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Preface

Over the decade since the first edition of Modelling Turbulence in Engineering
and the Environment made its appearance, the wider topic of computational fluid
dynamics – or CFD as it is now universally known – has become even more firmly
established as the route to resolving important and possibly challenging questions
of fluid motion in the turbulent flow regime. As the reader may judge from the
Preface to that first edition (which follows), our view was that the progressive
shift, then underway, from using the Reynolds-averaged Navier–Stokes (RANS)
equations as the basis for accounting for turbulent transport (so-called RANS mod-
elling) to large-eddy simulation (LES) was not assuredly the preferred practice for
many applications.

The notion that, to improve the reliability of one’s CFD computations, one
needed to upgrade the modelling strategy from a RANS-based closure to LES
largely arose from the presumption that RANS-based modelling was invariably
associated with the use of a linear eddy-viscosity approximation. That presumption
we emphatically rejected. Our emphasis in the first edition was rather at a closure
level where turbulent momentum, heat and mass fluxes were found not from such
quasi-laminar constitutive concepts but rather by approximation of their own trans-
port equations, a path formally known as ‘second-moment closure’. Indeed, the
subheading to the book’s title was Second-Moment Routes to Closure. This overall
philosophy is one that we retain in the present edition, though, for reasons that will
shortly become clear, the subtitle has been changed to recognize the broader range
of modelling now included.

It is not argued that second-moment closure is always the best RANS approach
to follow, however. In simple shear flows where turbulence transport is small,
second-moment closures amount to what is tantamount to an eddy-viscosity model
(EVM) of turbulence. There are then clear advantages to making simplifications
to the physical model in order to achieve major savings in computational time,
whether from solving fewer equations or from faster rates of convergence – or,

ix
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x Preface

more usually, from both. Readers familiar with the first edition will thus find that
Chapters 1–7, where the key analysis and simplifications are made, are largely
unchanged apart from modifications to the wording to simplify or otherwise clar-
ify the meaning. Chapter 8, while presenting the same four alternative approaches
for bridging the near-wall viscous layer, includes a challenging application relating
to the urban environment to underline the applicability of the approaches beyond
engineering.

The principal changes in the second edition are the two additional final chap-
ters. The continuing rapid expansion in cheap computing power has stimulated
two major areas of growth. The first is the solution of the transport equations in
time-dependent mode, the unsteady RANS or URANS approach. This strategy was
included in the first edition as a section of a chapter, but the number and complex-
ity of the applications that have appeared in recent years now merit its figuring as
a major chapter in its own right. Overall, the considerable success of the URANS
approach, especially when adopted with a full or truncated form of second-moment
closure, raises fundamental questions vis-à-vis LES in modelling the large-scale
turbulence structures. Not all of those questions are yet resolved, but they are at
least given a preliminary airing in Chapter 9.

Finally, Chapter 10 brings a collaboration between what are sometimes seen as
opposing strategies. In many engineering or environmental problems, there are flow
regions where LES is clearly the best approach (or even the only viable scheme)
to employ. In many others, however, such as in flows bounded by solid walls, the
solution of the relatively thin but important wall-adjacent areas can be entrusted
to a RANS or URANS model. This practice mitigates the formidable grid den-
sity required in the wall region by the usual LES approach and equally, even with
a URANS solution, enables substantially greater time steps. Then again, in some
flow types, a RANS or URANS approach can perhaps cover the bulk of the flow
while LES is employed only in critical regions involving complex physis not ade-
quately accounted for by common RANS models. The final chapter thus considers
how the two approaches may be brought effectively together within a single numer-
ical solver, particularly considering the role and importance of the RANS model in
different applications and the issues of interfacing between the two approaches.

As for the new subtitle to this second edition, by ‘Rational Alternative Routes
to Closure’ we simply mean that the different approaches to modelling are based
on a mixture of rigorous analysis, experimental inferences and, hopefully, sound
physical insight while (echoing the first edition) giving particular emphasis to
second-moment approaches to closure.

In bringing this edition to publication, the authors have benefitted from many
individuals for information or advice, most of whom are already acknowledged
in the first edition’s preface. In addition, we would here mention particularly
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Preface xi

helpful interactions with Branislav Basara, Domenico Borello, Bruno Chaouat,
Sharath Girimaji, Muhamed Hadziabdic, Michale Hrebtov, Rustam Mullyadzanov
and Danesh Tafti. Finally, we are pleased to acknowledge a substantial contributor
to the present edition, Professor Alistair Revell from Manchester University. As a
specialist in the development and application of hybrid RANS-LES methods, he
has made major contributions to the shape and scope of the final chapter and his
name is, therefore, included on the title page.
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Preface to the First Edition

Scientific papers on how to represent in mathematical form the types of fluid
motion we call turbulent flow have been appearing for over a century while, for
the last sixty years or so, a sufficient body of knowledge has been accumulated
to tempt a succession of authors to collect, systematize and distil a proportion of
that knowledge into textbooks. From the start, a bewildering variety of approaches
has been advocated: thus, even in the 1970s, the algebraic mixing-length models
presented in the book by Cebeci and Smith (1974) jostled on the bookshelves with
Leslie’s (1973) manful attempt to make comprehensible to a less specialized read-
ership the direct-interaction approach developed by Kraichnan and colleagues. As
the progressive advance in computing power made it possible to apply the emerg-
ing strategy of CFD to an ever-widening array of industrially important flows,
however, EVMs based on the solution of two transport equations for scalar prop-
erties of turbulence (essentially, length and time scales of the energy-containing
eddies) emerged as the modelling strategy of choice and, correspondingly, have
been the principal focus in several textbooks on the modelling of turbulent flows
(e.g. Launder and Spalding, 1972; Piquet, 1999; Wilcox, 2000).

Today, two-equation EVMs remain the workhorse of industrial CFD and are
applied through commercially marketed software to flows of a quite bewildering
complexity, though often with uncertain accuracy. However, there has been a major
shift among the modelling research community to abandon approaches based on
the RANS equations in favour of LES, where the numerical solution for any flow
adopts a three-dimensional, time-dependent discretization of the Navier–Stokes
equations using a model to account simply for the effects of turbulent motions too
fine in scale to be resolved with the mesh adopted – that is, a sub-grid-scale (or sgs)
model. While acknowledging that LES offers the prospects of tackling turbulence
problems beyond the scope of RANS, a further major driver for this changeover
has been the manifold inadequacies of the stress–strain hypothesis adopted by lin-
ear EVMs. While such a simple linkage between mean strain rate and turbulent

xiii
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xiv Preface to the First Edition

stress seemed adequate for a large proportion of two-dimensional, nearly parallel
flows, its weaknesses became abundantly clear as attention shifted to recirculat-
ing, impinging and three-dimensional shear flows. Although an LES approach will,
most probably, also adopt an sgs model of eddy-viscosity type, the consequences
are less serious for two reasons. First, the majority of the transport caused by the
turbulent motion will be directly resolved by the large eddies, and second, the finer
scale eddies that must still be resolved by the sgs model of turbulence will arguably
be a good deal closer to isotropy. Thus, adopting an isotropic eddy viscosity as the
sgs model may not significantly impair the accuracy of the solution.

However, to overcome many of the weaknesses of linear EVMs used within a
RANS framework, it is quite unnecessary to upgrade one’s modelling to LES level.
Rather than adopting a linear algebraic relation to link stress and strain, one can
obtain the turbulent stresses by solving closed forms of the exact Reynolds stress
equations. It is this approach that represents the main focus of the present book,
a modelling strategy known formally as second-moment closure, a label that also
embraces the corresponding modelling of turbulent heat and species fluxes. This
closure level, first advocated in the early 1950s (Rotta, 1951), has in principle a
far greater capacity than EVMs for capturing the diverse influences of complex
strain fields, body forces or substantial transport on the evolution of the turbulent
stresses. This is because the direct effects of strain field, body forces and convective
transport on the turbulent stresses appear directly in the second-moment equations
in forms requiring no approximation! It is true that modelling is still needed, both
in the second-moment equations and in the scale-determining equation, the lat-
ter of which must also be solved to complete closure. But, at the second-moment
level, one can proceed further by way of analysis while several additional invari-
ant parameters become available to help shape compliance with limiting states of
turbulence.

Admittedly, even with a well-constructed code explicitly designed for second-
moment closure (as many commercial solvers are not), such schemes require
typically twice as much computational resource as corresponding EVMs. But this
is a very small price to pay for predicting the flow correctly, while the computa-
tional costs will still usually be one or two orders of magnitude less than the cost
of obtaining an LES of the same flow.

Why, the reader may legitimately ask, if second-moment closure represents such
a major advance over eddy-viscosity approaches, has this situation not become
evident and widely accepted by potential users? The present authors can offer no
certain answer to that question. To those working at that closure level it is well
known. Indeed, in the more comprehensive current textbooks, one will at least
find signposts to modern forms of second-moment closures. But perhaps such
broad-coverage treatments, while of inestimable value as reference sources, are
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Preface to the First Edition xv

unable to justify the space for providing a detailed examination of particular mod-
elling forms or for showing a broad coverage of the successes and weaknesses of
particular models. Perhaps, we concluded, one needed a textbook that focussed
principally on second-moment closure, that provided the background in sufficient
depth, bringing to light strategies from earlier decades that are still useful and also
including the latest models available. Finally, one needed a textbook that discussed
in detail a comprehensive range of applications so that potential users could judge
the likely utility of the schemes in the flows that interest them. It has been our aim,
in the pages that follow, to provide such a coverage.

The writers themselves began working together on second-moment closure in
the late 1960s and over the ensuing forty-odd years have repeatedly interacted
on research strategy in this field, both in specific collaborative research projects
and through the ERCOFTAC1 special interest group in turbulence modelling. Our
views on closure modelling, if not identical, are sufficiently closely aligned that,
when we learned that each of us was contemplating preparing a textbook on the
subject, we quickly decided that we should pool our efforts and produce a joint
volume. Throughout, this has been an equal partnership and, as in all our joint
papers, our names are sequenced alphabetically.

To a neutral and knowledgeable reader, the material presented may well be seen
as giving too great an emphasis to the authors’ own work. In part this ‘bias’ arises
from wanting to show the performance of particular models for a wide range of test
cases that (we have learned from experience) are sensitive to the modelling assump-
tions. We trust, however, that the cited references make the connection to (and the
dependence on) the work of others plainly evident. Indeed, our hope would be that
having had their enthusiasm for second-moment closure stimulated or reawakened
by the present text, many readers will be encouraged to plunge into at least some
of the other recent textbooks in turbulence modelling and, thereafter, to read the
original journal papers that are cited.

In fact, one of the choices made in producing this book is directly aimed at
encouraging the reader to progress into the original research literature. In present-
ing different models, while the main ideas and underlying principles have been
included (along with examples of a model’s performance), in many cases, we have
not given a complete mathematical statement still less the boundary conditions or
other essential numerical aspects of handling the equations appropriate to different
classes of flow.

While, in some respects, the book is more comprehensive in its coverage of
second-moment closure than most (perhaps all) alternative volumes on turbulence
modelling, there are also omissions about which some brief explanation needs to
be given. Although we make early reference to situations where the density fluctu-
ations in the convective transport term need to be acknowledged and modelled, the
1 European Research Community on Flow Turbulence and Combustion.
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xvi Preface to the First Edition

reader will find that this is not a subject to which we return. The reason is simple:
we have ourselves done little work in the area, so our position statement could only
be arrived at by borrowing conclusions from what others have written. It would,
we felt, be better for the interested reader, instead, to digest directly the views of
those with greater experience. In fact, two such individuals, Tom Gatski and Jean-
Paul Bonnet (2009), have recently collaborated to produce a textbook specifically
focussed on compressibility in high-speed flow, which we commend to the reader.
Equally, while both of us have made proposals for obtaining the turbulent thermal
timescale by solving an equation for the dissipation rate of temperature fluctua-
tions, we nevertheless nowadays prefer to adopt simpler practices ourselves. Thus,
here we leave Nagano’s (2002) review to summarize the painstaking research and
optimization in this area carried out by Nagano and his colleagues. A final impor-
tant area where we offer no contribution is that of how to embed the concepts
of turbulent intermittency within the closure. Long ago, Libby (1975) proposed
a transport equation for intermittency that has been used and developed over the
ensuing decades by numerous workers, especially those working in combustion
and, more recently, those attempting to predict transition from laminar to turbu-
lent flow. In the latter area, the review by Savill (2002b) gives an indication of the
directions being followed to broaden the range of such flows that can be tackled.

Despite the care we have tried to apply in checking the typescript, we know
there will inevitably be errors in what is written, whether just typographical slips
or interpretational errors on our part. Readers are warmly invited to draw these
to our attention (in writing, please) so that in any future reprinting they may be
corrected.

In closing, we express our thanks to our host institutions for the infrastructure
support they have provided. In the case of one of us (KH), this also includes La
Sapienza University, Rome, where, as the holder of an EU-funded Marie Curie
Chair, he spent much of the period during the book’s preparation. Finally, we are
especially conscious that the task of preparing this book would not have been real-
izable without the contributions of many past and present colleagues. In particular,
we offer our thanks and appreciation to Tim Craft, Song Fu, Hector Iacovides,
Suad Jakirlić, Saša Kenjereš, Remi Manceau, Kazuhiko Suga and the late Ibrahim
Hadžić. We have also benefitted greatly over the years from inputs on various
aspects of modelling from Peter Bradshaw, Paul Durbin, Tom Gatski, Bill Jones,
Nobu Kasagi, Hiroshi Kawamura, Dominique Laurence, Michael Leschziner, John
Lumley, Yasu Nagano, Steve Pope, Bill Reynolds, Wolfgang Rodi, Roland Schies-
tel, Ronald So, Dave Wilcox and Micha Wolfshtein. Finally, we extend a special
thank you to the research students and postdoctoral researchers – too numerous
to name individually – with whom we have shared the occasional frustrations but,
ultimately, the pleasurable satisfactions of turbulence-modelling research.
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Principal Nomenclature

Symbol Meaning

A Lumley’s two-component stress (‘flatness’) parameter,
A ≡ 1 − 9

8(A2 − A3)

A2 second invariant of stress anisotropy, A2 ≡ ai j a ji

A3 third invariant of stress anisotropy, A3 ≡ ai j a jkaki

Aθ scalar flux correlation function, Aθ ≡ (θui )
2/(θ2ukuk),

Eq. (3.32)
A+ coefficient in van Driest’s near-wall form of mixing-length

hypothesis
ai j Reynolds stress anisotropy tensor, ai j ≡ ui u j/k − 2δi j/3
Bi , B magnetic flux density
bi j bi j ≡ ai j/2
bi

l j third-order tensor in the model for Φθ j2 , Eq. (4.49)
bmi

l j fourth-order tensor in the model for Φi j2 , Eq. (4.39)
C species concentration
C p pressure coefficient, C p ≡ 2(Pw − P∞)/ρU 2∞
Cκ constant in Kolmogorov’s − 5/3 law for energy variation with

wave number, Eq. (3.6)
CDE S, CDDE S, . . . coefficients in DES, DDES, IDDES
Ci j cross (mixed) stress, Eqs. (9.9, 10.12)
Ci j convection of the Reynolds stress tensor, ui u j

Cθ i convection of the turbulent scalar flux, θui

Cθθ convection of scalar variance, θ2

Cφ convection of a turbulence variable, φ
cμ coefficient in eddy-viscosity formula
cp specific heat at constant pressure
cε1, cε2,... coefficients of source/sink terms in the modelled ε equation
c1, c2, . . . coefficients in the models of the pressure-strain term

xvii
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xviii Principal Nomenclature

cS Smagorinsky coefficient, Eq. (10.14)
D diameter, channel width
Di j complementary stress production tensor

Di j ≡ − (ui uk∂Uk/∂x j + u j uk∂Uk/∂xi )

Di j total diffusion of the Reynolds stress tensor
D p

i j turbulent diffusion of the Reynolds stress tensor ui u j by
pressure fluctuations, Eq. (2.20)

Dt
i j turbulent diffusion of the Reynolds stress tensor ui u j by

velocity fluctuations, Eq. (2.18)
Dνi j molecular diffusion of the Reynolds stress tensor ui u j ,

Eq. (2.18)
Dθ i total diffusion of scalar flux θui , Eq. (2.25)
D p
θ i turbulent diffusion of scalar flux θui by pressure fluctua-

tions, Eqs. (2.22, 2.25)
Dt
θ i turbulent diffusion of scalar flux θui by velocity fluctua-

tions, Eqs. (2.22, 2.25)
Dαθ i thermal molecular diffusion of scalar flux θui , Eqs. (2.22,

2.25)
Dνθ i viscous diffusion of scalar flux θui , Eqs. (2.22, 2.25)
Dθθ total diffusion of scalar variance θ2, Eq. (3.20)
Dφ total diffusion of a turbulence variable φ
D p
φ turbulent diffusion of variable φ by pressure fluctuations

Dt
φ turbulent diffusion of variable φ by velocity fluctuations

Dνφ molecular diffusion of variable φ

d̃ (≡ L DE S) effective length scale in DES, d̃ = min(dw,CDE S�),
Eq. (10.42)

dw distance to the nearest wall in Eq. (10.42)
E two-component-limit parameter for dissipation tensor,

E ≡ 1 − 9
8(E2 − E3)

E integration constant in log-law, E ≈ 8.4 for a smooth wall
E2 second invariant of ei j , E2 ≡ ei j e ji

E3 third invariant of ei j , E3 ≡ ei j e jkeki

E(κ) contribution by the Fourier-mode wavenumber κ to the
turbulent kinetic energy

ei fluctuating electric potential
ei j stress dissipation-rate anisotropy tensor, ei j ≡ εi j/ε − 2

3δi j

Fi j turbulent stress production due to all body forces, Eq. (2.23)
Fθ i turbulent scalar flux production due to all body forces,

Eq. (2.23)
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Symbol Meaning

Fφ production of a turbulence variable φ by all body forces
f scalar variable in Durbin’s elliptic relaxation EVM
f natural shed frequency
fD van Driest wall damping function, Eq. (10.15)
fi fluctuating body force
fk ratio of unresolved to total turbulent kinetic energy in

PANS, fk = ku/k
fL (≡ α) RANS/LES switching function, Eqs. (10.31, 10.34)

fL = max (1, L R AN S/L L E S)

fw wall damping function in GL and HJ low-Re RSM
f� blending function in VLES, Eq. (10.33)
G spatial filter function, Eqs. (10.8, 10.9)
Gi j turbulent stress production due to gravitational force,

Eqs. (2.19, 4.74)
g gravitational acceleration constant
gi , g gravitational vector
H height of the step in flow over a backward-facing step
Ha Hartmann number
H, H12 boundary-layer shape factor, δ∗/θ (note δ1 ≡ δ∗, δ2 ≡ θ ,

H12 ≡ H )
h half width of a plane channel
h enthalpy, h ≡ ∫

cpdT
h heat transfer coefficient, h ≡ q ′′

w/(
w −
re f )

II alternative notation for the second invariant of stress anisot-
ropy, II ≡ bi j b ji/2 = A2/8

III alternative notation for the third invariant of stress anisot-
ropy, III ≡ bi j b jkbki/3 = A3/24

J Jayatilleke function (relative resistance of sublayer to heat
and momentum transfer from a smooth wall), Eq. (8.5)

K acceleration parameter, K ≡ (ν/U 2∞)(dU∞/dx)
K mean flow kinetic energy, K ≡ 1

2U 2
i

k turbulent kinetic energy, k ≡ 1
2 ui ui

k∗ sub-grid-scale turbulence energy normalized by total (sgs
plus resolved) k, Eq. (10.40)

kssv ‘scale-supplying variable’ in PANS (resolved k), Eq. (10.63)
L , L characteristic flow dimension
L integral turbulent length scale (usually defined as k3/2/ε;

for definitions of bounded length scale in elliptic relaxation
models see Eqs. (6.74, 7.45))
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xx Principal Nomenclature

l turbulence length scale, k3/2/ε

� alternative turbulence length scale (used in Wilcox–Rubesin
model), � = cμl

L DDE S effective length scale in DDES, Eq. (10.45)
L I DDE S effective length scale in IDDES, Eq. (10.48)
L K von Karman length scale, Eq. (10.36)
Li j Leonard stress, Eqs. (9.9, 10.12)
Mi j stress production due to fluctuating (electro)-magnetic

(Lorenz) force, Eq. (4.95)
N bulk-flow Stuart number, N ≡ σ B2

0 L/ρUb

Nu Nusselt number, Nu ≡ h D/λ, D denotes relevant length
dimension, for example, pipe diameter

ni , n wall-normal unit vector
P̂ , P , p instantaneous, mean and fluctuating pressure
P+ non-dimensional pressure gradient, P+ = ν(∂P/∂x)/ρU 3

τ

P wall-adjacent grid node
Pi j stress production due to mean velocity gradient, Eq. (2.18)
Pθ i production of turbulent scalar flux θui , Eq. (2.22)
Pk production of turbulent kinetic energy k, Pk = Pi i/2,

Eq. (1.5)
Pθθ production of the mean-square scalar variance θ2, Eq. (3.20)
Pφ production of a turbulence variable φ by gradients of mean

and fluctuating properties
Pr molecular Prandtl/Schmidt number
Q criterion for eduction of coherent vortical structures,

Q ≡ −(Si j Si j − Wi j Wi j )/2
q̇ internal heat source
q

′′
w wall heat flux

qw kinematic wall heat flux, qw = q
′′
w/ρcp

R pipe radius
R, r thermal-to-mechanical timescale ratio, R = θ2ε/kεθθ ;

r = 1/R
Ri j Reynolds stress, Eqs. (9.8, 10.12)
Ra Rayleigh number, Ra ≡ βg(
w−
re f )L3/αν, where L is a

characteristic flow dimension, 
w and 
ref denote the wall
and reference temperatures, respectively

ReL Reynolds number based on a characteristic flow dimension,
L and velocity, U0, ReL ≡ U0L/ν

Rem channel flow Reynolds number based on the mean (bulk)
velocity, Rem ≡ Um2h/ν
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Symbol Meaning

ReH Reynolds number of flow behind a backward-facing step of
height H

ReM magnetic Reynolds number, ReM ≡ μ0σU L , [(μ0σ )−1 is
known as the magnetic diffusivity]

Ret turbulent Reynolds number, Ret ≡ k2/(νε)

Reδs Reynolds number based on Stokes thickness and maximum
free-stream velocity

Reθ Reynolds number based on momentum thickness, Reθ ≡
U∞θ/ν

Reτ Reynolds number based on friction velocity and channel
half width, Reτ = Uτh/ν

Reλ Taylor microscale Reynolds number, Reλ ≡
√

u2
1λ/ν

R f flux Richardson number, R f ≡ −Gk/Pk

Ri gradient Richardson number, Ri ≡ R f σθ

Ri j stress production due to system rotation, Eqs. (2.19, 4.68)
Ri j Reynolds stress, Eqs. (9.8, 10.12)
Ri j (x,x′) two-point correlation tensor, Ri j (x,x′) ≡ ui (x)u j (x′)
Ro bulk rotation number (various definitions according to spe-

cific application comprising rotating velocity divided by
some other reference velocity)

r radial coordinate
ri , r position vector
r mechanical-to-scalar timescale ratio, r ≡ kεθθ/(θ2ε)≡1/R

S salt concentration (‘salinity’)
Sw swirl intensity, a dimensionless ratio of the axial fluxes of

angular to axial momentum, Sw ≡ 2π
∫ R

0
U Wr2dr/πR3U 2

b

or Sw = ∫ R

0
U Wr2dr/R

∫ R

0
U 2rdr

S invariant of the non-dimensional mean strain tensor,

S ≡
√

S̃mn S̃nm

S invariant of the strain rate tensor, S ≡ √
Si j S ji

S∗ alternative invariant of mean strain tensor used by Yakhot’s
group, S∗ = √

2S, Eq. (5.4)
S dimensionless mean strain (in simple shear),

S ≡ 2(k/ε)(S12S12)
1/2 = (k/ε)dU/dy

Sr Strouhal number, Sr ≡ f L/U , dimensionless vortex shed-
ding frequency
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St Stanton number, St ≡ h/ρU∞cp

Si j mean rate of strain tensor, Si j ≡ 1
2(∂Ui/∂x j + ∂U j/∂xi )

S̃i j non-dimensional mean rate of strain, S̃i j ≡ Si j k/ε
Sε1,Sε2,Sε3 general symbols for the source and sink terms in the ε

equation, respectively
si j fluctuating rate of strain, si j ≡ 1

2(∂ui/∂x j + ∂u j/∂xi )

T temperature [◦K]
T characteristic turbulence timescale, (usually T is taken as

k/ε, but not in Eq. (5.23)); for definitions of bounded time-
scale in elliptic relaxation models see Eqs. (6.74, 7.35 and
7.44)

T (κ) spectral energy transfer rate
T
(n)
i j tensor integrity bases

t time
U streamwise mean velocity component
U filtered velocity in LES
U, V, W Cartesian components of mean velocity
Ûi , Ui , ui instantaneous, mean and fluctuating velocity vector
Ũ local time-averaged velocity, Eq. (9.1)
Ũ phase/ensemble averaged velocity, Eqs. (2.8, 2.9, 9.7)
Um,Ub, Ū bulk velocity
Uq buoyancy velocity, Uq ≡ (βgqwα2/ν)1/4

Uw wall velocity
U∞ free-stream velocity
Uτ friction velocity,

√
τw/ρ

U+ mean velocity non-dimensionalized with friction velocity,
U+ ≡ U/Uτ

U ∗ mean velocity for use in wall functions,
U ∗ ≡ Uk1/2/U 2

τ ≡ ρUk1/2/τw

�U streamwise velocity change across free shear flow
−ui u j kinematic Reynolds-stress tensor
u, v, w Cartesian representation of turbulent velocities
V mean velocity component in direction y
Va Valensi number, Va ≡ R2ω/ν

W invariant of the non-dimensional rotation rate,

W ≡
√

W̃i j W̃i j

W spanwise and circumferential velocity component
Wo Womersley number, Wo ≡ R

√
ω/ν = √

Va
Wwall circumferential velocity of rotating wall
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Symbol Meaning

Wi j mean rate-of-rotation tensor,
Wi j = 1/2(∂Ui/∂x j − ∂U j/∂xi )

W̃i j non-dimensional mean rate-of-rotation tensor,W̃i j ≡Wi j k/ε
wi j fluctuating rate-of-rotation tensor,

wi j = 1/2(∂ui/∂x j − ∂u j/∂xi )

xi , x Cartesian coordinates in index and vector notation
x, y, z Cartesian coordinates
y wall distance,
y+ non-dimensionalized wall distance, y+ = Uτ y/ν
y∗ alternative normalized wall distance, y∗ ≡ k1/2 y/ν
y1/2 half width of plane jet or wake

Greek Symbols Meaning

α thermal diffusivity, α = λ/(ρcp)

β thermal expansion coefficient, β = −(1/ρ)(∂ρ/∂
) ∣∣C,P
γ molecular diffusivity of a scalar
γ concentration (salinity) expansion coefficient, γ = (1/ρ)

(∂ρ/∂C)
∣∣

,P

� characteristic mesh size in direct and large-eddy simulations
δ boundary layer thickness
δ1, δ∗ displacement thickness, δ1 = ∫∞

0
(1 − U/U∞)dy for a

uniform density

δ2, θ momentum thickness δ2 =
∫ ∞

0

U
U∞

(
1 − U

U∞

)
dy for

uniform density
δs Stokes thickness, δs = √

2ν/ω
δν viscous length scale, δv = ν/Uτ
δi j Kronecker unit symbol
ε dissipation rate of the turbulence kinetic energy k,

ε = ν(∂ui/∂x j )2

εh homogeneous dissipation rate of k, εh = ε − 1/2Dνk
εP turbulence energy transfer rates from production region in

multi-scale model
εT turbulence energy transfer rates across the transfer region in

multi-scale model
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εw wall value of the kinetic energy dissipation rate
ε̃ ‘quasi-homogeneous’ dissipation rate of k, ε̃ = ε − Dνk ≡

ε − 2ν(∂k1/2/∂xn)
2

ε+ dimensionless dissipation rate (in wall units), ε+ ≡ εν/U 4
τ

εi j stress dissipation rate tensor, εi j ≡ 2ν(∂ui/∂xk)(∂u j/∂xk)

εh
i j homogeneous stress dissipation rate tensor, εh

i j = εi j−1/2Dνi j

εi jk viscous dissipation of triple velocity moments, Eqs. (4.102,
4.103)

εθθ dissipation rate of the scalar variance, εθθ = 2α(∂θ/∂x j )2

εi jk third rank alternating unit symbol (= +1 for i, j, k all dif-
ferent and in cyclic order; −1 for i, j, k all different in
anti-cyclic order; 0 in other cases)

ζ normalized effective wall-normal velocity v 2/k in ζ - f
EVM

ζ enstrophy (mean square of the vorticity fluctuations),
ζ = ωiωi

η Kolmogorov length scale, η ≡ (ν3/ε)1/4,

 mean scalar property in general (primarily used for mean

temperature)
θ momentum thickness
θ scalar property fluctuations
θ2 mean-square scalar fluctuations (scalar variance)
ϑ Kolmogorov timescale, ϑ ≡ (ν/ε)1/2
κ wave number, κ ≡ 2π/λ
κ von Karman constant in log-law, κ ≈ 0.41
κ∗ von Karman constant in the velocity log-law normalized

with k1/2, κ∗ = c1/4
μ κ

κ̃ von Karman constant in the log-law for temperature, κ̃ ≈
0.38

κ̃∗ von Karman constant in the temperature log-law normalized
with k1/2, κ̃∗ = c1/4

μ κ̃

λ Taylor microscale, λ2 ≡ u2
1/(∂u1/∂x1)2, Eq. (3.11)

λ thermal conductivity
λ wave length
λ ratio of shear stress at wall to that at edge of viscous layer,

Eq. (8.27)
λα eigenvalue of mean strain rate
μ molecular viscosity of a fluid
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Greek Symbols Meaning

μt turbulent (eddy) viscosity of a fluid
μ0 magnetic permeability
ν kinematic molecular viscosity of a fluid, ν ≡ μ/ρ
νt kinematic turbulent viscosity of a fluid, νt ≡ μt/ρ

ν+
t non-dimensional turbulent viscosity, ν+

t ≡ νt/ν

νsgs sub-grid-scale eddy viscosity
ν̃ kinematic turbulent viscosity in the SA model
Πi j velocity–pressure-gradient correlation,

Πi j ≡ (1/ρ)[ui (∂p/∂x j )− u j (∂p/∂xi )]
ρ̂, ρ, ρ ′ instantaneous, mean and fluctuating fluid density
σ electrical conductivity of fluid
σϕ turbulent Prandtl–Schmidt number for diffusion of ϕ
τ total shear stress (viscous plus turbulent)
τ+ non-dimensional shear stress, τ+ ≡ τ/τw
τi j stress tensor
τ t

i j turbulent stress tensor, τ t
i j ≡ −ρui u j

τ νi j viscous stress tensor, τ νi j = 2μ(Si j − 1
3 Skkδi j )

τw wall shear stress
�̂, �, ϕ general variable: instantaneous, mean/filtered and fluctua-

tion
Φ̃ local time-averaged general variable, Eq. (9.1)
Φi j pressure-strain correlation in the ui u j equation,

Φi j ≡ (1/ρ) p(∂ui/∂x j + ∂u j/∂xi )

Φθ j pressure-scalar gradient correlation in θu j equation,
Φθ j ≡ (1/ρ)p∂θ/∂x j

ϕui scalar flux vector
φ general symbol for a turbulence variable
Ψ generalized turbulent scale variable, Ψ ≡ kmεn ,
ψ parameter in SAWF scheme accounting for departures from

equilibrium, Eq. (8.31)
� angular velocity
� magnitude of the mean vorticity
�k system rotation vector, angular velocity vector
Ωi, � mean vorticity vector, Ωi ≡ εi jk∂Uk/∂x j , (� ≡ ∇ × V)
ωi , ω fluctuating vorticity vector, ωi ≡ εi jk∂uk/∂x j , (ω ≡ ∇ × v)
ω turbulence ‘frequency’ or specific dissipation rate, ε/k

Published online by Cambridge University Press
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Superscripts, subscripts

+ quantity normalized by wall units ν and Uτ
* quantity normalized by wall units ν and k1/2 (but note U ∗

definition above)
ˆ instantaneous value of variable
′ turbulent fluctuating value of variable˜ root-mean-square value of turbulence variable

(e.g. ũ1 ≡
√

u2
1 )

c centre-line value (of a symmetric free shear flow)
c coherent
h homogeneous
int RANS/LES interface
mod modelled
n normal-to-the-wall direction
res resolved
s stochastic
sgs sub-grid-scale
u unresolved
v evaluated at edge of viscous sublayer
w wall value
∞ free-stream conditions

Abbreviations and acronyms (subjects)

AWF analytic wall functions
APG adverse pressure gradient
ASM algebraic second-moment (closure)
A(R)SM algebraic (Reynolds) stress model
AFM algebraic flux model
BWT blended wall treatment
CFD computational fluid dynamics
CFL Courant, Friedrichs and Lewy number, Eq. (10.18)
CV control volume
DDES delayed DES
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DES detached eddy simulation
DIHRL dynamically interfaced HRL
DNS direct numerical simulation
DSM differential second-moment closure
EA(R)SM explicit algebraic (Reynolds) stress model
EB elliptic blending
ELES embedded LES
ER elliptic relaxation
ER expansion ratio
EVM eddy-viscosity model
Exp. experiment
FPG favourable pressure gradient
GGD(H) generalized gradient diffusion (hypothesis)
GWF generalized wall functions
HRL hybrid RANS-LES
HTM hybrid turbulence model
IP isotropization of production
LES large eddy simulation
NWF numerical wall functions
NLEVM non-linear EVM
PANS partially averaged Navier–Stokes
PITM partially integrated transport model
QI quasi-isotropic
RANS Reynolds-averaged Navier–Stokes
RDT rapid distortion theory
RNG renormalization group theory
RSM Reynolds stress model
SA Spalart–Allmaras
SAWF simplified analytical wall functions
SMC second-moment closure
SST shear-stress transport (model)
TRANS time-resolved (triple-decomposition based) RANS
URANS unsteady RANS
VLES very large eddy simulation
WF wall function(s)
WIN wall integration (model)
WMLES wall-modelled LES
ZPG zero pressure gradient
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Author abbreviations

CLS Craft, Launder, Suga
CKL Craft, Kidger, Launder
DFJ Dianat, Fairweather, Jones
FLT Fu, Launder, Tselepidakis
GL Gibson, Launder
GS Gatski, Speziale
HJ Hanjalić, Jakirlić
HL Hanjalić, Launder
JM Jones, Musonge
JMG Jongen, Mompean, Gatski
LRR Launder, Reece, Rodi
LS Launder, Sharma
LT Launder, Tselepidakis
SA Spalart, Allmaras
SL Shih, Lumley
SSG Speziale, Sarkar, Gatski
WJ Wallin, Johansson
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Introduction

1.1 The fact of turbulent flow

Man has evolved within a world where air and water are, by far, the most common
fluids encountered. The scales of the environment around him and of the machines
and structures his ingenuity has created mean that, given their relatively low kin-
ematic viscosities, the relevant global Reynolds number, Re, associated with the
motion of both fluids is, in most cases, sufficiently high that the resultant flow is of
the continually time-varying, spatially irregular kind we call turbulent.

If, however, our Reynolds number is chosen not by the overall physical dimen-
sion of the body of interest – an aircraft wing, say – and the fluid velocity past
it but by the smallest distance over which the velocity found within a turbulent
eddy changes appreciably and the time over which such a velocity change will
occur, its value then turns out to be of order unity. Indeed, one might observe that
if this last Reynolds number, traditionally called the micro-scale Reynolds number,
Reη, were significantly greater than unity, the rate at which the turbulent kinetic
energy is destroyed by viscous dissipation could not balance the overall rate at
which turbulence ‘captures’ kinetic energy from the mean flow.

This immutable fact of turbulence life lies at the heart of the problem of com-
puting turbulent flows. Any complete numerical solution of the Navier–Stokes
equations must resolve accurately these fine-scale motions as well as the large-
scale overall flow picture in which we are interested. Because of the range of scales
to be resolved, from the fine-scale dissipative motions to the complete flow field,
it is only feasible at present to carry out such a direct numerical simulation (DNS)
of turbulent flow for relatively simple shear flows for overall Reynolds numbers
typically of order 105 and then only with ‘supercomputer’ scales of hardware.
If one is, thus, to embark on the computation of practically interesting turbulent
flows reasonably cheaply (recognizing that in most cases one needs to make tens
or even hundreds of computations of the same geometric configuration to obtain

1
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2 Introduction

a sufficiently full picture), some form of modelling is essential to compensate for
being unable to resolve directly all the turbulence scales as well as the mean flow.

1.2 Broad options in modelling

Two broad strategies for modelling are commonly employed.

● Large-eddy simulation (LES), where one resolves as large a proportion of the
turbulent fluctuations as one judges necessary (or can afford) and applies a model
– a sub-grid-scale (sgs) model – to account for the effects of those motions of
a finer scale than can be resolved with the adopted mesh. The principal needs,
so far as the dynamic field is concerned, are to account for momentum transfer
by the unresolved motions and to ensure that kinetic energy is removed from the
simulation at the appropriate rate (which amounts to modelling the effective sgs
stresses created in the fluid).

● Reynolds-averaged Navier–Stokes (RANS) equations, in which the effects of
all the turbulent fluctuations are subsumed within the model – generally termed
the turbulence model. As with LES, the non-linearity of the convective trans-
port means that models are needed to account for the effective turbulent fluxes
of momentum, enthalpy and chemical species in their respective transport equa-
tions. These are termed the turbulent (or Reynolds) stresses and the turbulent
heat or mass fluxes; they emerge naturally in Chapter 2 and are shown symbol-
ically as ui u j and θu j , where ui and θ denote turbulent fluctuations of velocity
and the scalar in question about their mean value and the overbar implies time
averaging.

It is this second approach to modelling turbulence that is the principal focus of the
present book. There are also strategies that are, effectively, a blend of these two
approaches. Such schemes form the subject of the book’s final chapter; but, for
the present, they are not considered further, except to remark that the development
of such hybrid approaches reflects, in part, the inadequacies of the RANS models
that are most commonly used in engineering computations. Thus, if more gener-
ally applicable approaches to RANS closure are adopted, that, on the one hand,
reduces the need to resort to such hybrid LES-RANS schemes while, on the other,
also provides a more secure RANS component in situations where such combined
approaches are necessary or desirable.

A comparative illustration of the numerical resolution of turbulent flow in a
pipe or channel required by these different numerical approaches – DNS, LES
and RANS – is shown in Fig. 1.1. A random-like oscillating signal with sharp
peaks (top figure, left) provides a snapshot of the true instantaneous velocity, Û ,
in a vertical cross plane. A properly resolved DNS (with the computational cells
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          DNS
Direct numerical
simulations

y y y

z

x

z

x

x

Û(x,y,z,t)

Instantaneous
velocity profiles
(two realizations)

Resolved
velocity profiles
(large scales only)

Averaged
velocity profiles

No
spectrum
resolved

E(K)

Eddy spectrum
fully resolved Resolved

LES

RANS

DNSΔtLESΔtDNS

Model

k

U

t

k

E(K)

U(x,y,z,t) U(x,y)

LES
Large-eddy
simulations

          RANS
Reynolds-averaged
Navier–Stokes

Fig. 1.1 Illustrative comparison of DNS, LES and RANS simulations of a fully
developed, steady turbulent flow in a pipe or a plane channel. Top: typical com-
putational grids and sketches of a set of instantaneous velocity profiles (Û ) from
DNS, filtered velocity profiles (Ũ ) from LES, and the time-averaged profile (Ū )
obtained by RANS. Centre: a sketch of the resolved energy spectrum E(κ) for
DNS and LES (note: RANS is also called ‘one-point closure’ because it com-
putes the averaged turbulence properties at a point in space with no information
on the turbulence spectrum). Bottom: time signal at a point in the flow and typical
time steps for DNS and LES. The RANS solution, by definition, gives a constant
velocity at a point in a steady flow.
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smaller than the smallest important eddy size) will provide the complete range of
wavelengths of velocity fluctuations. The instantaneous velocity profile obtained
by LES (top figure, middle) also shows a range of wavelengths, but because the
computational mesh is coarser, the signal is somewhat smoother, representing the
filtered velocity Ũ . High frequencies, i.e. those with a wavelength smaller than the
computational cells, are absent because they have been filtered out. The top-right
figure shows the time-averaged velocity Ū which exhibits a smooth profile that can
be obtained with a much coarser grid and which, for a simple shear flow such as
considered here, may be just two dimensional.

The second row of figures illustrates the resolved energy spectrum E(κ) deter-
mined using each of the methods. Here E(κ) represents the contribution to the
turbulence kinetic energy from all Fourier modes in the range from κ to κ + dκ ,
where κ = 2π/λ is the wavenumber modulus and λ is the wavelength. Naturally,
DNS should provide the complete spectrum, while LES excludes only the high
wavenumber portion (beyond κc = 2π/�, where� is the characteristic mesh size).
In contrast, RANS can provide no information about the turbulence spectrum, but
simply the value of the turbulence energy that would be obtained by integrating
over the whole wavenumber range for any point in space.

The bottom figure illustrates the three methods in a different way: here a time
record of fluid velocity is shown at a point in space in a steady flow. Again, the
strongly oscillating peaky signal (such as would be recorded by a hot-wire ane-
mometer) is representative of a typical DNS of velocity fluctuations at a point.
The smoother oscillating signal is a typical LES result, whereas the RANS record
would simply give a constant value. Resolving the DNS signal requires very small
time steps, whereas LES tolerates a somewhat larger time step corresponding with
the coarser computational mesh.

Both LES and RANS have particular strengths and dedicated proponents.
Because, using LES, with the numerical solver one resolves directly a large pro-
portion of the energy-containing turbulent motions, the model is less crucial to the
computed behaviour of the flow than it is with RANS. Thus, a far from accurate
sgs model may nevertheless lead to satisfactory numerical simulations. Just how
important the sgs model is naturally depends on how large a proportion of the total
effect of the turbulence it is required to carry. Currently, the most common strat-
egy in sgs modelling is to assume that the magnitude of the components of the sgs
stresses is directly proportional to the corresponding components of the resolved
strain, the coefficient of proportionality being what is termed the sgs kinematic vis-
cosity. The computational cost of an LES calculation naturally depends greatly on
the fineness of the computational mesh chosen.

With a RANS approach, to a far greater extent than with LES, the fidelity
of the computed flow hinges on a wise choice of model. The great majority
of computations at present, particularly those for industrial applications for
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1.3 A preview of the mean-strain generation processes 5

complex-shaped configurations, still employ a linear eddy-viscosity model where
the local value of the turbulent (or eddy) kinematic viscosity, vt , is computed in
the course of the solution, usually by way of supplementary transport equations
for what amount to representative length and time scales for the energy-containing
turbulent motions.

Within RANS there is, however, a hierarchy of alternative, more elaborate mod-
elling strategies available, ranging from non-isotropic turbulent viscosity models
to schemes which provide modelled transport equations of the individual turbulent
stresses (or second moments) as well as their diffusion (the third moments). The
focus of this book is on such alternative strategies with our primary attention being
on modelling the second moments. The reason for this choice is simply that tur-
bulent shear flows are not in any general sense describable by a model based on a
linear eddy-viscosity model, while a well-crafted second-moment closure extends
greatly the range of flows and phenomena that can be captured. Merely consider-
ing the stress-generation processes, as is done briefly in Section 1.3, allows one to
appreciate why turbulent flows respond, qualitatively, as they do to the application
of mean flow deformations of various types.

The discussion on modelling via second-moment closure has so far consid-
ered simply the turbulent stresses. If the processes of interest involve heat or
mass transport, the averaged forms of the thermal energy and species transport
equations likewise contain unknown turbulent second-moment correlations: the
turbulent heat and species fluxes. Within a linear eddy-viscosity scheme these rates
of transfer in any direction are taken directly proportional to the corresponding
spatial gradient of mean temperature and mean species concentration, respec-
tively. Such an assumption has similar shortcomings to that of the eddy viscosity
approximation for momentum transport. Solving transport equations for these other
second moments brings corresponding benefits to those for the turbulent stresses,
especially where buoyant force fields are significant.

1.3 A preview of the mean-strain generation processes
in the stress-transport equation

One of the attractions of second-moment closure compared with simpler
approaches to modelling is that the second-moment generation terms are exactly
represented and thus require no further approximation. This fact means that, where
these terms are major contributors to the budget for the second moment in question,
one is half-way to closure without having to make any approximations. More-
over, without completing a model for the remaining processes, one can often
infer the character of a turbulent flow just by simply noting how the generation
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Fig. 1.2 A simple shear flow: (a) typical mean velocity profile; (b) turbulent
normal stress components in a plane channel flow, as a function of the non-
dimensional wall distance x+

2 ≡ x2Uτ /ν (where Uτ is the wall friction velocity
and ν is fluid kinematic viscosity). From the DNS of Kim et al. (1987).

is distributed among the turbulent stresses or heat fluxes for different externally
applied conditions.

A formal derivation of the second-moment equations is deferred to Chapter 2 but
here, to convey in advance some impression of the insight gained from a knowledge
of the mean-strain generation process, we examine a few examples for commonly
arising strain fields. In the absence of force fields, the interaction between the mean
strain and the existing turbulence provides the source for further stress creation.
Thus, in most circumstances, once a flow becomes turbulent it remains turbulent.
The turbulent stress-generation tensor, Pi j , in a uniform density flow will be shown
in §2.3 to be given by

Pi j = −
(

ui uk
∂U j

∂xk
+ u j uk

∂Ui

∂xk

)
(1.1)

where ui u j denotes the turbulent stress and ∂Ui/∂xk is the gradient of the mean-
velocity component in direction xk .

Let us first see how these generation terms are distributed among the different
Reynolds-stress components for the case of a simple shear flow where the mean
flow is purely in direction x1 and varies only in the x2 direction, Fig. 1.2a. This
is very nearly the situation that applies in a two-dimensional boundary layer. The
resultant values of Pi j for each of the six stress components are obtained by assign-
ing appropriate values to i and j . The repeated subscript k signals that elements
carrying that subscript are to be summed with k taking successively the values 1, 2
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Fig. 1.3 Example of a mildly curved turbulent shear flow.

and 3. In the present case, however, the mean velocity varies only in direction x2,
so only k = 2 makes a contribution to Pi j . The reader may thus readily verify that:

u2
1 P11 = −2 u1u2

∂U1

∂x2

u2
2 P22 = 0

u3
3 P33 = 0

u1u3 P13 = 0

u2u3 P23 = 0

u1u2 P12 = −u2
2

∂U1

∂x2
.

(1.2)

It is noted from the last of these results that the generation rate of the shear stress,
u1u2, is opposite in sign from the mean velocity gradient, a fact which explains
why the shear stress itself normally has a sign opposite from the velocity gradient.
Note, too, that turbulent velocity fluctuations in the direction of the mean veloc-
ity gradient are instrumental in creating that shear stress (or momentum transfer).
Regarding the normal stresses, it is perhaps surprising that the only component in
which there is a generation is the streamwise component, u2

1. As reference to thin
shear flow data readily confirms, Fig. 1.2b, this component is by far the largest
stress though turbulent fluctuations do occur in all directions. Where, in practice,
the source of the fluctuating energy (or normal stresses) in directions x2 and x3

comes from will become clear in Chapter 2.
Let us next add a small degree of complexity to the strain field by imagining a

weak streamline curvature in the x1–x2 plane, Fig. 1.3. We retain Cartesian coordi-
nates so the curvature manifests itself by a non-zero value of ∂U2/∂x1. Thus, from
Eq. (1.1) the shear-stress generation becomes:

P12 = −
(

u2
2

∂U1

∂x2
+ u2

1

∂U2

∂x1

)
. (1.3)
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8 Introduction

Fig. 1.4 Sketch of the stagnation region in a jet impinging normally on a flat wall.

