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Prediction of Turbulent flow — Part 5

By: M. Farhadi

Turbulent Flow Modeling, By: M. Farhadi
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Large Eddy Simulations 3 St
Filters 5 e
Filtering can be performed through an application of convolution

\J
g
M

Fx) = f G f(x — y)dy.

oo

where the function G(y) should be positive around y = 0 and satisfy lim_, 4
G (y) = 0. We construct this function to have the property of

/ G(y)dy = 1

.0

so that f(x) is the weighted average of f(x) near x. The function G is referred to
as the filter function.
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a The box filter and its b Fourier transform

G(x) = /A (Ix] < A/2) G = sin(Ak/2)
0 (xI>A/2) Ak/2 G(z)

a box filter in the wave space in physical space 1/A

= I (k| <7m/A) sin(mx/A)

G(k) = =

[0 (k| > 7/A) Gl =2—0 | o
—A 0 A
Gaussian filter The Fourier transformed filter in wave space

6 6 o) . - _AZkZ
G(x) =,/ =5 exp (—;) 6w = (-5)
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Large Eddy Simulations ___,@‘ i Mﬂ -!-L“-f-!*

Time averaging and filtering ety ofeies il
1 T _ 1 z+0.5Ax
- — = ‘ O(z,t) = — ®(&, t)dg
(@) = 5= f;T O(t)dt, ® = (®) + @ Az | oonl
b =0+ 9"

The equations for the filtered variables have the same form as Navier-Stokes,

f 71 ( ]_ I} - E_TL ” T
ﬂ?? + lc')‘ (’Eiﬂj)=——?—p—|—u i _(?TJ i _
ot Ox; p Ox; dx;0xr; Oz, oz,

0.5

where the subgrid stresses are given by

L 0.45}
T’IJ‘ — ?.-rti.}} - ?riTj

0.4
Contrary to Reynolds time averaging where (v;) =0 035
- 0.3
7" T 7. S ol
v, # 0 )i 7# Uj 0.25
0.2f

This 1s true for box filters. — no filter

0.15} - - one filter
Note that for the spectral cut-off filter 7; = 7;. 015 25 3 35 -
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The box-filter and the cut-off filter e o U
N . L gl

The box filtering is formally defined as (1D) Pty s S

[ Gp(r)v(z — r)dr

[ 1/Aifr < A/2
Gp(r) = { JgAfr > A/2

[ Gaton

However, it i1s often convenient to study the filtering process in the spectral space.

we simply set the contribution from wavenumbers larger than cut-off to zero.

Ge(k) = {

1 if kK < ke

, the cut-off wavenumber k. = 7/A
0 otherwise

et’s look at the filtering of Navier-Stokes. in more detail.

The pressure gradient term, for example, reads Op _ l f dp dV
ox; ox;

0393 X &l [0 J i8S poxe ojlail yog Coll &g 40 S5 7,1 IS0 1) gie 09l s aS Gl (il pte Jlgmn
ST o et e 40 g 009 ESleiSh e DS (Al ) S pmee bl ST 0 Ll el pdy Gl olouleg
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On _.--M/ M")ﬁ) u‘
2= (5 [ pav) + 0 (@0) = 22+ 0 (207 =

(9;1??; 33.2;; V (‘9’131 - ﬁij

if V' 1s a function of z;, the error we do when moving the derivative out

of the integral is proportional to (Ax)? _ .
3,5 dxxlpo Jod dlio @ axdllao Cp>

S. Ghosal, P. Moin, The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry
Journal of Computational Physics, Volume 118, Issue 1, April 1995, Pages 24-37

the convective term.

3;1:3 = ﬁij (Llf L ’Uﬂ}jdV) + O ((&I}g) = @i( 77) + O ((A: x)? )
Y Q

Differences between time-averaging (RANS) and space filtering (LES)

nRANS. () = 5 [ ()it = 50027 = ()

In LES, 7 # © (and since v = 7 + v” we get v”’ # 0).
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Figure 18.2: Box filter illustrated for a control volume.

Let’s filter v; once more (filter size Ax, see Fig. 18.2. For simplicity we do it in
1D. (Note that subscript I denotes node number.)

