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Prediction of Turbulent flow — Part 4

By: M. Farhadi
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Realizability

There are a number of realizability constraints. The usual two ones are that all normal

stresses should stay positive and that the correlation coefficient for the shear stress
should not exceed one, 1.e.

02 > 0 for all i

— < 1 no summation over ¢z and j, 7 # j

These criteria are seldom used in RSMs. However, satisfying the first criteria 1s actually of
importance for eddy-viscosity models in stagnation flow
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It is seen that if 51, gets too large then v}* < 0 which is nonphysical, i.e. non-realizable

Let's now briefly repeat the concept “invariants”. This means something that is independent of
the coordinate system S (RS
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The eigenvalues of 5;; correspond to the strains in the principal axis.
———w : 1 — 9
Hence, 511 1nis replaced by the largest eigenvalue so that v = Ek — U\
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The requirement v}* > 0 gives < = — ) — 25i55i;
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This 1s a simple modification of an eddy-viscosity model, and it ensures that the normal
stresses stay positive.

Another extension of the k-£ model was developed by Yakhot et al. With

techniques from renormalization group theory they proposed the so-called [RNG k-2 model
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Comparison between RANS models —

Cost and ease of use

In this discussion we take the k—¢ model as a reference: the model is

incorporated into most commercial CFD codes, and it 1s generally regarded

as being easy to use and computationally inexpensive when 1t 1s used in
conjunction with wall functions.

| If wall functions are not employed, the task of performing k—¢ calculations |
'for the viscous near-wall region is significantly more difficult and expensive. |
i This 1s due to the need to resolve k and & (which vary strongly in the near-:
Iwall region); and also to the fact that the source terms in these equationsI
Ibecome very large close to the wall. (In the log-law region, the term C,&*/k |

:varies as u?/y%.) |

The Spalart-Allmaras model i1s — by design — much simpler and less
expensive for near-wall aerodynamic flows. This is because, compared with
k and g, the turbulent viscosity vr behaves benignly in the near-wall region,
and 18 more easily resolved.
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In comparison with the k—e model, Reynolds-stress models are somewhat
more difficult and costly because

(1) in general there are seven turbulence equations to be solved (for (uu;)
and ¢) instead of two (for k and &);

(ii) the model Reynolds-stress equation is substantially more complicated
than the k equation (and hence requires coding effort); and

(ii1) in the mean-momentum equation, the term
°
0X;
results in a less favorable numerical coupling between the flow and
turbulence equations than does the corresponding term

0 [vT(‘XU*‘) + 5<Uf>)} in the k—& model

Ec—; 0X; 0X;

u,-uj)
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Typically, the CPU time required for a Reynolds-stress-model calculation
can be more than that for a k—¢ calculation by a factor of two.

The primary motivation for the use of algebraic stress models 1s to avoid
the cost and difficulty of solving the Reynolds-stress model equations. How-
ever, the general experience 1s that these benefits are not realized. The
algebraic stress model equations are coupled nonlinear equations, often with
multiple roots, which are non-trivial to solve economically. In addition, with
respect to item (ii1) above, algebraic stress models have the same disad-
vantage as Reynolds-stress models. As discussed in the previous section,
algebraic stress models can be recast as nonlinear viscosity models. These
add little cost and difficulty to k—e-model calculations.
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Range of applicability

The basic k-¢ and Reynolds-stress models can be applied to any turbulent
flow. They also provide lengthscale and timescale information that can be
used in the modelling of additional processes. Consequently, they provide a
basis for the modelling of turbulent reactive flows, multi-phase flows, etc.
Model transport equations for the scalar flux can be solved in conjunction
with a Reynolds-stress model to provide closure to the mean scalar equations.
Such so-called second-moment closures have successfully been extended to
atmospheric flows in which buoyancy effects are significant (e.g., Zeman and
Lumley (1976)). Although it can, in principle, be applied to any turbulent
flow (in the class considered), the Spalart-Allmaras model is intended only
for aerodynamic applications.
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Accuracy

(i) The k—¢ model performs reasonably well for two-dimensional thin
shear flows in which the mean streamline curvature and mean pressure
gradient are small.

(1) For boundary layers with strong pressure gradients the k—& model
performs poorly. However, the k-« model performs satisfactorily,
and indeed its performance is superior for many flows.

(1) For flows far removed from simple shear (e.g., the impinging jet and
three-dimensional flows), the k—¢ model can fail profoundly.