It is evident from Fig. 1.2b that even far from the wall u2
1 is at least twice as large

as u2
2, a situation that also pertains in strong free shear flows, like a jet. In a flow past

a solid surface, however, as one progressively approaches the wall, the disparity
between the two normal stresses becomes progressively greater, Fig. 1.2b. Thus,
the effect of the curvature term in Eq. (1.3) becomes greatly amplified. Indeed, the
great sensitivity of boundary layers to wall curvature has been known for many
years (Bradshaw, 1973). If, however, one were to assume turbulent stresses were
represented by an isotropic turbulent viscosity, νt , one would conclude:

u1u2 = −νt

(
∂U1

∂x2
+ ∂U2

∂x1

)
. (1.4)

In this representation, the weighting of the two strain components is equal, each
being multiplied by the scalar turbulent viscosity.1 The above example provides the
first illustration of the over-simplification produced by the eddy viscosity formula
alluded to in §1.2.

An even sharper example is provided in the case of impinging flow. Let us con-
sider the rate at which turbulent kinetic energy is being produced by virtue of the
mean-flow straining along the centre-line of a plane, symmetric stagnation flow,
Fig. 1.4. The turbulence energy, k, is just half the sum of the normal stresses and
its production rate, Pk , is thus:

Pk = −ui u j
∂Ui

∂x j
. (1.5)

Along the symmetry plane the turbulence energy generation arises purely from the
normal strains, which, we assume, are adequately represented by the potential flow
solution for plane stagnation flow: ∂U1/∂x1 = −∂U2/∂x2 = C , a constant.

1 It should be recognized that Eq. (1.3) expresses the production rate of the shear stress, while Eq. (1.4) refers to
the shear stress itself. However, as will be seen later, at least in stress components with major stress generation
terms, the stress production rate is indeed closely related to the magnitude of the stress.
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1.4 Some consequences of the no-slip boundary condition at a wall 9

Thus:

Pk = −
(

u2
1

∂U1

∂x1
+ u2

2

∂U2

∂x2

)
= C

(
u2

2 − u2
1

)
. (1.6)

From Eq. (1.6) it is evident that for this flow the rate of production of turbulent
kinetic energy depends on the difference between the normal stresses, i.e. on the
anisotropy of the turbulent stress field. The value of Pk may be positive, negative
or zero depending on the relative levels of the two normal stresses. If, however,
the turbulence energy generation had been represented by a turbulent viscosity, it
is easily verified that the following form would be obtained:

Pk = 4νtC
2. (1.7)

Equation (1.7) implies no such sensitivity to anisotropy; indeed, in all circum-
stances it returns an erroneously high energy generation rate. Computations of
impinging flows with eddy viscosity models thus lead to quite spurious peaks of
turbulence energy in the vicinity of a stagnation point unless problem-specific cor-
rections are adopted (Taulbee and Tran, 1988; Craft et al., 1993; Durbin, 1996). A
similar anomalous outcome of using eddy-viscosity models has also been observed
in other flows where normal straining plays an important role. For example, both
the analytical and numerical solutions for confined homogeneous turbulence sub-
jected to cyclic compressive/dilatational strain show that depending on the sign of
the strain the turbulence production takes alternately positive and negative values,
resulting in zero net production over a cycle (Hadžić et al., 2001). Because of the
continuous dissipation, however, both the turbulent kinetic energy and the charac-
teristic turbulence frequency (the reciprocal of the turbulent time scale) eventually
decay, irrespective of the initial turbulence level, anisotropy of the stress field or
Reynolds number. In contrast, eddy viscosity models predict an erroneous con-
tinual increase of the turbulent kinetic energy because of the incorrect positive
generation of turbulence during the compression phase. Other examples where the
broad character of a turbulent flow can be inferred from considering the stress gen-
eration terms may be found in flows affected by body forces whether due to system
rotation (Coriolis force), density stratification (buoyant force) or magnetic field
(Lorentz force). Such cases are discussed in detail in §4.5.

1.4 Some consequences of the no-slip boundary condition at a wall

At a rigid, stationary wall the velocity goes to zero, at least in the continuum regime
to which attention is limited. This condition applies to the turbulent fluctuations
as well as to the mean velocity. Thus the turbulent stresses all vanish at the wall
and wall friction is exerted through purely viscous effects just as in laminar flow.
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10 Introduction

As is evident from Fig. 1.2b, however, the turbulent velocity components do not
all increase at the same rate as one moves away from the wall. There are several
reasons for this, as will emerge in Chapters 4 and 6, but one that is examined here
briefly is the constraint applied by mass conservation. For a uniform density flow,
as will be shown formally in §2.3, the turbulent velocity fluctuations as well as the
mean flow are divergence free:

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0. (1.8)

This equation applies everywhere, including the fluid–wall interface x2 = 0. But
on this surface ∂u1/∂x1 = ∂u3/∂x3 = 0 since u1 and u3 are zero throughout the
x1 ∼ x3 plane. It follows that ∂u2/∂x2 must also be identically zero there. Thus,
we deduce that, while the root-mean-square values of u1 and u3 initially increase
linearly with distance from the wall, x2, the corresponding value of u2 can only
increase as x2

2 , while the shear stress u1u2 can at most increase as x3
2 . These inferred

exponents of the different stress-component variations will be seen in Chapter 6 to
be fully in accord with DNS data.

The fact that u1u2 increases as the cube of the distance from the wall implies
that initially, for small x2, this turbulent shear stress will be negligible compared
with viscous shear stress. As one proceeds further from the wall, however, one
enters a region where there is a rapid changeover to a regime where the turbulent
stress becomes the dominant contributor to momentum transfer. Since the total
shear stress (viscous plus turbulent) is very nearly constant over what is a very thin
layer (compared with the shear flow as a whole), there will inevitably be a rapid
reduction in the slope of the mean velocity. That is, one moves from a region where
viscous action (ν∂U1/∂x2) is the principal mechanism for momentum transfer to
one where most of the momentum transport is by turbulence. This rapid changeover
is clearly evident from the mean velocity profiles in Fig. 1.1, top right (denoted as
RANS), and in more detail in Fig. 6.1.

In fact, in a simple shear flow, the maximum generation rate of turbulent kinetic
energy occurs right in this changeover region. For, this will occur where

d

dx2

(
u1u2

dU1

dx2

)
= 0, (1.9)

or, on expanding the differential, where:

u1u2
d2U1

dx2
2

+ dU1

dx2

d u1u2

dx2
= 0. (1.10)

On the assumption that the total shear stress ((νdU1/dx2)−u1u2) is changing much
less rapidly than its constituent parts, we can replace the turbulent shear-stress
derivative in Eq. (1.10) by the corresponding derivative of viscous stress. With this
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substitution and after cancelling the common factor d2U1/dx2
2 , it emerges that the

maximum turbulence energy generation rate occurs where −u1u2 = νdU1/dx2,
i.e. where the turbulent and viscous stresses are equal!

The discussion above has brought out a few of the challenges posed by the near-
wall sublayer where viscous as well as turbulent transport is important. Although
the region usually occupies much less that 1% of the total flow volume, it is a
vitally important, albeit complex region to model. Indeed, the question of how the
flow within this sublayer is modelled is examined explicitly in Chapter 6.

1.5 Sequencing of the material

Following this brief glimpse of the potential and one of the major areas of diffi-
culty in modelling at second-moment level, Chapter 2 begins the formal journey
by developing the exact set of equations that needs to be modelled and then solved
within second-moment closure. These equations are ‘un-closed’, meaning that they
contain terms whose value is not directly knowable and for which closure approx-
imations must be provided. It also discusses some of the physical features of
turbulent flow that need to be borne in mind when devising closure approximations.
Chapter 3, while not directly concerned with closure, explores a number of issues
relating to turbulence characterization and introduces certain invariant parameters
that will be of great help in modelling.

Chapter 4 is the first chapter on turbulence modelling itself and it covers many
of the key aspects of closing the second-moment equations. Three types of process
are considered: the roles of pressure-containing products, triple and higher order
products and the dissipative actions of viscosity. Different levels of approxima-
tion are proposed, usually proceeding from the simplest to the most complex. This
chapter includes cases where force fields exert a substantial effect on the turbu-
lence structure. While buoyancy and rotation are the most common and important
of these, electromagnetic force fields are also important in a number of geophysi-
cal flows and also, potentially, in engineering where the emphasis is on turbulence
control. Chapter 5 explores routes for determining the turbulence energy dissipa-
tion rate and thus turbulent time and length scales of the energetic motions. To
complete this modelling trilogy, Chapter 6 develops the important modifications
to the closure model that are required if it is necessary or desirable to carry the
second-moment computations through the viscosity-affected sublayer to the wall
itself.

Not all practically interesting flows require a modelling strategy as compre-
hensive as second-moment closure, however. Thus, in Chapter 7 various types of
simplification are introduced that are applicable in particular types of flow. By
including a few examples where the approximations in question are manifestly
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unsuccessful, however, we hope to provide a reminder that such simplified schemes
always need to be applied with caution and with a broad qualitative understand-
ing of how the prevailing flow conditions are likely to affect the second moments
of interest. Provided that is done, the eddy-viscosity model, referred to dispar-
agingly above, may reappear as a simple yet viable approach for many nearly
two-dimensional thin shear flows where gradients normal to the wall far outweigh
those in other directions. Chapter 8 applies further modelling simplifications to the
wall-adjacent sublayer region. Even if one simplifies the model in this region to an
eddy-viscosity form, the requirements for an extra-fine mesh to resolve accurately
the complex variation of both the turbulence-field variables and the source and sink
processes that determine their level can mean that the great majority of computer
resources are consumed in resolving this region. Sometimes that is the inevitable
price to pay for reliable predictions; but in many others, simpler strategies are pos-
sible. Chapter 8 presents the strategy commonly used in CFD software and four
much newer approaches developed by the authors and their colleagues that provide
more comprehensive and reliable schemes.

Chapter 9 explores the additional possibilities that arise in certain types of
flow from treating the flow as unsteady – even if to an observer the flow may
appear steady. Such situations arise especially, though not exclusively, in condi-
tions where destabilizing force fields play a dominant role. Then the adoption of
a time-dependent solution of the mean and turbulent flow equations frequently
leads to the large-scale unsteadiness of the turbulent motion being rather well
resolved. Indeed, the faithful capturing of the turbulence macro-structure is partic-
ularly striking when second-moment-closure approaches are adopted. The scope
and limitations of this unsteady RANS (or URANS) mode of analysis is still the
subject of research though, from the examples presented, it clearly has a substantial
role to play in the hierarchy of approaches to capturing turbulent flows.

It is not implied, however, that a RANS or URANS approach to modelling is
always the best option. The greater detail and the greater assured accuracy of an
LES will, for particular flows, make the added computational cost and time worth
spending, especially if the region of flow where such an approach is adopted can be
limited. In Chapter 10, the concept of hybrid RANS–LES schemes is introduced,
where some of the most promising approaches are presented, in what is still a
rapidly evolving field. The aim of this hybrid strategy is to insert a more accurate
LES modelling just in a limited region where the RANS approach is particularly
liable to error. The most important issue in implementing such a strategy is how
one handles the interface conditions or the blending strategy between these two
modelling approaches.
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The exact equations

2.1 The underpinning conservation equations

It is presumed that the reader is familiar with the basic laws of mass, momentum
and energy conservation, which describe fluid motion and thermal transport. Never-
theless, it is instructive to outline the basic equations, their physical interpretation
and principles of averaging as used in RANS methods for computing turbulent
flows and associated transport phenomena. This short section will also introduce
the nomenclature and the assumptions adopted throughout the book.

2.1.1 Navier–Stokes equations of fluid motion

The instantaneous velocity field in a turbulent flow is described by the continu-
ity and the momentum (Navier–Stokes) equations expressing the conservation of
mass and momentum (Newton’s second law) for an infinitesimal control volume
(‘a point’) in space, which in conservative form may be written as:

∂ρ̂

∂t
+ ∂(ρ̂Ûi )

∂xi
= 0, (2.1)

∂(ρ̂Ûi )

∂t
+ ∂(ρ̂Û j Ûi )

∂x j
=
∑

n

F̂n
i − ∂ P̂

∂xi
+ ∂

∂x j

[
μ̂

(
∂Ûi

∂x j
+ ∂Û j

∂xi
− 2

3

∂Ûk

∂xk
δi j

)]
,

(2.2)

where P̂ denotes pressure, ρ̂ and μ̂ are the density and dynamic viscosity of the
fluid, respectively, and F̂i denotes body force per unit volume. The term in square
brackets is in fact the viscous stress, τi j , for a Newtonian fluid. Together with the
pressure it represents the total stress, i.e. the force per unit area acting on the sur-
face of an elementary fluid control volume. When spatial gradients of density are

13
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14 The exact equations

unimportant, the analysis in later chapters will generally employ kinematic
stresses, τi j/ρ, and the corresponding kinematic viscosity ν.

The circumflexes appearing above all quantities serve as a reminder that each,
potentially, will display fluctuations due to turbulence. In the majority of situa-
tions of practical relevance (excluding flows affected by buoyancy and combusting
flows), density and viscosity fluctuations at a point will be sufficiently small to
have negligible direct effect on turbulence and will therefore be disregarded. Fur-
thermore, in many cases of interest the fluid can be assumed to be incompressible
at any time instant, i.e. one where ∂Ûi/∂xi = 0.

2.1.2 Scalar transport

The transport of some instantaneous scalar property 
̂ by the turbulent motion can
be derived from the scalar conservation equation, which is expressed as:

∂(ρ̂
̂)

∂t
+ ∂(ρ̂Û j
̂)

∂x j
= Ŝ
 + ∂

∂x j

(
γ̂
∂
̂

∂x j

)
, (2.3)

where γ̂ is the appropriate molecular diffusivity and Ŝ
 is the source, i.e. the rate
of creation of the property per unit volume. As in Eq. (2.2), for many flows, the
turbulent fluctuations of density and molecular diffusivity can be neglected, though
their variation over the flow due to significant variation of temperature, chemical
composition and pressure must be accounted for.

The scalar property most frequently considered in engineering and environmen-
tal flows is the specific enthalpy of the fluid ĥ for which case Eq. (2.3) denotes the
instantaneous energy conservation (the first law of thermodynamics). However, it
will be convenient to choose the temperature as the subject of Eq. (2.3), in which
case the instantaneous temperature, 
̂, is related to the instantaneous enthalpy, ĥ,
via dĥ = cpd
̂, where cp is the specific heat at constant pressure. Ŝ
 is then
the internal source of energy per unit volume (heat generation by Joule heating,
chemical or nuclear reaction) divided by cp and γ = λ/cp, where λ is the thermal
conductivity of the fluid. For convective heat transfer, with 
̂ denoting temper-
ature, when the density is uniform, Eq. (2.3) is usually divided by ρ, in which
case γ becomes the thermal diffusivity α ≡ λ/(ρcp). Likewise, 
̂ can stand for
mass concentration of a species, with Ŝ
 denoting the reaction rate (if any) for that
species.

Besides conventional sources or sinks, we can conveniently imagine the term
Ŝ
 absorbing any terms that, for a particular transported scalar property, do not
fit elsewhere. For example, the molecular diffusion process can be governed by a
more elaborate law than supposed by the simple gradient-diffusion relation while,
if 
̂ stands for temperature, the time-dependent term in the equation should strictly
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Instantaneous
velocities

Turbulent
flow

Laminar
flow

Fig. 2.1 Left: measured axial velocity fluctuations at a point in a steady turbulent
flow. Centre and right: a selection of time realizations and mean velocity profiles
across a cross section of a pipe.

be multiplied by the specific heat at constant volume divided by that at constant
pressure, a difference that can be absorbed into Ŝ
.

2.2 The Reynolds equations

As observed in Chapter 1, the numerical solution of Eqs. (2.1) to (2.3) is the
target of direct numerical simulations (DNS). Because of the non-stationary, three-
dimensional character of turbulence, the equations must always be solved in
time and in all three space coordinates, thus inevitably requiring huge comput-
ing resources. Large-eddy simulations (LES) are less demanding because a coarser
grid and larger time increments are employed, with the effects of the unresolved
sub-grid-scale motion being accounted for by an empirical model for the sub-grid-
scale stress. Nevertheless, a large portion of the spectrum still needs to be resolved
numerically in time and three-dimensional space so that the computing resources,
especially for high Reynolds number, wall-bounded flows, remain formidable for
most industrial applications.

Thus, for the great majority of flows relevant to industry or the environment, the
RANS approach is at present the only practicable option. Not only does it tolerate
a much coarser computational grid, but, in many practical situations, the flow may
be regarded as steady in the mean; the problem then reduces to one involving only
spatial variations. Indeed, it even reduces to two space coordinates if the flow is
homogeneous in one direction or possesses axial symmetry.

An illustration of the instantaneous and averaged velocity field in a pipe is pro-
vided in Fig. 2.1. A time history of velocity at a point in a turbulent flow shows
irregular, non-repeating fluctuations, despite the fact that the average flow rate
is constant (a steady flow), Fig. 2.1, left. Likewise, a sequence of instantaneous
distributions of velocity across the pipe cross section shows a collection of
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Fig. 2.2 Illustration of time and phase averaging, respectively.

non-repeatable irregular curves (velocity field realizations) with only one common
value: zero at the wall, Fig. 2.1, centre. However, we are usually not interested in
the instantaneous values of velocity but rather in the averaged field and its effects
and consequences – forces on structures, friction, drag, heat and mass transfer.
The mean velocity profile for turbulent flow through a pipe, obtained by averag-
ing a large number of instantaneous realizations, is shown in Fig. 2.1, right. For
comparison, the laminar (parabolic) velocity profile for the same flow rate is also
shown.

2.2.1 Reynolds decomposition and averaging

The averaging of a fluctuating field can be accomplished in various ways, but most
methods make use of the Reynolds decomposition by which an instantaneous vari-
able �̂ (velocity, pressure, temperature, etc.) is expressed as the sum of the average
or mean value, �̄, and fluctuation around that mean, ϕ′

�̂ = �̄+ ϕ′. (2.4)

The RANS approach necessarily implies time averaging over a sufficient time inter-
val for an unambiguous mean value to be established, and it is, strictly speaking,
applicable only to stationary flows, Fig. 2.2, left,

�̄(xi ) = lim
τ→∞

1

τ

∫ τ

0
�̂(xi , t)dt = �̂(xi ). (2.5)

It follows from applying this averaging strategy to each side of Eq. (2.4) that

ϕ′ = lim
τ→∞

1

τ

∫ τ

0
ϕ′(xi , t)dt = 0. (2.6)

Thus, for stationary turbulence, the decomposition can be expressed in terms of the
independent variables as

�̂(xi , t) = �̄(xi )+ ϕ′(xi , t). (2.7)
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The time averaging can also be applied to unsteady flows if the characteristic
timescale of the mean flow is much larger than that of turbulence. Of course, the
integration time interval τ should always be sufficiently large to make it possible to
define uniquely the mean values of the turbulent fluctuations, but sufficiently small
for the mean value to be independent of τ .

If the bulk flow varies significantly with time, and with a timescale not much
larger than those of the lowest frequency turbulent fluctuations, the time average
has no meaning and we need to use other ways of averaging. In cases where the
flow exhibits a periodicity (not necessarily sinusoidal or regular in any other way)
with an identifiable period τp, it is convenient to adopt the phase averaging over
n p periods, Fig. 2.2, right

�̄(xi ) = lim
n p→∞

1

n p

n p∑
n=0

�̂(xi , t + nτp). (2.8)

Practical examples of periodic flows are found not only in internal combus-
tion engines, reciprocating pumps and compressors and turbomachinery but also
in vortex shedding behind bluff bodies or certain natural convection flows in
enclosures.

For unsteady flows of a more general kind, the only option is the ensemble
averaging over ne independent realizations (‘samples’) of the same event,

�̄(xi ) = lim
ne→∞

1

ne

ne∑
n=1

�̂n(xi , t). (2.9)

In fact, ensemble averaging is the most appropriate way of obtaining the mean
value in a fluctuating field, where each realization should come from an independ-
ent measurement or computation. As such, however, ensemble averaging is highly
impractical and time consuming, and often simply not possible. In stationary and
periodic flows, it is reasonable to assume that both time and phase averaging are
equivalent to ensemble averaging.

In certain research studies of unsteady flows, ensemble averaging has been
applied to a series of time realizations of a characteristic flow structure, identified
by some predefined structure parameter (e.g. a two-point correlation of a prop-
erty); this is known as a conditional averaging. An example of such an approach
is shown in Fig. 2.3, where a symmetry-accounting ensemble averaging is applied
to process the DNS results in order to identify the averaged motion (‘the wind’) in
Rayleigh–Bénard convection (thermal buoyancy-driven fluid motion between two
infinite horizontal planes, where the lower wall is warmer than the upper one).
Note that in this example conventional time averaging over a sufficiently long time
interval gives zero mean velocity over the complete domain.

Further types of averaging can also be defined and used where convenient. For
example, in numerical simulations, the averaging is often applied over a surface or

https://doi.org/10.1017/9781108875400.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.004


18 The exact equations

Fig. 2.3 Instantaneous (left) and symmetry-accounting ensemble-averaged (right)
fields in Rayleigh–Bénard convection. Top: temperature iso-surface coloured by
the kinetic energy. Bottom: temperature iso-contours with ensemble-averaged
velocity profiles. From DNS data of van Reeuwijk et al. (2005, 2008).

a line along which the mean flow is expected to be homogeneous, thus enabling the
desired number of realizations to be achieved for a relatively short computational
time instead of collecting a large number of time realizations at a single point.

Finally, for flows where density variations are large (requiring the retention of
density fluctuations), some form of mass-weighted averaging is usually adopted.
The most widely used strategy is that alluded to by Reynolds (1895) but first
formally proposed by Favre (1965) in which the instantaneous velocity is decom-
posed into a density-weighted average velocity and the fluctuations about that
average

Ûi (xi , t) = Vi + vi , (2.10)

where Vi = ρ̂Ûi/ρ and vi = ρ̂ui/ρ. Note that now ρ̂vi = 0, but v̄i �= 0.

Some rules on Reynolds decomposition

Irrespective of the averaging method, some common rules apply to all averaging
operators. Consider two instantaneous variables in a turbulent fluid flow

�̂ = �̄+ ϕ′ and !̂ = !̄ + ψ ′

and note the following rules:

● multiplication by a constant c has no effect on averaging

c�̂ = c�̂ = c�̄;
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● addition and subtraction also have no effect on averaging

�̂± !̂ = �̂± !̂ = �̄± !̄;
● differentiation and integration obey commutation rules (s denotes a time or space

coordinate)

∂�̂

∂s
= ∂�̂

∂s
= ∂�̄

∂s
,

∫
�̂ds =

∫
�̂ds =

∫
�̄ds;

● multiplication is an exception to these rules because of the likely interaction
between fluctuations of different velocity components as well as with those
of a scalar property at a point; thus, the averaged product of the two fluc-
tuations is likely to be non-zero (i.e. the signals should be presumed to be
correlated)

ϕ′ψ ′ �= 0 even though ϕ′ = 0 and ψ ′ = 0.

Hence, the averaged product of the two instantaneous signals is

�̂!̂ = (�̄+ ϕ′)(!̄ + ψ ′) = �̄!̄ + �̄ψ ′︸︷︷︸
=0

+ ϕ′!̄︸︷︷︸
=0

+ϕ′ψ ′ = �̄!̄ + ϕ′ψ ′. (2.11)

For convenience, overbars and primes will hereafter be omitted (except where
needed to avoid ambiguity) so that capital letters will denote the mean, i.e.� ≡ �̄,
and lower-case letters the turbulent fluctuations ϕ ≡ ϕ′, i.e. �̂ = �+ ϕ.

2.2.2 Averaged conservation equations

The Reynolds decomposition of the instantaneous variables into mean and fluc-
tuating parts and averaging can now be applied to each term in the equations of
motion and scalar transport, Eqs. (2.1) to (2.3). Habitually the averaging, denoted
with a bar over the variable symbol, is performed in time, but apart from the inter-
pretation, the same form of equation is recovered if one applies other averaging
procedures such as phase or ensemble averaging.

For every term except that involving the product of fluctuating velocities, the
averaging process simply leads to the instantaneous value being replaced by the
average. For the exceptional term, the convective transport of xi -momentum or of
some scalar quantity, the non-linearity of the term ensures a more complex result.

For the momentum equation

Û j Ûi = (U j + u j )(Ui + ui ) = U jUi + U j ui + u jUi + u j ui

= U jUi + u j ui . (2.12)
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Thus, after some rearrangement and assuming density fluctuations at a point are
negligible, the averaged equations of motion are obtained as

∂ρ

∂t
+ ∂(ρUi )

∂xi
= 0, (2.13)

∂(ρUi )

∂t
+ ∂(ρU jUi )

∂x j
=
∑

n

Fn
i − ∂P

∂xi
+ ∂

∂x j

[
μ

(
∂Ui

∂x j
+ ∂U j

∂xi

)
− ρui u j

]
.

(2.14)

These equations, generally known as the Reynolds equations, differ from those
describing a laminar flow only by the presence of the final term containing averaged
products (‘one-point correlations’) of fluctuating velocities. The process it repre-
sents is the additional transfer rate of xi -momentum due to turbulent fluctuations.
While originating from an averaging of the convective transport on the left side of
the equation, habitually, it is brought to the right side, as in Eq. (2.14). Since the first
term within square brackets is the viscous stress, the second, −ρui u j , has naturally
been interpreted as a turbulent stress or, more formally, the Reynolds stress tensor.
As this tensor is symmetric, there are in general six independent components of the
Reynolds stress. They are unknown elements in the averaged equations of motion,
and the major theme of this book is developing a satisfactory, albeit approximate,
route for obtaining their values in order to close the Reynolds equations.

In the case of a flow with substantial density fluctuations, one cannot avoid con-
sidering the instantaneous density, and the averaging needs to be applied to the
original equations of motion, Eqs. (2.1) and (2.2). The decomposition of the instan-
taneous density into mean and fluctuation parts, ρ̂ = ρ̄ + ρ ′, and averaging would,
however, generate several additional terms containing averaged products of fluc-
tuating variables: Uiρ ′u j , U jρ ′ui , ρ ′ui u j . These terms need to be approximated
in addition to the stress tensor ρui u j , thus adding further complexity to the task
of closing the Reynolds equations. The problem can be formally avoided by using
mass-weighted averaging, Eq. (2.10). In that case, the convection term in (2.2)
becomes

ρ̂Û j Ûi = ρ̂(Vj + v j )(Vi + vi ) = ρVj Vi + ρ̂vi Vj + ρ̂v j Vi + ρ̂vi v j

= ρVj Vi + ρ̂vi v j . (2.15)

The quantity ρ̂vi v j is known as the mass-weighted Reynolds stress. Notice that,
contrary to ‘volume’ averaging, the number of turbulent correlations arising from
averaging the convective terms is just one – as in an incompressible flow. This
is the feature that has made the use of mass-weighted quantities in variable den-
sity flow so popular. However, while the averaged equations retain the same form
as for incompressible flow, the interpretation of the Reynolds stress is different.
This issue becomes of importance when attempting to compare the computed
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Reynolds stress with measurements which, depending on the technique used, may
provide either volume-weighted or mass-weighted averages, or even some mixed
average.

It should also be noted that while density-weighted averaging removes the extra
mathematical complexity associated with large density fluctuations, it does not
necessarily follow that the physical processes are adequately accounted for with
uniform-density models.

Applying averaging to the scalar-transport equation, Eq. (2.3), leads to the
following rate equation for the mean level of the scalar

∂(ρ
)

∂t
+ ∂(ρU j
)

∂x j
= S̄
 + ∂

∂x j

(
γ
∂


∂x j
− ρθu j

)
. (2.16)

An overbar has been placed on S
 to serve as a reminder that the source term
may be non-linear and, in that event, its mean value may differ considerably from
that obtained by inserting just the mean values of the separate constituent terms.
Having drawn attention to this possibility, however, we shall not consider it fur-
ther in the present treatment, attention being limited to cases where the source or
sink term is effectively zero. Just as with the averaged momentum equation, the
additional convective flux of the scalar due to the turbulent velocity fluctuations is
conveniently interpreted as a supplementary diffusional process, which is why the
term ρθu j has been transferred to the right side of the equation. Like the Reynolds
stresses, this turbulent scalar flux is an unknown and will correspondingly require
approximation.

2.2.3 The modelling framework and rationale

In all practically interesting problems the mean momentum and continuity equa-
tions, together, in many cases, with one or more equations of the type (2.16) for
transported scalars, are to be solved numerically. The solving procedure will, in
all probability, be of fairly general construction designed to cope with different
flow problems ranging from some geometrically or physically simple flows (for
testing modelling ideas and concepts) to real-life three-dimensional flows of great
complexity. Ideally, the turbulence model – the scheme for determining ui u j and
θu j – should enjoy a range of applicability comparable with that of the numerical
procedure and should fit comfortably within it.

Schemes discussed in this book are one-point closures. As remarked earlier, in
such approaches, the only averaged products of fluctuating quantities that appear
are those in which the two or more quantities in question are evaluated at the same
point. ‘Two-point’ and spectral approaches have also been proposed and developed
(an extensive account can be found in the book of Schiestel (2008) and earlier in
Mathieu and Jeandel (1984) and Leslie (1973)). Models of this type are seen more
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as helping to reveal the underlying physics than as models for use in computational
procedures for engineering flows.

Within the single-point framework, there is a wide range of modelling
approaches. At present, most applied computational work on turbulent flows still
adopts the idea that the turbulent fluxes and stresses can be represented in terms of
effective turbulent diffusion coefficients for momentum, heat, chemical species and
other transportable quantities of interest. Approaches of this type range from sim-
ple mean-field closure (where the turbulent viscosity is expressed in terms of the
mean velocity field and flow topography) to the widely used two-equation models
where the effective diffusion coefficients are determined from local values of two
scalar properties of the turbulence (and which may or may not have a direct meas-
urable physical significance). These in turn are obtained from transport equations
similar to those describing mean flow quantities save that source and sink terms
always play an important role.

In some respects, it makes sense to consider models based on the idea of a
turbulent viscosity first before proceeding to the more advanced second-moment
treatments. The authors believe, however, that it is preferable to go directly to a
more comprehensive treatment from which ‘turbulent viscosity’ models emerge
as special cases under particular circumstances. Such an approach reveals more
clearly the shortcomings and limitations of the turbulent viscosity models. The
term ‘second-moment’ applies to models based on the exact transport equa-
tions for the second moments, i.e. for ui u j and θu j , etc. These equations, while
exact, are unclosed: they contain correlations that are not exactly determinable
and which must therefore be approximated or ‘modelled’ in terms of quantities
that are.

Most of the chapters that follow consider in detail the strategies and issues in
the approaches to closure at this level and the application of the resultant mod-
els to a diversity of flow problems. Before considering the closure questions,
however, it will be instructive to examine the exact second-moment equations
and, in particular, the processes causing these quantities to depart from the
levels found in isotropic turbulence. These topics are developed in the next
sections.

2.3 The second-moment equations

2.3.1 Stress-transport equation

An exact equation describing the transport of the kinematic Reynolds stress ui u j is
derived from the equation for the velocity fluctuations ui . That equation is readily
obtained by subtracting the averaged momentum equation (2.14) from that for the
instantaneous velocity (Eq. 2.2)
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Dui

Dt
≡∂ui

∂t
+ Uk

∂ui

∂xk
= −uk

∂Ui

∂xk
+ 1

ρ

∑
n

f n
i − 1

ρ

∂p

∂xi

+ ∂

∂xk

[
ν
∂ui

∂xk
− ui uk + ui uk

]
(2.17)

in which we now use k rather than j as the repeated suffix. Multiplying Eq. (2.17)
by u j and averaging, then adding to it the mirror equation in which suffices i and
j are interchanged leads, after some manipulation, to

Dui u j

Dt
≡ ∂ui u j

∂t︸ ︷︷ ︸
Li j

+ Uk
∂ui u j

∂xk︸ ︷︷ ︸
Ci j

= −
(

ui uk
∂U j

∂xk
+ u j uk

∂Ui

∂xk

)
︸ ︷︷ ︸

Pi j

+ 1

ρ

∑
n

(
f n
i u j + f n

j ui

)
︸ ︷︷ ︸

Fi j

− 1

ρ

(
ui
∂p

∂x j
+ u j

∂p

∂xi

)
︸ ︷︷ ︸

Πi j

− 2ν
∂ui

∂xk

∂u j

∂xk︸ ︷︷ ︸
εi j

+ ∂

∂xk

[
ν
∂ui u j

∂xk
−ui u j uk

]
︸ ︷︷ ︸

Dνi j +Dt
i j

. (2.18)

The left side of the equation expresses the total rate of change of the quantity ui u j

for a small identified packet of fluid. The rate of change arises from an imbalance
of the terms on the right. Here the terms have been grouped, following well-
established practice, to allow physical interpretation of the processes. One line is
given to each process and, beneath each term, a shorthand label appears for the
process in question; that will be used to simplify the appearance of later equations.

The first two processes represent rates of creation of ui u j , in one case by the
action of mean strain, Pi j , and in the other by body forces Fi j . The first of these,
comprising products of Reynolds stresses and mean velocity gradients, can clearly
be treated exactly in a second-moment closure. If the body force is linear, as when
one examines the flow in a rotating coordinate frame, that too can be handled
without further approximation.
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Each of the terms represents a physical process contributing to the stress budget
at a point in space. Identifying the physical character of each is a prerequisite for
its modelling and thus for closing the equation. This physical identification is par-
ticularly important for modelling the terms containing higher order moments and
derivatives of the fluctuating velocity and pressure (placed within boxes for empha-
sis), which cannot be computed from the available set of equations. For this purpose
some terms need to be expanded or reformulated to display their physical meaning
more transparently.

First, it is noted that the second term on the right is the sum of contributions to the
stress-transport balance by all (active) fluctuating body forces. Here attention will
be limited to buoyancy arising from thermal and/or concentration fluctuations cre-
ating density fluctuations, electromagnetic (Lorentz) and rotation (Coriolis) forces:

Fi j ≡ 1

ρ

∑
n

f n
i u j + f n

j ui

= (
ρ ′u j gi + ρ ′ui g j

)
/ρ︸ ︷︷ ︸

Gi j

+
(

f L
i u j + f L

j ui

)
/ρ︸ ︷︷ ︸

Mi j

−2�k
(
u j umεikm + ui umε jkm

)︸ ︷︷ ︸
Ri j

,

(2.19)

where f L
i stands for the fluctuating Lorentz force, and �k represents the system

rotation rate (angular velocity).1

Clearly, the production of the turbulent stress by the Coriolis force can be
treated exactly, but the other two contributions require the correlation between the
fluctuating body force and velocity to be modelled, a topic dealt with in §4.5.

The physical meaning of the term involving the gradient of fluctuating pressure,
Πi j , is not so obvious and it is helpful to rewrite it as the sum of two parts: the diver-
gence of the pressure-velocity product D p

i j and what (for incompressible flows) is
a traceless part since ∂uk/∂xk = 0, denoted as Φi j ,

− 1

ρ

(
ui
∂p

∂x j
+ u j

∂p

∂xi

)
︸ ︷︷ ︸

Πi j

= − ∂

∂xk

(
1

ρ
p(uiδ jk + u jδik)

)
︸ ︷︷ ︸

D p
i j

+ 1

ρ
p

(
∂ui

∂x j
+ ∂u j

∂xi

)
︸ ︷︷ ︸

Φi j

.

(2.20)

1 The Coriolis force per unit mass, −2� × Û, written in index notation for a Cartesian coordinate system
as −εi jk2�kU j (where εi jk is the third-rank alternating symbol) appears in the instantaneous momentum
equation (2.2) when it is transformed into a non-inertial frame rotating with angular velocity �k . The Reyn-
olds decomposition results in splitting the Coriolis force into its average, −εi jk2�kU j , and its fluctuations,
−εi jk2�ku j , which appear in Eqs. (2.14) and (2.17), respectively. However, the transformation to the rotat-
ing frame also results in a centrifugal force (originating from the frame acceleration), −� × (� × x) ≡
−∇

[
1/2(� × x)2

]
= −�2x, or �k�k xi . Since no fluid flow parameters appear in the centrifugal force, it

exerts no effect on turbulence. Indeed, because the centrifugal force is irrotational and conservative (i.e. it
can be represented as a potential), it can be absorbed into the pressure gradient term as a modified pressure
P∗ = P − ρ(� × x)2/2, where x is the radius vector of the point under consideration.
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The term D p
i j can be recognized as a process that leads to a spatial transport of

ui u j , that is a diffusion of the stress by pressure fluctuations.2

The stress-transport equation can now be conveniently represented in symbolic
form:

Li j + Ci j = Pi j + Gi j + Mi j + Ri j︸ ︷︷ ︸
Fi j

+Φi j − εi j + (Dνi j + Dt
i j + D p

i j )︸ ︷︷ ︸
Di j

. (2.21)

A pictorial representation of the various terms and their physical meanings is
shown in Fig. 2.4. The correlation between fluctuating pressure and fluctuating
strain,Φi j , is a very important one. As mentioned above, its trace is zero, and if
one forms the transport equation for the turbulent kinetic energy by taking half the
sum of the equations for the three normal-stress components (i.e. those for which i
and j take the same value, ukuk/2), this term is zero for incompressible fluid flow.
Thus, in an incompressible flow the pressure-strain process makes no direct contri-
bution to the overall level of turbulence energy but serves, inter alia, to redistribute
energy among the normal-stress components.

The terms comprising Di j are easily recognized as diffusive in character since
we see from integrating them across a thin shear flow bounded by non-turbulent
fluid that they make no contribution to the average level of ui u j at any section
even though, within the shear flow, the correlations themselves are non-zero. Their
effect is thus to promote a spatial redistribution. Note that the total diffusion term
Di j consists of viscous diffusion Dνi j and turbulent transport by fluctuating veloc-
ity Dt

i j and by fluctuating pressure D p
i j . The term Dνi j describing diffusive transport

by molecular action is negligible over all or nearly all the flow. However, it is
invariably important within the viscous layer next to a solid wall.

Finally, the term εi j represents (very nearly) the destruction rate of ui u j by vis-
cous action. Unlike viscous diffusion, the dissipation terms cannot in general be
ignored. We can see this is so by contracting Eq. (2.18) to produce an equation
for the transport of kinetic energy. Then, for the thin shear flow discussed above,

2 Other decompositions of Πi j have been considered. Lumley (1975b) proposed

−Πi j =
[

1

ρ

(
ui
∂p

∂x j
+ u j

∂p

∂xi

)
− 2

3
ρ
∂ pun

∂xn
δi j

]
+ 2

3ρ

∂ pun

∂xn
δi j

and Mansour et al. (1988) suggested

−Πi j =
[

1

ρ

(
ui
∂p

∂x j
+ u j

∂p

∂xi

)
− 1

ρ

ui u j

k

∂ pun

∂xn

]
+ 1

ρ

ui u j

k

∂ pun

∂xn
.

In both cases the first term on the right is traceless, thus redistributive, whereas the second term has a character
of turbulent transport by pressure fluctuations. However, both decompositions lead to non-physical solutions
in some generic flows (Groth, 1991). For example, in a flow that is homogeneous in direction x3, Dp

33 is identi-
cally zero, whereas both expressions will give erroneous non-zero turbulent transport also in the homogeneous
directions.
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Fig. 2.4 Pictorial representation of the physical meanings of terms in the ui u j
equation (after Bradshaw, 1976).

Dkk makes no contribution to the overall level of turbulence energy at any section,
while Φkk vanishes identically at all points. The term Pkkwill be positive, repre-
senting the continual removal of energy from the mean flow by the action of the
Reynolds stress on the mean shear. Thus, if εkk were negligible, there would be a
limitless growth in the turbulent kinetic energy of the flow. Such a scenario is con-
trary to both intuition and observation. The crucial difference between εi j and the
viscous diffusion term Dνi j is that the former comprises correlations of fluctuating
velocity derivatives and, in the finest scales of motion present, turbulent velocity
derivatives are very large.

The role of stress generation

Further consideration of Φi j , Di j and εi j is deferred to Chapter 4. It will, however,
be instructive to explore in a little greater depth the glimpse provided in Chap-
ter 1 into specific forms that the production tensors take in a few cases. In most
practical flows, the production terms firmly stamp the character of the resultant
turbulent stress tensor. First, consider the case of simple shear, with dU1/dx2 = λ,
where λ is assumed positive and all other components of mean velocity and their
derivatives are zero. From the stress transport equation (2.18) applied to individ-
ual components we see that stress production is non-zero only for the u2

1 and u1u2

components, as summarized in Table 2.1. From the upper row of Table 2.1, P12, the
production rate of u1u2 is negative (since u2

2 is undoubtedly positive); though short
of a proof, the reader will accept the likelihood that u1u2 is consequently negative
(i.e. of the same sign as its production rate), which in turn gives the ‘sensible’ result
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Table 2.1 Stress production rates due to primary and secondary shear

Pi j P11 P22 P33 P12

Due to primary shear
∂U1

∂x2
= λ −2u1u2λ 0 0 −u2

2λ

Due to curvature perturbation
∂U2

∂x1
= δ 0 −2u1u2δ −u2

1δ

that the generation of u2
1 is positive. There is no direct production of either u2

2 or

u2
3. This does not mean that there will be no turbulent fluctuations in the x2 and x3

directions for we have already noted that the pressure-strain correlation �i j serves
to redistribute energy among the various normal stresses. Nevertheless, we should
expect – and this is amply confirmed by experiment – that u2

1 would be the largest
of the normal-stress components in simple shear (see, for example, Fig. 1.2).

Figure 2.5 illustrates, for this case, the flow of kinetic energy from the mean
motion to turbulence, its exchange among components and ultimate destruction
by viscosity. This same budget applies very nearly to other thin shear flows (pro-
vided ∂U1/∂x1 and ∂U2/∂x2 
 ∂U1/∂x2). We focus for the moment on the
interaction among stress components. The self-sustaining character of turbulence
in a simple shear is emphasized by the clockwise circular arrow connecting the
stresses in Fig. 2.5: turbulent velocity fluctuations in the direction of the mean-
velocity gradient (u2

2) promote a growth in shear stress, which, in turn, serves
to augment the intensity of streamwise fluctuations. Pressure interactions deflect
some of this energy to fluctuations in the direction of the velocity gradient –
and so the sequence repeats itself. It is what we might call turbulence’s eternal
triangle.

x2

Mean flow

u3
2

u2
2

u1
2

u1u2

ε
U1

Fig. 2.5 A schematic diagram of energy flow and stress interactions in a thin shear
flow. Pressure interactions are indicated symbolically by ‘waves’.
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The lower line in Table 2.1 shows the effects of superimposing on the primary
shear a weak (but not negligible) secondary strain δ (δ = ∂U2/∂x1), which rep-
resents a curving of the mean-flow streamlines. The shear stress and the normal
stress in the direction of the velocity gradient are directly modified and their effects
reinforce one another. That is to say, if δ is positive, the extra contribution to P12

will tend to enlarge the (negative) magnitude of u1u2, while the contribution to
P22 leads to an enhancement of u2

2, which in turn helps amplify u1u2 through the
principal contribution to P12. It is this mutual reinforcement property of Pi j , repre-
sented in Fig. 2.6 by the broken lines, that makes turbulent shear flows so sensitive
to weak streamline curvature.

2.3.2 Transport equation for turbulent scalar flux

Buoyancy has an effect on turbulence generation that in some respects is akin to
streamline curvature. It is more complicated, however, for it involves a coupling of
the Reynolds stress and scalar flux fields θui . The corresponding equation for θui

is obtained by multiplying Eq. (2.3) by ui , then adding it to Eq. (2.2) multiplied by
θ and averaging. The result may be expressed as

Dθui

Dt
≡ ∂θui

∂t︸ ︷︷ ︸
Lθ i

+ Uk
∂θui

∂xk︸ ︷︷ ︸
Cθ i

= −
(

ui uk
∂


∂xk
+ θuk

∂Ui

∂xk

)
︸ ︷︷ ︸

Pθ i =P
θ i +PU
θ i

+ 1

ρ

∑
n

θ f n
i︸ ︷︷ ︸

Fθ i

− 1

ρ
θ
∂p

∂xi︸ ︷︷ ︸
Πθ i

− (α+ ν) ∂θ
∂xk

∂ui

∂xk︸ ︷︷ ︸
εθ i

+ ∂

∂xk

[
αui

∂θ

∂xk
+ νθ ∂ui

∂xk
−θui uk

]
︸ ︷︷ ︸

Dαθ i +Dνθ i +Dt
θ i

(2.22)

where

Fθ i ≡ 1

ρ

∑
n

θ f n
i = ρ ′θgi/ρ︸ ︷︷ ︸

Gθ i

+ θ f L
i /ρ︸ ︷︷ ︸
Mθ i

−2�kθu jεi jk︸ ︷︷ ︸
Rθ i

(2.23)
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Fig. 2.6 Stress couplings in weakly curved shear flows: full arrows indicate the
production due to primary strain and broken arrows indicate production due to
secondary (curvature) strain. The pressure-strain effect is indicated symbolically
by ‘waves’.

represents the sum of the production of scalar flux by fluctuations of different body
forces – gravitation, Lorentz force and Coriolis force.

Just as in the stress equation, the correlation containing the fluctuating pressure
gradient, Πθ i , is conveniently decomposed into a divergence part representing the
turbulent diffusion of the scalar by pressure fluctuations, D p

θ i , and the remaining
term �θ i interpreted as ‘pressure scrambling’ of the fluctuating scalar field, i.e.

− 1

ρ
θ
∂p

∂xi︸ ︷︷ ︸
Πθ i

= − ∂

∂xk

(
1

ρ
pθδik

)
︸ ︷︷ ︸

D p
θ i

+ 1

ρ
p
∂θ

∂xi︸ ︷︷ ︸
Φθ i

. (2.24)

The scalar flux transport equation can now be written in symbolic form,

Lθ i + Cθ i = P
θ i + PU
θ i︸ ︷︷ ︸

Pθ i

+Gθ i + Mθ i + Rθ i︸ ︷︷ ︸
Fθ i

+Φθ i − εθ i + (Dαθ i + Dνθ i + Dt
θ i + D p

θ i︸ ︷︷ ︸
Dθ i

). (2.25)

The emerging equation is similar in structure to that describing the transport of
Reynolds stress. The generation terms Pθ i comprise products of second-moment
correlations and mean-field gradients and will not require approximation. Diffu-
sive transport of θui , i.e. Dθ i , is caused by velocity and pressure fluctuations and
by molecular transport. The last of these consists of two terms: one associated with
scalar conductivity/diffusivity and the other with fluid viscosity. Pressure fluctu-
ations also play a non-dispersive role (Φθ i ), which we shall later see is of vital
importance. Note that, unlike Φi j , since Φθ i is a vector, it cannot be contracted to
show its redistributive character, but nevertheless one can expect that it contributes
to diminishing both the magnitude of and the differences between components of
the scalar flux by ‘scrambling’ turbulent eddies.
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Table 2.2 Heat-flux generation rates due to a temperature
gradient ∂
/∂x2

Pθ i Pθ1 Pθ2 Pθ3

Due to shear
∂U1

∂x2
−u1u2

∂


∂x2
− θu2

∂U1

∂x2
−u2

2
∂


∂x2
0

Due to shear
∂U1

∂x3
0 −u2

2
∂


∂x2
0

The role of flux generation

The unknown processes in Eq. (2.25) will be approximated in Chapter 4. Here
we consider briefly the form taken by the generation terms under a simple tem-
perature gradient d
/dx2 in a fluid moving in direction x1. If the background
Reynolds stress field is isotropic (ui u j = δi j umum/3), the only direction in which
a heat flux is generated is that of the temperature gradient x2, and the sign of
Pθ2 is opposite from that of the temperature gradient. This is also the case in
a non-isotropic stress field if the mean shear lies entirely in a plane normal to
the temperature gradient (i.e. dU1/dx3, see the last line of Table 2.2). When the
direction of mean velocity gradient coincides with that of the temperature gra-
dient, however, a streamwise scalar flux is generated, contributions arising from
both P
θ i and PU

θ i . If one accepts the idea that the stresses and fluxes will be of
the same sign as the generation terms, we can see that the two contributions to
the generation reinforce one another, both being of the same sign as the product
(d
/dx2)(dU1/dx2).

