, the flow evolves from one type of similarity solution to another,
through intermediate behavior which is not self-similar.

The wakes considered above have a nonzero value of F;, and hence of Q,,, but
there is an interesting class of bodies for which the #net force applied to the fluid is
zero and so Q,, = 0. These are self-propelled bodies (e.g., submarines) moving at
constant velocity. Such bodies push themselves through the fluid using a propulsion
system that works by applying a force to the fluid to compensate the drag force
over the rest of the body. The net force is zero because the body is not acceler-
ating."”” With zero Q,,, the wake produced is known as momentumless and is quite
different in character from the wakes with momentum considered above.
Momentumless wakes are also found to become self-similar far from the body,
and, although their similarity profiles are not the same as wakes with momentum,
the principles used to analyze self-similar momentumless wakes are the same. We
refer the reader to Tennekes and Lumley (G 1972), section 4.3, for a detailed
example. In the same book, the reader will also find (section 4.6) an interesting

1 Here we neglect gravity, which is often significant for self-propelled bodies. Unless the body is neutrally
buoyant, gravity leads to a net static force on the body, which must be counterbalanced by hydro-
dynamic forces (e.g., the lift on an airplane) if the body is not to accelerate. In that case, the wake is
more complicated, generally containing net momentum and organized vortices.
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analysis of a thermal plume problem in which a hot spot causes fluid to expand and
rise due to buoyancy, creating an upward-going current above the spot, whose self-
similar characteristics are considered.

5.5 Turbulent Boundary Layers

As discussed in Section 5.1, a turbulent boundary layer normally comes about when
a laminar one becomes unstable and then undergoes transition to turbulence.
Broadly speaking, instability arises when a local Reynolds number, based on the
laminar boundary-layer thickness rather than on the overall body dimensions,
becomes sufficiently large. Thus, increasing either the velocity or layer thickness
can lead to transition (as can raising the level of perturbations, explained later in
this section). Since the layer thickness is small compared with the size of the body on
which the layer develops, the local Reynolds number is considerably smaller than the
overall one for the body (we saw earlier that the laminar boundary-layer Reynolds
number scales on the square root of the body-scale one). This is why the boundary
layer can remain laminar when other parts of the flow have long since undergone
transition and become turbulent. However, if the body-scale Reynolds number is
increased, the local boundary-layer Reynolds number also rises, and the layer even-
tually becomes turbulent, at least over part of the body surface. Typically, the
boundary-layer thickness, and hence the local Reynolds number, grows with stream-
wise distance along the surface, thus making the boundary layer increasingly suscep-
tible to transition.

For cylinders and spheres, the boundary layer first becomes turbulent when the
body-scale Reynolds number is about 10°—10° (whose square root gives an estimate
of the boundary-layer Reynolds number for instability in the hundreds, in rough
agreement with stability calculations). Turbulence appears near the separation point,
causing separation to move downstream from its laminar location near the lateral
extremities of the body. This is because a turbulent boundary layer is more resistant
to separation than a laminar one (recall Figure 1.8). A turbulent boundary layer is
then established between the points of transition and separation. Transition itself
moves upstream at still larger Reynolds numbers, rendering an increasing portion
of the boundary layer turbulent. An interesting phenomenon is observed in the case
of a cylinder at Reynolds number between about 10° and 10°. The boundary layer
separates while still laminar and the resulting shear layer becomes turbulent, thick-
ening rapidly by turbulent mixing and entrainment. The shear layer spreads so
quickly that it reattaches to the surface to form a new boundary layer, now turbu-
lent, which separates considerably further downstream to form the wake. The
process by which a boundary layer first separates and then reattaches to the surface
forms a small pocket of recirculating fluid and also occurs on the suction surface of
airfoils at high angles of attack, towards the nose. In the case of the cylinder, the
recirculating pocket disappears as the overall Reynolds number increases to about
107, when the boundary layer undergoes transition to turbulence before laminar
separation occurs. The boundary layer is then laminar from the upstream stagna-
tion point until transition, and turbulent from there until it separates to form the
wake. This is typical of bluff bodies at sufficiently high Reynolds number, but
streamlined ones, such as an aircraft wing, may avoid separation if the angle of
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attack is small enough. In that case, the boundary layer is shed from the trailing edge,
creating a narrower and less intense wake than when separation happens.

The place at which transition to turbulence occurs is not a precise point in the
boundary layer, but rather a zone in which turbulence is sporadic, taking the form of
bursts which become more and more frequent as one moves downstream into the fully
turbulent zone. Because it is the result of a nonlinear instability, the location of the
transition zone can differ in nominally identical flows, depending upon the amplitude
and type of perturbations to the laminar flow. For a smooth, flat plate in a uniform
stream at zero incidence, transition typically covers about 30% of the distance to the
leading edge of the plate. Transition can be made less variable by provoking it delib-
erately using a spanwise inhomogeneity, such as a wire (see Figure 1.8b). Tripping the
layer in this way produces transition earlier than it would otherwise occur, a reflection
of the sensitivity of transition to perturbations. Experimentally, one can distinguish
between laminar and turbulent flow because turbulence appears as periods of rapid
jittering of flow quantities, such as velocity, separating intervals of relatively smooth
variation with time, corresponding to laminar flow.

The laminar boundary-layer flow becomes more and more sensitive to perturba-
tions (e.g., disturbances from upstream, body surface vibrations, and inhomogene-
ities) as its local Reynolds number increases with downstream distance. If care is
taken to reduce the perturbations of a flat-plate boundary layer to a minimum, a
succession of laminar-flow instabilities can be observed at increasing streamwise
distances towards transition (appearance of Tollmien-Schlichting waves and their
secondary instabilities). This gives rise to a sequence of unsteady laminar flows of
growing complexity, followed by the transition zone in which sporadic turbulent
bursts {or spots) occur more and more frequently with increasing streamwise dis-
tance. Such a burst originates at a random location and time in the layer and, once
triggered, spreads out as it is convected downstream, finally merging with its fellow
bursts to form the fully developed turbulent boundary layer. At higher levels of
perturbation of the upstream flow, the path taken to transition appears to be some-
what different, with laminar instability occurring upstream of the location predicted
by classical stability theory and not involving Tollmien—Schlichting waves. However,
the transition zone itself, with its turbulent spots, is found to be similar, although it is
located upstream of where it should be according to classical theory. Stability theory
has not yet advanced to the point where it can fully describe the transition process. In
fact, rather little can currently be said about the transitional zone of a typical
boundary layer from a theoretical point of view, and so we will concentrate on
fully developed turbulent boundary layers from here on.

The structure of a turbulent boundary layer is quite different from that of a
laminar one. For a laminar layer, transverse convection and viscosity provide trans-
fer of momentum across the layer, while viscosity also allows satisfaction of the no-
slip condition at the surface. Viscous skin friction at the surface causes the fluid in the
layer to move more slowly than fluid in the essentially inviscid flow outside. In a
turbulent boundary layer, it is still viscosity which imposes the no-slip condition in
the viscous sublayer, but turbulent momentum transfer takes over from viscosity as
the dominant mechanism for slowing the fluid further from the surface. Thus, there
are two regions making up a turbulent boundary layer: a thin inner layer at the
surface (the viscous sublayer), in which both viscous and turbulent momentum
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transfer across the flow are important, and a much thicker outer layer in which
turbulent momentum transfer (via the Reynolds stress term in the mean-flow equa-
tions) dominates the mean flow. This is not to say that viscosity plays no role in the
outer layer: as usual, it is responsible for turbulent energy dissipation via the smallest
scales of turbulence. It will be recalled from Chapter 3 that the size of the smallest
scales is such as to bring viscosity into play to dissipate the energy cascade from the
larger eddies. As the surface is approached, however, the size of the largest scales
decreases (being limited by the proximity of the surface) and, in the sublayer,
becomes comparable to that of the smallest scales. When the viscous sublayer is
entered, the turbulent Reynolds number, Re;y, is no longer large. This relatively
small Reynolds number corresponds to a range of scales, L/n, of O(1). All scales
of turbulence are then comparable in size and all are affected by viscosity. It is thus
clear that turbulence within the viscous sublayer at a wall is quite different in char-
acter from turbulence in the outer part of a boundary layer or away from a wall (e.g.,
in jets and wakes).

Because turbulent momentum transfer in the outer layer is much more efficient
than purely viscous diffusion, turbulent boundary layers are considerably thicker
and have higher skin friction than their laminar counterparts, the difference in
thickness being a reflection of the existence of the outer layer. Across the transition
zone, the overall boundary-layer thickness therefore increases and the boundary-
layer structure reorganizes itself into a viscous sublayer and an outer layer. The
viscous sublayer is a lot thinner than the original laminar boundary layer, whereas
the outer layer is considerably thicker, occupying most of the total boundary-layer
thickness, 8. The profile of streamwise mean velocity across a typical turbulent
boundary layer is as sketched in Figure 5.1d. Mean shear increases rapidly as the
surface is approached from the outer layer, but the viscous sublayer is too thin to be
visible in this figure.

As for our earlier discussion of laminar boundary layers, we restrict ourselves to
two-dimensional (plane) flow. In general, three-dimensional boundary layers are
much more complicated to analyze. To allow for curved surfaces, we use coordinates
x and vy, with x taken along the surface in the streamwise direction and y normal to
the surface, as shown in Figure 5.3.

One of the most important quantities characterizing a turbulent boundary layer is
the turbulent friction velocity, u,. This is defined in terms of the mean frictional stress
at the surface

A
dy

(5.131)

T, = VP

y=0

which is the average force per unit area acting in the streamwise direction, x, on the
body surface. Equation (5.131) follows from taking the mean of the usual expression
for the stress in a Newtonian fluid, allowing for the no-slip condition, U, = U, =0,
at the surface, y = 0. The friction velocity is given by

u, = [l (5.132)
p
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and is found to determine many of the properties of the boundary layer. For instance,
the turbulent velocities are O(x, ) throughout the layer, both in the viscous sublayer,
whose thickness is O(v/u,), and the outer layer, y = O(8). The mean velocity in the
viscous sublayer is O(1,), as is the velocity defect (relative to the external flow) in the
outer layer. However, although the velocity defect is O(w,) in the outer layer, the
mean velocity itself is larger there (by a factor of around twenty or more) and
determined by the external flow speed. That is, the external flow speed is consider-
ably greater than u,, which characterizes the order of magnitude of the variations in
U, across the outer layer, y = O(8). It follows that U, is approximately uniform over
the outer layer, away from the surface, although its small deviations, O(w,), from
uniformity are crucial, as we shall see. Note that both the friction velocity, #,, and
the total boundary-layer thickness, 8, change with streamwise distance as the bound-
ary layer develops.

Across the entire boundary layer, U, must change from its value in the external
flow to become zero at the surface, in order to satisfy the no-slip condition there.
Since the variations of U, in the outer layer, away from the surface, are compara-
tively small (of O(x,)), most of the overall change in U, occurs near the surface. As
the surface is approached from the outer layer, the velocity defect increases, taking
on a logarithmic form as a function of y in the inertial layer, v/u, € y < 5. The
inertial layer will be regarded as a zone of overlap between the two extreme asymp-
totic regions: the viscous sublayer, y = O(v/u,), and the outer layer, y = O(9).
Moving towards the surface, by the time one enters the viscous sublayer from the
inertial layer, U, has undergone a significant fraction of the overall change from its
value outside the layer.

The ratio of thicknesses of the viscous sublayer and outer layer is very small,
O(Re; ), where Re, = u,8/v is a large boundary-layer Reynolds number. It is the
large value of Re, that leads to clear asymptotic separation between the thin viscous
sublayer and outer layer, forming the basis of the theory described in this section. As
we shall see later, it is the large value of Re, that is also responsible for the smallness
of u, compared with flow speeds outside the layer, which in turn leads to length
scales for streamwise development long compared with the boundary-layer thick-
ness.

We want to develop approximate turbulent-boundary-layer equations for the
mean flow, exploiting the relatively slow streamwise variations of flow statistics to
simplify the Navier-Stokes equations by eliminating small terms. However, one
needs to be more careful in deriving the approximate equations for a turbulent
boundary layer than with the Prandtl equations of the laminar case or the “bound-
ary-layer’” approximation for turbulent jets and wakes. The reason for this is that, as
noted above, the outer-layer velocity defect of a turbulent boundary layer is a small,
but highly significant fraction of the total velocity. To maintain precision in the outer
layer, we shall develop a boundary-layer approximation using the velocity defect,
rather than the mean velocity itself.

To define the velocity defect precisely, suppose that the flow exterior to the
boundary layer is essentially steady, laminar, and inviscid. The absence of significant
turbulence in the exterior flow is an important restriction: turbulent boundary layers
are observed to behave rather differently if there is a high enough level of turbulence
already present in the flow outside the layer. The velocity field outside the boundary
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layer is imagined to be extrapolated smoothly to the wall, yielding a notional steady,
inviscid, incompressible flow, U, which does not have a boundary layer. This
notional flow is analogous to that in the outer region® of a laminar boundary layer
(recall the discussion in Section 5.1) and can be obtained by an inviscid calculation,
as for the laminar case. The notional flow field, U™, varies on length scales deter-
mined by the body dimensions, even within the turbulent boundary layer, where it is
defined by extrapolation. Given U™ the velocity defect field is given by V =
U - U™ and is nonzero in the boundary layer. This definition of V means that
the streamwise velocity defect is really —V,. It might therefore be better to call V the
boundary-layer velocity excess, rather than the defect, but we will nonetheless refer
to V as the velocity defect.
The streamwise component of U at the body surface is denoted by

U (x) = US™(y = 0) (5.133)

which, along with #, and 8, are the main quantities characterizing the boundary
layer. Since the boundary layer is thin compared with the body scale, U™ varies
little through the layer, and we have U{™ = U, to a first approximation within the
boundary layer. Furthermore, because V, = O(x,) in the outer layer and u, /U, is
small, the velocity defect in the outer layer is also small compared with Ug,. Thus,
U, = U, to leading order, expressing the approximate uniformity of the streamwise
velocity, noted above. Of course, this only applies in the outer layer, y = O(8), and
U, decreases through the inertial layer and viscous sublayer, to become zero at the
surface. Note that U, is positive since x is a streamwise coordinate,

The notional velocity field, U™, satisfies the steady, inviscid equations of an
incompressible fluid, whereas U obeys the turbulent mean-flow equations, (5.11)
and (5.12). By subtraction, one obtains the velocity defect equations

- BV, BUY"V) oI’ 314,‘14" BZU,

U iy, - 5134
! ox; tYi dx; ax;  Ox; Ty dx;0x; ( )
where T = (P — P%")/p represents the pressure defect, and
Af =0 (5.135)
Bx,-

Since these equations describe the velocity defect, they can be approximated without
fear of loss of precision, even within the outer layer where V, = O(n,) is small
compared with U, =~ U,

When equation (5.134) is expressed in terms of the curvilinear boundary-layer
coordinates,*! x and y, one obtains

20 Not to be confused with the outer layer of a turbulent boundary layer, which forms part of the
boundary layer itself. A laminar boundary layer has no internal structure and the outer region refers
to the flow external to the layer, i.e., at body-scale distances from the surface.

2! Recall that y is distance from the body surface and x is the streamwise distance along the surface of its
nearest point.
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RU, oV, — dV, R 3U¥m’) ylnm) aU;im/) U,
+ U, ( +2X V. + + Vv, =

R+7y dx 3y  \R+y ox R+y 3y R4y
R |or aux 19 U, -
- = \% 5.136
R +y| TR (R + y)i ) + R +w(v-U), ( )

and

RU; oV, edVy [ R OU™ T+ U ag™
Rty ac ' »ay \R+y ax Rty ) * oy

ar R |Gz, 19 2

_a_y“R+yI al”i@((“)u) R] +uV*U), (5.137)

where R(x) is the surface radius of curvature, defined as positive for a convex sur-
face. Here, we have spared the reader the messy explicit expressions for the viscous
terms, since they are only needed in the very thin viscous sublayer where surface
curvature effects are insignificant, even when they are important in the outer layer.
Equation (5.135) takes the form

av, 19 B
P +Ea_y (R+y)V,)=0 (5.138)

in terms of x and y.

We aim to derive approximations to (5.136)—(5.138) by dropping small terms,
eventually resulting in the leading-order boundary-layer equations for the mean flow.
To this end, we introduce a length scale, d, characterizing the body dimensions. Since
the boundary layer develops over the body surface, its development generally takes
place over length scales of O(d). Thus, as for jets and wakes, d will also be a length
scale for streamwise changes in the boundary-layer properties. Typically, the surface
radius of curvature will also be of O(d). On the other hand, the boundary layer, of
total thickness &, is assumed thin compared with these length scales, that is, §/d is
supposed small. Another small quantity is the ratio, u,/ Uy, of the turbulent friction
velocity to the external flow speed. As we will see later, §/d and u,/U,, are of the
same order of magnitude, with smallness of both being a consequence of the large
Reynolds number, Re,.

As a first step towards deriving the boundary-layer equations, we note that,
because § < R, y is small compared with R within the boundary layer. Thus, we
replace R +y by R throughout (5.136)—(5.138), giving

—aV, —aV,  [aUum U aud™ T,
U —*4+0U0, = x -2 X LX)V, =
x8x+y3y+(8x+RVx+ TRV

_Iar k| iy | ity

P T = ]+v(V~U) (5-139)
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av, av, (U T 4yt au™
U‘sr\) +i‘—*+*wx+gyw=

3y dx R Y
o du,u, 8;42 u_,zc P
- 5-}—36—-}—@_? + WV U)y (5.140)
and
v, aV,
*4+—2=0 5.141
ax + dy ( )

Integrating (5.141) across the boundary layer and using the fact that V— 0

outside the layer, we obtain the leading-order approximation
d o0
V. =—J V.dy (5.142)
Y odx),

where, as usual in boundary-layer theory, the limit y — oo implies leaving the
boundary layer and entering the external flow. Because the outer part of the bound-
ary layer, y = O(8), occupies most of its total thickness, the main contributions to the
integral in (5.142) arise from the outer layer, even when v is near the surface. In the
outer layer, V, = O(u,) so that (5.142) yields the estimate

8
V, = o(%) (5.143)

valid throughout the boundary layer. Another consequence is that, evaluating the
relationship U(""’) U, -V, at y =0 using (5.142) and the boundary condition
U, =0, we obtam

d [® u,8
- —d—xjo Vody = o(7> (5.144)

giving the normal velocity at the body surface for the notional inviscid flow, U™,
Note that this normal velocity is a factor of O((u, /U )(8/d)) less than the external
flow speed, O(U,,). Thus, since both u,/U,, and 8/d are small, the flow field U™
can be calculated at leading order with the usual inviscid boundary condition of
zero normal velocity at the body surface. Equation (5.144) gives a higher-order
correction.

The velocity field U™ varies on length scales dictated by the body dimensions
and, within the comparatively thin boundary layer, it can be expanded as a Taylor’s
series in y. To a first approximation

(inv)
U)’

y=0

Ui = g = Uy(x) (5.145)

y=0

while, owing to smallness of U(""’)|y o noted above, a second term may be needed in
the expansion of U(’"”) Thus, we write

BU(mv)
ty ——
y=0 8}’

U(znv) U(znv)

(5.146)
y=0
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Here, the derivative can be expressed using the incompressibility condition,
V. U™ = 0, evaluated at the body surface, giving

dUn U1,y

aU;,im})
y=0 - dx R

ay
of which the second term on the right is smaller than the first by a factor of
O((u,/U4)(8/R)), according to (5.144). Since both u,/U,, and §/R are small, we
can drop the curvature term in (5.147), so that (5.146) becomes
dU,
,——y —_—
=0 dx

(5.147)

U(mv) U(mv) (5 .14 8)

valid throughout the boundary layer. In the outer layer, the last term in (5.148) is
O(U,8/d), whereas the first term on the right is smaller by a factor of O(x,/U),
according to (5.144). Thus, we have

dU
dx

as a leading-order approximation in the outer layer. Since f]_y = U;’A"U)% Vyand V,
has order of magnitude (5.143), we can also show that

dU,,
Y Tdx
to a first approximation in the outer layer. The first term on the right of (5.148) is
needed nearer the surface.

Turning attention to equation (5.139), we can replace dUY™/8x in the third term
by dU./dx, according to (5.145), while the quantity U;i””)/R is at least O(8/R)
smaller, from (5.149), and is therefore dropped. That is, the third term of (5.139)
is replaced by (dU,,/dx)V,. In the fourth term, the derivative U8y = O(U,/d)
since the external flow velocity, U™, is of O(U,,) and varies on a body length scale,
d. Likewise, U,/R = O(U,/d) because the radius of curvature is O(d) and U, =
O(Uy,) (or less, near the surface). From (5.143), we find that the fourth term of
(5.139) is O(1,U..8/d*). On the other hand, the third term is O(Uy#,/d), that is,
larger than the fourth by a factor of O(d/$). Thus, we drop the fourth term of
(5.139) at leading order.

As regards the right-hand side of (5.139), we recall that the turbulent velocities are
O(u,) throughout the boundary layer, so that the second-order moment,
un; = O(u?). Of the Reynolds stress terms, O, [ Oy = O(u%/8) within the outer
layer and increases towards the surface, where gradients with respect to y become
larger, whereas the other two are smaller by a factor of O(8/d) and are neglected at
leading order. The viscous term is only important in the very thin viscous sublayer
where curvature is insignificant and the gradients with respect to y dominate, thus
one can write (V2U), = 8°U,/3y” to a very good approximation. As a final approx-
imation of (5.139), we employ U, = U + V, and (5.145) in the first term, leading
to

U — (5.149)

T, = (5.150)

WV, — oV, dU or Gma, 80
We g, Ve Py 0 Tty 0 Ux 5.151
(Voo + V) o ay T ox v ay? ( )
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which is valid to leading order throughout the boundary layer and will become the
turbulent-boundary-layer equation once the term 9I'/ 3x, the streamwise derivative of
the pressure defect T, is shown to be negligible and dropped.

To show that this term is indeed negligible, we consider equation (5.140). The
Reynolds stress terms other than u2/3y are neglected and the viscous term expressed
using (V°U), = #U,/3y". The result can be written as

v
3= (5.152)
where
- U,

and y is the left-hand side of (5.140). Integration of {5.152) across the boundary
layer gives

o0
w:J xdy (5.154)
y
where we have used the fact that W is negligibly small outside the boundary layer
because I' — 0 (recall that I is proportional to the pressure defect), 7 — 0 (turbu-
lence is supposed confined to the boundary layer), and viscosity is insignificant out-
side the layer. The main contributions to the integral in (5.154) arise from the outer
layer, even when v is close to the surface. Thus, to estimate ¥, we determine the order
of magnitude of x, that is, the left-hand side of {5.140), in the outer layer.

In the third term of (5.140), one can use the leading-order outer-layer approx-
imations U, = U = U,,. Thus, the quantity (U, + U¥”)/R = 2U,/R to a first
approximation and is of O(U/d), whereas BUS'”’)/Bx = O(8U,,/d*), according to
(5.149), and is smaller by a factor of O(8/d). In consequence, we replace the third
term of (5.140) by —(2U,/R)V, in the outer layer, where it is O(u, U /d), since
V. = O(u,). On the other hand, all the other terms on the left of (5.140) can be
estimated as O(u, Uooa/dz) in the outer layer, using (5.143), (5.150), and
BUS'”’)/By = O(Uy/d). Thus, we drop terms on the left of (5.140) other than the
third, leading to

2 o0
w2V J V., dy (5.155)
R,
from (5.154), which may be estimated as
v = o(“*g“"s) (5.156)

throughout the boundary layer.
The mean-flow incompressibility condition, V.U = 0, can be written as

U, 19 —
T+—-— (R U)=0 5157
TRy (RH9T) (5.157)
and R + y replaced by R, giving the leading-order approximation
ou, a0,

% = (5.158)
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so that (5.153) yields
_ 3@

_ 2
F=¥—u,—v o (5.159)
whose derivative with respect to x gives
o v el U,
i Nl . (5.160)

o oax  ox ax?

a result which is used in (5.151). The second and third terms on the right-hand
side of (5.160) are respectively small compared with the Reynolds stress and
viscous terms of (5.151) and are neglected. The quantity a¥/dx = O(x, U.,8/d%),
according to (5.156), and is small compared with the third term of (5.151), which
is of O(u,U,./d) or larger. Thus, one drops the term 9I'/dx in (5.151), yielding the
final form

— 277
Wy dUsy, 0y | 9U, (5.161)
dx ay ay?

v, —
U V) —=* X
(Uso 4 Vo) 24Ty

which is the first of the leading-order mean-flow boundary-layer equations. The
second is obtained from (5.141), replacing V, by U, — U;""’) and using (5.148).
The result is

av, 90, _ dU, (5.162)

ox By dx

Equations (5.161) and (5.162) are the final result of the analysis: the leading-order
boundary-layer equations for the mean flow.

The viscous term in (5.161) only becomes important in the viscous sublayer, very
near the surface, where the streamwise velocity gradients are much larger than in the
outer part of the layer. If desired, one can replace 8°U,/dy* by 8*V,/dy* in this
viscous term, because the difference between the two, namely & U™ /8y?, retains
its order of magnitude from the outer layer and therefore gives a uniformly small
contribution to (5.161). If one carries out this replacement, (5.161) and (5.162) no
longer contain Uy, and govern the streamwise development of the boundary-layer
velocity defect, V., and transverse velocity, U,. Equations (5.161) and (5.162), and
hence the boundary-layer problem, depend on U, (x), which is imposed from outside
the boundary layer, as in the laminar case. They also contain the Reynolds stress,
%1, which requires closure if one wants a complete system of equations. The bound-
ary conditions for the problem (5.161), (5.162) consist of the no-slip conditions

V.= -U,
— (5.163)
U,=0
at y = 0 and the condition
V,—>0 (5.164)

as y — 0o, together with some upstream initial profile, as for the laminar case.
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Aside from the closure problem, (5.161), with °U,/ay* replaced by BZVx/ByZ,
together with (5.162)—(5.164) and the upstream conditions completely determine the
turbulent boundary-layer mean flow at leading order and are analogous to (5.1),
(5.5), (5.7), and (5.8) for laminar boundary layers. If we define

W, = Uy(x) + V, (5.165)

equations (5.161) and (5.162), after replacement of the viscous term by w(3*V, /dy?),
may be rewritten as

oW, — oW, dU,, um, vasz

WxW—F UyW: Uy p a"y“r 52 (5.166)
and

W U (5.167)

ax ay
with boundary conditions

W,=U,=0 (5.168)
aty =0 and '

W, — U, (5.169)

as y — o00. This form of the leading-order turbulent-boundary-layer problem can be
compared with the laminar one. It is formally identical, apart from the additional
Reynolds stress term, representing the turbulence. It also has the same form as the
basic “boundary-layer” approximation of Section 5.2, with W, instead of U, and an
added viscous term. However, it is important to note that, in general, W, is not the
same as U,.

The difference between the two is U™ — U, a quantity that is zero at the
surface, but can be significantly nonzero in the outer layer. Adopting a one-term
Taylor’s expansion of U™ — U, with respect to y, we have

Ui
dy

U, -W,=U" _U, =y (5.170)

y=0

which gives the next order correction to (5.145). The derivative in (5.170) can be
expressed using the external vorticity at the surface, that is, the z-component of the
curl of U™ at y = 0, denoted by Q. Recalling that U§i"”)|y:0 is zero at leading
order, we write the z-component of the curl, expressed in terms of the curvilinear
boundary-layer coordinates, as

autiny)
Yy

so that (5.170) yields

U
—— 5171
: (5.171)

Q(iﬂl)) —

y=0

_[]—x - W, = U,(Cmv) — Uy = —y(Q(i"”) + %) (5.172)
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showing that the difference between U, and W, is due to curvature and external flow
vorticity. If neither effect is present, that is, the surface curvature and external vor-
ticity are both zero, U, and W, are the same to the order to which we are working
and the refined boundary-layer approximation derived above coincides with the
basic approximation of Section 5.2 (with an extra viscous term to describe the
viscous sublayer). In this case, we have U, = Uy + V,, whereas (5.172) must be
added in general.

To determine the levels of curvature and external vorticity needed to make these
effects significant in the outer layer, we recall that the velocity defect is O(x,) there.
Thus, the difference between U, and W, is significant if it is O(x,) or more. Dividing
(5.172) by u, and setting y = O(8), we obtain two nondimensional parameters,
Uad/u,R and QU™)8/u,, which respectively measure the importance of curvature
and external vorticity in the outer layer. When these parameters are small, the
corresponding effects can be neglected, whereas if one or both is O(1), they are
significant in the outer layer. Since the velocity defect is larger nearer the surface,
whereas (5.172) decreases, the effects of curvature and external vorticity are less
important in the inertial layer and less again in the viscous sublayer. Observe that
the parameter, U,8/(u,R), measuring the importance of surface curvature, can be
O(1), even if §/R is small, owing to the large value of U, /u,. That is, curvature can
be significant even if the boundary layer is thin compared with the radius of curva-
ture. The two parameters, U,,8/(1,R) and Q)8/u,, are implicitly assumed to be
O(1) or smaller in the theory developed here.

In the above discussion, significant curvature and external mean vorticity give rise
to differences between U, and W,, which implies that the refined boundary-layer
approximation is needed. However, neither curvature nor mean external vorticity
appear explicitly in the leading-order boundary-layer equations for the mean flow
(i.e., either of the systems (5.161)—(5.164) or (5.166)—(5.169)). As we shall see later,
curvature and external vorticity are present in the equations for the turbulence, thus
modifying #%,%,, and hence the Reynolds stress term in the mean-flow equations.
Moreover, their importance in the equations for the turbulence is measured by the
same parameters, U, 8/(#,R) and QU™ 5 /u,, found above. Thus, surface curvature
and external vorticity can modify the mean-flow equations in a nontrivial fashion via
the turbulence. In contrast, the external flow velocity, U,(x), occurs directly in the
leading-order mean-flow equations given above and is therefore likely to have a more
profound effect on the boundary layer.

Streamwise variations of U, (x) are due to an external pressure gradient along the
surface, as appears by application of Bernoulli’s theorem to a surface streamline of
the leading-order external flow. Thus, if P,(x) denotes the pressure field associated
with the flow U extrapolated to the surface, the quantity P + pU%/2 is a
constant to leading order and so

dU,  1dP,

T (5.173)

showing the relationship between the derivative of U, (x) and the pressure gradient.
The effects of significant pressure gradients on turbulent boundary layers are quali-
tatively similar to those for laminar ones (see Section 5.1), and will be discussed later
in this section (see “Pressure Gradient and Surface Roughness Effects™).
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Although we have the equivalent system, (5.166)-(5.169), which may appear
simpler, we prefer to continue to work with the velocity-defect form, (5.161)-
(5.164), of the equations. This choice leads to more straightforward mathematical
derivations and, because V, expresses the (small) outer-layer modifications to U, due
to the boundary layer, makes it easier to keep track of orders of magnitude and hence
maintain precision of the approximation in the outer layer.

The most important result obtained from the turbulent mean-flow boundary-layer

equations is an overall momentum balance, known as the Von Karman equation.
From (5.161) and (5.162) we derive

dUy ., 8 vaﬁx
dx * dy\ 9y

3 _
P {(U + VIV, } + — Ty, — Uny) (5.174)
which is integrated with respect to y, across the boundary layer, using (5.131),
(5.163), (5.164), and the fact that both turbulence and viscosity are negligible out-
side the layer, while 72, = 0 at the surface. The result is
e voviy + S [ vy = - (5.175)
dx J, dx J, 0
which expresses the leading-order balance of the streamwise component of mean
momentum for the layer. The momentum balance is more usually expressed in terms
of two thickness scales, §,, and 8,4, defined by

| e 1 %
8 =— | U (U™ —T)dy = ——J U.V,d 5.176
=gz JO ( My == y (5.176)
known as the momentum thickness, and
1 (> 1 [
=—| Wi -T,)d =——J 1% .
si=g- |, 0 =Ty == [ vy (5.177)

called the displacement thickness, which is generally somewhat larger than §,,. It can be
shown that the small correction, (5.144), to the surface boundary condition may be
taken into account in the calculation of U by applying the usual inviscid condition of
zero normal velocity, not at the real surface, but at a fictitious body surface, y = §,(x).
That is, as far as the effect of the boundary layer on the external flow is concerned, the
body can be imagined as enlarged by the displacement thickness, hence its name.

At leading order, we may use (5.145) to write U, = Uy, + V, in the second
integral of (5.176), to obtain

1 [
8, = 'ETJ (Us + V,) V. dy (5.178)
oo J0

and employ (5.173), (5.177), and ({5.178) to rewrite (5.175) as

ds, 1

dsy, _ (5.179)
dx  pUZ%

[‘L’w + (84 +25,,) dj—:]

This is the celebrated Von Karman equation, expressing the momentum balance of
the boundary layer, and equally valid in the laminar case. It indicates that the
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momentum thickness evolves with streamwise distance due to the skin friction and
pressure gradient, if there is one.
Equation (5.179) can be reexpressed in the equivalent form

ds, ul 26,
et |en(+3)] (189

which forms the main theoretical component of the semiempirical theories to be
described in the next two subsections. Here, the quantity

84 dPy 84Uy dU,

2

IM= =
7, dx uz  dx

(5.181)

is a parameter measuring the importance of the pressure gradient. If this para-
meter is small, the effects of the pressure gradient on the boundary layer are
negligible. On the other hand, when I = O(1), the pressure gradient becomes
significant in the outer layer and the results depend strongly on the sign of II,
as we shall see later in this section (see “Pressure Gradients and Surface
Roughness Effects”). It is implicitly assumed that T = O(1) or smaller in our
analysis of turbulent boundary layers, otherwise the scaling properties of the
outer layer are quite different. For example, near a separation point the outer
layer velocity defect is no longer small compared with the external flow velocity,
nor do the turbulent velocities scale on u,, and so on. The theory developed here
does not apply near separation.

For a turbulent boundary layer, the main contributions to the integrals in (5.176)
and (5.177) arise from the outer layer, where U, = U, to leading order. Thus, we

find that

1 o 0]

Spbg=—+—| V,dy (5.182)
Uoo 0

to a first approximation, that is, the momentum and displacement thicknesses are

equal to leading order, which is not the case for laminar layers nor for turbulent ones

near separation. Since V, = O(u,) in the outer layer, one may estimate

u
8y ~83=0(-=68 5.183
m Bd (Uoo ) ( )
showing that both momentum and displacement thickness are small compared with
the overall boundary-layer thickness, 8, by a factor of O(x,/U,). Their difference

(o o]
8y 8, = ULZJ (U, — U,,)V.dy (5.184)
oo JO
is O((u?/U2,)8) and thus O(x,/U,,) smaller than either §,, or 8, taken separately.
As we shall see later, although this order of magnitude is correct, the numerical
factor multiplying #,/U,, in the expression for (8, — 4,,)/84 can be quite large, and
consequently §,, and §; may differ appreciably (by as much as 40% for a flat plate
in a uniform stream at zero incidence, still more for certain other cases, particularly
towards separation). For this reason, §,, and §; are usually regarded as distinct.
However, from a fundamental point of view, this is not very satisfactory because
smallness of u,/U., has been used in the derivation of the Von Karman
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momentum balance and so, if one draws a distinction between $,, and 84, one ought
also to be consistent and use a higher-order version of the Von Karman equation.
Setting 84 = 3,,, in (5.180), we obtain the leading-order form
ds, u:
dx U

(1+3Mm) (5.185)

This equation, although formally of the same order of precision as {5.180), is not as
accurate in reality, for the reasons given above. However, it is used here to obtain
some important order of magnitude estimates. Equation (5.185) indicates that
ds,,/dx = O(u?/U%), while, from (5.183), we obtain ds,/dx = O(u,8/Uxd).
Equating the two order of magnitudes gives

8 u,
1= O<Uoo) (5.186)

so that the small quantities, 8/d and u,/U,,, are of the same order, as stated earlier.
Equation (5.186) can be rewritten as

d= o(‘SU‘”) (5.187)

Uy

giving the distance over which boundary-layer development occurs, which is large
compared with 8 since u, /U, is small. This is in keeping with the general discussion
in the introduction to this chapter. The slow development of the boundary layer is
due to small turbulent velocities, O(x,), compared with the streamwise mean flow,
O(U,.). The result (5.186) will shortly be confirmed by a more detailed analysis of
the outer layer.

A further interesting consequence of (5.186) concerns the relative thicknesses of
laminar and turbulent boundary layers. From Section 5.1, it will be recalled that the
thickness of a laminar layer over a body of size O(d) in an external stream of velocity
O(Uy,) can be estimated as O((vd/U,,)'?). The ratio of laminar to turbulent bound-
ary-layer thicknesses under the same conditions is therefore O(Re; "/ %), from (5.186),
where Re, = #,8/v is the large boundary-layer Reynolds number. Thus, a turbulent
boundary layer is considerably thicker (asymptotically in large Re,) than the corre-
sponding laminar one, having the same body size and external velocity. On the other
hand, the viscous sublayer is O(Re;') smaller than the outer layer and hence
O(Re; /) thinner than the laminar one. It follows that the laminar layer is asymp-
totically intermediate in thickness between the viscous sublayer and outer layer of a
comparable turbulent one.

A higher-order momentum balance equation is derived in the appendix, giving

dS,,, Mi 28,,, 1[d o0 - 7
. E__Ugo[l'i'l_[(l +E)+E[£<JO (ux—uy>dy

, U 0 2 d e
_ <Q(¢m/) +3 ?oo_) JO nyd)’) + R dx <Uoo JO nydy)]] (5.188)

of which the terms in square brackets provide a correction to the Von Karman
equation, (5.180). This correction is formally of the same order of magnitude,
u,/Us, as (84 —36,)/84, and should therefore be included, in principle, if one
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distinguishes between §,, and 8, which is necessary to obtain reasonable accuracy.
However, as noted above, the difference, (§; — §,,)/84, can have a large numerical
multiplier in front of u, /U, and so be more significant than appears from formal
orders of magnitude. We shall not be using the higher-order form, (5.188), in what
follows, but it provides a reminder that the Von Karman equation is not exact.
Notice that, even in the absence of surface curvature and external vorticity, there
is a small correction term involving the Reynolds stresses, which arises from the
turbulent velocity field. This corresponds to that occurring in the basic boundary-
layer approximation at higher order, as in the final term of equation (5.32).

Returning to the leading-order, mean-flow, boundary-layer equation, (5.161)-
(5.164), we want next to consider the forms taken by (5.161) in the viscous sublayer
and outer layer. That is, although all terms in (5.161) are needed somewhere in the
boundary layer, further approximations, dropping different terms, are possible in the
different parts of the layer. Let us begin with the viscous sublayer.

The incompressibility condition, V.U = 0, yields

au, _ _ 90,
dy

when we neglect the curvature terms at leading order. The thickness of the sublayer is
O(v/u,), while U, = O(u,) there. Thus, (5.189) gives U, = O(v/d). The left-hand side
of (5.161) can now be estimated as at most O(UZ /d), because V, = O(Uy,) in the
viscous sublayer. On the other hand, both terms on the right of (5.161) are O(u2 /v),
since the turbulent velocities are O(x,). The ratio of left- to right-hand side is therefore

U8
O(M—%ERC* )

in the viscous sublayer. Now, although the quantity (U% /u2)(8/d) is large, it is not as
large as the Reynolds number, Re,. In fact, d/§ = O(U,/u,) according to (5.186)
and, as we shall see later, the quantity Uy /u, is a logarithmic function of Re, and
thus dominated in size by Re, as Re, — o0o. It follows that the left-hand side of
(5.161) is negligible in the viscous sublayer, resulting in the leading-order form

(5.189)

3 ( oU,
a—y(va—y—uxuy> :‘0 (5190)
which can be integrated to obtain
U, 2
v 5 — W, = u, 5.191)

where we have employed (5.131), (5.132), and %%, = 0 at y = 0 to determine the
constant of integration.

The viscous sublayer mean-flow equation, (5.191), expresses constancy of total
shear stress, consisting of a sum of the viscous shear stress, vo(dU,/dy), and the
Reynolds shear stress, —pi,#,. At the wall, the Reynolds stress is zero and the
viscous shear stress is 7, = pu’, while as one leaves the viscous sublayer and enters
the inertial layer, viscosity becomes unimportant and we have
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—T = U, (5.192)

in the inertial layer. Thus, the Reynolds shear stress is approximately constant in the
inertial layer and equal to the wall friction. As distance from the wall increases
through the viscous sublayer, the Reynolds shear stress rises from zero at the wall
to 1, = pu> outside the sublayer, while the viscous shear stress compensates by
falling from t,, at the wall to zero outside. Notice that (5.191) does not have any
pressure gradient, curvature, or external vorticity terms, which suggests that the
viscous sublayer is insensitive to such effects.
Turning attention to the outer layer, we drop the viscous term in (5.161), use
(5.150) to write
T = dU,
T Tax

and replace Uy + V, by U, since V, = O(u,) is smaller. Thus, we obtain the
leading-order outer-layer equation

v, dU v 7]
U, D= ey 00 Ty 5.194
°°8x+dx<xy8y) dy : ( )

(5.193)

which describes the development of V, in the outer layer, and contains the pressure
gradient term, dU,, /dx. This implies that the outer layer will be sensitive to pressure
gradients, as is indeed found to be the case. The first term on the left of (5.194)
represents the streamwise development of the outer part of the boundary layer and is
determined by the other terms, which respectively describe the effects of a pressure
gradient and the cross-stream transfer of momentum by turbulence in the outer layer.
The first term is O(u, U, /d), since V, = O(u,), while the Reynolds stress term is
O(u? /8) because the turbulent velocities are O(u,) and the outer-layer thickness is
O($). Supposing that turbulent momentum transfer plays a significant role in the
development of the layer, we may equate these two orders of magnitude, thus reco-
vering (5.186) and showing once again that the small quantities, §/d and «, /U, are
of the same order of magnitude. This implies that the distance required for stream-
wise development is given by (5.187), which is large compared with the boundary-
layer thickness. If one moves downstream at velocity Ug,, thus following the fluid in
the outer layer, the time taken for significant boundary-layer developments is
d/Uy = O(/u,). This is the eddy lifetime for the largest turbulent scales of the
boundary layer, which have size O(8) and associated velocities O(,). In this time,
the layer thickness changes by an amount of O(3), implying an average velocity of
the frontier of the layer of O(u,). Thus, the moving fluid in the outer part of a
boundary layer finds that the development of layer thickness takes place at a
speed comparable with the turbulent velocities.

The pressure gradient term in (5.194) is important if it is comparable to or larger
than the Reynolds stress term. The ratio of the former to the latter is
O((8/u,)X(dU /dx)), indicating that, like T1, the parameter (8/«,)(dU/dx) measures
the significance of the pressure gradient for the outer layer. In fact, since
84 = O((n,/U)8) from (5.183), we have IT = O((8/u,)(dUy/dx)), confirming the
relationship between the two parameters. A third quantity, (d/U,)(dUy/dx), can
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also be shown, using (5.186), to be another measure of the importance of the gra-
dient and has a simple interpretation: the pressure gradient is important if U (x)
undergoes significant changes over the distance required for boundary-layer devel-
opment. For a general body shape, it is natural to suppose that dU, /dx = O(U /d),
which makes (d/U, )dU,,/dx) of O(1). That is, the pressure gradient ought to be
significant for general bodies in the outer part of the boundary layer. However, for
some cases, such as a flat plate in a uniform flow at zero incidence, dU,,/dx is small
compared with U,,/d and the pressure gradient can be neglected. For others, such as
flow in the vicinity of a sharp edge, the gradient is very strong. In discussing the
effects of pressure gradients (see ‘“Pressure Gradient and Surface Roughness
Effects”), we use the parameter I1 as a measure of the importance of the gradient,
rather than one of the other possible parameters. One advantage of I1 is that it occurs
directly in the Von Karman equation, which is the principal theoretical ingredient of
the semiempirical theory of turbulent boundary layers in the next two subsections.