(tv) The use of nonlinear viscosity models is beneficial and allows the
calculation of secondary flows (which cannot be calculated using the
isotropic viscosity hypothesis).
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(v) Reynolds-stress models can be successful (whereas turbulent viscosity
models are not) in calculating flows with significant mean streamline
curvature, flows with strong swirl or mean rotation, secondary flows
in ducts, and flows with rapid variations in the mean flow.

(vi) Reynolds-stress-model calculations are sensitive to the details of
the modelling of the pressure-rate-of-strain tensor, including wall-
reflection terms.

(vi1) The elliptic relaxation models (both Reynolds-stress and k—&-v?) have
been quite successful in application to a number of challenging two-
dimensional flows, including the impinging jet, and separated bound-
ary layers.

(vii1) The dissipation equation is frequently blamed for poor performance
of a model. For many fiows, much improved performance can be
obtained by aitering the model constants (C,; or C,) or by adding
correction terms. No correction to the dissipation equation that is
effective in all flows has been found.
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The SST (Shear Stress Transport) model is an eddy-viscosity model which
includes two main novelties:

1. Itis combination of a k£ —w model (in the inner boundary layer) and &£ — £ model
(in the outer region of the boundary layer as well as outside of if);

2. A limitation of the shear stress in adverse pressure gradient regions.

The k& — ¢ model has two main weaknesses: it over-predicts the shear stress in
adverse pressure gradient flows because of too large length scale (due to too low dis-

sipation) and it requires near-wall modification (i.e. low-Re number damping func-
tions/terms).

The k& — w model is better than the £ — £ model at predicting adverse pressure
gradient flow and the standard £ — w model does not use any damping functions.

However, the disadvantage of the standard £ — w model is that it is
dependent on the free-stream value of w

In order to improve both the k£ — € and the £ — w model, it was suggested

to combine the two models.
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model into a k& — w model using the relation w = ¢/(8*k), where 8% = c,.

dw d ( £ ) 1 de ¢ d(1/k)

B*k Bk dt T B*  dt

1 de £ dk_ 1 de wdk

T Bkdt [k2dt  Bkdt K di

dt

D_m — i _{_E’i a_m &MR a”' ﬁ 2 . R . 5 avi YL o
Dt dx g 7./ Oxi L dx “ oS o0 ot 55 1) letend 4B VL by, 4
Dw 1 W 1 W
T |7 PE__Pk — | E__lpk‘|_
Dt ~ | B*k k B*k k
Production, P, Destruction, ¥,

1 T v 9%  wvw &k
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Turbulent diffusion, ij

Viscous diffusion, DY,
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e Viscous diffusion term
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In the standard £ — £ model we have 0. = 1 and 0. = 1.3. If we assume that o, = o

in the second and third term of the right-hand side, we can considerably simplify the
turbulence diffusion so that

Oe

DT— 2.!.1"'5 Ok Ow 0 (Ut 3LL5')

= +
Y o0:k0x;0x; Oz

We can now finally write the € equation formulated as an equation for w

0 0 v\ Ow W g 5
8;1*_}.(1 jw) = O [(y—l_gg) ﬁmj]—i_&kp — Buw

n 2 —|— Ly dk Ow
e\ 9z, Oz,

&=C’1—1—0448 (Ceo — 1)B* = 0.0828

T = taiﬂj
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We can now finally write the £ equation formulated as an equation for w

i_(iﬁjw) = i [(u+ Vt) Bw} +ang — Bw”

dx; dx; 0. ) Ox; k
2 V4 (9k aw
cross-diffusion—] E\"7 T o. ) Ox; Ox;

Q= CE]_ —1= 044 [3 - (CEQ — 1)6* = ().0828

Since the & — £ model will be used for the outer part of the boundary layer, the vis-
cous part of the cross-diffusion term (second line) is usually neglected (the viscous
terms are negligible in the outer region). The turbulent viscosity 1s computed as (using
dimensional analysis) k

Vy = —
)

In the SST model the coefficients are smoothly switched from k£ — w values in the
inner region of the boundary layer to &£ — ¢ values in the outer region. Functions of the

form
vk 50(}u} 4gw2k}

B*wy’ y2w | CDyy?

F, = tanh(£*), & = min {max{
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are used. F} = 1 in the near-wall region and F; = 0 in the outer region. The [-
coefficient, for example, is computed as

Bsst = F18k—w + (1 — F1)Br—-

where 5._., = 0.075 and £,_. = 0.0828. Since the standard £ — w model does
not include any cross-diffusion term, the last term in the w equation

should only be active in the k — ¢ region; hence it is multiplied by (1 — F}).

The V2F Model

In the V2F model two additional equations, apart from the k£ and &-

equations, are solved: the wall-normal stress v5* and a function f. This is a model

which aims at improving modeling of wall effects on the turbulence.