With the above information, it is now possible to infer the effect of a buoyantly
stable stratification of fluid on the stress generation rates. Turbulent fluctuations
in density, ρ ′, give rise to a fluctuating body force per unit mass −ρ ′g/ρ in
the vertical direction, g being the gravitational acceleration. Thus, in the Reyn-
olds stress equations, with x2 vertically up so that the gravitational vector is
defined as gk = (0,−g, 0), we find non-zero buoyant generation components as
follows

G22 = −2ρ ′u2g/ρ, G12 = −ρ ′u1g/ρ. (2.26)

If the fluid in question is a perfect gas, ρ ′/ρ = −θ/
 (where
 stands for temper-
ature and the origin on its scale is absolute zero), and so the generation rates can
be written as

G22 = +2θu2g/
, G12 = +θu1g/
. (2.27)

In a stably stratified medium, ∂
/∂x2 is positive. To fix ideas let us suppose
that ∂U1/∂x2 is also positive. So, Pθ2 and thus (we suppose) G22 are negative.
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Likewise, from the above discussion, Pθ1 and hence Gθ1 will be positive. Thus,
there is a double-edged effect of buoyancy on the Reynolds shear stress: G22 will
tend to reduce u2

2, thus diminishing P12 (see Table 2.1), while G12, being of the
opposite sign from P12, will also act to reduce the vertical transport of streamwise
momentum by turbulence.

2.3.3 A ‘model’ without modelling

In the foregoing subsections we obtained the exact transport equation for ui u j and
θui and examined the form that the generation terms in these equations take in a
few situations. As noted, these generation terms are exact. Of course, before the
transport equations can be used to find the stress and flux levels, models must
be devised for the unknown processes – the task of Chapter 4. To round off this
section, however, we can make some qualitative estimates without resorting to
mathematical modelling, by simply making the simplistic assumption that

Value of second moment ∝ Generation rate of second moment

× Turbulence time scale.

Thus:

θui = cθTt(Pθ i + Gθ i ). (2.28)

The choice of turbulent time scale Tt and how to compute it is deferred to Chapter 5.
However, the basic idea can readily be tested by looking at ratios of the scalar
fluxes.

Thus:
θu1

θu2
= Pθ1 + Gθ1

Pθ2 + Gθ2
. (2.29)

In a mildly heated shear flow without body forces, in which ∂
/∂x2 and ∂U1/∂x2

are the only non-zero temperature and velocity components, one finds from exper-
iment that the left side of Eq. (2.29) is approximately −1.3 in an equilibrium
free flow, and the right side is about −1.6. Near a wall the ratio of the tur-
bulent heat fluxes is larger, about −2.2, as is correspondingly the ratio of the
generation terms (about −2.1). Thus, there does indeed seem to be more than
a casual connection between the left and right sides of Eq. (2.29). The success
is particularly striking when set against the background of results given by sim-
ple eddy-diffusivity models. Such schemes would predict that, because there are
no x1 gradients in mean temperature, the turbulent flux in that direction would
be zero!

When considering the Reynolds stresses one needs to apply this simple concept
to departures from the isotropic state (the deviatoric part of the stress tensor ui u j ).
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This is not inconsistent with (2.28); the isotropic value of a vector is of course zero.
Accordingly:

ui u j − 1

3
δi j ukuk = cTt

(
Pi j − 1

3
δi jPkk

)
. (2.30)

In fact, this formula, arrived at by a much less direct route, has formed the basis of
many successful predictions of turbulent free shear flows as discussed in §7.3.1.
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3

Characterization of stress and flux dynamics: elements
required for modelling

3.1 Introduction

Before embarking on the primary topic of this book, the modelling of turbulence
via second-moment and partially time-resolved closures, it is appropriate, briefly,
to review some of the features of real turbulence that will have to be accounted
for or, at least, acknowledged. Such a survey could be an extensive one for there
is a great deal that is known and documented on the subject. Attention is limited
here, however, to what are seen as essentials to modelling. Those wishing to equip
themselves with a fuller background than is provided herein will find extensive
coverage in the broader-based textbooks on turbulent flows, for example, those by
Pope (2000) or Schiestel (2008) or, indeed, the earlier treatises by Hinze (1975)
and Monin and Yaglom (1975).

The present chapter covers two main themes. The first is an examination of
two vitally important scalar properties of turbulence, the turbulent kinetic energy,
k, and the corresponding mean-square scalar variance, θ2, together with their
respective rates of dissipation by molecular action. This occupies §3.2–§3.6. The
second theme is an examination of some intrinsic properties of the Reynolds-
stress tensor and scalar-flux vector that provide powerful aids in modelling these
quantities.

3.2 Energy flow processes in turbulence

Equation (2.18) provided the Reynolds-stress transport equation whose closure (i.e.
conversion to a closed, soluble form) will be the primary focus of later chapters.
For present purposes, however, the equation is undesirably complex. Thus, here we
examine, instead, the equation for the turbulent kinetic energy, k, i.e. half the sum
of the normal stresses: k≡[u2

1 + u2
2 + u2

3]/2 ≡ u2
i /2. While, clearly, the transport

equation for k can be deduced straightforwardly by contracting Eq. (2.18), it can
also be obtained directly by multiplying the instantaneous momentum equation for

33
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Ûi≡ (Ui + ui ) by ui and averaging. Here it is assumed that body forces are absent
and that the physical properties of the fluid are constant:

ui

(
∂(Ui + ui )

∂t
+ ∂

[
(U j + u j )(Ui + ui )

]
∂x j

)

= −ui∂(P + p)

∂xi
+ ui∂

∂x j

(
ν∂(Ui + ui )

∂x j

)
. (3.1)

After discarding vanishing terms in Eq. (3.1) and taking all but the convective
transport terms to the right-hand side, the required equation for k may be expressed
as:

Dk

Dt
≡ ∂k

∂t
+U j

∂k

∂x j
= ∂

∂x j

(
ν
∂k

∂x j
− pu j

ρ
− u j k ′

)
︸ ︷︷ ︸

Dk

−ui u j
∂Ui

∂x j︸ ︷︷ ︸
Pk

−ν
(
∂ui

∂x j

)2

︸ ︷︷ ︸
ε

(3.2)

where k ′ denotes the instantaneous turbulence energy, 1
2 ui ui . In words, the equation

expresses the fact that, as a small fluid element is carried along, its turbulent kinetic
energy changes as a result of a net imbalance among the processes on the right-hand
side, namely, diffusive transport, Dk , due to viscosity and turbulence (associated
with both velocity and velocity–pressure interactions), production of turbulence
by deformation of the mean velocity field, Pk , and dissipation of k by viscous
action, ε.

The corresponding mean kinetic energy equation may likewise be obtained by
multiplying the momentum equation by the mean velocity and averaging:

Ui

(
∂(Ui + ui )

∂t
+ ∂

[
(U j + u j )(Ui + ui )

]
∂x j

)

= −Ui∂(P + p)

∂xi
+ Ui∂

∂x j

(
ν∂(Ui + ui )

∂x j

)
which can be manipulated to the following transport equation for K≡ U 2

i /2:

DK

Dt
= − ∂(PUi )

ρ∂xi︸ ︷︷ ︸
a

+ ν ∂
2 K

∂x2
j︸ ︷︷ ︸

b

− ν
(
∂Ui

∂x j

)2

︸ ︷︷ ︸
c

− ∂

∂x j
(Ui ui u j )︸ ︷︷ ︸

d

+ ui u j
∂Ui

∂x j︸ ︷︷ ︸
e

. (3.3)

Thus, the mean kinetic energy of a particle will change through a net imbalance in
the contributions from the following:

(a) reversible working by mean pressure gradients,
(b) viscous diffusion of K ,
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(c) viscous dissipation,
(d) reversible working by the Reynolds stresses on the flow field,
(e) loss of mean kinetic energy to turbulence.

The attribution of the last of the above processes is self-evident since the same term
appears in the turbulence energy budget, Eq. (3.2), but with an opposite sign.

It is worth noting that both the turbulent and the mean kinetic energy equa-
tions were first presented by Osborne Reynolds in his ‘Reynolds averaging’ paper
(Reynolds, 1895) that provided the starting point for all RANS work. Although
the turbulent kinetic energy is a scalar quantity, noting its response in various sit-
uations has proved very helpful in guiding modelled forms of both the stress and
scale-determining equations. Specifically, five particular cases are noted:

(i) energy decay in homogeneous turbulence U1
dk

dx1
= −ε

(ii) rapid distortion U j
∂k

∂x j
= Pk

(iii) diffusion-dissipation equilibrium 0 = Dk − ε
(iv) local (turbulence energy) equilibrium 0 = Pk − ε
(v) convection-diffusion equilibrium U1

∂k

∂x1
= Dk .

These reduced forms of the turbulence energy equation provide pivotal test cases
for modelling turbulence and are thus frequently used for choosing at least some
of the empirical coefficients in the models. While examined in more detail in later
chapters, the following briefly serves to explain the relevance of each case.

(i) In the absence of production agencies (no strain rate, no body forces),
homogeneous turbulence will freely decay through viscous dissipation. This
process is irreversible. Experiments show (and DNS studies confirm) that,
provided the turbulent Reynolds number (of which more shortly) is suffi-
ciently high, the turbulence energy exhibits a power-law decay with time (or
equivalently in space): k ∝ t−n (or k ∝ x−n) with n ≈ 1.2, trianagular
symbols in Fig. 3.1. Matching that exponent allows the empirical coefficient
associated with the sink term in the scale-determining equation to be fixed.

(ii) In a turbulent flow suddenly subjected to a strong mean rate of strain, the
dissipation can, for a time, be neglected compared with the imposed produc-
tion. Such a situation arises, for example, when turbulence is passed through
a duct whose cross-sectional dimensions are changing rapidly. Various test
data have been provided by experiment and DNS. Indeed, for the latter, vis-
cous dissipation can be ‘switched off’ to provide a pure test case. Equally,
rapid distortion theory (RDT), a linear, analytical treatment of turbulence, is
specifically designed to be applicable in such extreme deformations.
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Fig. 3.1 Decay of isotropic turbulence generated by a grid in a wind tunnel. Left:
a sketch of the experiment and decay of kinetic energy along the tunnel. Right:
experimental results for the initial (‘inertial’) period. From Pope (2000), adapted
from Comte-Bellot and Corrsin (1966).

(iii) For the case of fully developed flow through a pipe or plane channel, the
production of energy is negligible near the axis while convection is zero by
definition. Then, the dissipative loss of turbulence energy is made good by a
diffusive inflow of energy from regions nearer the duct or pipe wall. A similar
situation may arise in stagnant, separated flow regions, for example behind a
blunt obstacle. It is essential to account correctly for the resultant turbulence
energy levels in order to predict accurately the turbulent heat transfer rates
from the obstacle. This diffusion-dissipation balance is also the limiting form
of the k-equation in the viscous layer adjacent to a smooth wall; however, in
this case, the diffusive mechanism is predominantly viscous.

(iv) For a shear flow along a wall, within the fully turbulent near-wall region,
provided streamwise pressure gradients are weak, convection and diffusion
terms will be negligible compared with the production and dissipation pro-
cesses. This situation is illustrated in Fig. 3.2, which shows the energy budget
for flow through a plane channel.

(v) At the free edge of a turbulent flow both production and dissipation can often
be neglected compared with convection and diffusion, which are roughly in
balance.

In free shear flows and, indeed, in most real flows in engineering and the
environment, all the terms in the energy budget are important. Figure 3.3 shows,
for example, the different terms in the budget for the case of a round jet in
stagnant surroundings. In this flow, like the boundary layer, turbulence energy
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Fig. 3.2 Budget of turbulent kinetic energy in a fully developed plane-channel
flow, normalized with the friction velocity, Uτ , and kinematic viscosity, ν.

Fig. 3.3 Budget of turbulence kinetic energy in a fully developed round jet nor-
malized with U 3

c (x − x0), where x is the streamwise coordinate, x0 is the location
of the virtual jet origin and Uc is the jet centre-line velocity (only half of the jet is
shown). From experiments of Panchapakesan and Lumley (1993).

production is provided by the transverse mean velocity gradient, here ∂U/∂r . How-
ever, the absence of a constraining wall means that the jet can expand freely and,
consequently, the convection and diffusion terms play a more important role than
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in the wall boundary layer. It is noted also that there remains a significant energy
production even on the jet axis where the mean radial velocity gradient is zero.
There the generation is due to streamwise gradients of mean velocity.

3.3 The spectral character of turbulence

The figures of energy budgets considered above make it clear that the energy dis-
sipation rate is nearly always a significant term in the turbulence energy equation.
Yet, those encountering this fact for the first time may well feel that the mathe-
matical form of the energy equation suggests otherwise. For example, to make a
rudimentary assessment of the relative magnitudes of the production and dissipa-
tion processes in the round jet, one might suppose that the characteristic turbulent
velocity is one order of magnitude smaller than the centre-line mean velocity,
Uc, and that the characteristic length scale for both production and dissipation
processes is the radius of the jet, δr . One would thus conclude that:

〈Pk〉 ≈
〈
−uv

∂U

∂r

〉
≈ U 2

c × 10−2 Uc

δr
= 10−2 U 3

c

δr
,

〈ε〉 ≡
〈
ν

(
∂ui

∂x j

)2
〉

≈ ν

Ucδr

U 3
c ×10−2

δr

where the angular brackets simply indicate an averaging across the shear layer, and
u and v denote velocity fluctuations in the axial (x) and radial (r) directions as
usual for two-dimensional flows. The above result thus suggests that 〈ε〉 / 〈Pk〉 ≈
(Ucδr/ν)

−1. On the basis of this analysis one would not hesitate to conclude that
the dissipation contribution was negligible since the Reynolds number, Ucδr/ν, of
a turbulent round jet is at least measured in thousands (usually tens of thousands
and sometimes hundreds of thousands)! Even if one notes that the dissipation term
shown actually consists of nine contributing components (so the above order-of-
magnitude analysis would have underestimated its value), the conclusion remains
the same: the dissipation term is negligible!

However, the ‘analysis’ above is defective and should be entirely disregarded!
There are two serious errors in the assumptions made about the scales, both asso-
ciated with the dissipation term. The first is the presumption that the appropriate
velocity scale to assign to ui is the same as that assigned for the turbulent shear
stress, uv. The second and even more serious error is that the characteristic length
scale for the dissipation be taken as the local radius of the shear flow. As is clearly
visible in the instantaneous fluctuating velocity trace shown in Fig. 2.1, there is
a wide range of time scales present in a turbulence signal and, correspondingly,
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Fig. 3.4 A schematic diagram of the energy spectrum for high Reynolds num-
ber turbulence. Here λ denotes the Taylor microscale, Eq. (3.11), and η the
Kolmogorov length scale (defined below, p. 45).

a wide range of length scales. The dissipation of turbulence energy always takes
place predominantly in the very finest scales present for that is where the steep-
est velocity gradients occur. Indeed, the size of those length scales adjusts so as to
destroy energy at just the rate that energy is fed to them by the continual breakdown
of larger scale eddies into smaller and smaller scales of motion!

Thus, the view that emerges is that turbulence energy is ‘captured’ from the
mean flow by successive engulfment by the large-scale eddies. Thereafter, by a
process of eddy stretching and distortion, such newly captured turbulence energy
is progressively broken down, inviscidly, to finer and finer scales until eventually
the scales of motion are so fine (and thus the mean velocity gradients so steep) that
the kinetic energy is dissipated to thermal energy by viscous action. The turbulent
eddies that are too small to be involved significantly in the energy-capture process
yet too large to be responsible for significant dissipation thus play the role of energy
carriers, transferring energy from larger eddies to successively smaller ones. These
intermediate eddies form what is known as the inertial subrange, Fig. 3.4.

This spectral view of turbulence can be expressed mathematically by taking
the Fourier transform of the two-point velocity correlation1 (cf. Hinze, 1975;

1 The two-point velocity correlation is defined as Ri j (x, x′) ≡ ui (x)u j (x′) , where x and x′ ≡ x + r denote
the position vectors (denoted for clarity in bold) of two points in space. Clearly, when r = 0, Ri j = ui u j
and as r → ∞, Ri j → 0. Such two-point correlations provide a possible basis for determining length scales
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Monin, 1975; Pope, 2000), which brings into prominence the wave number κ
(with dimension length−1) as the appropriate independent variable (rather than,
say, length scale or frequency). In a homogeneous flow the equation can be
written as:

∂E (κ)

∂t
= Pk (κ)− ∂

∂κ
T (κ)− 2νκ2 E (κ) (3.4)

where E(κ) is the kinetic energy per unit wave number, Pk(κ)is the turbulence
energy production rate per unit wave number and T (κ) is the spectral energy
transfer rate. Note that

∫∞
0 E(κ)dκ = k and

∫∞
0 2νκ2 E(κ)dκ = ε.

In a strictly equilibrium flow where E(κ) is invariant with time, the spectral
energy transfer rate at any wave number is equal to:

T (κ) =
∫ κ

0

[
Pk (κ)− 2νκ2 E (κ)

]
dκ. (3.5)

For these mid-range wave numbers where neither production nor dissipation is sig-
nificant, T (κ) = Pk = ε. Figure 3.4 provides an impression of the distribution of
E(κ)with wave number. Its variation within the inertial subrange is readily inferred
by dimensional considerations2 if one supposes that it should depend simply on the
wave number and the energy throughput rate, which can be taken to be equal to ε:

E (κ) = Cκε
2/3κ−5/3. (3.6)

This is Kolmogorov’s ‘minus-five-thirds’ law (Kolmogorov, 1941). Experimental
data suggest a value of 1.5 for the coefficient Cκ . In making measurements of
spectra using hot-wire anemometry (or other fast-response instruments) one only
records a one-dimensional slice of the spectrum. Provided the turbulent Reynolds
number is high enough, however, the minus-five-thirds law is plainly evident, as
seen in Fig. 3.5, which shows data collected by Saddoughi and Veeravalli (1994).

A further important spectral feature of turbulence is that as energy is conveyed
to higher and higher wave numbers, in the process of being stretched, twisted and
buffeted, the anisotropy of the velocity fluctuations of such eddies decreases. Lum-
ley (1967), for example, has analysed the case of a simple shear flow and concluded
in that situation that the spectral decay of turbulent shear stress in the inertial sub-
range should follow a −7/3 power law compared with the minus-five-thirds law for
the turbulence energy. Indeed, in modelling it is commonly supposed that by the
time energy has reached the dissipation range, the dissipation tensor is effectively

of the large-scale motion; for example, L11≡ ∫∞
0 R11dr1/u

2
1 , a quantity known as an integral length scale.

In this work, the scalar quantity k3/2/ε is used throughout as the length scale representative of the large-scale
energy-containing eddies, but that varies through the turbulence field in a similar way to the integral length
scales.

2 In dimensional analysis, the possibly contributing quantities that are omitted are just as important as those
which are included. Thus, here, mean strain is excluded because the eddies in the inertial subrange are too
small to notice mean velocity gradients, while viscosity is dropped because their eddy Reynolds number is too
high for viscous stresses to constrain their motion significantly.
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Fig. 3.5 A collection of measured one-dimensional spectra in different flows at
different Reynolds numbers Reλ (ranging from 23 to 3180). From Saddoughi and
Veeravalli (1994).

isotropic. For a homogeneous flow, that situation implies that the product of two
velocity derivatives can be expressed as follows:

∂ui

∂x j

∂uk

∂xl
= ε

30ν

[
4δikδ jl−δi jδkl−δilδk j

]
(3.7)

(from which the reader may verify, by contracting the equation for i = k and j = l,
that it simply reverts to the definition of ε). For the component terms of ε one finds,
by making all the indices equal in Eq. (3.7), that(

∂u1

∂x1

)2

=
(
∂u2

∂x2

)2

=
(
∂u3

∂x3

)2

= ε

15ν
(3.8)

while for the other components of ε:(
∂u1

∂x2

)2

=
(
∂u1

∂x3

)2

=
(
∂u2

∂x1

)2

= · · · = 2ε

15ν
. (3.9)
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A non-isotropic turbulent flow in which the dissipation rate is nevertheless isotropic
(by virtue of the stretching that produces the very fine scales of motion in which
dissipation takes place) is said to be locally isotropic. It is still a matter of sig-
nificant controversy within the turbulence community whether local isotropy does
indeed prevail in commonly encountered fully turbulent shear flows. The assump-
tion will usually be made in the modelling chapters that it does but whether or not
that is strictly correct is usually not of great significance. Of greater importance is
the problem of characterizing correctly the large departures from local isotropy as
one approaches a wall.

It is finally relevant to note that Eq. (3.8) can be inverted to obtain an expression
for ε, which, in terms of the first of the mean-square velocity derivatives, can be
written as:

ε= 15ν

(
∂u1

∂x1

)2

. (3.10)

In flows where the turbulence level is low and the translational velocity uniform
(and in the direction x1), it is possible to obtain a reasonably accurate estimate of
the above spatial velocity derivative from the (simpler to measure) rate of velocity
variation with time at the point in question, a strategy known as Taylor’s hypothesis
(Taylor, 1935). Moreover, Taylor introduced a turbulent length scale λ (now known
as the Taylor microscale) defined as

λ2 ≡ u2
1/(∂u1/∂x1)2 (3.11)

in terms of which:

ε = 15ν
u2

1

λ2
. (3.12)

Although Taylor linked the length scale λ with that of the finest-scale eddies
responsible for turbulence energy dissipation that has long been recognized as
incorrect. Nevertheless, the Taylor microscale and the associated Reynolds num-

ber, Reλ≡
√

u2
1λ/ν, are firmly embedded in the turbulence lexicon. In isotropic

turbulence u2
1= (2/3)k so, in terms of k and ε:

Reλ =
√

2

3
k

15ν(2k/3)

εν2
=
√

20

3

k2

εν
≡
√

20

3
Ret . (3.13)

The quantity Ret is a Reynolds number representative of the energy-containing
turbulent eddies and will recur frequently in the turbulence models presented in
Chapters 6–8.
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3.4 The ε-equation

The energy dissipation rate is a major unknown in the k-equation. Although, to
close the stress-transport equations, one needs to model the Reynolds-stress dissi-
pation rate, εi j , providing a path to find ε is clearly a major step in that direction.
Moreover, in modelling other processes in the stress-transport equations, a turbu-
lent time scale is needed to characterize the rate at which the processes proceed.
That time scale is conveniently provided by the quantity k/ε, which will be denoted
hereafter as T .

In this latter role, some have argued that ε is an inappropriate choice for the
scale-determining variable. However, the fact remains that it has been (and con-
tinues to be) the preferred variable over a range of turbulence models of differing
degrees of complexity. One obvious benefit of solving an equation for ε is that
one then determines directly the sink term in the k-equation without the need for
further explicit modelling. The reasons advanced for not choosing ε as the scale-
determining variable turn on the fact that its exact transport equation describes the
dynamics of the fine-scale dissipative eddies which are not representative of the
large-scale turbulence principally responsible for momentum and heat transport.
While this is certainly true for high-Reynolds-number turbulence not too close to a
rigid boundary, in the immediate proximity of a wall there are no large eddies and
viscous interactions exert an increasingly important effect on large-scale turbu-
lence transport. The main difficulty, however, is that few of the terms in the exact
equation for ε can be used without further modelling in any closed form of that
equation. This problem is, however, one that is shared by all the alternatives and
may be considered one of the endemic difficulties in developing a modelled scale
equation.

The exact transport equation for ε≡ ν(∂ui/∂x j )2 can be derived by taking the
spatial derivative of the equation for the rate of change of the instantaneous veloc-
ity, multiplying that by 2 ν∂ui/∂x j and, finally, time averaging the product. Thus,
the left side of the transport equation becomes:

2ν
∂ui

∂x j

∂

∂x j

(
Dui

Dt

)
= Dε

Dt
. (3.14)

It is noted that the quantity ε is not, strictly, the energy dissipation rate though in
regions where Ret is high, it differs negligibly from it.3

A substantial algebraic manipulation of the corresponding right-hand side of the
equation is needed to clarify the physical processes contained in the mathematics.

3 The true kinematic dissipation rate is τi j si j /ρ , where τi j = 2μ(si j −δi j skk/3) is the fluctuating viscous stress
and si j ≡ (∂ui /∂x j +∂u j /∂xi )/2 is the fluctuating strain rate, so that:

ε = 1

2
ν

(
∂ui

∂x j
+ ∂u j

∂xi

)2

≡ ν
⎡⎣( ∂ui

∂x j

)2

+ ∂ui

∂x j

∂u j

∂xi

⎤⎦ = v

⎡⎣( ∂ui

∂x j

)2

+ ∂2ui u j

∂xi ∂x j

⎤⎦ .
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That is done by expanding and re-grouping terms in a similar fashion to that applied
to the equation for the second moments. The resultant complete equation for ε can
then be written as:

Dε

Dt
≡ ∂ε

∂t︸︷︷︸
Lε

+ ∂Ukε

∂xk︸ ︷︷ ︸
Cε

= −2ν

(
∂ui

∂xl

∂uk

∂xl
+ ∂ul

∂xi

∂ul

∂xk

)
∂Ui

∂xk︸ ︷︷ ︸
Pε1+Pε2

−2νuk
∂ui

∂xl

∂2Ui

∂xk∂xl︸ ︷︷ ︸
Pε3

−2ν
∂ui

∂xk

∂ui

∂xl

∂uk

∂xl︸ ︷︷ ︸
Pε4

+
∑

n

2ν

ρ

∂ f n
i

∂xk

∂ui

∂xk︸ ︷︷ ︸
Fε

− 2

(
ν
∂2ui

∂xk∂xl

)2

︸ ︷︷ ︸
Υ

+ ∂

∂xk

(
ν
∂ε

∂xk

)
+︸ ︷︷ ︸

Dνε

∂

∂xk
(−ukε′)︸ ︷︷ ︸
Dt
ε

+ ∂

∂xk

(
−2ν

ρ

∂p

∂xi

∂uk

∂xi

)
︸ ︷︷ ︸

D p
ε︸ ︷︷ ︸

Dε

,

(3.15)

where, ε′ stands for the instantaneous value, ν(∂ui/∂u j )
2. The terms in boxes all

need to be modelled and their physical interpretation is not immediately obvious.
However, some insight may be gained by comparing this equation with the sim-

ilar but substantially simpler equation for the enstrophy (the mean square of the
fluctuating vorticity) ζ ≡ ωiωi , where:

ωi ≡ εi jk
∂uk

∂x j
(or ω ≡ ∇ × u) . (3.16)

The enstrophy, ζ , like the energy dissipation rate, consists of the averaged squares
of fluctuating velocity gradients. Indeed, from the general quadratic velocity-
derivative tensor, Eq. (3.7), it is readily deduced that in isotropic, homogeneous
turbulence:

ζ = ε/ν. (3.17)

Indeed, even in a low Reynolds number channel flow, Gorski and Bernard (1996)
have shown from comparing the two sides of Eq. (3.17) (obtained from their
DNS data of this flow) that the equality expressed by that equation is very nearly

Because the derivatives of the fluctuating velocity are associated with the finest eddy scales, which are expected
to be isotropic at high Reynolds numbers, the second term in the two expressions on the right is usually
negligible.
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3.4 The ε-equation 45

completely satisfied all the way to the wall despite the very strong inhomogeneity
present in the near-wall region.

The transport equation for ζ can be obtained in an analogous fashion to that for ε
(see Eq. (3.14)) by taking the curl of the fluctuating velocity transport equation and
multiplying each side of it by the right-hand side of Eq. (3.16). After manipulation
this leads to the following equation for the transport of ζ (e.g. Gorski and Bernard,
1996):

∂ζ

∂t
+ ∂Ukζ

∂xk
= 2ωiω j

∂Ui

∂x j
+2ωi

∂ui

∂x j
Ω j︸ ︷︷ ︸

Pζ1+Pζ2

− 2u jωi
∂Ω i

∂x j︸ ︷︷ ︸
Pζ3

− ∂

∂x j
(u jζ ′)+ν ∂

2ζ

∂x2
i︸ ︷︷ ︸

Dζ

+2ωiω j
∂ui

∂x j︸ ︷︷ ︸
Pζ4

−2 ν
∂ωi

∂x j

∂ωi

∂x j︸ ︷︷ ︸
Υζ

,

(3.18)

where Ωi ≡ εi jk(∂Uk/∂x j ) and ζ ′ is the instantaneous value of ζ , i.e. ωiωi . In
the above equation, the terms Pζ1,Pζ2 and Pζ3 represent the enstrophy produc-
tion due to the stretching and bending of vortex filaments by, respectively, the
mean flow deformation (∂Ui/∂x j ), the mean vorticity, Ω j , and its gradient. The
final production term Pζ4 is analogous to Pζ1 except that now it is the fluctuating
strain that is responsible for the (self-) stretching of the vortex filaments. The terms
grouped under Dζ have a recognizable divergence form and represent the diffusion
of ζ by turbulent velocity fluctuations and molecular action. The last term,Υζ , is
the viscous destruction of enstrophy. It is finally noted that the enstrophy equation
contains no pressure fluctuations, which might indicate that, even near a wall, the
pressure-diffusion term in the ε equation was insignificant.

Returning to the ε equation, Eq. (3.15), we note first, from Eq. (3.7), that if the
dissipating eddies are isotropic, the fluctuating velocity-derivative products in Pε1
and Pε2 are both proportional to εδik ; so, on multiplication by ∂Ui/∂xk , it is evi-
dent from continuity that the terms are zero in an incompressible flow. The term Pε3
is also zero where the mean velocity gradient is uniform. Except possibly within
the ‘buffer’ region next to a wall where there is a very rapid changeover from
viscous to turbulent transport (with the associated rapid variation in slope of the
mean velocity discussed in §1.4), the process generally makes a negligible contri-
bution to the ε budget. That leaves simply two remaining source terms, Pε1 and Υε,
whose magnitudes can be estimated by way of the Kolmogorov velocity and length
scales representative of the dissipative eddies:4 vK ≡ (εν)1/4, η≡ (ν3/ε)1/4. From

4 The forms of the dissipative scales emerge directly from assuming that their magnitudes are determined simply
by the viscous dissipation rate and the kinematic viscosity. Note that, in consequence, the Reynolds number of
the dissipative scales is of order unity.
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inserting these scales for the velocities and lengths appearing in the two source
terms we find:

Pε4 ≈ Υε ∼ O
(
ε3/2

ν1/2

)
∼ O

( ε
T Re1/2

t

)
(3.19)

where, as a reminder, the time scale T is k/ε. The Reynolds number formed from
the Kolmogorov scales is always unity irrespective of the bulk flow Reynolds num-
ber. The term Ret ≡ k2/νε, introduced in Eq. (3.13), is, as already remarked, a
Reynolds number representative of the energy-containing turbulence and will usu-
ally simply be termed the turbulent Reynolds number. It is a key dimensionless
parameter in modelling and will recur repeatedly throughout the book, especially
in Chapters 6 and 8. Its maximum value in different turbulent flows typically
ranges from several hundred to several million though evidently the no-slip condi-
tion means that it falls to zero at a wall. Equation (3.19) implies that each of the
source terms is larger than the convective transport terms by the factor Re1/2

t but
their difference must evidently be of magnitude O(ε/T ). How to characterize that
difference in terms of calculable parameters is seen as one of the principal chal-
lenges in turbulence modelling and will be a major topic of Chapter 5 with further
considerations in Chapter 6.

3.5 Transport equation for the mean-square scalar variance, θ2

The mean-square scalar variance, θ2, has already been introduced to characterize
the intensity of scalar fluctuations as well as to define a turbulence scale for a sca-
lar field. This variable plays the same role in characterizing a scalar field as does
k for the velocity field. Moreover, in stratified flows, θ2 appears directly in the
buoyant source term in the vertical scalar flux equation (i.e. in the direction of the
gravitational vector), thus its modelling is essential in flows substantially affected
by buoyancy whether the stratification be caused by thermal or concentration
gradients.

The transport equation for θ2, first presented by Corrsin (1952), is readily
obtained by multiplying Eq. (2.3) for the transport of a scalar, 
̂, by twice the
fluctuating scalar, 2θ , and averaging:5

Dθ2

Dt
≡ ∂θ2

∂t︸︷︷︸
Lθθ

+ U j
∂θ2

∂x j︸ ︷︷ ︸
Cθθ

= −2θu j
∂


∂x j︸ ︷︷ ︸
Pθθ

− 2α

(
∂θ

∂x j

)2

︸ ︷︷ ︸
εθθ

+ ∂

∂x j

(
α
∂θ2

∂x j
− θ2u j

)
.︸ ︷︷ ︸

Dθθ
(3.20)

5 By analogy with k, some workers take θ2/2 as the key turbulence scalar variable, and indeed have designated
it kθ (e.g. Nagano, 2002). It is important to be alert as to which choice has been made when comparing, for
example, the ratio of dynamic and thermal time scales.

https://doi.org/10.1017/9781108875400.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.005
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The equation closely resembles the turbulence energy equation save for the absence
of pressure diffusion (since pressure does not appear in the 
̂ transport equation).
The terms thus have a familiar physical meaning: Lθθ , the local time rate of change;
Cθθ , the convective transport; Dθθ , the (molecular plus turbulent) diffusion; Pθθ ,
production caused by mean scalar gradients; εθθ , the molecular destruction (the
rate of ‘scalar dissipation’).

For passive scalars with a Prandtl–Schmidt number close to unity and compa-
rable boundary conditions, the relative magnitude of the various terms in the θ2

budget is also broadly similar to the corresponding terms in the turbulence energy
equation. Thus, just as for the k-equation considered in §3.2, one can devise sev-
eral generic flows where only two of the terms in the complete θ2 equation are
significant, which assists in the task of devising models of the unknown processes.
For example, for a boundary layer in the fully turbulent region close to a uni-
formly heated or cooled wall, the production and dissipation terms far outweigh
transport, so the thermal field is very close to a state of local equilibrium in which
Pθθ ≈ εθθ , the implications of which contribute, in Chapter 7, to modelling the
mean temperature distribution. The decay of turbulence energy behind a grid, as
noted in §3.2, provides the primary test case for calibrating the sink term in the ε-
equation. The corresponding decay of thermal fluctuations downstream of a heated
grid (so that convective transport simply arises from the dissipation rate of tem-
perature fluctuations associated with conduction in the finest scales) might thus be
expected to provide vital information on how to model the decay of temperature
fluctuations.

In a way it does, but probably not of the kind a modeller would be hoping to
find. From a broad consensus of experiments (e.g. Lin and Lin, 1973; Warhaft
and Lumley, 1978; Warhaft, 2000) it is clear that the decay exponent m in the
expression θ2 ∝ t−m depends greatly on initial conditions – effectively on the ratios
of the length scales of the energy-containing parts of the dynamic and thermal
turbulence fields, Fig. 3.6. While the causes of this behaviour remain inadequately
understood, as Warhaft (2000) indicates, in flows where mean thermal gradients
are present (thus creating a source of temperature fluctuations) the time-scale ratio
for the thermal and dynamic turbulence heads towards a constant value irrespective
of its initial value.

In general, the budget for θ2, like that for k, varies from one particular flow
to another even within the same broad class of flows. For example, in two-
dimensional free shear flows, mixing layers developing between two streams of
unequal temperatures display an overall excess of production over dissipation,
whereas in axisymmetric wakes, the average level of production is much less than
the average dissipation, resulting in an appreciable convective loss as the flow
develops downstream, Fig. 3.7.
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Fig. 3.6 Decay of grid turbulence downstream from heated grids. Reprinted
with permission from Warhaft and Lumley (1978). ©1978, American Institute
of Physics.

3.6 Transport equation for dissipation of scalar variance, εθθ

Just as with the dynamic field, the dissipation rate of scalar variance,
εθθ ≡ 2α(∂θ/∂x j )2, is the predominant choice for a second variable for the sca-
lar turbulence. This is used to obtain time and length scales representative of the
thermal turbulence and, of course, to determine the sink term in Eq. (3.20). This
variable turns out to be especially important in modelling reacting or combusting
flows (topics outside the scope of the present book). An exact transport equation
for εθθ can be derived by a path analogous to that followed to obtain the ε-equation:
first take the derivative with respect to x j of each side of the transport equation for
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Fig. 3.7 Dimensionless budget of mean square temperature variance in the wake
of a sphere. Reprinted with permission from Freymuth and Uberoi (1973). ©1973,
American Institute of Physics.

the instantaneous scalar (
 + θ) and then multiply each term by 4α∂θ/∂x j and
average each term. After some algebraic manipulation, one obtains:

Dεθθ
Dt

≡ ∂εθθ

∂t︸︷︷︸
Lεθθ

+ ∂(Ukεθθ )

∂xk︸ ︷︷ ︸
Cεθθ

= −4α

(
∂θ

∂xl

∂uk

∂xl

)
∂


∂xk︸ ︷︷ ︸
Pεθθ 1

−4α

(
∂θ

∂xi

∂θ

∂xk

)
∂Ui

∂xk︸ ︷︷ ︸
Pεθθ 2

−4αuk
∂θ

∂xl

∂2


∂xk∂xl︸ ︷︷ ︸
Pεθθ 3

−4α
∂θ

∂xk

∂θ

∂xl

∂uk

∂xl︸ ︷︷ ︸
Pεθθ 4

− 4

(
α
∂2θ

∂xk∂xl

)2

︸ ︷︷ ︸
Υθθ

+ ∂

∂xk

(
α
∂εθθ

∂xk

)
︸ ︷︷ ︸

Dνεθθ

+ ∂

∂xk
(−ε′θθuk)︸ ︷︷ ︸
Dt
εθθ︸ ︷︷ ︸

Dεθθ

. (3.21)

Just as for the corresponding ε-equation, the source terms containing the mean-field
gradients are zero if the double products of temperature derivatives (or temperature
and velocity derivatives) are locally isotropic. The term Pεθθ3 is also negligible
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except possibly very close to the wall where there is a rapid changeover from
molecular to turbulent transport. The remaining source and sink terms, Pεθθ4 and
Υθθ , can be shown to be the dominant terms by making an order-of-magnitude
estimate in terms of the Kolmogorov scales.6 When it comes to modelling these
terms, however, one needs to allow both scalar and dynamic time scales to exert an
effect – certainly, if one requires the modelled equation to mimic the non-universal
decay of θ2 shown in Fig. 3.6. As discussed in Chapter 5, therefore, many work-
ers (including the present authors) have usually preferred to prescribe the relevant
turbulent scalar time scale (and thus the local level of εθθ ) by other means.

3.7 Turbulence anisotropy, invariants and realizability

A primary aim of this book is to provide a path for determining the second moments
in a turbulent flow, namely the kinematic Reynolds stresses, ui u j , and the scalar
fluxes, θu j . Because the stress tensor is symmetric, it will in general comprise six
distinct terms: three diagonal components (i = j), which stretch or compress a
fluid element (the normal stresses, u2

1, u
2
2, u

2
3), and three off-diagonal components

(i �= j), i.e. u1u2 = u2u1, u1u3 = u3u1 and u2u3 = u3u2. At any point in a fluid,
the magnitudes of the different stress components necessarily depend on the ori-
entation of the coordinate system. Indeed, we can align the orthogonal coordinates
so that the shear stresses are all zero – the so-called principal coordinates – in
which case the normal stresses take their extreme values. These matters and some
consequences are examined in the following sections.

3.7.1 Turbulent stress anisotropy

In flows of practical interest the turbulent stress tensor is non-isotropic, a state
created partly by the deformation of the large eddies by mean strain or body forces,
partly by flow inhomogeneities and partly by boundary conditions. If the stress
tensor were isotropic, all the normal stresses would be equal and there would be
no shear stresses (for otherwise reorienting the axes would then cause the normal
stresses to be unequal). Thus, in isotropic turbulence, ui u j= 2δi j k/3. A departure
from the isotropic state provides a measure of the stress anisotropy which can be
expressed in terms of the deviatoric part of the stress tensor, i.e.

ui u j =
(

ui u j − 2

3
kδi j

)
︸ ︷︷ ︸

anisotropic

+ 2

3
kδi j︸ ︷︷ ︸

isotropic

. (3.22)

6 This necessarily requires that the molecular Prandtl–Schmidt number should be not too different from unity
(i.e. probably acceptable for gases and many liquids but not for liquid metals).
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Fig. 3.8 Stress ellipsoid (left) and a two-dimensional cut for x3 = 0 (right) for a
point in the selected coordinate system (x1, x2, x3) showing components of stress
anisotropy (deviatoric part of the stress tensor), a11 and a22. The principal stress
coordinate axes are denoted by x∗

1 , x∗
2 .

The deviatoric part, made non-dimensional by dividing by k, is referred to as the
stress-anisotropy tensor, ai j :

ai j ≡ ui u j

k
− 2

3
δi j. (3.23)

Note that the diagonal components of ai j must fall within the range

− 2

3
≤ aββ ≤ 4

3
(3.24)

(where no summation is implied on repeated Greek subscripts).7

It is only the anisotropic part of the stress tensor that transports momentum,
while the isotropic part is ‘inactive’. In treating the momentum equation, it can be
lumped with the mean pressure. The normal stresses at a point can be represented
by a ‘stress ellipsoid’ shown in Fig. 3.8. The magnitudes of the normal stresses
in the chosen coordinate system (x1, x2, x3) correspond to the intersection points
of the axes with the ellipsoid surface, while the isotropic stress corresponds to
the sphere of radius 2k/3. The principal coordinates correspond with the major
and minor axes of the stress ellipsoid, and the (normal) stress components – the
principal stresses – are the eigenvectors of the stress tensor.

7 An alternative anisotropy tensor, usually identified by the symbol bi j , is also found in the literature, where the
deviatoric stress is normalized by the sum of the normal stresses rather than k:

bi j ≡ ui u j

2k
− 1

3
δi j = ai j

2
.
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3.7.2 Turbulent stress invariants and limiting states

For any second-rank tensor one can define a number of invariants, comprising
scalar products of the components which are thus independent of the coordinate
system. For the stress-anisotropy tensor there are three basic invariants, defined as
follows:

A1 ≡ aii= 0, A2 ≡ a ji ai j , A3 ≡ ai j a jkaki (3.25)

or, in expanded form:

A2 = a2
11∗ + a2

22∗ + a2
33∗

= a2
11 + a2

22 + a2
33+2(a2

12 + a2
13 + a2

23) (3.26)

A3 = a3
11∗ + a3

22∗ + a3
33∗

= a3
11 + a3

22 + a3
33+3a2

12(a11 + a22)+ 3a2
13(a11 + a33)

+ 3a2
23(a22 + a33)+ 6a12a13a23. (3.27)

Clearly, higher order invariants can be defined, but these can all be expressed (from
the Cayley–Hamilton theorem, see Chapter 4) in terms of A2 and A3. The invariants
provide, in a compact way, information about the character of the stress anisotropy.
This is most clearly illustrated by considering them in principal coordinate axes.
The second invariant, A2, is always positive and gives a direct measure of the stress
anisotropy: the larger A2, the more anisotropic is the stress field. The third invar-
iant comprises cubic products and thus can be positive (if two of the anisotropy
components are negative), thus producing a cigar-shaped stress ellipsoid, or nega-
tive (i.e. with only one negative component) when, in the limit, the stress ellipsoid
deforms to a pancake-shaped disc.8 Thus, A3 gives more subtle information about
the nature of the stress anisotropy.

The anisotropy invariants can of course be combined in various ways to pro-
duce further invariants that will have different characteristics. One that is especially
helpful in modelling is what is known as Lumley’s flatness parameter (Lumley,
1978):

A ≡ 1 − 9 [A2 − A3] /8. (3.28)

What makes this parameter so useful is that, while it evidently equals unity
in isotropic turbulence, when the turbulence is so non-isotropic that one of the
normal-stress components is zero (what is known as two-component turbulence),
A is equal to zero. This surprising result is readily verified by working in prin-
cipal axes (though the * symbol will no longer be applied). If, say, u2

1= 0, then,
quite generally, the stress-anisotropy components can be written as: a11 = − 2

3 ,

8 The deformation of an idealized turbulent eddy shape goes in the opposite manner from the deformation of the
stress ellipsoid: a cigar-shaped ellipsoid usually corresponds to a disc-shaped eddy and vice versa.
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a22= ( 1
3 + δ), a33= ( 1

3 − δ), where δ is a constant lying in the range −1 ≤ δ ≤ 1.
Then, it is readily verified from Eqs. (3.26) and (3.27) that (A2 − A3) is equal to
8/9 irrespective of the value of δ.

In an analogous way, one can define an anisotropy tensor and its invariants for
the stress dissipation rate:

ei j ≡ εi j

ε
− 2

3
δi j , E1 ≡ eii= 0, E2 ≡ ei j e ji , E3 ≡ ei j e jkeki . (3.29)

In a high Reynolds number flow away from the vicinity of a wall the stress-
dissipation invariants are all negligible, but close to a solid wall where there are
no large eddies they exhibit non-zero values, apparently irrespective of Reynolds
number (though smaller than the corresponding values of the stress invariants),
indicating an endemic departure from local isotropy.

The above stress invariants find many uses in second-moment modelling. First,
they help to define possible states of the stress tensor – sometimes termed reali-
zable states. Even some of the most successful models of turbulence can generate
non-realizable states (usually during iteration of an unconverged stress field) and,
if such an occurrence arises, it may shortly thereafter wreck convergence. It may
thus be desirable to build in checks to ensure that, even during progress to a solu-
tion, the turbulence field can only pass through a succession of realizable states
achieved, conveniently, by placing bounds on the stress invariants. Another role
for the invariants is just as parameters in modelling a process, a topic on which
much more will be written in later chapters.

To complete this examination of stress invariants we note three limiting states.
The first, which hardly needs mentioning, is that of isotropic turbulence where
A2 and A3 are zero and, as noted above, A = 1. The other two states of par-
ticular fundamental interest are two-component turbulence and one-component
turbulence. Both can be reached, in principle, through the action of a force field
or by applying an axisymmetric deformation to an idealized turbulence field where
slip is permitted on the surfaces of the axisymmetric nozzle or diffuser. In such a
deformation, if the streamwise strain is ∂U1/∂x1, then from continuity and axisym-
metry considerations: ∂U2/∂x2 = ∂U3/∂x3 = − 1

2∂U1/∂x1. The stress field will
also remain axisymmetric through the deformation; thus, a22 = a33 = −a11/2.
The two stress-anisotropy invariants thus take the following form for axisymmetric
flow:

A2 = 3

2
a2

11, A3 = 3

4
a3

11. (3.30)
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Fig. 3.9 Axisymmetric turbulence created by passing initially isotropic turbu-
lence through an area contraction (a) and expansion (b), leading ultimately to
the two-component and one-component limits, respectively.