Using (5.186), the dimensionless parameters, Uy8/u,R and Q™)8/u,, given ear-
lier as measures of the importance of curvature and external vorticity in the outer
layer, can be estimated as O(d/R) and O(2“™d/U,,). In general, one would expect
that the radius of curvature of the body surface would be comparable with the body
dimensions, O(d), and hence that curvature effects should be significant.
Furthermore, if the external flow, U™, is appreciably rotational, one might expect
that its surface vorticity, 2™, would be O(U,/d). Thus, for a general body in a
rotational stream, pressure gradient, curvature, and external vorticity should have
significant, but not dominant, effects on the outer part of a turbulent boundary layer,
since the corresponding parameters are O(1). Nonetheless, the simplest case is when
none of these effects is present, as for the boundary layer on a flat plate in a uniform
stream considered in the next subsection.

So far, we have considered the mean-flow equations but we now want to briefly
discuss the equations governing the energetics of the turbulence. The turbulent
energy equation for a general flow is (5.41). Under the basic “boundary-layer”
approximation we obtained (5.43), and the only term that needs reassessment for
a boundary layer is the production in the outer layer. By writing the tensor 3U,/dx; in
the curvilinear boundary-layer coordinates, one can show that it has the form

R 80U, U, aU, dU,, Wy Us  m)
+ _Zo Qtin
R+y ox R+y 3y | - dx dy R (5.195)
R 9T, U, o, _Us _dUs .
R+y ax R+y oy R dx

so that the leading-order turbulent energy equation is

— 8lg2 _ 81,2 — ) ,
Ux 59 +Uy 59 :dUoo(uz_u)zc)_i_( [Iioo+9(xnu)_§_‘_/ﬁ)uxu

dx ¥y dx \7 dy ’
Convection Production .
d 1 P u; Ou
- z - g2 8 -l 2 Y
£ (“y (3 +8) -5+ axi)) ©:196)
Dissipation

Turbulent diffusion
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showing pressure gradient, surface curvature, and external vorticity effects via the
turbulence production terms. Similar behavior is found for the Reynolds stress equa-
tion, (4.32), at leading order. The importance of the pressure gradient, surface
curvature, and external vorticity for turbulence in the outer layer can be determined
by comparing the corresponding terms of (5.196) with the production,
~(V,/dy)ucm, = O(12/8), due to shear alone. Thus, we recover the parameters
(6/u,)(dUy/dx), Us8/u,R, and Q"8 /u, that were obtained earlier as measures
of the significance of these effects for the outer layer. However, the curvature and
external vorticity now appear explicitly, thus modifying the turbulence and hence,
indirectly, the mean-flow equations through the Reynolds stress term. The produc-
tion due to shear, —(3V,./8y)#,,, rises more rapidly as the wall is approached and
dominates that due to the pressure gradient, curvature, and external vorticity in the
viscous sublayer, again suggesting that the sublayer is less sensitive to such perturb-
ing influences than the outer layer. Notice that, for a flat-plate layer without pressure
gradient or significant external vorticity, the production term takes the form
~(8U;/8y)uxuy, the product of the mean shear and Reynolds shear stress, as in
(5.43).

The viscous part of the turbulent diffusion term of (5.196) is only important in the
viscous sublayer, reflecting the differing nature of turbulence there, with significant
viscous effects even at the large scales. This is in contrast with turbulence further
from the wall, where the large scales are bigger and less and less strongly affected by
viscosity, leading to dissipation via a cascade to smaller scales, rather than the direct
action of viscosity on the large ones.

We will return to the turbulent energy equation in the following subsection, where
measured values of the various terms for a flat-plate boundary layer will be dis-
cussed. For the moment, we simply note that, because of the large mean-flow defect
gradients, dV, /3y, near the wall, turbulent production is much higher there. In
particular, the viscous sublayer acts as a strong source of turbulent energy, but
also has high turbulent energy dissipation, so that much of the turbulence which is
generated there is damped out locally. The net result is that the turbulent kinetic
energy, g%/2, rises as the wall is approached from the outer layer and is a maximum
in the viscous sublayer.

To make further progress, we introduce some experimental results. As has been
implied earlier, the viscous sublayer appears to be relatively insensitive to external
perturbing effects such as pressure gradients and so we describe it first. On the other
hand, the outer layer is affected by significant pressure gradients and its observed
properties, with and without a pressure gradient, are therefore discussed separately
in the next two subsections. We do not consider the effects of surface curvature or
external vorticity any further.

In the viscous sublayer, the viscosity, v, and turbulent friction velocity, #,, are
observed to completely determine the behavior of the flow. From #, and v, only one
length scale, namely v/u,, can be constructed and this scale characterizes the viscous
sublayer. Distance from the wall can be nondimensional using this scale, leading to

u*
y, = vy (5.197)
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as an inner coordinate appropriate to the viscous sublayer. Since the flow there is
determined by v and #, only, any flow quantity, nondimensionalized using v and #«,,
should be a universal function of y, . For instance,

| S

<= fy,) (5.198)

*

S

is found to describe the mean flow in the viscous sublayer, where f is a universal
function, shown in Figure 5.10 using a logarithmic scale for y,. Since the no-slip
condition applies at the surface, we have

f(0)=0 (5.199)
while equations (5.131), (5.132), (5.197), and (5.198) imply

% y+=0= 1 (5.200)
so that

fly) ~ vy (5.201)

as y, — 0. In the opposite limit, it is found that

1
f(y4) ~~logy, +a (5.202)

as y, — oo, which is the celebrated logarithmic law, giving the mean velocity via
{(5.198). The quantity « is known as the Von Karman constant and has a value not
far from « = 0.39. Experiments give a wider spread of values for the other universal
constant, 4, with a = 4 giving reasonable results. Measurements also seem to indicate
that the scaled turbulent-velocity moments u,»u,-/u% are universal functions of y, .
These moments go to zero at y, = 0 because of the no-slip condition. They presum-
ably approach constant values as y, — o0, but this is unclear given current experi-
mental data. Note that (5.198) implies that U, = O(x,) in the viscous sublayer, as
supposed previously.

The outer part of the boundary layer is described by the nondimensional variable,
n=1y/8 (not to be confused with

the same symbol, used elsewhere fz%

to represent the Kolmogorov ’ /1/
scale), where &8 is the overall 15

boundary-layer thickl?ess. Figure L fm % logy +a
5.11 shows the measured —V, /u, L. +

as a function of y/8 for a turbulent 7

boundary layer on a flat plate in a

uniform stream at zero incidence.
The velocity defect, —V, is very

close to zero once a certain dis- T
tance from the surface is exceeded.
Of course, it will never be exactly
zero, but in practice, there is little
leeway in defining 8. If a precise, logarithmic.

2 N 10 100 y "y
: +

Figure 5.10. Universal representation of the mean velocity in th
near-wall region. The vertical scale is linear, the horizontal one i
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Figure 5.11. Mean-velocity defect in the outer part of a turbulent

but necessarily somewhat arbitrary definition of § is desired, one can take
|V, = 0.1u,.

FLAT PLATEWITHOUT PRESSURE GRADIENT

In this subsection, we restrict attention to the well-documented case of a flat plate
in an infinite, uniform stream at zero incidence. In that case, U = U_ is uniform
and there is no pressure gradient or other complicating effects, yielding the simplest
boundary-layer flow. Provided the boundary-layer Reynolds number is large enough,
it is found that the velocity defect, —V,, is only dependent on #, and § in the outer
layer. Thus, by dimensional analysis,

%’1 = F() (5.203)

where 1 =y/8 and F is another universal function. Figure 5.11 shows the positive
quantity, —F(n), with a logarithmic scale for n. Note that the velocity deficit, —V,, is
O(u,) in the outer layer, as assumed earlier. This is also true of the turbulent velo-
cities. The universal form, (5.203), of the outer-layer velocity defect is observed to
hold when Re, = u,8/v is larger than about 2,000, but shows strong Reynolds
number dependence of F(n) at lower values. In fact, there may also be weak varia-
tions at still higher Re, (see Gad-el-Hak and Bandyopadhyay (1994) for a review).
However, in keeping with the title of this chapter, we will develop the classical theory
of turbulent boundary layers, which treats F(n) as universal for flat plates. In so
doing, we assume a large enough value of Re,, that is, the theory is asymptotic as
Re, — o0. The Reynolds number rises with increasing streamwise distance, as the
boundary layer thickens by entrainment of external fluid.

The mean velocity is described by (5.198) in the viscous sublayer, of thickness
O(v/u,), and by (5.203) in the outer layer, y = O(8). The relative thickness of the
viscous sublayer is O(Re; "), and is very small. In between the viscous sublayer and

the outer region, that is, for
viu, Ky <«3é, lies the inertial

U, -T, layer, in which both (5.198) and
u, (5.203) hold and must agree.
14 ~ This is similar to the asymptotic
12 matching technique in which
10 F~}logn+b____| expansions in some small para-

meter, valid in two adjoining
asymptotic regions, match in
6 their common domain of validity
{or overlap region). However, we

4
are matching experimentally deter-
2 .
o mined forms here. The small para-
meter is Re;!, giving asymptotic
0.01  0.02 005 01 02 0.5 1 o : .
,—)  separation into the inner region,
9

or viscous sublayer, and the outer
layer. In the inertial sublayer, we

boundary layer on a flat plate at zero incidence. The vertical scale ~€quate U./u,, given by (5.198)
is linear, the horizontal one is logarithmic. and (5.203), to find that



5.5 TURBULENT BOUNOARY LAYERS 207

Uso

U,

fRe,n) = ==+ F(y) (5.204)

where ]A( denotes the large argument form of f and E is the small argument form of F.
In deriving (5.204), we have written V, = U, — U™ with U"™ = U_,. The latter
holds exactly for the uniform external flow considered here. Differentiating (5.204)
with respect to n and multiplying by 5 gives

Re,nf'(Re,n) = nF'(n) (5.205)

where the primes denote derivatives.

We argue that we may vary Re,n while keeping n fixed, by, for instance, con-
sidering different streamwise distances along the boundary layer. Thus, it is apparent
that both sides of (5.205) must be constant and

., 1
yof ') = < (5.206)
where « is constant. The integral of this equation yields the log law
. 1
fly) =~ logy. +a - (3207

given earlier in {5.202), and which is now seen to be necessary for matching of the
two expressions (5.198) and (5.203). A further consequence of (5.204) is that

B = % log 7 + b (5.208)
where

U _110gRe, +a—b (5.209)

u, K

completes the matching. Equation {5.208) gives the form of the mean flow in the
outer region as 7 — 0, via {5.203). The universal flat-plate constant, b, is hard to
determine with great precision from experiments and has a value of about b = -2,
The matching condition, {5.209), can also be written in the convenient form

1
Uoo-}-llog(lioo) :;logRe,;-}-a—b (5.210)

", K .

where Rey = U 8/v = (U, /u,)Re, is a boundary-layer Reynolds number, even
larger than Re,. In equations (5.209) and (5.210), « ~ 0.39 is the Von Karman
constant and a — b ~ 6. These are purely numerical constants characterizing flat-
plate boundary layers.

The minimum values of the Reynolds number occur just after the transition zone
and are large even there. Moreover, universality of F(5) requires still higher Reynolds
numbers, that is, one must go further downstream. Because Re, and Re; are large
and increasing with streamwise distance (owing to thickening of the boundary layer),
U, /u, is also large and growing with x, according to (5.209) and (5.210). Smallness
of u,/U,, repeatedly used earlier, is therefore a consequence of high Reynolds
number. As a result, the large Reynolds number forms the basis of the “boundary-
layer” approximations derived previously. The logarithmic dependence of Uy, /u, on
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Re,, apparent in (5.209), implies that it is of lower order than Re, as Re, — oo, the
ordering being U, /u, <« Re, « Re;. Another way of looking at this is that Re; ! is
an exponentially small function of the small parameter u, /U, which is reflected in
the very small fraction, O(Re; '), of the overall boundary-layer thickness occupied by
the viscous sublayer. Some numbers may help here: taking the value Re, = 2,000,
which is about the lowest allowable by universal F(x), we obtain Uy, /u, = 25 from
(5.209), and Re; = (U, /u,)Re, = 5 x 10*.

As a consequence of the logarithmic behavior of U /u, as a function of Re,, it is
relative insensitive to the Reynolds number. Each doubling of Re, causes an incre-
ment of 1.8 to the value of U, /u,, according to (5.209). Since Uy /u, is already a
large number, it is clear that quite significant changes to Re, can occur without
altering Uy, /u, very much. As a result, U, /u, increases only slowly with streamwise
distance as the boundary layer develops and can be considered as approximately
constant over, say, a factor of two in streamwise distance from the leading edge of
.the plate. Since U, is constant for the flat-plate boundary layer considered here, this
is a statement about approximate constancy of the friction velocity, #,, and hence of
the skin friction, 7,, = pu?. Despite significant thickening of the boundary layer as
a whole, U, /u, changes only gradually with x.

Because u,/U,, is small, and V, scales on #, in the outer layer, according to
(5.203), the departures of the mean velocity from U, are small there. As one crosses
the boundary layer, the streamwise mean veloaity, U,, slowly decreases from Uy, at
the edge of the boundary layer, to around U,, — 2u, aty = §/2 and about U,, — 8u,
at y = 8/10 (see Figure 5.11). Taking Uy /u, = 25, it appears that U, is still some
70% of Uy, aty = 6/10. Thus, most of the change from U, at the edge of the layer,
to zero at the surface, takes place rather close to the wall. The sublayer near the
surface in which viscosity is important is characterized by the inner variable y, , and
can be considered as extending at most to, say, y, = 50 (see Figure 5.10), corre-
sponding to just 2.5% of § when Re, = 2,000. At this location, U, is about 15u,,
that is, 60% of U, if Uy/u, = 25. The main part of the viscous sublayer lies at
smaller values of y,, around y, = 15 say, giving y ~ 0.018 and U, ~ 0.4U,,. The
variations of U, across the viscous sublayer are therefore a significant fraction of U,
unless the Reynolds number is very much greater than the value taken here. For
instance, if we arbitrarily specify that U, be less than 5% of U, at y, = 15, we must
have Uy /u, > 200, leading to Re; = 10* from (5.210).%% Such huge values of the
Reynolds number are terrestrially unattainable, even in the atmospheric boundary
layer, where the Reynolds numbers are considerably larger than in typical laboratory
experiments. This illustrates the fact that, although the scaling for U, in the viscous
sublayer is #,; and therefore formally small compared with U, it is never very small
in practice. Figure 5.12 shows a sketch of the typical profile of U, across the whole
boundary layer. The reader should note the logarithmic scale for y, necessary in
order that the thin viscous sublayer be visible, and the large range of values on
the horizontal axis.

22 This shows how quantities which are logarithmic in the Reynolds number, as many of those in a
boundary layer are, can require extremely large values before they take on their asymptotic behavior.
This creates difficulties, because much of the semiempirical theory makes assumptions based on
asymptotics, whereas experiments, which are the main source of hard information, are obviously
limited in Reynolds number.
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The log law for U, in the inertial % 4

layer is apparent in each of Figures
5.10, 5.11, and 5.12. It extends 30 S
from about y, =30 up to 25 g
y=0.28, a range of y, which ///
grows wider as the Reynolds num- 204 |
ber increases with x and is quite 15 ] _ Log law
substantial, even at relatively low / / ]
Reynolds numbers. 10 A
For the flat-plate boundary layer s ) /

considered here, U, is constant. Its L~
value is determined by the flow out- } >
. . 2 5 10 100 1000 10000
side the layer and may be consid- - u.y
ered as given, like the fluid Viscous Inertial Outer Ea
. . sublayer sublayer region
viscosity, v. If & were also known, (log law)

(5.210) allows calculation of u, and

(5.198), (5.203) then give the mean Figure 5.12. A typical velocity distribution across the whole of a
velocity in the boundary layer in the turbulent boundary layer. The vertical axis is linear, the horizontal

viscous sublayer and outer layer.
Thus, there is a single unknown,
8(x), which completely determines the streamwise mean flow in the boundary layer.
An equation describing the development of 8(x), that is, the thickening of the bound-
ary layer with streamwise distance, is provided by the Von Karman momentum
balance equation, (5.179), which becomes

increases with Reynolds number.

ds,, T, u?
ke ;[—]2: = U—go (5.211)
since there is no pressure gradient and the momentum thickness changes due to skin
friction alone. To exploit (5.211), we first need to relate §,, and .

The momentum and displacement thicknesses are defined by (5.176) and (5.177).
Since the viscous sublayer is very thin (exponentially so compared with u,/U,.), the
integrals in these equations are dominated by contributions from outside the sub-
layer, where (5.203) applies. Using equation (5.203), we obtain

By ", u, \*

<=1 T~ IZ(UOO) (5.212)
and

ba _y M (5.213)

5 U, '
where

I =—J F(n)dn (5.214)

[}

and

L= J:o F(n)dy (5.215)

one is logarithmic. Note the wide range of values of y, which
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are purely numerical constants, which have experimentally determined values around
Iy = 3.5 and I, = 25. Equations (5.212) and (5.213) illustrate the earlier discussion of
momentum and displacement thicknesses. They are both O((#, /U)8), and therefore
small compared with 8. In fact, with U, /u#, =25, we obtain 8, =0.18 and
84 = 0.145. The difference, (84 — 8,,)/8 = Lr(u,/ Uy )?, is formally of lower order
than either 8, or 8, separately, and to leading order §; ~ §,,. However, because the
numerical coefficient, I, has quite a large value, the difference is not as small as the
order of magnitudes would suggest and more accurate results are obtained if the
formally lower-order term in (5.212) is retained, despite the apparent inconsistency
of using the leading-order momentum balance, (5.211). As discussed earlier, no doubt
the higher-order corrections to {5.211) (i.e., the Reynolds stress term in (5.188)) turn
out to be numerically small, even though they are formally of the same order as
84 — 8,,,. Note that (5.212) and (5.213) imply that 8,4 > §,,, since I, > 0.

We use (5.212) to express §,, in {5.211), and combine the result with the x-
derivative of {5.210) to obtain

K +1
s _ e (5.216)

dx 2
KII (Uoo) —KIZ Uoo —+ Iz

u* *

giving the rate of thickening of the boundary layer in terms of U, /u,. Recalling that
U, /u, is slowly varying, thanks to its logarithmic dependency on Reynolds number,
one can regard it as constant in (5.216), to a first (local in x) approximation. With
constant U, /u,, 8(x) is a linear function of x, according to (5.216) and so the
boundary layer grows as a straight-sided wedge (see Figure 5.1d). From (5.212)
and (5.213), the same is true of §,, and §,. In reality, the angle of the wedge changes
slowly with downstream distance as U, /u, evolves. Notice that, if U, /u, is taken
constant, U, is self-similar in the outer layer, according to (5.203) with
U, = Uy + V,. The viscous sublayer does not partake in this outer-layer local simi-
larity, but instead has a fixed profile of U,, from (5.198) with constant #,. The slow
evolution of Uy, /u, means that U, is not strictly self-similar in the outer layer, nor is
its profile fixed in the viscous sublayer. Regardless of the behavior of Uy /u,, equa-
tion (5.203) implies outer-layer self-similarity of the velocity defect.

Taking U, /u, = 25 in (5.216), the angle of the wedge defined by y = §(x) is
found to be only about 1°, and decreases slowly with streamwise distance. The
leading-order form of (5.216), that is, the limit as «,/U., — 0, is

ds  u,

dx LUy
which agrees with the previous estimate, (5.186), for the rate of boundary-layer
development. These expressions describe the process of boundary-layer thickening
by entrainment: turbulence is convected downstream at speed U, while spreading
laterally at speed O(u,). In consequence, the boundary layer develops over the stream-
wise distance scale (5.187). However, quantitatively, (5.217) is not very precise and it
iIs more accurate to use (5.216). Observe that we are here considering the mean
properties of the layer, whereas in any particular realization the frontier between
laminar and turbulent fluid is a convoluted and fluctuating surface which only spreads
as a wedge in an averaged sense.

(5.217)
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From (5.210), we have

Usel _ Re; = Use exp|:/<<U°° —a+ b)] (5.218)

v ", U,

which we use to replace § in (5.216), leading to

exp[—x(Uﬁ—a—Fb)]
v d <%> = s | (5.219)

U,, dx ", z
* KII(U‘”) —«I, Uso +1
u u

* *

a differential equation for U, /u, whose integral gives
2
I I U,
Re, = [11<U°°> -(12 +Q> U +%(12 + i)} exp[K( % _ g4 b)]
u, K ) u, o« K u,

where

(5.220)

Uoo(x - xO)
%

Re, = (5.221)
is a very large Reynolds number, much larger than Re, and Reg, which is based on
streamwise distance from an unknown origin, X = X, lying upstream of the transi-
tion zone and therefore outside the turbulent boundary layer itself.

Equation (5.220) gives U, /u#, implicitly as a function of Re,, and hence of
streamwise position in the boundary layer. From U, /u,, we may calculate Re;
using (5.218). Thus, (5.218) and (5.220) allow determination of Re; and U, /u,
as universal functions of Re,, for flat-plate boundary layers in a uniform external
stream. These functional relationships permit the streamwise mean velocity to be
computed at any point in the boundary layer from (5.198) and (5.203), thus resol-
ving the boundary-layer problem, at least as far as the mean-flow velocity is con-
cerned. It turns out that, for the large Re, encountered in turbulent boundary layers,
the solution of (5.220) with the values of the numerical constants given previously
can be well approximated by the explicit form

Uso

*

=1.2(logRe, — 0.75)":1° (5.222)

while, from (5.218) and (5.220), we have

2 | 21\ !
Re;s = Re, (11 Voo += (12 + %) LI 71> (5.223)

U,

Equations {5.222) and (5.223) allow explicit calculation of Res and U, /u, as func-
tions of Re,.

The constant of integration, xy, appearing as an unknown origin via the definition
of Re,, cannot be determined by consideration of the developed turbulent boundary
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layer alone. In principle, it may be fixed by specifying 8, for instance, at some
streamwise location.

The drag on the plate is a parameter of considerable practical interest and can be
calculated for a portion of the flat plate via the integral

Fp = er dx (5.224)

giving the drag force per unit length in 2. The total drag on a flat plate occupying
0 < x < d can be expressed in terms of the nondimensional skin-friction coefficient,

cs, where
1 Fp 14 u?
S —=_tp_ _ 1P 5.225
297 dpU%, dJO vz & (3-225)

which is the average value of #2/U%, including the laminar region near the leading
edge (in which skin friction is much lower) and the transition zone. Because of the
integral in (5.225), the total skin friction is not a local quantity, and the depen-
dence of ¢/(d) on d smears out any rapid variations of local skin friction with
streamwise distance, such as occur at transition. As a result, ¢; depends noticeably
on the existence of the laminar and transition regions over about a decade of
downstream distance following transition, although the transition zone is appreci-
ably narrower than this. For sufficiently long plates, the contributions from the
laminar and transition zones are negligible and ¢; can be obtained by integration
using the expressions for Uy /u, given above (e.g., (5.222)}). Schlichting (1987)
gives a number of semiempirical expressions for c¢f, as a function of
Re,; = U, d/v. Note that, for bodies other than flat plates at zero incidence, an
additional form drag is needed, due to pressure forces at the surface, as well as the
viscous skin friction, which is not described by (5.220) in general.

The reader may ask why we have not used an eddy-viscosity model to determine
the transverse structure of the mean-velocity profile, as we did earlier for jets and
wakes. In the present case,”? one would define vy by

v,
—Uyth, = V7 5 (5.226)

which may be used in mean-flow equations such as (5.161). The difficulty with this
approach is that v is not found to be approximately uniform across the flow, as it is
for jets and wakes, and all one has succeeded in doing is to replace one unknown
quantity, —#,#,, by another, vr.

It will be recalled, from the discussion following (5.191), that —#7#, increases
across the viscous sublayer, from zero at the wall to #2 outside the sublayer and then
maintains this value through the inertial layer. It then decreases across the outer
layer, as shown in Figure 5.13. Within the inertial layer, we can calculate v using

~#tit, = uy and the log law, (5.203) with (5.208), as

VT = Ki,y (5.227)

23 More generally, allowing for the effects of surface curvature and external vorticity, using (5.33) and
(5.195) we have

vV, 2U,

ay R

_ {inv)
u i, = vr —-Q
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Figure 5.13. Reynolds shear stress in the
outer part of a turbulent boundary layer
on a flat plate at zero incidence. 04
0.2
0
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showing a linear variation of eddy viscosity with distance from the surface.
Interestingly, this result implies that the fictitious ‘“Reynolds number,” u,y/vr =
k' ~2.5 is a purely numerical constant for inertial layers. In any case, v
increases with y in the inertial layer. It reaches a maximum in the outer layer at
around y = 0.34, and then decreases at larger distances from the wall, owing to the
falling value of —##,, which wins out over decreasing 8V, /3y when vr is calcu-
lated from (5.226). Nowhere is the eddy viscosity approximately independent of y,
which effectively precludes the approach used previously for jets and wakes.
Closures, such as the k—¢ model described in Chapter 8, which are based on an
eddy-viscosity approximation, include equations for vr. However, these models are
heuristic approximations based on fitting to measured data. Near surfaces, they
generally end up using the same experimental results, in particular the log law, that
we have introduced here. If one is interested in the boundary layer, it is probably
better to use experimental results directly, as we have done here. Alternatively, one
can employ the heavy computational artillery of numerical simulation based
directly on the Navier-Stokes equations. This approach is very computer intensive
and is really another means of conducting experiments, having advantages and
disadvantages compared with real laboratory measurements, as discussed in
Chapter 8. It is currently severely limited in attainable Reynolds numbers by
computer power.

Turning next to the properties of the turbulence, rather than the mean flow we
have considered until now, Figure 5.14 shows the behavior of the three root-mean-
squared components of turbulent velocity, #,, #,, and #,, as a function of position in
the viscous sublayer (in fact, this figure is derived from pipe-flow measurements, but
the viscous sublayer of boundary layers is believed to yield essentially the same
results). The largest is the streamwise fluctuation, #,, which attains a maximum of
about u, = 3u, towards y, = 15. All three components appear to give fairly uni-
versal results when they are scaled on #, and plotted as a function of y,, at least up
to values of y, that are not too large. Likewise, it seems that the scaled turbulent
velocities yield approximately universal, decreasing functions of n = y/§ in the outer
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region. These results suggest that u,/u,, u,/u,, and u,/u, may approach universal
limiting values when either y, or 7 is held fixed and Re, — oc. This is reminiscent of
matched expansions, in which the limiting values would represent the first terms in
two asymptotic expansions: one for the viscous sublayer, the other for the outer
layer. For instance, we would have

I

e (5.228)

as Re, — oo with fixed y, and

I

= o.m) (5.229)
Uy

when Re, — oc at fixed 7. If the expansions are to match through the inertial layer
like the mean flow, it is difficult to avoid the conclusion that ¢,(y.) and ®,(») should
share the same constant limits as y, — oo and n — 0, respectively. The same is true
of the other components of turbulent velocity, and, from Figure 5.14, the common
limiting values would appear to be about u;/u, =2, uy/u, =1, and u,/u, = 1.5.

As the Reynolds number increases, the separation of scales between the viscous
sublayer, described by y., and the outer layer, described by 7, widens and an inter-
mediate inertial layer plateau, corresponding to the common values given above,
should appear if one plots u,/u,, u,/u,, or u,/u, as a function of y. Thus, as
Re, — oo, the leading-order forms, for instance, ¢.(y,) and ®,(n), should apply
to the left and right of the plateau, whereas the plateau takes on the asymptotic
common value. In the case of uy/u, or u,/u,, whose leading-order forms as
Re, — oo appear to be increasing functions of y_, but decreasing with 7, a max-
imum occurs in the plateau range, whose position, being of intermediate nature, will
scale neither with inner, nor outer variables. The same is true of —Eu_y/ui , which as
we saw earlier, has a common asymptotic value of 1 in the inertial layer. This
contrasts with #;/u,, which has its maximum within the viscous sublayer at an
asymptotically constant value of y,.

Although the above description of the high Reynolds number asymptotic properties
of the turbulent velocities is no doubt
qualitatively correct, it is quantita-
tively questionable. One of the diffi-
culties is that the appearance of well-
defined plateaux is found to require
considerably larger Reynolds num-
bers than are necessary for the exis-
tence of a log law in the mean-
velocity profile. Furthermore, even
when such plateaux are clearly
observed, it is found that there
remains significant Reynolds number
0 L L ! I dependence in the results for turbu-

0 20 40 60 80 v+ | lociti led on #, as func-
ent velocities, sca .

Figure 5.14. Root-mean-squared turbulent velocities in a vis- tions of Y+ (see Gad-el-Hak and
cous sublayer, scaled on u, (Laufer (1954), redrawn.) Bandyopadhyay (1994)) and no




doubt of n. This might be inter-
preted as meaning that higher-
order terms in the inner and outer
asymptotic expansions are still
important at the Reynolds numbers
considered, in which case much
larger values might be needed to
attain the final asymptotic state.**
Alternatively, the scalings used
could be inappropriate, there
might be an intermediate and as
yet unidentified asymptotic region,
and so forth. Since there is no real
analytical basis for the theory, other
than experimental observations, it
is difficult to tell.

The energetics of zero-pressure
gradient, flat-plate boundary-layer
turbulence are illustrated in
Figure 5.15, which shows differ-
ent terms in (5.43), with the sign
of production switched so that
they sum to zero. Note that
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Figure 5.15. Terms in the turbulent energy balance for a flat-plate
boundary layer at zero incidence. The sign of the production term has
been switched so the different contributions sum to zero. The curve
labeled diffusion incorporates both the pressure and cubic velocity

. . diffusi f (5.43). (Klebanoff (1955), red .
(5.43) applies directly to the iffusive terms of (3.43). (Klebanoff { ), redrawn.]

zero-gradient flat plate, although, in general, the turbulent energy equation
needs refinement by inclusion of pressure gradient, wall curvature, and external
vorticity production terms, as we saw earlier. Both turbulence production (which,
it will be recalled from (5.43), has the form —(3U,/dy)u,u, according to the
boundary-layer approximation for the zero-pressure-gradient flat plate considered
here) and dissipation increase rapidly as the wall is approached and there is very
nearly equilibrium between the two near the wall. That is, there is a balance, with
production and dissipation of turbulent energy proceeding at nearly equal rates,
but with a small excess of production over dissipation. In the inertial sublayer, we
may use (5.192) and the log law for U, to evaluate the production term,
—(3U,/dy)u,u, under the boundary-layer approximation, gives u2/ky, increasing
proportional to y~! as the wall is approached. Owing to equilibrium between
production and dissipation, the latter also follows the same inertial-range form.
Both the mean shear, 39U, /3y, and Reynolds shear stress, —#.7,, factors appearing
in the production depart from inertial-range laws once the viscous sublayer is
entered and the production peaks at around y, =10 (which is not visible in
Figure 5.15 since only the outer region is shown) falling to zero at the surface
because #;#, = 0 there. Thus, as was mentioned earlier, the largest production of
turbulent energy occurs within the viscous sublayer, although this may give

24 The expansion of u,/u,, etc., might be conjectured to proceed in powers of u,/Us,, which is only
slowly (logarithmically) decreasing with increasing Reynolds number. In that case, higher-order terms
could persist up to extremely large values of Re,.
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a somewhat misleading impression since the dissipation is also a maximum in
that region, mopping up much of the turbulence production in situ. Nonetheless,
the diffusion term causes transfer of the small excess of production over dissipa-
tion from the wall half of the layer towards its less energetic outskirts, a result
similar to that found earlier for wakes and jets. The effects of mean convection
are fairly small everywhere, which implies that the boundary layer is approxi-
mately in local energy balance.

Boundary-layer intermittency is similar to that of jets and wakes. Bulges in the
turbulence interface, reflecting large eddies in the outer layer, are convected down-
stream and cause entrainment of laminar fluid from outside. On the average, this
results in the growth of the boundary layer with streamwise distance in the locally
linear fashion which was described earlier. The wedge angle of the layer is consider-
ably smaller than for jets, a result of the comparative weakness of boundary-layer
turbulence at comparable mean-flow velocities.

PRESSURE GRADIENT AND SURFACE ROUGHNESS EFFECTS

In this subsection we assume that the surface is flat?® and the external flow
irrotational, so that there is no curvature or external vorticity. Qualitatively, the
effects of pressure gradients are similar in turbulent and laminar boundary layers
(recall the discussion of laminar layers in Section 5.1). The sign of the pressure
gradient is crucial, and gradients can be classified as either adverse if they tend to
decelerate the fluid in the layer or favorable if they act to accelerate the flow. In terms
of the parameter TI1, defined by (5.181), I1 > 0 yields an adverse gradient, while
I < 0 corresponds to a favorable one. We saw earlier that |I1] measures the
importance of the pressure gradient in the outer layer, whereas the viscous sublayer
is relatively insensitive to perturbing effects. Thus, one would expect |I1| = O(1) to
yield significant effects of the pressure gradient in the outer layer, whereas, for
small |T1|, such effects should be unimportant.

An adverse gradient, dU,,/dx < 0, implies U, > 0 in the outer layer, according to
(5.193). That is, the mean flow is directed outwards from the surface, which tends to
cause the boundary layer to thicken with streamwise distance. This effect is rein-
forced by transverse turbulent momentum transfer, which tries to thicken the layer
no matter what the sign of the pressure gradient. As a result, the boundary-layer
thickness increases rather quickly. This is also apparent from the Von Karman
equation, (5.180), in which the term with TI as factor represents the pressure gra-
dient. If T > 0, the skin friction and pressure gradient terms of (5.180) act in con-
sort, causing the momentum thickness to increase more quickly than in the absence
of a gradient. From the definition, (5.181), of I = (§,;/7,,)(dP,/dx), we see that the
factor 8,/7,,, which multiplies the pressure gradient, will tend to increase due to two
effects. Firstly, as the layer thickens, 8, will grow, and secondly, deceleration of the
fluid due to the pressure gradient leads to lower shear across the near-wall region,
and hence to reducing skin friction, ,,. Both effects cause TI to increase at constant
dP./dx, thus amplifying the pressure gradient term in (5.180). A uniform adverse

25 Although later in this subsection we will consider rough surfaces, the size of the roughness elements will
be taken to be small compared with the layer thickness and, at that scale, the surface will be assumed
flat.
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pressure gradient therefore has an increasing influence as the boundary layer devel-
ops and is self-reinforcing in the sense that it brings about thickening of the layer and
decreased skin friction, which leads to a larger value of I1, and hence greater influ-
ence of the pressure gradient. A constant adverse pressure gradient results in increas-
ingly rapid thickening of the boundary layer.

As well as causing the boundary layer to thicken, an adverse gradient tends to
slow the fluid in the layer. If it is sufficiently strong and maintained for sufficiently
long, the fluid near the surface can be brought to rest, resulting in separation of the
boundary layer and reverse flow downstream. Because the fluid outside the layer
continues to move forwards, turbulent momentum transfer with the external flow
resists the decelerating effects of the adverse gradient. The mean flow near separation
is no doubt similar to that shown in Figure 5.4 for a laminar layer, although, since
we are now dealing with turbulent flows, there are fluctuations about the mean from
realization to realization, so a precise definition of the separation point and the mean
flow in its vicinity is not especially meaningful. However, the skin friction, t,,
changes sign at separation, owing to the reverse flow at the surface, and the zero
of 7, is conventionally taken as a definition of the separation point in a turbulent
boundary layer. Using (5.131), this definition can be shown to coincide with the
location at which a dividing streamline of the mean flow branches 6ut from the
surface, although the reader is cautioned that mean-flow streamlines are not physi-
cally meaningful in highly fluctuating flows such as those near separation of a
turbulent boundary layer.

Separation always occurs for bluff bodies at high Reynolds numbers, where the
separated boundary layer forms the edges of the near wake. Turbulent boundary
layers are more resistant to separation than laminar ones, as witnessed by the fact
that the separation point moves downstream when boundary-layer transition occurs
(cf. Figure 1.8). Immediately behind the body, at sufficiently high Reynolds number,
the near wake consists of relatively slowly moving fluid bounded by thin shear layers
that are the product of boundary-layer separation. Since the near wake is compara-
tively slowly moving, it has approximately uniform pressure, which is maintained
across the shear layer because the layer cannot support a significant pressure differ-
ence. The flow outside the wake region is rapidly moving and, using a rough-and-
ready Bernoulli’s theorem argument, the pressure there is lower than at the nose of
the body. Thus, the pressure over the rear part of the body is lower than at the front,
which is the origin of the significant form drag that is observed when the boundary
layer separates.

The flow downstream of boundary-layer separation is outside the scope of the
present discussion. Thus, if separation occurs, we restrict attention to the attached
layer upstream of the separation zone. When separation is approached, the boundary
layer thickens and the skin friction drops, as noted earlier. Figure 5.16 illustrates the
qualitative changes in the mean flow and Reynolds stress profiles in the outer layer as
separation is approached (the profiles have been normalized and are shown as func-
tions of n = y/8; bear in mind that 8 is increasing). As separation is approached, the
shear stress near the wall drops, because #, falls, and the location of maximum shear
stress moves away from the wall. At the same time, the mean velocity takes on a
characteristic inflectional form with growing velocity defects in the outer part of the
layer. By the time separation is reached (bottom right), the shear stress and mean-flow
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—##; and U in the outer part of a turbu-
/6 lent boundary layer at various locations

moving toward separation from left to
\ 4} right and downwards. Separation is
attained act the bottom right.

profiles resemble those of a shear layer rather than a normal boundary layer. Clearly,
a turbulent boundary layer near separation has quite different properties, and
becomes more like a shear flow than a wall-bounded flow. This is reasonable,
since, following separation, the vorticity shed from the boundary layer does indeed
form a shear layer.

The case of a boundary layer with a favorable pressure gradient is quite different.
Equation (5.193) now indicates that Fy < 0, so the mean flow tends to cause thin-
ning of the layer and acts in opposition to the ever present thickening effects of
turbulent momentum transfer across the layer. This is also apparent from (5.180),
where the skin friction and pressure gradient terms are now of opposite signs. The
favorable gradient therefore slows down the thickening of the layer, or causes it to
become thinner if it is sufficiently strong. The gradient also accelerates the fluid,
increasing the shear near the wall and hence the skin friction. If the layer becomes
thinner, the combined effects of falling §; and increasing t,,, cause the factor §,/7,, in
(5.181) to decrease, so that I1 drops at constant dP,,/dx. Thus, in contrast with an
adverse gradient, whose results are self-reinforcing, a favorable gradient tends to
bring about changes in the boundary layer which decrease its own importance.
That is, a strong enough favorable pressure gradient has self-attenuating effects.

As |} is increased from small values, at which the pressure gradient can be
neglected, the effects of the pressure gradient on the outer layer become stronger,
while the viscous sublayer is not greatly modified at this stage, except in so far as
the value of u,, and hence the sublayer scalings, is altered by the presence of the
gradient. In particular, (5.198) should still hold in the viscous sublayer, so that the
log law resulting from (5.202) applies over an inertial layer of small y/8. With increas-
ing |T1|, the outer layer is strongly modified by the pressure gradient, while the range of
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validity of the log law, expressed in terms of 7 = y/8, is found to decrease. Given the
self-attenuating effects of a favorable gradient, large negative values of IT are hard to
attain. However, as separation is approached with an adverse gradient, the skin fric-
tion drops toward zero (i.e., 7, #, — 0) and 1 — oo, according to (5.181). We
implicitly assume that |I1| = O(1) in most of the remainder of this chapter, excluding
the neighborhood of separation unless otherwise stated.

In developing a quantitative theory of boundary layers with pressure gradients, as
we will now attempt to do, it is best to make clear from the start that we are on much
less solid ground than for the flat plate of the previous subsection. The difficulty is
that no equivalent of the outer-layer defect law, (5.203), has been found for general
U, (x). This is not surprising, since the boundary layer at any streamwise location
depends on the entire streamwise history of U, (x) up to that point, that is it has
memory and integrates the effects of varying U, (x) in some complicated nonlinear
way. The same is true of laminar layers, of course, but one can always integrate the
Prandtl equations numerically with the specified U (x), whereas, in the turbulent
case, one is stymied by the closure problem.

To make progress, we suppose that it is possible to adjust U, (x) so as to produce
a class of special boundary layers with pressure gradients, known as self-preserving
layers,?® which are such that their outer layers have self-similar velocity defects (cf.
Townsend (G 1976), chapter 7, for a detailed discussion of self-preserving layers
from a somewhat different perspective than that adopted here). That is, the velocity
defect in the outer layer is given by (5.203), where F(n) does not vary with stream-
wise position and n = y/38(x) is the similarity variable. The flat-plate boundary layer
considered in the previous subsection is one member of this class, but we assume that
there are others having pressure gradients. The gradients are not uniform, but care-
fully chosen so that the outer layer has a self-similar velocity defect profile. If such
self-preserving layers exist, as presumed in what follows, they are analogous to the
Falkner-Skan laminar boundary layers, which are self-similar solutions of the
Prandtl equations with power laws for U,(x) as a function of x.

Since the viscous sublayer is insensitive to the pressure gradient, we continue to
use (5.198) there. Matching of (5.198) and (5.203) requires that F(n) have the
logarithmic form (5.208) as n — 0, where b is determined from (5.209) and is
independent of x, since F(n) is, but varies from one self-preserving layer to another.
In particular, the constant & will generally not have the same value as in a layer with
zero pressure gradient. The same is true of the constants I; and I,, given by (5.214)
and (5.215).

Since the Reynolds number is large, (5.209) implies that Uy, /u, is also large, and
of lower order than Ré,, owing to the logarithm. Furthermore, as for the flat plate,
the logarithmic dependence implies that U /u, will be a slowly varying function of
x, and can be locally approximated as constant for the self-preserving layer. We
assume that the same is true of T, which is plausible because IT is a parameter
measuring the influence of the pressure gradient on the outer layer. If TT were to
undergo rapid changes, this would no doubt be reflected in the velocity defect profile,
F(n), which is disallowed by the self-similar nature of the outer part of the self-

26 If the wall were roughened, a case we examine later, outer-region self-similarity could also be obtained
by allowing the roughness properties to vary appropriately with streamwise distance.
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preserving layer. On the other hand, IT may, and probably does, vary slowly with
streamwise distance in the self-preserving layer, owing to the changing relationship
between the viscous sublayer and outer layer with Reynolds number, as reflected in
the gradually evolving U, /u,. In any case, we shall suppose that I, like U, /u,, is
locally constant.

