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Prediction of Turbulent flow — Part 2

By: M. Farhadi
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Figure 3.1 A“stationary”random flow event. (Created by N. Cao).
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The probability of a random event, Event A for example, can be written as // P Jurt 1.7 "') e~

ﬁﬁmﬂtﬂw
p=P(A)=P48m/s U <4.9m/s}
where p is a real number between 0 and 1,thatis,0 < p < 1
__\1/2
The root-mean-square (RMS) can be defined from the second moment as Vrms = (T;ﬁ?)

The RMS is the same as the standard deviation which 1s equal to the square-root of the variance.

probability densities (sometimes called histograms) U= / vfy(v)dv / Jo(v)dv =1

— 00

the variance of the fluctuations

_ O
v'2 :/ v for (v dv'
—00
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(a) Point 1. vyrms = 2.15. (b) Point 2. vrms = 0.23. {c) Point 3. vyms = 1.44.

Figure 7.1: Time history of v'. Horizontal red lines show +v,.,,,..
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Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red lines show
+v,ms. The skewness, S, and the flatness, F', are given for the three time histories.
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Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex- / 2/ J
ists large positive values but no large negative values. The positive values are =——--‘«f _f Lot 3.7 R’;’
often larger than +v,.,,s (the peak is actually close to 8v,,,s) but the I]E:gdl’iVE e Pt i il =~
values are seldom smaller than —v,.,,,c. This indicates that the distribution of v’

1s skewed towards the positive side. This i1s confirmed in the PDF distribution, e Gl e

see Fig. 7.2a. found as:

Point 2. The fluctuations at this point are much smaller and the positive values are as Basic of Engineering
Turbulence, 2000, pp.

large the negative values; this means that the PDF should be symmetric which is 50- 64
confirmed in Fig. 7.2b. The extreme values of v’ are approximately +1.50,,,,

see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-
tered around zero and much values are within +v,,,.. The time history shows
that the positive and the negative values have the same magnitude. The PDF
function in Fig. 7.2¢ confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative values are equally frequent
(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking™ at
the probability density functions, we should use a definition of the degree of symmetry,

which is the skewness. It is defined as ; R ;
For a Gaussian distribution

_!ri > 3 ! ! 1 1 (U! Lnn.‘;)z
F= [ fu (@) ) = e (g
and is commonly normalized by v? . so that the skewness, S,/, of v’ is defined as namely the ﬂame.ﬁ‘.
oo T 1 >
]_ . ]_ ’ o 1'“1 1 d H
50 = Ry —— Fe [ 0o
‘ ?T:'jms* /—-:sc ft ( ) 2v rms‘T =T ( ) vgmﬁ — Do
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Convection.

Production, P*. The large turbulent scales extract energy from the mean flow.
This term (including the minus sign) is almost always positive. It 1s largest for
the energy-containing eddies, 1.e. for small wavenumbers, see Fig. 5.2. This term
originates from the convection term (the first term on the right side of Eq. 8.6).
It can be noted that the production term 1s an acceleration term, 'I.-T;,- 0v; [0z, mul-
tiplied by a fluctuating velocity, v, i.e. the product of an inertial force per unit
mass (acceleration) and a fluctuating velocity. A force multiplied with a velocity
corresponds to work per unit time. When the acceleration term and the fluctuating
velocity are in opposite directions (i.e. when P* > (), the mean flow performs
work on the fluctuating velocity field. When the production term is negative, it
means that the fluctuations are doing work on the mean flow field. In this case, 'L-‘;-
and the acceleration term, ’L-‘}@'ET' /Ox j, have the same sign.
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III The two first terms represent turbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The last term is viscous diffusion.
The velocity-fluctuation term originates from the convection term (the last term

IV Dissipation, . This term i1s responsible for transformation of kinetic energy at
small scales to thermal energy. The term (excluding the minus sign) is always

positive (1t consists of velocity gradients squared). It is largest for large wavenum-
bers, see Fig. 5.2. The dissipation term stems from the viscous term (see Eq. 8.12)
in the Navier-Stokes equation. It can be written as U’.‘S‘T" /Ox;, see Eq. 4.1_The

divergence of T-- is a force vector (per unit mass), i.e. 7/ = (37" /Ox;. The

dissipation term can now be written r’T’ which 1s a scalar product between two
vectors. When the viscous stress vector 1s in the opposite direction to the fluctuat-
ing velocity, the term 1s negative (i.e. it 1s dissipative); this means that the viscose
stress vector performs work and transforms kinetic energy into internal energy.