Eliminating a11 between the two parts of (3.30) gives the following interrelation
among the invariants for axisymmetric, shearless flow:

A3 = ±3

4

(
2

3
A2

)3/2

(3.31)

where the positive sign refers to an area expansion and the negative sign to an
area contraction. In the case of a converging passage, the acceleration will stretch
eddies in the streamwise direction, Fig. 3.9a, but note that since the production
rate of streamwise normal stress, P11 = −2u2

1

(
∂U1

/
∂x1

)
, is negative, the stream-

wise normal stress will fall, while, correspondingly, the production of the normal
stresses in the duct’s cross-sectional plane is positive, and thus those stresses will
increase. In the extreme limit one finds u2

1→ 0 and u2
2 = u2

3→k.
If, in contrast, isotropic turbulence is passed through a diverging axisymmetric

duct,9 Fig. 3.9b, the flow deceleration compresses the eddies in the streamwise
direction, which leads to an augmentation of the streamwise normal stress since the
production of that component is now positive, while that of u2

2 and u2
3 is negative.

Thus in the extreme limit one now finds u2
2 = u2

3 → 0 and u2
1 → 2k.

While the limiting states described above cannot in practice be achieved in actual
experiments, there are real-life situations where the turbulence is constrained to the
two-component state. At a phase interface in the presence of a body force – the
most common example of which arises at the free (water–air) surface in a lake –

9 Imagining an inviscid flow with slip occurring at the walls, thus avoiding separation, an effect that would
certainly arise in a real flow.
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3.7 Turbulence anisotropy, invariants and realizability 55

turbulent velocity fluctuations normal to the interface are suppressed, while those
parallel to it are effectively unconstrained. Similar effects caused by body forces
can arise in other situations such as the electromagnetic Lorentz force, which again
dampens velocity fluctuations in the direction of the force. An even more important
example is the limiting form of the anisotropy tensor very close to a smooth wall.
As shown in Chapter 1, the normal-stress components parallel to the wall then
vary as x2

2 , while the component normal to the wall varies as x4
2 ; thus, in the limit

as the wall is approached u2
2 becomes negligible compared with the other normal-

stress components. This behaviour is well illustrated in Fig. 3.10, from the early
DNS channel flow data of Kim et al. (1987). Figure 3.10, left, shows the non-zero
Reynolds-stress components on a linear scale, while Fig 3.10, right, presents the
Reynolds stresses normalized by the turbulence energy, the logarithmic abscissa
scale giving especial prominence to the near-wall region. From the latter it is clear
that the stress field does reach a two-component state deep in the viscous sublayer.
The flatness parameter A thus also falls to zero in the vicinity of the wall, as seen
in Fig. 3.14.

As a final ‘canonical’ flow we consider the development of an idealized flow
through a rectangular-sectioned duct that gradually changes its shape but with its
cross-sectional area remaining constant, Fig. 3.11. Thus, the streamwise velocity
remains constant, there being neither stretching nor compression in that direction,
but the initially isotropic turbulence is subject to a plane-strain distortion. The mean
velocity field is thus: U1 = const; U2 = −U3 = −cx1. Consequently, P11 = 0 and,
initially, P22 = −P33 since the stress field at the start is isotropic. Thus, the initial
development of the stress tensor will be one where a11 = 0, a22 = −a33,10 which
results in A2 = 2a2

22 and A3 = 0.
We can now summarize the above examination of types of homogeneous tur-

bulent flows subjected to a variety of irrotational strains by plotting the limiting
processes and the resultant states of the stress field on the invariant map shown in
Fig. 3.12, a presentation first provided by Lumley (1978). The important conclu-
sion is that realizable turbulence must have values of the invariants that place them
within or on the boundaries of the triangular area shown.

Somewhat different shapes of the domain of realizable turbulence can be
obtained by choosing alternative invariants. For example, Pope (2000) uses the
quantities (1/24 A2)

1/2 and (1/48 A3)
1/3, while Craft and Launder (2002b) adopt

A as an alternative to A3, thus confining the region of realizable turbulence to the
first quadrant, Fig. 3.13.

10 Although, when the distortion is first applied and the turbulence is isotropic, P33 = −P22 , the consequent

increase in u2
2 and decrease in u2

3 reduces the magnitude of P33 relative to P22 and consequently both a11 and
A3 will slowly become non-zero as the flow develops through the distortion.
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Fig. 3.10 Distribution of turbulent stress components very close to the wall in a
plane channel flow, normalized with the wall friction velocity (left) and with the
kinetic energy k (right). Evaluated from DNS results of Kim et al. (1987).

Fig. 3.11 Plane distortion created by passing initially isotropic turbulence
through a constant-area duct with a gradual change of its form.

Fig. 3.12 Stress-invariant map, summarizing the realizable region of turbulence
and its limits.
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Fig. 3.13 Anisotropy map in the A − A2 domain (Craft and Launder, 2002b).
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Fig. 3.14 Stress-anisotropy invariants (a) and comparison of the stress and
dissipation-rate flatness parameters (b) in a fully developed plane channel flow
(evaluated from DNS results of Kim et al., 1987; Moser et al., 1999 and Hoyas
and Jimenez, 2006).

To give some impression of how the invariants may be distributed across a wall-
bounded shear flow, Fig. 3.14 shows their variation in channel flow obtained from
the available DNS data. The peak values of the invariants A2 and A3 actually occur
a little way from the wall though, as remarked above, A vanishes at the wall itself.
We note that while the dissipation flatness parameter, E , (Fig. 3.14b) also vanishes
at the wall, it rises more rapidly than A (increasingly so as the bulk Reynolds
number is raised) and approaches unity (its isotropic value) over the central half of
the channel.
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3.7.3 Anisotropy of the scalar field

The scalar flux is a vector and thus a strict scalar-flux analogue of the stress-
invariant map and realizability constraints on the stress invariants does not exist.
A variable that can serve as a measure of the anisotropy of a scalar field is the
scalar-flux correlation function:

Aθ ≡ (θu j )
2

θ2ukuk

. (3.32)

One can, in fact, go further in pursuing an analogy with the stress field by defining
a mixed second-rank anisotropy tensor (Shih et al., 1990):

aθi j ≡ θ2ui u j − θui · θu j

θ2 · u2
k−(θuk)2

. (3.33)

It is readily appreciated that from this one can construct invariants in just the same
way as for the stress tensor. Thus:

Aθ2 ≡ aθi j a
θ
j i , Aθ3 ≡ aθi j a

θ
jkaθki , Aθ ≡ 9[1−3Aθ2+2Aθ3]/2.

As discussed in later chapters, the invariant Aθ has been found to be a useful param-
eter in correlating variations of the scalar-to-mechanical time scale. However,
attempts to use one or more of the mixed scalar-dynamic invariants to refine the
empirical coefficients in the scalar flux equations (analogous to what is successfully
done for the stress-transport equations) has not met with significant success.

https://doi.org/10.1017/9781108875400.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.005


4

Approaches to closure

4.1 General remarks and basic guidelines

The aim of turbulence modelling is to mimic those processes not exactly deter-
minable at the chosen level of closure in terms of mean and turbulence properties
that are. The challenge is sometimes referred to as the turbulence closure prob-
lem. It is recalled that the focus is on the second moments, ϕu j , which appear
as the unknown variables in the Reynolds-averaged mean momentum and sca-
lar transport equations. The processes in question are the turbulent transport of
momentum and any scalar of interest, represented by the turbulent stress, ui u j ,
and scalar flux, θu j , respectively. These second moments are always tensors of
a higher order than the variables for which the mean-flow transport equations
are solved. For example, if ϕ is a scalar, ϕu j is a vector (a first-order tensor),
and if ϕ is a vector, ϕu j is a second-order tensor. This complicates the closure
task because, first, with closure at second-moment level, one needs to solve many
more additional equations to determine these unknown variables than for the corre-
sponding laminar flow. Moreover, to close the second-moment equations one has to
devise approximations for third moments for which experimental data are relatively
scarce.

At a practical level, one naturally wishes to adopt the simplest closure con-
sistent with achieving the desired accuracy and width of applicability. This goal
clearly affects the importance that different workers have attached to different clo-
sure principles. As a first requirement, any surrogate form must have the same
dimensions as the correlation it replaces; there is no controversy on this point.
Next, the mathematical character of the model should conform in various respects
with the original. For example, if the process requiring approximation is a second-
rank, symmetric tensor with zero trace, the search for a model should be limited
to forms possessing these properties. Although this principle is usually adhered to
at second-moment level, it is frequently ignored in modelling the third moments.

59
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60 Approaches to closure

This can be regarded as the application of a further fundamental concept: the prin-
ciple of receding influence. Broadly, the idea is that the nth-moment correlations
have markedly less effect on the mean flow than those of (n − 1)th order. So,
rules that are held inviolate for second moments are sometimes dispensed with
in the interests of algebraic and computational convenience in dealing with third
moments. It is clearly a matter of taste, and of the flows to be calculated, how freely
one invokes this principle. Everyone developing models at this level makes some
use of it, however, for it is that idea which ultimately legitimizes second-moment
closure.

Two further principles of mathematical physics have commonly been invoked in
determining modelling approaches. First, it is generally accepted that the approx-
imate forms should exhibit the same response to translations, accelerations and
reflections of the coordinate frame as the real processes (e.g. Donaldson, 1971).
The second constraint is that the modelled set of transport equations should be
rendered physically incapable of generating impossible or ‘unrealizable’ values

such as negative normal stresses or correlation coefficients (such as u1u2/

√
u2

1 u2
2

greater than unity, Schumann, 1977). Here the work of André et al. (1979) is also
mentioned: they devised a scheme for overwriting or ‘clipping’ the values of triple
moments whenever they reached physically unattainable values in comparison with
other double and triple moments. Although Schumann suggested ways of securing
‘realizability’, the interested reader is referred to the far more detailed treatment by
Lumley (1978). Unfortunately, although the principle of realizability is sound, its
adoption adds considerably to the complexity of the turbulence closure and only
the later generations of modelling proposals have employed realizable forms in
computations of inhomogeneous flows, for example Shih and Lumley (1985), and
Craft and Launder (1989). Models which, in principle, are capable of generating
impossible values of second moments may, in practice, do so for flows which are
of only academic interest. Indeed, second-moment closure studies of recirculating,
swirling and other complex flows have been made with forms that do not guaran-
tee realizability. However, employing fully realizable closures often increases the
convergence rates in flows requiring an iterative solution, while certain features
of turbulence that consistently eluded the simpler models (such as the observed
reduction of turbulent mixing at high strain rates) emerge naturally without specific
empirical tuning.

The next concept is self-evident but because it is key to a successful turbulence
model it is still worth emphasizing. The model should always be a physically
plausible substitute for the real process. This statement includes the choice of
contributing physical quantities; for example, whether the model should com-
prise exclusively turbulence correlations or include terms containing mean-field
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elements – and the way they are combined together. It is often helpful to explore
different ways of expressing the correlation of interest; one form might give much
more insight than another.

The above considerations can be summarized in a set of mathematical and physi-
cal rules with which every term in the equations defining a turbulence model should
ideally comply:

● dimensional coherence
● tensorial (vector) order consistency
● coordinate frame indifference (frame and index invariance)
● realizability
● limiting properties (which may also be a corollary of realizability, for example,

two-component turbulence)
● physical coherence, implying that turbulence correlations should be mod-

elled in terms of turbulence parameters instead of, for example, global
mean-flow characteristics such as the bulk-flow Reynolds number or pressure
gradient.

A considerable simplification to the task of turbulence modelling results from
applying the high Reynolds number hypothesis. Simply stated, the proposal
contains two complementary ideas:

(i) that the large-scale interactions predominantly responsible for momentum and
scalar transport are unaffected by the viscosity of the fluid;

(ii) that the fine-scale motions responsible for viscous dissipation are unaware of
the nature of the mean flow and the large-scale turbulence; their structure is
similar to that found in isotropic turbulence.

It is, in fact, well established that the fine-scale motion, particularly in regard to
higher moment correlations, is not exactly like isotropic turbulence, but neverthe-
less, if judiciously applied, both aspects of the high Reynolds number hypothesis
are very useful in turbulence modelling.

In the following sections we consider the principles and practice of modelling
the terms in Eq. (2.18) and (2.22) contained in boxes. First, exact (but unusable)
expressions for the important pressure-containing correlations will be obtained.
Then, in §4.3 what we term the basic models of each term will be presented.
Despite being largely based on intuition and heuristic arguments and being 50
years or more old, because of their simplicity, these models are still widely used in
industrial practice. Moreover, the basic closures are often the leading terms of more
elaborate, higher order models, which are then extensively considered in §4.4. The
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effects of various force fields on the pressure-containing correlations are the subject
of §4.5, while finally the role of triple moments and their modelling is considered
in §4.6.

4.2 Pressure interactions, Φi j and Φθ j : the Poisson equation

Modelling the terms involving fluctuating pressure interactions in Eqs. (2.18)
and (2.22) is the most challenging task in second-moment closure. Before con-
sidering arguments and routes for modelling these interactions, it is noted that
pressure fluctuations have a profound effect on turbulence dynamics. Pressure
perturbations travel in all directions through the fluid as waves, at a propaga-
tion speed which in an incompressible fluid is infinite. Thus, the effect is by
no means local, but is felt instantly over the whole flow domain, as may be
seen below from the Poisson equation that governs the fluctuating pressure. By
taking the divergence of the Navier–Stokes equations (2.2) and subtracting its
mean part, a Poisson equation is produced with the fluctuating pressure as its
subject:

1

ρ

∂2 p

∂x2
l

= − ∂2

∂xl∂xm
(ulum − ulum)− 2

∂Ul

∂xm

∂um

∂xl
+ ∂ fl

∂xl
. (4.1)

The equation can be integrated over volume V bounded by the surface A, using
Green’s theorem, to yield the fluctuating pressure at a point defined by the position
vector x, Fig. 4.1:1

p(x) = ρ

4π

∫
V

∂2

∂x ′
l∂x ′

m

(u′
lu

′
m − u′

lu
′
m)

dV (x′)
r︸ ︷︷ ︸

p(1)

+ ρ

2π

∫
V

∂U ′
l

∂x ′
m

∂u′
m

∂x ′
l

dV (x′)
r︸ ︷︷ ︸

p(2)

− ρ

4π

∫
V

∂ fl
′

∂x ′
l

dV (x′)
r︸ ︷︷ ︸

p(3)

+ 1

4π

∫
V

[
1

r

∂p′

∂n
− p′ ∂

∂n

(
1

r

)]
d A︸ ︷︷ ︸

p(w)

(4.2)

where r ≡ |x′ − x|. All variables under the integral sign (denoted by primes) are
evaluated at the point P ′ with position vector x′, Fig. 4.1.

As noted above, Eq. (4.2) is elliptic, implying that the resulting field is non-
local, i.e. it extends beyond the location of its source. Terms on the right of the
equation can be regarded as sources of pressure fluctuations. The first three terms,

1 Green’s identity states that ∇(G∇ p) = ∇G∇ p + G∇2 p, where G and p are continuous functions.
Taking a volume integral and converting the first term into a surface integral using Green’s theorem, leads
to

∫
A G∇ pdA = ∫

V (∇G∇ p + G∇2 p)dV . By assigning the Dirac delta function for the Green function,
G = 1/r , one obtains:

p(x) = − 1

4π

∫
V

∇2 p′ dV (x′)
r

+ 1

4π

∫
A

[
1

r

∂p′
∂n

− p′ ∂
∂n

(
1

r

)]
d A.
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Fig. 4.1 Sketch relating to the integration of the Poisson equation.

p(1), p(2), p(3) are the particular solutions of the Poisson equation for unconfined
space, whereas the last term, p(w), becomes significant only in the proximity of
a solid wall. It is noted that p(1) is non-linear in velocity fluctuations, whereas
p(2) is linear both in mean velocity gradient and in velocity fluctuations. The term
p(3) arises from fluctuating body forces. It is to be expected that any comprehen-
sive model for the turbulent pressure-containing correlations (Φi j and Φθ j ) will
comprise terms corresponding to the different sources in Eq. (4.2).

By multiplying Eq. (4.2) by (∂ui/∂x j + ∂u j/∂xi ) and averaging, the pressure-
strain process can be written as:

Φi j = p

ρ

(
∂ui

∂x j
+ ∂u j

∂xi

)
≡ − 1

4π

∫
V

(
∂2ulum

∂xl∂xm

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV (x′)

r︸ ︷︷ ︸
Φi j1

− 1

2π

∫
V

(
∂Ul

∂xm

)′ (
∂um

∂xl

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV (x′)

r︸ ︷︷ ︸
Φi j2

+ 1

4π

∫
V

(
∂ fm

∂xm

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV (x′)

r︸ ︷︷ ︸
Φi j3

+ 1

4ρπ

∫
A

[
1

r

∂

∂n

(
p′
(
∂ui

∂x j
+ ∂u j

∂xi

))
− p′

(
∂ui

∂x j
+ ∂u j

∂xi

)
∂

∂n

(
1

r

)]
d A︸ ︷︷ ︸

Φwi j

(4.3)
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where the primes denote that the quantity in question is evaluated at a distance r
from where Φi j is determined (indicated by point P ′ in Fig. 4.1). It is convenient
to write the above equation in the short-hand form:2

Φi j = Φi j1+Φ i j2
+Φ i j3+Φwi j . (4.4)

The constituents in the above expression are known by names that reflect the
content of the corresponding integrand in Eq. (4.3) and the physical process it
represents. It is recalled that the wave nature of pressure fluctuations tends to
destroy the coherence of eddy structures and to diminish any correlations that might
exist between different fluctuating variables. In free space, the first three terms rep-
resented by volume integrals will usually act, directly or indirectly, to reduce the
turbulent stress anisotropy. The last term, originating from the surface integral, will
generally counteract the isotropization trend through the induced inviscid blocking
of velocity fluctuations in the vicinity of a solid wall or phase interface.

In the absence of any mean strain or body forces and away from a wall or inter-
face the only non-zero term is the non-linear Φi j1 , which will redistribute energy
among the components and diminish any shear stress, causing turbulence slowly
to approach its isotropic state. If, however, isotropic turbulence is subjected to a
sudden rate of strain, the dominant action will be through the term Φi j2

, which is
linear (in the velocity gradient) and which acts rapidly to modify the preferential
feeding (production) of turbulence energy into particular coordinate direction(s)
by the active components of the mean rate of strain. A simple (though incomplete)
characterization of the process is that of reducing the anisotropy of the stress pro-
duction. Term Φi j3 will generally act in the same spirit if, instead of mean strain,
a body force is applied suddenly to isotropic turbulence. Finally, we may expect a
wall to modify the fluctuating pressure field in its vicinity by virtue of its blocking
effect.

Thus, to summarize the physical meaning and labelling of the constituents of the
pressure redistribution term Φi j :

2 Instead of considering the pressure-strain correlation Φi j , one may focus on the velocity–pressure-gradient
correlationΠi j as it appeared in the original Eq. (2.18) before being split into pressure-diffusion and pressure-

strain parts, Πi j ≡D p
i j +Φi j , Eq. (2.20). Differentiating Eq. (4.2) with respect to xi , multiplying it by u j and

averaging, and then adding it to the same equation with the indices i and j interchanged gives an integral
equation for Πi j which is very similar to Eq. (4.3) except that all terms in the integrand which are evaluated
at point P(x) are differentiated by xi . Πi j can then be split into parts corresponding to the different terms in
the integral equation: Πi j = Πi j1 +Πi j2 +Πi j3 +Πwi j and the component parts modelled separately just as
for Φi j . The apparent advantage of this approach is that Πi j (and all its constituents) are zero at a solid wall,

whereas D p
i j and Φi j are finite and of opposite sign at a wall. This should make the modelling easier in the

region very close to a wall, where Dp
i j (and thus Φi j ) can be quite significant. It is recalled, however, that Πi j

is not redistributive (it has a finite trace even in incompressible turbulence). This is, in principle, an unattractive
feature because it invalidates the use of the redistribution constraint in modelling the component parts of Πi j .
However, because one needs to resort to a good deal of empiricism in closing the elements of either Πi j or
Φi j , both approaches eventually lead to the same model, except that, when choosingΦi j , one needs to provide
a separate model for the pressure diffusion. The latter issue is important only for near-wall modelling and for
certain cases of force-field-driven flows. These issues are considered further in Chapter 6.
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● Φi j1 – return to isotropy of non-isotropic turbulence (the slow or non-linear
term)

● Φi j2 – isotropization of strain production (the rapid or linear term)
● Φi j3 – isotropization of force production (the rapid or linear term)
● Φwi j – wall blocking (the wall echo term).

An analogous equation for Φθ j can be obtained by replacing (∂ui/∂x j + ∂u j/∂xi )
by (∂θ/∂x j ) in Eq. (4.3):

Φθ j ≡ p

ρ

(
∂θ

∂x j

)
= − 1

4π

∫
V

(
∂2ulum

∂xl∂xm

)′ (
∂θ

∂x j

)
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r
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(
∂θ
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(
∂θ

∂x j

)
∂

∂n

(
1

r

)]
d A︸ ︷︷ ︸

Φwθ j

(4.5)

or, in short-hand notation,

Φθ j = Φθ j1+Φθ j2+Φθ j3+Φwθ j (4.6)

where the component terms have similar physical meanings and labels to those in
Φi j .

In principle, approximations for the constituent processes in (4.3) and (4.5) can
be developed starting from the solution of the Poisson equation for the pressure
fluctuations. Analyses of this type have been presented by Naot et al. (1973);
Lin and Wolfshtein (1979) and others (in which it is assumed that the two-point
velocity-correlation tensor appearing in the kernel retains the exact, axisymmet-
ric form found in isotropic turbulence, thus permitting analytical integration). A
less formal approach is usually favoured, however. General surrogate forms are
assumed for the different component parts of Φi j and Φθ j . Then, by insisting that
the model possesses certain symmetry and contraction properties of the original
process and that it should comply with some or all of the other physical con-
straints noted above (while also conforming with certain experimental data or direct
numerical simulations), the various constants in the model are determined.
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While such analytical approaches will form the main focus of this chapter, in
what follows, as indicated above, an even simpler, heuristic approach will be pre-
sented next based on intuition and experimental observations. This leads to simple
models of each of the constituents of the complete terms Φi j and Φθ j .

4.3 The basic second-moment closure for high-Ret flow regions

4.3.1 Rotta–Monin return-to-isotropy models of Φi j1 and Φθ j1

To model the parts ofΦi j andΦθ j arising from p(1), we seek forms containing only
turbulent quantities. Experiments indicate that grid turbulence made strongly non-
isotropic by passing it through a duct of rapidly changing cross-sectional shape
will gradually revert towards isotropy once the mean strain is removed. If the dis-
sipation process remains isotropic (i.e. local isotropy applies), we must conclude
that Φi j

1
(which, like the other parts of Φi j , is traceless) is the agency promoting

this reversion. The process occurs gradually due to non-linear turbulence self-
interactions. The simplest approach, and one that accords with intuition, is Rotta’s
(1951) linear return model. It assumes that Φi j will act as a sink or source of the
stress component ui u j directly in proportion to its deviation from the isotropic
state scaled with an appropriate time scale which we take to be the turnover time,
T (T ≡ k/ε):

Φi j1 = −c1

(
ui u j − 1

3
ukukδi j

)
/T = −c1ε

(
ui u j

k
− 2

3
δi j

)
= −c1εai j . (4.7)

By applying this model to the decay of anisotropic turbulence (in the absence of
mean strain or body forces), the requirement that all normal-stress components
(i = j) should remain positive, implies that, if the stress dissipation remains iso-
tropic (i.e. εi j = 2

3δi jε), the coefficient c1 must be greater than unity. Different
values have been suggested in the course of model development, depending upon
the scheme used to represent the rapid term (see below); the values commonly used
nowadays lie in the range 1.5 ≤ c1 ≤ 1.8.

The corresponding process, Φθ j1 , in the θu j equation is modelled, following
Monin (1965), as:

Φθ j1 = −c1θ
ε

k
θu j . (4.8)

However, the value of the empirical coefficient, c1θ , normally adopted (around 3.5)
is roughly twice as large as the value of c1. Part of the reason for this disparity
is the use of the dynamic time scale, k/ε, to characterize the process rather than
a time scale involving both the dynamic and scalar intensities. Several research
groups have used [(k/ε)(θ2/εθθ )]1/2, a choice that brings the two coefficients closer
together.
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4.3.2 The isotropization-of-production (IP) model of Φi j2
and Φθ j2

It is evident from Eq. (4.3) that since this term is multiplied by a mean velocity
gradient, the term will be non-zero only in the presence of a mean rate of strain. If
isotropic turbulence is subjected to a suddenly imposed velocity gradient, Φi j2

will
instantly become non-zero. An early analytical strategy for predicting the changes
to the stress field in this type of situation is known as rapid-distortion theory, rein-
forcing the descriptor rapid term. Although the process was entirely neglected
in some of the early closure proposals (e.g. Donaldson et al., 1972; Lumley and
Khajeh Nouri, 1974), today it represents a vital ingredient of all second-moment
closures. Its effects will tend to redistribute the action of the imposed strain, reduc-
ing the effective mean-strain generation in the components where the production
term is large and deflecting it in some proportion to other components. It is thus
supposed that the principal effect of the mean-strain part of the pressure-strain
process is, effectively, to reduce the anisotropy of the production tensor, leading to
a model analogous to Rotta’s model of the slow term, i.e.

Φi j2
= −c2

(
Pi j − 1

3
Pkkδi j

)
. (4.9)

Equation (4.9) is known as the isotropization-of-production (IP) model (Naot et al.,
1970). It combines simplicity with at least qualitative accuracy and has been used
in many computations of complex flows. Moreover, though inspired by intuition,
it is noted that if, as is often the case, the value of c2 is taken as 0.6, in isotropic
turbulence subjected to a rapid distortion, one obtains the exact result obtained by
Crow (1968):

Φ iso
i j2

= 0.4k

(
∂Ui

∂x j
+ ∂U j

∂xi

)
≡ 0.8 k Si j . (4.10)

Equation (4.9) can be regarded as a simplification of a more general non-linear
model discussed in §4.4, in which simply the leading linear term is retained. It has
been widely applied in a diversity of flows and has been found to be conclusively
better than the superficially more general ‘quasi-isotropic’ form, to be considered
in §4.4.3, at least when used in conjunction with the simple linear model of Φi j1

.
The idea underlying the IP model is readily applied to the force-field part of Φi j

(as will be considered in §4.5) and, moreover, to the mean-strain contribution of
the pressure-scalar gradient to Φθ j2

. Thus, for the latter:

Φθ i2 = −c2θPU
θ i = +c2θ θuk

∂Ui

∂xk
(4.11)

where the coefficient has been given values in the range 0.4 ≤ c2θ ≤ 0.55. Notice
that only the part of production of the θui transport equation arising from θDui/Dt
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Fig. 4.2 Map of proposals for coefficients in the Basic Model for Φi j .

is included in Eq. (4.11) since it is only that part of the equation that contains
the pressure-fluctuation term. That has been the usual choice in modelling though
Jones and Musonge (1988) have argued that the mean-scalar-gradient part of the
generation also gets modified in some way by the pressure fluctuations (see §4.4.2).
With the coefficient c2θ set to about 0.5, Eq. (4.11) is distinctly more successful
than the formally more general linear quasi-isotropic form (c.f. §4.4) at least if the
proposal of Monin (1965) for Φiθ1 is adopted.

4.3.3 Optimum choice of coefficients in the basic pressure-strain model

Equations (4.7) and (4.9) have been included as part of many different modelling
proposals and have been incorporated into several commercial software packages.
For this reason the pair of equations (including, where appropriate, wall-reflection
terms and other closure elements discussed below) is often referred to as the Basic
Model.

The question arises, however, as to what values should be assigned to the coeffi-
cients c1 and c2. Values proposed for c1 range3 from 1 to 5, while recommendations
for c2 cover the range from zero to 0.8, Fig. 4.2. This array of different values sug-
gests, at first glance, that since such disparate pairings have been put forward, the
whole approach is worthless. Looked at with an experimentalist’s eye, however,

3 In fact, Naot et al. (1970) neglected entirely the slow, turbulence part of the pressure-strain process but
also assumed εi j = εui u j /k in place of the more usual local isotropy (εi j = 2δi j ε/3). Their assump-
tions are equivalent to taking c1 = 1 (rather than zero) together with εi j = 2δi j ε/3. That is, −εui u j /k =
−c1(ε/k)[ui u j − 2δi j k/3] − 2δi j ε/3 if c1 = 1.
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one might be tempted to fit a straight line through the ‘data points’. Now, in the
case of a simple shear flow in local equilibrium (i.e. where turbulence generation
and dissipation processes are in balance) and where the dissipation is isotropic, it
is readily shown that, with these models, the resultant stress tensor depends not on
the individual values of c1 and c2 but rather on the single parameter (1 − c2)/c1.
The line in Fig. 4.2 is simply that corresponding to (1 − c2)/c1 = 0.23, which evi-
dently does rather a good job of fitting the various proposals. What we conclude is
that, for simple shear flows in local equilibrium, the very different pairs of c1 and
c2 lead to nearly the same results. In order to pick the ‘best’ pairing one needs to
look at non-equilibrium cases. It was noted above that a value of c2 of 0.6 exactly
describes the case of isotropic turbulence subjected to rapid distortion, while direct
simulations of the return of anisotropic turbulence towards isotropy suggest a level
of c1 from 1.5 to 2.0 if the level of stress anisotropy is similar to that found in a
typical free shear flow. The pairing usually adopted nowadays for c1 and c2 of 1.8
and 0.6 is fully compatible with these extreme cases and is marked by a circle in
Fig. 4.2.

Before leaving this topic, mention should be made of the pairing of Younis
(1984) (see Gibson and Younis, 1986). His proposal arose from the failure to pre-
dict swirling jets correctly when larger values of c2 were adopted. However, it is
noted that Pi j is not an objective tensor (i.e. not frame invariant) and, thus, with
the IP model, neither is Φi j

2
. If the model of Φi j is made objective (as it should

be) by including the stress-convection tensor Ci j , Eq. (2.18) (which, while usually
small in regions where Pi j is important, can, nevertheless be large in a swirling
flow), then it is found that reasonably satisfactory predictions of the swirling jet
are obtained with the ‘standard’ values of c1 and c2 noted above (Fu et al., 1987a).
Further discussion on this topic may be found in §4.5.

4.3.4 Wall corrections to Φ i j and Φθ j with the basic model

While the combination of Eqs. (4.7) and (4.9) produces approximately the correct
relative levels of the Reynolds stresses in many free shear flows, it fails to do so
as one approaches a wall. The difference is brought out clearly in Table 4.1, which
compares stress ratios in a local-equilibrium homogeneous free shear flow (Cham-
pagne et al., 1970) with those found in a fully turbulent, high Reynolds number
flow near a wall, also in local equilibrium.

The values in the latter case are not strictly constant (the anisotropy increas-
ing steadily as the wall is approached) but the table suffices to show that there
is a much greater difference among the normal stresses than is observed in the
homogeneous, equilibrium free shear flow. It is not just rigid walls where surface
effects on Φi j and Φθ j are important. In free-surface flows the resultant pressure
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Table 4.1 Comparison of stress-anisotropy components in homogeneous and
near-wall shear flows

a11 a22 a33 a12

Homogeneous shear,
Champagne et al. (1970) 0.30 −0.18 −0.12 −0.33
Near-wall region of
a boundary layer 0.55 −0.45 −0.11 −0.24

‘reflections’ from the free surface are also significant4 – indeed, indirectly, through
the secondary motions created by the resulting stress anisotropy near the free sur-
face, they are the underlying cause of why the maximum velocity in a river often
lies below the free surface. There is thus clearly something important missing from
the pressure-strain approximation adopted with the Basic Model.

The main effect of the wall onΦi j is to dampen the level of u2
2 (the normal stress

perpendicular to the wall) to less than half the level found in a free shear flow. (It is
mainly this reduction that makes the two-dimensional wall jet in stagnant surround-
ings spread at only two-thirds of the rate of the free jet despite the contribution of
wall friction which, on its own, would act to augment the spreading rate relative
to that of the free jet.) The nature of the wall effect on the pressure interaction
is defined by the surface integral in Eq. (4.3), but this gives barely a hint of how
to account for this effect in the model of the pressure-containing terms. However,
common everyday experience tells us that a solid wall will ‘splat’ neighbouring
eddies, causing higher turbulence anisotropy broadly as indicated in Table 4.1. One
is led to infer that a wall or free surface impedes the isotropizing action of the pres-
sure fluctuations. The outcome has sometimes been referred to as an echo effect
caused by pressure reflections from the wall or free surface. However, this early
interpretation is not strictly correct since a pressure wave reflecting from a solid
surface will retain the same character as the incoming wave, which means that, in a
near-wall region, the pressure-scrambling effect and the consequent isotropization
of the stress field and its generation process will be enhanced by pressure reflec-
tion and not diminished.5 Rather, the major effect originates from non-viscous
kinematic blocking due to the impermeability of the wall or free surface, i.e.
from the continuity constraint, which suppresses velocity fluctuations in the wall-
normal direction. Because the effect is not dissipative, energy remains conserved,

4 Strictly, the free surface is at a uniform pressure. But turbulent agitations cause the free surface to be slightly
‘crinkled’, i.e. the surface is not quite plane and is continually changing. However, if the free surface is imag-
ined to be replaced by an undeformable but frictionless lid, as is habitually done in free-surface studies, then
pressure fluctuations will exist at the lid surface.

5 Indeed, this is seen by converting the surface integral in Eq. (4.3) into a volume integral by considering the
wall surface as a symmetry plane and accounting for the pressure field in the image volume on the other side
of the virtual plane around point P∗(x∗) mirroring point P(x) in Fig. 4.1, so that the complete Φi j can be
written as a volume integral over dV (1/r + 1/r∗).
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resulting in a larger proportion in the streamwise and, to a lesser extent, spanwise
components. Whatever the physical explanation, accounting for these effects is
an essential step in the accurate modelling of wall-bounded inhomogeneous flows
with the Basic Model.

But can these wall effects be automatically accounted for as one approaches
the wall, effectively through the boundary conditions? There has certainly been a
great deal of research aimed at developing models of Φi j that do automatically
respond to the proximity of the wall. Later sections in this chapter will consider
more elaborate models of Φi j that do not suffer this wall-proximity problem, at
least not to the same extent. However, the ‘basic’ model presented above requires
rather substantial correction close to a wall to return accurate relative levels of the
stress components. This is usually achieved by introducing the unit vector normal
to the wall, n (so, for example, if the wall lies in the x1−x3 plane n will have
components (0,1,0)), and applying a correction proportional to the turbulent length
scale k3/2/ε divided by the distance from the wall. The total correction is normally
split into two parts: one associated with the slow and the other with the rapid term.

The first practical proposal for handling near-wall effects was made by Shir
(1973), who assumed that the ‘turbulence’ or ‘slow’ part of the pressure-strain
term was the only part affected by the proximity of the wall:

Φwi j1
= cw1

[
ukumnknmδi j − 3

2(ukui nkn j + uku j nkni )
]

fw(l/n prp) (4.12)

where l is the turbulent length scale, k3/2/ε, and niri implies the normal distance
from the wall, while fw is an empirical function that varies from unity near the wall
to zero far enough from it for no wall influence to be felt. So, if x2 is the direction
normal to the wall, the model applies the following corrections to the individual
components:

Φw111
= cw1 u2

2 fw, Φ
w
221

= −2cw1 u2
2 fw, Φw331

= cw1 u2
2 fw, Φw121

= − 3
2 cw1 u1u2 fw.

(4.13)

Later workers (e.g. Gibson and Launder, 1978) have assumed that the wall affects
all parts of the pressure-strain process, an assumption that was later confirmed
by the analysis of DNS data by Brasseur and Lee (1987). They showed that the
distance over which the two-point correlations in the pressure-strain integrals (cf.
Eq. (4.3)) were active was greater for those associated with Φi j2

than for Φi j1 . Fol-
lowing the structure suggested by Eq. (4.12), an additional term was thus proposed
in the form:

Φwi j2
= cw2

[
Φkm2nknmδi j − 3

2(Φ ik2
nkn j+Φ jk2nkni )

]
fw(l/n prp). (4.14)

The function fw is usually (but not universally, see for example Naot and Rodi,
1982b) taken directly proportional to 0.4k3/2/εxn (where xn is used to denote
the normal distance from the wall instead of the more general form n prp) with
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Fig. 4.3 Variation of the function fw = l/xn over a half-channel of width h,
where l = k3/2/clε and cl = κ/c3/4

μ ≈ 2.5. Computed from DNS data of Hoyas
and Jimenez (2006).

a constant of proportionality chosen such that the function equals unity in an
equilibrium near-wall flow. The variation of the function fw in a channel flow
for three Reynolds numbers, Fig. 4.3, shows that the effect decays with distance
from the wall but, nevertheless, it is not entirely negligible even at the channel
centre (implying effects from both walls should be included in computing that
flow). The above pair of wall corrections, Eqs. (4.12) and (4.14) in conjunction
with Rotta’s return-to-isotropy and IP models, has been widely used in practice.
Indeed, for two-dimensional wall-attached flows (for which they were tuned) they
return broadly acceptable results, as illustrated in Fig. 4.4, showing the distribution
of stress components in a flat-plate boundary layer.

If transport equations are to be solved for the turbulent heat or mass fluxes,
corresponding corrective terms to account for wall-proximity effects on the
pressure-temperature gradient correlation have also been proposed of the form
(Gibson and Launder, 1978; McGuirk and Papadimitriou, 1988):

Φwθ j1
= −cw1θ (ε/k)ukθn j nk f (l/n prp), Φwθ j2

= −cw2θΦθk2n j nk f (l/n prp).

(4.15)
In practice,Φwθ j2

is zero if the velocity normal to the wall vanishes so, while cw1θ has
been taken as 0.5 in both the above studies, no recommendation6 has been made
for cw2θ .

6 In fact, (Dol, 2001) (also Dol et al. (1999), although concluding from the DNS data of Versteegh and Nieuw-
stadt (1998) for an infinite side-heated vertical channel that the wall correction Φw

θ j is much smaller than the
sum of the slow and rapid terms, did propose a model for both the ‘slow’ and ‘rapid’ processes in Eq. (4.15)
with a single coefficient cw1θ = cw2θ = max (0, 0.58 − 0.69A1/2). Apart from the flow considered, however, no
further testing has been reported in the literature.
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Fig. 4.4 Turbulence intensities in the flat-plate boundary layer: effects of wall-
correction models. Broken line: Gibson and Launder (1978), Eq. (4.14); Continu-
ous line: Craft and Launder (1992), Eq. (4.30); Symbols experimental data. From
Launder (1993).

4.3.5 The dissipative correlations εi j and εθ j

As noted in §2.3.1 and §3.3, the dissipative correlations εi j and εθ j arise from the
fine-scale motion for it is in these eddies that instantaneous gradients of veloc-
ity, temperature, etc. are steepest. We assume, therefore, from the high Reynolds
number hypothesis, that the motions contributing predominantly to εi j and εθ j are
isotropic. Now, the term (∂u j/∂xk)(∂θ/∂xk) changes sign if the coordinate direc-
tion x j is reversed; but the properties of isotropic turbulence are unaffected by such
reflections of axes. The only value that (∂u j/∂xk)(∂θ/∂xk) can take, therefore, and
be consistent with isotropic turbulence is zero. That is:

εθ j = 0. (4.16)

Likewise εi j must be expressible as proportional to the product of the contraction
ε ≡ ν(∂ui/∂x j )2 and the isotropic unit tensor δi j . Thus:

εi j = 2
3ε δi j (4.17)

where the constant of proportionality is obtained by contracting each side of the
equation. An implication of (4.17) is that there is no viscous sink of shear stress.
The processΦi j is thus the only mechanism for preventing the unlimited growth of
the off-diagonal components of ui u j .

There is still little agreement in the literature on whether the dissipative correla-
tions can be adequately approximated by the isotropic relations. Measurements are
not usually sufficiently accurate to allow conclusions to be drawn. Direct numerical
simulations show significant and systematic departures from local isotropy but even
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today these simulations are still at relatively low Reynolds number; so, they may
not reflect the situation in practical applications which occur at Reynolds num-
bers orders of magnitude higher. In practice, in applying second-moment closure,
it is difficult to disentangle departures from Eqs. (4.16) and (4.17) from errors
in accounting for the pressure-strain and pressure-scalar-gradient processes. So, a
common practice (Lumley, 1978) is to adopt the isotropic relations for εi j and εθ j

and to absorb any departure from isotropy in the dissipation processes into the tur-
bulent parts of Φi j and Φθ j whose approximation within the basic model has been
considered above.

4.3.6 Diffusive transport, Di j and Dθ j

The usual approach for representing diffusive transport in second-moment closures
employing the basic pressure-strain model is the generalized gradient diffusion
hypothesis, GGDH (Daly and Harlow, 1970), which may be written as:

ϕuk = −cϕ
k

ε
ukul

∂�

∂xl
(4.18)

where ϕ and � denote any fluctuating and mean values of a transported property.
Thus, if ϕ denotes the instantaneous product of fluctuating velocities, ui u j :

ui u j uk = −cs
k

ε
ukul

∂ui u j

∂xl
(4.19)

with cs ≈ 0.2. Or, for the transport of scalar flux, θu j :

θu j uk = −cθ
k

ε
ukul

∂θu j

∂xl
. (4.20)

One evident weakness of these forms is that while the indices j and k on the left
side of the equation can be interchanged without altering the resultant product,
such a rearrangement on the right intrinsically alters the form. No ambiguity arises
because, in the ui u j and θu j transport equations, a ∂/∂xk operation is applied to the
triple moments; nevertheless, the difference in character between the exact and the
modelled forms of the correlations would appear to be a significant shortcoming.

In fact, as will be discussed more fully in §4.6, forms similar to (4.19) and (4.20)
can be obtained by making sweeping closure simplifications to the transport equa-
tions for the triple moments (Hanjalić and Launder, 1972b; Launder, 1976). The
form emerging from that simplification is a model for ui u j uk consisting of three
terms, each of the same form as the right side of (4.19) but with a permutation of
the indices i , j and k:

ui u j uk = −cs
k

ε

(
ui ul

∂u j uk

∂xl
+ u j ul

∂ui uk

∂xl
+ ukul

∂ui u j

∂xl

)
(4.21)
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(with the coefficient cs now being smaller to compensate for the additional terms,
typically 0.10). Likewise, that for θu j uk also consists of three terms in which
uk, ui , θ successively occupy the position of uk in (4.20):

θui u j = −cθ
k

ε

(
u j ul

∂θui

∂xl
+ ui ul

∂θu j

∂xl
+ θul

∂ui u j

∂xl

)
(4.22)

where cθ ≈ 0.11.
The last term in Eq. (4.22), which has the character of an additional source

term in the equation for θu j , is usually omitted. The remaining simpler expres-
sion, which contains heat-flux gradients only, is still frame invariant. Dol et al.
(1999) showed that in a side-heated vertical channel, this reduced invariant form
Eq. (4.22) reproduced the non-zero (wall-normal and streamwise) heat-flux dif-
fusion components reasonably well, substantially better than the GGDH model,
Eq. (4.20).

Mellor (1973) suggested still simpler forms that respected interchangeability of
subscripts:

− ukui u j ∝ νt

[
∂ui u j

∂xk
+ ∂ukui

∂x j
+ ∂u j uk

∂xi

]
, (4.23)

− θu j uk ∝ νt

[
∂θu j

∂xk
+ ∂ukθ

∂x j

]
(4.24)

where νt denotes the turbulent eddy viscosity. These somewhat more elaborate
and, superficially, more correct models do not, in practice, seem to bring better
agreement when used in numerical solvers. This could be due, at least partly,
to the fact that those workers who have adopted (4.19) and (4.20) for the tri-
ple moments have generally not included any model for the pressure diffusion
terms:

− ∂

∂xk

(
pu j

ρ
δik + pui

ρ
δ jk

)
and − ∂

∂xk

(
pθ

ρ
δ jk

)
(4.25)

which appear in the ui u j and θu j transport equations. In these pressure terms the
indices i or j are not interchangeable with k. Thus, perhaps Eqs. (4.19) and (4.20)
should really be regarded as models for the complete turbulent diffusion of ui u j

and θu j .
More rigorous and comprehensive algebraic models of triple moments have been

put forward by Lumley (1978); André et al. (1979); Reynolds (1984); Dekeyser and
Launder (1985); Nagano and Tagawa (1991) and Magnaudet (1992). A discussion
and a comparative analysis of various advanced models in a channel flow can be
found in Hanjalić (1994). Some of these proposals are discussed in §4.6.
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4.3.7 Determining the turbulence energy dissipation rate, ε,
with the basic model

So far nothing has been said about how ε, the viscous dissipation rate of turbulence
energy, is to be computed. This question will be addressed more comprehensively
in Chapter 5; here just a very brief account is provided of the rationale for deter-
mining that quantity so that the Basic Model may be seen in its entirety and some
computations resulting from its use presented.

First, it is noted that the practice of prescribing the length scale as an alge-
braic function of position in a shear flow (as was done in a number of the early
second-moment closures, e.g. Donaldson et al., 1972) is not seen as a useful
approach at this level of closure as it both greatly limits the range of flows that
can be computed and, at best, continually requires detailed empirical informa-
tion from the user. Determining ε from a transport equation is thus the only route
considered though, in Chapter 5, alternative strategies will also be presented. (In
Chapter 7, however, brief mention is made of transported eddy-viscosity models
while, more extensively, prescribed-length-scale schemes are also considered for
the viscosity-affected region very close to a wall.)

Although starting from the exact equation for ε and the conceptual ideas of Davi-
dov (1959, 1961), the closed equation for ε (in the form first proposed by Hanjalić,
1970) is, to a large extent, empirical. Its form is shaped by the modelled form of the
turbulent kinetic energy equation and dimensional consistency in which the empir-
ical coefficients are chosen to accord with key experimental data. First, recall that
the k transport equation (3.2) (with the GGDH model substituted for the complete
diffusion term) may be written as:

Dk

Dt
= ∂

∂xk

(
cs

ukulk

ε

∂k

∂xl

)
+ Pk − ε (4.26)

with the second and third terms on the right of Eq. (4.26) being source and sink
terms. Clearly, a transport equation for ε must also contain such source and sink
terms and these need to be linked to the production and dissipation rates of k in
order to avoid the risk that k grows without limit following an increased shear-
ing rate or, even less realistic, k becomes negative some time after the shear is
removed. By direct analogy with Eq. (4.26), therefore, the tentative form of ε
transport equation may be written as:

Dε

Dt
= ∂

∂xk

(
cε

ukulk

ε

∂ε

∂xl

)
+ cε1

Pkε

k
− cε2

ε2

k
(4.27)

where the coefficients (which are here assumed to be constants) remain to be
determined. The coefficient cε2 can be obtained unambiguously by considering the
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decay (in time or in space) of grid-generated turbulence. For this case the k- and
ε-equations above reduce to:

dk

dt
= −ε; dε

dt
= −cε2

ε2

k
. (4.28)

If a power-law decay for k is assumed (k ∝ t−n), it is readily deduced from insert-
ing this form into the foregoing equations that cε2 = (n + 1)/n. Experimental data
on grid turbulence decay suggest values for the decay exponent in the range 1.1–
1.25, leading to values of cε2 in the range 1.8–1.9. The value of the coefficient of
the source term, cε1, is habitually fixed from computer optimization by requiring
that the rate of spread of a strong free shear flow (i.e. a flow where the shear gen-
eration term is large, such as the plane mixing layer) is correctly predicted. That
leads to a value of cε1 of approximately 1.4.