_ 1 :i"n:r:l,-"lg 1 0 ﬂ.I;‘rQ
Tman [ @k [ @+ [ ) =
Ax —Ax/2 Ax —Ax/2 0

1 [Ax N Ax _
——w —75 | .
&.r A 9 P

The trapezoidal rule, which is second-order accurate, was used to estimate the integrals.

=
=i

Il

| =

1_ 3 3_ 1_ 1 o _
5 [\ g1+ 70 ) + | JU+ 70 ) | = 3 (Dr—1 + 607 + D141) # U5
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the filtered continuity and momentum equations for incompressible flow become : V o
"'r/ Ly } -
ut; D, is the grid-scale rate-of-strain tensor ""d:(/ JM/}’/’E) —
a. -0 i g L 28 i i izl
ai gmu;  19p | 0 D 1(3@ +.aa_,-)
U ;U ii — = R —
c A 9P % 0uD) =2 \ox; " ox
ot Ox j - p Ox; 3 X
ou; O 1 9p 9 subgrid-scale stress (SGS stress).
i i -
= —— —T7i; + 2vD; T ==
ot " Ox; p Ox; N ij{ it i) Tij = Willj — Uil

Lij =ujuj —u;uj Leonard term S
do not satisfy invariance under

ij = Lij + Cij + Rijj— Cij = uju; +uju; Crossterm |Galilean transformation independently
R

H} SGS Reynolds stress

- e e e e e e e e e e e e e e e e e e e e e e el S e e e e e e e e e e e e e e e R e R e e e e e e e e e e e mm e ey

:EFDI' the turbulent stress 7(u, v) = wv —u v to be Galilean invariant, 7(u 4+, v+ /3) = 7(u, v) must
‘hold for a system moving at a constant velocity of («, 3). If we let velocity U to be the constant
Eve]ncity U for u* = u + U, then we have u* = u 4+ U and «*" = u’. Thus the Leonard stress Lij
'becomes

1
1
1
|
1
1
1
1
:
|
p— —_— |
LJ’j :HT Hf —Hf Hf —(H*—H*}U —(H#—Hf}Uj, :
1
|
1
1
1
1
1
1
|
|
|

| j
I

:whlch 1s not Galilean invariant since U remains in the expression. The modified L’” on the other
'hand becomes

L =i u

—u} proposed by Garmano

'which 1s Galilean invariant.

___________________________________________________________________________________
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Tij = L;; + C;; + R;;  reformulation proposed by Garmano #ﬁ{/ Finh ==
e Modified Leonard stress B iy NP

Lij = E,‘Ej — Hfﬁj

e Modified cross stress

m __ — r— — =
Cii =uiu; +wuu; — (Ui ; + u;uj)

e Modified SGS Reynolds stress

m_ .r —t —
R U; — U;U;

The modified Leonard stress L7 1s determined with the filtered grid-scale velocity
but the evaluation of C}; and R’" requires the use of models.

The difference between the modified Leonard stress L;‘; and the Leonard stress

I

ij 18

Bij = Lj; — Lj;

This term 1s known as the scale-similarity term
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Subgrid model /}: sy o~
The simplest model 1s the Smagorinsky model S P e

1 ov; O, o L
=8 Thk = —Vsgs ( [ n U 3) = — Wy gs5i; the filter-width is taken as the local grid size

T3 dx; O s
— . 2 Z..5.. = . 23 :(&VIIH) l
Vsgs = (CsA)" 1/25;;5;; = (CsA)” |5]
1
N — N\ - A=(AxxAyxAz)3
|‘§|2 — (f}h + 6LJ) ng 2§ (_13 + ﬂlj) — 2513 ( ( Y ) )
) 0z,

Vsgs = UL. be obtained through dimensional analysis

The turbulent velocity scale, U, is obtained as the first term in Taylor expansion,
L0V [0z, and the length scale , L, is taken as C's A which gives

2| - :
Vegs = (CsA)?|5]| the SGS turbulent fluctuations near a wall go to zero

A damping function f,, fu=1—exp(—z3 /26)

A more convenient way to dampen the SGS viscosity near the wall 1s simply to use

the RANS length scale as an upper limit, 1.e.