15 Turbulent Flow Modeling, By: M. Farhadi



o U
_.--‘J‘//" j Mx}/ j‘) w
e w“{uﬁ?’?’ e e

Walls affect the fluctuations in the wall-normal direction, 'Uf,f., in two ways. The wall

damping of v72 v’? is felt by the turbulence fairly far from the wall (3 < 200) through the
pressure ﬁeld (1.e. the pressure-strain term) whereas the viscous damping takes place
within the viscous and buffer layer (z; < 10). In usual eddy-viscosity models both

these effects are accounted for through damping functions. The damping of v5* is in
the RSM accounted for through the modeled pressure-strain terms ®o5 1, and P99 2,
(see Egs. 11.95 and Eq. 11.96). They go to zero far away from the wall (.1,2 Ej 400).

In the V2F model the problem of accounting fDr the wall damping of v/? is simply

resolved by solving its transport equation. The v/? equation in boundary-layer form
reads (see Eq. 9.16 at p. 107)

apﬁj[E n 8,0@@ . 0,

v op’
= — + — 2v% — pE
D, 924 Bz, (1 + pit) 97+ 292, PE22
in boundary-layer - E
U2 < U1 and 9/0z1 <K 0/0x2. Egp = =3¢

This is a more elaborate model than in RSM

16 Turbulent Flow Modeling, By: M. Farhadi



model 32 U
Add and subtract £5} D ‘(:H i ﬁ) o~
8,01;11:22 8,0’52@ B B i
3.’31 3:&2 N
0 2 op’ V2 o2
—— — Nt — 2 o _ p2
92, (1 + ) s V2 gy PER2 TP e e
In the V2F model P is now defined as
2 ,0p v?
P = _Euza_ﬂ?z — €99 T ?E
Apyvl2 8,01}25 d Av2 2
83’}1 (93?2 - @iﬂg ('u T #t) (?11?2 u p’P - p?&‘

P is the source term in the v’ -equatmn above, and it includes the velocity-pressure
gradient term and the dlfference between the exact and the modeled dissipation. Note
that this term 1s commonly split into a diffusion term and the pressure-strain term as

» ~op _ _ Ougp’  Oug
281’2 3:5'2 8132
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A new variable f = P/k is defined and a relaxation equation is formulated for f
p&f o Zn 1(vF 2
or3 ok T\ k 3
L 1/2
T=max{—,CT(E) }
3 €
(:[)22 C1 2 “U_éz L/t 851 2
—_— = =-——= | + (5
pk T \3 k k \ Oz

3/2 3\ 1/4
L=CLmax{k—,C'n (y—) }
3 €

where ®22 1s the IP model of the pressure-strain term.

das

the following values: ¢, = 0.23, Cr =6, c¢.1 = 1.44, ¢.o =19, 01, = 0.9, 0. =
1.3, C1 =13, C2 =03, CL =0.2, C,, =90.
200202

1
ET5

k=0,@=0 e = 2vk /x5 f=—
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The boundary condition for f makes the equation system numerically unstable.

One way to get around that problem is to solve both the k, £ and v}?, f equations
coupled [64]. An alternative is to use the ( — f model [65] which is more stable. In

this model they solve for the ratio v / k instead of for Uéz which gives a simpler wall
boundary condition for f, namely f = 0.

Modified V2F model

In [66] they proposed a modification of the V2F model allowing the simple explicit
boundary condition f = 0 at walls. They introduced a new variable

f* = f —5ev? /K’

62 6‘1}2
and they neglected the term —5L*
(9$j‘ 3$j k2
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— Ukt —g—
Ox;j dx; |:(p +24) 8:EJ +ET 8 ™
62 )('* 1 ’L‘2 Ph
- . * _ . - - L -
e i (€1- 6% - 3@ -1 + oy
0v; 00, 31-*-
kE __ 1 7 1
= vt (al"} T 83‘}1) E‘):r:j

1/2
T= max{?ﬁ (;) }
3/2 3\ 1/4
L=CLH1&X{]€— C (H ) }
£ 3

Boundary conditions at the walls are

k=0, v°=0
e = 2vk/x}
ff=0

This modified model is numerically much more stable. Note that the modified model
is identical to the original model far from the wall.
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The realizable condition for stagnation flow (see p. 161) is used also for the V2F model,
and they read [66]

. R 0.6k
= min |—, '
€ V6O, 02 (Eijgij)ug
-k:‘vz kﬂfz
L = min ; 1/2
| € V6C,v2 (25;,5:;)
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