Finally, since we would want the ε-equation to be applicable both in free shear
flows and in near-wall flows, an interconnection between the coefficients is deter-
mined from considering flow in an equilibrium near-wall flow where k production
and dissipation rates are in balance. In this case, with convective transport assumed
negligible, with the mean velocity following the standard logarithmic variation
with distance from the wall and the turbulent shear stress being replaced by the
wall shear stress, the dissipation equation can be converted to the following relation
among the three empirical coefficients:

cε = − (cε2 − cε1)
U 6
τ

κ2k2u2
2

(4.29)

where Uτ denotes the friction velocity and κ is the von Karman constant. On insert-
ing the values of the stress ratios indicated in Table 4.1 the value of cε is obtained
as approximately 0.15, which is of similar magnitude to values indicated above for
stress diffusion.

This is the form of the ε-equation used in the inhomogeneous flow examples
shown in §4.3.8. Over the years since its first appearance there have been numerous
refinements proposed and alternative strategies for obtaining ε. As indicated above,
these matters form the subject of Chapter 5.

4.3.8 Illustrative applications of the Basic model

There have been numerous successful computations with the model described in
the foregoing sections. There follow five quite different applications illustrating
strengths and weaknesses of the form presented. In all these cases the most crucial
element in the modelling is the pressure-strain term, including the wall-correction
terms, Eqs. (4.12) and (4.14). In all examples the wall boundary conditions were
provided from the standard wall functions (see Chapter 8).
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Fig. 4.5 Computations of a pulsating boundary layer with the Basic SMC (full
lines). Left: phase-averaged velocity profiles at different time instants (phase
angles); symbols are experimental values (from Cousteix et al., 1979). Right:
hysteresis of turbulent stresses at different boundary-layer depths; dashed lines
are experimental values (Acharya and Reynolds, 1975). From Hanjalić and Stošić
(1985).

As a first application of the closure, we consider two-dimensional boundary
layers subjected to imposed sinusoidal oscillations of free-stream velocity or pres-
sure gradient. First, comparison is made with the measurements of Cousteix et al.
(1979) for a free-stream velocity amplitude of 37%. Figure 4.5, left, shows pro-
files for a sequence of phase angles. Agreement with the measured mean velocity
profiles is good (though, admittedly, similar quality predictions were reported by
Cousteix et al. with two variants of a simpler eddy-viscosity model). The varia-
tions of individual components of the turbulent stress over a cycle provide a more
searching test of the model’s ability to capture the stress dynamics since changes
in the velocity gradient will be felt differently by each stress component causing
phase differences. Figure 4.5, right, indicates that the Basic Model also satisfac-
torily resolves the different responses of the shear stress and streamwise normal
stress, observed in the measurements of Acharya and Reynolds (1975) of small-
amplitude, pulsating channel flow at 24 Hz. To illustrate better the different phase
shifts of the stress components at different distances from the wall, the results are
shown in the form of hysteresis loops by folding back the curves for the second
half of the cycle.

The second example, Fig. 4.6, from Jones and Manners (1989) shows predic-
tions of the flow through an annular diffuser typical of that found in a gas turbine.
The flow is unseparated but the successive imposition of the inlet bend, the straight
diffusing section and the outlet bend provides a searching test case that the linear
eddy-viscosity model fails to mimic at a useful level. Indeed, because the mean
velocity with this model gives the peak velocity near the diffuser exit towards
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Fig. 4.6 Flow development through a faired diffuser: (a) annular flow configu-
ration; (b) mean velocity at the exit from the diffuser; (c) and (d) shear stress
profiles at the end of the inlet bend and at the end of a straight diffusing section
respectively. Symbols: experimental data, Stephens and Fry (1973); – – – com-
puted using the k − ε linear eddy-viscosity model; —— computed with the Basic
Model (second-moment closure). From Jones and Manners (1989).

the inner wall, contrary to the experiment, the results are arguably worse than if
one simply assumed a uniform velocity distribution at the exit from the diffuser
(to compute the flow in the combustor). The basic second-moment closure, by
comparison, captures the experiments of Stevens and Fry (1973) in all important
respects.

The next illustrations show some examples of swirling flow. A distinction is
made between strong swirl in a short cylindrical container (such as a combustion
chamber) and that in a long pipe. In both types of configuration, linear eddy-
viscosity models usually perform poorly because, just as in flows with system
rotation (§4.5.2), the equations for the scalar variables used to determine the eddy
viscosity (in particular, the turbulence energy, k) are also ‘blind’ to swirl, apart
from indirect effects due to the swirl altering the mean-flow velocity field. Moreo-
ver, swirl causes substantial changes in the stress anisotropy in both configurations,
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Fig. 4.7 Streamlines in the vertical cross-section of a combustor-type swirling
flow. Left: sketch of the configuration (top), experiments by Nejad et al. (1989)
(bottom). Right, computations: k–ε EVM (top); Basic SMC (bottom). Expansion
ratio 1.5; swirl intensity Sw = 0.4, Re = 125.000 (based on entry pipe diameter
and axial bulk velocity). From Jakirlić (2004).

which cannot be captured with a linear eddy viscosity. This is illustrated in Figs. 4.7
and 4.8, which compare computations using the Basic SMC and the linear k–ε eddy
viscosity model (EVM) with experiments in the two types of swirling flows noted
above. Figure 4.7 (from Jakirlić, 2004) compares the streamline patterns in the
vertical cross-section of a simple combustor-type configuration (in fact a swirling
flow passing through a sudden pipe expansion). This is a well-defined case suitable
for model validation since the inflow swirl for the computations can be generated
by computing an upstream portion of the flow and checked with the experimen-
tal data at the expansion, or just before it. The experiments, for a swirl intensity,
Sw ≡ ∫ R

0 U Wr2 dr/R
∫ R

0 U 2r dr , of 0.4 clearly show a recirculation bubble in the
central flow region of the entry zone, which is well reproduced by the Basic SMC
and yet totally absent in the k–ε EVM computations. Similar evidence has been
reported by other authors showing the superiority of second-moment closure over
an eddy-viscosity treatment for different configurations and swirl origin (e.g. Hogg
and Leschziner, 1989).

Swirl in long pipes, even of weak intensity, is still more difficult to capture with
an EVM. Jakirlić (1997) (see also Jakirlić et al., 2002) reported computations of
swirling flow in long pipes with an imposed free vortex (W ∝ 1/r) at the pipe
entry for two swirl intensities, Sw = 1.0 and 0.1 corresponding, respectively, to the
experiments of Kitoh (1991) and Steenberger (1995). While the strong swirl poses
a challenge, especially for high-Re models (because the initial free vortex persists
over a large pipe length and the strong circumferential stabilizing effect penetrates
the core region which may lead eventually to a collapse to laminar flow), the weak
swirl seems to be reasonably well handled by the Basic Model. The computed
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(a) (b)

Fig. 4.8 Profiles of axial and tangential velocity in weakly swirling flow in a
long pipe at x/D = 7.7, Re = 50, 000, Sw = 0.1, computed with the Basic
Model using the standard wall functions, compared with the wall-integrated
second-moment closure of Hanjalić and Jakirlić (1993) (HJ) (see Chapter 6), and
the Chien (1982) low-Re k–ε model (see Chapter 7). Symbols: experiments of
Steenberger (1995). From Jakirlić (1997).

stress profiles (not shown here, see Jakirlić et al., 2002) are in very close agreement
with Steenberger’s experiments for the annular region 0.3 < r/R < 1.0 over a
large fraction of the pipe length, though in the developing region (up to x/D ≈ 35,
still dominated by the entry free vortex) the results in the core for r/R < 0.3
deviate notably from the experiments. However, the axial and tangential velocities
do not seem to be much affected by these discrepancies, as illustrated in Fig. 4.8,
where the basic SMC gives good agreement with experiments even in the early
stage of flow development (at x/D = 7.7). It is interesting to note in Fig. 4.8 that
integration up to the wall using a low-Re SMC (denoted HJ, Hanjalić and Jakirlić,
1993; Hanjalić et al., 1995), considered in detail in Chapter 6, returned results for
weak swirl, Sw = 0.1 very similar to the basic high-Re model, in contrast to the
case of strong swirl, Sw = 1.0, where the HJ model showed distinct improvements
(Jakirlić, 1997). Suspecting that the simple models for the pressure strain terms
used in the Basic SMC may have caused the failure to capture the stresses in the
core, both flows were subsequently computed with the more advanced high-Re
second-moment closure (SMC) of Speziale, Sarkar and Gatski (SSG) (considered
in §4.4.4). The results were, however, nearly identical to those obtained with the
Basic Model shown in Fig. 4.8. All three SMCs reproduce the main flow features
much better than the low-Re k–ε eddy-viscosity model of Chien (1982).

As a fourth, quite different example of ‘wall correction’ applied within the Basic
Model, the free-surface plane jet examined by McGuirk and Papadimitriou (1988)
is considered. The inset sketch in Fig. 4.9 shows the configuration: a plane jet
of pure water is injected smoothly over a reservoir of denser saline water. In this
case buoyant effects are important and these results anticipate the treatment of
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Fig. 4.9 Development of salinity profiles in a stably stratified free-surface jet.
From McGuirk and Papadimitriou (1988). Symbols: experimental data, Chu and
Baddour (1984). Computations: – – – Basic Model, free-flow version; – Basic
Model, including wall reflection at the free surface, i.e. Eqs. (4.12) and (4.14).

stratification presented in §4.5.3. The free surface in this case was treated in two
ways: as a symmetry plane precisely as in computing a free jet; and, again, as a free
jet except that, in the stress-transport equations, the wall-proximity correction was
applied to the free surface and this exerted a redistributive effect on the stresses
precisely as for a rigid wall. Figure 4.9 compares the resultant computed verti-
cal salinity profiles for these two versions at three stations with the experimental
data. Very clearly, retention of the wall-redistributive effect has had a major and
beneficial effect in bringing the computed behaviour into very close accord with
the experimental data. Indeed, McGuirk and Papadimitriou indicate that the wall
corrections in both the stress and heat-flux equations are important.

Further applications of a reduced form of the Basic Model are presented in Chap-
ter 7, in which algebraic approximations of the stress-transport terms are explored.
In many cases very satisfactory results are achieved even with such a simplified
version. To conclude the presentation on the complete Basic Model, however, atten-
tion is turned to a class of flows where an element of the model presented so far
is evidently not successful. Indeed, a weakness of the form of the wall-proximity
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correction used in the above examples becomes apparent if, instead of the flow
being parallel to the wall or free surface, it is directed towards the bounding surface,
as in an impinging jet. In that case, because normal straining provides a dominant
mechanism in stress production, it may readily be verified that, far from dampening
the velocity fluctuations perpendicular to the wall, the above form of wall cor-
rection leads, quite erroneously, to an augmentation of wall-normal fluctuations!
An alternative formulation was thus proposed by Craft and Launder (1992). This
retained the form of wall correction for the ‘slow’ part, Φwi j1

, given above but, in
place of Eq. (4.14), the following approximation was adopted for Φwi j2

:

Φwi j2
=

⎡⎢⎢⎣−0.08
∂Ul

∂xm
ulum (δi j − 3ni n j )+ 0.4k

∂Ul

∂xm
nlnm

(
ni n j − 1

3
δi j

)
−0.1k alm

(
∂Uk

∂xm
nlnkδi j − 3

2

∂Ui

∂xm
nln j − 3

2

∂U j

∂xm
nlni

)
⎤⎥⎥⎦( l

2.5xn

)
(4.30)

where alm denotes the dimensionless stress anisotropy, Eq. (3.2). This equation is
purely empirical, being tuned simply to give approximately the correct response
both in an equilibrium near-wall shear flow, Fig. 4.4, and for the normal strain-
ing encountered in stagnation flow conditions. Figure 4.10 shows its application
in conjunction with the Basic Model to compute an axisymmetric impinging jet
discharged two diameters above the plate. This flow has long posed a challenge for
turbulence modelling because of normal-strain turbulence generation very close to
the symmetry axis, strong streamline curvature due to deflection of the flow, and
the singularity associated with zero shear stress at the stagnation point (features
uncommon to most wall-attached flows). The figure of the rms velocity fluctuations
normal to the wall at the stagnation point confirms that, for this impinging flow,
Eq. (4.30) (solid line) achieves much better agreement with experiments than the
earlier (and more widely used) proposal of Gibson and Launder (1978), Eq. (4.14),
shown by the broken line.

It would, however, seriously misrepresent the situation to leave the impression
that modelling of near-wall influences with this Basic Model was in a satisfactory
state. Equation (4.30) and similar approaches may be adequate if one is dealing
with a single plane or mildly curved surface. In most engineering applications,
however, one needs to predict flows within an enclosure or around bodies with sev-
eral distinct faces. In these cases the approach indicated by Eq. (4.30) is, at best,
a scheme that requires ad hoc, case-specific interpretation, while in others it is
simply unworkable. In flow through a square duct, for example, there are four vec-
tor directions normal to a wall and, correspondingly, four wall-normal distances.
Analogous (and, indeed, more vexing) problems arise in handling flow through
tube banks, within internal combustion engines or in turbomachinery flows. It is
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Fig. 4.10 Component rms velocity fluctuation normal to a wall on the axis of an
axisymmetric impinging jet. From Craft and Launder (1992). Symbols: experi-
ment (Cooper et al., 1993). Lines: computations with alternative wall-reflection
terms, Eq. (4.30) (full line) and Eq. (4.14) (dotted line).

this geometrical complexity that has spurred efforts to eliminate from the clo-
sure the very parameters on which traditional ‘wall-proximity’ corrections depend,
namely wall distance and unit vectors. The inadequacies of predictions with the
Basic Model will be seen in some of the examples considered in §4.4.5. What has
come in its place? First, as will be discussed in detail in sections that follow, the use
of non-linear models for Φi j1 and Φi j2 has meant that there is a much reduced need
for wall-proximity corrections. Second, there is the recognition that, within the
immediate vicinity of the wall, where viscous effects are large, turbulence is vary-
ing so rapidly in the direction normal to the wall that some explicit correction for
inhomogeneity should arguably be made to the pressure-strain process (Bradshaw
et al., 1987). This effect, which is mainly of significance in the viscosity-affected
near-wall region, will be considered further in Chapter 6.

4.4 Pressure-strain models from tensor expansion

4.4.1 Principles of tensorial expansion

In the absence of more exact yet practically feasible approaches to formulating
general models of the pressure-containing products, an alternative route has been
widely adopted based on representing the variable in question as some initially
unknown function of the plausible quantities (e.g. Pope, 2000). The function is then
expanded in a series containing all possible combinations of the available quantities
(termed integrity bases), each of which is allocated a numerical coefficient whose
value is determined by requiring that the approximation should satisfy at least some
of the mathematical and physical constraints listed in §4.1. The Cayley–Hamilton
theorem7 is then invoked to identify the highest order terms and to truncate the

7 For any second-order tensor bi j one can write its characteristic equation, b3
i j − I b2

i j + II b1
i j − III b0

i j =
0, where b0

i j ≡ δi j , b1
i j ≡ bi j , b2

i j ≡ bikbk j , b3
i j ≡ bikbknbnj , and I = bii , II = (bii b j j − b2

i i )/2, III =
(bii b j j bkk − 3bii b2

j j + 2b3
i i )/6 are the first, second and third invariants of bi j . Multiplying the
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tensor expression to a practically manageable form. This approach has been used
in modelling not only Φi j , but also other unknown terms in the second-moment
equations such as εi j and ui u j uk . Moreover, the same approach has been applied
to modelling ui u j itself in the context of non-linear eddy-viscosity/diffusivity or
algebraic stress/flux models (see Chapter 7). Applied to the pressure-strain term,
the tensor function can be written in terms of the available, traceless, symmetric
second-rank tensors as8

Φi j = Fi j (amn, Smn, Wmn, δmn, T ) or Φi j = Fi j (amn, Pmn, Dmn, δmn, T )
(4.31)

where amn is the stress anisotropy tensor, Si j and Wi j are the mean rate of strain
and rate of rotation, respectively, Pmn and Dmn are the stress-production tensor and
its complement (see §4.4.3, Eq. (4.47)) and T is the characteristic time scale.

Usually, an expansion is sought in a non-dimensional series (Pope, 2000)

Φi j/ε =
m∑

n=1

αnT
(n)
i j (4.32)

where αn are the coefficients to be determined, and T
(n)
i j are the integrity bases –

second-order deviatoric (i.e. traceless) tensors (because Φi j is redistributive) con-
sisting of various combinations of the available quantities as indicated in Eq. (4.31).
The expansion can be applied to the complete Φi j or, as usually practised, sep-
arately to each of its constituent parts. The latter approach is followed here. As
a word of caution, however, the strategy of expanding a tensor function, while
rigorously satisfying the chosen physical and mathematical constraints, may not
necessarily recover the essential physics driving the process. Thus, it must still be
regarded as an approximation.

4.4.2 Non-linear models of the ‘slow’ terms, Φi j1
and Φθ j1

The return to isotropy of anisotropic turbulence is by a non-linear process, as
may be seen from the underlying equation, (4.3). Thus, Rotta’s (linear) model can
serve only as a first approximation (though reasonably valid over a limited range

characteristic equation by bn
i j gives b3+n

i j − I b2+n
i j + II b1+n

i j − III bn
i j = 0. On the other hand, any

tensor φi j which is a function of bi j , i.e. φi j = f (bi j ), can be expanded in a series φi j = α1b0
i j +

α2b1
i j + α3b2

i j + α4b3
i j + . . . + αn+1bn

i j . The Cayley–Hamilton theorem stipulates that in n dimensions,

bn
i j is a linear combination of lower powers of n. This means that one can express any bn

i j in terms of

b0
i j , b1

i j and b2
i j and the functions of invariants of bi j , i.e. φi j = β1δi j +β2bi j +β3b2

i j , where β1, β2, β3

= f (I, II, III ). For example, for n = 1, b4
i j − I b3

i j + II b2
i j − III bi j = 0 (where b4

i j = bikbkmbmnbnj ), or

b4
i j − I (I b2

i j − II bi j + III b0
i j )+ II b2

i j − III bi j = 0, or b4
i j = β1δi j +β2bi j +β3b2

i j where β1 = I ×III,
β2 = III − I ×II and β3 = I ×I − II . For a traceless tensor, such as the stress anisotropy, I = bii = 0, and
the principal second and third invariants become II = −b2

i i /2 = − bikbki /2 and III = b3
i i /3 =bikbknbni /3.

8 To account for viscosity and make the expansion applicable within the near-wall viscosity-affected layer, the
characteristic turbulence Reynolds number should be added to the independent variable set, as discussed in
Chapter 6.

https://doi.org/10.1017/9781108875400.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.006


86 Approaches to closure

of anisotropies). More general approximations have adopted a non-linear expan-
sion of Φi j1 in terms of T

(n)
i j comprising combinations of the stress anisotropy

tensor, ai j . The Cayley–Hamilton theorem leads to the conclusion that all terms
higher than quadratic in ai j can be expressed in terms of the lower order terms,
so that only two independent tensor constituents can be defined, T

(1)
i j = ai j and

T
(2)
i j = aikak j − 1

3 aklalkδi j , so that the complete non-linear model (Lumley, 1978;
Speziale et al., 1991) is

Φi j1 = −c1εai j + c′
1ε(aikak j − 1

3 A2δi j ) (4.33)

where A2 is the second invariant of the stress anisotropy tensor and the coeffi-
cients may be functions of the second and/or third invariant, A2, A3 (defined in
§3.7.2, Eqs. (3.26) and (3.27)). Despite being complete in the tensor-expansion
sense and reproducing better the return to isotropy in homogeneous flow than the
linear model, Eq. (4.33) fails in inhomogeneous near-wall flows if the coefficients
are kept constant. The matter will be discussed further in Chapter 6 when consid-
ering the modifications of the model to account for viscosity and wall-proximity
effects.

Versions in which the coefficient of the linear part is also made a function of
one or other (or usually both) of the invariants have been proposed (Lumley, 1978;
Reynolds, 1984; Fu et al., 1987b), which are conveniently expressed as:

Φi j1 = −c1ε(1+c′′
1 A2)ai j + c′

1ε
(
aikak j − 1

3 A2δi j
)
. (4.34)

The second term in Eq. (4.34) produces an interesting asymmetry of response.
Suppose all the ai j are zero except a11 = δ and a22 = − δ (so A2 = 2δ2). If c′

1

is positive, Φ111 takes a larger negative value than the (positive) value of Φ221 .

Consequently u2
1 will tend to revert more rapidly to isotropy from above than will

u2
2 from below, which in turn means that a33 will depart from its initial zero value.
The coefficients c1 and c′

1 may be chosen so that the resultant expression forΦi j1

exactly satisfies the two-component limit.9 If, as before, we take u2
1 = k(1 + δ),

u2
3 = k(1 − δ), the requirement that a22 should vanish irrespective of the size of δ

leads to c′
1= 3/2 and c′′

1 = −3/4. A problem that the use of these values introduces
is that for moderate levels of anisotropy (A2 in the range 0.2–0.5, say) experiments
and computer simulations on the return to isotropy of highly anisotropic stress
fields indicate a faster proportionate rate of return than when the stress field is only
weakly anisotropic. The negative value of c′′

1 on its own produces the reverse of the
desired effect. One can, in principle, offset the consequences of a negative c′′

1 by
causing c1 to increase rapidly with A2. No firm proposals of this type have so far

9 Clearly, Rotta’s original form does not satisfy this limit since if one component of Reynolds normal stress
vanishes, its value of ai j is -2/3, so Φi j1 for this component equals +(2/3) c1ε rather than zero.
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been advanced, however. A simpler way of making Φi j1 vanish in two-component
turbulence is to arrange that c1 should contain the factor An , where A is the flatness
parameter, introduced in §3.7.2, Eq. (3.28). Lumley and co-workers prefer this
route and take the coefficients c′

1 and c′′
1 as zero. Craft and Launder (2002b), while

adopting this approach, retain a non-zero value of c′
1:

c1 = 3.1A1/2 A2, c′
1 = 1.2, c′′

1 = 0.

Shifting attention to the corresponding term in the scalar flux equation, Φθ j1 , it
was soon recognized, when computations of heat transport under various boundary
conditions began to be made, that more elaborate forms than Monin’s original sug-
gestion were needed (Lumley, 1978; Launder and Samaraweera, 1979) beginning
with:

Φθ j1 = −c1θ
ε

k
(θu j + c′

1θai jθui ). (4.35)

Moreover, as noted, several workers (e.g. Launder, 1976; Jones and Musonge,
1988) have suggested the partial or complete replacement of the dynamic time scale
k/ε by the scalar time scale θ2/εθθ (though Pope, 1983 argues against such a choice
as it is incompatible with the linearity of the exact scalar-transport equation). A fur-
ther significant and controversial addition to the modelling was proposed by Jones
and Musonge (1988), namely that the fluctuating pressure field also acted to mod-
ify the generation of scalar flux arising from the mean temperature gradient. This
suggestion has been adopted by several other workers, including Dakos and Gibson
(1985); Gibson et al. (1987) and Craft (1991). The last of these proposed the fol-
lowing version with coefficients calibrated against a broad range of homogeneous
flows:

Φθ j1 = −c1θr
1/2 ε

k

[
θu j (1+c′′′

1θ )+c′
1θa jkθuk + c′′

1θa jkakiθui

] − c∗
1θrkai j

∂


∂xi

(4.36)

where

c1θ =−1.7
[
1 + 1.2(A2 A)1/2

]
, c′

1θ = −0.8, c′′
1θ = 1.1, c′′′

1θ = 0.6, c∗
1θ = −0.2A1/2

and r denotes the time-scale ratio, (εθθ/θ2)(k/ε). Examples of computations with
this form are shown in §4.4.5.

In an attempt to shed further light on modelling this ‘slow’ term, Dol et al. (1999)
examined the DNS data of Versteegh and Nieuwstadt (1998) and Boudjemadi
et al. (1997) for natural convection in a side-heated, infinite vertical plane channel
(where the heat flux entering at the hot wall balances that leaving at the opposite
cold wall). At the inevitably low Rayleigh numbers of the DNS (≤ 5×106), where
molecular effects permeate much of the flow, it was felt to be preferable to develop
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a model10 in terms of the complete temperature–pressure gradient correlation (i.e.
Πθ j rather than Φθ j ) for which a cubic form was adopted:

Πθ j1 = −ε
k
(c1θ θu j + c′

1θa jkθuk + c′′
1θa jkakiθui ). (4.37)

Initially, only the two first terms were retained as that enabled Eq. (4.37) to be
used to determine the values of c1θ and c′

1θ across the flow using the DNS data to
provide the values of the heat fluxes (both parallel and normal to the wall, i.e. j =
1 and 2) and the corresponding values of Πθ j1 . The solution showed that c1θ was
positive and c′

1θ negative, and that their ratio remained reasonably constant with
a quotient c′

1θ/c1θ ≈ −1.4, broadly in accord with the values generally adopted
for these two coefficients (in Φθ j ) in the literature. In order to evaluate c′′

1θ , an
additional equation would be needed by considering, for example, the third flux
component in a three-dimensional flow. Instead, in line with the above result, the
ratio c′

1θ/c1θ was assigned a constant value, thus enabling c′′
1θ to be obtained. Away

from the wall-dominated region, the model coefficients determined in this way
from the DNS database were reasonably constant, c1θ ≈ 5, c′

1θ ≈ −7 and c′′
1θ ≈

13, while the near-wall behaviour was matched by multiplying all coefficients by
an exponential function of the stress invariant A (see Dol et al., 1999). Overall,
however, a better, more stable fitting to the data was achieved with c1θ0 = 4.9,
c′

1θ0 = −2c1θ0, c′′
1θ0 = 12.9, where the inclusion of the zero subscript denotes

values in the core of the channel. This choice, Fig. 4.11, reproduced the variation
ofΠθ j1 for both flux components apart from an unimportant deviation in the central
channel region.

Fig. 4.11 The ‘slow’ part of the pressure-gradient–temperature correlation in
fully-developed natural convection in a vertical channel computed from Eq. (4.37)
with values for coefficients given in the text (lines) using the DNS data of Ver-
steegh and Nieuwstadt (1998) for θu j and ai j (Model 2, from Dol et al., 1999).
Symbols: DNS, ◦: j = 1, �: j = 2.

10 Note that Πθ j goes to zero at a wall, whereas Φθ j is finite and must balance turbulent pressure diffusion.
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4.4 Pressure-strain models from tensor expansion 89

4.4.3 The general linear model of Φi j2
and Φθ j2

: the quasi-Isotropic (QI) model

We return now to Eqs. (4.3) and (4.5) and consider more formal routes to approxi-
mating the rapid terms Φi j2

and Φθ j2
. First, it is assumed that the mean velocity

gradient can be considered uniform over the region where the two-point cor-
relations in that equation are significantly different from zero (an assumption
sometimes referred to as local homogeneity).11 The mean velocity gradient can
then be taken out of the integral and the term Φi j2 written as:

Φi j2
= ∂Ul

∂xm
(bmi

l j + bmj
li ) (4.38)

where12

bmi
l j + bmj

li = − 1

4π

∫
V

(
∂um

∂xl

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV

r

= + 1

4π

∫
V

(
∂2u′

mui

∂rl∂r j
+ ∂

2u′
mu j

∂rl∂ri

)
dV

r
.

(4.39)

For isotropic turbulence the two-point correlation functions appearing in
Eq. (4.39) are functions only of the radius of separation of the two points and,
thus, the integrals can be obtained analytically, as was shown first by Naot et al.
(1973). This leads to what they termed the ‘quasi-isotropic’ model. In shear flows
or for turbulence subjected to force fields, the two-point correlations will not be
spherically symmetric, however, so the quasi-isotropic assumption is an approxi-
mation that may be far from the truth, especially in extreme states such as near a
wall. For these more general situations, no purely analytical route has yet been pro-
posed. However, by adopting the tensorial expansion approach one can first obtain

11 This means that in modelling the exact expression for Φi j2 in Eq. (4.3), it is assumed that ∂U ′
l /∂x ′

m (i.e. the
mean velocity gradient evaluated at a distance r from the point where Φi j is to be determined) can be replaced
by the corresponding velocity gradient at the point itself. Launder and Tselepidakis (1994) and later workers
have proposed refining this approximation by including the second derivative of velocity. As this effect is only
of importance in the viscous near-wall region, it is considered further in Chapter 6.

12 If a two-point velocity correlation, Rim (r) ≡ ui (x)um (x+r) ≡ ui u′
m (where r = x’- x is the separation vector,

and r = |r|), is differentiated first with respect to x j and then with respect to xl (with ui being independent of
x ′

l and u′
m independent of x j ), then

∂

∂x j
(ui u′

m ) = ∂ui

∂x j
u′

m ≡ ∂Rmi

∂x j
= − ∂Rmi

∂r j

and

∂

∂x ′
l

(
∂ui

∂x j
u′

m

)
= − ∂

∂x ′
l

(
∂Rmi

∂r j

)
= − ∂

2 Rmi

∂rl∂r j
=
(
∂um

∂xl

)′
∂ui

∂x j
.
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the quasi-isotropic result of Naot et al. (1973) and then, by introducing further con-
straints, satisfy higher order terms in the expansion, which become significant for
states far removed from isotropic turbulence, as will be shown below.

We focus on modelling bmi
l j , a fourth-rank tensor comprising Reynolds-stress

elements, which we shall insist, as a minimum, should satisfy the following
constraints:

● symmetry in indices m and i , as well as in l and j , so that

bmi
l j = bim

l j = bim
jl (4.40)

● continuity (as follows from (4.3))

bmi
li = 0 (4.41)

● normalization (direct integration of the Poisson equation for the contraction
formed by setting j = l and applying Green’s theorem)

bmi
j j = 2umui . (4.42)

Note that the postulated model, like p(2), Eq. (4.2), depends linearly on the mean
velocity gradient. The form of bmi

1 j is unknown at the outset so one begins by writing
the most general form

bmi
l j = Fi j

(
ui u j , ui ul, ui um, . . . , δi j , δim, . . .

) =
∑
αnT

(n)
i j (4.43)

where now T
(n)
i j is a second-rank tensor consisting of any combination of Reynolds

stress components and Kronecker unit tensors.
With attention restricted to terms linear in the Reynolds stress, a general

expansion will contain nine terms each with its unknown coefficient. However,
by insisting that the expansion should respect the desired symmetry properties,
Eq. (4.40), only five independent coefficients remain so that the expansion can be
written as

bmi
l j = αumuiδl j+β(ui u jδml + ui ulδmj + umu jδil + umulδi j )

+ γ ulu jδmi + [
ηδmlδιj + ζ (δmlδi j + δmjδil

)]
k. (4.44)

The continuity and normalization constraints (4.41) and (4.42) each furnishes two
relations that the coefficients α, β, etc. must satisfy; for example, the latter requires
that

(3α + 4β) = 2 and (2α + 3η + 2ζ ) = 0. (4.45)

So, four of the five unknown coefficients can be determined in terms of the fifth.
Then, with the form of bmi

l j determined (save for the single unknown) the expression
for Φi j2

can be computed from Eq. (4.38). After some algebra the result can be
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expressed in terms of the stress production tensor, Pi j , and its complement, Di j ,
and mean rate of strain, Si j :

Φi j2
= −c2

(
Pi j − 1

3Pkkδi j
) − c3

(
Di j − 1

3 Dkkδi j
) − c4kSi j (4.46)

where

Di j ≡ −
(

ui uk
∂Uk

∂x j
+ u j uk

∂Uk

∂xi

)
, Si j ≡ 1

2

[
∂Ui

∂x j
+ ∂U j

∂xi

]
(4.47)

and the coefficients c2, c3 and c4 are all related to a single parameter γ . This result
is identical to the quasi-isotropic model obtained earlier from direct analysis by
Naot et al. (1973). By adopting γ = 2/5 (based on the arguments discussed below)
the coefficients take the following values:

c2 = γ+8

11
= 0.764, c3 = 8γ − 2

11
= 0.109, c4 = 60γ − 4

55
= 0.364.

(4.48)
Equation (4.46) has been invented and rediscovered many times in the past 50
years. An analysis by the authors was perhaps the earliest derivation (Hanjalić
and Launder, 1972b). However, we found that that version did not reproduce
satisfactorily the measurements in the nearly homogeneous shear flow of Cham-
pagne et al. (1970) (due, it was subsequently discovered, to an inappropriately
large value adopted for the Rotta constant, c1 = 2.8). Consequently, as noted
in §4.4.4, certain non-linear terms like ulum ui u j/k were added to bmi

l j . Some
years later, with a smaller value of the Rotta constant (c1 = 1.5) the linear
model, Eqs. (4.44) to (4.46), did mimic the near-equilibrium shear-flow data sat-
isfactorily (Launder et al., 1975).13 A few years later, however, the model was
found to be quite unsatisfactory in predicting swirling jets (Launder and Morse,
1979), while, to predict boundary layer flows, the wall-proximity correction needed
to be nearly as strong as it was with the Basic Model considered in §4.3.4
(Launder et al., 1975).

The same approximation strategy can be applied to modelling the pressure-
scalar-gradient correlation Φθ j2 , except that one then deals with a vector, i.e.

Φθ j2 = 2bl
k j

∂Uk

∂xl
(4.49)

13 Lumley (1975a; 1978) and Reynolds (1984) followed similar tensor-expansion routes, but different strategies
were adopted in fixing the final constant, γ . Naot et al. (1973) and Launder et al. (1975) chose γ to optimize
the relative stress levels in an equilibrium simple shear (γ = 2/5); Reynolds (1984) took γ = 10

7 in order
that the resultant expression should be formally independent of the mean vorticity, while Lumley (1978) took
γ = − 2

3 . These widely different values for γ have little effect on the first of the three groups in Eq. (4.46)
(which is the major term in components where Pi j is large) but give large variations in the coefficients of the
other two. This has major effects on stress components which play only a passive role in simple shear (but
which can exert substantial importance in other types of flow).
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where

bl
ki = − 1

4π

∫
V

∂u′
l

∂xk

∂θ

∂xi

dV

r
= − 1

4π

∫
V

∂2θu′
l

∂rk∂ri

dV

r
.

The term to be approximated is now a third-rank tensor, which is linear in the
scalar. Just like bmi

l j , it should satisfy the continuity and normalization constraints,

bk
ki = 0, bl

kk = θul , respectively. Thus, on observing symmetry in i and k, bl
ki can

be expressed as a linear combination of scalar flux components:

bl
ki = αθ1θulδik + αθ2 (θukδli + θuiδlk), (4.50)

i.e. the equivalent of Eq. (4.44) for Φi j , which in this case leads to a model with no
free coefficient (Launder, 1973, 1975b; Lumley, 1975a):

Φθ i2 = +0.8 θuk
∂Ui

∂xk
− 0.2 θuk

∂Uk

∂xi
. (4.51)

In a simple shear flow where the temperature gradient is in the same direction
as the velocity gradient, the above form does not predict the correct ratio of heat
fluxes down the mean temperature gradient and in the stream direction. The fact
that it has nevertheless been successfully used in computing thermal boundary-
layer flows simply underlines that turbulent heat fluxes in the streamwise direction
are usually not important (being far outweighed by mean convection). The prob-
lems with Eq. (4.51) can be largely overcome by extending the ‘quasi-isotropic’
analysis to include non-linear products of Reynolds stresses as discussed in
§4.4.5.

4.4.4 ‘Quasi-linear’ models of Φi j2

Both Reynolds and Lumley recognized that the values of γ selected for use in
their versions of the QI model of Φi j2

led to unacceptable normal-stress ratios.
To compensate, they introduced non-linear terms to bmi

l j as originally proposed by
Hanjalić and Launder (1972b). This latter model (denoted hereafter as HL) can be
written as:

bmi
l j = (bmi

l j )lin + ϑ [(umu j ui ul + umul ui u j )− (umui ulu j )
]
/k (4.52)

where (bmi
l j )lin is simply the linear version given by Eq. (4.44).

By inserting Eq. (4.52) into (4.38) and with some rearrangement of the non-
linear term, the model of Φi j2

can be expressed in the same form as (4.46), but
containing an additional, non-linear term,

Φi j2
= −c2

(
Pi j − 1

3
Pkkδi j

)
− c3

(
Di j − 1

3
Dkkδi j

)
− c4kSi j − c5ai jPkk . (4.53)

This simple model (termed ‘quasi-linear’ because it contains only one term of the
complete quadratic expansion) has the additional coefficient, c5 not present in the
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linear model, Eq. (4.46).14 By imposing the requisite tensor-symmetry conditions
together with the continuity and, partially, the normalization constraints, the coef-
ficients in (4.53) can be expressed in terms of ϑ only. A value of about 0.45 for ϑ
gives the best fit to the homogeneous shear flow data of Champagne et al. (1970),
resulting in the values indicated below:15

c2 = 8 − 2ϑ

11
= 0.645, c3 = 6ϑ − 2

11
= 0.0636,

c4 = 6ϑ − 2

55
= 0.0254, c5 = −ϑ = −0.45.

A very similar approach has been independently developed by Speziale et al.
(1991). Their SSG model, although derived by a different, more rigorous path,
can be presented in the same form as the HL model, Eq. (4.53), except that
the coefficients take different values – some being expressed as functions of the
stress-anisotropy invariants. Instead of expanding bmi

li in terms of Reynolds-stress
components as in (4.43) and (4.44), Speziale et al. (1991) favoured expanding
the complete Φi j2

as a function of the Reynolds-stress anisotropy, ai j , the mean
rate-of-strain tensor Si j , and mean rate-of-rotation tensor Wi j . The proposed tensor
expansion included up to quadratic combinations of ai j ; but, after applying sev-
eral constraints (strictly valid for homogeneous flows), all but one of the quadratic
terms were eliminated, leading to:

Φi j2
= c∗

2k(aik S jk + a jk Sik − 2
3 akl Sklδi j )+ c∗

3k(aik W jk + a jk Wik)

+ c∗
4kSi j − c∗

5ai jPkk (4.54)

c∗
2 = 0.625, c∗

3 = 0.2, c∗
4 = 0.8 − 0.65A1/2

2 , c∗
5 = 0.45.

The above model of Φi j2
was combined with the quadratic model of the slow term

Φi j1 = −c1ε
{
ai j + c′

1

(
aikak j − 1

3 A2δi j
)}

(4.55)

where c1 = 1.7 and c′
1 = 1.05/1.7 = 0.617.

If expressed in terms of production tensors,16 the complete SSG model for Φi j

becomes:
14 The last term in Eq. (4.53) can be also written as c5ai j ε(Pk/ε) in which form it can be regarded as a modi-

fication of Φi j1 to account for departures from local energy equilibrium, i.e. when Pk is much different from
ε.

15 Though, as noted by Hanjalić and Launder (1972b), Eq. (4.52) cannot satisfy exactly the normalization
constraint (4.42) if c5(c5 = −ϑ) is to be non-zero.

16 The transformation of (4.53) to (4.54) and vice versa can easily be obtained by recalling that

∂Ui

∂x j
≡ Si j + Wi j , Si j ≡ 1

2

(
∂Ui

∂x j
+ ∂U j

∂xi

)
,

Wi j = −W ji ≡ 1

2

(
∂Ui

∂x j
− ∂U j

∂xi

)
, ai j ≡

(
ui u j

k
− 2

3
δi j

)
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Φi j = −c1ε
{
ai j + c′

1

(
aikak j − 1

3 A2δi j
)}

− c2

(
Pi j − 1

3
Pkkδi j

)
− c3

(
Di j − 1

3
Dkkδi j

)
− c4kSi j − c5ai jPkk .

(4.56)

The coefficients in the ‘rapid’ part of Eq. (4.56) can be re-calculated using the
transformation relations

c∗
2 = c2 + c3, c∗

3 = c2 − c3, c∗
4 = 4

3(c2 + c3)− c4, c∗
5 = c5

c2 = 1
2(c

∗
2 + c∗

3), c3 = 1
2(c

∗
2 − c∗

3), c4 = 4
3 c∗

2 − c∗
4, c5 = c∗

5

to give

c2 = 0.4125, c3 = 0.2125, c4 = 0.033 + 0.65A1/2
2 , c5 = 0.45.

We note that there is a significant difference in the assigned coefficients in the
models considered so far. Some light can be thrown on the validity of the mod-
elling approach by making an a posteriori evaluation for selected simple flows
for which direct numerical simulations (DNS) are available. Indeed, each (exact)
term and its model can be checked separately if the corresponding data are avail-
able. Hadžić (1999) evaluated coefficients in the SSG and HL models for fully
developed channel flow (for Reτ = 180 and 390), expressed in the form given
by Eq. (4.56), using DNS data for all non-zero components of Φi j . It is noted
first that the complete SSG model contains six modelling coefficients. If DNS
or experimental data are available for all six components of the Φi j tensor in a
general flow, one can form a set of five independent equations (the sixth being
redundant due to the redistributive form of the tensor) and thus evaluate all coeffi-
cients. However, in plane channel flow, only four components of Φi j are non-zero
and thus only three independent equations are available. To overcome this prob-
lem, first the earlier assigned values of the coefficients in the model of Φi j1 (i.e.
c1 and c′

1) are adopted: the justification for doing so is that these coefficients have
been tuned in shear-free flows prior to tuning the rapid term. Furthermore, the
value already assigned to the coefficient c5 associated with the non-linear term is
retained. All coefficients that were evaluated showed significant variations across

and expanding

Pi j = −k

[
aik (S jk + W jk )+a jk (Sik + Wik )+ 4

3
Si j

]
Di j = −k

[
aik (S jk − W jk )+ a jk (Sik − Wik )+ 4

3
Si j

]
k(aik S jk + a jk Sik ) = − 1

2

(
Pi j + Di j

) − 4

3
kSi j

k(aik Wik + a jk Wik ) = − 1

2
(Pi j − Di j ), kalm Slm = −Pkk/2.
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the flow. Suspecting that for such low Reynolds numbers viscous effects had sub-
stantial influence, the exercise was repeated for Reτ = 2000 using more recent
DNS results of Hoyas and Jimenez (2006). Figure 4.12 still shows notable varia-
tions of all three coefficients, c2, c3 and c4, across the channel cross-section which
contrasts with the constant values assumed in the models. (For comparison, the
values of the coefficients in the SSG and HL models are also indicated by hor-
izontal lines at the sides of the diagram. While the SSG model of c4 provides a
non-constant value, its variation follows neither the trend nor the magnitude of the
DNS-based distribution.)

A word of caution is warranted for several reasons. First, the outcome of the
exercise depends on the adopted model of Φi j1 and the values of the coefficients
c1, c′

1 and c5. It is possible that a similar scrutiny of a quite different flow might
lead to different conclusions. Nevertheless, Fig. 4.12 illustrates qualitatively that,
irrespective of the model complexity, it should not be expected that constant values
of the coefficients would achieve close agreement of each modelled term with the
actual distribution in real flows. However, if the model is regarded as a ‘package’,
the overall agreement of the Reynolds stresses and the mean flow may still be in
reasonable agreement with actual values.

We close this section by summarizing in Table 4.2 the values adopted for the
coefficients in the models of Φi j considered so far (linear and quadratic for Φi j1

and linear and quasi-linear models for Φi j2
) when expressed in the terms of the

rate of strain and rate of rotation tensors, Eq. (4.54).
As seen in Table 4.2, when using the form (4.54) the values of the coefficients

for the models shown do not differ very much. However, the subtle differences
that do exist, especially when expressed as functions of turbulence invariants, can

Fig. 4.12 Coefficients c2, c3 and c4 in Eq. (4.56) evaluated from DNS of Hoyas
and Jimenez (2006) for a plane channel flow for Reτ = 2000. The values sug-
gested by Speziale et al. (1991) and Hanjalić and Launder (1972b) are indicated
for comparison.
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Table 4.2 Comparison of coefficients in the general expressions for some popular
models

Φi j1 Φi j2

Linear Quadratic Linear Quasi-linear

c1 c′
1 c∗

2 c∗
3 c∗

4 c∗
5

HL 2.8 0 0.71 0.582 0.8 −0.45
GL IP 1.8 0 0.6 0.6 0.8 0
LRR QI 1.5 0 0.873 0.655 0.8 0
SSG 1.7 −1.05 0.625 0.2 0.8 − 0.65A1/2

2 0.45

GL: Gibson and Launder (1978); HL: Hanjalić and Launder (1972b); LRR:
Launder, Reece and Rodi (1975); SSG, Speziale, Sarkar and Gatski (1991).

Fig. 4.13 Reynolds stresses in a plane channel. Symbols: DNS (Kim et al., 1987)
at Reτ = 395 (open symbols), and 595 (filled symbols). Lines: computations for
Reτ ≈ 2000. Left, SSG model; right, Basic Model with wall correction, Eqs.
(4.7), (4.9), (4.12) and (4.14). From Hadžić (1999).

bring about visible improvements. This is illustrated by the SSG model which – in
contrast to the other linear and quasi-linear models discussed above – reproduces
reasonably well the near-wall stress anisotropy in wall-attached flows without any
wall-correction term, Fig. 4.13, left. The agreement with the DNS data is, however,
somewhat inferior to that achieved with the Basic Model with the wall corrections
(4.12) and (4.14) or (4.30) shown on the right. Nevertheless, it has been consid-
ered by many as satisfactory for industrial applications (though not as good as
the non-linear TCL model – which likewise employs no wall-reflection term –
discussed in §4.4.5).
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4.4.5 Non-linear models of the rapid terms Φi j2
and Φθ j2: the TCL approach

In contrast to the linear and quasi-linear models of Φi j2
considered in §4.4.3 and

§4.4.4, the complete form of the general expression (4.32) closed by the Cayley–
Hamilton theorem contains terms up to fourth order in ai j (Johansson and Hällback,
1994; Ristorcelli et al., 1995). However, cubic models have also been developed
that meet most of the constraints (e.g. Fu and Wang, 1997). In the following section
we consider the joint approach of Fu et al. (1987b) and Craft and Launder (1996),
which, in addition to the general constraints of symmetry, continuity and normal-
ization (introduced in §4.4.3 and §4.4.4), satisfies the two-component limit, and is
thus commonly referred to as the TCL model.

The TCL Methodology Applied to Modelling Φi j

Following the general statement of principles in his 1978 paper, in the mid-1980s
Lumley and co-workers set out the essential strategy for constructing a model of
mean-strain effects on the pressure-containing correlations that fully satisfied the
two-component limit (Shih and Lumley, 1985; Shih and Lumley et al., 1985). As
with the earlier quasi-isotropic model, the starting point is a representation of the
process for homogeneous flows, Eq. (4.38):

Φi j2
=
(

bli
k j + bl j

ki

) ∂Uk

∂xl

where bli
k j is defined by Eq. (4.39) above.

However, in addition to the constraints that this tensor must satisfy for the QI
model, i.e. Eqs. (4.40)–(4.42), the additional and vital condition to be applied is
that if one of the normal stresses should fall to zero, so too must Φi j2

in order to
avert the risk of negative normal stresses from appearing (which, in the real world,
would be physically impossible). The constraint is simply that:

Φαα2 = 0 if u2
α = 0. (4.57)

It is not possible to choose the free coefficient in the QI model so that the above
constraint is met. Accordingly, higher order terms were added (e.g. Shih and Lum-
ley 1985). Here the version of that strategy developed by Fu et al. (1987b) is
presented as it has been applied extensively and successfully to a wide range of
free and wall-bounded turbulent flows. The most general cubic expansion for bli

k j

was chosen, which can be written as:

bli
k j

k
= λ1δliδk j+λ2(δl jδki+δlkδi j )

+ λ3aliδk j+λ4akjδli+λ5(al jδki + alkδi j + ai jδlk + akiδl j )

+ λ6ali ak j+λ7(al j aki + alkai j )+ λ8almamiδk j+λ9akmamjδli
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+ λ10
(
almamjδki + almamkδi j + aimamjδlk + akmamiδl j

)
+ amnanm

(
λ11δliδk j+λ12[δl jδki+δlkδi j ]

)
+ λ13ali akmamj+λ14akj almami

+ λ15
(
al j akmami + alkaimamj + ai j almamk + aki amlamj

)
+ λ16amnanpapmδliδk j+λ17amnanpapm(δl jδki+δlkδi j )

+ amnanm
(
λ18aliδk j+λ19akjδli+λ20[al jδki + alkδi j + ai jδlk + akiδl j ]

)
.