. : &zmin{ AVirk UH,;{.H}
where n 1s the distance to the nearest wall. (AVIik)",
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Disadvantage of Smagorinsky model: the “constant” (g is not constant, but it is - 1/ jm*’}ﬁ

L
: _ )~
flow-dependent. It is found to vary in the range from C's = 0.065 [81] to (s = ) g
0.25 18"}1 e _,Amw,f_,»-wm_w

[81] P. Moin and J. Kim. Numerical investigation of turbulent channel flow. Journal
of Fluid Mechanics, 118:341-377, 1982.

[82] W. P. Jones and M. Wille. Large eddy simulation of a jet in a cross-flow. In

10th Symp. on Turbulent Shear Flows, pages 4:1 — 4:6, The Pennsylvania State
University, 1995.

0(vi)

(?I 7

Energy path — (@7

I 3

At cut-off, SGS Kkinetic energy is dissipated >

Esgs = —Tij8ij = 2Vsgs8ijSij
We assume that ALL dissipation takes place
in the dissipation range. This is a good
approximation, but in reality dissipation (i.e.
transfer of energy from kinetic energy to
internal energy which corresponds to an
increase in temperature) takes place at all
wave numbers, and the dissipation increases

for increasing wave number K
Ke
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The SGS kinetic energy ks, can be estimated from the Kolmogorov —5/3 law. - e

SGS Kkinetic energy ‘é';{)’ ' ;g M
AL s

k= /:G E(k)drk

Changing the lower integration limit to wavenumbers larger than cut-off (i.e. k.) gives
the SGS kinetic energy

ksgs = / E(rk)dk The Kolmogorov —5/3 law now gives k,,, = f Crr=2323 gy
where C'xr = 1.5 -

integration and replacing . with /A we get

3 Ae\ /3
ksgs = —-Ck (_)

J2)[Y 159)
1)y pus

SGS grid scales 2 m

SGS test scales

the resolved turbulent kinetic energy, k...,

resolved on test filter

resolved on grid filter

Lt LY L L
PR R EEEY SRy T

kres =/ E(k)dk
0

~— T

)
I
2

>

Ke

=
|
=
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LES vs. RANS R
LES can handle many flows which RANS (Reynolds Averaged Navier Stokes) cannot;
the reason is that in LES large, turbulent scales are resolved. Examples are:

o Flows with large separation

o Bluff-body flows (e.g. flow around a car); the wake often includes large, un-
steady, turbulent structures

o Transition

e In RANS all turbulent scales are modeled = inaccurate

e In LES only small, isotropic turbulent scales are modeled =- accurate

e LES is very much more expensive than RANS.

The dynamic model

In this model the constant C' is not arbitrarily chosen (or optimized), but it is computed.
apply two filters to Navier-Stokes

[grid filter and a second, coarser filter (test filter, denoted by /)] where E = 2A we get
97, L0 (mm)_ ] 0p ) v, Ty

ot aﬂfj 1) P 3:51- 8$j3:1:j 8$j |
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07 + 2 (5w =L D + s 0Ty “"M/f i~
8t ajj - j S #‘Iiuw-*z’w'“—’“‘

J

P afEi y@:cj@:;r:j S:cj

0, L0 (e 107 y 270 0Ty 0 (=~ A~
Vi | =—— — — — | VU — U; U
ot Ox; ! p Ox; dr;jdr;  dr; Oz, ! ’
~—~~ A A
ViVj — ViV + Ty = Ly

With this expression we can re-formulate

1 1.
E-Ij 351_}1:}:& — 1_:.- gézJTﬂ,h (Tij — _51'_;-; Tkk)
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In the energy spectrum, the test filter is located at lower wave number than the grid filter / “f Y

j o },,/ j’) S
B I ] B 8 w"‘z,guw’“;"‘x...-”"'—“l“‘"""’*‘
: £ The test filter
' A
54 SGS grid scales (A‘E = QA'IT) the lD Exﬂmple
est filter grid filter
SGS test scales

resolved on test filter "
1

resolved on grid filter

~ 1 E 1 P E
Up = vdx = vdx vd:
Ry A(//)

1 _ N 1 [ ow + vp vp + Vg
WwAZ + 5. Az) = =
oAz (CwAT+UAT) = 3 ( > T 2 )