To derive the equivalent of (5.216) for a self-preserving layer with a pressure
gradient, we proceed as follows. From (5.181) and (5.213), we have

dU,, u,

T - T (5.230)
which can be combined with the x-derivative of (5.210) to obtain

d (u* ) u, [ u, dS}

—l=1)= — I —— (5.231)

dx \U, UOOS(K %_*_ 1) Uy dx

u*

Using (5.212), (5.213), and (5.231) in (5.180), we find

s 1+« li“ +H[2+x<35°° —ZTIE)}

2o _ * > * 1 (5.232)

dx U U

K11< oo) —K12 x© + 12
u, u,

generalizing (5.216), to which it reduces when IT = 0. Equation (5.232) describes the
thickening or thinning of a self-preserving layer, which depends on U, /u,, I, the
unknown constants I; and I, whose values are different with a pressure gradient,
and the Von Karman constant, ¥ =~ 0.39,

Since Uy /#, and TI vary slowly with x and can therefore be approximated as
locally constant, d§/dx is also slowly varying. Thus, a self-preserving boundary layer
develops locally as a straight-sided wedge, of angle determined from (5.232), which
varies only slowly as the layer develops. From (5.212) and (5.213), the same holds
for 8,, and 84, and indeed, locally, the entire outer layer evolves linearly with x for a
self-preserving boundary layer. This is not generally true of non-self-preserving
layers and it ought to be recalled that U, (x) needs to be carefully adjusted to obtain
such self-preserving layers. According to (5.232), the layer thickens or thins depend-
ing on whether IT > I1; or T < Iy, where

Uss
Uy

’K<3 Use —2—12) +2
U, Il

+1

K
HOZ—

(5.233)

which can be shown to lie in the range —1 < Iy < —1 (assuming §,, and 8, are
positive, so that Iy > 0 and I, /I; < U, /#,, according to (5.212) and (5.213)). Thus,
thinning always occurs if [T < —1 and never happens when IT > — 1. In particular, as
noted earlier, an adverse gradient, I1 > 0, leads to thickening of the layer, whereas a
favorable gradient can produce thinning if it is sufficiently strong. The high Reynolds
number limit, Uy /u, — 00, of (5.233) gives I1g = —1 as the borderline between
thinning and thickening of a self-preserving layer. Incidentally, this indicates that
pressure gradients as small as |[T} =1 may have important effects.
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We next want to use a local analysis, taking constant values of Uy /u, and II, to
determine approximately the form of U, (x) needed to maintain a self-preserving
layer. Locally, &(x) is either constant if (5.232) is zero, or

8(x) = (x — x0) &’ (5.234)

where 8’ = d§/dx is the constant given by (5.232) and x; is an unknown origin. If
8" > 0, the layer thickens, spreading out linearly from x = x,, which lies upstream of
the location considered. On the other hand, when 8’ < 0, the layer thins, shrinking
towards the point x = xy, which lies downstream. In that case, it tends to zero
thickness as x = x, is approached, which is clearly unphysical. Moreover, as we
shall see, the external velocity, Uy (x), needed to maintain the self-preserving layer
approaches infinity there. Such a singularity calls into question the approximations
used in deriving these results, but suggests that self-preserving layers that become
thinner with streamwise distance cannot be maintained beyond a finite range and
require increasingly large pressure gradients as that limiting range is approached.

Using (5.230) and (5.234), we obtain an equation for U,(x), which can be
integrated, taking constant U, /4, and I1, as before. Thus, we find the local approx-
imations

Use o |x — xq) % /11Usc?’ (5.235)

if 8" £0, or
u, 1
U, x exp|:— T, U x:l (5.236)

in the special case 8" = 0, that is, when IT = I1,. The signs of proportionality in
(5.235) and (5.236) indicate that there are multiplicative constants of integration.
In reality, both these multiplicative factors and the power exponent in (5.235) are
slowly varying with x, rather than constants. The power law form, (5.235), of Uy (x)
for self-preserving layers brings to mind the Falkner-Skan self-similar laminar layers,
which also have power laws for the external velocity {see Batchelor (G 1967), section
5.9). Since &', given by (5.232), is slowly varying with x, the special exponential
form, {5.236), representing the borderline between layer thinning and thickening,
will not generally persist.

With an adverse gradient, that is, [T > 0, we saw earlier that §' > 0, so that the
exponent in (5.235) is negative, giving a pressure gradient which decreases with
increasing streamwise distance. As discussed before, an adverse gradient has seif-
reinforcing effects on the boundary layer and therefore needs to be continuously
decreased with streamwise distance to maintain self-preservation. For favorable gra-
dients, sufficiently strong as to produce thinning, §' < 0 and the exponent is again
negative, but now x = x; lies downstream and the result is an increasing pressure
gradient with an infinite singularity at x = x(, as noted above. This reflects the self-
attenuating effects of a favorable gradient, which needs to be continuously increased
to maintain a self-preserving layer.

As Uy /u, — oo, the limit of (5.232) is

ds u,

&= UL (1 + 30) (5.237)
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where the factor 1+ 31T will be recognized from the leading-order Von Karman
equation, (5.185), and from the corresponding limiting value Il = —%, noted
above. In this limit, the power-law exponent in (5.235) becomes —IT1/(1 + 3I1). As
usual, these leading-order, high Reynolds number limiting expressions are probably
not very precise because the increase of U,,/u, with increasing Reynolds number is
only logarithmic and therefore the limit is approached rather slowly.

The self-preserving layers considered above are a rather special class of boundary-
layer flows, but have the virtue of allowing some analytical progress. Based on
empirical evidence, Coles (1956) proposed that more general U, (x) result in a
single-parameter family of outer layers having the velocity defect law (5.203) with

1
F(n) = p log n + b<1 - %w(n)) (5.238)

in the outer layer. The so-called wake function, w(n), is supposed universal and gives
an outer-layer correction to the log law. Coles found that

wn)=1-cosny (5.239)

fitted the experimental data well. The single parameter & describes the variations
between different boundary layers and different streamwise locations within a given
layer. It will be noted that w(n) — 0 as n — 0, so that (5.238) takes on the form
(5.208) near the surface, as it must to match to viscous sublayer. Thus, the parameter
b may be obtained from the matching relation, (5.209) or (5.210) and can vary with
streamwise location. Using (5.238) to evaluate the integrals in (5.214) and (5.215),

we obtain
1 1
LL==-=b (5.240)
kK 2
and
2 3
L=5+3b— 159 (5.241)
8 K
which lead to I} = 3.6, I, = 23 in the zero gradient case, b = —2, values that are not

far from those given earlier.

In adverse gradients b < —2, while & > —2 corresponds to a favorable one. It is,
however, doubtful whether (5.238) applies with significantly favorable pressure gra-
dients, so we restrict attention to adverse ones in what follows. Figure 5.17 shows the
function b +-2 — F(n), according to (5.238) with (5.239), for a number of values of
b < =2, of which b = —2 represents the zero gradient layer and increasingly negative
b illustrate the effects of adverse gradients. These graphs show the scaled outer-layer
velocity defect, —F(n), shifted vertically by the amount b + 2, so that their log-law
asymptotes coincide. The reader may imagine displacing the curves upwards to give
the value zero at n = 1, leading to graphs of the velocity defects themselves. It will be
noted that, as remarked earlier, the region of applicability of the log law decreases as
the effect of the pressure gradient becomes stronger.

We may combine Coles’ outer-layer defect form, (5.238), and the viscous sublayer
expression, (5.198), to obtain Coles’ composite form



Uy
Uy,

= fo) —ybut)  (5.242)

for the mean velocity, valid through-
out the boundary layer. It reduces to
(5.198) in the viscous sublayer, since
w(@) — 0 as n— 0, and to (5.203)
with (5.238) in the outer layer, by vir-
tue of (5.202) and the matching con-
dition, (5.209).

The limit b — —oo corresponds to
very strong adverse gradient effects
and has been conjectured to corre-
spond to separation. In that case,
u, — 0 (to represent separation) and
(5.203) with (5.238) show that

V, ~ u*b(l - %w(n)) (5.243)
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Figure 5.17. Coles’ outer-layer velocity defect function at
equally spaced values of the parameter b < —2 representing
adverse pressure gradients. To obtain the velocity defect, each
curve should be shifted vertically to make the defect zero at
n = 1. The vertical scale is linear, the horizontal one logarithmic.

The logarithmic part has now disappeared, implying that there are no longer large
velocity gradients near the surface. If we apply the no-slip condition, V, = —U,, at
y =0, to (5.243), we have b ~ —U,,/u,, leading to

— 1

U, = Us + Vi = 5 Usetin) = % Us(1 — cos ) (5.244)

which indicates a sinusoidal velocity distribution across the layer at separation. We
discussed the approach to separation earlier, and indeed, as sketched in Figure 5.16,
the mean-velocity profile appears to take on an inflectional form, qualitatively simi-
lar to (5.244), and resembling that of the nascent shear layer to which the boundary
layer gives rise downstream.

Since Coles’ velocity defect form, (5.238), is intended for boundary layers with
general U,(x), it should also apply to self-preserving layers, for which the value of &
is constant. Thus, self-preserving layers form a one parameter family whose velocity
defect functions, F(n, b), are representative of more general boundary layers with
pressure gradients. Figure 5.17 can therefore also be interpreted as representing the
velocity defect in thé outer parts of different self-preserving layers with adverse
gradients.

Given the two quantities 8(x) and b(x), for a general U,(x), one can calculate
#,(x) from the matching condition, (5.210). The boundary-layer mean flow can then
be determined using Coles’ expression, (5.242). One equation describing the stream-
wise development of the two unknown quantities, 8(x) and b(x), can be obtained
from the Von Karman equation, (5.180), in which IT contains the pressure gradient
via (5.181), and §,,,8; may be determined from (5.212), (5.213) with (5.240),
(5.241). However, we are missing an equation. Thus, Coles’ expressions are not
sufficient to allow calculations of boundary-layer development with general
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Uy (x). It should also be borne in mind that they are based on a finite amount of
experimental data and may not apply to all U, (x), particularly extreme cases.

We now want to change the subject and briefly consider another perturbing
effect on turbulent boundary layers, namely surface roughness. Whereas, we
have so far supposed a smooth, flat surface and considered the influence of pres-
sure gradients, we now assume the gradient to be negligible, but that the surface is
rough. The reader may imagine a flat plate, whose texture is similar to sandpaper
with grains small compared with the total boundary-layer thickness, 8. Provided
the roughness height, k, is much less than the viscous sublayer thickness in the
absence of roughness, the effects are negligible, but once k& becomes comparable
with the sublayer thickness, roughness begins to influence the sublayer, and hence
the flow as a whole. It may be remarked that, because a laminar boundary layer
has no internal structure, the corresponding criterion compares the roughness
height and total boundary-layer thickness. Recalling that, everything else being
equal, a laminar layer is considerably thicker than a viscous sublayer, it is apparent
that turbulent boundary layers are more sensitive to roughness than their laminar
counterparts. Furthermore, once £ has become sufficient to perturb a laminar layer
significantly, the entire boundary layer flow is directly modified because it must
pass around the grains of roughness. In contrast, a turbulent layer can be signifi-
cantly altered by roughness heights much smaller than its overall thickness, which
then only have a direct effect on the flow near the surface, but thereby indirectly
change the outer layer.

As for a smooth surface let the mean frictional force per unit area be 7,, = ou>,
thus defining the friction velocity, «,. It is found that the outer-layer velocity defect
law

% = F(n) (5.245)

*

continues to hold, with the same F(n) as for a smooth surface. That is, roughness
only influences the velocity defect in the outer layer through modification of #, and §
(the latter appearing via n = y/8 in (5.245)). This is reasonable because k is assumed
sufficiently small that the outer layer is altered only indirectly, through changes to the
near-surface flow. As n — 0, (5.208) and (5.245) imply that

X o0

+b (5.246)

&1

1
~ —logn +

K *
showing log-law behavior that must match to the flow nearer the surface, where
roughness has a direct effect. Here, b has its usual flat-plate, zero-gradient value, as
do the constants I; and I, in (5.212) and (5.213).

The importance of roughness is measured by the parameter u,k/v, which is a
Reynolds number based on the roughness size. If this parameter is small, the wall
may be considered smooth, while, as it grows in magnitude the influence of rough-
ness increases. The flow around the grains then depends on «,, k, v, and the geome-
trical form of the roughness. At distances from the surface large compared with &, U,
approaches the logarithmic form
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~log(}) +a (5.247)

to match with (5.246). By dimensional analysis, based on the parameters «,, k, v, we
see that the nondimensional quantity @ should depend only on #,k/v and the geo-
metrical form of the roughness. That is, the function d(u#,k/v) may depend on the
type of roughness used (e.g., close-packed hemispheres, etc.). Equality of (5.246) and
(5.247) yields the matching condition

U, 1, [8\ .
el log(z> +a—b (5.248)
which expresses u, in terms of & for a rough plate. It is analogous to the smooth-plate
result (5.209), to which it reduces when @ = a + (1/«) log(x,k/v), the form taken by
the function a(u,k/v) in the smooth limit, #,k/v — 0. Equation (5.248) may be
combined with the Von Karman equation, (5.211), and equation (5.212), allowing
determination of the streamwise development of é and Uy /u, if a(u,k/v) is known.

The quantity d(u,k/v) is found to approach a limiting value, &, for sufficiently
large u,k/v and the surface is then said to be fully rough. The flow around the
roughness grains is then of high Reynolds number and it is plausible that its overall
properties, such as a, should no longer depend on the fluid viscosity and hence on
u.k/v. The constants k and a,, are geometrical properties of the roughness and
completely characterize a fully rough surface in so far as the streamwise development
and outer layer are concerned. Observe that, according to (5.248), u, increases with
k, everything else being equal. That is, the skin friction grows with the roughness
height for a fully rough surface, which is as one might intuitively expect, but need not
hold for surfaces which are not fully rough.

We have deliberately avoided giving a precise definition of the roughness height,
k, and a variety of definitions might be used for a given rough surface, differing by
numerical factors. Changing the definition of k also modifies 4, in such a way that the
combination ke, occurring implicitly in {5.247), remains the same. It is convenient
to normalize k so that d,, has the same value for all fully rough surfaces and a fixed
value of about a,, = 8 corresponds to the conventional equivalent sand-grain rough-
ness height, k. The single parameter k then suffices in the fully rough limit of large
u,k/v. For smaller values of u,k/v, one also needs the function a(u, k/v).

Assuming a fully rough plate, so that @ = a,, is constant, and that the roughness
properties do not vary with x, equations (5.211) and (5.212) with the x-derivative of
(5.248) lead to

ds 1

dx= s I % (249

1 2
U, K 2+2KUOO

which is analogous to the smooth plate form, (5.216), and describes the development
of the boundary-layer thickness. According to (5.248), the quantity Uy /4, is large
and slowly varying, thanks to the assumed large value of §/k, rather than largeness
of the Reynolds number, which plays the same role for a smooth plate. Thus, the
boundary layer again develops locally as a straight-sided wedge, whose angle varies
gradually with streamwise distance. As U, /u, — 00, (5.249) reduces to (5.217), as
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for a smooth plate. Thus, the distance for development of the boundary layer,
d = O(Uy8/u,) has the same order as in the smooth case, although the values of
U, /u, and 8, and hence d, will generally be altered by roughness. Equation (5.248)
can be rewritten as

(S:/@(:Xp[/((i00 —5w+b)} (5.250)

*

which can be used in (5.249) to obtain a differential equation for Uy /u,.

In summary, the effects of roughness on the skin friction and flow properties at
distances from the wall large compared with k are expressed by a(u, k/v), experi-
mentally determined. When u,k/v is sufficiently low, the wall is effectively smooth,
while at large enough u,k/v, 4 — 4., yields a fully rough wall. In between, & is
comparable with the viscous sublayer thickness and the function a(u,k/v) depends
on the type of roughness.

EXAMPLES

This subsection briefly describes two examples of flows, which although they are
not pure boundary layers, show significant effects of walls and hence share some of
the characteristics of boundary layers. The first of these is the plane channel flow
introduced in the previous chapter, to which discussion the reader should refer for
basic properties and notation.

At the entrance to the channel, we imagine a uniform flow profile. This will
produce boundary layers on the two walls, x; = 0 and x; = 2D, which develop
and thicken downstream until they meet at the middle of the channel. The flow
then approaches the fully developed regime in which the mean flow is in the x;-
direction and only the mean pressure, P, depends on the streamwise coordinate. We
consider fully developed flow in what follows.

There are viscous sublayers near the walls, in which the velocity is given by
(5.198) in terms of u,. The central part of the channel is similar to the outer part
of a boundary layer and the analog of the velocity defect relation, (5.203), is

Ui = Unax — F(z%) (5.251)

U,

where Up,,, is the maximum mean velocity, U;(x; = D), and F is a universal func-
tion for developed plane channel flow (i.e., it does not depend on the Reynolds
number). To match to the viscous sublayers, F must have logarithmic behavior as
we approach either of the walls. For instance,

F(ZEIZS) ~% log(%) +c (5.252)

as x, — 0, where ¢ is a universal constant. Matching of (5.198) and (5.252) leads to
the friction law

Do L (Do) L (o) 25y
u, K U, K v

which relates U_,./#, to the large overall Reynolds number, U paxD/v. This result
indicates that #, is small compared with U_,,, so, according to (5.251), the mean
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velocity in the central region of the channel is approximately uniform, as for the
outer part of a turbulent boundary layer. As the walls are approached, the log-law
zone is entered and there are increasingly large mean-velocity gradients, until the thin
viscous sublayer is reached. The near-wall region is much the same as for a boundary
layer.

In the channel problem, the mean-wall-pressure gradient is usually regarded as the
controlling parameter and determines the friction velocity via

dP
put=1,=-D=¥ (5.254)
dxl
From u,, one may calculate U,,,, using
U 1 D
ﬂ:-m(z"* )+a—c (5.255)
u, K v

showing that U,,,,, is equal to #, times a large, slowly increasing, logarithmic func-
tion of the high Reynolds number, #,D/v. The volume flux in the channel can be
calculated by neglecting the contribution of the viscous sublayers, just as for §,, and
84 in a boundary layer, giving

2D 717
% _ L % dxy = Umax<1 2 ) (5.256)

max

from (5.251), where

1
I =— L F(n)dn (5.257)

Thus, the volume flux is determined from the pressure gradient via (5.254)—(5.256).
Both ¢ and I are universal constants specific to plane channel flow. Compared with
the assumed uniform flow at the channel entrance, U; = Q,/2D, the developed
mean flow, Uj, is slower moving near the walls, but has the somewhat higher
value, U,,,,, at the channel center. During the development phase, the fluid is slowed
in the vicinity of the walls and accelerated in the center of the channel, conserving the
volume flux through the channel. A technique similar to that used above works for a
circular pipe, a case that is left as an exercise for the reader.

Finally, we want to briefly discuss the wall-jet flow, illustrated in Figure 5.18, in
which a plane jet exhausts tangentially to a plane wall in ambient fluid at rest. We can
divide the flow into two regions: a viscous sublayer at the wall and an outer region.
Like a boundary layer; the viscous sublayer is found to scale on the friction velocity,
u,, where 7, = o is the mean wall shear stress. However, the outer region is quite
different from a boundary layer, and rather similar to a jet in its overall properties,
although it is a jet that is modified significantly by the presence of the wall. Whereas
for a boundary layer, the turbulent velocities in the outer region are O(u,), here they
are found to be much larger than #,. This increased turbulence level is no doubt due to
the existence of an inflection point in the mean-velocity profile away from the surface,
making the flow more unstable and producing higher levels of turbulence. As noted
earlier, inflection points correspond to maxima of shear and tend to act as production
centers for turbulence. For the wall jet, there are thus two production centers, one
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Shear stress

Potential core

Figure 5.18. Illustration of a plane wall jet.

near the wall due to the high shear there, and similar in nature to that of a boundary
layer, the other near around the inflection point in the jet flow away from the wall.

In the case of boundary layers, we used a refined boundary-layer approximation,
expressed in terms of the velocity defect. This was necessary to maintain precision in
the outer region because the streamwise mean-flow velocity there has only small
departures from the external flow, but is not required for the wall jet. Thus, we
have equations (5.13) and (5.28), with the viscous term

¥,

v
)
ox5

(5.258)

necessary within the viscous sublayer. Using (5.13), (5.28) can be rewritten as (5.45).
Including the viscous term, and integrating across the wall jet yields

4Oy _ i (5.259)
dx1
where Q,,, given by
Om = J Uidx, (5.260)
0

is the jet momentum flux, which decreases with range due to skin friction, according
to (5.259).

In Section 5.2 (equation (5.19)), we saw that jets spread over a streamwise dis-
tance scale

2
d= o(UoA) (5.261)

u Uy

where Uy, A, and #73; are measures of the streamwise velocity, width, and Reynolds
shear stress in the jet. Over this distance, the momentum flux decreases by
OU3 A fainy), according to (5.259), which is a fraction OGu? /i #;) of the total
momentum flux, O(U2A). Since the turbulent velocities in the outer part of the flow
(the jet) are considerably larger than u,, we would expect that #73; be large com-
pared with #2, and this indeed turns out to be the case. The result is that the jet only
loses a small fraction of its momentum flux in the distance required for entrainment
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and spreading. The momentum flux is approximately constant as the jet spreads, but
decreases slowly over longer ranges.

It is found that the wall jet becomes approximately self-similar sufficiently far
downstream of the nozzle, having the velocity profile

Uy = (%) — x0)" () (5.262)

where £ = x,/(x; — xg) is the similarly variable expressing linear spreading of the jet
and the factor (x; — x) /% gives a constant momentum flux. This behavior is simi-
lar to a jet without a wall; however, the profile, £(§), is quite different and has the
form sketched in Figure 5.18. The wall jet has a wedge angle which is noticeably less
than that of the free jet, because the entrainment process at the outside of the jet is
inhibited by the effects of the wall on the largest scales of the jet flow. The decreased
jet width means that the maximum velocity is initially higher, to maintain the jet
momentum flux at its nozzle value. However, over sufficiently long distances, the
decrease of momentum flux due to skin friction causes the maximum velocity to
decrease faster than the factor, (x; — x0)~ /2, in (5.262) would imply. That s, equa-
tion (5.262) holds only locally in x.

The wall jet is not correctly described by the eddy-viscosity approximation (5.34):
as noted in Chapter 4, the maximum of U, does not coincide with the zéro of —77;
and the eddy viscosity, vy, which would be needed to agree with measurements
therefore has an infinite singularity and a region of & in which it is negative! Even
if this difficulty is ignored, the eddy-viscosity approximation is not very helpful
because vy varies greatly across the flow.

The viscous sublayer, y, = O(1), is described by (5.198), as for a boundary layer,
but, as one leaves this zone, the behavior begins to depart markedly from that of the
boundary layer. The much higher turbulence levels in the outer region percolate
down almost to y, = O(1). A log-law zone is found outside the viscous sublayer,
but the effective value of x appears to be changed to about 0.5, rather than the value
x = 0.39 that we noted before for boundary layers. Qutside the log-law zone, the
velocity profile in the outer region bears no resemblance to a boundary layer.

The wall jet is a somewhat extreme example of the effects of turbulence in the
external stream of a boundary layer, here originating from the jet flow. As one might
expect, the first effect of external turbulence, as its intensity is raised, is to modify the
outer part of the boundary layer. The outer layer is perturbed by increased turbulent
mixing until it can no longer be clearly distinguished from the external turbulence.
This leaves the viscous sublayer and log-law zones, of which the latter is more and
more deeply modified by increasing external turbulence. The growing turbulent
momentum transfer in the log-law zone tends to make U; more uniform, thereby
reducing the slope of U; as a function of logy and increasing the apparent value of x
in the log law.

NEAR-WALL ORGANIZED STRUCTURES

Before bringing this lengthy chapter to a close, we want to discuss one final aspect
of wall-bounded flows, namely the near-wall structure and dynamics of turbulence in
individual realizations of the flow. Thus, rather than considering simple statistical
measures, such as the mean velocity or root-mean-squared fluctuations, as we have
until now, attention will be focused on the detailed properties of the time-dependent
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flow. Work has been going on in this area since the 1950s, mainly experimental
studies in the laboratory, but more recently computer simulations of the Navier—
Stokes equations have allowed controlled numerical experiments to be carried out,
while the development of more sophisticated flow visualization techniques has pro-
vided more incisive tools for laboratory analysis of individual realizations (see, e.g.,
Figures 1.4 and 5.19). The basic idea behind these studies is that turbulence in the
near-wall region possesses certain types of flow structures that recur and can be
identified, in the process illuminating the physical mechanisms by which turbulence
is generated in that zone. It should be noted that, unfortunately, a precise and gen-
erally accepted definition of what constitutes such an organized structure is lacking,
lending a subjective element to an area that is already largely descriptive. Nonetheless,
certain features of the near-wall zone are widely accepted and, in this subsection, we
will briefly attempt to throw light on some of these, inevitably (given the nature of the
material) coloring the description with
our own perceptions. We make no pre-
tense at a complete treatment of the field
here, pointing the reader to the review by
Robinson {(1991) for detailed discussion
of and references to the abundant litera-
ture.

Many studies have concerned the flat-
plate boundary layer without pressure
gradient, which is the case we concen-
trate on. One of the best-established fea-
tures 2’ is that turbulence in the viscous
sublayer (y, < 50, say) possesses struc-
tures (often referred to as streaks) that
are elongated in the streamwise direc-
tion, a tendency that becomes more
marked the nearer to the surface one
looks. This streamwise elongation is
apparent in a number of flow quantities,
both from laboratory and numerical
experiments, and is associated with
longer correlation lengths in the stream-
wise direction. Figure 5.20 shows a plan
view of the instantaneous streamwise
fluctuating velocity, #,, in a numerical
boundary-layer simulation. The lighter
zones in the figure are strikingly elon-
gated and represent fluid which is instan-

Figure 5.19. Visualization of a turbulent boundary layer
using smoke injection and illumination by thin planes of . L.
laser light perpendicular to the flow direction, which runs taneously moving significantly more
into the page. (Courtesy of F. Ladhari.) slowly than the average in the stream-

27 First explicitly noted by Grant (1958), intensively studied by the team at Stanford (see, e.g., Kline et al,
(1967), Kim, Kline, and Reynolds (1971), and the review by Robinson (1991), referred to above) as
part of a general attack on the problem of near-wall organized structures.
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Figure 5.20. Instantaneous streamwise component, #,, of fluctuating velocity in the plane y, = 3, illus-
trating streamwise elongation of turbulent structures. The lighter zones indicate where u, is negative and
—u, exceeds a certain threshold value. (Robinson (1991), reproduced with permission.)

wise direction, that is, #, < O with —u, above a certain threshold value. This tends
to be associated with motion outwards from the wall, that is, #, > 0, which is
understandable, since fluid nearer the wall moves more slowly on the average and,
when a fluid particle moves away from the wall, it tends to keep this slower
streamwise speed. Thus, broadly speaking, there are elongated streaks of slow-
moving fluid, which came from nearer the wall, alternating with faster-moving
fluid originating from further away. Typical dimensions of the low-speed streaks
(in wall units, i.e., multiples of v/u,) are of the order of hundreds in the spanwise
direction, tens in the wall-normal direction, and thousands in the streamwise direc-
tion, thus resembling ribbons. As time goes on, these structures are convected
downstream, leading, at a fixed point, to alternation of low- and high-speed
fluid. Needless to say, the time-averaged velocity is determined by the mean
flow, that is, the negative and positive values of u, and u, cancel.

As noted above, low-speed streaks tend to involve outward moving fluid,
ejected from the wall by the passage of the flow structure which created the
streak. The precise nature of the associated flow structures has been the subject
of considerable debate and a number of different theoretical models, most of
them involving streamwise vortices of one form or other, have been proposed.
In our view, there is considerable confusion surrounding the nature and role of
near-wall vortices, which we will attempt to shed some light on later, but for the
moment we continue to describe the observed behavior. As well as ejections, there
are motions toward the wall, which tend to be associated with the high-speed
fluid between streaks, and which are often referred to as sweeps. Ejections and
sweeps alternate in time at a fixed point, appearing as a quasi-cyclic process.
Following Wallace, Eckelmann, and Brodkey (1972), it is traditional to represent
results in a u,—u, plane, with the quadrants numbered in the usual fashion,
anticlockwise  beginning ~ with  #, > 0,4, > 0. The second quadrant,
u, < 0,u, > 0, represents ejections, while the fourth, u, > 0,4, < 0, corresponds
to sweeps. The remaining two quadrants represent rarer and less intense events
that are of neither of the above types.
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As we saw earlier in this chapter, under the boundary-layer approximation, tur-
bulence affects the mean flow via the Reynolds stress component —#,,, which also
appears in the turbulent energy production, —m(aﬁ;/ dy) for a flat-plate boundary
layer without pressure gradient. Using conditional averaging, one can determine the
relative contributions made to the average %%, by the different quadrants of the
u,—u,, plane, thus ranking them in importance as far as the mean flow and turbu-
\ence production is concerned. Both quadrants two and four, representing ejections
and sweeps, yield negative #,u, and their contributions are responsible for the over-
all negative value of %%, exceeding those of the other two quadrants, which are
smaller owing to the greater scarcity and lesser intensity of the corresponding events.
Ejections and sweeps are found to vary in relative importance depending on distance
from the surface, with ejections contributing more for higher values of y, and sweeps
more important nearer the surface (with the changeover occurring at about y, = 15).
It is reasonable that ejections become more significant further away from the surface,
since there is more room from which the ejection can originate. This leads to the idea
that, in the outer part of the viscous sublayer (and perhaps the inertial sublayer),
turbulence is mainly produced and carried away from the surface by ejections, which
consequently play a key role in the near-wall turbulence dynamics.

As discussed earlier, the outer part of the boundary layer is different in character
to the near-wall zone, resembling free shear flows such as jets and wakes. The main
outer-layer structure apparent in individual realizations is the frontier between tur-
bulent and laminar flow (see Figure 5.1d), whose position fluctuates due to bulges of
turbulence that are convected downstream, leading to turbulent intermittency.
Preferential elongation of turbulence structures in the streamwise direction is not
observed in this region. If anything, flow visualizations, such as Figure 1.4, show
structures which slope downstream and outwards from the wall at an angle of
roughly 45°. The laminar flow may be thought of as having to pass around a some-
what porous (due to entrainment), corrugated, and unsteadily deforming body,
whose surface is the boundary of the turbulent zone. This suggests, as has been
observed, that regions of high shear, similar to boundary layers over the surfaces
of solid bodies, might form over the upstream part of a bulge in the turbulence
frontier, with wakelike regions behind the bulges.

It is time to make some attempts at explanation, beginning with the question:
Why are turbulence structures found to be elongated in the streamwise direction in
the viscous sublayer, but not further away? The obvious candidate is the high mean
shear, s = 8U, /3y, which grows like ™! as y decreases through the inertial sublayer
and reaches a maximum at the wall. The basic idea is that turbulent structures will be
sheared out.by mean-flow convection and hence end up aligned in the streamwise
direction, an idea which we believe to be fundamentally correct, but which merits
further examination. Turbulence is subject to the mean shear s, which has the dimen-
sions of an inverse time, with s ! giving the time scale required for mean shear to act.
Turbulence is also subject to self-interactions, evolving on a time scale of O(L/#’) in
the absence of mean shear. The ratio, sL/u’ is a nondimensional measure of the
importance of mean shear. If it is sufficiently large, one can neglect the self-interac-
tion of turbulence to a first approximation, only taking into account the effects of
mean shear, whereas, when it is small, the mean shear can be neglected. The quantity
L is a measure of the size of the large scales of turbulence and is found to increase
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with distance from the wall, roughly proportional to y. Taking L = y and using the
measured profiles of U, and #' leads to estimates for sL/u’ as a function of distance
from the wall, which is found to decrease through the viscous sublayer, from around
six at the wall to a constant value of about 1.5 in the inertial layer. This suggests that
mean shear should be more important in the part of the viscous sublayer near the
wall, hence the tendency to streamwise elongation there. Having attained a minimum
in the inertial sublayer, sL/u’ increases with distance from the wall in the outer
region due to the decreasing intensity of turbulence, which might suggest that
mean shear again be more significant toward the outskirts of the layer. However,
since (for reasons that are unclear) streamwise elongation is not observed in that part
of the boundary layer, we concentrate on the near-wall zone.

If the mean shear is sufficiently large, its effects on the turbulence dominate self-
interaction. This is the regime of applicability of linear theory, in which the nonlinear
term in the equations, (4.31), for the fluctuations is neglected. Furthermore, in order
to simplify the problem and render it mathematically tractable using spectral analy-
sis, we consider the case of homogeneous turbulence in an unbounded domain
subjected to the uniform mean shear, U, = sy, where s is a constant. As a final
simplification, viscous effects are neglected, so that linear theory becomes rapid-
distortion theory. Obviously, this is only a very crude model of a viscous sublayer,
but one which shows some of the features of near-wall turbulence. The flow was
already used as an example illustrating the effects of mean shear on turbulence in
Section 4.5 (see “Homogeneous Turbulence Subject to Uniform Shear™).

The quantitative consequences of rapid-distortion theory for homogeneous tur-
bulence subjected to simple mean shear can be worked out using spectral analysis,
that is, Fourier decomposition of the velocity field, a technique introduced in Chapter
6 (although there we will only examine the simplest case of turbulence in the absence
of mean shear). It is found that the turbulence does indeed become elongated in the
streamwise direction at large times, due to shearing out by the mean flow and
preferential amplification of certain Fourier components of the initial velocity field.
Furthermore, the streamwise component, #,, of the fluctuating velocity is predicted
to grow with time, dominating the other components at large times. This is in accord
with the significantly larger value of #, in the viscous sublayer apparent in Figure
5.14. The crudeness of the model used should be borne in mind, as should the fact
that, whereas a boundary layer is a steady flow, the modeled flow is statistically
unsteady. Nonetheless, some of the correct trends are apparent, which suggests that
mean shearing is responsible for structuring the turbulence in the viscous sublayer, as
well as preferring streamwise velocity fluctuations. In particular, the presence of the
wall would seem to be unnecessary, except as the means of producing the strong
shear, leading in turn to highly anisotropic turbulence in the near-wall region.

As remarked earlier, many models that have been proposed to explain the near-wall
behavior of turbulence involve streamwise vortices. The first point to note is that the
mean vorticity is spanwise and dominates the fluctuating vorticity in the viscous sub-
layer (the parameter sL/u’ provides a measure of their relative magnitudes and is large
in the region in which streamwise elongation is most apparent, as observed earlier).
Thus, it is difficult to see how streamwise vortices of the total flow, mean plus fluctua-
tion, could arise. Furthermore, of the fluctuating velocity components, #, is the largest,
and the only one which does not appear in the expression, w, = du,/dy — du,/9z, for
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the streamwise fluctuating vorticity. In consequence, even the fluctuating vorticity is
mainly in the spanwise direction, again suggesting that streamwise vortices are
unlikely. This is not to say that the flow does not have streamwise turbulence
structures, structures that are associated, as always in incompressible flow, with
vorticity. Indeed, we saw earlier that rapid-distortion theory predicts the appearance
of such flow structures, but they are not dominated by streamwise, but rather by
cross-stream, vorticity. In our view, the concept of streamwise vortices has produced
significant confusion in the literature on near-wall turbulence and care needs to be
taken to clearly define terms.

Attempts have been made to reduce wall skin friction by deliberately introducing
specially chosen types of roughness, known as riblets, usually taking the form of
grooves aligned with the streamwise direction whose dimensions are comparable
with the thickness of the viscous sublayer. If the riblet geometry is appropriately
matched to the flow, this has been found to reduce the skin friction somewhat (by the
order of 10%). This is thought to work because the streaks are channeled by the
grooves, becoming more stable and less subject to ejections, thus reducing the mean
momentum transfer and hence the drag. Other means for drag reduction have also
been suggested, including placing airfoil-like devices known as LEBUs (large-eddy
break-up devices) in the outer part of the boundary layer, wall suction, polymer
injection, and so on (see, e.g., Savill, Truong, and Ryhming 1988). Many of these
techniques have been found to have beneficial effects on skin friction in the labora-
tory and some are under industrial development.

Finally, we note that one can also study the structures of turbulence present in
single realizations of jets, mixing layers, and wakes. These flows are rather different
because their mean-velocity profiles have inflection points that are associated with
Kelvin-Helmholtz type instabilities and act as turbulence production centers in the
heart of the flow, rather than at a wall. Jets in particular are efficient amplifiers of
perturbations of all sorts and may be persuaded to produce specific organized struc-
tures by appropriate matching of external perturbations (e.g., acoustic in origin) to
the natural modes of instability of the jet. The latter can be calculated using an
inviscid, linear model (i.e., rapid-distortion theory) and many features of jets and
mixing layers can be explained (even quantitatively in some cases) in terms of such
modes and their nonlinear interactions. We refer the interested reader to, for
instance, Crow and Champagne (1971), and Ho and Huerre (1984), among many
others in the extensive literature on this subject.

5.6 Conclusions

The turbulent flows considered in this chapter are of considerable fundamental and
practical interest. Even given the space devoted to them here, we have far from
exhausted all aspects of these classes of flows. For instance, to name but a few, we
have not discussed three-dimensional boundary layers, ones with suction/blowing at
the surface, and effects of compressibility (when the Mach number is not negligible).

The constant interplay between theoretical analysis and experiment that is char-
acteristic of much of the theory of turbulence has been apparent in this chapter. This
is, in part, a reflection of the fundamental closure problem: experimental data is
often referred to (nowadays including numerical simulations of the full Navier—
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Stokes equations) in order to overcome the lack of a reliable closure approximation
or as a means of verifying and calibrating some proposed theoretical model, gener-
ally heuristic in origin.

In the next chapter, we turn attention to the spectral theory of homogeneous
turbulence, which provides a simpler case than the inhomogeneous flows of this
chapter, allowing the development of more incisive analytical tools for the study
of turbulent flows.

Appendix: A Higher-Order Boundary-Layer Momentum
Balance Equation

In this appendix, we give a brief derivation of equation (5.188). A mean momentum
audit of the boundary-layer flow yields

where the integral is taken over any closed curve in the x;—x, plane within the flow,
n; is a unit vector, normal to the curve, and g is the fluid stress tensor. Likewise, for
the notional, inviscid flow, U™ we have

1

(U?ML§WW+;PW”%)n¢s=o (5.A2)

J

and the difference between (5.A1) and (5.A2) is

Tinds =0 (5.A3)

g7

J

where

a; + P,
fol

=T;U, - Uf™u™ — (5.A4)
which goes to zero outside the boundary layer, where the mean flow, U, approaches
the external flow, U™, and viscosity is insignificant.

We choose the bounding curve to consists of two straight lines of constant x,
which are perpendicular to the surface, and two curves of constant y, namely y = 0
(the surface itself) and y = oo (meaning outside the boundary layer). In the limit as
the two lines of constant x approach one another, the component of (5.A3) tangen-

tial to the surface can be shown to give

d [ 1
-—J nﬂw+—J To,dy — UV,
Ry

+_p (5.A5)
dx Jo Iy

y=0

where we have used the no-slip condition Ul,_o=0 and the definition
Uy = U™ ly=0> Of Uso(x). Integration of (5.138) across the layer, from y =0 to
y = oo, yields :

d o o]
Vyly:O = EJO dey (5.A6)
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which we use to replace V|, in (5.A5).
From (5.A4), we obtain

— ) — 1
Tex = (Uy + U™V, 402 +T — 5 T (5.A7)
and
_ . 1
Tey = UV, + U™V, + o, — 5 (5.A8)

where T' = (P — P")/p, as in the main text, and 7, is the viscous part of the stress
tensor. Equation (5.A5) with (5.A7) and (5.A8) is an exact expression of the bound-
ary-layer streamwise mean momentum balance. It can also be obtained from (5.136),
using the incompressibility conditions V.U = V. U™ = 0, expressed in terms of x
and y, multiplication by (R + y)/R, and integration with respect to y.

At leading order, one neglects the second term in (5.AS5), sets U™ = U, in
(5.A7), and drops the final three terms in that equation to obtain

x Jo dx

giving the Von Karman equation, (5.179), when the definitions, (5.176) and (5.177),
of §,, and §,, and the relationship (5.173) are used.

At the next order, the viscous stress contributions to the integrals in (5.AS),
arising from 7, and T, in (5.A7) and (5.A8), remain negligible, because the mean
viscous stresses are O(Re; ') smaller than the Reynolds stresses in the outer layer,
rising to the same order in the viscous sublayer, which is, however, very thin,
O(Re; ") smaller than the boundary layer as a whole. Thus, the importance of the
viscous stresses in (5.AS) is measured by Re;!, which is much smaller than the
correction terms considered here (in fact, exponentially smaller). We therefore
drop the viscous stresses in (5.A7) and (5.A8), so that (5.A5) can be rewritten,
using (5.A6)—(5.A8), as

ij vaxdy+d—[1°—°J Vdy +2 =0 (5.A9)
d 0 o )

%fﬁwdwd—gfif V.dy +%“=
o (U= 08V, 1 =)y = g [ (T, 4 UV,
0 0

(5.A10)

where the right-hand side provides a correction to the leading-order equation,
(5.A9).

The main contributions to the right-hand side of (5.A10) arise from the outer
layer and we approximate it using leading-order, outer-layer expressions. Thus, we
use (5.172) to express U, — Ug"”), and (5.153), without the viscous term, with
(5.155), to show that

% (F+Zg) :% v,  (5.A1D)

in the outer layer. Thus, from integration by parts,
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o, © g, 2, [
N\ gy — 9 2\ gy — 2V
| (r+@)dy = L Yo (r+d)dy =3 JO yV.dy (5.A12)
leading to
(v =) =iy = [ (203 5 vy
Jo 0 R

(5.A13)

The other term in (5.A10) is treated as follows: U, is replaced by U, and,
integrating by parts,

V.d =—J —2d =—J V.d 5.A14
Joyy oYy YTk, Y ( )
where we have employed (5.141). The quantity U;i””) is replaced by —y(dU,/dx), by
virtue of (5.149), and the integral of %z, evaluated using the leading-order outer-
layer equation (5.194):

g, dUy 8V, 9

S _y—dx W_g(Uwa) » (5.A15)

Thus, integrating by parts,

o (e omm, ,  d % dU, [* , 8V,
JO uxuydy——J y—ardy—d—x(UooJ nydy> dxj y ——dy

0 0 0 3y
d o0 dUy [*
== I A
I (Uoo JO nydy> +2 JO yVedy (5.Al6)
The result of the above approximations is

J [vay + U™V, + uxuy]dy 24 (Uoo J nydy> (5.A17)
0 dx 0
Combining (5.A10), (5.A13), and (5.A17), we obtain
EJO U, V.dy+ v Jo V.dy + i
d (= — @ U [* 2 d *
E{JO (uy —ux)dy+ (Q —T JO nydy —EE(UOO JO nydy

(5.A18)

which yields (5.188) when the definitions of 8,, and 8, are introduced, and (5.173),
(5.181) used. We note that (5.173), although approximate, still holds at the order to
which we are working.
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CHAPTER SIX

Spectral Analysis of Homogeneous Turbulence

In this chapter, we apply Fourier analysis to turbulence. The idea is to decompose the
turbulent fluctuations into sinusoidal components and study the distribution of tur-
bulent energy among the different wavelengths, representing different scales of tur-
bulence, and its evolution with time. As we shall see, if the turbulence is
homogeneous, this idea works out quite well and we obtain equations governing
the velocity spectra, which can be readily interpreted physically in terms of the
transfer of energy between different scales of turbulence and dissipation of turbulent
energy by viscosity. Of course, the equations obtained suffer from the usual closure
problem, owing to the nonlinear terms in the Navier-Stokes equation, but have the
advantage over the moment equations in physical space that the nonlocally deter-
mined pressure term can be easily expressed in terms of the velocities. Additional
closure assumptions are needed if one wants a closed set of spectral equations.
However, we do not want to introduce closure approximations here, preferring to
interpret the spectral equations in physical terms.