(4.58)

The coefficients in the above equation are to be regarded as constants which, fol-
lowing the analysis of Fu (1988), can be determined as follows. First, applying the
continuity constraint (bli

ki = 0) and making use of the Cayley–Hamilton theorem
(see Footnote 7 on page 84) yields six equations:

λ1 + λ2 = 0, λ3 + λ4 + λ5 = 0, λ6 + λ7 + λ8 + λ9 + λ10 = 0,

λ10 + λ11 + λ12 = 0, λ13 + λ14 + 4λ15 + 2λ18 + 2λ19 + 10λ20 = 0,

λ16 + 4λ17 + 1
3(λ13 + λ14 + 2λ15) = 0.

Similarly, the normalization constraint provides a further six interrelations:

3λ1+2λ2 = 4/3, 3λ3+4λ5 = 2, 2λ7+3λ8+4λ10 = 0,

λ9+3λ11+2λ12 = 0, λ13+2λ15+3λ18 + 4λ20 = 0,

4λ15+9λ16+6λ17 = 0.

The two-component-limit constraint is handled most conveniently in principal axes
so that ui u j = 0 if i �= j . Let us take u2

2 as the vanishing normal stress. Then the

other two components can be written as u2
1 = (1 + δ)k and u2

3 = (1 − δ)k, where
δ can take any value in the range −1 ≤ δ ≤ +1. The two-component limit requires
that

bl2
k2

∂Uk

∂xl
= 0 if u2

2 = 0. (4.59)

Substitution of the above values for the normal stresses into this equation, with
bli

k j given by Eq. (4.58), leads to the following four relations among the model
coefficients:
λ1 + λ2 − 2

3 (λ3 + λ4) − 7
3λ5 + 4

9λ6 + 10
9 λ7 + 4

9 (λ8 + λ9) + 11
9 λ10 + 2

3 (λ11 + λ12)

− 8
27 (λ13 + λ14) − 34

27λ15 − 2
9 (λ16 + λ17) − 4

9 (λ18 + λ19) − 14
9 λ20 = 0

3λ5 − 2λ7 + 2λ10 + 2λ20 = 0, 2λ20 = 0

3λ10 − 6(λ11 + λ12) − 2λ15 − 6(λ16 + λ17) + 4(λ18 + λ19) + 6λ20 = 0.

The sixteen constraints above can be used to express the λ in terms of four
unknowns (see Craft and Launder, 2002b) though it turns out that two of those
unknowns have no effect on the resultant form of Φi j2

. In consequence, the
equation for mean-strain effects on Φi j can be written as:
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Φi j2
= −0.6

(
Pi j − 1

3δi jPkk
) + 0.3ai jPkk

− 0.2

[
uku j ului

k

(
∂Uk

∂xl
+ ∂Ul

∂xk

)
− uluk

k

[
ui uk

∂U j

∂xl
+ u j uk

∂Ui

∂xl

]]
− c2

[
A2(Pi j − Di j )+ 3ami anj (Pmn − Dmn)

]
+ c′

2

{(
7

15
− A2

4

) (
Pi j − 1

3δi jPkk

) + 0.1
[
ai j − 1

2

(
aikak j − 1

3δi j A2
)]

− 0.05ai j alkPkl + 0.1

[(
ui um

k
Pmj + u j um

k
Pmi

)
− 2

3δi j
ulum

k
Pml

]
+ 0.1

[
ului uku j

k2
− 1

3δi j
ulum ukum

k2

] [
6Dlk+13k

(
∂Ul

∂xk
+ ∂Uk

∂xl

)]
+ 0.2

ului uku j

k2
(Dik − Pik)

}
. (4.60)

There are several striking things to note in this equation. First, the leading term is
simply the IP element of the Basic Model with the same coefficient as is often used
empirically in computations with that model and which (naturally) agrees with the
exact result for isotropic turbulence (Crow, 1968). The second term also appears
in the quasi-linear model, Eq. (4.53). As noted in §4.4.4, this term can be written
as +0.6 εai j (Pkk/ε) and recognized as a correction to Φi j1 , essentially reducing
the return-to-isotropy coefficient as the turbulence energy generation rate becomes
larger relative to the dissipation rate. The two empirical coefficients, c2 and c′

2,
multiply terms of very unequal length. In the first applications of the model to
homogeneous and free flows the quantity c′

2 was set to zero (with c2 = 0.6), a choice
that considerably simplified the task of implementing the model into a large-scale
computer code (Fu et al., 1987a). However, Fu (1988) concluded that slightly better
results were obtained for the range of free flows he was considering by choosing c′

2

equal to 0.6 with c2 = 0.55. The issue of which was the better choice only became
resoundingly clear some years later when it was found that, by choosing the com-
bination with both c2 and c′

2 non-zero, that choice also enabled the fully turbulent
region in flow near walls (or adjacent to free surfaces) to be computed without any
modification to the coefficients outside the viscosity-affected sublayer (Li, 1992;
Launder and Li, 1994; Kidger, 1999; Craft et al., 2004b). This discovery greatly
improved fidelity in computing complex three-dimensional near-wall flows. More-
over, the absence of empirical wall-correction terms is some compensation for the
elaborate algebraic form of the model. Indeed, the major wall correction that had
to be added to the IP model in §4.3.4 in order that it should model reasonably
closely the stress field near walls is, to a large extent, an indication that the IP
scheme does not cope well with high levels of stress anisotropy rather than of wall
proximity. While it may be noted from Eq. (4.3) that a wall effect should never-
theless be expected, provided one does not enter the viscosity-affected sublayer,
the direct influence of wall proximity with this more complete TCL model, at least
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Table 4.3 Coefficients in the expression (4.61) for the TCL model (Craft and
Launder, 1996)

Φi j1 Φi j2

Linear Quadratic Linear Quasi-linear Quadratic Cubic

c1 c′
1 c∗

2 c∗
3 c∗

4 c∗
5 c∗

6 c∗
7 c∗

8

A1/2 + 3.1
(A2 A)1/2 1.1 0.6 0.866 0.8 0.3 0.2 0.2 1.2

in flows directed reasonably parallel to a wall, seems to be small enough to be
neglected. Indeed, the model is more successful in mimicking the near-wall nor-
mal stress variation than the SSG model, though at the expense of greater algebraic
complexity.

The TCL model may alternatively be formulated in terms of the rate of strain and
rate of rotation tensors, Si j and Wi j (for details of this transformation, see footnote
16). In that case the TCL model Eq. (4.60) can be rearranged as:

Φi j2
= c∗

2k
(
aik S jk + a jk Sik − 2

3 akl Sklδi j
) + c∗

3k(aik W jk + a jk Wik)

+ c∗
4kSi j − c∗

5ai jPkk + c∗
6k
(
aikakl S jl + a jkakl Sil − 2akj ali Skl − 3ai j akl Skl

)
+ c∗

7k(aikakl W jl + a jkakl Wil)

+ c∗
8k
[
a2

mn(aik W jk + a jk Wik)+ 3ami anj (amk Wnk + ank Wmk)/2
]

(4.61)

with coefficients c∗
2 to c∗

8 summarized in Table 4.3
Sample computed results are compared below with experiments in Fig. 4.14–

Fig. 4.17 and Tables 4.4 and 4.5. The results shown were all obtained with the
same mathematical form of model in which the coefficients had been tuned by
reference to simple homogeneous flows. The model for the ‘slow’ pressure strain
term used in these computations was:

Φi j1 = −c1
[
ai j + c′

1(aika jk − 1
3 A2δi j )

] − A1/2εai j (4.62)

with the values for c1 and c′
1 indicated in Table 4.3; as a reminder, A ≡ 1 −

9
8 [A2 − A3].

A further element that affects the results is the path adopted for finding ε. The
results presented below have all been obtained by solving the transport equation
for that quantity presented in Chapter 5, the source-term models being given in
Eq. (5.1) and in the text that follows, while diffusion is handled by the GGDH,
Eq. (5.11).

A comparison from the thesis of Fu (1988) of the performance of the TCL and
Basic Models in mimicking homogeneous flows is provided in Figs. 4.14 and 4.15.
Figure 4.14a shows the configuration for the plane-strain experiment of Tucker
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Fig. 4.14 Development of normal stresses in plane-strain distortion: (a) flow con-
figuration; (b) development of Reynolds stresses. Symbols, experiments (Tucker
and Reynolds, 1968); – – – Basic Model; —— TCL model. From Fu (1988).

and Reynolds (1968): grid-generated turbulence is passed through a duct whose
dimensions in the cross-sectional plane undergo change in such a way that the
cross-sectional area does not alter. This is then followed by a section of uniform
cross-sectional dimensions. In the computations the flow was idealized by ignoring
boundary-layer growth on the duct walls so the streamwise velocity was con-
stant while in the cross-sectional plane the strain rates (dU2/dx2 = −dU3/dx3)

were obtained from the changing cross-sectional shape. In that way a very rapid
one-dimensional computation could be made though, particularly at the abrupt
changeover to the uniform cross-section, the actual straining on the centre-line
would not have altered quite as rapidly as idealized. In fact, for this flow the absence
of shear strains and shear stresses means that only the first two terms on the right
side of Eq. (4.60) are non-zero and the first, as noted, is just the IP model used
in the Basic Model. Thus, the difference between the two sets of computations is
mainly due to the modelling of the slow term in Φi j . In view of the idealizations of
the flow, both forms perform reasonably well though clearly the TCL results are in
closer accord with the experiments.

The homogeneous shear flow shown in Fig. 4.15 also gives a good guide to how
a model will behave in two-dimensional inhomogeneous flows in simple shear.
Two cases are shown, one where the strain rate is such that the flow is close to
local equilibrium (Pk ≈ ε) while, in Fig. 4.15b, the turbulence energy production
is some 50% greater than the dissipation rate. For the local-equilibrium case both
models capture quite successfully the development of the shear stress downstream.
However, the Basic Model fails to reproduce the differences between the normal
stresses acting perpendicular to the flow direction. Of course, in two-dimensional
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Fig. 4.15 Reynolds stress developments in homogeneous shear flows (U1 varies
linearly with x2) (note x ≡ x1: (a) Pk/ε ≈ 1.0; (b) Pk/ε = 1.55. Symbols, exper-
iments: (a) Champagne et al. (1970), (b) Harris et al. (1977). Lines, computations,
as Fig. 4.14. From Fu (1988).

thin shear flows that weakness is not of importance. At the higher strain rate,
shown in Fig. 4.15b, the errors in modelling those normal stresses are more pro-
nounced but in practical terms the most serious weakness with the Basic Model is
that the magnitude of the shear stress continues to increase with distance down-
stream, whereas experiments indicate that under more intense straining the shear
stress diminishes. The TCL model is clearly superior both in this respect and in
mimicking the measured normal-stress variation.

Turning to inhomogeneous free flows, Table 4.4 summarizes the asymptotic rates
of spread of the axisymmetric and plane two-dimensional jets. Here it should be
noted that the numbers appearing in the table differ from those reported in many
of the originally published papers. First, the experimental value of spreading rate
for the round jet (for many years regarded as 0.086, following the review by Rodi
(1975)) was chosen as 0.095 (the mean of the values obtained from LDA/flying-
hot-wire data of Hussein et al. (1994) and flying-hot-wire data by Panchapakesan
and Lumley (1993)). Moreover, El Baz et al. (1993) showed from an exhaustive
numerical study that the conventional parabolic (boundary-layer) approximation
applied to free jets in stagnant surroundings led to excessive spreading rates for the
round jet by more than 10% and by around 4% for the plane case (due mainly to the
neglect of source terms arising from streamwise gradients, particularly of ε). The
values shown in the table are those obtained from a fully developed elliptic solution
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Table 4.4 Spreading rates of round and plane jets with Basic
and TCL models compared with experiment (from a review

by Launder, 1989)

dy1/2/dx

Flow Basic Model Experimental value TCL model

Plane jet 0.100 0.110 0.110
Round jet 0.105 0.095 0.101
Plane wake* 0.078 0.098 0.100

*Rate of spread for wake [U∞/�U ]dy1/2/dx .

assuming self-preserving profiles at entry and exit. Unlike the Basic Model, the
TCL scheme gives a lower rate of spread for the round jet than the plane. While
the spreading rate for the round jet is still too high by some 6%, this is a similar
percentage excess obtained with the TCL model for the axisymmetric plume con-
sidered in §4.5.3, Table 4.6. The plane asymptotic wake, whose dimensionless rate
of spread ([U∞/�U ]dy1/2/dx) is computed too low with the Basic Model, is also
predicted satisfactorily with the TCL scheme. The major contributor to this last
improvement is the more elaborate form of dissipation rate equation used with this
model though the TCL pressure-strain model also makes a significant contribution.
Further predictions of non-equilibrium wakes using the TCL model may be found
in Chapter 5.

Turning to near-wall flows, the case of fully developed channel flow is normally
adopted as the initial check point (or basis for calibration, if a wall correction is
applied) and for such flows, as noted above, the TCL model (with no wall correc-
tion) does reasonably well. The main challenge, however, is in predicting the much
more complex three-dimensional flows near walls that one continually encounters
in practical applications. A case in point is the three-dimensional wall jet where
an initially round jet is discharged parallel to and in contact with a plane surface,
Fig. 4.16a. In this case, due to the proximity of the surface, fluctuations normal
to the wall are damped and, arising from the resultant large stress anisotropy in
the cross-sectional plane, a streamwise vorticity source is created that induces a
secondary flow in that plane, Fig. 4.16b. In consequence, there is a rapid lateral
divergence of the jet and a slower growth normal to the wall than in the free jet
(Newman et al., 1972; Craft and Launder, 2002a).

Table 4.5 shows that the standard k–ε eddy viscosity model leads to a lower
spreading rate of the wall jet in the lateral than the normal directions while,
if one adopts the Basic Model (second-moment closure), a much too strongly

https://doi.org/10.1017/9781108875400.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.006


104 Approaches to closure

Table 4.5 Spreading rates of three-dimensional wall jet from Craft and Launder
(2002a); y1/2, z1/2 denote half-widths in wall-normal and lateral directions

Source dy1/2/dx dz1/2/dx dz1/2/dx/dy1/2/dx

Experiment (Abrahamsson et al., 1997) 0.065 0.32 4.94
Linear eddy viscosity 0.079 0.069 0.88
Basic model 0.053 0.814 15.3
TCL model 0.060 0.51 8.54
TCL model at 70 diameters 0.055 0.308 5.6

Fig. 4.16 Three-dimensional wall jet: (a) flow configuration, (b) induced second-
ary flow in a cross-sectional plane. From Craft and Launder (2002c).

anisotropic growth is produced. This latter behaviour arises directly from apply-
ing the same wall correction to this three-dimensional jet as had been calibrated
by reference to two-dimensional channel flow. The TCL scheme gives results
much closer to experiment though that too displays higher lateral spreading rates
than the data. The cause of this discrepancy lies in the fact that with the TCL
model this flow takes far longer to reach full development than the downstream
range covered in the experiment. If, instead of the fully developed results, those
obtained from a marching solution were compared then, at the same distance down-
stream as in the experiment, the lateral growth rate is close to that reported from
experiment.

A similar improvement results for the case of the three-dimensional free-surface
jet (Kidger, 1999; Craft et al,, 2000). In contrast to the case of the two-dimensional
surface jet, where the Basic Model, including ‘wall-reflection’ from the free
surface, showed good behaviour (Fig. 4.9), when this model is applied to the
three-dimensional case, just as for the three-dimensional wall jet, a too large lat-
eral rate of spread is recorded. As is shown in Craft and Launder (2002b, p. 114),
significantly closer agreement with experiment is achieved with the TCL scheme.
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A further sensitive test is provided by the case of fully-developed flow through
straight ducts of non-axisymmetric cross-section. As was discovered by Prandtl
and his students in the 1930s, weak secondary motions are then created which
significantly modify the friction and heat transfer around the duct periphery. The
underlying cause of these motions is the anisotropy of the turbulent stress field in
the plane of the duct cross-section (i.e. the same source as in the three-dimensional
wall jet considered above). A linear eddy-viscosity scheme provides a purely
diffusive model for the turbulent stresses and consequently no secondary flows
are computed with such schemes. Because of the stress anisotropy predicted by
second-moment closures they are in principle capable of mimicking the flow pat-
tern. A particularly challenging test is provided by the experiment of Hinze (1973)
of flow through a 5:1 rectangular duct in which symmetric roughened strips were
included on the lower wall, a feature which greatly augmented the secondary flow.
Figure 4.17 a compares the measured axial velocity contours over the cross sec-
tion with those predicted using the Basic and TCL models (Launder and Li, 1994).
While the former scheme predicts distortions of the axial velocity of the correct
overall type, equally clearly, the TCL computations mimic far more closely the

Fig. 4.17 Flow through a rectangular-sectioned duct with a partially rough-
ened lower wall. (a) Contours of mean velocity; computations of Launder and
Li (1994); experiments of Hinze (1973). (b) Predicted secondary flows. From
Launder and Li (1994).
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reported shape of the velocity contours. Although the secondary flow was not
reported by Hinze, the computed patterns for the two models are substantially
different, Fig. 4.17b, and it is this which is responsible for the differences in the
primary flow distribution.

The TCL strategy for modelling Φθ i

The starting point here is Eq. (4.49) used earlier to obtain the QI model of this
process. The object is to provide a model of the third-rank tensor bl

ki that is com-
patible not just with the continuity and normalization constraints that were applied
to obtain the QI form (Eqs. (4.41) and (4.42)) but with the two-component limit too.
Adopting the same approach to modelling this tensor as for bli

k j above, the third-
rank tensor bl

ki is represented as a sum of products of scalar fluxes and Reynolds
stresses. Noting, however, that the integral in Eq. (4.49) is linear in the fluctuat-
ing scalar, θ , requires that the expansion for bl

ki , whilst containing nonlinear terms
in the Reynolds stresses, should be linear in the scalar flux. Including all possible
terms which respect the required symmetry in i and k, such an expansion up to
cubic order can be written as:

bl
ki = α1θulδik + α2(θukδli + θuiδlk)+ α3θulaik

+ α4(θukali + θui alk)+α5θumamlδik + α6θum(amkδli + amiδlk)

+ α7θumami aik + α8θum(amkail + ami akl)+α9θulami amk

+ α10aml(θukaim + θui akm)+amnamn

[
α11θulδik + α12(θuiδlk + θukδli )

]
+ θunamn [α13amlδik + α14 (amkδli + amiδlk)] . (4.63)

Constraints analogous to those adopted in modelling Φi j2
can now be applied

to determine as many of the model coefficients as possible. The continuity and
normalization conditions require:

continuity bk
ki = 0, normalization bl

kk = θul .

Applying these conditions gives the following eight relations among the α coeffi-
cients:

● from continuity

α1+4α2 = 0, α7 + α8 + α9 + α10 + α13 + α14 = 0

α10 + α11+4α12 = 0, α3 + α4 + α5+4α6 = 0

● from normalization

3α1+2α2 = 1, 2α8+2α10+3α13+2α14 = 0

2α4+3α5+2α6 = 0, α9+3α11+2α12 = 0.
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We recall that if only linear terms are retained (i.e. only α1 and α2 non-zero)
one finds α1 = 0.4 and α2 = −0.1, which leads to the quasi-isotropic model,
Eq. (4.51).

Different approaches have been used in applying the TCL constraint. Shih and
Lumley (1985) ensured compliance with the Schwarz inequality:

(θuα)
2 ≤ θ2 · u2

α (4.64)

(where the subscript α denotes any component direction rather than summation).

They did this by requiring that the rate of change of
[
(θuα)2 − θ2 · u2

α

]
should be

zero when equality held and thus that:

2θuα
Dθuα

Dt
= u2

α

Dθ2

Dt
+ θ2

Du2
α

Dt
when (θuα)

2 = θ2 · u2
α.

This constraint, however, links the models of Φi j2
and Φθ j2 , and the outcome is

that not only are all the α coefficients determined but also that both free coeffi-
cients in the TCL model of Φi j2

are required to be zero. However, the presence
of the terms with coefficients c2 and c′

2 is vital to securing satisfactory agree-
ment in the wide variety of simple and complex shear flows presented above. For
this reason Craft (1991) (see also Craft and Launder (2002b), adopted a differ-
ent strategy, requiring that the net mean-strain contribution to the uiθ transport
equation, Φθ i2 + Pθ i2 , should be zero in the two-component limit. This condition
translates to:

∂Uk

∂xl
bl

k2 = 1

2
θul
∂U2

∂xl
when u2 = 0.

By considering the situation again in principal axes of the stresses, this condition
leads to the following inter-linkages among the α coefficients:

α1 − 2
3α2 + 1

3α3 − 2
9α7 + 4

9α9 + 2
3α11 + 1

9α13 = 1
2 ,

α2 − 2
3α4 + 1

3α6 − 2
9α8 + 4

9α10 + 2
3α12 + 1

9α14 = 0,

α6 − 2
3α8 + 2

3α14 = 0,

α5 − 2
3α7 + 2

3α13 = 0

2α11 + α13 = 0

2α12 + α14 = 0.

Solving these equations for the α coefficients together with the further equations
arising from continuity and normalization constraints above (Craft and Launder,
2002b) enables the pressure–scalar gradient correlation to be written as:

Φθ i2 = 0.8θuk
∂Ui

∂xk
− 0.2θuk

∂Uk

∂xi
+ 1

3

ε

k
θui

Pk

ε
− 0.4θukail

(
∂Uk

∂xl
+ ∂Ul

∂xk

)
+ 0.1θukaikaml

(
∂Um

∂xl
+ ∂Ul

∂xm

)
− 0.1θuk (aimPmk + 2amkPim)

/
k

+ 0.15aml

(
∂Uk

∂xl
+ ∂Ul

∂xk

)
(amkθui − amiθuk)
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− 0.05aml

[
7amk

(
θui
∂Uk

∂xl
+ θuk

∂Ui

∂xl

)
− θuk

(
aml
∂Ui

∂xk
+ amk

∂Ui

∂xl

)]
.

(4.65)

In this case all the unknown coefficients are determined by the constraints applied.
Again the leading two terms are the QI model and, as with the TCL pressure-strain
model, the third term may be seen as a correction to the ‘slow’, turbulence-driven
process. The Shih and Lumley (1985) model, which, as noted above, was truncated
to terms quadratic in the stress field, shows close similarity with the first four terms
in the above equation, albeit with different numerical coefficients:

Φθ j2 = 0.8θuk
∂U j

∂xk
− 0.2θuk

∂Uk

∂x j
+ 0.3

ε

k
θu j

Pk

ε

+ 0.1θuka jl
∂Ul

∂xk
− 0.3θuka jl

∂Uk

∂xl
+0.2θukakl

∂U j

∂xl
.

(4.66)

For a simple, homogeneous shear flow close to local equilibrium where the tem-
perature and velocity gradients are in the same direction (y), Craft (1991) reports
that Eq. (4.65), used in conjunction with Eq. (4.36) to approximate Φθ i1 , returns
a turbulent Prandtl number, σθ , of approximately 0.7 and a ratio of streamwise to
cross-stream heat flux (−θu/θv) of approximately 1.1. This is very close to the
values that are returned by both experimental data and, indeed, most other second-
moment closures. (This is because this case is regarded as an essential reference
data-set to satisfy as it resembles the situations found in many simple shear flows.)
Figure 4.18, however, shows the corresponding experimental data (Tavoularis and
Corrsin, 1981) for the case where the production to dissipation ratio of k has been
increased to approximately 1.8. As seen, the Basic Model now leads to a reduction
in turbulent Prandtl number to around 0.5 (compared with the measured increase to
values slightly greater than unity). Moreover, for that model, the ratio of streamwise
to cross-stream heat flux reaches an asymptotic level of only about 1.6 compared
with a value of approximately 2.2 reported in the experiments. For both quantities,
however, the TCL scheme predicts a streamwise development closely in accord
with the experiments. Of the two other closures appearing in Fig. 4.18, the model
of (Gibson et al., 1987) is a composite representation of both the ‘rapid’ and ‘slow’
parts of Φθ j :

Φθ j = −
(

3

1 + 1.5A1/2
2

)
ε

k
θu j + 0.12ai j k

∂


∂xi
+1.09θuk

∂U j

∂xk
+ 0.51θuk

∂Uk

∂x j
.

(4.67)

This form gives reasonable agreement with the high-strain-rate case shown in
Fig. 4.18 but, for the case of a local equilibrium shear flow (not shown), Craft
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Fig. 4.18 Scalar transport in highly strained homogeneous shear flow: (a) ratio
of streamwise to cross-stream heat flux; (b) turbulent Prandtl number. From Craft
(1991). Symbols, experiments (Tavoularis and Corrsin, 1981). Predictions: ——
TCL model; - - - - - - Basic Model; – – – Shih and Lumley (1985); – · – · – Gibson
et al. (1987).

(1991) reports that the value of −θu/θv is nearly 50% too low (though this in itself
is not a disastrous weakness since, as already noted, in the flow direction turbulent
diffusion is far outweighed by convective transport). The Shih–Lumley model does
poorly for this flow though this is entirely associated with their very complex model
of Φθ j1 (not presented here). Craft (1991) showed that if, instead, the version used
in his own work was adopted for Φθ j1 , Eq. (4.36), the Shih–Lumley model of Φθ j2 ,
Eq. (4.66), gave very nearly the same development as the TCL model. This is an
encouraging result for the two models adopt quite different strategies in satisfy-
ing realizability. As a final inference from this high-strain-rate homogeneous shear
flow, the increase in the turbulent Prandtl number as the strain-rate parameter is
increased is, arguably, the principal reason that, in a boundary layer, the near-wall
turbulent Prandtl number is higher than in a free shear flow.

We turn finally to a further experiment of the homogeneous shear flow for
Pk/ε ≈ 1.8 (Tavoularis and Corrsin, 1985) where, in this case, the linear tem-
perature gradient is imposed at right angles to the mean shear (thus, aligned with
the flow’s vorticity). In this case the experimental data return a correlation coef-
ficient for the lateral heat flux of approximately 0.45. As Fig. 4.19 indicates, all
the closure models return higher values than this and, indeed, that of Gibson et al.
(1987) produces levels in excess of 0.9! The TCL model is the closest to the data,
on average about 12% too high. Rogers et al. (1989) have produced DNS simula-
tions of nominally the same homogeneous shear flows but with the time-scale ratio
r some 50% different and, inevitably, much lower turbulent Reynolds numbers.
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Fig. 4.19 Heat-flux correlation coefficient in a homogeneous shear flow at high
strain rates where the mean temperature gradient is orthogonal (z) to the shear
(y). Symbols, experiment (Tavoularis and Corrsin, 1985); —— TCL model; - - -
- - - Basic Model;– – – Shih and Lumley; · – · – · – Gibson et al. (1987).

Computations reported by Craft (1991) for those cases are generally consistent
with the above comparisons.

Application of the TCL scheme to further, more complex inhomogeneous cases
may be found in §4.5 and §4.6 where the effects of a gravitational force field also
become important.

4.4.6 Final remarks on non-linear models of Φi j2

As remarked at the start of §4.4.5, a number of other non-linear models of Φi j2

have been proposed in the literature. Several groups argue that the tensor expan-
sion should, in principle, include up to fourth-order terms in ai j as required by
the Cayley–Hamilton theorem for a ‘complete’ model, see for example Shih and
Lumley (1985), Johansson and Hällback (1994) and Ristorcelli et al. (1995). These
models were all required to satisfy realizability constraints (i.e. requiring that solu-
tions for the stress components should under no circumstances leave the realizable
domain within the stress-invariant map, Fig. 3.12), a property that neither the lin-
ear IP and QI models nor the quasi-linear models guarantee. Other constraints have
also been proposed (e.g. Pope, 2000, p. 426). In contrast to the TCL model, most
models have been tested in only a limited range of flows making it difficult to judge
fully their merits or their potential width of applicability.

It is noted finally that some authors (Speziale, 1991; Pope, 2000) dispute the
whole concept of non-linear models of Φi j2

, arguing that this process should be
linear in ai j because bmi

l j is linear in the stress spectrum. However, the shapes of the
two-point velocity correlations in the exact integrals that appear in the definition of
bmi

l j (cf. Eq. (4.39)) will themselves be deformed by the strain field and the inclusion
of non-linear elements which, in any event, contribute little when turbulence is
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close to isotropy, would seem to be a justified way of accounting for such effects.
The incontestable fact is that the approach leads to models that mimic the response
of real turbulence to an imposed strain field far better than any currently available
strictly linear model.

4.5 Turbulence affected by force fields

4.5.1 Introduction

In this section the role played by force fields on the turbulence structure is the focus
of attention. Their direct effect appears transparently through the generation terms
in the second-moment equations. Nearly always, however, there will be important
corresponding effects in the processes that need modelling, most importantly in the
pressure-containing terms in the second-moment equations. In some flows, effects
of force fields on the turbulent length scale (or energy dissipation rate) are impor-
tant while, in cases where there is a strong damping of the second moments by the
force field, careful attention also needs to be paid to the diffusive processes which
may then assume a greater significance. In those cases buoyant influences on the
triple moments need to be considered.

The direct effects of body forces on the exact second-moment equations have
been presented in Chapter 2 (Eqs. (2.18) and (2.19) for the stress transport and
Eqs. (2.22) and (2.23) for the scalar flux), while the exact forms of the buoyant
contributions to the non-dispersive pressure correlations are included in Eqs. (4.3)
and (4.5). In the sections which follow, the modelling and consequences of different
types of force field are examined.

4.5.2 System rotation: Coriolis effects

When fluid is contained in a rotating, closed container, or, indeed, when it is passed
through a region with rotating rigid surfaces, as in flow through a rotor stage of a
gas turbine, it is usually convenient to examine the flow in a coordinate system that
rotates with the rotating surfaces, thereby bringing the rigid boundaries apparently
to rest. However, in adopting such a non-inertial reference frame, one acquires
additional terms in the momentum equations (see, for example Aris, 1962; Green-
span, 1962) which may be thought of as a force-field contribution to the transport
process. In this case the instantaneous force field F̂i is equal to −2�kÛ j i jk , where

i jk is the third-rank alternating unit tensor, which takes the values +1 when the sub-
scripts i , j and k are all different and in cyclic order (i.e. 1,2,3 or 2,3,1 or 3,1,2),
−1 for all different values in anti-cyclic sequencing, and zero if the values of two
or more subscripts are the same. As noted in Eq. (2.19), the corresponding contri-
bution from the fluctuating part of this term (commonly called the Coriolis term)
to the Reynolds-stress generation rate is:
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Fi j ≡ Ri j = −2�k
[
u j um ikm + ui um jkm

]
. (4.68)

Thus, within the framework of second-moment closure in which each stress com-
ponent is obtained by solving its transport equation, the Coriolis production term
is obtained without any need for modelling.

Stress generation due to system rotation

Before considering effects of the fluctuating Coriolis force on other processes, it is
instructive to examine briefly the nature of the term and its action in the turbulent
stress production tensor. As an example, the case of fully developed flow through
a plane channel which is itself rotating in what is known as orthogonal-mode
rotation, Fig. 4.20, is considered.

As implied above, the flow is examined in a coordinate system that rotates with
the duct so that the flow appears steady. The rotation vector �k is here equal to
(0, 0, �). Thus, while in (4.68) there is an implied summation on both k and m, the
only significant value for k is 3 since only �3 = � is non-zero. The Coriolis and
strain production terms in the component stress transport equation associated with
rotation and shear are thus:

u2
1 R11 = +4�u1u2 P11 = −2u1u2

∂U1

∂x2

u2
2 R22 = −4�u1u2 P22 = 0

u1u2 R12 = −2�(u2
1 − u2

2) P12 = −u2
2

∂U1

∂x2

(4.69)
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Fig. 4.20 Plane channel rotating about the spanwise axis, x3. Left, configuration
and notation; right, friction velocities on the pressure (unstable) and suction (sta-
ble) surface for different rotation rates, normalized with the friction velocity with
no rotation for the same flow rate conditions. Symbols, experiment Johnston et al.
(1972); lines, computations, Basic Model. From Launder et al. (1987).
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Now, referring to Fig. 4.20, close to the near face of the rotating duct the mean
velocity gradient is positive, so, for the case of no rotation, u1u2 is negative, i.e. of
the same sign as P12. The contribution R12 is also negative since the streamwise
normal stress, u2

1, is greater than u2
2. Thus, as � is progressively increased (i.e. as

the Coriolis contribution to the generation is steadily raised), the (negative) gener-
ation rate of u1u2 increases. In the far wall in Fig. 4.20, the mean velocity gradient
is negative and so P12 is positive. R12 is still negative, however, since near that wall
u2

1 is greater than u2
2. Thus, as rotation increases, the rotational contribution leads

to a reduction in the rate of generation of shear stress and thus in the shear stress
itself. With rotation in the direction shown, the near wall is known as the pressure
surface (since the static pressure of the fluid will be highest at that surface) and,
correspondingly, the far wall is known as the suction surface. Because the over-
all production of turbulence near the pressure surface is enhanced, this region is
sometimes referred to as the unstable side, whereas the region with a reduced pro-
duction near the suction surface is known as the stable side of the channel. Clearly
then, our consideration of the generation terms suggests that as rotation increases,
the wall shear stress should be raised on the pressure surface but reduced on the
suction surface.

Figure 4.20 on the right (ignoring for the moment the solid lines to be discussed
shortly) shows experimental data of the variation of the friction velocity (i.e. the
square root of the wall shear stress) on each wall versus the rotation parameter
Ro ≡ �D/U (sometimes termed the inverse Rossby number), where U denotes
the channel mean velocity. The behaviour shown certainly confirms the inferences
drawn in the previous paragraph. There is, however, a notable asymmetry in the
behaviour on the two surfaces: on the suction surface the friction decreases steadily
as Ro increases, while on the pressure surface the friction velocity levels off for Ro
> 0.07. The reason for this differing behaviour can be inferred by considering the
effect of the Coriolis generation terms for the normal stresses lying in the x1 − x2

plane. Near the pressure surface, since u1u2 is negative there, the Coriolis term
is also negative for R11 but positive for R22. Thus, as Ro is progressively raised,
near that surface u2

1 is reduced while u2
2 is increased. That, as seen in Eq. (4.69),

progressively weakens the increase of the Coriolis term in R12, which causes the
friction factor to level out.

As a final remark on the Coriolis generation terms, we note that because the
rotation source term in R11 is precisely the same magnitude as and of opposite
sign from that of R22 (and there is no contribution in R33 since that is the direction
in which the rotation vector points), the Coriolis generation term in the turbu-
lence energy equation is zero. Thus, there is no effect of rotation captured by
eddy-viscosity models since neither in the basic stress–strain formula nor in the
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transport equations for dynamic turbulence properties (such as k and ε) does any
explicit effect of rotation appear. Eddy-viscosity models applied to such rotating
flows thus require empirical corrective terms to be added. Usually this has been
done by adding an additional source term to the modelled transport equation for ε.

Coriolis effects on the pressure-strain correlation

Before closure is complete and second-moment computations made, the corre-
sponding pressure-strain term, denoted Φi j3 , needs modelling in terms of known
or calculable quantities. One possibility – indeed, the simplest plausible assump-
tion – is that the pressure fluctuations redistribute the generation due to rotation in
just the same way that they do with the isotropization of production (IP) scheme
introduced in Section 4.3. However, if one intends to follow that route, care must be
taken as to what strictly should be interpreted as the Coriolis production term. The
need for caution arises from the fact that the substantial derivative, Dui u j/Dt , is
not, as it stands, materially invariant. However, a frame-invariant convective deriv-
ative may be readily formed in several ways. Two that suffice for present purposes
are either to add the mean-strain production tensor, Pi j , to the substantial derivative
and (to maintain equality) to add the same quantity to the right side of Eq. (2.21)
(Eringen, 1962) (

Dui u j

Dt
+ Pi j

)
= 2Pi j + Ri j + · · · (4.70)

or to transfer half of the Coriolis contribution, Ri j , to the convection term (Thomas
and Takhar, 1988) (

Dui u j

Dt
− 1

2Ri j

)
= Pi j + 1

2Ri j + · · · (4.71)

Either version leads to the conclusion that the true Coriolis generation is only
half as large relative to mean-strain generation as it would appear to be from
Eq. (4.68).17 Thus, in employing the IP model (with necessarily the same coeffi-
cient used for the mean-strain and effective Coriolis generation18) one is supposing
that:

Φi j2
+Φi j3 = −c2

(
Pi j + 1

2Ri j − Pkkδi j
/

3
)
. (4.72)

As remarked in §4.3.2, the coefficient c2 is normally assigned the value 0.6, which
satisfies the exact expression derived by Crow (1968) for isotropic turbulence. Note

17 In fact, as Bertoglio et al. (1980) and Cousteix and Aupoix (1981) have pointed out, the approximation for
the mean-strain and Coriolis parts of the pressure-strain correlation can also be obtained together, merely by
replacing ∂U�/∂xm by (∂U�/∂xm+�p �pm ). With the IP approximation forΦi j2 , that also leads to Eq. (4.72).

18 Otherwise, in computing a flow like a swirling axisymmetric jet, which can be computed in either a stationary,
axisymmetric frame or one that rotates at any speed about the axis, the computed behaviour would differ
according to the rate at which one chose to rotate the axis.
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that, because Rkk is zero, the form given automatically satisfies the requirement
that the trace of Φi j3 should be zero. This form of the Basic Model, with the stand-
ard wall-reflection terms included, was used by Launder et al. (1987) to compute
the velocity distributions shown in Fig. 4.21 and the variation of friction veloc-
ity on the two walls of the rotating continuous lines in Fig. 4.20. The computations
assumed fully developed flow and used logarithmic ‘wall functions’ (see Chapter 8)
to avoid having to enter the viscosity-affected near-wall sublayer. Figure 4.21 indi-
cates that the asymmetry in the mean velocity distribution in the channel induced
by the rotation is reasonably well captured by this simple model. Up to moderate
rotation rates the computed friction velocities also accord well with the experi-
mental data, including the asymmetric behaviour on the two surfaces, Fig. 4.21,
right. At higher rotation rates, however, the computations fail to produce sufficient
damping of the wall stress on the suction surface due, it is thought, to the fact that
the flow close to that surface ‘laminarizes’ and the logarithmic wall law ceases to
be appropriate. The treatment of such far-from-equilibrium nearâĂŘwall flows is
the subject of Chapter 6. Indeed, further computations of the flow through a duct
rotating in orthogonal mode are included there with early forms of the TCL model
(Fig. 6.16) where computations extend all the way to the wall and only weak ‘wall-
proximity’ terms are included. More recent computations by Manceau (2005) for
a range of rotation numbers up to 1.5 using an elliptic second-moment closure
(‘elliptic blending model’, EBM) are discussed in §6.5.3, Fig. 6.33.
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Fig. 4.21 Mean velocity profile in a rotating plane channel. Left, Ro = 0.068,
Re = 35 000; right, Ro = 0.21, Re = 11 500. Symbols, experiment (Johnston et
al., 1972); line, computations, Basic Model. From Launder et al. (1987).
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4.5.3 Buoyant effects

Stress production due to buoyancy

For the case where the force field is that of buoyancy, the kinematic fluctuating
force in the instantaneous velocity equation is given by:

fi ≡ ρ ′gi/ρ. (4.73)

Thus, with density fluctuations expressed in terms of temperature fluctuations, the
force-field term in Eqs. (2.18) and (2.19) for the turbulent stress transport becomes:

Fi j ≡ Gi j ≡ (
ρ ′u j gi + ρ ′u j gi

) /
ρ = −β (θu j gi + θui g j

)
(4.74)

where β denotes the expansion coefficient defined by

β ≡ − 1

ρ

∂ρ

∂


∣∣∣∣
P

(4.75)

where the P subscript simply indicates that the derivative with respect to temper-
ature is at constant pressure. It is noted that for an ideal gas β is the reciprocal of
the local mean (absolute) temperature.

The corresponding gravitational source in the scalar-flux equation, Eqs. (2.22)
with (2.23), becomes:

Giθ ≡ fiθ = −βgiθ2. (4.76)

Note that, just as the mean momentum equation is coupled to the mean temperature
equation through the buoyant source, the Reynolds stress equation is likewise cou-
pled with that for the turbulent heat flux. A complete second-moment closure thus
entails solving an equation for θ2 too which, from Eq. (4.76), appears as unknown
in Eq. (2.22). The θ2 equation contains no buoyant term, however, and remains in
the form presented earlier, Eq. (3.20).

Before considering the modelling of buoyancy effects on the unknown terms in
the foregoing equations, it is instructive to note the couplings among the different
contributors to the equation set and the way their interaction changes depending
upon the orientation of the flow. Figure 4.22 compares this intercoupling for a
two-dimensional thin shear flow orientated horizontally and vertically. For both
situations x1 is the mean flow direction and x2 the direction in which the mean
velocity and density varies. The lines indicate coupling between the respective sec-
ond moments, the arrows indicating that the second moment at the upstream end
of any line contributes to generating the component at the downstream end.

It is clear that there is a great difference in the way stratification impacts the
different second moments in the two cases. In a non-buoyant flow in simple shear,
the normal stress u2

2 directed along the gradient of mean velocity and density has
a great effect on the turbulent transport of momentum and matter. In a horizontal
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Fig. 4.22 Contrasting buoyant couplings among the second moments in hor-
izontal (left) and vertical (right) two-dimensional thin shear flows. Broken
arrows indicate buoyant coupling; full arrows denote coupling through mean
velocity/scalar gradient; pressure-strain coupling is indicated symbolically by
‘waves’.

stratified flow this normal-stress component is directly affected by buoyancy but in
a vertical flow it is not since x2 is then horizontal. Principally for that reason, hor-
izontally directed shear flows require more careful attention to modelling buoyant
effects than do vertical ones. Accordingly, the main attention in the remainder of
this section is on the case of horizontally directed flows.

IP modelling of non-dispersive roles of pressure fluctuations

Let us turn first to modelling the pressure correlations. The IP strategy introduced
in §4.3.2 would imply (Launder, 1975a):

Φi j3 = −c3
(
Gi j − Gkkδi j

/
3
)

(4.77)

where now there is no strict need (as there was with a Coriolis force) to make the
proportionality coefficient the same as forΦi j2

. Nevertheless, the value of c3 has in
practice usually been taken equal to or close to that of c2 with values in the range
0.5–0.6.

In fact, another more analytical route may be followed that also leads to
Eq. (4.77).

We note from Eq. (4.3) that:

Φi j3 ≡ − 1

4π

∫ (
∂ fk

∂xk

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV ol

|r |

= + gk

4π

∫
β ′
(
∂θ

∂xk

)′ (
∂ui

∂x j
+ ∂u j

∂xi

)
dV ol

|r | . (4.78)

As a first step to extracting a model, it is assumed that the mean temperature varies
slowly over the two-point volumetric integral, thus β ′ is replaced by β and moved
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through the integral. Now, the integral

1

4π

∫ (
∂θ

∂xk

)′ (
∂ui

∂x j

)
dV ol

|r | ≡ ai
k j (4.79)

is of the same form as that considered in Eq. (4.49) for approximating Φθ i2 , though
of only half its magnitude. Thus, with the assumption that the term can be expressed
in terms of a sum of scalar fluxes and assuming the turbulence to be homogeneous,
so that the form is symmetric in k and j ,

ai
k j = λ1θuiδk j+λ2(θukδi j + θu jδik). (4.80)

Contracting on i and j , the integrand in (4.79) clearly vanishes by continuity:

a j
k j = 0 = (λ1+4λ2)θuk

while, for the limiting case of an isotropic turbulence field, with k equal to j , the
integral is readily found from Green’s theorem

ai
kk = θui = (3λ1+2λ2)θui .

This pair of constraints implies λ1 = 0.4, λ2 = −0.1. Thus, from Eq. (4.80):

Φi j3 = β [0.3(g jθui + giθu j )− 0.2gkθukδi j
]

(4.81)

or

Φi j3 = −0.3
(
Gi j − Gkkδi j

/
3
)
. (4.82)

Evidently, the above analysis produces a result (sometimes referred to as the quasi-
isotropic result, QI) of the same form as the IP model, Eq. (4.77), but with a
coefficient only about one-half the (empirical) value usually employed by the latter.

Proceeding analogously for the corresponding pressure-temperature gradient
product in the heat-flux equation, Eq. (2.22), the IP model would lead to:

Φθ i3 = −c3θGθ i = +c3θβgiθ2. (4.83)

The coefficient c3θ is normally assigned the same value as c2θ of about 0.5
(Launder, 1975a). However, following the quasi-isotropic route, as was done above
forΦi j3 , leads to the same form as Eq. (4.83) but with a coefficient equal to 1/3
(Launder, 1975b; Lumley, 1975a). Nevertheless, most computations have adopted
the assumption that c3θ , like c3, is approximately equal to 0.5. As an illustration,
Fig. 4.23 shows the application of such a model to the case of the nominally
homogeneous, stably stratified, free shear flows measured by Webster (1964). The
strength of the stratification is expressed in terms of the Richardson number. The
flux Richardson number, R f , is the ratio of the rate of removal of turbulence energy
by working against gravity to that supplied by mean-strain action; the gradient
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Fig. 4.23 Normal stresses and heat fluxes in stable stratification. (a) Relative
normal stress levels as a function of flux Richardson number. (b) Variation of ver-
tical to streamwise heat flux with gradient Richardson number. Symbols/shading,
experiments (Webster, 1964); lines, computations. From Launder (1975a). Note:
x1 denotes the main flow direction (horizontal); x3 vertical.

Richardson number, Ri, is the product of R f and σ
. In the computations it was
assumed that the dissipation rate of turbulence energy balanced production by shear
and stratification (the latter, of course, being negative under stable stratification).
The left figure shows that, as the stable stratification gets stronger, the proportion of
fluctuating energy in the vertical direction decreases while that in the stream direc-
tion increases, a feature that is well captured by the model. So far as the heat fluxes
are concerned, vertical transport is very severely reduced relative to the stream-
wise heat flux with increasing stable stratification. This feature too is reasonably
well mimicked by the IP model.

For forced-convection flows near walls, as was noted in §4.3.4, in using the
IP model it is essential to include some wall-reflection strategy in order that the
normal stress perpendicular to the wall is damped sufficiently. However, this cor-
rection has usually not been applied to Φi j3 . This is because, at a practical level,
better overall agreement was achieved by omitting such buoyant wall corrections
than including them. In turn this may suggest that Eq. (4.82) is a better model of
Φi j3 than Eq. (4.9) is of Φi j2

. The IP model has been applied by Gibson and Laun-
der (1978) to examine various near-ground features of the atmospheric boundary
layer assuming local-equilibrium conditions. Figure 4.24, left, compares the pre-
dicted variation of the rms vertical velocity fluctuations under unstable conditions
with the experimental data of Wyngaard et al. (1971) where x3 is the height above
the ground and L is the Obukhov length defined as L ≡ −U 3

τ /κβgθu3, κ being
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Fig. 4.24 Left: measured and predicted rms vertical velocity fluctuations under
unstable conditions (atmospheric boundary layer data of Wyngaard et al. (1971).
Right: measured and predicted dependence on stability of the ratio of the
exchange coefficients (atmospheric boundary layer data of Businger et al. (1971).
From Gibson and Launder (1978) using the Basic Model.

the von Karman constant and Uτ the friction velocity. The corresponding ratio of
the diffusivities for heat and momentum (the inverse of the turbulent Prandtl num-
ber, σ
) from the data of Businger et al. (1971) appears in Fig. 4.24, right. For both
cases the agreement of the model with the experimental data is broadly satisfactory
given the doubt as to how close the data were to the presumed local-equilibrium
state. In fact, in Fig. 4.24, right, the broken line shows predicted values that have
been increased by 20% to bring the data for neutral buoyancy into accord with
the non-buoyant flow data. The implied dependence of turbulent Prandtl number
on stability is quite different from that found for the homogeneous free shear flow
where the turbulent Prandtl number increases monotonically with Richardson num-
ber (Webster, 1964). It has been suggested that the different qualitative behaviour
in the wall boundary layer is linked to the fact that, in increasingly stable condi-
tions, the turbulent length scale normal to the ground is reduced, thereby reducing
wall-reflection effects (Gibson and Launder, 1978).