1 _ _
=7 (ow + 2vp + E)
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A 2D test filter control volume. .. LJgL6) L U
i * 5 ‘___,.éﬁ 4. xr/}ﬁ;! —
(I+1/2,J+1/2,K) |
(I-1,J I{)+ -------------- {_I_'-_"}_I}_)I. -,(I 1,7, K)
(I—l,/?._,}':—lﬂ._K} '
T REN '
_f 1

Ur—1/2,0-1/2,K = E(EI—U—LK + Ur-1,0,k +01,J-1,K + V1,J.K)

the test filtered variable 1s computed as

0 f

1
1 _ _ 1
ILJK = 1(”1—112,*1—112,3’ TUT_12,041/2,K T VT41/2,0-1/2, K T )

VI+1/2,0+1/2.K
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. €t o, Vo w2
3D filterin » {/f (furt 2.7

e Pl i Al

For the bottom-lower-left cube, for example

_f 1 _ _ _
UI—1/2,0-1/2,K-1/2 = g(’ﬂf—l,.f—lﬁ +Vr-1,JKk +VrJ-1,K + VI,JK

+Ur-1,J-1,k-1 +VUr-1,0,k-1 + 01, J-1,k-1 + U1,J,Kk—1)
the test filtered variable 1s computed as

Trox = (o] + 7
I,JK — g\ I1-1/2,J-1/2,K—1/2 I+1/2,J-1/2,K—1/2

— f =f
TV _1/2,041/2,K—1/2 T VT41/2,041/2,K—1/2

— f —f
TV _1/2,0-1/2,K+1/2 T VT41/2,0-1/2,K+1/2

—f —f
TUT_1/2,0+1/2,K+1/2 T 1’I+1/2,J+1xzzj~_f:+1/2)
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Stresses on grid, test and intermediate level ____,59* ot 2, o~

R i

Tij = U;U; — U;U; stresseswith ¢ <A
—
T;; =1;0; — U;U; stresseswith { < A
—_
Li; =Ti5 — '?“.E-j stresseswith A </ < A

Thus the dynamic Leonard stresses represent the stresses with lengthscale, £, in the

—_
range between A and A.

Assume now that the same functional form for the subgrid stresses that is used at the
grid level (7;;) also can be used at the test filter level (7;;). If we use the Smagorinsky
model we get

1 20— — 1
Tij — 55@‘?&& = —20&2‘;3‘81-}- Tij — géikak = —QCE | :

g I
~~ ]. 81;‘1' 31;3-
S —

1=3\ 3z, "0z |
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. a Ko # V huﬂ
(assuming that C varies slowly), -——‘Q Furtrr) =
2
1 O N P
E.I'j — géijf’kk: = —20 (.ﬁ | S ‘ S ij — ﬂz |55ij)
C = O(fu“i.t)

where we used the relatation
1
3

1 1
géikak — =0i; T kk

0ij Lk = 3

Let us define the error as the difference between the left-hand side and the right-hand side

1 2
Q — (ﬁ.ﬁj — géijﬁk}; + QOﬂLJ)

2
TN N =
ﬂfﬁj — (ﬁ ‘ S | S ij — AE |S|S.Lj)

The error, (), has a minimum (or maximum) when 9Q)/0C = 0.

D. K. Lilly. A proposed modification of the Germano subgrid-scale closure
method. Physics of Fluids A, 4:633—-635, 1992.
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9 & oo in Dy
% = 4M;; (Lij +2CM;;) =0  (18.40) Tzig::j) =

= _ .. .
Note that %5.-,;3- LrM;; = éﬁkkﬁrﬂfﬁ = (O since §;; = 5;; = 0 thanks to contiuity. Since

0*°Q/0C* = 8M;;M;; > 0 we find that Eq. 18.40 represents indeed a minimum.

L;; M;;
2M;; M;;

[t turns out that the dynamic coefficient C fluctuates wildly both in space and time.
This causes numerical problems, and it has been found necessary to average C' in homo-
geneous direction(s). Furthermore, C' must be clipped to ensure that the total viscosity
stays positive (1 + Vg4 = 0).

In real 3D flows, there 1s no homogeneous direction. Usually local averaging and

clipping (i.e. requiring that C' stays within pre-defined limits) of the dynamic coeffi-
cient 1s used.