The simplest case, and the one considered here, is when there are no mean velocity
gradients, which means that the turbulence interacts only with itself, decaying as it
evolves in time due to the absence of a source of turbulent energy.

We refer the reader at the outset to the classic text by Batchelor (G 1953), which
perhaps contributed more than any other to the development of spectral analysis of
turbulence, even if it now appears a little dated. Monin and Yaglom (G 1975) also
contains a vast amount of valuable material on homogeneous turbulence, much of
which is directly relevant to this and the next chapter.

Fourier analysis is one of the most powerful mathematical methods and is used in
a wide variety of scientific problems. It allows the decomposition of general functions
into sinusoidal components, from which they may be reconstructed using the Fourier
inversion theorem. Thus, given a function, F(x), its Fourier transform is

E(k) = zl_nj

and the inversion theorem gives

(o o}

F(x)e ™ dx (6.1)

00

F(x) = j F(k)e**dk (6.2)

thereby expressing F(x) as a linear combiration of sinusoidal components, e’**, with

complex amplitudes, F(k). Fourier analysis is often employed to reduce linear differ-
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ential or integral equations to algebraic equations, a powerful technique that allows
the solution of many difficult and interesting scientific problems. However, its use in
the theory of turbulence, although in part also intended to turn differential operators
into algebraic factors, is more subtle because turbulent quantities are random func-
tions.

The reader who has studied the theory of signal processing with random noise will
already be acquainted with the basic ideas of Fourier analysis of random functions,
such as correlations, spectra, and their relationships (see, e.g., Bendat and Piersol
1971). In these applications, the signal is usually thought of as a function of time,
whereas here we are mainly concerned with the use of spatial Fourier transforms,
with time playing only a secondary role (correlations and spectra evolve with time).
However, the principles involved are the same.

One can decompose the velocity into mean and fluctuating parts as

U,' = Ut + Uu; (63)
and define the velocity correlation function by
Ri(x,x', t) = ui(x, tyu;(x’, t) 6.4)

In the case of homogeneous turbulence, that is, when the statistical properties of #;
remain the same under: an arbitrary constant displacement in space, R;; is solely a
function of r = x — x":

R;i(x — x’,t) = ui(x, Dui(x’, t) (6.5)

We assume that the velocity correlations tend to zero sufficiently rapidly as the
distance, |x — x|, between the points increases:

as 7 = |r| = oo. Decorrelation of the turbulent fluctuating velocities is a consequence
of their assumed asymptotic statistical independence, as discussed in Chapter 3. Such
asymptotic independence is also implicitly used for higher-order velocity moments
later in the development of spectral analysis and, for simplicity’s sake, is supposed
from the start. Notice that R is a two-point average: in fact, this chapter can be
thought of as implementing two-point analysis for homogeneous turbulence without

mean flow.
Let us define the spectral functions, ®;;, as the three-dimensional Fourier trans-
form of R;;:
1
®;(k, 1) = »—JR,-- r, e * dr 6.7
i(k, 1) 20 (1, 1) 6.7)

where the volume integral is over all r. The spectral matrix, ®;(k, t), depends on the
wavenumber vector, k, and on ¢ as the turbulence evolves with time. The inverse
transform is

Ry(r, 1) = J(D,-,-(k, t)e** >k , (6.8)

which is an integral over all three-dimensional wavenumber space. Setting r = 0 and
j=11n (6.8) gives
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%“iui = %Rii(o’ H= %J @k, )d’k (6.9)
showing that the turbulent kinetic energy can be expressed as an integral over k. The
function ®;(k,#)/2 can therefore be interpreted as the distribution of turbulent
energy over different wavenumbers. Notice that, here as elsewhere, an average
such as %z, in which we do not specify spatial positions implies the same position
for all quantities appearing inside the average (and it does not matter which position,
by homogeneity).
Some elementary properties of R;; and ®;; follow from their definitions. Thus,

Ry(x —x', t) = ui(x, thu(x', t) = u;(x", hu;(x, t) = Rj(x" — x, t) (6.10)
that is, R;i(r) = R;(—r). When this result is used in (6.7), we obtain

®;(k, t) = ®;(-k, t) (6.11)
while, since R(r) is real, the complex conjugate of (6.7) yields

ik, t) = Ok, 1) (6.12)
Combining (6.11) and (6.12) results in

@ik, ) = @;(k, ) ' (6.13)

which is the statement that ®; is a Hermitian matrix. It follows that each of the
diagonal terms of ®; is real and hence that ®;(k, ¢)/2 is real, as it should be for a
quantity we interpret as the distribution of energy with wavenumber. The real and
imaginary parts of ®; can be related to the even and odd parts of R;(r,t) with
respect to r, an exercise we leave for the reader (the even part is
(Rj(r, t) + R;j(—1,))/2, while the odd part is (Rj(r, t) — Ry(—r, 1))/2).

The magnitude of the wavenumber vector, k = |k|, has the dimensions of
(length)™ and so k™' is a length. One often interprets the length scale £ = O(k™")
as giving the spatial scale represented by wavenumber k. For instance, if L is an
integral scale of turbulence, wavenumbers of order L™ represent the large scales of
turbulence, which contain most of the turbulent kinetic energy. The spectral func-
tion, ®;;(k), which, as we noted above, describes the distribution of turbulent energy
among different wavenumbers, has its largest values for |k| = O(L™") and decays to
zero as |k| — oo. The dominant contributions to (6.9) arise from |k| = O(L™})
because ®,(k) drops off rapidly outside that range. Note that volume integrals,
such as (6.9), emphasize the higher wavenumbers more than is apparent by simply
considering the magnitude of the integrand. If k-space spherical polar coordinates,
k, 8, ¢, are used, the velume element is k* sin @ dkdfd¢, and the factor of k> shows
the increasing volume weighting with k. In the present case, ®;; decreases sufficiently
rapidly that the dominant contributions to (6.9) nonetheless come from k = O(L™).
This is not to say that wavenumbers larger than L™! have no importance: as we have
seen in Chapter 3, there are spatial scales extending from the largest, O(L), to the
smallest, O(n), where 7 is the Kolmogorov scale at which viscous dissipation is most
effective. The spectrum of turbulence has correspondingly significant contributions
at all wavenumbers between O(L™") and O(n™"), as illustrated in Figure 6.1. The
figure shows the spectrum E = 27k*®;; as a function of k, where the factor 27k?
represents the k> volumetric weighting discussed above. The log-log plot means that
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log E

log k&
k= 8

@h k=00

Figure 6.1. Sketch of the energy spectrum of turbulence in traditional
log-log format, which brings out power laws as straight lines. The
figure is drawn for a sufficiently high Reynolds number that there is a
k73 inertial range, a feature we will address later in this chapter and
in more detail in the next.

power laws, often found in
turbulent spectra, appear as
straight lines. Notice that the rela-
tionship, £ <> k™', between spatial
length scale and wavenumber is
reciprocal: small wavenumbers
correspond to large spatial scales
and vice versa.

Although the identification of
wavenumber k with spatial scales
of order k™! can be very useful in
qualitative interpretation of spec-
tral properties, both theoretically
and experimentally, it should not
be pushed too far. The relationship
¢ = O(k™") represents an order of
magnitude and one cannot, for

instance, meaningfully distinguish

between length scales &~' and,
say, 27/k {which is the wavelength of the Fourier component ¢*%). The Fourier
transform of some spatially localized function of spatial width O(¢) extends over
all k, even if its largest values occur at k = O(£™1). In the same way, turbulent spatial
scales of O(£) will mostly contribute to the spectrum for k of O(¢™"), but will have
effects at all k. In short, the correspondence ¢ < k™! is often used, but should be
treated as an order-of-magnitude, interpretative relationship.

In a similar vein, it should be borne in mind that spectra do not, in general,
contain full statistical information about turbulence. This is perhaps obvious, after
all second-order moments like R;; are usually insufficient to fully define a random
process such as #;(x, t). However, it is easy to forget this fact when faced with a
spectrum. It will be recalled from Chapter 2 that the full statistics of Gaussian
variables are determined by their mean (which is zero here) and second-order
moments, but the turbulent fluctuating velocities are not usually Gaussian, although
they can be approximately so.

In Chapter 3, we observed that turbulence contains a wide range of spatial scales.
The largest scales are of size O(L), where L is a correlation scale and is determined
by the physical processes that created the turbulence and does not depend on the
fluid viscosity. The dynamics of the large scales are essentially independent of visc-
osity at high Reynolds numbers. These large scales are intrinsically unstable and tend
to progressively give up their energy to smaller scales by a process which is inviscid
and depends on the nonlinear convective terms of the Navier-Stokes equation (see
Chapter 3 and Section 4.4). Eventually, as the spatial scale decreases, a point is
reached at which the increasing importance of viscosity stops the cascade of energy
to smaller scales. Viscous energy dissipation acts to destroy the kinetic energy that
the small structures inherited from their larger parents. This intervention of viscosity
takes place around the Kolmogorov scale, 5, which therefore gives the order of size
of the smallest scales of turbulence. Thus, we have spatial scales ranging all the way
from O(n) up to O(L). Since 7 decreases with the viscosity, the ratio, L/n, grows
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larger as viscosity decreases. The lack of importance of viscosity at the largest scales
is measured by the turbulent Reynolds number, #'L/v, which must be large for
neglect of viscosity at scales O(L) and hence for the cascade mechanism to operate
effectively. The larger the turbulent Reynolds number, the larger L/5 and the wider
the range of scales of turbulence.

This description can be given a more quantitative basis using spectral analysis, as
we shall see in this chapter. In particular, the turbulent energy spectrum gives the
distribution of energy among the different spatial scales. The spectrum extends from
k=0l up to k =0, going to zero rapidly above k£ = O(n") and also
below & = O(L ™). If the viscosity, or equivalently, the turbulent Reynolds number
is changed, the position of the viscous “cutoff” at k = O(n™") is altered to accom-
modate this. We shall obtain equations governing the temporal evolution of the
spectrum that contain terms corresponding to the energy transfer from large to
small scales (the cascade) and to viscous dissipation at the smallest scales
(k = O(n™")). This provides a quantitative underpinning for the Kolmogorov theory
of the small scales, described in the next chapter.

In addition to its magnitude, the wavenumber vector, k, has a direction and, in
general, the energy distribution ®;;(k, #)/2 depends on both. However, for isotropic
turbulence, that is, whose statistical properties have no preferred direction, we would
expect the energy distribution ®;;(k, #)/2 to be independent of the direction of k,
possessing spherical symmetry in k-space. In that case, it is conventional to define the
energy spectrum, E(k, t), via

E(k, t) = 27k ® ik, 1) (6.14)
so that, according to (6.9),

Yo = J Ek, )dk (6.15)

2 0

where we have integrated over the volume, 4wk>dk, between two infinitesimally
separated spheres, |k| = k£ and |k| = k + dk. Equation (6.15) shows that E(k,t)
represents the distribution of energy over k = |k|, with the k?* factor in (6.14) increas-
ing with k£ to account for the greater volume of k-space occupied by the larger
wavenumbers. Figure 6.1 illustrates a typical spectrum of isotropic turbulence.
Note the maximum at energy-containing scales, k = O(L™"), and the rapid falloff
above k = O(n™). The consequences of isotropy will be investigated in detail in
Section 6.4, but, until then, we develop the theory for the general anisotropic case.
In practice, turbulence is usually anisotropic, although it tends to be less so when one
considers the small scales, as we shall see in the next chapter.

In order to define the spectral function ®;(k), we have assumed homogeneity, an
ideal property that most turbulent flows do not possess: at least not the exact, three-
dimensional type of homogeneity assumed above (although grid-generated turbu-
lence is a good approximation to such homogeneity, many grid spacings downstream
of the grid). However, many turbulent flows have restricted or approximate homo-
geneity properties. For instance, statistically two-dimensional turbulent flow. is
homogeneous in the direction perpendicular to the planes of the flow (here, the
mean flow is two dimensional, but the turbulence in individual realizations is not,
of course). A boundary layer changes slowly in directions other than perpendicular
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to the wall and is thus approximately homogeneous in these directions, even though
it is grossly inhomogeneous in the wall-normal direction. Furthermore, as described
in the next chapter, it is found that turbulence is approximately homogeneous at
small scales for quite general flows at high Reynolds number. With homogeneity
only in certain directions, the correlation, R;(x, x', 1) = uix, tui(x’, t), is a function
of the components of the separation, r = x — x/, in the directions of homogeneity.
In the other directions, it is dependent on the corresponding components of both x
and x'. One can define spectral functions by Fourier transforming in the homoge-
neous directions alone, while leaving the spatial dependence on the inhomogeneous
coordinates in the spectral functions. Local spectra can also be usefully defined for
weakly homogeneous turbulence, that is, when its statistical properties vary over
many correlation lengths. The correlation functions, R;(x, x', t), are then regarded
as functions of separation, r =x — x’, and mean position, (x +x')/2. They are
Fourier transformed with respect to r, leading to spectral functions of k and posi-
tion. This definition of local spectral functions applies to general inhomogeneous
turbulence, but is really only useful when the inhomogeneity is weak, in which case
many of the results derived for homogeneous turbulence in this and later chapters
can be carried over, at least in an approximate sense. For simplicity’s sake, except
for a brief description of one-dimensional spectra in Section 6.5, we will only be
concerned with full homogeneity in all three dimensions. Of course, strict homo-
geneity in any direction implies that the flow is infinite in that direction and so full
three-dimensional homogeneity means no boundaries at all, as we assume in what
follows.

In analyses of the spectral properties of turbulence, one often finds that direct use
is made of the Fourier transforms of flow quantities, such as #;(x, ). Thus, we find
the transform pair

~ _ 1 ) —tk.x 43
wik, t) = —_(271)3 Ju,(x, e " d’x (6.16)
u(x,t) = Jﬁ,—(k, e Pk (6.17)

At first sight, it would appear to be more straightforward to derive the equations for
the spectra in this direct manner, rather than going via the correlation function.
There is, however, a technical difficulty in using (6.16), namely lack of convergence
of the integral! The random function u;(x, t) extends over all space and does not
decay to zero-as |x| — oo in the manner required for the existence of a classical
Fourier transform. The resolution of this difficulty is not entirely straightforward and
is complicated by the fact that #,(x, t) is a random function. As we shall see in the
next section, one can define a Fourier transform of #;(x, t) over a finite volume of
space and then consider what happens as that volume grows very large, thus
approaching the infinite case. The resulting transformed function is a random func-
tion of k (and t) with somewhat pathological properties. While it is often more direct
to use such an approach, the novice spectral analyst may find it easier to proceed via
the somewhat less direct, but more conventional route of setting up equations for the
correlation function and taking their transforms to obtain the spectral equations. For
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this reason, and because the correlation equations are of interest in themselves, we
will later rederive the spectral evolution equations using this approach.

Although homogeneity is necessary for developing the spectral theory, isotropy is
not, and we do not introduce the additional assumption of isotropic turbulence until
Section 6.4. Aside from increased generality, it seems to us to be easier to grasp this
way, because one does not need to come to grips with two essentially different sets of
difficulties at once. Thus, spectral theory is initially developed without confronting
the reader with the special properties of the various tensors when isotropy is
assumed. As in all developments of the subject, we assume the reader is reasonably
conversant with Cartesian tensors and subscript notation (see Jeffreys (1931)).

6.1 Direct Fourier Transforms

We want first to explain the way in which the spectrum arises using the direct Fourier
transform of u;(x, t). Since we cannot use (6.16) directly because the integral diverges
at infinity, an obvious remedy is to define a finite-range transform

# Mk, t) =

—ik.x 33
o va ui(x, e " d’x , (6.18)
where Vy is the cubic volume defined by —-X <x; <X, -X<x; <X,
—X < x3 < X, and 2X defines the sides of the cube. Equation (6.18) yields a com-
plex-valued, random function ﬁgx)(k, t), a finite-range transform of u;(x,t). The
complex conjugate of (6.18) with index j in place of i and integration variable x’
in place of x gives

* 1 /
~(X) ’ k.x' 33/
. (k1) :—J u(x', He™ ™ d’x (6.19)
7 (271,)3 Vy 7
whose product with (6.18) is averaged, yielding the spectral moment
el 1 ; /
#u = —ZJ J Ry(x —x', e ™ P dx (6.20)
2r)> Jvy Jvy

where we have used the definition, (6.5), of the correlation function, R;;, as a func-
tion of x — x’, owing to homogeneity.

We now want to consider what becomes of (6.20) as the cubic volume, Vy, goes
to infinity, that is, as X — co. The velocity autocorrelation, Rj;, is a function of
x — x' and, as always, we assume decorrelation as |x — x| — 00, that is, we suppose
that R;(x — x', t) goes to zero rapidly as the two points x and x" are separated. The
distance scale over which Ry(x —x',t) has significantly nonzero values is
|x —x'| = O(L), L being a correlation length. Let r = x — x’, the vector separation
of two points, replace x” as integration variable in (6.20) leading to

_— 1
QEX)I‘:{’(X) = —6J J R,‘"(l', t)e_'k'rd3rd3x (621)
2m)° Jvy v

where the cubic volume, V;?), depends on x and is defined by x; — X <7 <%y + X,
x—X <ry<x+X,x3— X <r; <x3+X. The cube, Vg), has side 2X and is
centered on r = x.
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The integral in (6.21) is only significantly different from zero when |r| = O(L) and
this region lies well inside Vg‘) provided that x is many correlation lengths from the
boundary of V. Thus, as X — oo, for most x in Vy, we can consider the integration
over r as extending to infinity. Using the definition, (6.7), of the spectral function &,
(6.21) then becomes

7(X) ~(X)”
u’'u: ~
R X%

J @ik, H)d’x (6.22)
Vx

where the approximation of the integral over r by ®;/(k, ¢) applies everywhere except
for x of the order of a correlation length from the boundary of V. Since ®;(k, t) is
independent of x, we have

S X\ 3
aMuaX)" ~ (—) D; (6.23)
b
As X — o0, the above approximation becomes better and better because the fraction

of the volume Vy within a correlation length of the boundary decreases. In other
words,

@yt = fim | (5) W0k 0 0| (624)

gives the spectral function as a limit of an average involving finite-range Fourier
transforms, rather than from its original definition as the Fourier transform of the
velocity correlation function. Note that, using (6.24), we have

T

ik, 1) = lim [ (§)3 7k, D™ (k, t)] (6.25)

confirming that ®;(k, #)/2 is real and positive, which is just as well for a quantity we
interpret as the distribution of turbulent energy with wavenumber. It also follows
from (6.24) that the matrix ®; is positive definite, which is a stronger result than
q),',' > O.

To interpret (6.24) and (6.25), let us imagine that we are given velocity measure-
ments of a homogeneous turbulent flow and want to calculate the spectral function
®,(k, ). One could always return to the definition (6.7) and first calculate the
velocity correlation, then take the Fourier transform, but suppose one wanted to
use equation (6.25). As we have seen, X must be chosen much larger than a correla-
tion length if we want to obtain an accurate answer. One can compute the finite-
range Fourier transform, (6.18), for any given realization, u;(x,?), to obtain
ﬂfx)(k, t), but the result will fluctuate randomly from one realization to another.
The mean value of the transform, ﬂfx)(k, 1), will be zero, of course, as follows by
taking the average of (6.18), but what of its fluctuations from one realization to
another? The squared amplitude of these fluctuations is measured by the variance,
which is given by equation (6.23) with i = (and, for once, no implied sum). The
amplitude of fluctuations of ﬂ(x)(k, t) from one realization to another thus increases
proportional to X*/2. Since ﬂfk)(k, t) has zero mean, this also gives its typical size in
any one realization. The scaled spectral product
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(%)3125")(1(, )i (k, 1) (6.26)
will also fluctuate from realization to rea-
lization with variance that does not
decrease as X — oo, but its mean value,
taken over many realizations, will provide
an estimate of ®;. The fact that the var-
iance of (6.26) does not decrease with
growing X means that the averaging
over realizations is essential: a single rea-
lization will give an inaccurate result for
the spectra which varies randomly from
realization to realization. k

Suppose that we plot the Scaled.SpeC- Figure 6.2. A single realization of the spectral produc
tral product, (6.26), whose average is @;;, (6.26) (solid line), in the construction of the spectral functio
as a function of k for a single realization. ¢, (dashed line) by averaging a large number of such real
To represent it as a graph we choose a  zations.
particular direction of k and imagine plot- )
ting (6.26) as a function of k = |k|. A sketch of a typical result is shown in Figure 6.2,
in which the dashed line gives the average value, ®;. There are rapid variations with
wavenumber, whose scale in k is O(X™!) and which get finer the larger the transform
volume is made. As X is increased, the function becomes more and more “furry” and
varies randomly from one realization to another. Clearly, the result does not con-
verge as the size of the volume increases unless averaging is performed. When aver-
aged over many realizations, however, the function leads to the smooth spectral
function ®; indicated by the dashed line in Figure 6.2. Those readers who have
seen a spectral analyzer construct a (usually temporal) spectrum by averaging in
real time will appreciate the elegance of this process.

The above description of a single realization as an increasingly furry function
when X — oo applies equally well to the transform, ﬂgx), itself. It has zero mean,
so there is no point in averaging it, and, as we have seen, its standard deviation
grows like X3/2. Clearly such a quantity is quite pathological and does not converge
in any classical sense as X — oo. Nonetheless, as we shall see, in many respects it can
be treated like a normal, infinite-range Fourier transform.

As mentioned earlier, a fundamental property of the Fourier transform is its
ability to convert differential to algebraic operators. Let F(x) be zero mean, with
homogeneous statistics, and decorrelation at large separations. Define

=X . 1 —k.x 13
F (k)_(zn)3 va F(x)e **d’x (6.27)

Using the divergence theorem, we can express the transform of dF/dx; as follows:

1 F 1 4
J O xgix = J {ikiFe_’k"‘—i-i(Fe"k"‘)}d3x
Vy x;

3| 5. N '
nr)y’ Jv, ox; (27m) (6.28)

= ik, FO k) + %J Fe~%x4s,
(2m) Sx
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where Sy is the boundary of the cubic volume, Vy. We have already seen that, as
X — 00, the random variable F*) has standard deviation O(X>/?) and is thus typi-
cally of O(X*?) itself. The standard deviation of the surface integral can be esti-
mated asymptotically using much the same method as we employed for ﬁfx), but this
time considering large squares of side 2X rather than cubes. The surface integral has
standard deviation O(X) and is typically small compared with the term in F® as
X — oo. If X is large enough, we can neglect the surface integral in (6.28), giving

HX

ok = ik, F® (6.29)

ax,-
which is the classical result for infinite-range Fourier transforms. Thus, the derivative
d/0x; becomes ik; under transformation.

Another useful property of Fourier transforms is that a product of functions
becomes a convolution over wavenumber under transformation. We want to show
that this also applies to the finite-range transforms. Let F(x) and G(x) be two func-
tions, and FX(k), G®(k) their finite-range transforms. By the Fourier inversion
theorem, we have

F(x) = JF"” K)e**d’k : (6.30)
for x inside Vyx and
0= JF(X)(k)e’k"‘d3k (6.31)

outside Vy. In (6.30) and (6.31), the integrals are taken over all k. The product of
(6.30), (6.31), with the corresponding results for G(x) can be shown to yield

FX)G(x) = J(F"O ® G<X>)e"‘-"d3k (6.32)
for x inside Vy and

0= J(F"O ® (;<X>)e"“~*d3k (6.33)
outside Vy. Here, the convolution, F¥) @ G®, of F*) and G™ is defined by

(P‘X) ® G(X))(k) - JF(X)(k’)G(X)(k — KK’ (6.34)

Equations (6.32) and (6.33) are simply the inverse Fourier transform of the equality
FGX = F¥ g GX (6.35)

that is, the finite-range transform of a product is the convolution of the finite-range
transforms. Thus, the convolution theorem carries over exactly to finite-range trans-
forms. Notice that in the convolution, (6.34), the arguments of F% and G sum to
k. This is one way of remembering the definition of convolution: it is the integral
over products whose arguments sum to k. '

There is a final, very important property of the transform of a homogeneous
random function which we want to derive. This arises when we consider quantities

such as #X(k, t)féx)‘(k', t), where k and k' may have different values. We have




6.1 DIRECT FOURIER TRANSFORMS 249

already treated the case k' = k, leading to (6.24), and much the same method can be
applied here. Taking the product of (6.18) and (6.19) with k replaced by k’ in (6.19),
leads to

#M(k, t)a@)'(k’,t):%J J Ri(r, 0)e ™ *e kKX Prgiy (6.36)
' @y Jvy vy

where we have switched from the integration variable x” to r = x — x/, as before.
Following the previous line of reasoning, we argue that we can extend the integration

over r to infinity provided that x is many correlation lengths from the boundary of
Vy. Using (6.7), this leads to

7Ok, i (K, 1) ~ @k, )Ex(k — k') (6.37)
where

sin(k; — k1) X sin(ky — k)X sin(k; — k3)X
(kg — k{)ky — ky)(k3 — k3)

Exk —k') = (6.38)
The detailed form of this function of k — k’ is not important. Its value at k = k' is
(X/m)*, which is its maximum and reproduces (6.23). The function becoimes increas-
ingly sharply peaked about k = k" as X — oo (the width of the peak is O(X ~1y) and
its maximum value increases while maintaining the constant integral (see Figure 6.3)

| ext@dq =1 (6.39)
It will be seen that Ex has all the properties of a Dirac function:

Ey(k — k') — 8k — k') (6.40)
as X — o¢. Finally, combining this with (6.37) gives the very important result

7Ok, i (K 1) = @k, sk — k') (6.41)

in the infinite X limit (see for instance,
Lighthill (1958), for a thorough discus-
sion of generalized functions, such as the Ex
Dirac function). Here we have replaced
®;(k', t) by ®;i(k, £) since the Dirac func-
tion is, in any case, effectively zero when
k' #k.

Another form of the fundamental o’
cross-spectral relationship (6.41) is often ox ™
used, which follows from (6.18) and the

fact that #; is real. The complex conjugate
of (6.18) yields \/ \/

7K, 1) = 7=k 1) (6.42)

k - k'

and so (6.41) can also be written as Figure 6.3. Illustration of the limiting process by which the
spectral correlations approach a Dirac function as X — oc.

uEX)(k, t);}(x)(k/, f) = cbii(k’ sk + k/) The height increases, while the width decreases with increas-
! ing X. This limiting process should be imagined as taking
(6.43) place in three dimensions.




250

SPECTRAL ANALYSIS OF HOMOGENEOUS TURBULENCE

in the infinite X limit. If desired, one may take the sum and difference of (6.41) and
(6.43). This allows the calculation of the spectral correlation of itf-x)(k, t) with both
the real and imaginary parts of ﬁ;x)(k', t) and hence the individual correlations of
any combination of their real and imaginary parts at two different values of wave-
number can be expressed. It is then apparent that, unless k = +k’, ﬁﬁx)(k, t) and
ﬁ;x)(k', t) are uncorrelated in the limit X — oo.

In summary, the finite, but large-range transforms of velocity, itf , are random,
furry functions of wavenumber k, of zero mean and having variance that increases in
proportion to 8X>, the volume of the transform region Vy. Qualitatively, the var-
iance can be thought of as increasing in this way because the amount of turbulent
energy in the transform volume increases proportional to the volume. The result is
that the transform, ﬁﬁx)(k, t), has values that, while fluctuating from realization to
realization, increase as the square root of the transform volume. Another way of
looking at this is that, when X — oo, the volume of integration in (6.18) can be split
into a large number of subcubes, each of which is itself large compared with the
correlation length of the flow, giving essentially independent’ contributions to
itfx)(k, t), which therefore consists of a sum of a large number of (almost) statistically
independent random variables. Keeping a fixed size of subcube, large compared with
the correlation scale, the number of terms in the sum is proportional to the transform
volume and thus we expect the variance of ﬁﬁx)(k, t) to increase in the manner found
above. This way of looking at the problem has the further advantage that it suggests
that ﬁﬁx)(k, t) should be asymptotically Gaussian, by the central limit theorem, a
suggestion that is confirmed by more careful analysis (see Lumley (1970), section
3.16). Notice, however, that this is for a single value of the wavevector and does not
imply that the random function itﬁx)(k, t) can be asymptotically taken to be jointly
Gaussian at multiple values of k. As we saw above, two values of wavenumber, k
and k', give transforms that become uncorrelated as the transform volume goes to
infinity unless k = £k’. However, decorrelation does #ot mean statistical indepen-
dence of different wavenumbers, as it would if ﬁﬁx)(k, t) really became a Gaussian
random process (i.e., with joint Gaussian statistics at multiple values of k). Indeed, as
we will see later, third-order spectral moments of the form i, (k, t)a(p, t)it,,(q. t),
which would be zero if #;(k, t) were a Gaussian process, play an important role in the
spectral dynamics and, like the second-order moments considered above, show Dirac
function behavior, this time when k + p + q = 0, that is, when the three wavevectors
form a closed triangle. Thus, there are triads of unequal wavenumbers with signifi-
cantly nonzero third-order moments, which means that, although ﬁﬁx)(k, t) is asymp-
totically Gaussian at a single wavenumber, it cannot be treated as a Gaussian
process. ’

Spectral correlation functions, such as itﬁx)(k., t)ii;x)(k,, t), are averages of pro-
ducts of transforms and are thus no longer random quantities. They are expressed
in terms of the cross-spectra, ®;, using (6.41) or (6.43). At large, but finite X,
equations (6.37) and (6.38) show that there are residual correlations over a small
wavenumber range of size O(X ™), which corresponds to the scale of “furriness” in
Figure 6.2. However, one or other of the two relations, (6.41) and (6.43), are all one
usually needs to recall from the above analysis.

X)

' As noted earlier, we assume asymptotic statistical independence at large separations.
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In practice, one takes the Fourier transform of, for instance, the Navier-Stokes
equation as if the infinite transform existed in the usual sense. In the process, deri-
vatives are replaced by factors of ik and products by convolutions. When one wants
to derive equations for the spectra, products of two transforms are introduced and
averaged to produce spectra using (6.41) or (6.43). We shall carry out this procedure
for the Navier-Stokes equations in the next section and, in the process, we will drop
the (X) in the notation for the transforms, so that the velocity transform is written
ik, 1): it is, of course, implied that what we really mean are finite, but large volume
transforms. The reader will, no doubt, find it easier not to worry overly about the
basis of the procedure, an attitude shared by many research workers in the field.

There is a school of thought that the direct use of transforms is merely an alter-
native method for obtaining results that are more surely derived using correlations in
physical space, followed by Fourier transformation. We believe this is too extreme:
the physical meaning is often clearer when expressed in terms of the direct trans-
forms of the fluctuations. Nonetheless, it is safer to rederive a result using correla-
tions in physical space to reassure oneself that no mathematical faux pas has been
committed in what is, after all, a quite difficult area of analysis involving random
functions and a variety of limiting processes.

6.2 Transformation of the Navier-Stokes Equations

We assume that there is no mean flow (U; = 0) and so the homogeneous turbulence

decays because there is dissipation but no energy input. As it does so, there is transfer

of energy to smaller scales via the cascade and viscous dissipation at the smallest

scales. Steady, homogeneous turbulence without a mean flow is impossible (see the

turbulent energy equation, (4.37); since there is no mean flow, the production term is

zero, so the turbulent kinetic energy decays under the effects of viscous dissipation).
The Navier—Stokes equations for an incompressible fluid can be written as

du; 9 1 8p Fu,

— () = —— — 6.44

o o, T T e T B, (6-44)
with the incompressibility condition

ou:

Fhi _ (6.45)

8x,~

As usual, one can derive an equation for the pressure by taking the divergence of
(6.44), using {6.45). Thus,

V2= —p &iaxl (s (6.46)
Taking the Fourier transform of (6.45) gives

kiit; = 0 (6.47)
showing that the velocity transform is perpendicular to the wavenumber, k. This is
the expression of incompressibility in spectral terms and would not apply if we were

studying a compressible flow. We do not consider compressible flows in this book,
but one of the novelties of spectral analysis applied to such flows is that #; has a
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radial component in k-space, in addition to the two components perpendicular to k
that are present for incompressible flows.

Since #;(k, t) is a function of k, one can think of it as a (complex) vector field in k-
space. The fact that #; is complex makes it harder to grasp, but it is not mathema-
tically dissimilar in nature to the physical flow field #,(x, t). Both the real and ima-
ginary parts of #; are perpendicular to the vector k, which, of course, changes
direction from one point in k-space to another. At any given point in k-space, the
real and imaginary parts of #; lie in the plane perpendicular to k (i.e., the tangent
plane to the sphere of radius |k|). As we shall see below, this condition of orthogon-
ality allows expression of the pressure in terms of velocity. This leads to the appear-
ance of an operator expressing projection onto the plane perpendicular to k in the
evolution equation of #;.

The Fourier transform of (6.44) can be expressed, using a convolution for the
nonlinear term, as

o . ik, - .

Ty + ikji; @ u; = - p — vk i, (6.48)
while, either from (6.46) or multiplication of (6.48) by k; and use of (6.47),

. kk, .

p=-p k—z’-u,- ® (6.49)

We may eliminate p from (6.48) using (6.49) to find

on, . Y - ~
a—tt = —lAilkmul & U, ~vk2u,- (650)
Nonlinear interactions  Viscous dissipation
where
bk,
Ay =81~ ~—é2 (6.51)

Equation (6.50) describes the time evolution of the transformed velocity field, #,, in
k-space. As indicated by the annotation, the first term in (6.50) represents nonlinear
interactions between different wavenumbers in k-space, while the second describes
viscous dissipation of the given wavenumber.

The quantity, Ay, can be thought of as a projection operator: projecting any given
vector onto the plane perpendicular to k. To see this, let a be any vector, then

k, k,

The second term gives the component of a in the direction of k, which, when sub-
tracted from a, leaves the projection perpendicular to k. The operator, A, removes
the radial component of a vector in k-space. The effect of this operator in (6.50) is to
make the right-hand side orthogonal to k. A ensures this for the first term, while the
second is orthogonal by virtue of (6.47). This means that, as #; evolves according to
(6.50), it continues to satisfy the incompressibility condition, (6.47).- This elegant
expression of incompressibility further results in an equation, (6.50), for #; alone: the
pressure has been eliminated. Recall that, in physical space, the pressure is nonlocally
related to the velocity field by the Green’s function solution of (6.46). This spatial

A,»,a, =a;—
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nonlocality is one of the difficulties associated with treatments of turbulence in
physical space, as we noted in Chapter 4, where two-point pressure-velocity correla-
tions cropped up in equations for the single-point moments. Spectral methods allow
us to deal with two-point averages in homogeneous turbulence and have no difficulty
with the pressure, but there is spectral nonlocality, arising from the convolution term
in (6.50).

In fact, all the difficulty of the problem is contained in the nonlinear interaction
term, which involves the convolution

) ® i, = ja,(k’, Dtk — kd’k’ (6.53)

This convolution is nonlocal and nonlinear. Any given wavenumber k has contribu-
tions from all other pairs of wavenumbers that sum to k. These are often referred to
as triad interactions because there are three wavenumbers, k, k', and k —k’,
involved. Such action of two wavenumbers on a third arises because the Navier—
Stokes equation exhibits guadratic nonlinearity.

Notice that, in deriving equation {6.50), we have made no use of the assumption
of statistical homogeneity, nor even that #; be the fluctuating part of a turbulent flow.
Equation (6.50) is simply the formal consequence of applying Fourier transformation
to the Navier-Stokes equations, (6.44) and (6.45), in an infinite flow domain. In fact,
equations very similar to (6.50) are often used to solve the Navier-Stokes equations
numerically (spectral methods). When this is done, one obviously needs to discretize
the wavenumber, and this is most naturally done by considering a spatially periodic
flow from the start. Thus, the actual flow one wants to treat, which is imagined to
occur inside some large rectangular box, is made to be periodic via infinitely many
repeated copies of the box. If the box is large enough, one expects that the flow will
take a long time to notice the fact that it has been constrained to be periodic.
Adopting spatial periodicity means that one can express the flow variables as
Fourier series, which are analogous to taking Fourier transforms in an infinite,
aperiodic flow. The wavenumbers occurring in the series are discrete, rather than
continuously variable, but the derivation of the analog of (6.50) is very similar to the
aperiodic case considered above. The main difference is that the convolution integral,
(6.53), is replaced by a discrete sum over wavenumbers. We will return to the
question of numerical simulation of turbulent flows in Chapter 8. As well as numer-
ical applications, such formulations are often used in analytical treatments of spec-
tral theory, since they provide another way of overcoming the problem of
nonconvergence of the infinite Fourier transforms.

To derive an evolution equation for the spectral tensor, ®;, we first rewrite (6.50)
with j in place of 7 and k' in place of k. Thus

-/

on:
% = —iA k(g ® fhy) — vk2i2] (6.54)

where the primes indicate quantities which are to be evaluated at k', rather than k.
From (6.50) and (6.54), we obtain ’
d

” (#;51)) = _i[A,-,k,,,(a, ® it,,)it] + Ak, (i ® a,,,)’a,] — vk + kg (6.55)
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and we want to take the average of this equation. There is no problem in evaluating
the average of the terms which are quadratic in #, using (6.43), but the convolution
terms are cubic, arising from the quadratic nonlinearity of the Navier-Stokes equa-
tion. They are not expressible in terms of the cross-spectra, ®;;, and the closure
problem rears its ugly head!

To determine the average of the cubic terms, we need to evaluate quantities such
as

ui(k, tyuy(p, H)n,(q, t) (6.56)

and this requires further analysis, similar to that used to derive (6.43). To this end, let
us introduce the third-order velocity moments

Xim(T T 1) = u;(x, uy(x — 1, i, (x — 17, 1) (6.57)

where homogeneity has been used to infer that x;,, is solely a function of the
separations, r and r’. The twofold Fourier transform of y;,, is denoted by

Xim(k, k', 1) = _(21 )6 J J Xim (€, T, 1)e 7T Py (6.58)
T .

and is a spectral function representing third-order moments involving three points in
space.

To calculate (6.56), we use (6.18) for each term in the product, replacing ¢ by /, k
by p and x by x’ for the second term and similarly for the third. The result is a
threefold volume integral over x, x’, and x”, whose average introduces the quantity
Xitm- When X is much larger than the correlation scale, L, and x is many correlation
lengths from the boundary of Vi, the integrals over x and x’ (or equivalently,
r=x—x"and r’ = x —x") can be extended to infinity, because x;,, decays rapidly

to zero as |r| = |x — x| or |[t’| = |x — x"| = oo. One finds

(K, ity(p, (. 1) = Xitm(—P. ~q, DEx(k +p + Q) (6.59)
where Ey is the function defined by (6.38) and approaches a Dirac function as
X — oo. Thus,

ik, D#(p, Dt (q, 1) = Xip(—P, =4, Dk + p +q) (6.60)

in the limit of infinite transform volume. Equation (6.60) is the equivalent of (6.43)
for the third-order spectral moment.

Recalling that our aim in deriving (6.60) was to calculate the average of the cubic
terms in (6.55), we write

u (i) ® ity,) = ja,»(k, ity (p, itk — p, )d’p = 8(k + k') j Xim(—p,p — k', )d’p
(6.61)

where we have used equation (6.60) to express the third-order spectral moment.
Since the right-hand side of (6.61) contains the factor §(k + k"), it is zero unless

k' = —k. Thus, one can replace X;,,(—p,p — k', %) by Xun(—p,p +k,?) and then
define the new spectral function
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Ounlk, 1) = [ G —p.p + k. 0P (6.62)
to rewrite (6.61) in the form

ilHt) ® thy) = Ok, )8k + k) (6.63)

We are now ready to derive the evolution equation for the spectral tensor, @, by
averaging (6.55). According to (6.43),

Wﬁj/ = &k, t)d(k + k") (6.64)

while the cubic terms are evaluated using (6.63) (and a similar equation obtained by
interchanging k and k'), resulting in

Ailkm(i:‘l ® um)ﬁj/ + A/’/lkr/n(ﬁl ® ﬁm)/ﬁi

/ / / (6.65)
=dk+k )[Ailkme)/lm(k 1)+ ARy Ok, t)}
which can be further simplified, since the Dirac function is zero unless k' = —k.
Thus, putting k" = —k in the terms other than the Dirac function
Aty ® 1, )i1] + DRy @ i) 1y
(6.66)

= 8k + k)k,, [ AiOjp(—k, 1) — AjOyp,(k, t)}

Using (6.64) and (6.66) in the average of (6.55), we find that all terms contain a
factor of 8(k +k'). This allows us to write k% + k"> = 2k? so that

8k + k/)[(% + kaz)q’i/(k, 1) = ikp [ 2gOip(k, 1) — AyOjp(—k, t)l] =0

(6.67)
The term in square brackets is a function of k only and so, integrating over any
region of k' including k' = —k, gives the final result
% = T; — 2vk*®, (6.68)
where
Tk, t) = ikm[A/‘IQ,‘]m(k, t) — AyOj(—k, t)] (6.69)

Equation (6.68) is Craya’s equation without mean flow. It is a key result of this
chapter and describes the temporal evolution of the spectral tensor, ®;(k, ). Notice
that it contains a relatively straightforward viscous dissipation term and a cubic
term, T;, which represents energy transfer between different wavenumbers and the
given wavenumber k (the triad interaction referred to earlier). If this transfer term
was absent, the solution of (6.68) would be of simple exponential form, e_z"klt, with
each wavenumber decaying independently of all others. This is indeed what happens
in the final stages of decay of turbulence in the absence of mean flow, once the
amplitude of the turbulent fluctuations has become sufficiently small that one can
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neglect the nonlinear (convective) terms in the Navier-Stokes equation {one can only
forget about the nonlinear terms in this manner if the turbulent Reynolds number,
Re; = u'L/v, is sufficiently small). However, the more interesting phase of turbulent
decay happens earlier, when the nonlinear terms lead to an energy cascade from large
to small spatial scales {or from small to large |k}, when expressed in spectral terms),
with viscous dissipation at the smallest (Kolmogorov) scale, 7.

Unless we are nearing the final phase of decay {when the magnitude of the turbu-
lent Reynolds number, Re;, has dropped to O(1) or less), there is a clear separation
between wavenumbers, k = O(L™"), which represent the large, energy-containing
turbulent scales, and dissipative wavenumbers, & = O(n™"). The cascade idea implies
that there should be energy transfer from small to large |k|, with viscous dissipation
mainly at large values, &£ = O(n™"). Thus, we would expect the nonlinear term, T; in
(6.68), which expresses spectral transfer by the cascade, to dominate over the dis-
sipative term at low wavenumbers. As Re; increases, the ratio, L/n, separating the
energy containing and dissipative scales grows larger. Provided that Re; is suffi-
ciently large, a range of intermediate wavenumbers, L™' « k « ', appears. This
is known as the inertial range and has characteristic asymptotic properties (asymp-
totic in the limit Re; — oo). In particular, based on the discussion of the
Kolmogorov theory in the next chapter, one expects universal statistical properties
there, for example, the well-known power-law spectrum E o k7’3, But here we are
getting ahead of ourselves.