=

2
Tij = 2uSi; — g;.sSkka-j

o} d (Jdv; Odv; 0% v; OT:: 2
Ox; I dz; \O0x; O, ozx;0r; 9 z; M an 8:::_,,,-

d (E}bj)_ e, (E}Lj)_n
ﬁa:rj dx; 'ué‘;n ox; )
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The velocity gradient for an eddy characterized by velocity v,. and lengthscale /,; can be estimated as
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i.e. £(x) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be
used for estimating the velocity gradient of an eddy

The cascade process assumes that ex=€c=0v b= 02)73 = ]/78
. ey 4- . 12 3 2 3
this energy transfer per unit time is the \ b/ = G5/ 75
. 2 2 3
same for each eddy size I S

"t f.',c/t,!ﬁ . _
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The exact v;v; equation
An exact equation for the Reynolds stresses can be derived from the Navies-Stokes equation

e Set up the momentum equation for the instantaneous velocity v; = 7; + v) —

Eq. (A)

e Time average — equation for v;, Eq. (B)
e Subtract Eq. (B) from Eq. (A) — equation for 'U; Eq. (C)

e Do the same procedure for v; — equation for L*;-, Eq. (D)

Multiply Eq. (C) with 1:3 and Eq. (D) with v}, time average and add them together

= N
— equation for v;v
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The final v' 1" -equation (Reynolds Stress equation) AP (f

v :?; . {3‘1*21'3 B Wa-ﬁj 7 —— O7; _I_-p" (E}n; N f}i:})
ot . r}‘;r;g o k oz "‘5‘3‘;; p \Odz; Ozx;

Ct'j Pij- ng

!oyf 200 ol

_i ool + PY; S + pvf V] PUis | +u J Uil;

33?;; v .k ‘ J ] r}r;ﬁ:rk
Dij 4 Dij

3‘1, v;

—g; Bv.0 — g: V0 —
. JiPY; 93P vi : r}r;: r}:r;g
G Ei;

where [);;; and [);;, denote turbulent and viscous diffusion, respectively. The total
diffusion reads D;; = D;; + D;j,. This 1s analogous to the momentum equation
where we have gradients of viscous and turbulent stresses which correspond to viscous
and turbulent diffusion.

C;; Convection Cij = Pij +Ilij + Dij + Gij — &35

P;; Production D;; Ditfusion

.. Pressure-strain (i Buoyancy production  €ij Dissipation
‘IJ [ P [
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Which terms in Eq. 11.11 are known and which are unknown? First, let’s think
about which physical quantities we solve for.

U; 1s obtained from the momentum equation,

viv; is obtained from the modeled vjv’; equation 39 wles jugy ;) g dmwlomo YU doleo 29,5

!
ti

of
J
Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)

e The left side e The production term, F;; e The viscous part of the diffusion term, D;;, 1.e. D;:"j

e The buoyancy term, GG;; (provided that a transport equation is solved for W
Eq. 11.22; if not, v;6’ is obtained from the Boussinesq assumption, Eq. 11.35)

T 0
33:1-
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v’ J _ — — 0 — O, 6” p 0 - / / N —
L 0 = —viv] — — VL0’ ) ulg) 7.
Fio II;p Dia ¢ ety s S
— (11.22)
v\ 0% 3? o0’
+ (v - ) — — (v +a) 93072
83?;;33:;;_ ] 31.‘;; 331 I(__—I
Dig. . £io e
U; 1s obtained from the momentum equation,
= . . .90 Ovf 0?6 dvle’

f is obtained from the temperature equation, 4 —

ot | oz, < ozr,0r, O,

v;v’; is obtained from the modeled v}v’; equation,

vif' is obtained from the modeled v’ equation

Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)

e The left side
e The production term, F;g
e The viscous diffusion term, D;g .,

e The buoyancy term, (9 (provided that a transport equation is solved for 672 if
not, #"? is usually modeled via a relation to k)
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By taking the trace (setting indices i = j) of the equation for v/v’, viv} and dividing by two e
we get the equation for the turbulent kinetic energy:
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v; 1s obtained from the momentum equation, ......«vf’ . F et 2.7k —
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k is obtained from the modeled & equation,

e The left side e The viscous diffusion term, Dg‘iy e The buoyancy term, G;;
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Navier-Stokes equation
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The Modelled = Equation Navier-Stokes equation <, . ¥ K