McGuirk and Papadimitriou (1988) have applied the IP model to examine the
development of several of the free-surface, stably stratified jets measured by Chu
and Baddour (1984). Figure 4.9, shown earlier in relation to ‘wall-reflection’ from
the free surface, gives the computed normalized density profiles reproduced from
their work for a case without a hydraulic jump for an initial Froude number, Fr, of
12 (Fr ≡ Uin/

√
gH , where Uin is the inlet velocity and H the height of the inlet

slot).

TCL approach to modelling Φi j3 and Φθ j3

Just as with Φi j2
and Φθ j2 , TCL constraints have been applied to the buoyant parts

of the non-dispersive pressure correlations in order to obtain a more comprehensive
model. These analyses have been presented in Craft (1991), Craft et al. (1996a) and
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Craft and Launder (2002a). As noted in connection with Eq. (4.79), to obtain the
TCL form for Φi j3 it suffices to note that the two-point integrand appearing in that
equation is the same as appeared in the corresponding model for Φθ j2 . Thus the
resultant form for the integral in that analysis may be taken over to obtain (after
considerable algebra)Φi j3 , just as was done above for the ‘quasi-isotropic’ analysis
that led to Eq. (4.82). The resultant form can be written as:

Φi j3 = −
(

3

10
+ 3A2

80

) (
Gi j − 1

3δi jGkk
) + 1

6
ai jGkk

+ 2

15
θum

[
βi amj + β j ami

] − 1

3
βk

[
aikθu j + a jkθui

]
+ 1

10
δi jβkamkθum + 1

4
βkai j amkθum

+ βk

8

{
θum

[
aki amj + akj ami

] − amk
[
amjθui + amiθu j

]}
− 3

40

{
amkθuk(βi amj + β j ami )− 2

3
δi jβkamkamnθun

}
. (4.84)

In the above, the vector βi denotes for brevity the group βgi . It is clear that for
isotropic turbulence the quasi-isotropic result is recovered since the anisotropic
stress tensor, ai j , is then zero in all components.

The corresponding TCL approximation for Φθ i3 is much simpler and its deriva-
tion is thus summarized below. To begin, let us rewrite this as:

Φθ i3 = βkbki (4.85)

where

bki ≡ 1

4π
∫ ∂θ

′

∂x ′
k

∂θ

∂xi

dV ol

r
= − 1

4π
∫ ∂

2θ ′θ
∂rk∂ri

dV ol

r
. (4.86)

To devise an approximation for bki consistent with that obtained for the other two-
point correlations, it is supposed that:

bki = θ2(α1δki + α2aki + α3amnamnδki + α4akmaim) (4.87)

where the α coefficients are constants to be determined below. This is the most
general form for a model at the same level as earlier TCL contributions. Now,
on contracting Eq. (4.86) for i = k one can carry out the integral for a radially
symmetric two-point correlation to conclude that bkk = θ2 and hence:

α1 = 1/3, 3α3 + α4 = 0.

Then, on imposing the TCL requirement that if, say, u2
2 should fall to zero,

Gθ2 +Φθ23 = 0,
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Table 4.6 Rate of growth of half-widths of jets and plumes in
stagnant surroundings from Craft et al. (1996a)

Flow IP model Experiment TCL model

Plane plume 0.078 0.120 0.118
Axisymmetric plume 0.088 0.112 0.122
Plane jet 0.100 0.110 0.110
Axisymmetric jet 0.105 0.095 0.101

one concludes that α2 = −1, α3 = α4 = 0 and thus, finally, that:

Φθ i3 . = 1
3βiθ2 − βkθ2aik . (4.88)

It is noted that the TCL result differs from the QI model only by the appearance of
the second term on the right of Eq. (4.88).

Applications of the TCL models above have been discussed in Craft and Laun-
der (2002a) for a range of buoyantly modified shear flows. For the supposedly
homogeneous, stably stratified shear layer in local equilibrium, the performance is
of similar overall quality to the IP model and is not included here. The predicted
and measured behaviour for the inhomogeneous, buoyantly driven, self-preserving
plane and axisymmetric plumes are compared with the corresponding dynamically
driven jets in Table 4.6. Agreement across the flows is far superior with the TCL
version than with the IP model. While some of the improvement shown in Table 4.6
is attributable to the modified form of dissipation rate equation used with the TCL
version (cf. Eq. (5.10) and with adopting cε1 = 1.0), a large proportion arises from
the more comprehensive modelling of pressure interactions. Even though the TCL
model predicts growth rates for both axisymmetric flows to be somewhat too large,
the fact that a similar percentage error arises for each suggests that the cause of this
fairly modest discrepancy may be attributable to some other feature of axisymmet-
ric flows in stagnant surroundings, such as intermittency, which is disregarded in
steady-state RANS closures. Intermittency is also present, of course, in plane free
shear flows but it is more important in axisymmetric flows where a much larger
proportion of the shear flow’s cross-section is ‘contaminated’ by its effects.

A further test case computed with both the TCL and the Basic Model is the neg-
atively buoyant wall jet illustrated in Fig. 4.25a: a downward directed jet of warm
water is injected parallel to the wall into a slowly upward moving cool stream,
causing the wall jet to break away from the wall, reversing its direction. The goal
is to measure the depth of penetration of the wall jet and its subsequent mixing.
This has proved to be a sensitive test case for the turbulent field, with regard to
both how the sublayer is handled and the turbulence model for the fully turbulent
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m

m

m

Fig. 4.25 Temperature contours for the negatively buoyant wall jet, comparison
of different models: (a) flow configuration, (b) RANS computations, Craft et al.
(2004b); LES data from Addad et al. (2004).

flow beyond. Figure 4.25b compares RANS predictions adopting the TCL and
Basic Model approaches (Craft et al., 2004b). In both cases the more successful
of the sublayer treatments is used (the ‘AWF scheme’) for which details are given
in Chapter 8. Comparison is drawn with the LES of this flow by Addad et al. (2004)
(which is in close agreement with the far less detailed experimental data of Jack-
son et al., 2002). While neither scheme captures fully the level of mixing exhibited
by the LES results, the TCL model clearly achieves the better performance. Other
buoyancy-affected test cases examining the performance of the TCL scheme are
reported in Craft and Launder (2002a) and Launder (2005).

A further challenging test case, the horizontal salinity-stratified mixing layer
region, is presented in §4.6 in which the modelling of the triple moments is consid-
ered. The reason for postponing discussion until then is that, in this strongly stably
stratified flow, accounting for second-moment diffusion processes turns out to be
just as vital as the choice of second-moment pressure-containing correlations.

Double scalar fields

Finally, attention is turned briefly to the case where simultaneous salinity and ther-
mal gradients combine in the presence of a gravitational field to exert important
effects in modifying the diffusive transport. Such double-diffusive systems arise
not only in the external environment as in the oceans, salty lakes, solar ponds and
diurnal heating in the near-ground-level atmosphere (examples of the last of these
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are examined in Chapter 9) but also in engineering problems such as metal solid-
ification, crystal growth and heavy-gas storage. The density fluctuations can then
be expressed as:

ρ ′ = −βθ + γ s (4.89)

where β ≡ −1/ρ(∂ρ/∂
)|P,S and γ ≡ 1/ρ(∂ρ/∂S)|P,
 are the volume expansion
coefficients caused by unit temperature and concentration changes, respectively
(defined with opposite signs because the density will generally increase with a
decrease in temperature but with an increase in concentration). A feature of double-
diffusive systems that poses a severe challenge to turbulence modelling is the
frequently encountered opposing action of the two scalar fields on turbulence. In
most situations, the species concentration increases in the direction of the grav-
itational or centrifugal force, i.e. a stable salinity stratification, which damps the
turbulence. Thus, if the fluid is heated from below or cooled from above (e.g. night
cooling of a lake or ocean surface due to radiation to space), the temperature gra-
dient creates an unstable stratification that generates turbulence. This in turn will
cause vertical mixing within a region, known as the mixed layer, in which all flow
properties take very nearly uniform values. Thus, the transport of heat and species
is not driven by (nor can it be related to) the temperature or concentration gradi-
ents. Moreover, the opposing effects of the two scalar fields on turbulence are not
independent of one another; on the contrary, there is a strong coupling and interac-
tion between them. Consequently, the most appropriate closure within RANS for
such problems is at second-moment level, which implies modelling and solving
the transport equation (2.22) for both heat and salinity flux. It is noted, however,
that the two equations are interconnected through the correlation of the fluctua-
tions in the two scalars, θs, associated with the gravity vector, which appears in
both equations (term Fθ i ), i.e.

Dθui

Dt
= · · ·

(
−βgiθ2 + γ giθs

)
+ · · · , Dsui

Dt
= · · ·

(
−βgiθs+γ gi s2

)
+ · · ·
(4.90)

Thus, closure of Eq. (4.90) requires providing θ2, s2 and θs from separate
transport equations, which in turn contain scalar fluxes, e.g.

Dθs

Dt
= −su j

∂


∂x j
− θu j

∂S

∂x j
− εθs + Dθs . (4.91)

Hence, a complete second-moment closure to a double-diffusive system involves
a large number of equations to be solved. In practice, however, one-dimensional
diffusion problems are the most challenging so far as physical modelling is con-
cerned and for such systems the scale of the numerical task is reasonable. Armitage
(2001) (see also Armitage et al., 1998) has considered this problem using both
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the Basic and TCL models and throughout making the GGDH approximation for
second-moment diffusion. In her computations the dissipative term in Eq. (4.91)
was, following Hanjalić and Musemic (1997), approximated as

εθs = εθs

k
(4.92)

which implicitly assumes equality of the scalar and mechanical time scales.
Figure 4.26 shows the profiles of temperature at two time instants across the

mixed layer for an initially linear vertical decrease in salinity with uniform ini-
tial temperature, subjected at time zero to strong bottom heating. Both Basic and
TCL models certainly capture a mixed-layer type of temperature profile and, for
the TCL model, agreement with the measurements of Bergman et al. (1985) is
close. Hanjalić and Musemić (1997) have applied a simplified algebraic trunca-
tion to examine a wider range of test flows, including cases where the unstable
thermal stratification is less strong (which pose a greater challenge than the strong
stratification considered above). A sample of those results appears in Chapter 7.

An alternative approach to modelling unstably stratified turbulent flows is pro-
vided by the unsteady Reynolds-averaging strategy, URANS. It has been argued
that in flows with strong internal forcing, where the large-scale convective struc-
tures dominate the flow and the ‘stochastic’ turbulence can be treated as almost
a passive scalar, major flow parameters can be reproduced by way of such an
approach using a relatively simple turbulence model. Indeed, Kenjereš and Han-
jalić (2002) found that the important prerequisite is to apply a well-tuned RANS

Fig. 4.26 Profiles of temperature at two time instants across the mixed layer for an
initially linear vertical decrease in salinity and uniform initial temperature subject
to strong bottom heating at t = 0: (a) t = 30 min; (b) t = 60 min. Experiments, ◦,
Bergman et al. (1985); computations, ——— Basic model, – – – – – TCL model.
From Armitage (2001).
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model for the near-wall region, and this can be done (at least for the flows over hor-
izontal heated walls) with a model simpler than full second-moment closure, since
the large-scale convective transport is resolved in time and space. An account of
that approach and a selection of the results obtained is also provided in Chapter 9.

4.5.4 Electromagnetic force fields

If a moving electrically conductive fluid is subjected to a magnetic field having a
flux density B, the velocity and magnetic fields will interact. As a result, in the gen-
eral case both fields will be modified. The relative movement of the two fields will
generate an electromagnetic force (emf) which drives an electric current with den-
sity in space equal to σU × B, where σ is the electric conductivity of the fluid and
U is the velocity vector.19 This induced current generates a second, induced mag-
netic field which adds to and modifies the original magnetic field. Moreover, the
combined (imposed and induced) magnetic field interacts with the induced current
density, generating a Lorentz force (per unit volume) FL = J × B which modi-
fies the velocity field. Here J denotes the total electric current density, which, from
Ohm’s law for moving media, can be written as J = σ(E + U × B), where E is the
electric field. The term in brackets is the effective electric field ‘felt’ by the fluid
in a reference frame moving with the fluid. The Lorentz force per unit volume can
now be defined as FL = σ(E+U×B)×B or, as is often more convenient, in terms
of the electric potential, �, as FL = σ(−∇�+ U × B)× B (for more details, see
Moreau, 1990; Davidson, 2004).

It is immediately evident that the second term, involving a double vector product
with B appearing twice, is aligned with the fluid velocity vector U, but acting in
the opposite direction. This means that the second term (which is often dominant
in magnetohydrodynamic (MHD) problems) acts to diminish the velocity in the
direction of the Lorentz force. This feature has been widely utilized in applying a
magnetic field to control flow and heat transfer by suppressing the fluid motion and
turbulence in the desired direction.

Switching to the more convenient index notation for turbulent flows described
in Cartesian coordinates and using the identity i jk lmk ≡ δilδ jm − δimδ jl , the
instantaneous Lorentz force can be written as

F̂ L
i = σ(− i jk Ê j B̂k + Ûk B̂i B̂k − Ûi B̂k B̂k) (4.93)

where, in general, all variables may fluctuate in time and space.
The Reynolds decomposition and averaging of Eq. (4.93) for RANS applica-

tions will result in a large number of terms (originating from triple products)
involving the velocity and magnetic-field fluctuations. However, cases in which

19 As appropriate for general vector fields and customary in the theory of electromagnetism, the direct (vector)
notation will be used briefly in introducing the subject.
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both fields fluctuate and exert influence on each other are encountered only in very
large-scale systems of interest within geophysics and astrophysics, such as planets,
stars and galaxies. For such situations, the momentum equations (with the Lorentz
force accounting for the magnetic effects on the velocity field) need to be solved
simultaneously with the magnetic induction equation for the magnetic flux, Bk ,
which contains the fluid velocity and its gradients (see e.g. Kenjereš et al., 2006b;
Kenjereš and Hanjalić, 2007). In industrial applications of MHD, such as electro-
magnetic control of flow and heat transfer in metallurgy and materials technologies
(e.g. crystal growth, magnetic-brake stabilization of continuous metal casting), as
well as in MHD generators, pumps or propulsion units, the far greater effect is that
of the Lorentz force on the fluid flow, whereas the feedback into the magnetic field
can usually be neglected. The parameter which identifies whether this is justified
or not is the magnetic Reynolds number ReM ≡ μ0σU L , where μ0 is the magnetic
permeability of the free space and 1/(μ0σ) is known as the magnetic diffusivity.
In industrial MHD, where liquid metals are the fluid media, flow velocities and
dimensions are relatively small (compared with those in geophysics and astrophys-
ics); hence, even for highly conductive fluids, ReM is of order unity or less. This
permits the neglect not only of any fluctuations in the magnetic field, but also of
the feedback of the velocity into the magnetic field.

The Lorentz force in the averaged momentum equation will then have the same
form as Eq. (4.93) but involving only the averaged velocity and magnetic flux, Ui

and B j . The contribution of the magnetic field to turbulence appearing through the
Lorentz-force fluctuation is

f L
i = σ( i jke j Bk + uk Bi Bk − ui B2

k ) (4.94)

where, just as for the mean field, the electric-field fluctuation can be expressed in
terms of the gradient of the fluctuating electric potential, e j ≡ −∂φ/∂x j .

Even when confining attention to one-way coupling (i.e. considering only the
Lorentz force effects and not the velocity feedback into the magnetic field, as
appropriate for low magnetic Reynolds number), accounting for the magnetic field
in closing the stress-transport equation, Eq. (2.17), requires several processes to be
modelled, as discussed below.

Magnetic contribution to the stress generation

Using the expression for the Lorentz force fluctuations, Eq. (4.94), the body-force
production term in the transport equation for the turbulent stress tensor, Eq. (2.18),

Mi j =
(

f L
i u j + f L

j ui

)/
ρ can be written as:

Fi j≡Mi j=σ
ρ

(
imn Bnemu j+ jmn Bnemui︸ ︷︷ ︸

Mi j1

+ Bi Bnu j un+B j Bnui un−2Bn Bnui u j
)︸ ︷︷ ︸

Mi j2

.

(4.95)
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Table 4.7 Contribution of magnetic production to the
components of the stress tensor in a plane channel flow of an

electrically conducting fluid, subjected to a uniform
transverse magnetic flux

u2
1 u2

2 u2
3 u1u2

Mi j1 −2B2u1e3 0 +2B2u3e1 −B2u2e3

Mi j2 −B2
2 u2

1 0 −B2
2 u2

3 −B2
2 u1u2

The importance of magnetic stress production compared with other terms
can be assessed by transforming the stress-transport equation (2.18) to non-
dimensional form using the characteristic length, velocity and magnetic flux
scales, L,U and B, respectively. Just as the non-dimensional viscous diffusion
term will contain (1/Re), permitting its order of magnitude to be evaluated, so
the non-dimensional magnetic production term Mi j will appear multiplied by
the so-called Stuart number (also known as the interaction parameter), N ≡
σB2L

/
(ρ0U ), which represents the ratio of the Lorentz and inertial forces.

Its physical meaning becomes clearer by noting that N ≡ Ha2/Re, where

Ha ≡ BL
√(
σ
/
ρ0ν

)
is the Hartmann number (the ratio of the Lorentz and

viscous forces) and Re is the flow Reynolds number. Thus, the importance of
the magnetic stress production Mi j will depend on the value of the Stuart
number or, more precisely, on the ratio of the magnetic field intensity defined
by the Hartman number, and the inertial forces represented by the Reynolds
number.

Returning now to the contents of Mi j , it is noted that the terms in brackets form
two groups. Clearly, the second term, Mi j2

, requires no modelling and, for a given
(imposed) magnetic flux Bi , it can be retained in its exact form using the available
stress components. However, the term Mi j1 involving correlations between fluctu-
ations in the electric field and velocity, ei u j , requires approximation. But, before
considering possible modelling options, let us examine the effects of both terms,
Mi j1 and Mi j2

, for the case of a plane-channel flow in the x1 direction, subjected
to a uniform transverse (wall-normal) magnetic field Bi = (0, B2, 0). The contri-
butions of Mi j1 and Mi j2

to the stress production, as follows from Eq. (4.95), are
summarized in Table 4.7. These show that the Lorentz force has no effect on the
stress component aligned with the magnetic flux. In contrast, the other two normal
stress components are affected, as is also the shear stress. It is interesting to note
that Mi j2

appears with a negative sign for all components, whereas Mi j1 takes

opposite signs in the equations for u2
1 and u2

3, the implications of which will be
discussed below.
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Further insight into the nature of the contribution of the exact term Mi j2
can be

gained by identifying the stress component aligned with the uniform magnetic flux
vector (here denoted as u2

B), and rearranging the terms (Naot et al., 1990):

Mi j2
= σ

ρ

[
−2

3
B2

k

(
2k − u2

B

)
δi j︸ ︷︷ ︸

M′
i j2

−2B2
k

(
ui u j − 2

3
kδi j

)
︸ ︷︷ ︸

M′′
i j2

+
(

B j Bkui uk + Bi Bku j uk − 2

3
B2

k u2
Bδi j

)]
︸ ︷︷ ︸

M′′′
i j2

. (4.96)

Since u2
B is unaffected by the Lorentz force, the first term, M′

i j2
, represents the

decay of turbulent kinetic energy (in fact the decay of the two normal-stress com-
ponents other than u2

B), forcing turbulence towards the one-component limit (see
§3.7.2). The other two terms are redistributive and have zero trace. Through the
first of these, M′′

i j2
, the magnetic field acts to make the stress field more isotropic,

whereas the second term, M′′′
i j2

, redistributes the stress components with respect to
the direction of the magnetic flux vector.

Turning now to Mi j1 , the challenge is in providing a model for the velocity–
electric-field correlation ui e j = −ui∂ϕ/∂x j . A closure consistent with the second-
moment approach would require the modelling and solution of a transport equation
for ui e j . This equation can easily be derived following the same steps as in deriv-
ing Eq. (2.18) for the stress tensor (i.e. by multiplying Eq. (2.17) for the ui velocity
fluctuation by ej and averaging, and then adding the same equations with the indi-
ces i and j interchanged). Unfortunately, very little is known about the behaviour
of ui e j and of the terms appearing in its transport equation. Naot et al. (1990)
argued that for the lowest order interactions (very low ReM ) as a first approxima-
tion the term Mi j1 involving ui e j correlations can be neglected. Kenjeres et al.
(2004) estimated the order of magnitude of different terms in the ui e j equation for
a low ReM and, after severe pruning, proposed the following first approximation:

− ui e j = ui
∂ϕ

∂x j
= cMε jkl Blui uk (4.97)

where cM is an empirical coefficient. The approximation on the right-hand side
of Eq. (4.97) has the same form as the terms in Mi j2

, and can be regarded as
a correction to this term if the induced electric field fluctuation is appreciable.
Indeed, this would imply that the electric field in the fluctuating Lorentz force,
fL = σ(e + u × B) × B, is assumed to originate from the current induced
by the velocity and magnetic field interactions, e ∝ u × B, i.e. e j ∝ ε jkluk Bl .
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Kenjeres et al. (2004) arrived at cM = 0.6 from an a priori evaluation of the total
magnetic contribution, Mi j , to the budget of the normal stress components using
the DNS database of Noguchi et al. (1998) for a plane channel subjected to two
different magnetic fields.20

Magnetic effects in the pressure-strain correlation Φi j3

Inserting the fluctuating Lorentz force, Eq. (4.94), into the Φi j3 term in Eq. (4.3)
provides some indication of the effects of the magnetic field on the total pressure-
strain correlation. However, just as in the case of other body forces and, indeed, the
mean rate of strain contribution, a formal integration of the two-point integral has
not proved to be a practical route forward. Closure proposals have thus adopted
tensorial expansions of greater or (more usually) lesser rigour, analogous to the
approximations made for other force fields (though no TCL analysis for the present
case seems to have been reported). It is noted, nevertheless, that the first proposal
forΦi j3 originated from an exact spectral analysis analogous to that of Crow (1968)
for Φi j2

. Schumann (1976) reported the numerical simulation of initially three-
dimensional, isotropic turbulence that evolves to a two-dimensional state when
subjected to a uniform magnetic field. He thus arrived at an IP model for the mag-
netic correction to the pressure-strain term. Although the derivation was performed
in spectral space for homogeneous anisotropic turbulence, Schumann argued that
the expression should be valid over all wave numbers (and thus applicable also
to one-point closures like RANS) and that the form (and, indeed, the coefficient,
0.6) was the same as for other (shear and buoyancy induced) contributions to the
pressure-strain process.

Aiming at more general, inhomogeneous flow configurations, Naot et al. (1990)
followed the route applied earlier for the mean-strain contribution,Φi j2 , and arrived
at a magnetic-field analogue of the hydrodynamic quasi-isotropic (QI) model (Naot
et al., 1973) discussed in §4.4.4.

Kenjeres et al. (2004) focused on wall-bounded flows and, just as in the Basic
Model for the pressure-strain term, adopted the simple IP model

ΦL
i j3

= −cL
3

(
Mi j − Mkkδi j

/
3
)

(4.98)

complemented by a wall-correction analogue of the Gibson and Launder (1978)
expression (4.14)

Φ
L ,w
i j3

= cL
3w

[
ΦL

km3
nknmδi j − 3

2

(
ΦL

ik3
nkn j+ΦL

jk3
nkni

)] k3/2

εxn
. (4.99)

20 A plane channel flow at Reτ = 150 subjected to a transverse and a longitudinal magnetic flux (both uniform),
characterized, respectively, by Ha = 6 and Ha = 20.
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4.6 Modelling the triple moments 131

The model coefficients, allowed to be variable, were evaluated with reference to
the above-mentioned DNS data of Noguchi et al. (1998). For that purpose an
algebraic version of the second-moment closure (obtained by setting all transport
terms to zero, see Chapter 7) was used to compute the turbulent stress compo-
nents which were compared with the DNS results. In order to reduce uncertainty,
the magnetic source terms Mi j , together with the model (4.97) with cM = 0.6,
were adopted from the DNS data. In this way, only the pressure-strain term was
exposed to testing. Initially, cL

3 was set to 0.6 as suggested by Schumann and the
tuning was focused on cL

3w. Subsequent fine tuning resulted in the recommendation
cL

3 = 0.6A1/2 and cL
3w = 1.2 (where A is the Lumley flatness parameter).

Of course, the model coefficients evaluated with reference to one simple flow
such as that of a fully developed plane-channel flow may not hold in more complex
situations. However, the two quite different orientations of the magnetic field do
provide some basis for model verification since their effects are quite different. A
longitudinal (streamwise) magnetic flux in a thin shear flow influences only the
velocity fluctuations, i.e. the turbulent stress components, but has no direct effect
on the mean flow since the magnetic flux is aligned with the mean flow velocity
resulting in a zero mean Lorentz force. In contrast, a transverse magnetic field
generates a mean Lorentz force aligned with the mean velocity, which does directly
affect the mean flow.

A further possible shortcoming in the above determination of the model coef-
ficients is that the available DNS data are for a rather low Reynolds number,
Reτ = UτD/2ν = 150, which corresponds to a bulk-flow Reynolds number of
about 4600. Nevertheless, the subsequent computations for a range of Re up to
105 showed satisfactory agreement with the available experiments, providing rea-
sonable confidence in the model (Kenjeres et al., 2004). It is noted, however, that
because MHD industrial applications are usually found in wall-confined flows, and
the magnetic field generally dampens the turbulence, low-Reynolds-number effects
become important. Thus, all computations of MHD flows discussed here have been
performed with a low-Reynolds-number second-moment closure accounting for
viscous and wall-blocking effects as considered in detail in Chapter 6. Illustrations
of MHD computations with a second-moment closure will thus be deferred to that
chapter, where comparison with both LES data and experiments are made.

4.6 Modelling the triple moments

Simple models of the triple moments have already been reported in §4.3 in order to
complete the closure of the stress-transport equations by way of the Basic Model
for pressure interactions. In most of the cases examined with such simple models,
the importance of the diffusive terms on the mean flow field was small. In the

https://doi.org/10.1017/9781108875400.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.006


132 Approaches to closure

present section more elaborate treatments are discussed even though they have not
always led to marked improvements in overall predictions of the mean field.

It is an interesting if unexpected historical feature of modelling the second
moments that most of the early papers also proposed the solution of transport
equations for at least some of the triple moments, for example Chou (1945); Davi-
dov (1961) and Kolovandin and Vatutin (1972). This level of complexity was at
least partly because of the influence of a paper by Millionshtchikov (1941), sug-
gesting that the quadruple moments (which appear in the third-moment equations)
could be satisfactorily approximated in terms of products of the second moments,
an idea which naturally appeared to make third-moment closure the most relia-
ble truncation level. That approximation will be re-examined in the course of this
section. It may be remarked here, however, that while elaborate models were pro-
posed, none was actually used: the advocates were armchair explorers! The first use
of triple-moment transport equations in numerical computations appears to have
been by André et al., (1976 1978) in modelling various aspects of the atmospheric
boundary layer. The relatively simple closure approximations made did not ensure
realizability but this group also devised a strategy known as the ‘clipping approx-
imation’ (André et al., 1979) which greatly assisted convergence. Essentially, at
every point, as iterations proceeded, the second-moment fields were tested to see

whether they satisfied the Schwarz inequality, i.e.
∣∣αβ∣∣ ≤

√
α2.β2. Where they did

not, the values were overwritten by the limiting value imposed by the inequality.
In presenting schemes for modelling the triple moments we shall largely be

reporting results from models that stop short of solving closed transport equations
for those quantities. Nevertheless, it will be helpful to start by presenting the exact
transport equations for those triple products. These are easily formed by noting that

Dαβγ

Dt
≡ αβ Dγ

Dt
+ γα Dβ

Dt
+ βγ Dα

Dt
(4.100)

where α, β, and γ denote instantaneous values of turbulent velocity, temperature or
concentration levels. The exact transport equation for the triple velocity products
(to which attention is limited here) is formed by following the path indicated above:

Dui u j uk

Dt
= u j uk

Dui

Dt
+ ui uk

Du j

Dt
+ ui u j

Duk

Dt
. (4.101)

After manipulation of the terms, this can be written as

Dui u j uk

Dt
= +

[
u j uk

∂ui ul

∂xl
+ ui uk

∂u j ul

∂xl
+ ui u j

∂ukul

∂xl

]
−
[

u j ukul
∂Ui

∂xl
+ ui ukul

∂U j

∂xl
+ ui u j ul

∂Uk

∂xl

]
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+ 1

ρ

[
u j uk fi + ui uk f j + ui u j fk

] + p

ρ

[
∂u j uk

∂xi
+ ∂ui uk

∂x j
+ ∂ui u j

∂xk

]
− ν

[
∂ui

∂xl

∂u j uk

∂xl
+ ∂u j

∂xl

∂ui uk

∂xl
+ ∂uk

∂xl

∂ui u j

∂xl

]

− ∂

∂xl

[
ui u j ukul + pu j uk

ρ
δil + pui uk

ρ
δ jl + pui u j

ρ
δkl − ν ∂ui u j uk

∂xl

]
(4.102)

or, symbolically

Dui u j uk

Dt
= P (1)i jk + P (2)i jk + Fi jk +Φi jk − εi jk + Di jk . (4.103)

Notice that, in contrast to the stress transport equation, here production arises both

from the mean strain
(
P (2)i jk

)
and directly from the stress field alone

(
P (1)i jk

)
. There

is also a contribution from any active force field (Fi jk). None of these processes
requires modelling if closure is at third-moment level. Then there are the processes
that do: the non-diffusive pressure interactions, Φi jk , the dissipative term, εi jk , and
the diffusive transport, Di jk . A common (though not universal) approach in this and
in other triple-moment equations has been to regard the convective transport term
on the left of the equation as negligible and seek rudimentary approximations for
the terms on the right of the equation (invoking the principle of receding influence,
§4.1). The following summarizes the principal approximations proposed.

(i) For Φιjk the same strategy is adopted as in the Basic Model for Φιj , namely a
linear return to isotropy (i.e. homogeneity) and a reduction of the production
terms:

Φi jk = −cuuu
1
ε

k
ui u j uk − cuuu

2

[
P(1)i jk + P(2)i jk + Fi jk

]
. (4.104)

The first term on the right contains, explicitly, the target quantity for approx-
imation and, if convective transport is discarded, that will move to the left
side of Eq. (4.103). Dekeyser and Launder (1985) suggest cuuu

1 ≈ 1
/

0.075
in order that for the simplest flows the diffusion term should be of the correct
magnitude while, for the reduction-of-production terms, in common with the
practice in the second-moment equations, a value of 0.5 was suggested.

(ii) For εi jk two simple practices have been adopted. André et al. (1978) assumed
local isotropy leading to

εi jk = 0. (4.105)

Dekeyser and Launder (1985) approximated the dissipative term via the
GGDH approximation in terms of gradients in the stress dissipation tensor
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and then assumed local isotropy, εi j = 2
3δi jε, to obtain finally:

εi jk = cuuu
ε

k

ε

∂ε

∂xl

[
ukulδi j + u j ulδki + ui ulδ jk

]
. (4.106)

(iii) The remaining term to be approximated, the diffusion term, Di jk, has in
the past usually been represented by the Millionshtchikov (1941) hypothe-
sis, strictly valid for a Gaussian distribution of the quadruple products which
meant that they could be represented as a sum of the quadratic products. Thus,
in terms of general variables:

αβγ δ = αβ · γ δ + αγ · βδ + αδ · βγ (4.107)

or, particularized to the case of the velocity products:

ui u j ukul = ui u j · ukul + ui uk · u j ul + ui ul · u j uk . (4.108)

The pressure-containing terms that also appear in Di jk (see Eq. (4.102)) have been
uniformly neglected. An argument against using Eq. (4.108) for the diffusion of
third moments is that the Gaussian distribution of the turbulent fluctuations on
which that approximation rests will be least accurate in regions where quadruple
products are most influential, i.e. where the turbulence is strongly inhomogeneous.

Kawamura et al. (1995) have made an interesting modification to the Million-
shtchikov hypothesis, arguing that, to model ui u j ukul , departures from Eq. (4.108)
should be accounted for by a gradient-transport model. Thus, they proposed:

−∂ui u j ukul

∂xl
≡ − ∂

∂xl

[
ui u j ukul − (ui u j · ukul + ui uk · u j ul + ui ul · uku j )

]
− ∂

∂xl

[
ui u j · ukul + ui uk · u j ul + ui ul · uku j

]
= cuuu ∂

∂xl

[
ulum

k

ε

∂

∂xm
ui u j uk

]
− ∂

∂xl

[
ui u j · ukul + ui uk · u j ul + ui ul · uku j

]
. (4.109)

In comparing the alternative practices actually used in computations, it is conven-
ient to identify them simply by way of the equation numbers of the relevant for-
mulae. Hanjalić and Launder (1972b) discarded convective transport and neglected
P (2)i jk on the grounds that diffusive transport in the stress-transport equation would
only be important where mean velocity gradients were weak (so mean-strain con-
tributions were discarded). Their algebraic model of stress diffusion (introduced in
§4.3.6, Eq. (4.21)) resulted from adopting Eqs. (4.104), (4.105) and (4.108):

ui u j uk = −cs
k

ε

[
ui ul

∂u j uk

∂xl
+ u j ul

∂ui uk

∂xl
+ ukul

∂ui u j

∂xl

]
. (4.110)
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Cormack et al. (1978) concluded that, of the models they considered, that ver-
sion achieved the best agreement with experimental test data. André et al. (1978)
who, as noted, solved the third-moment transport equations in computing the
atmospheric boundary layer, likewise retained Eqs. (4.104) (but with mean strain
and buoyant contributions neglected), (4.105) and (4.108). However, as remarked
above, as an override limiter, their software checked whether at any point the val-
ues returned for the triple moments violated the Schwartz inequality for the third
moments and, where they did, substituted the limiting values instead.

Dekeyser and Launder (1985) compared three versions with experimental data
of a plane jet bounded on one side by stagnant surroundings and on the other by
a moving stream (Dekeyser, 1982). The models considered were the Hanjalić–
Launder model noted above, a variant in which Eq. (4.106) was adopted for εi jk

rather than (4.105), and a further variant in which, in addition to the preceding
model for εi jk, P (2)i jk was also retained, both in its direct role in production and in
Eq. (4.104). For the active components (those for which stress diffusion is driven
in the cross-stream direction) Fig. 4.27 shows that all schemes mimic the general
shape of the measured profiles reasonably well, with the last of the above schemes
achieving, overall, the closest agreement. However, the levels recorded by all three
models were only 50% (or less) of the measured values on the side of the jet that
entrains stagnant fluid.

The above adaptation of the Millionshtchikov (1941) hypothesis by Kawamura
et al. (1995) was also adopted by Kidger (1999) for the case of a two-dimensional
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Fig. 4.27 Comparison of measured (Dekeyser, 1982) and modelled triple velocity
moments. Symbols, experiments; –·– · – Hanjalić and Launder (1972b); – – – HL
plus Eq. (1.7); ———— HL plus Eq. (1.7) and inclusion of P(2)i jk . From Dekeyser
and Launder (1985).
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Fig. 4.28 Geometry of the stably stratified mixing layer of Uittenbogaard (1988).

horizontal, stably stratified mixing layer between fresh and salt water (see also
Craft et al., 1997a). For this problem, as explained below, a refined treatment of all
the triple moments directly affecting the turbulent density fluctuations was vital to
obtain reasonable accord between experiment and computation. Thus, in addition
to the triple velocity moments (which were approximated using the GGDH), trans-
port equations were solved for the scalar-containing triple products θulu j , θ2ul

and θ3 – six equations in all for this two-dimensional flow – as these had a great
effect on the flow (the last of these arises as the term appears as an unknown
in the gravitational generation term of the θ2ui equation). Further details of the
modelling applied are given in Kidger (1999) and Craft and Launder (2002b, p.
418). The flow configuration examined is shown schematically in Fig. 4.28 with
the faster moving stream of fresh water flowing above a denser stream of saline
water. The initial computations of this flow were made with the Basic and TCL
second-moment closures discussed in earlier sections using the GGDH model for
second-moment diffusion in all equations. For that case the vertical normalized
concentration profiles measured at a station 40 m downstream from the end of
the splitter plate are shown in Fig. 4.29a. A superficial inspection of the computa-
tions suggests that the two second-moment closures are a good deal closer to the
experimental data of Uittenbogaard (1988) than the computations based on a k–ε
eddy-viscosity model. However, the second-moment computations also exhibited
a serious and quite unexpected anomaly: the maximum density at 40 m down-
stream was greater than that at entry while, correspondingly, the minimum density
was less than the entering value. That is, salt in solution was being removed from
regions where its concentration was lowest and transferred by turbulence to the
stream where it was already highest! This result, which was clearly not physically
credible, turned out to be due to the quite unrealistic predicted vertical salinity
flux profile, Fig. 4.30. The second-moment equations, closed with the TCL model
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Fig. 4.29 Normalized mean density profile in the stably stratified mixing
layer 40 m downstream of the origin. (a) Predictions using TCL and Basic
second-moment closure and the k–ε model. (b) Predictions using the TCL
second-moment (TCL 2) and partial triple-moment (TCL 3) closures. Symbols,
experiments (Uittenbogaard, 1988). From Kidger (1999).

plus the simple GGDH model for the diffusion of the salinity flux, led to the pre-
dicted vertical salinity flux shown by the broken line in Fig. 4.30. When, instead
of that simple diffusion model, the transport equations for the non-zero values of
the salinity-containing third moments noted above were solved, a quite different
density flux profile was returned (solid line), which was much closer to the mea-
surements. The resultant vertical variation of normalized salinity profiles shown
in Fig. 4.29b is not only in closer agreement with the experimental data in the
mixing-layer region, it also removes the unphysical under-and over-shoots at the
extreme boundaries. (Corresponding improvements also resulted from applying the
same triple-moment equations to the Basic Model but in that case, although much
reduced, the over- and under-shoots were not entirely eliminated.)

We note, finally, three other proposals for the triple moments that cannot be
expressed directly as simplified closures of the third-moment equations. Based on
kinematic arguments, Lumley (1978) developed the following expression for the
triple correlation said to be strictly valid in weakly inhomogeneous flows:

ui u j uk = − 1

3CL

k

ε

[
Gi jk + CL

4CL+5
9Giδ jk + G jδik + Gkδi j

]
(4.111)
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Fig. 4.30 Vertical salinity flux at x = 10 m in a stably stratified mixing layer.
Symbols, experiments (Uittenbogaard, 1988); – – – TCL closure adopting
GGDH approximation for triple moments; ——— TCL closure solving transport
equations for third moments containing θ . From Kidger (1999).

where

Gi jk =
(

ui ul
∂u j uk

∂xl
+ u j ul

∂ukui

∂xl
+ ukul

∂ui u j

∂xl

)
and Gi ≡ Gikk .

The similarities of the leading term with the HL model are evident. Lumley
(1978) originally proposed CL as a function of Ret , A2 and A3 though Schwarz
and Bradshaw (1994) chose a fixed value of 3.4 for the coefficient in their tests
of various models against their own data of two- and three-dimensional boundary
layers. With this choice, in some components it gave marginally better agreement
than the Mellor and Herring (1973) and HL schemes though, overall, all three
schemes were satisfactory.

Magnaudet (1992) argued that the foregoing proposals did not respect the two-
component limit (particularly in situations close to a free surface) and proposed
instead the following:

ui u j uk = −k

ε

[
cs1

(
ui ul

∂u j uk

∂xl
+ u j ul

∂ukui

∂xl
+ ukul

∂ui u j

∂xl

)
+ cs2

(
ui u j

∂ukul

∂xl
+ u j uk

∂ui ul

∂xl
+ ukui

∂u j ul

∂xl

)
+ 1

k
(ui u j · ukul + ui uk · u j ul + u j uk · ui ul)

×
(

cs3
∂k

∂xl
+ cs4

k

ε

∂ε

∂xl

)]
(4.112)
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Fig. 4.31 Illustration of predictions of triple velocity moment (left) and some of
the gradients (right) with different models for a plane-channel flow at Re = 5600.
From Hanjalić (1994).

where all four coefficients have non-zero values. Hanjalić (1994) re-tuned the
coefficients in this model for flow in a plane channel and obtained satisfactory
agreement with DNS data at Re = 5.600 with the following values: cs1 = 0.125,
cs2 = 0, cs3 = 0.03, cs4 = 0.09, Fig. 4.31.

Finally, mention is made of the proposal of Nagano and Tagawa (1991) based
on structural characteristics of shear-generated turbulence in which the level of
ui u j uk is determined from the skewness factors of the velocity fluctuations. Tested
in several types of two-dimensional flow, the method showed good agreement
with measurements. However, a disadvantage is that this approach requires solving
modelled transport equations for each non-zero component of the skewness factor,
u3
α.
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5

Modelling the scale-determining equations

It remains to provide a route for determining the dissipation rate of turbulence
energy, ε, which has appeared in all the modelled forms of second- and third-
moment equations presented in Chapter 4. A path is also required for calculating
the dissipation rate of θ2 that will be denoted εθθ . Since, however, contraction of the
Reynolds-stress tensor leads to (twice) the turbulent kinetic energy k (a scalar quan-
tity that has been used, along with ε, to provide a turbulent time scale k/ε ≡ T ),
the scale-determining variable, clearly, does not have to be ε itself. The subject
of the equation could, in principle, just as well be T and then ε could then be
obtained from ε = k/T . Or, equally, if one focused on the representative turbulent
energy-containing length scale, l, ε could then be obtained as k3/2/ l. Such alterna-
tive scales will be examined in §5.2. Indeed, in some circumstances one may decide
that it is desirable to employ more than one scale, possibly to characterize different
parts of the turbulence energy spectrum. Such possibilities form the subject of §5.3.
Finally, in §5.4, schemes for determining the appropriate scales for heat or mass
transport are briefly examined. First, however, attention is given to the question
of determining the energy dissipation rate directly from its own closed transport
equation. At second-moment-closure level, this approach has been adopted by the
great majority of modellers.

5.1 The energy dissipation rate, ε

In Chapter 3, the exact transport equation for ε was derived, Eq. (3.15), and the
physical significance and order-of-magnitude of the various terms appearing as
sources or sinks in the equation were discussed. Unfortunately, the conclusion
reached was that the equation was dominated by two terms: a vortex-stretching
process, caused predominantly by the turbulent motion itself, intensifying local
fine-scale velocity gradients and thus the level of ε, and a viscous dissipation proc-
ess that provided the primary sink in the equation. Both processes occur in the

140
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5.1 The energy dissipation rate, ε 141

very finest scales of turbulence present in the flow and are inaccessible to measure-
ment and, equally, to modelling via analysis. Moreover, as the turbulent Reynolds
number of the flow increases, these source and sink terms dwarf other terms in
the equation. However, the difference in magnitude between them remains small.
Thus, the central task in closing the equation is that of approximating that relatively
small difference! (The task of developing a model for ε in the immediate vicinity of
a wall, where the other processes in the equation are not all ‘dwarfed’ by those pri-
mary terms, poses just as challenging a task; however, that issue is deferred until
Chapter 6.) To proceed, one is driven to discard formal analysis in favour of the
more basic weapons: dimensional analysis, intuition and experimental data! It was
a limited form of such an approach that was applied in §4.3.7 to complete closure
with the Basic Model. To paraphrase what was said there: there must be at least one
source and one sink in the modelled transport equation for ε that are appropriately
coupled with the dynamic turbulence field in order to avoid the possibility of either
runaway growth of turbulence energy or, at the other extreme, of negative turbu-
lence energies being computed. In view of the foregoing, the ε transport equation
is written as:

Dε

Dt
= Sε1 + Fε − Sε2 + Dε (5.1)

where Sε1 contains mean velocity gradients the overall effect of which is normally
positive, Fε denotes force-field contributions (which may be positive or negative),
while Sε2 comprises purely turbulence quantities and, by virtue of the minus sign
that precedes it, is conveniently regarded as a sink. Finally, Dε denotes diffusional
transport of ε.

5.1.1 Effects of mean velocity gradients

In §4.3.7, the source affected by mean strain was provided by a term proportional
to the turbulent kinetic energy generation rate, Pk . This process is not the only way
of introducing mean-flow-deformation effects, however. Intuitively, it might seem
that the process of transferring energy across the spectrum from the large scales
to successively finer scales of turbulence (until viscous effects become sufficiently
large for energy dissipation to ensue) could be achieved with a model more in tune
with the actual processes taking place in the flow. In other words, by a model based
on a different type of mean-flow deformation than that which creates the turbu-
lent kinetic energy. Thus, initially, one may suppose that the positive source in the
ε-equation, Sε1, comprises ε itself divided by a time scale, which then multiplies
a series of terms – all dimensionless invariants – comprising products of velocity
gradients and, possibly, Reynolds stresses. It is convenient to express this series of
sources in terms of products of the three dimensionless second-rank tensors:
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ai j ; S̃i j ≡ k

ε
Si j ; W̃i j ≡ k

ε
Wi j . (5.2)

The general form of generation term containing mean-field-deformation terms for
an incompressible flow containing up to cubic products of the above tensors may
then be written as:

Sε1 = ε2

k
[α1amn S̃nm + α2 S̃mn S̃nm + α3W̃mnW̃nm + α4amkank S̃nm

+ α5amn S̃mk S̃nk + α6amnW̃mk W̃nk + α7 S̃mn S̃mk S̃nk + α8 S̃mnW̃mk W̃nk].
(5.3)

Note that terms containing the mean vorticity1 only appear in the equation where
quadratic products arise (linear or cubic terms in vorticity in Eq. (5.3) would give
rise to products which are zero).2 One may note from Eq. (5.3) that, in an incom-
pressible flow, the first term provides the conventional source proportional to Pk

(where α1 ≡ −cε1, the symbol used in §4.3.7, to which we shall henceforth revert)
when the mean field is incompressible. The second, with coefficient α2, would
be of the same form as the first if an eddy-viscosity assumption were made to
link the stress and strain fields. Second-moment closure thus provides an opportu-
nity to introduce a distinction between the two not available at the level of linear
eddy-viscosity modelling.

No strategies appear to have been devised for determining the unknown α-
coefficients other than that of comparison with experimental data and, even so,
workers who have ventured along this route have included only one of the terms in
addition to the leading term with coefficient α1 (i.e. −cε1). Perhaps the earliest pro-
posal of this type was made by Pope (1978). He specifically addressed the failure
of models at that time to predict the development of the round jet in stagnant sur-
roundings with the same values of the coefficients that satisfactorily reproduced the
growth of plane jets and other simple shear flows where turbulence energy produc-
tion and dissipation rates were of comparable overall magnitude. (This weakness
had first been identified by Rodi and Spalding, 1970.) Specifically, with the coeffi-
cients chosen to suit the plane jet and other strong shear flows, the predicted growth
of the round jet was some 35% greater than the experimental value then accepted.
To remedy this problem, Pope recommended the inclusion of the term with coeffi-
cient α8. He recognized that in a round jet the mean-flow vortex lines are stretched
as the jet spreads downstream while, in the plane jet, no such vortex-line stretching
occurs. In a non-swirling round jet the selected term is equal to:

1 Strictly, it is the mean rate of rotation, Wi j ≡ 1
2 (∂Ui /∂x j − ∂U j /∂xi ), that appears in Eq. (5.3), which is

related to mean vorticity through the identity Wi j ≡ − 1
2 εi jkΩk (note also Ωi = −εi jk W jk ).