C=-
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Bardina Model l/ L, / -—
.f 3770 g

ﬂﬂwfﬂﬂw
I — - — —
u;, = u; — u; U, = U; — Uu;

i
not zero.

r— (= S\ T =
ui-uj—(u, i) uj, uiu; = u; {uj uj)

:(E,— ﬁ-)(ﬁj—ﬁj) C,j—i—RU_uuj—}—uu —}—Hu = Ujllj — U;lj,

This is referred to as the scale-similarity model
— or the Bardina model

Lij = ujuj — uju, The scale-simjlarity model 1s not restricted by
— such assumption

However, the scale-similarity model 1s
not commonly used by itself, since it does not introduce any dissipation and can

destabilize the numerical calculation

this model was not sufficiently dissipative
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Mixed Model Oy Fats )

The subgrid-scale components include vortices (or vortical structures) of all scales
that were removed by the filtering operation. The scale-similarity model is suitable
for relating the grid-scale and the relatively large-scale structures in the subgrid-scale
components. The Smagorinsky model based on the use of eddy viscosity represents
the unidirectional effect of dissipation and captures its average property at the smallest
scale. In other words, the scale-similarity and eddy-viscosity models have different
mechanisms as depicted in Fig. 8.7. Combining the two approaches becomes sensible
if we consider the properties of the subgrid-scale components.

Fig. 8.7 Concept of the A
mixed model

a __ yma 2 1 v

In this model, L’ 1s directly computed Scale-similarity model

=
|
|
1

Eddy-viscosity model
sA)?[3]54 | i

I
1 =

kf =n/A Wave number

Ci + R} 1s provided by the Smagorinsky model.

Energy spectra

Tij = 'ﬁi'ﬁj — Eiﬁj — Z(C

S
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Coherent Structure Model /}f j,,/} /; A

Kobayashi proposed the coherent structure model (Kobayashi madef )

L
M‘
=

to deter mine the SGS eddy viscosity coefficient based on the turbulent structures in the flow.

aﬁ,' — —_— L 1 7. T L | ITE T

E — D!J + WU DU = — % 4+ % \ WU — — a“g —_ a”‘;
J 2 E)xj 3x,~ 2 31“; a-"ff
— e — E—— —  |W]?—|DJ? 1 Ou; Ou;
D| = ZD;‘D;‘, W| = ZW,W, — - = s
D] ‘/ iDij, W] \/ s ¢ 4 2 0xj Ox;

7 _ \W|>+ D> 10u; du
o 4 _23.rj3xj’

Q is the second invariant of the grid-scale velocity gradient tensor (Q-criterion)

E is the squared magnitude of the grid-scale velocity gradient tensor.
E is proportional to the rate of kinetic energy dissipation

g

the coherent structure function Feg =
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W F (Jurt s
""df j,...r

D s i i

which can be viewed as a normalized second invariant with a range of |Feg| < 1.
This function approaches 1 when the flow 1s under strong rotation. On the other hand,
the function approaches —1 when the flow 1s shear-dominated compared to rotation.
In the coherent structure model, the subgrid-scale stress

a ™I 1 3
7 = —2CA*|D|D;; C = Ewsp,

The coherent structure function approaches zero with an asymptotic profile of Frg o< y* near a flat wall

1 3 ' representing the wall-normal direction
C:ﬁlFCSPFﬂ& Fo=1-— Fcg yIep 8

The SGS eddy-viscosity coefficient tor the coherent structure model

(5] L¥5]

WE-DY 5
W+ |DP?

v, = 0.05A2
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Numerical dissipation #J{fj/, F ity

o
S Pl i il

The main function of an SGS model 1s to dissipate (1.e. to dampen) resolved turbulent
fluctuations. The SGS model 1s — hopefully — designed to give a proper amount of
dissipation. This 1s the reason why in LES we should use a central differencing scheme,
because this class of schemes does not give any numerical dissipation. All upwind
schemes give numerical dissipation 1n addition to the modeled SGS dissipation.