L ’,J;»'Jﬁf Soir” 4'('»" M
du;  Ou  dp 0w N e,
Ny — 20 y— u;) =0
N(Ug) P 8t +Puk 833}; + 3.’.[3,; ”63:;.:6:8;0 ( )
du, 0
2=t (A (u;)] =
Oz; Ox;j A ()] ) Production of Dissipation
' — N\
: 277,
pﬁ+pU*~?~i:—2p[uf w4+ ul ul -]—a-yi-—?pu’u"m 9 Ui
at Ja.’.ﬂj 5,k 71,k ki kg 313j kg 8.’5;;327_7*
Y !
C e e e s e —24 ui,kui,muk,mHQ”Vug,kmu:‘,km
Diassipation of Dissipation, 5 5
¢
R I ) I
+81'L'J' [ﬂaﬂ';j. H ujuijmui:m 2v pfmu.;:m

\ _/
Y

Molecular Diffusion of Dissipation and Turbulent Transport of Dissipation,

This equation is far more complicated than the turbulence kinetic energy
equation and involves several new unknown double and triple correlations of
fluctuating velocity, pressure and velocity gradients.
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I. Algebraic models. s o & ‘Q A P A
georaic m —ul_uj ‘,SLQ**“ S 0 AT 9 04 (Furt 3.7 o
I1. One-equation models. 3 o o) B ity N

III. Two-equation models.

IV. Reynolds stress models

Non-linear Eddy-viscosity Models

I. Algebraic models. An algebraic equation is used to compute a tur-
bulent viscosity, often called eddy viscosity. The Reynolds stress ten-
sor is then computed using an assumption which relates the Reynolds
stress tensor to the velocity gradients and the turbulent viscosity. This
assumption is called the Boussinesq assumption. Models which are
based on a turbulent (eddy) viscosity are called eddy viscosity mod-

II. One-equation models. In these models a transport equation is solved
for a turbulent quantity (usually the turbulent kinetic energy) and
a second turbulent quantity (usually a turbulent length scale) is ob-
tained from an algebraic expression. The turbulent viscosity is calcu-
lated from Boussinesq assumption.
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III. Two-equation models. These models fall into the class of eddy vis-
cosity models. Two transport equations are derived which describe
transport of two scalars, for example the turbulent kinetic energy £
and its dissipation . The Reynolds stress tensor is then computed
using an assumption which relates the Reynolds stress tensor to the
velocity gradients and an eddy viscosity. The latter is obtained from
the two transported scalars.

IV. Reynolds stress models. Here a transport equation is derived for
the Reynolds tensor ;5. One transport equation has to be added for
determining the length scale of the turbulence. Usually an equation
for the dissipation ¢ is used.

Boussinesq Assumption

Boussinesq assumption, where the Reynolds stress tensor in the time averaged
Navier-Stokes equation is replaced by the turbulent viscosity multiplied by the
velocity gradients.

— (T - L [T . P —
pui; = — (Ui + Ujq). i = j T = 2k
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puity = — (Ui j + Ujq) + gﬁ.&jpk. 51']' ifizj 0 A if et s

Note that contraction of ¢;; gives

0jj =011 +022+d33=1+1+1=3

Algebraic Models
MIXING LENGTH MODEL

a length called mixing length which 1s the average
distance perpendicular to flow a small fluid mass
will travel before its momentum is changed by new

environment.
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Fluid, which comes to the layer y; from a layer (y+- [) has a positive value of y'. If the lump of fluid retains its

original momentum then its velocity at its current location y; is smaller than the velocity prevailing there. The
difference in velocities is then

put = il )—itly, 1) o 2 P~ ] _]

\ @} »1 o - o
— or, |v'| = (const)lu | = (const )i 5
- - Ou
v
' v A
— 1 Ou ’
b = — (s |+ | ) = 2l —
uy=- IP "Vl ~ Proportional to u” \\; jﬁ(y)
=i '
v = -, - : ity 1 |
S adatadir> x Ly )
==, Ou _ l 1 iy, - )
Ty — _pu = ﬂt = au
®_— vz = I: ¥
oy
,’; f",/‘!‘:f’“/i 77 ']_,"‘: ,}:::{;jf' 1;’,- )(,’ {;’F 7 ) 7 7 ",«"’ {,-“‘ 7 ,’/ 7 / /‘ ,af” b
By: M Farhadl
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1|0 K is an empirical constant s T