The third-order spectral function, ®j,,(k, t), which is defined by (6.62), can be
reexpressed using the definition, (6.58), of %, as

Ok, 1) = —(Zzlt)3 “_(Zzlt)3 ijﬂm(r, t’, e dr e_ip'r’d3p}e_ik'r’d3r' (6.70)

and the contents of the curly brackets will be recognized as a Fourier transform,
followed by its inverse transform. Equation (6.70) can therefore be rewritten as

1 ro —ik.r’ j3 ./
®ilm(k’ t) = @J )(,-[m(r A t)e d r (671)
or, if we define the two-point, cubic moment
Qilm(r’ t) = Xilm(r’ r, t) = ui(x’ t)ulum(x - I, t) (672')
then
—ikr 53
Oupn(k, 1) = @jgi,m(r, He " dr (673)

shows that ©y,, is the Fourier transform of Q. It is, of course, a simplification to
have reexpressed the spectral transfer quantities, ©;,,,, in terms of two-point rather
than three-point statistics, but this does not remove the underlying closure problem.
Although calculations for homogeneous turbulence are definitely easier in spectral
space, no amount of transformation changes the fact that the equations for the
second-order moments (correlations or spectra) contain third-order moments, and
so on up the hierarchy of increasingly higher-order moment equations. This means
that closure schemes are needed in the end if definite calculations are to be carried
out based on the equations, such as (6.68), for the spectra.
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At this point, we should clearly define what is conventionally meant by the
expressions linear and nonlinear terms. As discussed in Chapter 4, linearity is defined
in terms of the equations governing the fluctuating velocities, e.g., (6.50), and refers
to the fluctuations, so that a term which is a product of a mean and a fluctuating
quantity would be called linear. Once equations for the correlations or spectra are
formulated, such linear terms lead to quantities which are quadratic in the fluctua-
tions, while the nonlinear (quadratic) terms in the original equations yield cubic
moments. One continues to refer to those terms that originated from linear terms
in the equations for the fluctuations as linear and the others as nonlinear. For
instance, the time-derivative and viscous terms in (6.68) are linear, whereas the
transfer term, T}, is nonlinear.

A variety of spectral closures have been proposed, ranging in sophistication from
simple neglect of the nonlinear terms to those, such as the cumbersomely named
EDQNM and others that explicitly allow for triad interactions. In the absence of
mean flow, linear theory (often called rapid-distortion theory, or RDT, when vis-
cosity is neglected as well as nonlinearity) predicts simple exponential decay of the
spectra due to viscosity. Linear theory is a rather crude approximation, since it does
not allow for the action of turbulence on itself, an effect that appears as nonlinear
interactions of wavenumber triads in the spectral theory of homogeneous turbulence,
as we saw above. However, once the theory is extended to include, e.g., mean-flow
gradients, an extension we do not attempt in this book, a surprising amount of
physics is captured, including the distorting effects on the turbulence of physical
mechanisms such as mean flow, stratification, and rotation.”

The other extreme of sophistication in spectral closure schemes is exemplified by
the EDQNM (Eddy-Damped Quasi-Normal Markovian) model, which is based on
heuristic assumptions leading to expressions for Tj; in terms of @, thus closing
equation (6.68). The details of nonlinear spectral closures lie beyond the scope of
this volume, but we give a brief overview here. In quasi-normal models such as
EDQNM, the next order of spectral evolution equations above (6.68) are used,
that is, evolution equations for the cubic moments (such as ®;,,) are formulated,
which introduces fourth-order spectral moments owing to the closure problem. The
method of closure involves supposing that these fourth-order moments are given in
terms of products of the second-order spectra ®;;, as if the velocity field had Gaussian
statistics {cf. (2.59)). This closure is known as the quasi-normal approximation and,
after some modifications, intended to make it more realistic, yields the EDQNM model.
The resulting expression for T;; in terms of ®;; consists of integrals over all wavenumber
triads involving the givenk, so (6.68) becomes a nonlinear integro-differential equation
that describes the time evolution of ®;. Thus, triadic interactions, represented by the
wavenumber integrals, appear explicitly in the model, hence the term triadic closure,
which is sometimes used to qualify EDQNM and other models of a similar degree
of sophistication. Like all closures, heuristic approximations are involved that

2 Turbulence in a rotating fluid can be considered as a special case of a mean flow which it is easier to
analyze using a rotating frame of reference, in which the mean flow disappears, but Coriolis terms arise,
as we saw in Section 4.5 (“Rotating Turbulence”). Physical mechanisms other than mean flow can be
introduced, such as density stratification in a gravitational field, which also modify the turbulence, but,
like mean velocity gradients, will not be considered in this book.
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are not derived from the equations of motion, but are instead introduced as additional
hypotheses about the statistics of turbulence that are supposed to be approximately
satisfied by real turbulent flows. Simpler closures than EDQNM have been proposed,
as have other triadic closures, for instance, the Direct Interaction Approximation (or
DIA) and its relatives. Each such closure leads to a heuristic expression for the nonlinear
spectral transfer and hence completes the spectral evolution equation. This equation
can then, in principle, be integrated forward in time, allowing quantitative prediction
of the spectral evolution of turbulence, according to the particular closure used.
However, we do not want to introduce closure approximations here, preferring to
develop the theory towards the applications, such as Kolmogorov’s theory of the
small scales, described in the next chapter.

Based on (6.72) and (6.73), we can derive some elementary properties of ©j,,.
Since, from (6.72),

Qitm = Qimi (6.74)
we have
Oim(k, £) = Ok, ) (6.75)

while, because Q;,, is real,

Ofm(k, ) = Oy(—k, 1) (6.76)
is the complex conjugate of (6.73). Using (6.76) it follows, from (6.69), that T;; has
the properties

Tk, t) = Tk, t) = Ty(—k, ) (6.77)

This is necessary, because ®; itself has these properties, which should be conserved
under time evolution by (6.68).

Some important constraints on the spectral functions ®,; and ©;,, are imposed by
the incompressibility condition, (6.47). Multiplying (6.64) by k; and integrating with

respect to k' over any region including k" = —k yields

kid; =0 (6.78)
Since &;; is Hermitian, we also have

O,k = (k;P;)* =0 (6.79)
Likewise, (6.63) implies that

k®, =0 (6.80)
which can be used, with (6.69) and the definition of the projection operator, A, to
find

k;T;=T,k; =0 (6.81)

Equation (6.81) shows that, if ®; satisfies the incompressibility constraints, (6.78)
and (6.79), at t = 0, it will continue to satisfy them at later times, given time evolu-
tion according to (6.68). .

So far, we have implicitly used a rectangular Cartesian coordinate system to define
the components of vectors and tensors and this is by far the best approach for
development of the general theory. However, it is often useful to adopt spherical
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polar coordinates k, 6, ¢ in k-space as shown in Figure 6.4. The axis of the spherical
polar system is arbitrary in the absence of an externally imposed preferred direction
(effects of mean shear, gravity, or rotation can select an unambiguous axis, but these
are not present here). As for an orthogonal curvilinear coordinate system in physical
space, one defines local unit vectors e, ey, €, aligned with the coordinate directions,
and which vary from point to point in k-space. Any vector ot tensor field in k-space
can then be expressed using its components with respect to these vectors. For
instance, k takes the form (&, 0,0). The incompressibility condition, (6.78), and
the Hermitian nature of ®; imply that is has components

0 0 0
q)ii = 0 cDgg cD9¢ (682)
0 @ @y

in the spherical polar system, where ®4 and ®,, are both real. There are thus four
independent real components of ®;;: ®g, Py, and the real and imaginary parts of
®,4. This use of polar coordinates in k-space to describe spectral quantities is often
known as the Craya-Herring representation. We will see later that the number of
independent components of ®; is further reduced if one assumes isotropy of the
turbulence. We shall nonetheless continue to use Cartesian components in what
follows.

From (6.68), we can obtain the evolution equation of the spectral energy density,
®;(k, 1)/2, as

da /1 1
& (E CD,',') = ETii —_ szq),',‘ (683)

of which the first term represents transfer
of energy from other wavenumbers by ky b
triadic interactions and the second gives
the viscous dissipation, which is impor-
tant at large k, comparable with 7. If
(6.83) is integrated over all k, and (6.9)
is used, one obtains the turbulent energy
equation for homogeneous turbulence o
without a mean flow discussed in
Chapter 4. It can be shown that the non-
linear transfer term integrates to zero:

€

S 4

JT,-,-d3k =0 : (6.84) p

indicating that it redistributes energy
among the wavenumbers, but does not
create or dissipate turbulent energy. This
leaves the viscous dissipation term, whose
integral over k is shown to be given by

ky

Figure 6.4. Spherical polar coordinates in k-space defining

; 3 ou; ou, the Craya-Herring components for spectral vectors and ten-
v J k°d,d’k = va—- Fy =€ (6.85)  sors. The axis of the polar system has been arbitrarily taken
Xj OX; to coincide with that for k;.
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in the appendix (equation (6.A22)). Thus, when integrated over all k, (6.83) becomes

%(% W) — (6.86)

which is, indeed, the turbulent energy equation (4.37), in the case where there are no
mean velocity gradients. Overall, the turbulence decays continuously due to dissipa-
tion, but there is energy redistribution between wavenumbers, represented by the
transfer term in (6.83). Note that (6.84) is necessary to recover (4.37).
In the special case of isotropic turbulence, if we multiply equation (6.83) by 47k?
and use the definition (6.14), we obtain Lin’s equation
E_ T akE (6.87)
8t S—~— N’
Transfer ~ Dissipation
where T(k, ) = 2k>T;(k, t) is a function of k = |k| alone, owing to isotropy. This
important equation describes the time evolution of the spectrum E(k, t). The first
term on the right represents spectral transfer of energy from all other wavenumbers
to the given wavenumber k, while the final term describes its viscous dissipation.
Figure 6.5 shows a sketch of the behavior of the two terms on the right-hand side of
(6.87). The nonlinear transfer term, Tj;, integrates to zero according to (6.84) and
therefore has both negative and positive regions in k-space, as consequently does
T(k,t) as a function of k. In fact, from (6.84) and its definition, T(k, t) has zero
integral from k = 0 to k = oo, representing transfer of energy among wavenumbers,
rather than production or dissipation. Within the range, k = O(L™!), of energy-
containing wavenumbers, energy is lost to higher wavenumbers (smaller scales) via
the cascade, and so T(k, #) is dominantly negative there. Nonetheless, as we will see
in the next chapter, near k = 0 there is a small subrange in which T(k, t) is slightly
positive, corresponding to transfer of energy from around the spectral peak toward
smaller wavenumbers, that is, scales larger than L. Since this subrange represents
only a minor part of the energy-containing range and the associated values of T(k, ¢)
are small, it is not visible in Figure 6.5. Over most of k = O(L™"), and in particular
near the spectral peak, T is negative, giving transfer of energy to larger k& by the
cascade (with a lesser amount going to the
small k& subrange). Energy supply from
the large to the small scales means that
T changes sign and becomes positive at
higher values of &, thereby offsetting vis-
—>  cous dissipation, which rises as the
Kolmogorov scale is approached. The dis-
sipation is always positive, but is rela-
tively unimportant for the energy-
containing scales, reflecting their essen-
tially inviscid nature. It increases gradu-
ally with k& and peaks in the dissipative
range, k = O(n™1). The net result is that
the energy spectrum, E(k, ), decays with
igure 6.5. Energy transfer and dissipation terms of (6.87) time (except in the small & subrange),
1 spectral space for isotropic turbulence. reflecting the absence of turbulence pro-
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duction to offset dissipation, there being no mean flow. We would expect the aniso-
tropic case to be qualitatively similar, although all terms of (6.83) are then functions
of the direction, as well as the magnitude of k. Anisotropy allows transfer of energy
between different directions, in addition to between different values of |k|. Without
mean flow, it is found that the transfer term tends to cause initially anisotropic
turbulence to approach isotropy.

6.3 Spectral Equations via Correlations in Physical Space

In the previous section, we took direct Fourier transforms of the Navier-Stokes
equations and obtained the spectral equations, (6.68), from those. As we noted
earlier, it is also possible to proceed via the evolution equations for the velocity
correlations in physical space and only afterwards take Fourier transforms to obtain
the spectral equations. This is what we shall do here. In the process we obtain the
equations governing the correlations in physical space, which are of some interest in
themselves.

In this section, we shall denote turbulent quantities evaluated at point x’ by a
prime, while unprimed quantities refer to point x. Thus, #%; is #;(x, ) and u is
u;(x', t). The Navier-Stokes equation, (6.44), can be written as

du, 0 18p Fu;

i ) = —— Ly 6.

ot T, i) = = Y (6.88)
at position x and

owm! 9 18 3 u!

ot + ax,, (o414m) p 3/ v ax;,, %, ( )

at position x'. Multiplying (6.88) by #/, (6.89) by u,, adding and averaging yields

a ! a ! a Tap!
7 i) + P (ump,u)) + ) (uiu/u,) =

T 5 5 o 5 o (6.90)
S JE / "u. — (uu! — (u.u’

o | ax; (puj) + dx] R 0X 1, 0 (a4)) + 0, 0%/, (o

where primed quantities have been taken inside unprimed derivatives, because they
do not depend on x, and vice versa.

We now use homogeneity and the definitions ((6.5) and (6.72)) of R;; and Qjj,
and introduce the pressure-velocity correlation

Oi(r, t) = ui(x, )p(x — 1, t) (6.91)

to obtain
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a I3 a I3 a I3
% (Rj(x —x', 1)) + o, (Qiim(x" —x, 1)) + . (Qimx —x", 1)) =

1] 9 , 9 )
- [B_x, (Mx" = x, 1)) +§/ (M(x —x', t))]
& , P ,
”Iiaxmaxm (Rj(x —x', 1)) + FrE (Ry(x — x/, t))} (6.92)

or, if we introduce r = x — x/,

R, 9

% e (Qjim(—1. 1) = Qipn(r, 1)) =
1{4 : R,

IR AR AP 9
P {37,‘ (I-[,( " )) or; (it ))} 2 0, 01y €29

which is the evolution equation for R(r, ¢). Note that it contains both the cubic
velocity correlations, Q, and the pressure-velocity correlations [1. The latter are
nonlocally determined from the velocity in physical space, which is its major dis-
advantage, compared with a spectral formulation.

From the incompressibility condition, {(6.45), at x and x’, we can derive

oR; oR; oIl
37’,‘ 37’, 37’,‘ ( )
while (6.46) gives
81, ¥Qy
1 _ um - 95
or,,, 01, P oror,, (6.93)

a Poisson equation that can be used to determine I1; nonlocally from Qj;,, via the
usual Green’s function solution. Equations (6.93)-(6.95) describe the correlations in
physical space.

We now take the Fourier transform of (6.93)—(6.95) with respect to r, that is, we
multiply by e %% /(27)® and integrate over all r. As usual, the derivatives with respect
to r become factors of ik, giving

% + tkon {Ojin(—k, 1) = Oy, D)} = —/i) [Tk, 1) — k;TTi(k, 1)} — 20k,
(6.96)
ki®; = Dyk; = kill; = 0 6.97)
and
fi =~ O (6.98)

. kz
The last of these equations determines [1; locally in spectral space and so, given the
definition (6.51), of the projector, A, we can easily express (6.96) as Craya’s equa-
tion, (6.68) with (6.69).

We have now rederived the evolution equation for the spectra by Fourier trans-
formation of the equations for the correlations in physical space. Although the direct
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transform method appears to involve somewhat more work, one can interpret equa-
tions, such as (6.50), in terms of triad interactions of Fourier components and (6.47)
in terms of orthogonality, whereas (6.93)—(6.95) are more opaque. Furthermore,
when one extends spectral analysis to problems involving, for instance, stratification
or rotation, there are waves present (internal waves in stratified fluids and inertial
waves with rotation). These waves are manifest in the linear operators that crop up
using direct transforms of the fluctuating turbulent quantities, and indeed waves are
often treated by such direct transform methods. The normal modes (e.g., plane-wave
solutions) obtained by such methods provide a rather convenient basis for expressing
the spectral equations, since the linear operators in the equations then take on rather
simple forms. It is harder to extract such wavelike physics using the correlation
approach. On the other hand, it can be argued that the correlation method is
more mathematically robust, for the reasons given in Section 6.1. Which is chosen
for a given problem is largely a matter of taste.

6.4 Consequences of Isotropy

In many works on turbulence, in the absence of a mean flow, homogeneous turbu-
lence is treated as isotropic from the beginning. While it is true that such turbulence
is observed to tend toward isotropy, because there is no preferred direction external
to the turbulence, initially ar’sotropic, homogeneous turbulence can nonetheless
exist. The conditions of homogeneity and isotropy are really independent and,
despite simplifying the results a little by reducing the number of independent com-
ponents of the various tensors, the introduction of isotropy at the same time as
spectral analysis confuses the issues and means that one has to cope with technical
difficulties at two levels at once. For this reason, and the fact that isotropic turbu-
lence is a further idealization that is rarely precisely achieved in practice, we have
chosen to postpone consideration of isotropy until now.

Suppose then that the turbulence is isotropic. This means that it has no preferred
direction, that is, its statistical properties are unchanged if we rotate the flow or
reflect the flow in any plane. The result, for one-point quadratic moments, is easily

seen to be that all off-diagonal terms of %z are zero, while the diagonal terms are all
equal to "2 = w;/3. We used these and other simplifications of form due to sym-
metries in Chapter 4. Similar simplifications occur for the correlations (i.e., two-
point quadratic moments) and spectra, but are not as obvious. We begin by con-
sidering the consequences for the spectral tensor, ®;(k, ). The vector wavenumber,
k, gives a preferred direction and we rotate axes so that k lies in the x;-direction.
Even for anisotropic turbulence, the incompressibility conditions, (6.78) and (6.79),
then imply that ®,; = ®;; = 0, which leaves the nonzero components ®,,, @33, P33,
and ¢32.

Symmetry under reflection in the plane x, = 0, say, results in ®,3 = ®3, = 0. To
see this, note that reflection of the flow field causes any given flow realization,
u;(x, t), to become

ul(xlv _x27x37t)
_MZ(xlv —X2, X3, t) (699)
u3(xlv —X3, X3, t)
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and so its Fourier transform, #,(k, t), becomes {(i2;, —it,, #13), since k is in the x;-direc-
tion. The fact that the flow is symmetric under reflection means that (i, i, #3)
and its reflection (i&#,, —i,, #3), are equally probable within the ensemble of realiza-
tions and therefore produce canceling contributions when the average in (6.23) is
taken for i =2,7=3 or i = 3,7 = 2. It follows that ®,; = &3, = 0. This leaves the
components ®,; and ®33, which must be equal by virtue of rotational symmetry.
Thus, the only nonzero components, ®,, and ®;3, are equal. They are also real and
positive, since ®;; is positive definite and Hermitian.
We can express the above results in the form

b, = A(&i, - %) (6.100)
which indeed has nonzero components ®,, = ®33 = A when the x;-axis is aligned
with k, but is also valid in any other rectangular Cartesian coordinates because both
the left- and right-hand sides are tensors. From (6.100), we deduce that
®;/2 = A(k, 1), which therefore gives the distribution of turbulent energy over k.
By isotropy, this distribution is independent of the direction of k and so Ak, ?)
depends on k& = |k| only. It is more conventional to use the quantity

E(k, t) = 4nk* Ak, 1) ' (6.101)

which is called the energy spectrum and, like A, is real and positive. The turbulent
energy is given by

% T = JA(k, Hdk = J E(k, H)dk (6.102)
0

where the volume integral has been performed using spherical elementary volumes,
4rk*dk. Equation (6.102) shows that E(k, t) gives the distribution of turbulent
energy over different values of k& = |k|, there being no directionality for isotropic
turbulence. The spectral tensor has the form

E(k,t kiR
®, = 4(ﬂk2) (3,~,~ 3 k_zz) (6.103)

according to (6.100) and (6.101). Figure 6.1 shows a typical spectrum of isotropic
turbulence, having its maximum at £ = O(L™") and extending up to k = O(m™.

We can determine the form of R,(r) by taking the inverse Fourier transform, (6.8),
of (6.103). To do this, we use the mathematical identity

JF(k)eik"d3k = 47”J kF(k) sin kr dk (6.104)

’ 0

where » = |r|. This identity is easily established using spherical polar coordinates for

k, with axis in the direction of r (k.r = krcos @, d°k = 27k? sin 6 d6 dk).
Employing (6.103) and (6.104) in (6.8), one finds

Ek, 1) ez, 8 [[ERD ae | _ rit;
W e'd k+ 8ri8ri J 47'[k4 &’k = B(r, t)3,, .C(r, t) r_z

Ri,-(r, t) = 31/J
(6.109)

where
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B(r,t):J E(k. 1) smkr+krcoskr—smkr dk (6.106)
0 kr k373
and
C(r,t):J E(k. 1) smkr+3 krcoskg;smkr dk (6.107)
0 kr k>r

Following Batchelor (G 1953), it is conventional to write R;; in terms of nondi-
mensional functions f(r, £) and g(r, t), rather than B and C, thus

R(r, 1) = u'® (g(r’ 08; + (f(r. 1) — g(r, 1)) %) (6.108)

where u'* = w#;/3 is the mean-squared turbulence velocity, which can be expressed
in terms of the spectrum E via (6.102) as

W2t = EJOO E(k, )dk (6.109)
3Jo

For isotropic turbulence, u' is the mean-squared value of the velocity component in

any direction, for instance, #3 = #2 = u3 = u'*. The quantity f is given by

o .

uf(r,t)=B — C=ZJ E(k, 1) Snkr = krcoskr (6.110)

o B33
while #?g = B is expressed by (6.106) or, equivalently, after some mathematical
manipulation,
1 9f

g(r,t)—f+zra—r (6.111)
which can also be derived more directly from (6.108) and the incompressibility
condition, (6.94), for R;.

Equation (6.108) takes a particularly simple form if one uses coordinates in which
one of the axes is parallel to the vector r = x —x'. In that case, the matrix R;; is
diagonal with components #'*f and u'*g parallel and perpendicular to r. The quan-
tities f and g can be interpreted as illustrated
in Figure 6.6. Denote the velocity compo-
nents along the line joining x’ with x by u,
and any one of the two components perpen-
dicular to that line by u,. The average of
the product of #, at x and u, at x’ nor-
malized by u'?, gives f, that is, uyu;
=f(r,tu'>* =B —C. Likewise, w,u,=
g(r,u’* = B. Thus, f describes the velocity
correlations parallel to the line joining x” and
x, while g corresponds to velocity correla-
tions normal to this line {(also called longitu-
dinal and transverse correlations).
Moreover, the transverse correlations can _, . '

. . . Figure 6.6. Velocity components parallel and normal
be determined from the longitudinal one the line joining two points, giving correlations in isot
using (6.111). pic turbulence.
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If we take the limit r - oo, we know
that R;; — 0, so that the large separation
limits  f(r,t),g(r,t) > 0 are apparent
from (6.108). The longitudinal and trans-
verse correlations go rapidly to zero as
the separation becomes large and the tur-
bulence decorrelates. As r — 0, (6.110)

&0 and (6.111) give f=g=1 using
(6.109). This also follows from the inter-
pretation of f and g as longitudinal and

fn

gure 6.7. Typica!l longitudinal and transverse velocity cor-
lations for isotropic turbulence.

_f transverse correlations, since the mean-
squared velocity component in any direc-
tion is #'?, that is, up =u} = u'?, when
the points x and x’ coalesce. Figure 6.7
shows a typical plot of the correlation
functions, / and g, as a function of r.

From (6.111) we can show that
J rg(r,t)dr =0 : (6.112)
0

using integration by parts. This result implies the g must have both negative and
positive values as a function of 7.
One can use f and g to define turbulent integral scales

L,= J:o f(r)dr (6.113)
L, = ro g(r)dr (6.114)
0

and from (6.111) one deduces that L, = L,/2 by integration by parts. These rela-
tions provide particular quantitative definitions of the integral scales, but it is prob-
ably better to consider L as an order of magnitude rather than a definite numerical
value, because that is the way it is usually employed. One can give numerous differ-
ent quantitative definitions of the integral scale, but it is difficult to choose between
them for this reason.

Equation (6.110) gives f in terms of E, but one can also go the other way around.
Taking the Fourier transform of (6.108) and applying (6.7) and the equivalent of
(6.104) for integrals over r, after some algebraic manipulations using (6.111), we
recover (6.103) with

12 roo

E(k, t) = %T—J f(r, )kr(sin kr — krcos kr)dr (6.115)
0

which expresses the energy spectrum in terms of the longitudinal correlations

function, f(r,t). One can also define another correlation function,

R(r,t) = R;/2 = u'*(f + 2g)/2, which includes both transverse and longitudinal cor-

relations with a “natural” weighting for isotropic turbulence (there are two trans-
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verse directions and one longitudinal direction for any given r). Using (6.106) with
u'?g = B, (6.110), (6.111), and (6.115), it can be shown that

E(k, 1) = %j R(r, t)krsin kr dr (6.116)
0
and
R(r, 1) = j Ek. 1) SR (6.117)
0 kf

One can continue to define different functions of # and k. The main point is that
isotropy reduces the number of independent real functions from four for the aniso-
tropic case to one, which might be E, R, f, or g. Whichever function is chosen, its
values depend on the specific turbulent flow considered, and all the others can be
calculated from this single one.

Recall that the Taylor microscales of turbulence are defined so that mean-squared
velocity gradients can be calculated by expressions of the form #'2/A%, where A is a
microscale. One can define a variety of such scales, but the most commonly used are
As and A,, which are directly related to the correlation functions, f or g. Let us define
As by the relationshs,» ’

du\>  2u”
— ) =— 6.118
(axl) l% ( )
and, similarly, A, via
du\>  2u”
— ) =— 6.119
(axz) )»é ( )

Since we are considering isotropic turbulence here, we could equally well take any
velocity components in (6.118), provided the derivative was taken in the same direc-
tion, that is, A is a longitudinal microscale. Likewise, A, could be defined using the
derivative of any of the velocity components with respect to a coordinate perpendi-
cular to that component: A, is a transverse microscale.

Taking the x, and x| derivatives of (6.5) with i =7 = 1 and setting x’ = x yields

2 2
(%) =9 R2“ (6.120)
axl 87‘1 =0
and so, from (6.108) and (6.118), we have
2
2
a—’z[ == (6.121)
or r=0 )\f
Thus the Taylor’s series of f for small 7 begins
7 .
[y =15+ (6.122)

;

and it can be likewise shown that
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g(r)=l—§+~~ (6.123)
g

while from (6.111), we deduce that these series are related, and hence that

3 =2g (6.124)
More, generally, one can write

du; ou; ¥R,

ke At B ’ 6.125

dx; dx,, aror,, o ( )
and, using (6.108), (6.122), (6.123), and (6.124), this leads to

314,' 314; 214,2 1

T T 88— (548 LSS )

3x[ 3xm A-é (81;81m 4(811 jm + O ;l)) (6 126)

for homogeneous, isotropic turbulence. The turbulent energy dissipation is given by
(6.82) which becomes & = 15vu'2/ké when we use (6.126). This, and a number of
other uscful results for mean-squared velocity gradients and dissipation are described
in the appendix. '

The point has been made a number of times that the velocity gradients, unlike the
turbulent velocities themselves, are dominated by the small scales. This is related to
the importance of the small scales in dissipation, because the dissipation is deter-
mined by the mean-squared velocity gradients. Moreover, since, as described in the
next chapter, the small scales tend to be approximately homogeneous and isotropic,
even if the large scales are not, the above results should have quite general approx-
imate validity.

The mean-squared turbulent velocity, %, is determined by an integral, (6.109),
over all the spectrum. The main contributions to this integral come from small
wavenumbers, k = O(L™"), representing the large scales of turbulence. On the
other hand, the mean-squared velocity gradients are dominated by the smallest scales
(large k = O(n™")). The microscales (6.118) and (6.119) are thus defined as a mix-
ture of quantities appropriate to the large and the smallest scales and are intermedi-
ate. For this reason, it is not clear what, if any, physical processes are associated with
the length scales X. The microscales are best thought of as convenient quantities for
estimating velocity gradients and dissipation rates. They are certainly not the smal-
lest scales in turbulence, which are O(n) in size.

The functions f(r) and g(r) reflect the existence of these smallest scales. The
Taylor’s series, (6.122) and (6.123), only apply when 7 is smaller than the
Kolmogorov scale, n, which itself is small compared with the integral scale, L,
when the turbulent Reynolds number, Re; = u'L/v, is large. Indeed, in the next
chapter, we shall see that n/L = O(Rez3/4) as Re; — oo.

For large Re;, one can distinguish three asymptotic ranges of r. When r = O(n),
corresponding to the smallest dissipative scales of turbulence, the plots of f(r) and
g(r), which have zero gradient at » = 0, turn downwards. Provided that the Reynolds
number is high enough, there is an inertial range of separations, n « r « L, for
which f(r) and g(r) are the sum of a constant and a term proportional to ¥*/>. If
this power law were continued all the way to » = 0, it would lead to infinite deri-



6.4 CONSEQUENCES OF ISOTROPY

vatives at = 0: in fact, one enters the dissipative range, and the first derivative is
zero at 7 = 0, while the second derivative is O(A™%) = O(Re; L. ™%) and large, but
finite. Nonzero viscosity makes Re; finite and is responsible for the existence of the
dissipative scale, » = O(rn), which shrinks in size relative to L as Re; increases.
Finally, when » = O(L), f(r) and g(r) make the transition from the #*/> form of the
inertial range (if an inertial range exists), via curves whose specific form depends on
the particular turbulent flow considered, to zero at » = o0.

These asymptotic ranges of r (asymptotic in the limit Re; — o00) are reflected in
the energy spectrum, E(k), with k related to r according to k = O(~!) (see Figure
6.1). In particular, if Re; is sufficiently large that an inertial range exists, its wave-
length equivalent lies in L™! « k « 17! and E(k) is proportional to k'3 there. This
form is known as the Kolmogorov spectrum. The relationship between %> for
correlations and k5’3 for spectra in the inertial range of scales is fairly subtle. We
shall return to this topic in the next chapter.

Let us now derive the isotropic form of the spectral evolution equation, (6.68). We
have seen that ®; is determined from E(k, t) by (6.103) and, if we substitute into
(6.68), we conclude that T;; must have the form

T(k,t) kik; ,
T;= T (51./. - k—z’) (6.127)
and that (6.87), that is, Lin’s equation
% =T - 2vk*E (6.128)

governs the evolution of E(k, £). As noted earlier, the transfer term, T, causes energy
to change hands across the spectrum, but does not create or destroy turbulent
energy. This fact is expressed by

J Tk, t)dk =0 (6.129)
0
which follows from (6.84) and
T
T, = s (6.130)

One can go further and consider the effects of isotropy on Q;;,., ®;,,,, and hence the
expression, (6.69), for T;;. This allows T to be written in terms of a single cubic
correlation function, as we shall see later. Figure 6.5 illustrates the transfer and
dissipation terms which are present on the right of (6.128). As discussed earlier,
the transfer term goes from negative values to positive values as k increases, expres-
sing transfer from large to small scales (with a small range of positive values near
k = 0 as well). The dissipation is always positive and peaks at k™! of the order of the
Kolmogorov scale. This is all a consequence of the cascade process, of which (6.128)
provides a quantitative expression.

We next consider the consequences of isotropy for the time evolution of -the
correlations, R;(r, ¢), which is governed by (6.92). The pressure-velocity correlation,
[(r, t), which appears in this equation, is zero for isotropic turbulence, as we now
show. A priori, isotropy implies no preferred direction, but two-point correlations,
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such as T1(r, t), introduce r, the displacement between the two points, as a preferred
direction. Clearly then the vector IT(r, #) must be in the direction of r, that is,

My, t) = T(r, £) ’7 (6.131)

According to (6.94), the divergence of I1,(r, t) is zero:

arl; 1 ars?
— r_O

. R (6.132)
so that
M(r,t) = —Q (6.133)

)
;
but this make IM(r, ¢) infinitely singular at r = 0 unless D = 0. We conclude that D =
0 and so I(r, #) = O for isotropic turbulence.

Next consider the cubic correlation function Qj,,(r, t), which is defined by equa-
tion (6.72):

Qitm(x, ) = (X, yupt,(x — 1, 1) , (6.134)

where u; and u,, are both evaluated at x — r. Rotate the coordinates axes so that r lies
in the x;-direction, that is, so that the two points involved in (6.134) are separated
only in the x-direction. By considering reflections in the planes x, = 0 and x; = 0,
one can show that the only components of Qj,, that are nonzero are Qq11, Q122,
Q133> Q212> O221- O313, and Q33 (see illustration in Figure 6.8). Furthermore, rota-
tional symmetry about the x;-axis and the relation Qy,, = Q;,u, which is evident
from (6.134), imply the equalities Q15 = Q133 and Q12 = Q21 = Q313 = Qa1
This leaves three independent components and the result can be written in the tensor
form

Qilm(n t) = A(T, t)rirlrm + B(T, t)(rlfsim + rm(sil) + C(T, t)rifslm (6135)

where A, B, and C should not be confused with the same symbols used earlier for

other functions of k and r. Of course, since (6.135) is an equality between tensors, it

holds in all coordinate systems, since it applies in the one we have used.
Incompressibility imposes further constraints. Writing (6.134) in the equivalent

form
o, X'E_ _____ X Qim(t, 1) = ux + 1, upm,,(x, t) (6.136)
- we have
d ilm aui
O, u————»—————‘——o %rl =§(x+r,t)u,um(x,t)=0
(6.137)

| l Applying this condition to (6.135) leads to
Q12 = Qo , -—— —= SA 2 3B _

* * SA+r—+22 =0 (6.138)

ar r or

Figure 6.8. Illustration of the nonzero components of
Quin(r, t) for isotropic turbulence. and
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2B+3C+raa—f:O (6.139)

Introducing K(r, ¢) via
u K =172 Qititit,y = Ar’ + 2B + C)r (6.140)

which is the quantity, Qq;1, in the special coordinate system with x;-axis parallel to
r, one can solve (6.138)—(6.140) for A, B, and C to obtain finally,

1 oK\ r;7r 1 /2K oK 1 r;
/3 i't"m i
LS Ll G +o(22 42 4y s)—-KZ
Qxlm [2 ( r ) 3 4( r 87‘)(”8”" Tm(S,[) 2 ’ Slm]

ar r
(6.141)

This equation gives the required cubic correlations in terms of a single function,
K(r, 1), which is the triple, longitudinal correlation function. We remark that a
similar result can derived in Fourier space, where it can be shown that ®,,, has
the form k,,A; — k;A;,, multiplying a function of k = |k|, which can be expressed
in terms of T(k, t) using (6.69) and (6.127).

Setting i = j in (6.93), we have

aR; FRi; 208 [, R\ -
M T (O (— —0. - #_ =27 b 1
5 "oy (Qum(—r ) = Qun(r. ) = 20 - 2m =25 ar(% ar) (6.142)

where we have used I1; = 0. From (6.141), we find
u’ 3(Krh

) - 1
Qunle ) =5 3 2= 7y (6.143)
so that
'3 K 4
Ot = Qe 1) = — - 280D (6.144)
r or
and hence, taking the divergence,
3 u 3 (1 aKrh
— (Qiim(—1, D) — Qi (, D)) = —— — | - —— 6.14
o Qi) = Qunle. ) =~ (r b (6.145)
Applying (6.145) and
" u/Z P 3
Ri=u"(f+28) =— - (r'f) (6.146)
re or
which follows from (6.108) and (6.111), to {6.142) leads to the equation
3| s08hH 18 ([ af 13 29
9 -2 - = A
Br{r o e r'{u”K+2vu o 0 (6.147)
whose first integral with respect to r is the Karman-Howarth equation
) 18 (4f 5 2 of
TR e r{u’K+2vu o (6.148)

This equation describes the evolution of f(r, £) with time and is the physical space
equivalent of the spectral evolution equation, (6.128). Just as the latter has the
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unknown spectral transfer term, T(k, t), as a consequence of the closure problem,
(6.148) contains the unknown cubic correlation function K(r, #), which sits alongside
f and g in the theory. The spectral transfer term can be related to K via

13 poo
T= k—“—J sinkr & (1 3(r41<)>dr (6.149)

T o Jg r Or\ror

whose derivation may be found in Batchelor (G 1953). This expression can be
rewritten using (6.143) and integration by parts to give

T= %J (sin kr — krcos kr)S(r, t)dr (6.150)
0
where
S(r, t) = % = u(X, D (X — T, 1) ’7'" (6.151)

is a weighted sum of longitudinal and transverse cubic velocity moments at two
points,

6.5 One-Dimensional Transforms, Time Spectra, and Some
Experimental Results

As we mentioned in the introduction, some flows possess homogeneity in only one or
two directions. For such flows, it is natural to define one- and two-dimensional
spectra. Furthermore, experimental measurements are often made along what
amounts to a line within the flow, and again it is appropriate to consider one-
dimensional spectra. Here, we give only a brief description.

Suppose homogeneity in the x;-direction so that the velocity correlation function
is of the form Rj(x; — x1,x2, %3, X3, X3, t) = ui(X, t)u,(x’, t). The one-dimensional
spectrum is defined by

(o o]
EE-,»”(kl, X, X3, 1) = ;—”J Rif(r1, %2, %3, %2, X3, He *dy, (6.152)
-0
in which it may be noted that the correlation is taken at two points having the same
values of x; and x3, but separated in x;. The superscript 1 in EEII !'indicates that the
x1-direction is used for transformation. More generally, one can define one-dimen-
sional spectra involving correlations at different values of x, and x3, but we will not
consider them here.
The inverse transform of (6.152) can be used to obtain Ry(x; — x1, x,, x3, x3,
x3,t) and if evaluated at x; = x; gives

T — J BNk, xy, %5, )k (6.153)

which becomes

1 ® 1
5 = J z}zf.}l(lel,xz, x3, tydk; (6.154)
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when we set { = j and sum. This shows that the distribution of turbulent energy over
the one-dimensional wavenumber, &k, is EE:](kl, X,%3,8)/2. One can easily show
that

Eky, xy, 25, 8) = EfN(—ky, x5, 23, 1) (6.155)
and
EW™(ky, x5, x5, ) = E k1, %2, %3, 1) (6.156)

where the star indicates complex conjugation, as usual. From (6.155), it follows that
EE‘;'u(kl’ X2,%3,8) = E.E‘}](_klv X2, %3, 1) (6.157)

s0 that the distribution of energy is equally in positive and negative wavenumbers (a
similar result holds for the three-dimensional spectral function ®,(k, ¢)). Thus, one
can also write

1 o0
3 = | NGk, x5, ity (6.158)
0

and hence restrict attention to positive kq, if required. It may be remarked that,
whereas the three-dimensional energy spectrum, E = 2rk*®;;, of isotropic turbu-
lence is zero at k = 0, one-dimensional spectra, such as El, are not usually zero
when k; = 0.

Integral scales and Taylor microscales can be defined using the one-dimensional
spectrum. For instance,

00 {1] _
L ZLJ‘ Ry1(r1, %2, x3, %2, x3, £)dry =7TM (6.159)
w2 Jo u?
1 1
and
1 1 8141 2 1 o0 2 1]
W:—_Z 8— :ZZJ klE“(kl,xz,x3,t)dk1 (6160)
Ay 2wy \ON ui Jo

where the second equality in (6.160) follows by differentiation of the expression for
u;(x, u,(x’, t) obtained from the inverse transform of (6.152).

Turbulence which is homogeneous in all three dimensions is also homogeneous in
any single direction, for instance x1, and one can obtain the one-dimensional spec-
trum from ®;(k, ¢) via

oo o0 .

Elk,, 1) = J J @k, ka, k3, )dk,dk; (6.161)

—00 —0Q

which does not depend on x; or x3 because the turbulence is now supposed homo-
geneous in those directions. Of course, one loses information in going from ®;; to EE;]
by integration. This is a reflection of the fact that the one-dimensional spectrum,
defined by (6.152), involves only points having the same values of x, or x3, whereas
®;; contains information about correlations between different x, and x3. Taking i = j
in (6.161) and dividing by two yields an expression for the one-dimensional distri-
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bution of turbulent energy as an integral over the three-dimensional energy distribu-
tion, with contributions from all values of k, and k;.

If one further assumes isotropy, ®;; has the form (6.103) so that the integral in
{6.161) can be reexpressed after a little mathematical manipulation as

1 [* E(k k2
ENlGe) = 5 L %(1 _k_;)dk (6.162)
and
1 (> E(k k3
etk =8 = [ E0 (14 ) 6163

while all off-diagonal components of EE;] are zero. From (6.162) and (6.163), one
can show that

d*EtY dE!Y
E(k) = k*» —1 — k=1 (6.164)
dk? 1= dky |, _,
and
(1]
2ED) — El &y dEq, (6.165)
dk,

Of course, for the isotropic turbulence considered here, the one-dimensional spectra
are independent of the choice of x;-direction. The reader should also note that a
different notation for the one-dimensional spectra is often used in the literature, in
which Ej(ky) = 2El}(k,) and E,(ky) = 2El)(k,), rather than EU}(k,) and EL)(k,),
represent the longitudinal and transverse one-dimensional spectra of isotropic tur-
bulence.

Apart from spatial spectra for homogeneous flows, steady flows allow the defini-
tion of spectra in time, often called frequency spectra. For this purpose, we consider
velocity correlations Rj(x,?—t') = u(x, t)u,(x,1’) at the same spatial point and
different times. The frequency spectral functions can then be obtained from

1 (™ .
Viw, x) = —J Rji(x, 1)e"dt (6.166)
21 )_o
where w is the frequency. Properties include
Vi, x) = Vi(—w, X) (6.167)
Vi(w, x) =>\If,-,-(w, X) (6.168)
and
1uu—1joo W (w, X)d 6.169)
211—2 - i\w, X)aw (

of which the latter indicates that the positive quantity ¥;;/2 gives the distribution
of turbulent energy over frequency. As for wavenumber, one can use Wj(w,X)
= W (~w, X) to restrict attention to w > 0. If desired, the one-point temporal corre-
lations can be recovered from W;; using the inverse transform of (6.166).
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The frequency spectra take their largest values for @ = O(T™"), where T is an
Eulerian correlation time scale, and the integral in (6.169) is dominated by such
frequencies. However, the frequency spectra have significant contributions up to
values of w corresponding to the smallest time scales, where viscosity is important.
They are related to the spatial spectra: small spatial structures (large wavenumbers)
contribute to the high-frequency parts of the time spectra because they are convected
past a fixed point in a short time, as discussed in Chapter 3. More generally, the
reader is encouraged to refer back to that chapter for detailed discussion of the
different time scales of turbulence, in particular the distinction between Eulerian
and intrinsic time scales, as well as their relationship with turbulent spatial structure.

Frequency spectra are rather convenient experimentally because they require only
measurements at a single sensor. Furthermore, many flows are steady, even if they
are not homogeneous, and there is thus a wider domain of applicability. However,
the theoretical foundations of homogeneous turbulence are much more extensive.
For flows that are both steady and, at least partially or approximately, homoge-
neous, one can define spectra in both wavenumber and frequency using velocity
correlations at different points and times. These provide the widest application of
spectral methods, but apply strictly to the smallest class of flows.

Experimentally, measurement of flow velocities at several points simultaneously is
far from easy. Single-point measurements are much easier, but one must make rather
restrictive assumptions about the flow to be able to use the temporal data from a
single sensor to obtain information about the spatial structure of turbulence.
Specifically, one can assume that the spatial structures one is interested in do not
change significantly during the time taken for their passage across the probe. Thus,
one supposes that the intrinsic time scale for turbulence dynamics is long compared
with this passage time (Eulerian time scale). If the mean flow, U,, is dominantly in the
x-direction, this assumption can be expressed by

Uu; :ui(xl —Et, xz,x3) (6170)

that is, that the velocity fluctuations are merely convected at constant speed U,. Such
special behavior of the turbulence is never exactly realized, of course, and this
approximation is called the Taylor hypothesis. One can imagine superimposing a
sufficiently large uniform velocity on a turbulent flow to produce a close approxima-
tion to (6.170). The Taylor hypothesis is approximately verified in many experiments
on parallel or nearly parallel flows.