vr
71 I+1 assumed ©; > (. Taylor expansion gives
N 1
s _ = A ovr 1 A 5 020 o 4
—® ® ® Or-1 = 01 — Aro= + 5 3‘)£+ ((Az)°)
_[0v - Uy — Ur—1 Uy — Ur—1 dv 1 0% o
‘ (SI)EI{ICf — ( &I " O (&T)) &.’1‘- N 3::-: B _&IST O ((&T) )

_{0v - _r:'}‘? 1 v .
v (E)Pmﬂ =T —Eﬁ;m 92 +00 ((&I) )

O(Az)

the second term on the right side corresponds to the error term

When this expression is inserted into the LES momentum equations, the second term
on the right-hand side will act as an additional (numerical) diffusion term. The total
diffusion term will have the form
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diffusion term = — § (V + Vsgs + Vnum ) =— A g)’gffs;,:a/'ﬁ) —
ox ‘ dx e
e Py e il

where the additional numerical viscosity, Vy,um = 0.5|5| Az,

This means that the total dissipation due to SGS viscosity and numerical viscosity is

Esgs+num — Q(lfsgs + I”num)gi‘jgij

RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization Ist order 2nd order (e.g. C-N)
Turbulence model more than two-equations ZEro- or one-equation

Table 18.1: Differences between a finite volume RANS and LES code.

U1

/x\/\/\/\/\/\/\/\/\“

t1: start ty: end
Figure 18.12: Time averaging in LES.
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Both in LES and the windtunnel, the recorded time history of the ©; velocity at a
point may look like in Fig. 18.12. Time averaging can start at time £, when the flow
seems to have reached fully developed conditions. It is difficult to judge for how long
one should carry out time averaging. Usually it 1s a good 1dea to form a characteristic
time scale from a velocity, V' (free-stream or bulk velocity), and a length scale, L
(width of a wake or a body, length of a recirculation region), and use this to estimate
the required averaging time; 100 time units, i.e. 100L/V, may be a suitable averaging
time for the flow around a bluff body; a value of 10 may be sufficient if L is the
length of a recirculation region.

One-equation %,,; model

A one-equation model can be used to model the SGS turbulent kinetic energy. The
equation can be written on the same form as the RANS k-equation, i.e.

‘?kegq d 13 Ok s
5 ? -kg )= — s Sijs P‘ o
Ot + 33:‘?_ (2 jlvsg: ) 3Ij [(U + Vsgq. ) Bzrj } + FPr,,. — €
kH/E
Vsgs = C‘f‘&k;éf o Phyg, = 2isgs5i58i5, €= Ce Eg
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Resolution requirements

The near-wall grid spacing should be about one wall unit in the wall-normal direction,

:r]L < 100(streamwise) andz; < 30(spanwise) and, of course, x4 < 1.

the requirement of near-wall grid resolution is the main reason why LES i1s too expensive
for engineering flows,

An alternative to LES for industrial flows can be unsteady RANS (Reynolds-
Averaged Navier-Stokes), often denoted URANS (Unsteady RANS). In URANS the

usual Reynolds decomposition 1s employed, 1.e.

1 t+T
v(t) = 5T /t_T v(t)dt, v=1v+v"

v="o+0" = (0) + 7 +0"

a time-averaged part, (T) resolved fluctuation, 7', and the modeled, turbulent fluctuation, v”’

o, 7, (3)

Decomposition of velocities in URANS. s : 7; o= o 2 0 mmv e ().
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Discretization

In LES it 1s well-known that non-dissipative discretization schemes should be used.
The reason 1s that we don’t want to dampen out resolved, turbulent fluctuations.

This 1s to some extent true also for URANS

with fully implicit first-order discretization in time; this gives first-order accuracy in
both space and time. The turbulence model that was used was the standard k — ¢
model. Thus, both the discretization and the turbulence model have high dissipation.
The reason why the unsteadiness in these computations was not dampened out 1s that
the vortex shedding in this flow 1s very strong.

In general, a discretization scheme which has little numerical dissipation should be
used. How dissipative a scheme needs to be in order to be stable i1s flow dependent; for
some simple flows, 1t may work with no dissipation at all (1.e. central differencing),
whereas for industrially complex flows maybe a bounded second-order scheme must
be used. For time discretization, the second-order accurate Crank-Nicolson works 1n
most cases.
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