V =.!? e — ~ - e
! [ = k) for von Karman’s constant « turns out to be 0.4
ou
Vt — K2y2 T~
Oy
}}.+
the van Driest (1956) model assumes [ . =ky[1—exp P

where AT =26,y" = yu*/v,u* = \I(I‘w;"p), r_1s the wall shear stress (Smith
and Cebeci, 1967; Baldwin and Lomax, 1978).
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Cebeci-Smith Model [ v, v<ym o e~
pT =
JuToa y > ym

where y,, 1s the smallest value of y for which pq. = ur,. The values of up
in the inner layer, p1,, and the outer layer, ur , are computed as follows.

Inner Laver: Outer layer:
au\2  fov\2]

* -

uT, = ploi (_6?) + (67) nt, = apU.8; Ficien(y; 6)
_ut/at —1/2

Uiz = KY [1—8 v } k=040, o=00168, A" =26 {1+ydp/f’”]

puz

Friep 18 the Klebanoff intermittency function
y\6] 7" 6*:/6(1--U/U)dy
Frep(y;6) = [1 + 5.9 ('g) ] o )

velocity thickness

U 1s boundary-layer edge velocity
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Baldwin-Lomax Model Outer Layer:
wr, = paCepFuake Frieb(Y; Ymaz/CKlieb)
Inner Layer:

BT, = pf?nim[wl Fuyake = min ['ymameam; kaym.angif/Fmax]
~y* /AS 1
bniz = kY |1 — e ° Fonar = — max(ﬂmm|w|)
K Y

where ymaqqy 15 the value of y at which £,,;.|w| achieves its maximum value,

k= 0.40, o =0.0168, Aj = 20
Cep =16, Ckiep =03, Cuyp=1

6 - 1/2
FKleb(y§6):[l+5-5(%)] _|fav _auN' fow av' ou ow)? /
T’j —’ Y= Oz dy dy 0z Oz oz

w is the magnitude of the vorticity

— § replaced by ymaz/CKiet

24 Turbulent Flow Modeling, By: M. Farhadi



/(H/2) 10 Y on iy =
y wf __M{/‘% {jlm’ }»Jt/' ";{9 M
- —

1.0 20 T T TTTTTIT T rrrrm DR TS i ROTIE T 25

0.8 10 - o s

0.6 k- 4 o

5 = —

04 | . |

0.2 } 2 F =

0.0 & 1 L1 1 bl 1L 3 1iiid

00 02 04 06 08 1.0 103 104 10°
UfUm Rey
y/(H/2) Ulur

1.0 T 20 T T T T T TTTI

0.8 -

0.6 =

0.4 -

0.2 -

0.0 &a 0 t I 0 L1 r L1 114111

0.0 02 04 06 0.8 1.0 1 10 100
—w'v fu2 ury/v
Figure 3.13: Comparison of computed and measured channel-flow properties,
Rey, = 13750. Baldwin-Lomax model; - - - Cebeci-Smith model: o Mansour
et al. (DNS); o Halleen-Johnston correlation.
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Figure 3.14: Comparison of computed and measured pipe-flow properties,

Rep = 40000.

o Prandtl correlation.
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Baldwin-Lomax model; - - - Cebeci-Smith model; o Laufer,
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Flat plate boundary layer flow
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Table 3.1: Differences Between Computed and Measured Skin Friction.

Pressure Gradient Flows Baldwin-Lomax | Cebeci-Smith
Favorable 1400, 1300, 2700, 6300 T% 5%
Mild Adverse 1100, 2100, 2500, 4800 6% 7%
Moderate Adverse 2400, 2600, 3300, 4500 10% 15%
Strong Adverse 0141, 1200, 4400, 5300 14% 16%
All — 9% 11%
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The turbulent viscosity is estimated — using dimensional analysis — as the product of a
turbulent velocity, U, and length scale, £,

vi x UL The velocity scale 1s taken as k1/2 and the length scale as k:vz,fz—: which gives
k'.‘?
Vy = C,,Li —
p) 3/2 kz -
Uy~ U Xy~ k,]/“ X k;/“/fh and hence, v, = C,,j C, =0.09.

28 Turbulent Flow Modeling, By: M. Farhadi



29

Turbulent Flow Modeling,

(% - ﬁ /
Ji'y‘ u M/} g 1‘} “M/“;
" —

(LA

i 5 N s
e g et ! i

By: M. Farhadi