Homogeneity in x; and steadiness become synonymous if (6.170) holds exactly,
and the two-point, two-time correlations take the form

ui(x1, x5, %3, Dui(x ], x3, X3, t') = Ry(oey — %1 — (¢ — Uy, %, x3) (6.171)

Favre and co-workers (see, e.g., Favre, Gaviglio, and Dumas (1957, 1958, 1962) and
also Hinze (G 1975) for discussion and further references) experimentally studied the
behavior of such space-time correlation functions in great detail, producing many
important and interesting results. Amongst these, they found that R, is relatively
slowly varying if x; — x{ — (t — t')U; is held constant. Thus, in practice, although
(6.171) is not exact, because real turbulence evolves as it is convected, it is approxi-
mately true in many flows.
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For steady flow in which the Taylor hypothesis is assumed to hold, (6.171) implies
a direct relationship between the velocity correlations at two points and a single time
(i.e., with t" =¢) and those at two times and a single point (i.e., x; = x;). More
precisely, the two-time correlations at delay =t — ¢’ coincide with the two-point
correlations at separation x; — x; = —U, 7, a relation which could be more accurate
than the more general (6.171). Using this relation in (6.152) and (6.166) yields

EE;](kl,xz,x3) = |U1|W(Urky, %3, x3) (6.172)

which connects the frequency and one-dimensional wavenumber spectra according to
the Taylor hypothesis. Equation (6.172) reflects the relationship, = U, k;, between
frequency and one-dimensional wavenumber for Fourier components convected at
speed U;. The spectrum at large w (or k) is determined by the correlations at small
t — t' (or x; — x1). Since Favre and coworkers found that the correspondence between
two-point and two-time correlations that leads to {6.172) gets better as the time delay/
spatial separation is reduced, one expects {6.172) to improve at high k4, i.e., for the
small scales.

A single sensor suffices to obtain W;{(w) experimentally and EE}] can then be
calculated using (6.172). If one further assumes isotropy, the three-dimensional
spectrum is given by (6.164), while (6.165) is one means which can be used to
check the degree of isotropy of the turbulence. Of course, it would be better to
obtain three-dimensional spatial spectra directly from Fourier transformation of
two-point correlations obtained by simultaneous measurements at pairs of points,
but this is harder and requires a larger amount of data. Most experimental results
have been obtained using the Taylor hypothesis.

Grid-generated turbulence is a good approximation to homogeneity 40 or 50
mesh spacings downstream of the grid and is accompanied by a very nearly uniform
mean flow Uj. This is a little surprising given the inhomogeneous nature of the grid,
but has been verified in a large number of experiments over the last fifty years,
involving many different grid geometries (single and double rows of round and
square bars, flat strips, differing mesh sizes and bar aspect ratios, etc.). The turbu-
lence is also approximately isotropic. Since there is little mean shear, turbulent
energy production is negligible and energy is simply transferred from large to
small scales, where it is dissipated. Owing to the decay of turbulence with down-
stream distance, the flow is obviously inhomogeneous over sufficiently large down-
stream distances, but this is of little signficance locally (i.e., within a correlation
length, representing the largest scales of the turbulence).

Grid flow is steady and to obtain something close to the decaying homogeneous
turbulence without mean flow that we considered earlier, one needs to consider a
frame of reference moving with the uniform mean flow U;. Thus, time in the theory
is related to downstream distance in the laboratory by ¢ = x; /U;. Measurements in
the laboratory have turbulence convected at speed U; past a stationary sensor and,
adopting the Taylor hypothesis, one can obtain the one-dimensional spectra from the
frequency spectra at a single sensor using (6.172). The resulting one-dimensional
spectra change with downstream distance of the sensor, which is equivalent to
temporal evolution in the theory.
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We do not want to go into details of the many experimental studies of grid-

generated turbulence. Townsend, Dryden, and others made significant early contri-
butions, while Hinze (G 1975) and Monin and Yaglom (G 1975) cite a considerable
number of experimental results on grid turbulence. The measurements by Comte-
Bellot and Corrsin (1966) are perhaps amongst the most complete, although the
Reynolds number is not as high as in, for instance, Kistler and Vrebalovich
(1966), who observed a clear inertial range. Comte-Bellot and Corrsin considered
a variety of grids in a wind tunnel of sufficient length that the turbulence had entered
its final stage of decay (Re; small) by the end of the measurement section. One is,
nonetheless, most interested in the regime where Re; is large, because this represents
active turbulence.
A basic measure of isotropy is provided by the mean-squared velocity fluctuations
u? in the streamwise direction and u3, 43 perpendicular to the mean flow. If no
special precautions are taken, one typically finds that #3 and 3 are very nearly
equal, but noticeably smaller than u%. Comte-Bellot and Corrsin (1966) introduced
a slight contraction into the wind tunnel upstream of the measurement section to
make all three components more nearly equal, which presumably leads to improved
isotropy.

Overall, it is found that the decay of grid turbulence is well described by power
laws such as

u'? o713 (6.173)

Lo %% (6.174)
and

A o 195 (6.175)

provided that Re; is large. The origin of x; used in ¢t = x;/U; is found to be
noticeably different from the grid location, presumably because of near-grid effects
before the turbulence has time to fully settle down to the power law behavior. It
should be remarked that, although power laws like (6.173), (6.174) are obtained for
all grid geometries, the exponents appear to vary significantly from grid to grid.
Furthermore, owing to the unknown origin, it is in fact quite difficult to determine
the precise values of the exponents in any particular experiment. That is, one may
obtain an acceptable data fit using a range of origins, each of which leads to some-
what different exponents, even in the case of a single experiment. Thus, there is no
really fundamental significance to the precise exponents given above, with the excep-
tion of (6.175), which is always found to hold. Note that the root-mean-squared
velocity fluctuations and correlation lengths, whose behavior is considered here, are
properties of the large scales of the turbulence. The decay of homogeneous, isotropic
turbulence, and its relationship with possible large-scale self-similarity of turbulence
at long times, will be discussed in the next chapter.
From (6.173) and (6.174) we deduce that

Rey oc 703 (6.176)
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indicating that the Reynolds number decreases as the turbulence decays. This is a
consequence of two conflicting effects: the integral scale increases, which tends to
make Re; = u'L/v grow, but the turbulent velocities fall faster, so Re; decreases
overall. If one constructs a Reynolds number, Re, = Au’/v, based on the Taylor
microscale

Re, oc t7 01 (6.177)

so that Re, also decreases, but rather more slowly. Typical laboratory values of Re;
are of order 100 (in the atmosphere, Re; can go as high as 2,000, leading to a rather
wide inertial range).

Equation (6.86) describes the decay of turbulent energy. The overall kinetic
energy, #i#;/2 =3u?/2, is dominated by the large scales of turbulence
(k = O(L™") in (6.15)); however, the right-hand side of (6.86) (viscous dissipation)
mainly arises from the smallest scales (¢ = O(n™') in (6.86)) when the Reynolds
number is large. The observations show that high-Reynolds-number turbulence
decays significantly over a time which scales on the quantity L/u’. This time is
characteristic of the evolution of large turbulence scales and increases with time,
leading to the algebraic decay, (6.173). The small-scale, viscous dissipation on the
right-hand side of (6.86) adjusts itself according to the supply of energy from the
large scales.

The distribution of energy among the different scales is represented by the spec-
trum, of which a log-log plot at sufficiently high Reynolds number indicates that
there is an inertial range, as sketched in Figure 6.1 (see, for instance, the measure-
ments of Kistler and Vrebalovich (1966)). Such experimental spectra are usually
obtained from measurements at a single sensor, employing the Taylor hypothesis
and assuming isotropy as described earlier in this section. We have already noted the
existence of the peak at k = O(L™!) and dissipative cutoff at k= O(n™'). The
straight line portion over the inertial range in Figure 6.1, which lies in
L™ « k « n7', has a slope of —5/3, representing the power law form

E(k) x k373 (6.178)

which is the Kolmogorov inertial-range spectrum and is also found in more general
flows than grid turbulence, as will be discussed in the next chapter. As time goes by,
the spectral peak moves to smaller k, since it is determined by k = O(L™') and L is
increasing, while the dissipative range, k = O(n™"), also moves towards smaller k.
The separation between the two, L/ = O(Rez/ *) according to Kolmogorov’s theory,
decreases with Re; until the inertial range disappears. Later, when Re; falls to O(1),
there is no longer a cascade nor a wide continuum of different scales, because
viscosity acts directly on the large scales and there is no separation of energy-contain-
ing and dissipative scales. Turbulence proper dies at this point, but apparently ran-
dom, decaying motions of the fluid continue. Finally, when Re; « 1, the
“turbulence” is essentially dead; it decays passively (each wavenumber indepen-
dently as ¢"*") under the action of viscosity.

The transfer term, T(k, t), in (6.128), has been determined by at least two different
methods. Both the left-hand side and dissipation terms can be calculated from mea-
surements and hence T obtained. Secondly, it is possible to measure S(r, t), given by
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{6.151), and hence calculate T(k, ) from (6.150). The results are as sketched in
Figure 6.5 and show transfer from large to small scales, confirming the cascade idea.

6.6 Conclusions

Although homogeneous turbulence is a rather idealized case, it allows us to define
spectra that quantify the energy contributions of different spatial scales, whose wide
continuum of sizes (between 1 and L) is one of the fundamental characteristics of
high-Reynolds-number turbulence. As we saw in Chapter 4, mean shear can lead to
production of turbulent energy, but if, as in this chapter, there is no mean velocity
gradient, turbulence decays under viscous dissipation at the smallest scales following
energy transfer from large ones via the cascade. This is borne out by the spectral
evolution equations developed in this chapter, which show nonlinear transfer of
energy from small to large wavenumbers with viscous dissipation at k = O(n~").
The spectral equations of homogeneous, isotropic turbulence without mean flow,
which have been developed in this chapter, are employed in the next chapter, which
includes the Kolmogorov theory of the small scales. Using spectral theory, we
develop the theory for the relatively simple case of homogeneous, isotropic turbu-
lence without mean flow, but, in studying such special flows, our main aim is to
elucidate general properties of turbulence that we hope and expect will allow us to
understand less idealized turbulent flows.

The nonlinear transfer terms in the spectral evolution equation are expressed in
terms of cubic moments, leading to a closure problem. The nonlinear transfer terms
can be thought of as representing the action of turbulence on itself, whereas the only
linear ones occurring in the absence of mean flow are due to viscosity. As noted
earlier, spectral analysis may be extended to allow for uniform mean velocity gra-
dients or stratification, together with other effects compatible with homogeneity of
the turbulence, but such extensions go beyond the scope of this book.

Finally, we should perhaps stress some limitations of spectral analysis even for
homogeneous flows. The spectrum is equivalent in information content to the cor-
relation function, since they form a Fourier transform pair. The correlation functions
are second-order velocity moments, but these hardly represent a full statistical pic-
ture of a turbulent flow. Small-scale intermittency, discussed in Chapter 7, is but one
feature that is not captured by the spectrum. It should not, therefore, be surprising
that alternative methods of analysis, such as fractals or probability distribution
functions, have been used in the study of turbulence. The fact that there are numer-
ous applications of spectral methods should not blind the reader to their limitations.

Appendix: Miscellaneous Expressions for the Mean
Dissipation in Homogeneous, Isotropic Turbulence

As a source of reference to the reader, this appendix gives some useful equivalent
expressions for the mean energy dissipation of homogeneous, isotropic turbulence.
Some of the results also apply without the assumption of isotropy, and we shall point
these out as we go.

The definition of 7 is

279



280 SPECTRAL ANALYSIS OF HOMOGENEOUS TURBULENCE

_ 1 314{ 3Mi 314,‘ 314,-
=— v+ =+ 6.A1
) U(E)xi + du; ) \ 0x; + ou; ( )
which is the basic expression for the turbulent energy dissipation per unit mass and

applies whether or not the turbulence is homogeneous and isotropic. For homoge-
neous turbulence:

£ = v, (6.A2)

15 (3u;\*
__ 15 (0w A
) ”(axz) (6.A3)
Z
g= 15\)(%) (6.A4)
Bxl
where x; and x, are arbitrary orthogonal Cartesian coordinates,
u/l
=150 (6.A5)
Ag
u/l
F=30v2s (6.A6)
A
where A, and A; are the Taylor microscales,
£ = 30v J k1EV (k) dk, (6.A7)
0
where k1 is the wavenumber in the x;-direction, and finally
z=2v J k*E(k)dk (6.A8)

0

where k is the total wavenumber.
Using @ = V x u expressed in terms of components and the identity

ou; o)\ [(du; Ou; ou; Ou;\ [ou; Ou; Ou; Ou;
— 4=+ - ([=Z-—)=-—L]) =4 6.A9
(E)x, + Bui) (E)x,- + ou; ox; Ou;)\ox; Ou, ox; ou; ( )

(6.A1) becomes

ou; Bui
£ = Voo — 7 A
£ = voo,m; + 2v3x,- o, (6.A10)
which gives (6.A2) when we use
314,- au, _ 32
dx; Ox;  Ox;0x;

% =0 (6.A11)

li
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of which the first equality holds because the flow is assumed incompressible and the
second follows from homogeneity. Isotropy is not needed for (6.A2). It also holds to
a good approximation without homogeneity in high-Reynolds-number turbulence,
away from viscous sublayers at boundaries, as discussed in Section 4.2 (see “The
Turbulent Energy Dissipation Rate”).

Equation (6.A3) can be derived using (6.126), rewritten as

314 314 8u1 2 1
ax,) 0% = 3 il + O 6.A12
8x1 8xm <8x2> ( ij%lm 4( il9jm + Oim ;l)) ( )

where the constant has been evaluated using i =j = 1, [ =m = 2. Thus,

dus  dwa\®  (uy  dws\E (s  dw\* 15 (ou\’
wien= (% - &;) " <-8x_3 8x1> " <8x1 —@> 2 <8x2> (6-AL)
via which, (6.A3) follows from (6.A2). Equation (6.A4) results from (6.A12) with
i=j=1I1=m=1 and (6.A3). Strictly speaking, (6.A3) and (6.A4) require homoge-
neity and isotropy. However, assuming that the finest scales of turbulence, which
dominate the dissipation, are approximately isotropic, they should hold approxi-
mately in general high-Reynolds-number turbulence, away from viscous layers.

Equations (6.A5) and (6.A6) are a consequence of the definitions of the Taylor
microscales:

1 1 (0u\*
S _ (™ 6.A14
A.% 214,2 <3x1> ( )
and
'2
1_1 (m (6.A15)
Aé 214,2 3x2

together with (6.A3) and (6.A4).
Equation (6.A7) results from (6.A6) and
1

3=7 J R1ENdk, (6.A16)
0

which follows from (6.160), (6.A14) and _u—% =u".
Finally, to prove (6.A8), we use (6.164) to show that

o0 o0 2 (1] [1]

J RE(k)dk = J K2 [k% d dfzﬂ b, ‘fill‘ildkl (6.A17)
1

0 0

from which integrations by parts yield
J k*E(k)dk = 15 J R EMdR, (6.A18)
0 0

which provides the link between (6.A7) and (6.A8).
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An alternative derivation of (6.A8) can be given, which has the advantage that it
provides a spectral expression for the dissipation which is valid in homogeneous
turbulence, even if it is not isotropic. Taking the second derivative of (6.8) and
evaluating the result at r = 0 gives

¥R,
37‘/2 37‘[

- Jkkk,qai,(k, Nk (6.A19)

r=0

The left-hand side of (6.A19) can also be expressed by taking derivatives of (6.5) and
setting X = x'. Thus,

PR, ou; ou;
1 _ i 9%
Brkar, - B Bxk Bx, (6A20)
Equating the right-hand sides of (6.A19) and (6.A20) gives
Bui 3147 _ 3
= Jkkk,qai,(k, d’k | (6.A21)

which is a useful general expression for the second-order moments of the velocity
derivatives which does not depend on isotropy. Setting i = j and £ =/ in (6.A21) and
employing the first equality of (4.42), we have

F=v J k> d,(k, H)d°k (6.A22)

which, using (6.14), reduces to (6.A8) in the isotropic case, but applies to homo-
geneous turbulence in general.
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CHAPTER SEVEN

Kolmogorov’'s and Other Theories Based on
Spectral Analysis

This chapter covers a variety of different subjects, of which the most important is the
Kolmogorov theory of inertial and dissipative range scales in its original
(Kolmogorov 1941a, b, c) version. The Kolmogorov theory is discussed in Section
7.3 and is one of the foundation stones of the theory of turbulence, leading to the
famous E oc k=3/3 inertial-range energy spectrum, which is now a benchmark for
measurements and theoretical models alike. However, the original theory is not
without its problems, as we will see in Section 7.5, where it is reformulated to
avoid Landau’s objection to the original version, and the possibility of intermittency
corrections is introduced. To illustrate intermittency effects, we use the 8-model here,
not because it gives a fully satisfactory account of intermittency, but because it is
relatively simple to describe, understand, and analyze.

Aside from the theory of the small scales (high wavenumbers), we also discuss
spectral behavior at small wavenumbers (in the course of Section 7.1), the final
phase of viscous decay (Section 7.2), in which the turbulent Reynolds number is
small, and the consequences of large-scale self-similarity for high-Reynolds-number
gridlike turbulence (Section 7.4). Throughout the chapter, the case of high-
Reynolds-number turbulence will form our main preoccupation, and we will sup-
pose developed turbulence, that is, that the cascade has been allowed the time to
reach equilibrium over the full range of scales from the large, energy-containing
scales, down to the small, dissipative ones. We further assume homogeneous, iso-
tropic turbulence without mean flow' in the analyses of this chapter, although
these assumptions are not really essential to all the conclusions reached, in parti-
cular Kolmogorov’s theory of the small scales is observed to be quite robust, as we
will discuss later.

7.1 Properties of the Energy Spectrum and Velocity
Correlations

We first want to recall some relevant results from the spectral analysis of homoge-
neous, isotropic turbulence, which were derived in the previous chapter. All second-

! As we saw in earlier chapters, homogeneity without mean flow implies decay of turbulent energy. It is
possible to make such a flow steady by introducing random, statistically homogeneous body forces,
whose spectrum is peaked at the energy-containing scales of the turbulence. However, we do not adopt
such an approach here.
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order velocity correlation functions at separation r = |r| can be determined from the
single one

R(r,t) = %u,—(x, Hu(x+r,t) (7.1)

thanks to isotropy. Furthermore, the energy spectrum, E(k, ), may be expressed in
terms of R(z, t) via (6.116) as

E(k,t) = % J R(r, t)kr sinkr dr (7.2)
0

while (6.117) gives the inverse relationship
R(r, 1) = J E(k, 1047 g1 (7.3)
0 kr

Equations (7.2) and (7.3) relate velocity correlations in physical space to the energy
spectrum in spectral space.
The total turbulent energy per unit mass is given by any one of the equivalent

expressions
3 2 1 —_— T
0

where the first equality follows from the definition, u'* = wm;/3, of u’, the second is
obtained from (7.1) with r = 0, and the third from (7.3) with? » = 0. The integral in
(7.4) shows that E(k, t) gives the contributions to the total energy of different wave-
numbers.

The mean viscous dissipation per unit mass is given by equation (6.A8) of the
appendix to Chapter 6 as

F= 2uj k2E(k, t)dk (7.5)
0

which, like the integral, (7.4), for the energy, expresses the distribution of dissipation
over wavenumber. The k> weighting tends to emphasize the high wavenumbers,
compared with the energy integral in (7.4). Bearing in mind the rough correspon-
dence, £ ~ k!, between length scales in physical space and wavenumbers in spectral
space, this is the spectral expression of the importance of the small scales for dis-
sipation. )

The velocity correlation function, R(r, £), has the value 3u'2/2 at r = 0, according
to (7.4), and tends to zero as r — oo, because the velocity field decorrelates with
increasing separation. Its behavior as a function of 7 is much as shown® in Figure 3.2.
As explained in that chapter, the behavior of R(r, t) at different separations reflects

N

Note that the function (sin kr)/(kr) is perfectly well behaved at kr = 0 if it is given its limiting value of 1
there.

Strictly speaking, that figure is for a longitudinal correlation function, whereas 2R = R;; = u'>(f + 2g)
contains both longitudinal and transverse velocity correlations. Furthermore, R(r, t) is usually slightly
negative above a certain value of 7.
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the corresponding length scales of turbulence, with the large scales of turbulence
represented by r = O(L). The correlation length, L, is defined via the decorrelation
of the velocity field. Thus, R(r, ) is only significantly nonzero for r < O(L) and
rapidly approaching zero for r > L. This means that integrals over r, such as
(7.2), are dominated by separations, r < O(L), at which R(r,?) = O®'?).
Separations much greater than L are of negligible importance in this context.
Small separations, r <« L, mirror the fine scales of turbulence, with the smallest
scales, r = O(n), dissipating turbulent energy, and intermediate sizes, n < r <« L,
providing the cascade. As discussed in Chapter 3, velocity correlations are related

to velocity differences. Thus, combining the central equality of (7.4) with (7.1), we
find

(Au,)’= lu(x+r,8) — u(x, t)|2 =4(R(0,t) — R(r, 1)) (7.6)

which defines Au,, a measure of typical velocity differences at separation r. In
particular, the manner in which R(r, t) approaches R(0, t) as r goes to zero deter-
mines typical velocity differences at small separations. From Chapter 3, we recall
that the velocity field is “furry’” when examined on scales 7 3> 7, corresponding to
velocity differences, Au,, that decrease more slowly than r. It is only when the
smallest scales, r = O(n), are reached that the velocity field finally appears as
smooth, and Au, o r for r <« n. It follows from (7.6) that R(0, t) — R(r, t) is propor-
tional to 7% at such very small 7, but decreases less rapidly for larger separations (see
Figure 3.2). As Re; increases, so does the ratio, L/#, of the largest to the smallest
scales of turbulence. If Re; is sufficiently large, a range of separations exists between
the dissipative scales, = O(7), and large scales, r = O(L), in which Au, o r'/? and
R(0, £) — R(r, t) o r*/3. This is known as the inertial range and represents intermedi-
ate turbulence scales. These three ranges of r show the characteristic asymptotic
structure of developed turbulence as Re; — oc.

Figure 7.1 shows a typical energy spectrum, having an inertial range of wavenum-
bers, as a log-log plot. The spectrum, E(k, f), has three different ranges of k corre-
sponding, via k = ", to those described
above for R(r, t). E(k, t) is zero at k = 0,
according to (7.2). It increases to a peak
in the range k=O(™!) and then
decreases, continuing to fall through the
inertial  range, which lies in
L' «k«n!, separating the large
scale and dissipative zones. The inertial |

log E ™~

'
!
|
|
t

range appears as a straight portion in Increasing Re;
the figure, representing the power law | /k ,\ \ \ \
“n l
E(k,t) = ak (7.7) |
1 1 log &
where the observed exponent is very k=O(L")

close to the value, # = 5/3, which is pre- Ficure 7. Skewches of dh L Lies of
. s igure /.1, etches Of the SpCCtrum at increasing values o
dicted by Kolmogorov's theory, as we the Reynolds number, showing the development of the iner-

will see later.llnertial—ranlge wavenum-  ia| range between the energy-containing and dissipative
bers satisfy L™ « k < n~ ", so that they  wavenumbers (log-log plots).
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separate the large scale and dissipative zones. For future use, we prefer to allow a
more general value, 1 <#n <2, in (7.7), but, for the time being, the reader may
assume # = 5/3 whenever # occurs in what follows. Finally, the spectrum falls
away from the power law of the inertial range, dropping off increasingly rapidly
at wavenumbers corresponding to the dissipative scales, k = O(n™"), and above.

Figure 7.1 shows sketched log-log plots of the spectrum for different values of the
Reynolds number. The inertial range, in which the power law, (7.7), holds, is not
apparent unless Rey is sufficiently large. As Re; increases, the ratio, L/n, of the
largest to the smallest scales grows. Since the spectral peak occurs at k = O(L™")
and the dissipative falloff takes place for k = O(n™"), the gap between them widens.
This creates increasing room between the two wavenumber ranges (i.e., in
L' « k < n'), which is progressively filled by the inertial range. The appearance
of the power law is gradual, and it is difficult to identify exactly when it comes into
existence, but it becomes more and more evident with increasing Re;. As a very
rough rule of thumb, Re; of order 1,000 or more gives a noticeable inertial range in
the spectrum,* which widens as Re;, increases further. The asymptotic structure in
the limit Re; — oo consists of an energy-containing wavenumber range, a dissipative
range, and the inertial range between the two. The reader who would like to think in
terms of matched asymptotic expansions could consider the inertial range as a zone
of overlap between two asymptotic regions, k = O(L™') and k = O(5™") in spectral
space, or ¥ = O(n) and r = O(L) in physical space.” The lack of an inertial range,
because Rey is not large enough, does not mean that there is no cascade. The
continuum of different scales, characteristic of turbulence in general, is still present,
maintained by essentially the same physical processes as at higher Reynolds num-
bers: there is just insufficient separation of large and small scales to allow the inter-
mediate asymptotic structure to become apparent.

Suppose that Re; is sufficiently large that a wide inertial range is present. The
integrals in (7.4) and (7.5} express the turbulent energy and dissipation rate in terms
of the energy spectrum. In (7.4), the energy is given as the integral of the spectrum,
which has a peak in the range k = O(L™"), and then decreases through the inertial
range, according to (7.7). The integral in (7.4) is dominated by contributions from
k = O(L™"), rather than the tail of the spectrum, because # > 1 makes the integral of
(7.7} convergent at k = oo {the existence of the dissipative range further reduces the
contribution from the far tail). Most of the turbulent energy thus comes from
k = O(L™"). This is the spectral expression of the physical space idea that the
large scales of turbulence contain most of the kinetic energy. However, when
E(k,t) is multiplied by k* to form the integrand of (7.5), the situation changes
radically: since # < 2, the integrand now increases through the inertial range until
the rapid dissipative scale dropoff in the spectrum is reached. Thus, the integral
giving the dissipation is dominated by wavenumbers in the dissipative range,
k= O(n™'), as we might expect, since these correspond to the smallest scales of
turbulence. As the inertial range widens with increasing Reynolds number, the

* However, precise meaning, other than as an order of magnitude, has not been attributed to L, nor
therefore to Re; . Here, one might take the longitudinal integral length, L,, defined by (6.112).

* We do not mean to suggest that a fully rigorous theory, matched expansions or otherwise, exists. This is
purely conceptual,
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turbulent energy and dissipation come mostly from the other two asymptotic
regions, k = O(L™') and k = O(y7"), respectively. The contributions of the inertial
range to either is small, and its role is neither to supply the energy, nor to dissipate it,
but simply to transfer energy to higher wavenumbers through the cascade.

The relationship between R(r, t) and E(k, #) can be investigated using (7.3). It is
convenient to introduce the final equality of (7.4} to obtain

sin kr

kr

which shows weighted contributions of the spectrum from all wavenumbers. The
spectral weighting is the term in brackets; it is a function of kr and is shown in Figure
7.2. For k « ! the weighting function is small, of the form (kr)*/6 as kr — 0,
which suppresses spectral contributions from wavenumbers smaller than O(~!). In
the opposite limit, £ >3 ™!, the weighting function is close to 1 and the decay of
E(k, t) with increasing £ makes the contribution from wavenumbers larger than
O(r™') small. Thus, the integral in (7.8) comes mostly from k& = O(*"!), which is
a mathematical expression of the correspondence, k & #!, between wavenumbers in
spectral space and separations in physical space. The behavior of R(0, t) — R(r, ),
and hence Au,, is determined by that of E(k, t) for k = O(™ ). )

With a wide enough inertial range, we can apply (7.7) in (7.8) for separations
corresponding to the inertial range wavenumbers. Thus,

R0, t) — R(r, t) = Jw E(k, t){ 1— ]dk (7.8)
0

sin kr

kr

RO,t)—R(r,t)=a Jw k‘"{ 1- ]dk (7.9)
0

which can be evaluated in terms of the gamma function (see, e.g., Abramowitz and
Stegun (1970), chapter 6, for a definition and properties of the gamma function,
I'(z)}, leading to
alQ—n)sininm - | _sinks
n(n—1) Tk
(7.10)

R(0,5)—R(r, t)=

showing the power-law behavior of
R(0, t) — R(r, t) at inertial range separa- / T\ =
tions. We see that the power law of the
inertial range spectrum implies that of
the correlation function and velocity dif-
ference. The converse is also true, that is,
given a power law, (7.10), for
R(0,t) — R(r, t), the spectrum, E(k,t),
is (7.7), a result which can be derived
from (7.2} and which we leave as an 0 kr

: 6
exercise for the reader.” Note that the Figure 7.2. The spectral weighting function, 1 — (sin kr)/(kr),
departures of the spectrum from the occurring in the calculation of the correlation function from

power-law form, (7.7), outside the iner- the spectrum, using (7.8).

¢ Hint: equation (7.2) should be integrated twice by parts, leading to an integral containing d*(rR)/dr*, so
that it converges when (7.10) is applied.
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tial range of wavenumbers have been ignored here. This means that (7.10) will not
hold at dissipative or energy-containing scales, that is, r = O(n) or r = O(L).

To bring this section to a close, we want to discuss the behavior of E(k, t) at very
small wavenumbers, k£ « L™!. We have already noted that the spectrum is zero at
k =0, from (7.2). When k « L™, kr is small over the range r = O(L), for which the
integrand of (7.2) is significantly nonzero. Thus, we expand sin kr as a power series
for small argument, leading to

E(k,t) = c;k* + c4k* + - - (7.11)
where
2%,
= —J r“R(r, t)dr (7.12)
T Jo
and
1=,
C4 = ——J r'R(r, t)dr (7.13)
377.' 0

The reason for bothering with the k* term in (7.11) is that one can show that ¢, = 0,
provided the velocity correlations tend to zero sufficiently rapidly as r — oco. The
argument runs as follows: we combine the expression, (6.103), for ®,; with (7.11) to

find

1 kik;

d),-/'(k, t) = 21.; [CZ <5,'/- — k—zl) + ¢y (kzﬁ,-,- - k,'k,') + - } (714)
as k — 0. If ¢, # 0, one obtains different limiting values for ®;(0, #) depending on
the direction from which k = 0 is approached in k-space. However, (6.7), evaluated
at k = 0, gives

1
®,(0,8) = Py J Ry(r, d’r (7.15)

unambiguously, provided that R;; — 0 as |r] — oo sufficiently rapidly that there are
no problems of convergence of the integral. In that case, we conclude that ¢, = 0 and
the expansion, (7.11), reads

Ek, )= csk* + -+ (7.16)

for k < L1

Doubts have been expressed (see, e.g., Saffman (1967)) about the convergence of
integrals such as (7.15) and it has been suggested that ¢, might be nonzero in some
flows, hence

Ek,t)=ck* + - (7.17)

at small k. It can then be shown that the components of the correlation tensor,
R;(r, 1), decay to zero like Ir| ™ at large |r], that is, rather slowly, leading to logarith-
mic divergence of (7.15). Furthermore, the expansion of E(k, t) about £ = 0 need not
continue in the power series form, (7.11), beyond the first term if (7.13) has problems



7.2 SPECTRAL DYNAMICS AND THE FINAL PHASE OF PASSIVE DECAY

of convergence. That is, the straightforward power series expansion of sin k7 used
above does not give higher terms correctly, and a more sophisticated analysis is
necessary if one wants to go beyond the k% term in (7.17). More generally, having
admitted the possibility of a discontinuity in the spectral tensor at k = 0, reflecting
comparatively slow decay of the velocity correlations with distance, there is no
obvious reason why E(k, t) should not behave differently from either k% or k* as
k — 0. For instance, E(k,t) ~ c,,k", where m need not be an integer, and which
includes both (7.16) and (7.17) as special cases, or even a low-wavenumber spectral
form that is not a power of k. Given such a spectrum, one may calculate the corre-
sponding correlations using (6.8) and (6.103). In summary, if the velocity correlations
approach zero sufficiently rapidly as [r| — oo, one has (7.16) as k — 0, whereas other
low-wavenumber spectral forms, in particular (7.17), are possible if the correlations
decay less rapidly. Grid turbulence, many grid spacings downstream of the grid,
which is the archetypal experimental approximation to the homogeneous turbulence
we consider here, is believed to have correlations that decay sufficiently rapidly that
m = 4, the case usually supposed in theoretical work.

7.2 Spectral Dynamics and the Final Phase of Passive Decay

The time evolution of the spectrum, E(k, t), is governed by Lin’s equation

oE

_— = —_ 2
o =T — 20kE (7.18)
where
2k [® .
T(k,t) = ?J S(r, t)(sin kr — kr cos kr)dr (7.19)
0

represents nonlinear transfer of energy from other wavenumbers, while the second
term on the right-hand side of (7.18) is the dissipation at wavenumber k. The
quantity, S(r, t), occurring in (7.19) is the cubic velocity correlation

S(r, t) = gu,-(x, Dui(x, thu(x +1,1) (7.20)

We note that, from (7.19), T = O(k*) as k — 0, provided that S(r, t) is sufficiently
rapidly decaying at large r, as is generally believed to be the case. The behavior of the
low-wavenumber part of the spectrum, following time evolution according to (7.18),
depends on how quickly the initial spectrum drops to zero as £ — 0 compared with
k*, representing the nonlinear transfer term (the viscous term is negligible at such low
wavenumbers). If the initial spectrum has the form (7.17) as k£ — 0, the spectrum
continues to have that form at later times, with the same value of ¢,, which is
therefore constant. In fact, a similar result holds for any spectrum of the form
E ~ c,,k™ as k — 0 with m < 4. On the other hand, although an initial spectrum
of the form (7.16) persists at later times, the coefficient, c4(¢), will generally evolve
with time.” Finally, initial spectra that go to zero faster than k* as k — 0 (e.g.,

7 1t should be remarked that such variation of ¢, with time is not in accord with a result of Loitsianskii
that the integral in (7.13) be constant. However, this result was subsequently shown to be erroneous by
Batchelor and Proudman (1956).
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E(k,0) o« k™ with m > 4} are overshadowed by nonlinear transfer as they evolve
according to (7.18) and at later times take on the low-wavenumber form (7.16) with
a time-varying c¢4. Thus, we see that the low-wavenumber form of the spectrum is
determined by the initial conditions. The evolution, or lack of it, of the low-wave-
number part of the spectrum due to the nonlinear spectral transfer term has implica-
tions for spectral evolution at large times, as we shall see in Section 7.4.

The overall decay of the turbulence is described by the turbulent energy equation

d %uiui =
dt

which follows from (4.37), without mean flow. Integrating (7.18) from £ =0 to
k = oo and using (7.4) and (7.5), we recover (7.21), provided that

(7.21)

ro T(k, t)dk = 0 (7.22)
[4]

which expresses the fact that nonlinear transfer of energy between different wave-
numbers does not change the overall energy, but rather, redistributes it differently.
As discussed in the previous chapter, the transfer is mainly from large to small scales,
that is, from small to high k, through the cascade process.

The existence of the nonlinear transfer term, T(k, t), in Lin’s equation results in a
closure problem. Without an additional closure hypothesis to determine the cubic
moments, (7.18} is not complete, and we cannot “solve” such an incomplete equa-
tion to obtain E(k, t). However, there is one limiting case, that of very weak, pas-
sively decaying turbulence, in which the nonlinear transfer term becomes negligible,
and we can solve (7.18).

Provided that Re; is sufficiently small, the nonlinear, convective term in the
Navier-Stokes equation is small compared with the viscous one, and T(k,?),
which is a reflection of that nonlinearity, is correspondingly small compared with
the dissipative term in (7.18). As the turbulent energy decays, according to (7.21), it
is found that Re; falls and eventually the turbulence enters the final phase of its
decay, in which Rey is sufficiently small and we can neglect nonlinear transfer.
Dropping the term T(k, ¢) in (7.18), its solution is

E(k, t) = E (k)e 2% (7.23)

Now, let us suppose that the behavior of E(k, ¢) as k — 0 is given by either (7.16) or
(7.17), so that

Eo (k) ~ c, k™" (7.24)

where m = 2 or m = 4. As t increases, the exponential factor in (7.23) suppresses the
higher wavenumbers more and more, leaving only small k, for which (7.24) holds, as
t — oo. Thus, in the limit, we have

E(k,t) ~ c, ke 2K (7.25)

which describes the final period of passive viscous decay.
From (7.3) and (7.25), one can calculate the correlation function in this final
phase. For m = 2, one obtains



7.3 KOLMOGOROV'S THEORY OF THE SMALL SCALES 291

. 1 NV o
(r,p) ~ §Cz (W) e (7.26)
while, with m = 4,
. 1 x \12 N g
(1)~ 354 (W) (3 _2¢ )e (7.27)
In both cases, the result is self-similar, with the usual similarity variable
£ = (S—V;W (7.28)

describing viscous diffusion. According to (7.26)—(7.28), the correlation length,
L « (v£)/2, while, using (7.4), the turbulent velocity is

2 1/2
u = (3 R(O, t)) o ¢4 (7.29)

It follows that Re; ot~ V/* decreases with time, so that the above formulation,
assuming small Re;, is self-consistent.

The above results describe the final phase in the decay of homogeneous, isotropic
turbulence without mean flow, and have been verified experimentally, using m = 4,
for grid turbulence at sufficiently large distances downstream of the grid that Re; has
become small. This agreement with the theory for # = 4 suggests that the spectrum
of grid turbulence is described by (7.16) at low wavenumbers. Although inhomoge-
neous turbulence does not allow the use of spectral theory, the basic idea of a final
phase of viscous decay in which linear theory applies no doubt carries over. In this
final phase, the turbulence is essentially dead, there is no cascade, and the effects of
viscosity dominate, owing to the small Reynolds number. The opposite limit,
Re; — oo, is more interesting and gives active turbulence with a cascade. In that
case, we cannot “solve” (7.18), because it is incomplete unless a closure hypothesis is
invoked. Nonetheless, one can extract useful information.

7.3 Kolmogorov’'s Theory of the Small Scales

We now tackle the subject of the behavior of the small scales, which constitutes the

most important topic of this chapter. The theory developed here is due to

Kolmogorov and is one of the key elements of the theory of turbulence.
Integrating (7.18) from k& = 0 up to some fixed value of k, we obtain

k : k
ij E(, H)dk = —R(k, 1) — 2vj kE(R 1)dk (7.30)
dt Jo 0
where
k 00
R(k, £) = —j T, Hdk = j T, dk’ (7.31)
0 k

We can interpret (7.30) as the statement that the energy in wavenumbers below k
changes due to two effects: transfer of energy to higher wavenumbers via a spectral
energy flux, R, and viscous dissipation at each individual wavenumber. Thus R(k, z)
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is interpreted as the flux of energy through wavenumber k. Likewise, integration
from fixed k& up to k = oo gives

d 00 , , o0 2 , ,
EL E(R, 0k = Nk, £) — ZvL R2ER Hdk (7.32)
which says that positive spectral flux increases the energy at higher wavenumbers,
offset by dissipation from each wavenumber.

At high Reynolds numbers, a cascade occurs and, given time, the spectrum is
thought to approach a statistical equilibrium in which the time evolution of all
wavenumbers takes place at a rate determined by the decay of the large scales. In
equilibrium, small scales are continuously being produced at the expense of the large
ones, and so on, through the cascade to smaller scales, until viscosity intervenes in
the dissipative range. The entire continuum of scales is controlled by the slowest step
in the cascade, namely the supply from the large, energy-containing scales. To quan-
tify such an equilibrium cascade, suppose that the Reynolds number is sufficiently
large that there is a wide inertial range, and that k is chosen so that most of the
energy comes from below k, while the bulk of the dissipation arises from wavenum-
bers above k. We then neglect the left-hand side of (7.32) and take the lower limit to
zero in the integral on the right-hand side. The result may be written as

R=% (7.33)

using (7.5). This equation is easily interpreted: since there is negligible dissipation in
the inertial range and the fraction of the total energy stored in such scales is small,
the energy flux given to the larger scales of the inertial range by progressive decay of
the large scales is rapidly transferred through the cascade, essentially unmodified, to
be dissipated at the smallest scales. The spectral energy flux is thus approximately the
same at all inertial-range wavenumbers and equal to the dissipation rate, as indicated
by (7.33). It is important that the inertial range be in developed equilibrium, other-
wise a significant fraction of the spectral flux coming from the large scales may go
into creating smaller scales, rather than contributing to the dissipation, that is, the
left-hand side of (7.32) need not be negligible, which is the case for developing
turbulence.

Kolmogorov proposed that the properties of turbulence in the developed inertial
range are only dependent on the spectral energy flux, which equals z, as we saw in
{(7.33). The idea behind this is that, as the cascade proceeds through successively
smaller scales, it “scrambles” information about the specific large-scale turbulent
flow, leaving only the spectral energy flux, equal to %, as a parameter. By dimensional
analysis, the only possible form for the inertial-range spectrum is then the famous
Kolmogorov power law

E(k,t) = Ce2Pk™5/3 (7.34)

where C is a purely numerical constant, universal in Kolmogorov’s theory. As
remarked earlier, the existence of a clear &~/ part of the spectrum requires rather
large values of Re; : the range of validity of (7.34) grows with increasing Re; , as the
available room for the inertial range, L™ « k « n7', gets larger. The inertial-range
power law, (7.34), has been verified experimentally many times (see Monin and
Yaglom (G 1975), section 23.4, for some results and discussion). Values of about
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C = 1.5 are obtained and, although there is some scatter in the observed values of C,
we will take C = 1.5 when a definite value of the Kolmogorov constant is required in
later work.

As we shall see in Section 7.5, there are reasons for doubting Kolmogorov’s
assumption that the inertial range is controlled solely by g, and hence universality
of C. Although C is found to have similar values in a wide variety of flows, including
inhomogeneous ones and ones with mean velocity gradients, it can vary somewhat
from place to place within a single inhomogeneous flow and between different flows,
even among the homogeneous flows without mean velocity considered here.
Furthermore, the reader may reasonably ask how one can explain the observed
k™33 spectral form if one does not suppose € as controlling parameter, since the
basis of the dimensional analysis has gone. This issue is addressed in Section 7.5
using a revised hypothesis of inertial-range self-similarity, which leads to the £—/°
spectrum without universality of C. However, historically the theory was developed
as described here, that is, assuming that the inertial range is controlled by £ and this
assumption serves well for most practical purposes. Indeed, the reason for alerting
the reader to the difficulty at this stage is so that it does not come as a surprise later.

Two further remarks concerning (7.34) should be made immediately. Firstly,
rather than the three-dimensional spectrum, E(k, ), it is usually the one-dimensional
spectrum, E[111](Ie1,t), that is measured from temporal data with the help of the
Taylor’s hypothesis, as explained in Chapter 6. Given (7.34), one can show that

Bk, ) = 2 Ca¥ 7.35)

using (6.162). Thus, the one-dimensional spectrum also obeys a —5/3 power law in
the inertial range. Secondly, from (7.34), one may evaluate the constant, 4, occurring
in (7.7), and hence determine the inertial range form of the correlation function using
(7.10). Thus, taking » = 5/3, we have

1
R, t)— R(r, t) = %FOQ) g23,2/3 (7.36)

which is the Kolmogorov inertial-range velocity correlation, from which one may
calculate Au,, using (7.6). The result, that velocity differences at separation r follow
a one-third power law, Au, o '/3, in the inertial range is an important consequence
of Kolmogorov’s theory.

Above the inertial range lie the dissipative wavenumbers, and since these come
about as a result of continuous transfer of energy from the larger, inertial-range
scales, it is reasonable to suppose that the dissipative scales too only depend on
the particular turbulent flow through . However, the fluid viscosity becomes impor-
tant now and gives a second dimensional parameter at dissipative range scales. From
the parameters, € and v, one can form a length scale

3\ 1/4
v
n= (;) (7.37)

giving a quantitative definition of the Kolmogorov scale, which determines the size of
the smallest, dissipative scales of turbulence. It adjusts itself to the energy flux com-
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ing from the large scales and the viscosity of the fluid to make the mean dissipation
rate, (4.27), equal to the mean energy flux. The Kolmogorov scale becomes smaller if
the viscosity is decreased or the energy flux, equal to g, is raised, thus increasing the
velocity gradients at the smallest scales in accord with (4.27). Again, by dimensional
analysis, one finds

E(k, t) = eV** E(kn) (7.38)

as the dissipative range spectrum, where F is a universal function, that is, the same in
any flow, according to the theory. Given the doubts noted above concerning
Kolmogorov’s assumption that small-scale statistical properties are controlled by
alone, universality of F(x) is questionable, like that of C, an issue that will be dis-
cussed in Section 7.5. However, for the moment we will assume universality of F(x)
and investigate the consequences.

As kn — 0, we reenter the inertial range, and, to match with (7.34), we must have

F(x) ~ Cxk 73 (7.39)

in the limit of small « = kn. In consequence, (7.38) includes the inertial-range power
law, (7.35), as a limiting case. At the other extreme, x — 00, F(x) drops off rapidly to
zero. The dissipation can be determined using (7.38) in (7.5). Thus, one can show
that the function F(k) must satisfy

J k“F(x)dx = = (7.40)
0 2
Naturally, (7.38) would only be expected to hold for sufficiently large Re; in the
wavenumber range k > L~!. There is, however, evidence that (7.38), which allows
for dissipation, may even apply at values of Re; that are too low for an inertial range
to be apparent, but large enough that there is still significant asymptotic separation
between n and L (see Figure 7.3). This is reasonable, since the cascade is still present
at such values of Re; , and both F and Z are essentially dissipative range quantities. In
any case, if there is an inertial range, (7.38) also describes the k73 spectrum there.

The prediction of a universal spectral form, (7.38), has been compared favorably
with experimental data and some results for one-dimensional spectra (which, by
(6.162) and (7.38), have universal expressions like (7.38) in which the function of
k = kn differs from that for the three-dimensional spectrum) are shown in Figure 7.3.
Notice that the spectrum in Figure 7.3 begins to fall away from the k /> power law
at about kn = 0.1 and by kn = 1 has dropped off very significantly (by a factor of
about 500). The rapid decay at large values of k7 is a reflection of smoothness, rather
than “furriness,” of realizations of the velocity field at spatial separations small
compared with n7!. The fact that viscous dissipation has a noticeable effect at
wavenumbers lower than 77! indicates that viscosity modifies the behavior of scales
in physical space that are somewhat larger than 5. The reader should therefore bear
in mind that viscous effects can be important at smallish values of «, corresponding
to dissipative scales that are somewhat larger than, though proportional to 7.

An approximate expression:

F(x) = Cc 3 exp [ - % 3 } (7.41)
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Figure 7.3. Measured one-dimensional spectra in different flows, scaled in Kolmogorov fashion, and
plotted in log-log form (the quantity E; = ZE[lll] is a longitudinal spectrum). The labeling “Sea” is for a
tidal current, while all others are for grid turbulence (M is the mesh spacing, x the distance downstream of
the grid). The Reynolds number varies between different flows, hence the location of the spectral peak
changes when expressed in terms of k7. Inertial ranges are only visible at the higher Reynolds numbers.
(Gibson and Schwarz (1963), including results of Stewart and Townsend (1951), Grant, Stewart, and
Moilliet (1962).)

which is due to Pao (who derived it using a closure hypothesis) fits experimental data
reasonably well, has the correct ¥ — 0 behavior, (7.39), to match the inertial range,
and satisfies (7.40). This data fit can be useful when performing calculations invol-
ving dissipative range wavenumbers.

One may use {7.38) in (7.8) to determine the correlation function at dissipative
and inertial range separations. Thus,

0 sin Kz :
RO,8) — R(r,t) =2 | Fuof1 - —1}dic (7.42)
0 r
o
n
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provides the correlation function for r « L, and hence the velocity difference, as a
function of r/n. Needless to say, this result matches with (7.36) in the limit of large
r/n.

From the parameters, € and v, which are supposed to determine the behavior in
the dissipative range, one can construct Kolmogorov time and velocity scales

1/2
6= (5) (7.43)
and
u, = (vE)l/4 (7.44)

whose product is the Kolmogorov spatial scale. These scales must be interpreted with
care. In fact, ¢, and u, give scalings for the evolution time and velocity differences in
the dissipative range. As explained in Chapter 3, temporal measurements at a fixed
point in space do not generally yield evolution times, but rather reflect the spatial
structure as it is convected past the measurement probe. In the absence of mean flow,
as here, the velocity of convection of the small scales is dominated by the large ones,
and is typically of O(u"). The spatial size n therefore leads to the shortest Eulerian
time scale, O(n/u"), which is considerably shorter (by a factor of O(Rezl/ *)) than the
lifetime, O(2,), of the smallest eddies. The Reynolds number based on the velocity
difference scale, u,, and length scale, n, is 1, which is another way of saying that
viscosity becomes important at such length scales.

If one imagines following a given infinitesimal particle of fluid in its motion, the
time taken for changes in the dissipative scales is their evolution time, #,. In its
strongest form, Kolmogorov’s theory then implies that all statistical properties of
the small-scale velocity differences in the neighborhood of the particle are approxi-
mately universal, that is, independent of the particular flow considered, provided
that one scales velocity differences, distances, and times using #«,, 1, and ¢, respec-
tively. Such universality of the small scales presumes, of course, that Re; is suffi-
ciently large, and that the length and time scales considered correspond to the inertial
or dissipative ranges. In particular, it is supposed to hold at dissipative length and
time scales, that is, space and time separations of order » and ¢,, asymptotically as
Re; — oo. We refer the reader to Monin and Yaglom (G 19785, section 21) for a
more detailed discussion of statistical universality of the small scales.

The energy flux via the cascade, € per unit mass, is provided by progressive decay
of the large scales. The energy available is O(x'?) per unit mass, while the lifetime of
the large eddies is O(L/u"). Thus, we have the estimate

/3
£=0 <MT) (7.45)

for the dissipation rate. Eqﬁivalently, one can employ {7.21), using a decay time of
O(L/u") to estimate the time derivative. In any case, putting (7.45) in (7.37) gives

7=0(Re) (7.46)
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showing that, as stated earlier, the Kolmogorov scale is asymptotically small com-
pared with the correlation length as Re; — c0. This asymptotic separation of scales
forms the basis of the theory described here.

Let k > L™ lie in the inertial or dissipative ranges. We can determine the energy
dissipation from above wavenumber k, using (7.38), with the semiempirical form
(7.41), in (7.5), taking the integral over wavenumbers above k. Subtracting the result
from the total dissipation, we find that a proportion

1- exp(—% C(kn)“/3) (7.47)

of the dissipation comes from below k. As regards the energy from wavenumbers
higher than k, since the spectrum falls off at dissipative scales, an upper bound is
obtained using the inertial-range power law, (7.34), in the integral of (7.4), restricted
to wavenumbers above k. This upper bound represents a proportion

1\ 2/3

C(i%) (kL)™*/3 (7.48)
u

of the total energy, 3u’*/2.

Negligible dissipation and energy content are fundamental properties that distin-
guish the inertial range from the energy-containing and dissipative zones that border
it. That is, for k to lie in the inertial range, most of the energy should lie below k& and
most of the dissipation above (so that we can replace (7.32) by (7.33)). In other
words, we need (7.47) and (7.48) to be small simultaneously. If we choose, some-
what arbitrarily, the requirement that (7.47) and (7.48) should be less than 0.2 (i.e.,
at least 80% of the energy below, 80% of the dissipation above), the result is

(5C)3/2;% <k < 024C3/47! (7.49)

which describes a range of inertial wavenumbers, provided that the lower bound for
k is indeed less than the upper bound. Using the definition, (7.37), of 7, this leads to
gL tL

Re, > 168C3 % ~ 570% (7.50)
which, since EL/u"® = O(1) according to (7.45), gives a rough idea of the minimum
Reynolds number required for an inertial range. Using (6.A5) of the appendix to
Chapter 6 to express (7.50) in terms of the Reynolds number, Re,, based on the
Taylor microscale, A, rather than Re;, we find

u'x

154" 12
Re, = Tg = ( =3 ReL) > 50CY* ~ 90 (7.51)

as a rule of thumb for the onset of an inertial range. Of course, the inertial range does
not “switch on” suddenly as the Reynolds number is increased, but rather appears
gradually, and the above criteria are intended as estimates of the threshold for
existence of the inertial range. A wide power-law range for the spectrum will there-
fore require higher Reynolds numbers than these. Furthermore, the threshold value
of 0.2 chosen here is rather arbitrary: the number appearing in (7.51) is roughly
proportional to the threshold taken to the power of —3/2 (taking a more stringent
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threshold of 0.1, instead of 0.2, we obtain Re, > 146C%? ~ 270). We emphasize
once again that the dissipative range theory, (7.38) et seq., may well apply even if
there is no inertial range, provided that there is a sufficient separation between n and
L.

We saw earlier that, as a consequence of the small dissipation and energy content
of the inertial range, presuming one exists, the spectral energy flux through that
range is approximately constant and given by X = . Constancy of the spectral
flux is asymptotically approached in the limit Re; — oc, but is only approximate
at finite, but large Re;. If the energy flux were really constant, the transfer term,
T(k, t), in (7.18) would be zero in the inertial range, according to (7.31). It is inter-
esting to evaluate the transfer term at the next higher approximation in the inertial
range by rewriting (7.18) as an equation for T and using the Kolmogorov £~/
spectral form, (7.34), to calculate the other terms. The time derivative of the spec-
trum provides the negative term (2/3)C& 3(dg/dt)k /3, which decreases in size
with increasing k, while the viscous term, 2vC&*3k!/3, is a positive and increasing
function of k. The two cancel to produce a zero of T when k = ky, where

21 de
ki = 3vedt

can be estimated as follows. The time scale for evolution of the turbulence, and hence
its rate of energy dissipation, g, is determined by that, O(L/u’), of the large scales.
Thus, one obtains kr = O(RelL/ 2L"l), which lies well above the energy-containing
wavenumbers, k= O(L™), and below the dissipative ones, given by
k= O(Re3L/4L_1), according to (7.46). That is, k7 is located in the inertial range
and therefore within the range of applicability of the above determination of T(k, t).
For inertial-range wavenumbers below kr, T(k, t) is negative, whereas it is positive
above k7. In fact, the inertial-range T(k, t) is easily shown to be proportional to
(k/k)'?=(k/k)™", a function of k/kr that the reader is encouraged to sketch and
compare with Figure 6.5.

The spectral flux, R(k, t), is defined by (7.31) as integrals of T(k, t), of which we
examine the first, The flux through the inertial range arises mainly from the energy-
containing range, k = O(L™'), but it continues to increase slowly up to a maximum
at k = ky, decreasing thereafter due to extraction of energy to counterbalance
increasing dissipation. Although the integral in (7.31) extends outside the inertial
range, where the above evaluation of T(k, ) ceases to apply, one may evaluate R(k, t)
to within an integration constant. Thus, we find that the variations of R(k, t) with
respect to k are described by —-3vCEZ/3k;/3((k/kT)4/3/2 + (k/k7)™*?) within the
inertial range. Order-of-magnitude estimation, using (7.45), (7.46), and the estimate
kr = O(RelL/ 217 derived above, shows that this expression for the variations of
spectral flux only becomes comparable to & when k decreases to O(L™") or increases
to O(n™Y), that is, outside the inertial range. This is as it should be, confirming that
variations of spectral flux are indeed small in the inertial range.

So far, we have discussed the consequences of Kolmogorov’s theory for correla-
tions and spectra, which are derived from second-order moments of velocity differ-

ences. Moments, x,(r) = |u(x +r) — u(x)[?, of orders other than two may also be
defined and are often called the structure functions of turbulence. From dimensional
analysis, using £ and 7, we deduce that x,, oc & 3723 in the inertial range. This result
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is obviously a consequence of velocity differences scaling like £'/°#/3, that is, the
one-third law noted earlier. The structure functions will play an important role in the
discussion of inertial-range intermittency in Section 7.5.

Kolmogorov’s theory of the small scales of turbulence has been described above
for homogeneous, isotropic turbulence with no mean flow. The theory presupposes a
large Reynolds number, so that one can talk sensibly about a turbulent energy
cascade to smaller scales, and that this cascade has been allowed to develop to
equilibrium over a full range of scales down to the Kolmogorov scale. The small
scales are then assumed to (statistically) equilibrate and be controlled by the average
energy flux through the inertial range, which originates at the large scales and equals
the mean dissipation rate, . Thus, the theory predicts universal statistical properties
for the velocity differences at small separations, for instance, correlations and spec-
tra, determined solely by z and v (with the latter playing a role only at dissipative
scales).

More general turbulent flows have large scales that can have quite different prop-
erties from those of the idealized, homogeneous, isotropic turbulence considered
above. Moreover, as we shall see in Section 7.4, even homogeneous, isotropic tur-
bulence from different flows may have different large-scale behavior. However,
Kolmogorov’s k~%/* spectrum is remarkably robust and is found to apply to the
small scales of many turbulent flows that are inhomogeneous, anisotropic, or have
mean flow, provided the turbulence is developed, the Reynolds number is large
enough, and the scales considered sufficiently small. Strictly speaking, spectra are
only precisely defined for homogeneous flows, but one may instead use the predic-
tions for velocity correlations or velocity differences {or generalize the definition of
spectra to the small scales of inhomogeneous flows). For instance, as we have seen,
velocity differences at sufficiently small separations are proportional to r'/* accord-
ing to Kolmogorov’s theory. As one moves from place to place within an inhomo-
geneous turbulent flow, statistical properties vary over distances determined by the
flow as a whole, which are large compared with the inertial and dissipative range
scales that concern us here. Thus, it is reasonable to suppose that the small scales
behave as if the flow were homogeneous. It is also plausible, although perhaps less
so, that large-scale directionality is lost by “scrambling” in the cascade to smaller
scales, which suggests that small enough scales may be approximately isotropic.
These remarks are consistent with the basic idea of a cascade that loses information
about the particular turbulent flow, so that only € remains at sufficiently fine scales.
In summary, the small scales of turbulence may be approximately statistically homo-
geneous and isotropic, even If the large scales are not. They may also be only weakly
affected by mean velocity gradients and other additional effects, such as density
stratification or rotation, except in so far as these change the value of ¢ through
modification of the large scales. For instance, the direct effects of mean-flow gradi-
ents should diminish as one considers smaller and smaller scales because the velocity
gradients associated with the turbulent velocity field increase (recall the discussion of
“furriness” in Chapter 3). Naturally, for inhomogeneous flows, £ becomes a function
of position, varying over the volume of the flow, but is nonetheless effectively uni-
form when viewed on small enough length scales. The above remarks concerning the
wide applicability of the Kolmogorov spectrum are well illustrated by Figure 7.4,
which shows spectra measured in three different ““real-life” flows, which collapse to a
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Figure 7.4. Measured longitudinal, one-dimensional spectra, scaled
in Kolmogorov fashion, and plotted in log-log form. Data from
three flows are superimposed: a boundary layer, a tidal flow in
the sea, and the atmosphere near the surface of the sea. The
Reynolds numbers are large enough that inertial ranges are clearly
seen. (Sandborn and Marshall (1965), redrawn, including results of
Grant et al. (1962), Pond, Stewart, and Burling (1963).)

universal curve in the inertial and
dissipative ranges when plotted
using Kolmogorov scalings.

Care must nonetheless be exer-
cised in applying Kolmogorov’s the-
ory to general flows. For instance,
within the viscous sublayer of a tur-
bulent boundary layer, the turbu-
lent  Reynolds  number s
comparatively low, the range of
scales is not very wide, and strong
mean shear leads to anisotropy and
gross inhomogeneity. For these rea-
sons, we would not expect
Kolmogorov’s theory to apply
there. On the other hand, the
outer part of a turbulent boundary
layer has lower shear and a higher
turbulent Reynolds number, Rej,
leading to a wider range of scales,
and Kolmogorov’s theory may hold

at scales sufficiently small compared

to the distance from the wall.
Additional influences, such as strong rotation or stratification, can also significantly
modify the behavior of inertial-range, or even dissipative, scales, as well as the large
scales, if they are sufficiently strong. Lack of universality and intermittency are also
complicating factors, which will be discussed in Section 7.5.

We refer the reader to Monin and Yaglom (G 1975, Section 21) for further
discussion of Kolmogorov’s theory as applied to general turbulent flows, and to
the Kolmogorov anniversary edition of Proceedings of the Royal Society (1991)
for articles on a variety of different aspects of Kolmogorov’s work, viewed from a
modern perspective. The topics covered include small-scale intermittency, whose
existence modifies the description of those scales, even for homogeneous, isotropic
turbulence without mean flow, and can be important for the high-order velocity
moments and dissipative scales, as we shall see in Section 7.5.

7.4 Self-Similar Evolution of the Large Scales of
Homogeneous, Isotropic Turbulence

Whereas the small scales may be insensitive to the particular turbulent flow consid-
ered, apart from its value of z, the large scales do depend on the details of the flow
and the discussion of the behavior of the large scales, given in this section, should be
understood to be specific to homogeneous, isotropic turbulence without mean velo-
city gradients, to which grid turbulence may be taken as a reasonable approxima-
tion, many grid spacings downstream of the grid. Thus, unlike Kolmogorov’s theory
of the small scales, this section is concerned with fairly idealized flows, of which grid
turbulence is the archetypal example.



7.4 SELF-SIMILAR EVOLUTION OF THE LARGE SCALES

We saw earlier that statistical properties of turbulence in the final phase of viscous
decay become self-similar.® It is natural to ask whether turbulence may also be self-
similar before the final phase is reached, that is, while Re; is still large and the
turbulence has a wide continuum of scales and an active cascade. If one includes
both energy-containing and dissipative scales in the proposed similarity, it is clear
that the ratio, /L, would need to remain constant during the decay, and this, in
turn, requires a constant value of Re;. Such complete statistical self-similarity is
conjectured in the Von Karman similarity hypothesis and its consequences have
been investigated in some detail (see Monin and Yaglom (G 19785, section 16.1)).
However, it turns out to be in disagreement with experimental results, essentially
because Re; does not remain constant.

When Re; is large, the asymptotic separation between large and small scales
suggests that the large scales might be self-similar, even though the small ones do
not partake of large-scale similarity because Re; changes during the decay. Let us
assume statistical self-similarity of the large scales, and examine the consequences.
The large scales have velocity scale #'(¢) and length scale L(z), and so statistical
similarity means that the large-scale statistical properties of the scaled velocity
field, u/u’'(t), are solely a function of x/L(¢). The dissipative scales remain free to
evolve in a manner which does not share in this self-similarity, but is, instead,
determined from Kolmogorov’s theory by the mean energy flux, equal to #(z),
which is fixed by the large scales. Thus, according to the Kolmogorov theory, the
small scales have their own self-similarity, described by (7.38). In what follows, we
suppose that Re; is sufficiently large that there is a clear separation of energy-con-
taining and dissipative scales. In particular, we assume that direct viscous dissipation
can be neglected for the large scales, which lose energy solely through transfer to
higher wavenumbers, via the cascade.

Assuming large-scale self-similarity, the scaled correlation function, R/u, is a
function of /L for r = O(L). From (7.2), this implies a spectral form

E(k,t) = u"*LG(kL) (7.52)
when k = O(L™"). Likewise, the scaled cubic moment, S/u’> with S defined by
(7.20), is a function of r/L, leading to

T(k,t) = u"*H(RL) (7.53)

for k = O(L™"), from (7.19). If these forms are introduced into the spectral evolution
equation, (7.18), and the viscous dissipation term neglected, we obtain

L du” "1 dL1dKG(K)
[ﬁ—?it_] G(K) + [?E] &K - H(K) (7.54)

where K = kL is the spectral similarity variable. The justification for neglect of the
dissipation term is that we are here concerned with the large scales, k = O(L™"), for
which direct viscous dissipation is small, thanks to the large Reynolds number. Such
scales decay owing to transfer of energy to smaller scales by the cascade, represented

8 Here, by statistically self-similar we mean that velocity and length scales can be found, which are solely
functions of time, and that, if the scaled velocity is regarded as a function of the scaled position, then its
statistical properties do not evolve with time.
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by the right-hand side of (7.54). Thus, the self-similar behavior we consider here is
inviscid and does not include the dissipative scales of turbulence, but the effects of
dissipation appear via the term H(K) in (7.54). We note that

*© 3
J G(K)dK =2 (7.55)
O 2
follows from (7.4) and (7.52).

The terms of (7.54) in square brackets are functions of ¢, whereas the rest are
functions of K. By taking the partial derivative with respect to ¢, it can be shown that,
either the bracketed terms are constant, or G(K) is proportional to a power of K. The
latter possibility gives spectra, (7.52), which are powers of &, and not in agreement
with observations. To have an acceptable spectral form one must take the indicated
terms as constant, leading to

du'? u'3

d—t = — T (756)
and

‘fi_’; = oy’ : (7.57)

where a; and «; are nondimensional constants. When compared with (7.21), equa-
tion (7.56) provides an expression for ¢ that is consistent with the estimate (7.45).
Since Z is positive, so is ay, while @, is also observed to be positive. This leads to
decaying u'(¢) and increasing L(#). The reason why the correlation length increases is
that, among the large scales, the smaller ones are shorter lived and tend to decay
more quickly via transfer to still smaller scales, leaving the bigger ones to determine
the correlation length at later times. Thus, the lowest wavenumbers are more persis-
tent and provide most of the energy at later times. This suggests that there may be a
connection between the behavior of the spectrum at the lowest wavenumbers and its
evolution, a connection that will be investigated shortly.

Unlike #, the length scale, L, has not been completely specified (one could multi-
ply the value of L by any constant number) and the values of the numerical constants
a1 and «; vary with the precise definition adopted for L. However, it can easily be
shown, from (7.56) and (7.57), that the ratio, & /a,, does not depend on the defini-
tion used. It follows that the essential properties of large-scale, self-similar turbulence
can only depend on this ratio of constants. If desired, one may uniquely specify L by,
for example, requiring that &y = 1 in (7.56), or @, = 1 in (7.57) (these particular
normalizations require that oy # 0 and «; # 0 respectively), or adopt any other
convenient normalization for L. Such normalization may be desirable, for instance,
when one undertakes to solve similarity equations such as (7.54) using particular
closure models for the nonlinear transfer term on the right-hand side. However, in
this chapter, we do not use closures and prefer to maintain the freedom to alter the
value of L to within a multiplicative constant.

By solving (7.56), (7.57), we obtain

u' o (t — ty)" /@122 (7.58)

and
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L o (t — tg)?/(a+2e) (7.59)

showing that #’ and L should evolve according to power laws whose exponents are
determined by the single parameter a;/a,. The size, O(L), of the large scales of
turbulence increase with time, while the velocity fluctuations decay. As discussed
in the last chapter, the experimental results of Comte-Bellot and Corrsin (1966) on
grid turbulence, among other authors, indeed show power laws like (7.58) and
(7.59), which suggests that large-scale self-similarity occurs in such flows. The
power-law exponents are found to vary depending upon the particular grid used,
indicating that the properties of the large scales of turbulence are not universal, but
vary from flow to flow. The exponents given in (6.173) and (6.174) of the previous
chapter are consistent with (7.58) and (7.59) with «/a; = 3.7. Measurements of
large-scale velocity correlations and spectra also seem to be consistent with large-
scale self-similarity of grid turbulence at sufficient distances downstream of the grid.
Although it is by no means certain that such similarity always occurs in homoge-
neous turbulence, we shall assume large-scale self-similarity here, and continue to
work out its consequences.

At the beginning of Section 7.2, we discussed the time evolution of the low-
wavenumber spectrum. A spectrum, for which E ~ ¢,,k™ with m < 4 initially, per-
sists at later times with a constant value of c,,. For this behavior to be consistent with
the self-similar form (7.52) requires that #’>L™*! be constant, and hence, from (7.58)
and (7.59), a1/ay = m + 1, relates the small wavenumber spectral exponent to the
constants, «; and a,, which characterize self-similarity. In particular, turbulence
whose spectrum has the low-wavenumber behavior (7.17) (i.e., m = 2} can only
admit large-scale similarity with /e, = 3, which implies that u'? o (¢ — 15)7/3,
Lo (2 — t0)2/5, according to (7.58), (7.59). If, on the other hand, the initial spectrum
goes to zero like k* or faster as k — 0, it should have the low-wavenumber form
E ~ ¢;k* at later times, but with a coefficient, c4(2), that will generally vary with
time. Since there is no requirement of constancy of ¢4, the value of @/, is not
uniquely fixed by the low-wavenumber exponent, m = 4, unlike the case m < 4
considered above. Assuming large-scale  similarity, we find that
Ca & (t — tp)?Cnma/@+20) \which is time varying unless oy /oy =5, a value that
leads to #'* o (t — t5)"'%7, L o (t — t5)*’7. As mentioned earlier, it appears that
grid turbulence has a &* spectrum at low wavenumbers and that different values
of a1/, can occur, depending on the precise flow considered and corresponding to
different self-similar behaviors. The observed values of o /a; are less than five, which
implies that ¢4 grows with time, that #’? decreases less rapidly than (t — #,)"'%7, and
that L increases faster than (¢ — #5)*/”. Growth in ¢, is a particularly interesting result
because it means that, although the spectrum is decaying overall, owing to transfer of
energy to higher wavenumbers via the cascade, and dissipation at the highest wave-
numbers, it increases with time at sufficiently low wavenumbers, due to energy trans-
fer from the higher ones. Such a transfer of energy from higher to lower wavenumbers
is in the opposite sense to the more familiar one induced by the cascade through the
inertial range. It results from energy exchange among the large-scale components of
turbulence, rather than the transfer of energy to smaller scales, which drives the
cascade. Consequently, the transfer term, T(k, ¢), in (7.18), whose behavior in the
inertial and dissipative ranges was discussed earlier, should be positive at sufficiently



304 THEORIES BASED ON SPECTRAL ANALYSIS

low wavenumbers, becoming negative at higher ones, and positive again at still
higher wavenumbers. The negative range, which includes the peak in E(k, £), repre-
sents nonlinear extraction of energy from the corresponding wavenumber compo-
nents, some of which goes to low wavenumbers, while the remainder is transferred to
higher wavenumbers, via the cascade. In practice it is found that the region of
positive T(k, {) at low energy-containing wavenumbers is rather narrow and has a
low peak value. The region of negative T(k, ) and the positive range at high wave-
numbers are considerably more prominent (see Figure 6.5).

Since T(k, t) behaves like k* at low wavenumbers, the function H(K) is propor-
tional to K* as K — 0. If such a form for H(K) is used in (7.54), expressing the
coefficients from (7.56) and (7.57), it can be shown that G(K) must follow a power
law with exponent m < 4. Low-wavenumber spectral forms other than powers are
therefore inconsistent with large-scale similarity.

The Reynolds number, Re; = #’L/v, can be determined from (7.58) and (7.59) as

Rep oc ( — )20 on)/leate) (7.60)

and decreases with time, as observed, if @ /a3 > 2. The decreasing Reynolds number
is a consequence of competition between decreasing #’ and increasing L, in which «’
wins, with the result that Re; falls comparatively slowly. For instance, taking the
value aq/a; = 3.7, corresponding to the exponents of (6.173) and (6.174), gives
Re;  (t — #5) %>, The dissipation rate can be calculated from (7.21) and (7.58) as

7o (t— to)—(3a1+202)/(a1+202) (7.61)

which may be used as input to the Kolmogorov model of the small scales, including
the dissipative range, which is outside the scope of the similarity form, (7.52). We
can determine the Taylor microscales via equations (6.A5) and (6.A6) of the appen-
dix to Chapter 6. Both A; and A, are proportional to (t — £)'/%, in agreement with
the experimental result, (6.175). According to (7.37) and (7.61), the Kolmogorov
scale evolves as

N (t _ to)(3a1+2a2)/(4a1+8a2) (762)

so that, using (7.59) and (7.60), we find 5/L « Rez3/4, which is consistent with
(7.46). Unless oy /ey = 2, Re; changes with time and the dissipative scales cannot
share the self-similarity of the large ones. Indeed, the value, o /; = 2, necessary for
constancy of Rey, leads to

u' o (t — tg) "/

7.63
Lo (¢ — ) (7.63)

which are not in agreement with experiment.

If Re; is sufficiently large that there is an inertial range, one may use (7.4), (7.21),
and (7.56) to express £ in the Kolmogorov spectrum, (7.34}), in terms of #’ and L.
Thus, one finds that the inertial-range spectrum has the self-similar form (7.52) with

2

which gives the large K limiting behavior of G(K) necessary for consistency with the
Kolmogorov theory. The fact that the Kolmogorov inertial-range spectrum is con-

3 2/3
G(K)~C(—a1) K33 . (7.64)
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sistent with self-similarity of the large scales means that only the dissipative range lies
outside the scope of (7.52). As noted above, according to the Kolmogorov theory,
the dissipative range has its own self-similarity, (7.38), based on the length scale 5(2),
similarity which is also shared by the inertial-range spectrum, thanks to (7.39) in the
limit of small kn. Thus, the inertial range takes part in two self-similar forms and
provides the bridge (or region of overlap if one thinks in matched asymptotic expan-
sion terms) between them.

Self-similarity of the large scales presumably takes some time to develop when
turbulence is started from some arbitrary initial state. The time scale for evolution of
the large scales is O(L/u") and so one must wait until £ > Ly/ug, where Ly and
are the initial correlation length and turbulent velocity, before self-similarity becomes
apparent. The Reynolds number, supposed large initially, decreases slowly during
the decay of the turbulence, due to competition between increasing I. and more
rapidly decreasing #'. When Re; eventually becomes of O(1), the asymptotic separa-
tion between energy-containing and dissipative scales ceases to exist and, conse-
quently, large-scale similarity no longer applies. The turbulence goes through an
adjustment phase and emerges into the final period of passive decay, in which it is
again self-similar, as we saw earlier. There is then no cascade or separation of scales,
and the power laws, #’ oct™>/* (from (7.29), assuming m = 4) and E o t'/2, are
different from (7.58), (7.59).

Von Karman suggested the following rough, semiempirical form for the spectrum
in the energy-containing and inertial ranges:

SST(5/6) oy (kL)'
or(1/3)x!/? (1+ (/QL)Z)W6

which has the self-similar form, (7.52). It has the low wavenumber limiting behavior,
(7.16), and the Kolmogorov inertial range form, (7.7) with # = 5/3, at large kL. The
coefficient in (7.65) has been chosen according to (7.4). Here, unusually for this
book, the correlation length has been given a definite quantitative meaning, rather
than being an order of magnitude. It can be shown that L, defined by (7.65), is
related to the integral scales, (6.113) and (6.114), by

. 7'*rs/e)
R

E(k,t) = (7.65)

L~0.75L (7.66)

To bring this section to a close, we remind the reader of the restriction to idealized
homogeneous, isotropic turbulence without mean velocity gradients, with grid tur-
bulence as the archetypal example. Unlike Kolmogorov’s theory of the small scales,
the above ideas concerning the properties of the large ones are not expected to apply
to more general flows.

7.5 Beyond Kolmogorov’s Original Theory

As we saw in Chapter §, in shear flows such as boundary layers, jets, and wakes,
motion of the frontier between turbulent and laminar fluid leads to intermittency. A
fixed point in space finds itself sometimes inside, sometimes outside the turbulence as
bulges in the frontier are convected past the point. The bulges engulf laminar fluid,
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which eventually becomes turbulent. Thus, the turbulent region spreads to include
more and more fluid, but within the apparently turbulent flow there are regions of
laminar fluid, which are more and more common toward the outskirts of the flow. In
consequence, the turbulence becomes increasingly intermittent as one emerges from
the shear flow. Intermittency can also occur when a laminar flow undergoes transi-
tion to turbulence as the Reynolds number increases, for instance, in the transitional
zone of a boundary layer, or in a pipe. In such cases, turbulent and laminar flow
alternate at a fixed point in space, producing intermittency of the large scales of
turbulence within a statistically steady flow.

The above flows are inhomogeneous, but large-scale intermittency can also be
envisaged in decaying, homogeneous turbulence without mean flow. Recalling that
one regards a turbulent flow as an ensemble of different realizations of nominally
identical flows, we are at liberty to choose the ensemble of initial conditions and
consider an example that was introduced in Section 2.4. Suppose that there is no
mean flow and that each realization consists of widely separated, statistically inde-
pendent patches of turbulence in an infinite fluid, whose positions vary randomly
from realization to realization with no preferred locations in space, so that the
resulting ensemble is statistically homogeneous.” Although this flow is statistically
homogeneous, the intensity of turbulence in a particular realization is highly nonuni-
form, which makes the example somewhat “pathological,” but a good illustration of
the fact that statistical homogeneity does not exclude extremely intermittent, patchy
turbulence in which the patches move around from realization to realization to make
the statistics uniform. However, by homogeneous turbulence, one usually has in
mind flows for which, unlike this example, the properties of turbulence are roughly
uniform in typical realizations (e.g., an initially Gaussian velocity field). In the above
example, there is extreme large-scale intermittency: at a fixed point in space, there is
no turbulence in most realizations, while occasionally the point finds itself inside a
patch of turbulence. This means that average quantities, like #’*> and %, are not
representative of particular realizations of the flow, as discussed in Chapter 2.
They overestimate the intensity of turbulence in most realizations and underestimate
it for the rare cases where a patch is present at the given point in space. Thus,
estimates, such as L/u’ for the decay time of the turbulence, are inappropriate for
grossly intermittent flows, like this one, which decay on a time scale shorter than
L/u’ because the turbulence is more intense than suggested by #’. More importantly,
universality of the Kolmogorov constant, C, occurring in (7.34) and of the dissipative
range spectral function, F(x), is called into question by this example, as we will show
shortly.

Before discussing lack of universality for the above example, we should remind
the reader that many experimental results, such as those shown in Figure 7.4,
indicate similar inertial and dissipative range spectra for different flows using
Kolmogorov scalings, and thus appear to support universality. Although the loga-
rithmic scales employed in Figure 7.4 tend to suppress differences between the flows,
one may conclude that departures from spectral universality are not dramatic for the
given flows. Lack of Kolmogorov universality for general flows does not stop parti-
cular ones from having similar spectral forms, or at least approximately so, when

? It can also be made statistically isotropic by taking random orientations for the turbulent patches.
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plotted using the Kolmogorov scalings. As we will see below, the example given
above provides a case in which universality does not apply when the patches of
turbulence become sparse enough. Such extreme large-scale intermittency can
cause strong departures from Kolmogorov universality, with weaker departures in
less extreme cases.

Let y denote the average number of turbulent patches per unit volume. We ima-
gine a sequence of different flows in which y is allowed to decrease, while the
properties of individual patches (e.g., the size and intensity of turbulence within a
patch) are maintained the same. Mean values, such as u'? and 7, of quantities which
are effectively zero well away from any patches decrease proportional to y. Likewise,
the one-point velocity moments, %7, which are of order u'?, decrease with y in the
same way. The correlation functions, R(r), have the values R; = % at r = 0 and
fall to zero over distances that are determined by the properties of turbulence within
patches, since different patches are supposed uncorrelated, that is, the correlation
length, L, remains constant as patches become rarer. Thus, we would expect R;(r) to
decrease in magnitude with y, but R;(r)/y to remain unchanged, hence spectra,
which are Fourier transforms of R,(r), should also decrease in proportion to y.
Within the Kolmogorov inertial-range expression, (7.34), the left-hand side decreases
like y, whereas the right-hand side only decreases proportional to y*/3, owing to the
factor /3. Thus, the value of the supposedly universal constant C decreases as y'/>.
The problem is that the spectrum is an average, as is &, and both are proportional to
y, but taking the 2/3 power of € makes it scale differently with y. This exemplifies
the objection made by Landau to the universality assumptions of Kolmogorov’s
(1941) theory and indicates that C is not universal. Universality of the dissipative
range using Kolmogorov scalings is also called into doubt by this example. For
instance, the matching condition with the inertial range, (7.39), shows that F(x)
cannot be universal unless C is. Furthermore, since the dissipation rate inside a
patch is O(Z/y), the size of the dissipative scales, which determines the range of
dissipative wavenumbers for the spectrum, is O(y'/*n), where we have employed
(7.37) with €/y instead of # to estimate dissipative scales within a patch. It follows
that the wavenumber range at which viscosity becomes important is a factor of y'/*
higher than suggested by Kolmogorov scalings and consequently that the spectrum is
not universal using those scalings. By taking the limit y — 0, C can be made to
decrease without limit, while the dissipative wavenumber range of the spectrum
goes to infinity when expressed in terms of kn. Both effects show lack of
Kolmogorov universality, although it is interesting to note the small exponents,
v and y ', involved. Since small exponents imply weak dependency on y, this
suggests that rather extreme large-scale intermittency may be required to produce
strong changes in C and F(x) compared to the more usual cases in which the statis-
tically homogeneous turbulence is approximately uniformly distributed in typical
realizations, for example grid turbulence.

The large-scale intermittency in the above example comes from the intermittent
initial conditions. The flow is a rather extreme example of intermittency of the large
scales of turbulence and shows that such intermittency can invalidate Kolmogorov
universality. Variability of C has also been found inside a jet flow by Kuznetsov,
Praskovsky, and Sabelnikov (1992), where intermittency is due to the unsteady
entrainment of laminar external fluid in individual realizations of the statistically
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steady flow. As noted at the beginning of this section, large-scale intermittency in
such inhomogeneous shear flows increases towards their outskirts, leading to cross-
stream variations of the Kolmogorov constant, C, which decreases as the intermit-
tency rises, as we found for the homogeneous example discussed above. Interestingly,
in the jet, Kuznetsov et al. (1992) found that C « '/, as for the above flow with
patches, where y represents the proportion of the time for which turbulence is pre-
sent at the given point and therefore decreases the greater the intermittency. Such
large-scale intermittency modulates the energy supply to the cascade, and hence the
intensity of the small scales, but it may leave the internal dynamics of the cascade
unchanged. If this is the case, one might expect that, although the value of the
Kolmogorov constant can be changed by large-scale intermittency, the basic k="
spectral form would survive in the inertial range. Indeed, as noted earlier, numerous
experimental studies of different flows have verified the k=%’ form, which is not
seriously in doubt. However, from a theoretical point of view, variability of C
implies that the cascade is affected by parameters other than Z, for otherwise the
dimensional analysis given earlier unambiguously leads to universality. Once one
recognizes that Kolmogorov’s assumption, that € is the only parameter controlling
the statistical properties of the cascade, is not always true, the theoretical justification
for the k=573 law is seriously weakened, and one may then ask why this power law is
found to hold at all.

Following Frisch (G 1995), a reformulation of Kolmogorov’s theory is possible
that avoids the difficulties noted above, which we now explain. Let

Su(t) = u(x+r,8) —u(x, t) (7.67)

denote the velocity difference at separation r, which, in principle, is a function of x
and ¢, as well as r. However, we will restrict attention to a particular point, x, and
time, ¢, so we do not explicitly show the dependence on x and #, and assume homo-
geneity, so that the statistics of Su(r) do not depend on the choice of x. We also
suppose isotropy, for simplicity sake, and a sufficiently high Reynolds number that
there is a wide inertial range of scales, taking r = |r| to lie within that range. It may
be recalled, from Chapter 3, that the reason for considering velocity differences,
rather than u(x, #) itself, is that such differencing emphasizes the “fur” in the velocity
field and thus focuses attention on scales of size O(r). In fact, one can consider
du(r) as a filtered version of u(x, #), which suppresses the lower wavenumber (lar-
ger-scale) components. We will briefly discuss other possible filters toward the end of
this section.

According to Kolmogorov’s theory, the inertial-range statistics of u depend only
on %, which implies, via dimensional analysis, that |$u|®> = (Au,)* is a universal
constant multiplying (£7)*°, as explicitly shown by (7.6) and (7.36). Furthermore,
the nondimensional, scaled quantity v(r) = $u(r)/Au, should have universal statisti-
cal properties. It is easily shown that the probability distribution of 8u(r) has the
inertial-range form

(7.68)

P(3u) = (Au,)~°TI (ISUI r.5u>

Au,’ r|8u|
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where isotropy has been used and I1 is a universal function.'® The first argument of
T shows the scaling of |su| as Au, o (£r)"/3, while the second expresses the depen-
dence on the angle between su(r) and r. The multiplicative factor, (Ax,) >, provides
normalization, that is, that the integral of the probability distribution function,
P(8u), of su over all values of the three components of su should be unity.

As discussed above, the difficulty with Kolmogorov’s original theory is the uni-
versality of functions such as IT in (7.68), which follows by dimensional analysis
from the assumption of dependency on £ alone. However, if we drop the latter
requirement, and hence the basis for dimensional analysis, how can we retain suc-
cessful predictions, such as the ~/3 inertial-range spectrum? The £~*/3 spectrum is a
consequence of Au, « 7!/ in the inertial range, which can be derived solely from
self-similarity of the statistics of du(r), as we now show. By statistical self-similarity,
we mean that the scaled form, v(r) = su(r)/ Au,, has the same statistical properties
when viewed at different inertial-range scales within the given flow.'! Such self-
similarity follows from the earlier version of Kolmogorov’s theory, but we now
replace the original assumption, that the small scales are controlled by g, with the
weaker hypothesis of inertial-range statistical self-similarity, a hypothesis that does
not imply universal statistical properties. In particular, (7.68) gives the probability
distribution of 8u(r), but T need not be universal now, nor do we assume a priori
that Au, o 7'/, but instead treat A, as an unknown function of r and then show
that, in fact, Au, o r/3

To determine the form of Ax, as a function of 7, we introduce a result of
Kolmogorov {1941c), namely the four-fifths law

8uﬂ(r) = —%Er (7.69)

where 8u;, is the component of su parallel to r,

r.8u(r)

Sy (r) = (7.70)
Equation (7.69) holds at inertial-range separations, asymptotically as Re; — o0, and
is one of very few nontrivial exact results in the theory of turbulence. Its derivation is
discussed at some length by Frisch (G 1995} and we give a relatively brief version in
the appendix to this chapter.

The result, (7.69), may be interpreted in physical terms as follows. Taking the
velocity difference u(r) focuses on the dynamics of turbulence at inertial-range scales
of size O(r). An eddy of scale » may be thought of as having an associated energy of
O(84*) per unit mass to pass on to yet smaller scales via the cascade, where 8u
measures the velocity differences within the eddy. The eddy lifetime is of O(r/8u),
so that the eddy delivers energy to smaller scales at a rate O(3%°/7) per unit mass of

the eddy. The average energy flux through scale 7 is thus of O(ﬁ/r) per unit mass,

% More generally, one may consider N inertial-range separations, i, . .., ry. Dimensional analysis then
implies that the joint probability distribution of the random variables v; = v(r), ..., vy =v(ry) is a
universal function of vy, ..., vy and of ry/|r{|, ra/lrql, ..., tn/Ir;| (a function which is also invariant
under rotations and reflections, by isotropy).

1 This type of statistical self-similarity between different spatial scales should not be confused with that
discussed in Section 7.4, in which we compared the statistics at different times.
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and, since r is in the inertial range, € = ngu3/r), which corresponds to (7.69) if we
take du = 8u,. Note that nothing in the above argument stops us using other mea-
sures of the velocity differences at scale r for 8u, which suggests that any cubic
moment of du(r) will be proportional to &r. Thus, the third-order moments of velo-
city differences should be directly related to, and pinned down by, the mean energy
flux through the inertial range, which is equal to the mean dissipation, as we saw
earlier. The reasoning here is obviously fairly crude, being based on a number of
unproven assumptions about the inertial-range cascade and giving only order-of-
magnitude results, but is believed to provide an essentially correct interpretation of
the appearance of cubic moments of velocity differences in energy flux expressions,
such as (7.69). L
With (7.69) in hand, we may evaluate the average, 8uﬁ, using (7.70), as

- 3
wl = j(r'au) P(su)d® (u) (7.71)

=

-
into which we substitute the assumed self-similar form (7.68) for P(8u) to obtain

oo pl
Suﬁ:ZJTAufJ j (w, &)w’ £ dedw (7.72)
Q0 J-1 -

where we have firstly adopted a spherical polar coordinate system for 8u, with
w = |8u|/Au, as radial coordinate and 6 as the angle between du and r, and secondly
changed angular integration variable from 6 to £ = cos#. Substituting (7.72) into
(7.69), we can rewrite the result as

r

9Cr
A — 5(3) 2/3,2/3 (7.73)

where the quantity

s 5 2/3
C=—>. — (7.74)
Ir(l) [5;1 I f2, nw, E)w5§3d5dw:|

has been introduced so that one obtains (7.36) from (7.73) using (7.6). Since the
function I(w, &), describing the self-similar probability distribution of 8u, is fixed for
a given flow, C is a constant, although it may vary from flow to flow, and, in general,
with time for a given flow. Equation (7.73) shows that the velocity differences scale
proportional to #'/? in the inertial range, while, using (7.6) one derives (7.36), which
implies the Kolmogorov inertial range spectrum, (7.34) (recall the remarks following
(7.10)). Thus, one recovers the results of Kolmogorov’s theory without the assump-
tion of dependence on £ alone, and consequent universality, but instead using the
hypothesis of statistical self-similarity of du at inertial-range separations. In particu-
lar, universality of the Kolmogorov constant, C, need no longer apply and it is free to
vary from flow to flow. Observe that the average of any function of u can be
calculated from (7.68). For instance, the structure functions'”

Xp(7) = 16uf” (7.75)

are found to be proportional to 773, as in the original version of the theory.

12 In general, the order, p, of Xp(r) need not be an integer.



7.5 BEYONO KOLMOGOROV'S ORIGINAL THEORY

The lack of small-scale statistical universality, which has led us to reformulate
Kolmogorov’s theory, is a natural consequence of variability of the large-scale sta-
tistics from flow to flow in ways that are not simply described by &. Fluctuations in
the energy flux from the large scales produce random modulations of the cascade and
hence of the intensity of the small scales. Different flows yield differing statistics of
the energy flux and hence of the small scales, in particular the distribution function
M(w, &), which determines C via (7.74), may vary from flow to flow. For instance, in
the example with sparse turbulent patches given earlier, outside of a patch there is no
turbulence and so we would expect du to be small there. Consequently, the prob-
ability distribution of Su(r) at both large and small scales should have a sharp peak at
du = 0 in the three-dimensional space of éu in which that distribution is defined,
surrounded by a much wider, lower skirt of the distribution function, whose width
reflects the intensity of turbulence within a patch. This may be contrasted with a flow
such as grid turbulence, for which the probability distribution of su(r) consists of a
broad hump about Su = 0. The differing character of the distribution functions at
small scales directly reflects the different large-scale statistics of the two flows, in
particular, gross intermittency of the patchy flow.

Having replaced Kolmogorov’s original assumption of small-scale universality,
that is, dependence on Z alone, by one of inertial-range statistical self-similarity,
interest centers on how self-similar the inertial-range statistics of du(r) are in real
turbulent flows. Departures from self-similarity are generally referred to as inertial-
range intermittency, a topic which received considerable attention in the former
Soviet Union (see Monin and Yaglom (G 1975), sections 25.2-25.5) and more
recently in the West (see, e.g., Frisch (G 1995)). To clearly distinguish between
lack of small-scale universality and lack of inertial-range similarity, it may be useful
to draw an analogy between the inertial-range cascade and the propagation of
signals along an electrical transmission line® in which we imagine probability dis-
tributions of 8u(r) as being transmitted through the cascade to smaller scales. Thus,
the distribution functions of su(r)/Au, correspond to the electrical signal in the
transmission line, while different distances along the line are analogous to different
inertial-range scales, with the larger scales being represented by points closer to the
source of the signals. The large scales are considered as providing the input of
statistical information, in the form of probability distributions, like T1, to the top
end of the inertial range, which is then passed down by the cascade to smaller scales.
Here, it is important to note that, although the inertial-range statistics are determined
by those of the large scales, the statistical properties of the velocity field at large
scales are probably not a precise extrapolation of those in the inertial range, since the
physical processes occurring differ significantly. For instance, the probability distri-
bution of Su(r)/ Au, at large scales is not necessarily the same as that at the top end of
the inertial range, even though it is subsequently preserved through that range if self-
similarity is respected. The probabilistic information that is introduced as input to the
transmission line is that at the top end of the inertial range and not just the large-scale
distribution functions. If statistical self-similarity holds good, this input is transmitted

13 The reader may think in terms of, e.g., long-distance telephone lines, used to transmit signals. Electrical
waveforms propagate along such a line, but undergo cumulative distortion with the distance propa-
gated.
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undistorted by the inertial-range cascade, or transmission line, in the sense that, for
instance, the statistics of du(r)/ Au, are independent of inertial-range r. Lack of statis-
tical similarity corresponds to distortion by the transmission line, that is, the prob-
ability distributions of du(r)/Au, are cumulatively deformed by transmission and
hence vary with 7. On the other hand, nonuniversality results from passing different
statistical information through the transmission line, due to the changing statistical
input from the large scales, depending on the flow considered. It is also important to
distinguish clearly between large-scale intermittency, reflected in the statistical input,
and inertial-range intermittency, apparent as distortion in statistical transmission.
Despite the similarity in nomenclature, the two are quite different in nature.

Inertial-range intermittency, that is, lack of statistical self-similarity of the inertial
range (distortion in transmission), leads to departures from the reformulated version
of Kolmogorov’s theory, which predicts that x,(r) o7’ 3 as we saw earlier.
Experimentally, one may test the validity of this prediction and hence of the hypoth-
esis of inertial-range self-similarity. Measurements suggest that x,(r) has the power-
law form:

Xp(r) o 7% (7.76)

in the inertial range, where the value of the exponent ¢, for a given p appears to be
universal, that is, the same for all flows. As shown in Figure 7.5, the exponent, ¢,, is
close to the Kolmogorov value, p/3, for low values of p (up to about p = 4, say).
From the definition, (7.75), we have ¢; = 0, while observations indicate that 3 = 1.
The reader will recall the qualitative argument given earlier, suggesting that cubic
moments of §u, such as x3(r), ought to be proportional to  (and hence ¢3 = 1), a
result that may be derived quantitatively from (7.69) within most models of inertial-
range intermittency, including the 8-model considered later in this section, but that is
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Figure 7.5. (a) Exponents, £,,, of the inertial-range moments of velocity differences, x,(r) & 7, as a function of their
order, p: the solid, straight line represents the Kolmogorov theory (no inertial-range intermittency); the dashed,
straight line is for the B-model with u = 0.2; the solid curve summarizes experimental observations. (b) the quantity
(&, — p/3)/p, measuring the departures of ¢, from the Kolmogorov value: the solid line is a fit to the experimental
data, equivalent to the solid curve of (a); the dashed curved represents the S-model with u = 0.2. ((b) Kuznetsov and
Sabelnikov (1990), reproduced with permission.)
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not an immediate consequence of (7.69) because we have used |su|® rather than Suﬁ
to define x3(r). The measured value of ¢, begins to depart from p/3 at larger p, as
apparent in Figure 7.5. The curve in Figure 7.5a summarizes experimental data,
while the solid line gives the Kolmogorov value, ¢, = p/3, and the dashed line is a
fit to the data of the form ¢, = o + (1 — pu)p/3 (as predicted by the g-model, con-
sidered later) with o = 0.2. Figure 7.5b shows the quantity (¢, — p/3)/p, measuring
departures from Kolmogorov’s theory. Such departures reveal that the probability
distribution of éu is not precisely self-similar through the inertial range, implying the
presence of inertial-range intermittency.

It should be observed that accurate measurements of ¢, are not easy, particularly
for the large values of p at which departures from p/3 become apparent. One must
first calculate x,(r) via averaging, as shown by (7.75), (7.76). The average may be
written

xp(r) = JO |5ul” P(|8ul)d]bul (7.77)

where P(J6ul) is the probability distribution function of |8u|. If p is large and positive,
the factor |8u|” strongly weights high values of |8u], which lie in the tail of the
probability distribution and represent rare events in which |8u| happens to be atypi-
cally large. In practice, x,(r) is usually determined by time averaging in a statistically
steady flow. To obtain satisfactory time averages at large values of p, long time
records must be used to encompass a sufficient number of the rare events which
determine the average. The larger the value of p, the longer the record required to
produce a converged average. At large enough p, one may imagine having to average
over hours or days of data and questions can be asked as to whether the rare, large
“spikes” in the measured |8u|, which dominate the average, originate in the flow
itself or are due to external perturbations (e.g., to be facetious, someone shutting the
laboratory door). Thus, the measured x,(r) become less reliable the higher the value
of p, which is why Figure 7.5 is limited to p < 8; better data should allow higher
values of p.

It is possible, although unlikely, that the integral in (7.77) diverges at |8u| = oo for
p larger than some threshold value, so that higher order moments do not exist.
Divergence of the integral at |su| = 0 is likely for negative values of p with |p| greater
than some threshold. As such a threshold is approached, the average is determined
by rarer and rarer events and thus requires longer and longer time records for
convergence of the time average.

Having measured x,(r) at different separations, r, one considers its variation with
r to determine whether it obeys the inertial-range power law, (7.76), and if so what
value is taken by the exponent ¢,. This process is discussed in (G 1995), Section 8.3,

who defines ¢, using the longitudinal structure function, Suﬁ, rather than [$ul?, as
here. This is thought, however, not to affect the value of ¢, (this can be shown to be
the case under most intermittency models, for instance the S-model). The main
difficulty in obtaining ¢, given x,(r) is that, from the definition of the inertial
range, the assumed power law, (7.76), is asymptotic in the limits Re; — oo,
r/L — 0, and r/n — oo. In practice, of course, the Reynolds number is finite, if
large, and the inertial range is consequently of limited width. At energy-containing
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or dissipative scales, one would not expect a power law for x,(r) as a function of r.
These scales border the inertial range and there is no clean division between, say,
inertial and dissipative values of . One may try to fit a power-law form to the
observed x,(r), but a perfect fit is not possible and there is always leeway in the
choice of ¢, at finite Reynolds number. As discussed earlier, power laws with uni-
versal exponents are observed in the inertial range, although the experimental uncer-
tainties are quite significant and should be borne in mind when considering
theoretical models based on these results.

As apparent from Figure 7.5a, the departure of ¢, from the Kolmogorov value,
p/3, is small at low values of p, in particular p = 2, which corresponds to x»{(r) =
(Au,)* o " and leads to the k~5/% spectrum, as discussed earlier. If one instead uses
(Au,)* o 72, rather than 7*/3, the spectrum is of the form k™", with n =1+ ¢,
according to (7.6) and (7.10). From Figure 7.5b, one notes that
& —2/3 ~ 3 x 1072, which implies that the spectrum is very slightly more rapidly
decaying with increasing k than the £™5/* law would suggest. The predicted differ-
ence in the spectral exponent is only about 2% and is negligible for many purposes.
Indeed, for the quantity, k%**/3| giving the ratio of the two spectral forms, to
change by a factor of two requires that k& vary by a factor of 2"/%7%/3 which is
of order 10" if we take &, — 2/3 = 3 x 1072. To achieve such huge variations of &
within the inertial range requires that it be extremely wide, that is, enormously large
Re; . More realistically, the value of £ may change by, say, 100 across a more typical
inertial range, giving variations in £ %23 of only around 15%. Thus, as far as the
spectrum is concerned, one may generally neglect departures from Kolmogorov’s
inertial-range theory, which is just as well given the considerable amount of experi-
mental evidence confirming the k%% spectral form.

As apparent in Figure 7.5a, higher-order structure functions show larger depar-
tures from inertial-range statistical self-similarity, that is, inertial-range intermittency
becomes more important for higher-order moments of |3u|. As discussed above, high-
order structure functions reflect the tail of the probability distribution of |ul, that is,
rare, atypically large values of |5u|, which become more common with decreasing 7.
The increasing frequency of such rare, high values of |Su| preferentially accentuates
the high-order moments because they place greater weight on large |du| than the
lower-order ones, thus depressing the value of ¢, at large p. The growing importance
of the tail of the probability distribution of |8u| illustrates the progressive distortion
of the distribution functions of du/Awu, by transmission through the cascade.
Changes in the form of the main part of the scaled probability distribution, that
is, where 8u/Au, has a significant probability of being found, no doubt occur less
rapidly with decreasing 7, but considerable distortion of the main part of the dis-
tribution may nonetheless arise if the value of r/L is sufficiently small, corresponding
to a long enough cascade. That is, large changes in r are required to produce strong
departures from Kolmogorov similarity for the lower-order moments, so one would
expect the main part of the distribution function to show only moderate changes
unless quite small values of #/L (requiring correspondingly large Re;) are consid-
ered. Regardless of the precise details of the changes that take place in the statistics of
8u/Au, as r decreases through the inertial range, the important point is that such
variations probably exist, as evidenced by the observed lack of proportionality of ¢,
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to p at the higher orders, even if very long inertial ranges are required to produce
strong effects on the main parts of distribution functions.

The systematic changes in the inertial-range statistics of Su(r)/Au, with r are
believed to be a consequence of randomness in the cascade process. The intensity
of the large scales varies randomly with position, time, and from realization to
realization, while small scales, whose intensity is also randomly variable, are formed
inside the large ones. Within the small scales, yet smaller ones are randomly pro-
duced, and so on, down to dissipative scales. As a consequence of the random large
scales and of the random cascade, the turbulent intensity at scale r varies randomly
from place to place, realization to realization, and with time. In the nature of a
random process, such as the cascade we envisage here, the turbulent activity at
scale r will differ from place to place in a particular realization and, where it is
more intense, there tends to be a greater energy flux to scales smaller than 7.
Thus, the turbulent intensity at scale r preconditions that of the smaller scales at
the same location: the higher it is, the more active the resulting smaller scales tend to
be. As a result, randomness introduced at each stage in the cascade is not forgotten,
but is instead passed down and added to by each generation, leading to growing
percentage fluctuations in turbulent intensity, with rare, atypically intense activity
becoming more common at smaller scales. At the top end of the inertial range,
randomness of turbulent intensity is principally due to that of the energy flux
from the large scales, but is increasingly augmented by contributions from the ran-
dom cascade. The tail of the probability distribution of quantities such as |6u|/ Az,
becomes more pronounced the smaller the scale considered, while the main part of
the probability distribution may be significantly affected following a sufficient num-
ber of generations (assuming that the Reynolds number is large enough that one does
not run into the dissipative range first). In summary, randomness of the process of
formation of scales smaller than 7 is superimposed on that at scale r, leading to
progressive changes in the statistical properties as the scale considered decreases.

To illustrate the effects of intermittency in the cascade, we introduce the f-model,
which has its origins in work by Novikov and Stewart {1964), as reformulated by
Frisch, Sulem, and Nelkin (1978). It is not particularly realistic as a model of inertial-
range intermittency, and indeed, Frisch (G 1995) has described it as a “minimally
complex toy model.” However, it is relatively simple to explain and understand, and
despite being unrealistic in detail, illustrates some general features of inertial-range
intermittency.

According to the g-model, turbulent activity at any given inertial-range scale and
time, and within any single realization of the flow is confined to only part of space,
while there is no activity elsewhere at that scale. The cascade is conceived of as
consisting of a series of discrete generations of eddies, with generation 0 eddies
representing the large scales, r = O(L), which are taken to fill space, thus excluding
the possibility of large-scale intermittency. Eddies of generation #: form inside those
of generation m — 1 and have scale ¢™1., occupying a fraction ™ of space. The
parameters 0 < @ < 1 and 0 < 8 < 1 are constants of the model and are not random.
However, despite occupying a fixed volume of space, the locations of the active
eddies are allowed to vary randomly. The proportion of space occupied by eddies
of size r,, = «™L is (r,,/L)"*, where
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_log,B>0

_o8h (7.78)
logo

is the only really significant constant of the B-model. Note that, since the factors «
and B are assumed to be the same at each generation of the cascade, the process of
eddy formation is self-similar at different scales. Such self-similarity of the cascade
process (rather than of the statistical properties of su(r)) is a common feature of
inertial-range intermittency models and is what ultimately leads to power laws for
quantities such as x,(r). Self-similar cascade processes can produce progressive
changes in the small-scale probability distributions, and the resulting statistics of
du(r) are generally not themselves self-similar.

Having motivated the model, we may now forget the discrete generations of
eddies and take the proportion of space in which there is turbulent activity at
scale r to be (r/L)*, while in the remaining fraction, 1 — (r/L)", there is no activity
at scale r. This refers to a particular realization, whereas the regions of activity are
supposed to move around randomly from realization to realization and we therefore
interpret (r/L)" as the probability that a given point lies inside a region of activity at
scale r. Thus, du(r) is taken as zero with probability 1 — (r/L)Y*. We further suppose
that the statistical properties within active regions are self-similar, so that the dis-
tribution function of 8u has the inertial-range form

P(su) = (1 _ (%)lL)tS((SU)-’r (%)“ﬁ(r)n('k‘s(—‘:;, :|§l‘l’|> (7.79)
S\

Active regions

Inactive regions

where, as indicated by the annotations, the Dirac function represents the inactive
regions, while the active regions are described by the distribution function I1 and
their intensity by A(r). In the three-dimensional space of du, which the distribution
function (7.79) describes, the first argument of I1 gives dependency on the magnitude
of du, while the second shows variations with its direction. The assumption of self-
similarity of the active regions is an obvious generalization of the hypothesis of such
similarity for the entire distribution of Su(r), used earlier in the revised version of
Kolmogorov’s theory.

Comparison of (7.68) and (7.79) shows their close connection and that one
recovers (7.68) if u = 0, that is, if intermittency is absent, 8 = 1, and turbulent
activity fills space at all scales. On the other hand, if & > 0 there is inertial-range

" ntermtrency, with e PIODAOHEY o Hh =9, TEPiRiened vy e s Suchen w
(7.79), increasing with decreasing 7. That is, the regions of turbulent activity become
more and more sparse as the scale considered decreases. The parameter u is usually
taken as u = 0.2, a small value implying weak intermittency. Given small u, inter-
mittency only becomes of prime importance when /L is sufficiently small that (r/L)"
differs significantly from 1, despite the small value of 4. From (7.79), it can be shown
that Au, is proportional to (r/L)"/ 25 and hence that the probability distribution of
the scaled quantity v = du/Au has the form

Pw) = (1- ()" Yo+ (%)Mrlv((%)”/ﬂvl, %) | (7.80)
V)T

Inactive regions Active regions
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and depends on 7, explicitly showing the lack of statistical self-similarity when i > 0.
Thus, the cascade process alters the form of the distribution function, although
acting quite slowly because p = 0.2 is small. As r decreases, the first term in
(7.80) grows in importance, while the second extends to larger values of |v|, thus
both zero and large |v| are emphasized. However, it should be stressed that, the
presence of the Dirac function at u =0 (equivalently v = 0) means that (7.79)
and (7.80) do not provide very realistic expressions for the distribution functions.
According to the g-model, at a given scale one is either inside an active region or else
the turbulent intensity is zero. Real turbulence does not show such black-and-white
behavior,'* but rather has a continuous, non-self-similar probability distribution
occupying Su # 0. Furthermore, the assumption that the distribution function
away from du = 0 is self-similar imposes unrealistic constraints on the statistics.

Regardless of the detailed realism of the model, one may compute the average in
(7.69) using (7.79) to obtain A(r) A3 just as we earlier determined Au, based
on (7.68). The structure functions, (7.75), can then be calculated, yielding

1
b =n+3(1—wp (7.81)

for the exponents of order p > 0. Furthermore, it is easily shown that, as stated
earlier, the moments of éu have the same exponents, ¢,, as those of |sul, a result
we expect to hold more generally than the g-model. If 4 = 0, intermittency is absent
and we recover the Kolmogorov exponents, ¢, = p/3. The small value, 4 =0.2,
causes the exponents to diverge a little from the Kolmogorov form for moderate p
and increasingly so at large p, as indicated by the dashed line in Figure 7.5a. The
observed trend for ¢, to fall away from p/3 as p increases above three is reproduced,
although the straight-line form resulting from the model is probably incorrect. The
value of ¢, given by the B-model with u = 0.2 is about 0.07 greater than the
Kolmogorov value of 2/3. In consequence, the predicted inertial-range spectrum
falls off more steeply than £~°/3, having a spectral exponent about 4% higher
than 5/3. The predicted departure of ¢,, and consequently of the spectral exponent,
from Kolmogorov’s theory has the same sign, but is about a factor of two greater
than that implied by the observations shown in Figure 7.5b. One may note a variety
of unsatisfactory features due to the unrealistic Dirac function in (7.79), such as the
divergence of x,(r) for all negative p and that the value of (7.81) at p =0 is g,
whereas {; = 0 in reality, as discussed earlier.

Under the B-model, as r decreases, turbulent activity becomes rarer, occurring in
bursts of probability (r/L)Y*, within which the turbulent intensity is characterized by
|8u] = O(A), according to (7.79). At the large scales, turbulent velocity fluctuations
are of O(u"), allowing estimation of the constant of proportionality in A(r) o 7173
to obtain A(r) ~ u'(r/L)Y1™/3 which is larger than it would be in the absence of
inertial-range intermittency (i.e., with & = 0) by a factor of (L/r)*/ 3.1t follows that,
within an active region of inertial-range scale 7, turbulence is more intense than
without intermittency. This greater intensity compensates the cubic moments,

'* Here we exclude gross large-scale intermittency. which may well produce regions in which turbulent
activity is effectively zero, but is disallowed in the g-model by the assumption that large-scale turbulent
activity fills space. At issue here is inertial-range, rather than large-scale intermittency.
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which are related to the energy flux and therefore unaffected by inertial-range inter-
mittency, for the increasing rarity of active regions at smaller 7.

Despite being incorrect in detail, the g-model makes clear that a random cascade,
here of unrealistic black-and-white type, can generate a non-self-similar probability
distribution for du(r), even though the cascade process is itself modeled in a self-
similar way. This lack of statistical self-similarity is naturally reflected in the depar-
ture of ¢, from p/3, discussed above. The reason for the term inertial-range inter-
mittency is also elucidated: there are increasingly intense, but rare, peaks in turbulent
activity as r decreases. However, these bursts of activity are separated by periods of
zero activity within the model, extreme behavior that is not borne out in real turbu-
lence. Furthermore, the model supposes the statistics within bursts to be self-similar
at different scales, which is also unrealistic. In short, the model illustrates some of the
effects of inertial-range intermittency, but should not be considered as giving a true
account of turbulence.

It is interesting to consider the effect of inertial-range intermittency at the
Kolmogorov scale, where viscosity becomes important. As noted above, within the
active regions of scale 7, we have |8u| ~ A(r) ~ #'(r/L)1 ™73 so that one may con-
sider the Reynolds number |u|r/v ~ Re; (r/L)*™/3 This becomes of O(1), indicat-
ing the intervention of viscosity, when r = O(z), where

1= 0(reg™) (7.82)
L

gives an estimate of the Kolmogorov scale according to the f-model and reduces to
(7.46) when pu = 0. From (7.82), it appears that inertial-range intermittency some-
what decreases the scale at which viscous dissipation becomes significant because the
turbulent intensity within active regions is higher than in the absence of intermit-
tency.

There is another prediction of the f-model which is of particular interest, namely
the fractal nature of the dissipation according to the model. To discuss this point, we
first need to digress to introduce the notion of objects having fractional dimension, or
fractals. Given an object, ©, a collection of spheres is said to cover @ if every point of
O lies in at least one of the spheres. Question: How many spheres of a given size are
needed to cover the object? In the case of a single point it is clear that one sphere
suffices. In general, the number of spheres required will depend on the size of sphere
used. Let us therefore suppose that the spheres are all of radius r and let N(r) be the
minimum number required to cover ®. Readers may quickly convince themselves
that, for a line N(7) is of order ™! as » — 0. Similarly, it is clear that, for a surface
N(r) 2, while, for a volume N(r) o r~>. In each case the exponent that occurs in
the expression for N(r) is equal to (minus) the dimension of the object considered:
lines, surfaces, and volumes are generally described as having dimensions one, two,
and three, respectively. Even the single point is included if we give it the dimension
zero, since N(r) = 1 = 7%, A precise expression of this idea is the following: an object
has Kolmogorov dimension D if the limit

D =—Ilim _—log NG

—0 logr (7:83)

exists.
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This definition of dimension agrees with the usual one for simple objects such as
the line, surface, and volume considered above and in all these cases the value of D is
an integer. However, there are objects for which D is not a whole number: such
objects are called fractals, standing for “fractional dimension.”” An abstract example
can be constructed iteratively as shown in Figure 7.6. Beginning with the object
shown in Figure 7.6a, each line segment is replaced by a copy of the same figure
reorientated and reduced in size by a factor of four, resulting in Figure 7.6b. Each
line segment of Figure 7.6b is likewise replaced by a small, rotated version of the
original object and the process continued ad infinitum. The object that is constructed
in this way is a fractal of dimension 3/2. As is the case for this example, fractals are
not smooth lines, surfaces, or volumes, because such classical geometrical objects
have integer dimension. Instead a fractal object has a “furry” structure in which
successive magnifications reveal more details at finer and finer scales.

The example we have constructed has no direct relevance to the study of turbu-
lence and is intended solely for illustrative purposes. However, the energy cascade
with its succession of smaller and smaller scales is obviously similar in character,
provided we restrict attention to the inertial range of r. The object we consider is
made up of those points within some finite volume, V, of space at which there is active
energy dissipation at a given time and for a given realization. For the 8-model, there is
dissipation within the regions of turbulent activity, but not outside. The active regions
occupy a proportion (r/L)* of the volume and therefore require a number, N(r), given
by N(r)r® ~ (r/L)*V of spheres of size r to cover them. It follows that

u—3
D= —lim 28"~
—0 logr

=3—pn (7.84)
is the Kolmogorov dimension of the set of a
points with nonzero energy dissipation. In the
absence of inertial-range intermittency (¢ = 0),
the dimension is three and, as one might expect
since B = 1, the set of nonzero dissipation fills
space. With the value pu =0.2, which was
quoted earlier, we obtain D = 2.8 as the iner-
tial-range dimension of the set of nonzero dis-
sipation according to the B-model. This
dimension describes an object that does not b
fill a volume, since its dimension is less than
(although quite close to) three. The set of non-
zero dissipation gradually thins out as it is

examined at smaller and smaller inertial- ILj
|

range scales. Of course, once the Kolmogorov
scale is reached, the set is revealed to be a
volume of space, rather than a fractal, but as
the Reynolds number is increased the volume
occupied by the dissipation shrinks to zero.
Some general comments regarding fractals Figure 7.6. The first two stages in the iterative ¢
may be in order. Firstly, not all sets have a  struction of a fractal.
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Kolmogorov dimension, since it
can happen that the limit (7.83)
does not exist. This is one reason
why mathematicians tend to pre-
fer a different (more complicated)
definition of dimension due to
Hausdorff. Although the
Hausdorff dimension has the vir-
tue that it always exists, it is
harder to use in practice because
of its more complicated defini-
tion. The two definitions are clo-
sely related and concern the fine-

scale structure (r — 0) of an
Figure 7.7. Image showing scalar concentration in a turbulent jet object.'s The definition of the
based on measurements using fluorescent dye. Data analysis indicates
that contours of constant concentration are fractals. (Prasad and
Sreenivasan (1990), reproduced with permission.)

Kolmogorov dimension suggests
a simple method for practical
measurement of D. Given an
object: cover it in spheres of size r and plot the logarithm of the minimum number
required as a function of logr. A straight line indicates the existence of a
Kolmogorov dimension equal to minus the slope of the line. This method of finding
D is known as the box-counting algorithm (note that covering with cubic boxes and
spheres produces identical results for D). Needless to say, no object that derives from
the real world is truly a fractal because it will always be smooth when looked at on a
sufficiently fine scale'® (at scale 7 in the present case). This is an inherent limitation of
fractal models. Nonetheless, close approximations to fractals have been found to
occur in other natural examples, including coastlines and cloud shapes. Figure 7.7
shows an experimental image of dye fluorescence in a turbulent jet, whose contours
of constant fluorescence intensity, representing those of dye concentration, arc found
to yield fractals. This illustrates the fact that the convection of scalar quantities by
turbulence tends to generate fractal isoscalar surfaces.

To bring this section to a close, we discuss the statistical properties of the dissipative
range, beginning with the probability distribution of du(r). The flatness factor of 8u:

Sujl(r)
(@)’

is one possible measure of the importance of the tails of the probability distribution
{see Chapter 2) that would be independent of r if the distribution were self-similar {and
equal to three if 5u were Gaussian). Assuming that the moments of 8, are governed by
the same power laws, (7.76), as those of |3u|, we have T 74722 of which the expo-
nent can be estimated from Figure 7.5b as about —0.1, representing a slow increase of

(7.85)

15 Vassilicos and Hunt (1991) emphasize the difference between the two dimensions and suggest that the
Kolmogorov dimension may be more appropriate to turbulence. The question is far from settled and we
do not discuss the issue further.

18 It follows that the statement that a physical object has fractional dimension D, ought also to give the
range of scales for which this is true.
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the flatness factor with decreasing inertial-range r due to intermittency. Observations
indicate that T begins to increase more rapidly as the dissipative range is entered,
indicating that the form of the distribution function of du(r) departs from that in the
inertial range, developing more pronounced tails. Thus, rare, large fluctuations
become more common, a feature compounded at high Reynolds numbers by the
intermittency inherited from the inertial range, which also tends to emphasize the
tails of the distribution functions, as we discussed earlier. The value of T, and hence
the form of the distribution function, varies across the dissipative range, until, at small
enough separations, one may use the one-term Taylor’s series

Su:
Su; = —

—y.
! Bx, /

(7.86)

to relate du(r) to the first derivatives of velocity, at which point it becomes statisti-
cally self-similar, but with different statistical properties than in the inertial range,
properties that are determined by those of the velocity derivatives. Furthermore, the
similarity scaling as 8u o 7 is different from that, su o r'/?, which would be implied
by inertial-range similarity.

Since dissipative scales arise from the cascade, their statistical properties are deter-
mined by, though different from, those of the small scales of the inertial range. In
consequence, the dissipative-range statistics depend on both the statistical input from
the large scales into the top end of the cascade, which may vary with the flow
considered, and the distortion of the statistics resulting from transmission across
the inertial range, which varies with the width of that range, and hence with Re;,
albeit only slowly for the main parts of the probability distribution functions. Thus,
changes in either the large-scale statistical input or in Re; may alter the statistics
expressed using Kolmogorov dissipative-range scalings, and hence invalidate univers-
ality in that range. The intensity of the inertial range fluctuates owing to random
variations in the large scales and cascade, producing random changes in the size and
intensity of the dissipative range scales. The higher the intensity of the inertial range,
the higher the effective Reynolds number at any given scale, and hence the smaller the
scale at which viscosity eventually becomes important. This is similar in nature to the
reduction in the Kolmogorov scale, (7.37), when Z is increased, although € measures
the gverage inertial-range intensity, rather than the random fluctuations we have in
mind here. It is as if the Kolmogorov scale, characterizing the size of the dissipative
scales, becomes a random variable, along with the intensity of such scales.

In the far dissipative range, consisting of sufficiently small scales that the velocity
field is smooth in all but very occasional realizations, one may use (7.86) to relate
velocity differeénces and derivatives, at least for the main parts of their probability
distributions. Since the turbulent dissipation rate, ¢, is determined by the velocity
derivatives (see equation (4.26)), its statistical properties can be derived from those of
the derivatives. As noted above, the distribution functions in the dissipative range,
including those of 8u, tend to have more pronounced tails than in the inertial range.
This is reflected by more frequent, though still rare, large fluctuations in, for instance,
the velocity derivatives and dissipation rate.

A striking variety of small-scale intermittency is observed if, rather than differen-
cing the velocity field to obtain du(r), one uses other filters to suppress more strongly
the large-scale, low-frequency components. Historically, this was the first form of
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small-scale intermittency to be recognized. For instance, Batchelor and Townsend
(1949) measured the velocity at a fixed point in grid turbulence and applied succes-
sive time derivatives. The velocity itself fluctuates randomly, but shows no obvious
periods of inactivity (see Figure 3.1a). Taking the derivative of the velocity empha-
sizes the small-scale “fur,” as discussed in Chapter 3, and the results are dominated
by the dissipative scales of turbulence (see Figure 3.1b}, but again show no obvious
periods of calm. However, as the order of the derivative is increased, periods of
activity, separated by intervals of calm, become clearly evident. The process of taking
derivatives filters the velocity field, suppressing low-frequency Fourier components in
favor of high-frequency components. The higher the derivative that is taken, the
higher the frequencies that remain after the filtering operation. A filter can be con-
sidered either as a convolution with some filter function in the time domain or,
equivalently, as multiplication of the Fourier transform of the time signal by a func-
tion of frequency called the transfer function of the filter. As usual, one may adopt
the Taylor hypothesis to translate results into spatial terms, thus interpreting time
signals as spatial line cuts through the flow. Taking the velocity difference, du(r), in
physical space is equivalent to multiplying the spatial Fourier transform by ¢* — 1,
which goes to zero at k = 0 and therefore suppresses the large scales, as does the
derivative 8/dx;, which has the transfer function ik; and may be obtained from du(r)
via the limit r — 0. A single derivative suppresses wavenumbers below the dissipa-
tive range, while high derivatives correspond to high powers of wavenumber and
emphasize far-dissipative wavenumbers at the expense of lower ones. A high-pass
filter, which suppresses low wavenumbers completely, may be constructed by taking
a transfer function that is 0 for |k| <k, and 1 for k| > k., where &, is a cutoff
wavenumber, whose value can be chosen freely. Increasing &, through the dissipative
range of wavenumbers, the output of a high-pass filter is found to become more and
more obviously intermittent, showing isolated bursts of activity, just as when taking
derivatives of increasing orders. Both processes strongly emphasize high dissipative
wavenumbers, and we conclude that the higher the dissipative wavenumber consid-
ered, the more sporadically it appears in the flow.

Using a high-pass filter with &, in the far dissipative range, or taking a high
derivative, is thought to focus on rare events for which the dissipative scale happens
to be exceptionally small because the intensity of the inertial range is atypically large.
That this occurs only infrequently is the reason why the filter output shows isolated
bursts of activity. It may be useful to think of this process in spectral terms. The effect
of a filter is to multiply the spectrum by the squared modulus of its transfer function.
Thus, a high-pass filter sets the spectrum at wavenumbers below &, to zero, while
high derivatives multiply the spectrum by correspondingly high powers of the wave-

,number. Since the raw spectrum probably has exponential decay in the far dissipa-
tive range, either filter yields an output with exponentially small energy, which is
concentrated at high dissipative wavenumbers, that is, very small scales. The spec-
trum is defined in terms of the average properties of the turbulence, namely the
velocity correlation functions, and is not a random variable, but, qualitatively, one
may think of the effects of fluctuations in the energy flux to the dissipative scales as
random variations of the location of the exponential falloff in the spectrum (the
“knee”” in any one of the spectra of Figure 7.1). Such variations produce very
large percentage fluctuations of the spectral level in the far dissipative range,
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owing to exponential decay there. After filtering to suppress lower wavenumbers,
these large fluctuations appear as highly sporadic output. The spectral interpretation
of observed intermittency following dissipative-range filtering is due to Kraichnan
(1967).

7.6 Conclusions

In this chapter we have covered quite a wide range of important topics. In particular,
using the spectral methods of the previous chapter, assuming high-Reynolds-number,
developed turbulence, we have recognized as many as three asymptotic ranges of
wavenumbers and corresponding scales in physical space: large energy-containing
scales at small wavenumbers, small dissipative scales at high wavenumbers and, if
Re; is sufficiently large, an intermediate zone, called the inertial range. The smallest
scales are of size O(n), where 7 is the Kolmogorov scale, which is fixed by the energy
supply from the large eddies, and the viscosity. Thus, the smallest scales adjust their
size so as to dissipate the energy delivered to them by the cascade. Kolmogorov’s
theory supposes that the dissipative and inertial-range scales have universal statistical
properties when suitably scaled. In particular, the scaled spectrum takes on a uni-
versal form when the nondimensional wavenumber, k7, is used. If there is an inertial
range, one obtains the famous k=% energy spectrum there, corresponding to a r'/3
law for velocity differences. The asymptotic separation of energy-containing and
dissipative scales is expressed by L/n = O(Rei/ 4.

According to Kolmogorov’s theory, provided the Reynolds number is high
enough, the small scales are insensitive to the particular turbulent flow in which
they find themselves, apart from the value of . However, the large scales have an
intimate relationship with the overall flow and vary considerably in their properties
according to the specific flow considered. For high-Reynolds-number homogeneous,
isotropic turbulence without mean flow, in particular grid turbulence, we found that
the large scales probably approach self-similarity, but that the small ones do not
generally participate in that similarity. As the turbulence decays, the value of Re;,
and hence the separation of scales between the large and smallest, decreases.
Eventually, the Reynolds number is no longer sufficiently large that there is a clear
separation, the turbulence goes through an adjustment phase, emerging into its final
phase of decay, again self-similar, in which there is no large separation of scales and
no cascade, and the turbulence decays passively under the effects of viscosity (the
turbulence is effectively dead).

Although Kolmogorov’s original theory is good enough for many purposes, we
have seen that the assumption on which it is based, that the properties of the small
scales are determined solely by Z {and v in the case of the dissipative range), is not
strictly valid. As a result, universality of the scaled statistical properties of the small
scales, and, in particular, of the inertial-range spectral constant, C, and dissipative
range spectral form do not hold true for general flows. Such lack of universality
reflects differences in the large-scale statistics of different flows. One may recover the
inertial-range power laws for the structure functions, and in consequence the k=3
spectrum, using the weaker hypothesis of inertial-range statistical self-similarity, but
universality of C and of the dissipative-range spectrum are lost. This does not mean
that there need be huge variations of these quantities between flows, of course, and



324 THEORIES BASED ON SPECTRAL ANALYSIS

indeed many observations indicate similar values for the Kolmogorov constant and
scaled dissipative-range spectrum in different flows. Such modest variability may be
connected with the small exponents occurring in expressions such as C o y'/3,
derived earlier for the flow with sparse turbulent patches, with y the fraction of
the time the flow is turbulent. The small exponent suggests that changes with the
large-scale properties of the flow should be mild, as do the small exponents occurring
in the expressions for the Kolmogorov dissipative-range scalings as functions of €.

Since the revised version of Kolmogorov’s theory is based on inertial-range sta-
tistical self-similarity, departures from similarity will generally invalidate the theory.
Such departures are referred to as inertial-range intermittency and measurements of
the structure functions, x,(r), indicate that they obey inertial-range power laws as a
function of r, with exponents, ¢,, which do indeed appear to depart from the
Kolmogorov value, ¢, = p/3, at the high orders. However, the discrepancies are
rather small at low orders. In particular, the velocity correlations and spectra
(p = 2) show departures which are negligible for most purposes, thus leaving the
well-verified K=/ law essentially intact, although there may be intermittency correc-
tions to the spectral exponent of the order of a few percent.

The larger departures from ¢, =p/3 at higher orders suggest that the scaled
statistical properties of Su(r) are systematically modified by transmission through
the inertial-range cascade, in particular the tails of the probability distribution func-
tions, which become more pronounced at smaller scales. For sufficiently long inertial
ranges, requiring very large Reynolds numbers, the main parts of the probability
distributions may also be modified by their transmission through many generations
of the cascade.

Appendix: Kolmogorov’s Four-Fifths Law

Using (7.67) to express du(r) in (7.70) gives
Suy = ’? {s0x + 1) — (%)) (7.A1)
whose cube is taken and averaged to obtain

814 = “E2 (ot DX T Dty(X + ) — 4,004,314, ()

(7.A2)

+30,(x + D) ()t (%) ~ (X)X + Dt (x + 1)}

of which the first two terms in brackets cancel by homogeneity (they are, in any case,
both zero by isotropy). The others can be determined using homogeneity and
(6.134), leading to

=3 1im

83 = 35 Qupu(r) — Qipn(—T)) (7.A3)
r

which can be further simplified from (6.135) and (6.140) as

b = 6uK(r) (7.A4)
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The quantity K(r), appearing in (7.A4), is related to the spectral transfer via
(6.149), which we write as

13 poo
T(k) = ”YJ A(r) kr sinkr dr (7.A5)
0
where
_ 10184
Al = ror (r ar (r K)) (7.A6)
The inverse of the transform (7.A5) is
A(r) = %J Tek) ™% 41 (7.A7)
u 0 kr

and it may be observed that the transform pair, (7.AS5), (7.A7), are exactly analogous
to (6.116), (6.117).)” We next evaluate (7.A7) asymptotically for large Reynolds
number and inertial-range .

When r is in the inertial range, the function (sin k7/kr) in (7.A7) is close to 1 for
energy-containing wavenumbers, £ = O L_1>, while it oscillates and decays as &
increases through & = O(r™!}, to become negligible at dissipative wavenumbers. It
will be recalled (see Figure 6.5) that T(k) has a strong negative peak in the energy-
containing range, which dominates the integral in (7.A7). Indeed, from (7.31) and
(7.33) it is apparent that the integral of T(k) from £ =0 up to any point in the
inertial range is —g, being dominated by energy-containing-range contributions.
Thus, approximating (sin kr/kr) by 1 over the energy-containing range of &, the
integral in (7.A7) has the inertial-range value —z, leading to

28

A ~ — =
() u13

(7.A8)

at inertial range 7. Substituting (7.A8) into {7.A6), one may integrate to find
2er
15u’3
where we have ignored possible terms of the form #~* and #~*, which are solutions of
the homogeneous version of the equation for K(), on the grounds that such singular
behavior as r — 0 is inadmissible. Finally, we employ (7.A4) to derive (7.69).
Note that Kolmogorov’s original hypothesis that the small scales are controlled by

€ has not been employed in deriving (7.69). Indeed, no universality assumption is
required for Kolmogorov’s four-fifths law to hold.

K(r) ~ — (7.A9)
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