2 Since up to cubic products of the second-rank tensors appearing in Eq. (5.2) may figure in Eq. (5.3), coefficients

α1 − α3 may depend on invariants such as A1/2
2 or S ≡

(
S̃mn S̃nm

)1/2
, etc., while α4 − α8 are constants.
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Fig. 5.1 The rate of spread of a round jet in a moving stream Symbols: Experi-
ment, Forstall and Shapiro (1950); – – – – – Basic Model with Pope correction
included; ——— Basic Model without correction. From Huang (1986).

1

4

[
k

ε

]3 [
∂U

∂r
− ∂V

∂x

]2 V

r
;

but, in a plane flow, the term is zero. So, in the round jet this extra mode of vortex
stretching would hasten the spectral transfer of energy, thus reducing the turbulence
energy and the spreading rate. By choosing α8= 0.79 the correct rate of spread was
achieved for both the round and plane jets.

The above conclusions were, admittedly, arrived at using a two-equation eddy-
viscosity model3; but it was subsequently found (Launder and Morse, 1979) that
the excessive spreading rate was even more severe when one switched to the ver-
sions of second-moment closure then available (specifically, for Φi j2, the Basic
Model and the Quasi-Isotropic model). Huang (1986), working with the Basic
Model, re-optimized the coefficient α8 to 1.13, which led to a half-radius spread-
ing rate of 0.086, the accepted value at the time.4 He found, however, that, while
the fully developed spreading rate was thus corrected, if calculations began with a
uniform velocity profile at the jet exit, the length of the potential core was substan-
tially longer than measured. Moreover, when the same model was applied to the
round jet in a co-flowing stream, Fig. 5.1 , the rate of spread with the correction
term included was substantially too slow, while the standard Basic Model faithfully

3 Until the late 1970s, modellers did not include the axisymmetric jet in the package of basic test flows for
second-moment closures because of mathematical problems of handling stress diffusion at the axis.

4 As reported more fully in §4.4.5, the experimental spreading rate for the round jet has more recently been
convincingly established as 0.095 ± 0.002, while the neglect within parabolic solvers of streamwise gradients
of source terms in the turbulence-model equations leads to an over-prediction of spreading rate which is more
severe for the round than the plane jet.
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Fig. 5.2 Development of a turbulent boundary layer in an equilibrium adverse
pressure gradient. Left: skin-friction coefficient; right: boundary-layer shape fac-
tor. Symbols: Experiment, Case C, Bradshaw (1967); Predictions: – – – – Basic
Model with standard ε-equation; —— Basic Model, including supplementary
vorticity source in ε-equation. From Hanjalić and Launder (1980).

captured the measured growth of the jet. Rubel (1985) has also reported that, when
the Pope correction was applied to the radial jet in stagnant surroundings, the
spreading rate was reduced to less than half the measured value. Thus, the pro-
posed modification lacked generality even for flows similar to that for which it had
been calibrated. As presented in Chapter 4, newer models ofΦi j used (as discussed
below) with modifications to the source and sink coefficients in the Basic-Model
form of the ε-equation come much closer to accounting for the round/plane jet
anomaly. Thus, a coefficient α8 in the range 0.1–0.2 may well prove sufficient
to bring complete agreement for the round jet in stagnant surrounding without
damaging repercussions in other flows.

A further modification to the ε-equation was proposed by Hanjalić and Laun-
der (1980), who effectively took just α3 (and α1) non-zero. In fact, in a straight
thin shear flow, the term with coefficient α3 takes the same form as the turbulence
energy production rate if the turbulent stress is approximated by a turbulent vis-
cosity and k-production via normal stresses is neglected. Thus, one may choose
the α-coefficients so that, in combination, they may augment the role of the nor-
mal stresses relative to the shear stresses (the underlying idea being that normal
straining might be more effective in reducing an eddy’s size than shear straining).
With cε1= –α1= 4.44 and α3 = 1.08 the authors obtained much improved predic-
tions of the round jet and a far better accord with experimental data in boundary
layers developing in a positive (adverse) pressure gradient. Figure 5.2, for example,
compares predictions obtained with the Basic Model with the measured devel-
opment of one of the equilibrium boundary layers reported by Bradshaw (1967);
evidently a much improved computation of the skin friction coefficient results with
the use of this extra term. Subsequently, however, Leschziner and Rodi (1981)
found that giving such a major role to W̃mnW̃nm led to serious undesirable effects
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in flows with recirculation and the use of the scheme has largely been discontinued.
Thus, the remarks made of Pope’s (1978) modification may also be applied to this
scheme. Namely, that on its own while the modification brought some significant
improvements to closures available in the 1980s, continued testing revealed situa-
tions where seriously worse agreement resulted. Again, with a much smaller value
for α3 (and with α1 taking a value much closer to its standard value), it is possible
that some contribution from the term may be helpful.

Other related approaches have simply retained Pk as the basic source of ε gen-
eration but have then made the coefficient cε1 a function of the second-invariants

of the dimensionless strain and rate of rotation introduced above: S ≡
√

S̃i j S̃i j ,

W ≡
√

W̃i j W̃i j (e.g. Speziale and Gatski, 1997). However, none of the functions
tested appeared to be suitable over a wide range of flows. By introducing sweep-
ing simplifications within the framework of the Renormalization Group Theory
(RNG), Yakhot and Orszag (1986) arrived at the same basic form of the equation
for ε, Eq. (4.27), but with somewhat modified coefficients.5 Subsequently, Yakhot
et al. (1992) introduced an additional source term based on a scale expansion for
the production of ε in terms of their variant of the non-dimensional strain-rate,

S∗ ≡
√

2S̃i j S̃i j (≡
√

2S) (chosen so that S∗ = (k/ε) dU/dy ≡ S in a simple shear),
which can be lumped together with the original production term with the joint
coefficient

cRN G
ε1 = cε1 − S∗ (1 − S∗/S∗

0

)
1 + βS∗3

. (5.4)

This extra term is designed to make the equation more sensitive to strain rate. The
reference strain rate S∗

0 is that typical of a homogeneous equilibrium shear flow, a
value of about 4.5 being suggested, while 0.012 is the value proposed for the coef-
ficient β (Yakhot et al., 1992). The results of including the correction have been
inconsistent, particularly poor agreement resulting for flows such as that through
a tube-bank and in other cases where normal straining plays a major role. A par-
tial explanation for the behaviour can be traced to the insensitivity of the term to
the sign of the (normal) strain rate Sαα; the term produces the same effect for the
same strain intensity irrespective of whether the flow is subjected to acceleration
or deceleration, to compression or expansion. For example, it has been applied
in conjunction with the Basic Model to flows in an axisymmetric contraction and
expansion at similar strain rates (S∗ = 62.2 and 86.6, respectively) and the result-
ing behaviour compared with the DNS results of Lee and Reynolds (1985). While
the standard model gives indifferent results for both cases, the RNG term led to
5 The RNG ε-equation was developed for use within an eddy-viscosity modelling framework, i.e. with the tur-

bulent diffusion term expressed in terms of eddy diffusivity, ∂(νt/σε∂ε/∂x j )/∂x j , as in Eq. (7.29) rather than
as in Eq. (5.11).
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improved agreement in the expansion, but produced even worse predictions of flow
in the contraction (Hanjalić, 1996; see also Hanjalić and Jakirlić, 2002).

As a result of the succession of unfulfilled ‘improvements’ to the source terms of
the ε-equation outlined above, the turbulence energy production, Pk , is usually the
only term containing mean velocity gradients retained in Sε1, prefixed by a constant
coefficient (or, at least, one not directly dependent on the mean-flow deformation).
Consequently, modellers have tended to look at other processes in the equation as
their target for improving the overall performance of the equation, a subject taken
up in §5.1.3.

5.1.2 Force field effects on the energy-dissipation rate

The exact transport equation for ε, Eq. (3.15), contains the following term arising
from force-field effects

Fε =
∑

n
2ν
(
∂ f n

i /∂xm
)
(∂ui/∂xm).

However, if a sizing of the term analogous to that made for the other terms in
Eq. (3.15) had been made, one would have concluded that the contribution made
by the force field (like that of the mean-strain terms) was negligible by comparison
with the vortex-stretching and dissipation terms in the equation. Nevertheless, if we
take the view that, really, one is trying to model the rate at which kinetic energy is
transferred across the spectrum by the successive breaking down of the large eddies
into smaller and smaller scales, it seems reasonable that any significant fluctuating
force field should make a contribution to that process. Indeed, in Rayleigh–Bénard
convection there is no turbulence generation by shear since the mean flow is sta-
tionary. Thus, in unstably stratified turbulence, the consequent intensification of
the turbulence would seem likely to promote eddy breakdown. It is presumably for
that reason that it has been common to model the force-field contribution to the
production of ε as directly analogous to that of the turbulence energy generation
rate by mean shear. Thus, it has usually been assumed that:

Fn
ε = cn

ε3Fn
k

ε

k
(5.5)

which is used often with the same value of coefficient as that for the mean-strain
generation term, cε1, though, as noted below, there have also been many variations
on this practice.6

6 Although adopting the same coefficient for shear and buoyant generation of ε is the usual practice, it should
be recognized that production of turbulence energy by mean shear is in most circumstances positive, whereas
buoyant production, in common with most other force fields, can be positive or negative. This fact lends
some support to those who have used different coefficients for the buoyant source depending upon whether
stratification is stable or unstable.
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Table 5.1 Overview of the exact force-field effects in the k-equation and their
modelled counterparts in the ε-equation

Coriolis Gravitational Electromagnetic effects
effects buoyancy effects

fi/ρ −2�numεimn ρ
′gi/ρ = −βgiθ

σ

ρ

(
εimnem Bn + un Bi Bn − ui B2

n

)
Fk = 1

ρ
fi ui 0 −βgiθui

σ

ρ

(
εimnemui Bn + ui un Bi Bn − 2k B2

n

)
Fε = cε3FkT 0 −cg

ε3βgiθui ε/k cL
ε3
σ

ρ

(
εimnemui Bn+ ui un Bi Bn−2k B2

n

)ε
k

We can now set out the implied models of the force-field source terms in the
ε-equation. First, it is noted that if we follow this approximation route for FR

ε ,
the additional dissipation source associated with coordinate rotation, we conclude
from Eq. (5.5) that, just as in the equation for the kinetic energy, the fluctuating
Coriolis force exerts no effect on the dissipation rate. That assumption has indeed
been made in most second-moment studies of rotating flows.

For thermally induced buoyancy, replacing fi from Eq. (4.73), and contracting
the term Gi j in Eq. (4.74) and dividing by 2, the force field source in the ε-equation
becomes

F g
ε ≡ Gε = cε3Gk

ε

k
= −cg

ε3βgi
θui

k
ε (5.6)

where β ≡ − (∂ρ/∂
)|P /ρ.
For magnetic-field effects, one can follow the same route as above. First, halving

the contraction of Eq. (4.95) gives the magnetic-field source in the kinetic energy
equation

F L
k = σ

ρ

(
εi jke j ui Bk + ui uk Bi Bk − 2k B2

k

)
(5.7)

from which the modelled contribution to the dissipation rate equation may be
inferred to be

F L
ε = cL

ε3

σ

ρ

(
εi jke j ui Bk + ui uk Bi Bk − 2k B2

k

) ε
k
. (5.8)

A summary of the different forms adopted in the dissipation equation for different
types of force field is provided in Table 5.1.

Thermally created buoyancy is the force field that has been the most extensively
examined. A range of values for the coefficient cg

ε3 may be found in the literature.
Depending on the type of turbulence model considered, values range from zero in
the work of André et al. (1978) and the simplified version of the Basic Model used
by Gibson and Launder (1976) to 0.8 by Hanjalić and Vasić (1993). The coefficient
in the mixed-layer study of Zeman and Lumley (1976) varies according to the
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stress anisotropy from a very small value in the unstable limit (where virtually all
the fluctuations are vertical) to unity in isotropic turbulence. In more recent work
(Craft et al., 1996a, 2004b; Kenjeres et al., 2004), there has been a trend to make
the coefficient cg

ε3 equal to cε1 (a choice that was made within the TCL closure
framework used for the buoyant shear flows shown in Figs 4.23 and 4.24 and the
plumes summarized in Table 4.6).

Nevertheless, it is acknowledged that the way buoyant sources are handled in
the ε-equation has not yet reached a settled state. For while cg

ε3 is now commonly
taken equal to cε1, the latter varies widely depending on whether other contributing
mean-strain or mean-vorticity terms are retained in Eq. (5.3) (which may cause the
value assigned to cε1 to be either much greater or much less than the value used
with the Basic Model of around 1.44) or, indeed, on the form of the sink term
in the ε-equation, considered below. These, however, are not factors that should
affect the way buoyant effects are handled! Moreover, Lumley (1978) indicated
two further terms that he suggested should contribute as buoyant sources of ε, one
of which appears never to have been tried while the other was tested just in the
Zeman–Lumley study of the mixed layer noted above.

Finally, we note that for magnetic effects, simply setting cL
ε3 equal to cε1did

not appear appropriate as the anisotropizing effect of the magnetic field close to a
wall (i.e. the selective damping of the component in the direction of the Lorentz
force) requires near-wall modifications. After examining several constant values,
Kenjeres et al. (2004) found that choosing a coefficient dependent on the stress-
anisotropy invariant, cL

ε3 = 6.5 min(A2, 0.25), provided satisfactory predictions
for a range of flows for different orientations of the magnetic field.

5.1.3 Modelling the sink processes in the ε-equation

Attention is now turned to the sink of ε, Sε2. In §4.3.7, that was taken as directly
proportional to ε2/k. While that form is still retained in several more recent clo-
sures, there is scope for making the sink depend in more subtle ways on the
character of the anisotropic stress tensor ai j . While that term has already appeared
in the source term, Eq. (5.3), only products of the stress anisotropy with mean-
flow deformation terms were retained. But, clearly, it is consistent with the level of
approximation of Eq. (5.3) to retain in Sε2 double and triple scalar products of ai j

alone: in other words, of A2 and A3. The first proposal of this kind was made by
Lumley and Khajeh-Nouri (1973). In fact, they omitted Sε1 entirely and took Sε2
as:

Sε2 = ε2

k
[1.865 − 3.74A2]. (5.9)

Thus, the stress anisotropy invariant was being used in place of invariants con-
taining mean velocity gradients as a source of ε. The underlying idea was that
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it was predominantly the anisotropy of the turbulent fluctuations that promoted
the breakdown of large eddies into successively finer ones. Arguably, these are
better correlated in terms of the stress anisotropy than mean-field deformation
parameters. The model was calibrated to give good agreement with experiment
for homogeneous shear and plane strain. However, when subsequently its potential
for use with inhomogeneous-flow solvers was explored (Zeman and Lumley, 1976;
Morse, 1980), the need to include mean-strain effects in addition to a dependence
of Sε2 on A2 became inescapable. Indeed, Morse found that within a parabolic or
‘marching’ solver with only Sε2 as a source (approximated in a form similar to
Eq. (5.9)), for a developing jet in stagnant surroundings the spreading rate exhib-
ited continual large-amplitude oscillations due to a too weak coupling between
the dissipation rate and the turbulence energy. This general problem has been
removed by re-introducing deformation invariants among which the generation rate
of turbulence energy remains the most popular.

Continuing research by the group at Manchester confirmed the essence of
Morse’s study, namely that one could not avoid using mean-strain invariants but
that the overall performance of the ε-equation could certainly be improved by using
the stress invariants too. Over the years, the form of ε-equation sink used by that
group has evolved to:

Sε2 = 1.92

(1 + 0.7A1/2
2 A)

ε2

k
(5.10)

with, as noted in the previous section, the source term, Sε1, taking the very simple
form adopted with the Basic Model, i.e. Sε1 = cε1εPk/k, except that the coefficient
cε1is reduced to 1.0.

The use of stress anisotropy parameters in Sε2 as indicated in Eq. (5.10) has
been found to widen considerably the range of free shear flows that may be cor-
rectly predicted. As was reported in Chapter 4, the use of the TCL model for
Φi j2 together with the above form for the source and sink terms in the ε-equation
achieved much closer accord with experiments for the round and plane jets in stag-
nant surroundings and the asymptotic wake than did the Basic-Model form of the
stress and dissipation equations (Table 4.4). For the non-equilibrium wakes exam-
ined experimentally by Wygnanski et al. (1986) equally favourable agreement has
been reported. In these experiments, by the use of different wake generators – in
one case an airfoil and in the other a strip held at right-angles to the flow – while
the wake momentum-thickness Reynolds numbers were the same, quite different
initial levels of turbulence energy and spreading rates were generated for the two
wakes, differences which persisted far beyond the range of the measurements. This
feature was quite successfully captured with the form of Sε1 and Sε2 noted above,
Fig. 5.3, whereas the Basic Model with the form of ε-equation presented in §4.3.7
gave virtually identical behaviour for the two wakes beyond about 50 momentum
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Fig. 5.3 Development of half-width and centre-line streamwise normal stress for
plane wakes with same Reynolds numbers created by different wake generators.
Symbols: Experiments: � Airfoil; � Solid strip; Lines: computations: (a) and (c):
Basic model with ε computed from Eq. (4.27) with constant coefficients; (b) and
(d) TCL model with ε sink from Eq. (5.10) and cε1 = 1.0. From El Baz et al.
(1989), see also Launder (1989).

thicknesses (θ ) downstream. In this case, it was the stress-invariant dependence of
Sε2 shown in Eq. (5.10) (rather than the TCL modelling for the stress field) that
was mainly responsible for the striking improvement.

5.1.4 Diffusion of ε

Finally, there is the diffusion of ε to consider. Here the great majority of schemes
have adopted the generalized gradient-diffusion hypothesis employed with the
Basic Model:
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Dε = ∂

∂xk

[
cε

kuku j

ε

∂ε

∂x j

]
(5.11)

with the diffusion constant, cε, being assigned a constant value of around 0.15.
However, there is a well-known weakness in the ε-equation for separated flows
near walls and even in boundary layers developing in an adverse pressure gradient
close to separation. There the near-wall levels of ε are found to be too low, lead-
ing to excessive predicted heat transfer rates to or from the wall, or to computed
boundary layers that do not separate when experimental data show clearly that they
ought to! This problem, which may be linked to weaknesses in the diffusion model,
does not arise if the scale-determining variable is, instead, chosen as ω, a quantity
proportional to ε/k, that has been extensively and successfully applied by Wilcox
(1993, 2000) to the prediction of many aerodynamic flows where the reliable pre-
diction of separation is vital. The difference between the ε and ω equations can be
linked to differences in the effective diffusion processes in the two equations. Fur-
ther examination of closures using the ω equation is provided in §5.2. If, however,
one remains with the dissipation equation, the usual practice has been to introduce
a near-wall source term specifically to raise the dissipation rate in situations where
the turbulent length scale k3/2/ε is appreciably above the local equilibrium level,
i.e. cl times the wall-normal distance. Thus, the so-called Yap correction (Yap,
1987) adds the term:

SYAP
ε = Max

[
0.83

ε2

k

(
l

cl xn
− 1

)(
l

cl xn

)2

, 0

]
(5.12)

where l ≡ k3/2/ε, cl= 2.44 and xn denotes normal distance from the wall (rather
than a tensor distance). Evidently, if l is greater than the equilibrium value, cl xn ,
the term acts to increase ε and thus to decrease the length scale. This form has
been successfully adopted when treating nearly plane surfaces but the use of the
normal distance limits its utility on highly curved or irregular surfaces. Jakirlić
and Hanjalić (1995) proposed replacing explicit reference to wall distance by the
gradient of length-scale normal to the wall:

SH
ε = Max

{
A
εε̃

k

[(
1

cl

∂l

∂xn

)2

− 1

](
1

cl

∂l

∂xn

)2

, 0

}
. (5.13)

Equation (5.13) was proposed in the context of a second-moment closure that
allows integration up to the wall (to be considered in detail in Chapter 6) and thus
involves the stress flatness invariant A and the so-called quasi-homogeneous dissi-
pation rate ε̃ (defined by Eq. (6.12)). As reported in Chapter 7, however, it can also
be used with an eddy-viscosity model if Aεε̃/k is replaced by 0.83ε̃2/k to match
the Yap correction, Eq. (5.12).
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Iacovides and Raisee (1997) proposed a similar expression in terms of length-
scale gradients that directly reflects the Yap formulation,

S IR
ε = max

[
0.83

ε2

k
(F − 1) F2, 0

]
(5.14)

where F ≡ [(
∂l/∂x j

) (
∂l/∂x j

)]1/2
/cl .

Again, both forms, (5.13) and (5.14), evidently raise the dissipation rate when
the gradient of the length scale exceeds that occurring in equilibrium near-wall
turbulence, cl . A somewhat more elaborate form has been used within the viscosity-
affected sublayer (Craft, 2002). Suga (2004a, 2004b) has employed Eq. (5.14) to
limit the near-wall length scale, together with the TCL model, in computing a num-
ber of separated flows. As an example, Fig. 5.4 compares the measurements of
mean velocity, turbulent shear stress and the square root of the normal stresses
downstream from a backward-facing step with the very detailed particle-tracking
velocimetry data of Kasagi and Matsunaga (1995). The flow Reynolds number is
5500 based on step height and centre-line velocity upstream of the step. Suga added
an elaborate model for pressure diffusion (noted in Chapter 4) but in this flow the
effects of the model of that process were minimal. For both versions, the accord
between experiment and the computed behaviour is remarkably close.

Hanjalić and Jakirlić (1998) also examined the prediction of flow downstream
of a back-step providing predictions over a twenty-fold range of Reynolds number
and for expansion ratios from 1.2 to 2.0. Their computations were based on the
Basic Model for closing the stress transport equations (both in the form presented
in Chapter 4 and in a version integrated to the wall to be presented in Chapter 6).
For the dissipation-rate equation the extra source given by Eq. (5.13) was adopted
throughout to provide the near-wall damping of length scale in separated regions.
That enabled the subtle changes linked to expansion ratio and Reynolds number in
both the length and shape of the separated flow zone behind the step to be captured
accurately, Fig. 5.5.

5.2 Other scale-determining equations

Over the years a number of other scale-determining variables have been proposed
in place of ε. One of the motives has been to derive and solve directly a transport
equation for a characteristic turbulence length or time scale, l or T (for which,
intuitively, the user is better able to sense a physically plausible variation than
for ε), or even for the effective turbulent diffusivity. Other motives for seeking an
alternative variable have been to adopt a quantity whose boundary conditions (e.g.
at a solid wall or at a free-surface) can be prescribed with less ambiguity; or to
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Fig. 5.4 Flow over a backward-facing step for an expansion ratio of 1.5. Symbols:
Experiment (Kasagi and Matsunaga, 1995); lines computations with and without
the inclusion of modelled pressure diffusion. From Suga (2004b).

provide an equation that is less prone to numerical instabilities than the ε equation,
i.e. one that is numerically more robust.

To provide an overview of the range of alternative choices that have been
explored, it is helpful to write the generic scale-determining variable as kmεn ,
denoted by Ψ . The transport equation for Ψ (for high Re numbers, thus neglecting
viscous and near-wall effects, and in the absence of body forces) is then supposed
to be described by:

DΨ

Dt
= (cΨ 1Pk/ε − cΨ 2)

εΨ

k
+ ∂

∂x j

(
νt

σΨ

∂Ψ

∂x j

)
+ SΨ (5.15)

where SΨ denotes additional sources that might be required to achieve satisfactory
agreement for the common generic flows. Most of the entries in Table 5.2 have
been made in the context of eddy-viscosity turbulence models while, at the other
extreme, Davidov’s (1961) third-moment closure provides transport equations for

https://doi.org/10.1017/9781108875400.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.007


154 Modelling the scale-determining equations

Fig. 5.5 Loci of dividing streamlines between recirculating and non-recirculating
flow and of zero streamwise velocity in plane backward-facing step flow. Depend-
ence on Reynolds number and expansion ratio. Symbols: Experiments or DNS
data; —— Computations using model integrated to wall; — – — – Computations
using wall functions (Ch. 8). Both computational strategies adopt Eq. (5.13). From
Hanjalić and Jakirlić (1998).

ui u j uk (i.e. the diffusion rate of ui u j ) and for both ε and its diffusion rate. The
earliest proposal for a scale transport equation was made by Kolmogorov (1942)
though his proposal for the quantity ω (which may be interpreted as ε/k) lacked
any source term from the mean velocity field and was never used for sheared flows.
The same variable, ω, has, however, repeatedly served as the subject of the second
scale equation, an extensive historical account being provided by Wilcox (2000).
The most widely applied version of the ω-equation was due to Wilcox (1988b).
As remarked above, when applied to two-dimensional boundary layers develop-
ing in adverse pressure gradients, that version has proved to be significantly more
reliable than the ε-equation (at least when none of the length-scale-damping prac-
tices discussed above was used with the latter equation). Moreover, it requires
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Table 5.2 Alternative choices of scale-determining variable

Model Ψ Dimension νt/cμ m n cΨ 1 cΨ 2

k − ε ε [m2s−3] k2/ε 0 1 1.44 1.92
k − ω ω = ε/k [s−1] k/ω −1 1 0.44 0.92
k − T T = 1/ω = k/ε [s] kT 1 −1 −0.44 −0.92
k − l l = k3/2/ε [m] k1/2l 3/2 −1 0.06 −0.42
k − kl kl = k5/2/ε [m3s−2] (kl)/k1/2 5/2 −1 1.06 0.58
k − ν̃t ν̃t = k2/ε [m2s−1] ν̃t 2 −1 0.56 0.08

little modification if one chooses or needs to carry the numerical solution all the
way to the wall (Chapter 6). The seemingly inconvenient wall boundary condition
ωw = ∞ can be easily dealt with by assigning a very large value to ω, or applying
a hyperbolic variation, ω ∝ 1/y2, at the first grid point. In consequence, the equa-
tion has been widely adopted in boundary-layer applications in aeronautics where
the reliable prediction of separation is essential. However, as reported in Wilcox
(2000) (his Table 4.5, p. 140), that original version of the equation was distinctly
unsuccessful in reproducing the behaviour of self-preserving free shear flows. A
major re-optimization of the coefficients was thus undertaken which, it is claimed,
retains the performance of the original for boundary-layer flows but achieves much
improved behaviour for free shear flows. This revised form of ω-equation may be
written as:

Dω

Dt
= αω

k
Pk − βω2 + ∂

∂x j

[(
νδi j + cωui u j

ω

)
∂ω

∂xi

]
(5.16)

where α= 0.52; β = 0.072[1 + 70χω]/[1 + 80χω] and

χω ≡
∣∣∣∣Wi j W jk Ski

(0.09ω)3

∣∣∣∣.
In fact, while the GGDH approximation has been inserted above for the diffusion
of ω, Wilcox’s (2000) prescription for this term was the usual simple eddy diffusiv-
ity model, i.e. where cωui u j/ω is replaced by 0.5k/ω. Indeed, the proposed form
for (5.16) has arisen from calibration within a two-equation linear eddy-viscosity
formulation; but Wilcox also recommends the same form for use within his second-
moment closure, Wilcox (2000). Notice that the product of vorticity and strain rate
appearing in χω is the same grouping as was used as a supplementary source term
by Pope (1978) to remove the plane jet/round jet anomaly. Wilcox (2000) specifi-
cally calibrated Eq. (5.16) to ensure that the plane jet, the round jet and the radial jet
all displayed a growth rate close to that of available experimental data. Whether or
not the indicated form is also satisfactory for the case of the round jet in a moving
stream (e.g. Forstall and Shapiro, 1950) apparently remains to be determined.
Nevertheless, Wilcox’s textbook reports a substantial range of near-wall flows, of
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both boundary layers and recirculating flows, that gives a good overall impression
of the capabilities and shortcomings of the equation when used with his closure of
the stress-transport equation.

Before leaving discussion of the ω equation, it has been reported (e.g. Menter,
1994) that the equation is undesirably sensitive to the free-stream boundary con-
dition. A non-zero value of k must be prescribed and the flow behaviour can be
highly sensitive to that value, even at levels where free-stream turbulence in prac-
tice has negligible effect. To escape that problem, Menter (1994) has proposed a
composite form which uses the ω equation close to a solid wall, but which trans-
forms into the ε equation away from walls by using a set of empirical blending
functions.

Of the other transport equations for the second variable, the earliest to be
applied to a range of free shear flows was the kl-equation proposed by Rodi and
Spalding (1970), based on the earlier derivation by Rotta (1951, 1968). However,
when that same approach was applied to simple near-wall boundary layers, it was
found that a substantial correction term had to be introduced to make the equa-
tion compatible with the semi-logarithmic mean velocity distribution close to the
wall, Ng and Spalding (1972). Consequently, the form has been subsequently little
used.7

How may one determine the ‘best’ scalar variable? Indeed, is there really a best
version or is it essentially a question of ‘horses for courses’? Evidently, a trans-
port equation for any chosen variable (i.e. for particular values of m and n) can be
derived from any other. For homogeneous flows (zero diffusion) these equations
are all equivalent since the source and sink terms are algebraic in form. However,
for inhomogeneous flows, the equations will differ in the diffusion term, and it is
this that predominantly leads to a range of performances from models adopting
different choices of Ψ .

If the ε equation is used as the basis for comparison, equations for other variables
(in combination with the k-equation) can be derived in the form (5.15) with the
coefficients of the source terms taking the values

cΨ i = m + ncεi (5.17)

where i may take the values 1 or 2 (for mean-strain production and viscous destruc-
tion). The resultant values of these coefficients for different choices for the physical
quantity Ψ is given in Table 5.2.8

7 More recently, Menter and Egorov (2010) have revived Rotta’s (1951) original kl model and included the
second derivative of the mean velocity (rather than the third derivative originally proposed by Rotta). For
presentational purposes the second-velocity derivative was re-expressed in terms of the von Karman length
scale, which was employed as an additional turbulence scale (hence, the label applied to the approach: ‘scale-
adaptive-simulations’. This topic is considered further in §10.6.)

8 The transformation of the scale equation from one variable to another is straightforward. First Ψ is
differentiated by parts:

DΨ

Dt
≡ D

(
kmεn)
Dt

= εnmkm−1 Dk

Dt
+ kmnεn−1 Dε

Dt
= m

Ψ

k

Dk

Dt
+ n

Ψ

ε

Dε

Dt
.
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5.3 Multi-scale approaches

Since the inclusion of a scale equation greatly widened the applicability of models
that had formerly had the length scale prescribed algebraically, perhaps the addi-
tion of a second scale equation could extend a model’s range of performance still
further. Moreover, the cost implications are negligible since, for a 3D flow, one is
already solving 11 differential equations even in an isothermal flow. So, why not
add a further scale equation to make it a round dozen? This was the line of thought
that appears to have led Schiestel (1974) (see also Gosse and Schiestel, 1974) to
suggest a closure in which a transported-scale equation was solved for the fine-
scale motion in addition to one for the large-scale, energy-containing motions. The
former variable (essentially the inverse square of the Taylor microscale) was used
in modelling the dissipative terms while a macro-length-scale equation (similar to
that used by Rotta, 1951) was solved to determine the effective diffusivity and in
forming a time scale associated with the ‘slow’ part of the pressure-strain term (if
stress-transport equations were solved). The cited references show applications to
a number of simple thin shear flows.

Subsequently, Schiestel, in collaboration with the present authors, formulated
a different multi-scale approach based on an informal partitioning of the energy

Replacing the material derivatives Dk/Dt and Dε/Dt by the right-hand sides of their respective equations
leads to

DΨ

Dt
= m

Ψ

k
(Pk − ε + Dk )+ n

Ψ

ε

(
cε1

Pkε

k
− cε2

ε2

k
+ Dε

)

or
DΨ

Dt
=
⎡⎢⎣(m + ncε1)︸ ︷︷ ︸

cΨ 1

Pk − (m + ncε2)︸ ︷︷ ︸
cΨ 2

ε

⎤⎥⎦ Ψ
k

+ m
Ψ

k
Dk + n

Ψ

ε
Dε

where Dφ ≡ ∂

∂x j

(
νt

σφ

∂φ

∂x j

)
.

This confirms Eq. (5.17) for the source-term coefficients. If, however, the turbulent diffusion of Ψ is to be
expressed simply in terms of its gradient as indicated by Eq. (5.15), the exact transformation from the k and ε
equations gives

DΨ

Dt
= cΨ 1

PkΨ

k︸ ︷︷ ︸
PΨ

− cΨ 2
Ψ (1+1/n)

k(1+m/n)︸ ︷︷ ︸
ΥΨ

+ ∂

∂x j

(
1

σε

∂Ψ

∂x j

)
︸ ︷︷ ︸
(DΨ σΨ /σε)

+SΨ

where

SΨ =
(

1 − σk

σε

)
m
Ψ

k
Dk+ νtΨ

σε

⎡⎣1 − n

n

(
1

Ψ

∂Ψ

∂x j

)2

− 2
m

n

(
1

Ψ

∂Ψ

∂x j

)(
1

k

∂k

∂x j

)
+ m (m + n)

n

(
1

k

∂k

∂x j

)2
⎤⎦ .

For convenience, irrespective of the definition of Ψ , one would like to omit the extra term SΨ , but for some
choices of m and n this leads to seriously inaccurate results even in simple generic flows. Thus, for example,
both the equations for l (m = 3/2; n = −1) and kl (m = 5/2; n = −1) require an extra term to return broadly
correct velocity profiles even for such simple cases as plane-channel or flat-plate boundary-layer flows.
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Fig. 5.6 The spectral division adopted in the split-spectrum concept.

spectrum, as illustrated in Fig. 5.6, Hanjalić et al. (1980). As with the original
strategy in Schiestel (1974), the goal was to address situations where the turbu-
lence was far from spectral equilibrium. For this purpose, the energy spectrum is
divided into a production region and a transfer region (see the discussion on this
subject in Chapter 3). Within the production region, turbulence energy is captured
from the mean flow but, while there is no direct dissipation of energy, there is a
spectral flow of energy from the region, due to the continual breaking down of
the eddy size (corresponding to an increase in wave number). Within the transfer
region there is, thus, an energy inflow from the production region, εP , but the gen-
eration by the mean strain is assumed negligible. The energy outflow from this
region, εT , is supposed to be equal to that directly dissipated, i.e. ε. The task,
in the present context, is thus to provide appropriate transport equations for εP

and εT .
The system of differential equations for the partial energies and the energy

transfer rate are written as:

DkP

Dt
= Pk − εP + DkP (5.18)

DkT

Dt
= εP − εT + DkT (5.19)

DεP

Dt
= cP1Pk

εP

kP
+ c′

P1kP
∂Ul

∂xm

∂Ui

∂x j
εlmkεi jk − cP2

ε2
P

kP
+ DεP (5.20)

DεT

Dt
= cT 1

εPεT

kT
− cT 2

ε2
T

kT
+ DεT . (5.21)

In the above, the diffusion terms were uniformly represented by the GGDH in the
form:

Dφ = 0.22
∂

∂xk

(
ukul

kP

εP

∂φ

∂xl

)
. (5.22)
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Notice that, in the εP equation, as in the single-scale approach of Hanjalić and
Launder (1980) considered in §5.1, a supplementary source of mean-strain energy
transfer is included. The coefficient of the sink term in that equation, cP2, may be
found from grid-turbulence decay. It is assumed that during the decay the spec-
trum reaches an equilibrium shape, i.e. that kP/kT does not change. Thus, with
kP ∝ k ∝ t−n , it is readily inferred that cP2 = 1 + 1/n. A value of 1.25 for n is
assumed giving an asymptotic value for cP2 of 1.8.

A choice that needs to be made prior to assigning values to the remaining model
coefficients is the proportion of the total turbulent kinetic energy contained in the
production and transfer regimes under equilibrium grid-turbulence decay. (Essen-
tially, this is equivalent to choosing where the boundary between the production
and transfer zones should be drawn.) Hanjalić et al. (1980) chose kP equal to kT in
that grid-turbulence-decay limit. This is the smallest value of kP/kT found since,
in situations where there is a direct production of energy, this will have the effect
of increasing kP relative to kT .

It is also noted that, with a split-spectrum approach, the value of kP/kT and the
ratio of the two energy transfer rates are both available as further dimensionless
parameters of which the coefficients could be made dependent. This flexibility was
introduced into the coefficients cP2 and cT 1. The complete set of coefficients chosen
for the energy-transfer equations is:

cP1 = 2.2; c′
P1 = −0.11; cP2 = 1.8 − 0.3

kP − kT

kP + kT
; cT 1 = 1.08

εP

εT
; cT 2 = 1.15

The above set of equations was solved for a number of test cases in conjunction
with essentially the stress-transport equations from the Basic Model presented in
Chapter 4. With the multi-scale scheme, however, εP/kP was used as the inverse
time scale both in the slow part of the pressure-strain term, Φi j1 (Eq. (4.7)), and in
the diffusion model (Eq. (4.19)), while εT was adopted in the stress dissipation rate
(Eq. (4.17)).

The application of the scheme to the evolution of grid turbulence through a sharp
area contraction brings out clearly the potential of the method in accounting for
rapidly developing flows. The test case for which results are shown in Fig. 5.7 is the
one-dimensional flow of grid turbulence through a 4:1 area contraction followed by
its subsequent decay in the absence of further straining, Uberoi (1957). To remove
any contribution of possible closure weaknesses in the stress-transport equations,
simply the four basic equations for kP , kT , εP and εT were solved with the mean
velocity field and the turbulent stresses appearing in the production term of the kP

and εP equations being directly supplied from the experimental data. Figure 5.7a
indicates that in the initial decay phase at uniform velocity εT is larger than εP but
that, in the flow-contraction region, because of the action of mean-strain generation
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Fig. 5.7 Two-scale model of turbulence energy development in 4:1 contraction
(from Hanjalić et al., 1980). (a) Energy transfer rates, (b) turbulence energy
levels.– – – – Experiment, Uberoi (1957); —— Two-scale model; · · · · · · · · ·
Single-scale model.

in its source term, εP rapidly increases to nearly twice that of εT . Finally, as the
flow continues downstream at uniform velocity, εT decays less rapidly than εP as
the turbulent field gradually reverts towards equilibrium decay. The effects of the
changing relative values of εP and εT on the turbulent kinetic energy are shown
in Fig. 5.7b. Recall that the model coefficients were chosen so that in equilibrium
grid-turbulence decay the same energy levels would be found in the production
and transfer parts of the spectrum. On the application of the streamwise straining
due to the flow contraction kP rises sharply, while kT undergoes a later and much
weaker increase. When the two component parts of the energy are added together,
one finds an evolution of k closely in accord with the experiments. By contrast, the
corresponding computations with a single-scale system exhibit a too slow rise of k
in the strained region and thereafter a too slow decrease.
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Fig. 5.8 Computations of pulsed round jet from Bremhorst et al. (2003). Sym-
bols: Experiments, Bremhorst and Gehrke (2000); Lines: Computations. (a)
Two-scale model; (b) TCL model.

The model has also been applied to the pulsed jet studied experimentally by
Bremhorst and Gehrke (2000). In Bremhorst et al. (2003), those data were com-
pared with predictions obtained with the split-spectrum approach and with the TCL
model. This pair of schemes was chosen as each model predicted with tolerably
small error both the steady round and plane jets in stagnant surroundings (i.e.
they essentially resolved the round/plane jet anomaly). Figure 5.8 compares the
jet spreading rate at many points through the cycle for five stations downstream,
the experimental data being shown as symbols. Evidently, the multi-scale scheme
is far more successful than the TCL scheme in capturing the observed behaviour of
the pulsed jet. Further comparisons of this test flow were later made by Kim et al.
(2008), essentially confirming the conclusions of the earlier computations.

Other applications of the model to steady flows, both to free shear flows and
to boundary layers in adverse pressure gradients, are reported by Hanjalić et al.
(1980). The model’s performance, while better than earlier single-scale stress-
transport models, showed hardly any difference from the results of the single-scale
scheme developed in parallel by Hanjalić and Launder (1980), which, as noted
above, also included the supplementary source with coefficient c′

P1. The reason
that the single and multi-scale model gave nearly the same results became clear
on examining the distribution of turbulent kinetic energy between the production
and transfer regions: in shear flows some 90% of the energy resides in the pro-
duction region – so that, in steady shear flows, the multi-scale model effectively
acts as a single-scale scheme! This behaviour is not an inevitable consequence of
the approach. However, to keep a larger proportion of the energy in the transfer
region under steady shear requires shifting the boundary between the production
and transfer regions to lower wave number and consequently abandoning the idea
that mean strain exerts no effect on turbulence in the transfer region.
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Over the years following the original development of the multi-scale model,
Schiestel’s group (Schiestel, 1987; Gleize et al., 1996; Chaouat and Schiestel,
2005, 2007; Schiestel and Dejoan, 2005) have made further contributions to devel-
oping multi-scale models. Their focus has especially been that of placing the
energy-transfer equations on a more precise analytical base both for RANS clo-
sures as discussed here and within the context of LES (and also models that
adopt a blending of the two approaches, as considered in Chapter 10). Schiestel’s
(2008) textbook provides an overview. The general case developed by Schiestel
has included multiple spectral slices though in practice, in actually applying the
scheme, just two slices have been used, as in the originally conceived model. A
further elaboration has been a proposal to solve separate stress-transport equations
for the large-scale and fine-scale parts, Schiestel (1987). While the scheme led to
interesting predictions for one-dimensional flows, it is doubtful whether in com-
plex three-dimensional flows it would be seen as worthwhile to solve transport
equations for two second-rank tensor quantities.

Following Schiestel (1987) and Clark and Zemach (1995), Cadiou et al. (2004)
have also developed a multi-scale model based on the integration of a presumed
spectral distribution of energy in conjunction with second-moment closure. In
contrast to Schiestel’s (1987) strategy of spectrally splitting the stress tensor, the
turbulent stress tensor was considered in its integral form in which the sink terms
were represented by the stress dissipation rate (modelled analogously to the single-
scale model, Eq. (4.17). The spectral transfer εP was used in combination with the
kinetic energy, k, to define the time scale employed for modelling the pressure-
strain and turbulent diffusion for the stresses. The two-scale variables, εP and
εT , are obtained from separate equations analogous to Eqs. (5.20) and (5.21). In
fact, while the εT equation closely resembled Eq. (5.21) (but with a production
term, c′

T 1PkεT /k, included), Cadiou et al. also explored an alternative equation for
kl ≡ k5/2/εP , from which εP could be obtained.9 For homogeneous flows the kl
and εP equations are convertible one from another, though a difference may appear
depending on the treatment of the sink term, i.e. whether and in which form εT is
used. For more discussion, see Stawiarski and Hanjalić (2005). An eddy-viscosity
variant of the model was also considered, which solves a transport equation for the
total kinetic energy, k, instead of ui u j , in combination with the two-scale equations.

The k − kl − εT model was applied to the 4:1 contraction considered above and
returned very nearly the same results as the original four-equation split spectrum

9 Starting from the wave-number weighted integral of the energy spectrum I (m) = ∫ +∞
0 κm E(κ)dκ , different

scale integral equations can be obtained for various values of the parameter m. It is readily seen that for m = 1,
the integral equals the kinetic energy, k, for m = 2, it gives εT , whereas for m = −1, it provides the product of
kinetic energy and the length scale, kl. Replacing l by k3/2/εP and using the k-equation leads to the transport
equation for εP that can be written in a form that closely resembles Eq. (5.20) (though without the second term
on the right-hand side).
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Fig. 5.9 (a) Turbulent kinetic energy and (b) scale variables, εP and εT , in a
plane-strain distortion. Symbols: Experiments: Gence and Mathieu (1979); Lines:
computations with the k − εP − εT model (from Cadiou et al., 2004).

model of Hanjalić et al. (1980) that appeared in Fig. 5.7. The second example,
shown in Fig. 5.9, is the plane-strain experiment of Gence and Mathieu (1979).
Here grid-generated turbulence is passed through a constant area duct in which the
initially elliptic cross-section changes gradually to circular and then reverts back
to the original elliptic cross-section. The wind tunnel was constructed so that at
the circular cross-section the downstream portion of the duct could be rotated on
its axis relative to the upstream portion so there was the possibility of the flow
being strained in a different sense than in the first half. Two cases were consid-
ered, corresponding to a duct rotation of zero and 90 degrees. The predicted kinetic
energy evolution shown on the left shows very close agreement with experiments
for both cases, while the two-scale variables shown on the right illustrate the scale
dynamics.

To offer an overall assessment, despite the clear conceptual merit of including a
multi-scale approaches to account for large departures from spectral equilibrium,
it has only been in rapidly deformed and periodic flows that the power of the
approach has shown unequivocal advantages over single-scale schemes. Moreover,
it seems likely that the forms currently used are still some way from optimal.

5.4 Determining εθθ , the dissipation rate of θ2

In principle, one would expect to use some broadly similar route to those discussed
in §5.1 and §5.2 when the process of interest is heat or mass transfer through a fluid
in turbulent motion – that is, a scale equation for εθθ or some equivalent. However,
if we exclude force-field effects, thermal turbulence owes its existence to dynamic
turbulence created by deformations of the mean velocity field; so there would seem
to be an argument for using the dynamic field to provide the time or length scales
for the thermal turbulence, too. In fact, different views are found in the literature as
to whether one may satisfactorily approximate thermal turbulence scales by way of
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the dynamic scales. The present brief account thus attempts to provide an overview
of strategies applied.

The early attempts to model the decay of temperature fluctuations via transport
equations considered homogeneous, nearly isotropic turbulence decay, e.g. Lumley
and Newman (1977). The feature of the scalar turbulence especially considered
was the fact that r ≡ kεθθ/(θ2ε), the dynamic-to-scalar time-scale ratio10 (which
could be made to take very different values at the start by altering the spacing of
heated wires in the turbulence-generating grid array, Warhaft and Lumley, 1978),
subsequently evolved only very slowly downstream.11 Newman et al. (1981) and
Elghobashi and Launder (1983) and many later workers thus adopted a transport
equation for εθθ of the form:

Dεθθ
Dt

= −cεθ2

εθθ

θ2
θu j

∂


∂x j
−cεθ3

ε2
θθ

θ2
−cεθ4

ε εθθ

k
+ ∂

∂x j

(
cεθu j uk T

∂εθθ

∂xk

)
. (5.23)

Newman et al. (1981) showed that provided cεθ3 was greater than unity, in the
absence of mean temperature gradients the equation did lead to the time-scale
ratio approaching an asymptotic equilibrium; but, because experiments showed that
that approach was only very slow, the coefficient should only be slightly greater
than unity. The values adopted in Elghobashi and Launder (1983) for the above
coefficients are:

cεθ2 = 2.0; cεθ3 = 1.1; cεθ4 = 0.8; cεθ = 0.35

where the time-scale T was taken as the purely thermal scale, i.e. T = Tθ ≡ θ2/εθθ .
The same time scale was also used in the slow part of the pressure-temperature-
gradient correlation which had the effect (compared with using a mixed thermal-
dynamic time scale) of halving the recommended decay coefficient, cθ1 (cf. the
discussion in connection with Eq. (4.8)), to a little over 2.0 (i.e. of bringing it closer
to the corresponding return-to-isotropy coefficient in the stress-transport equation).

Jones and Musonge (1988) considered the more general case where mean veloc-
ity gradients were also present. Their equation is similar in form to that given above
though because they included shear flows in the range of test cases, a term con-
taining the turbulence energy generation rate was included. Moreover, in the term
containing mean temperature gradients, the dynamic time scale was preferred to
the thermal time scale:

10 The reciprocal of the above time-scale ratio is also frequently used, R ≡ (θ2/εθθ )/(k/ε).
11 Other examples of non-universal time-scale ratios where shear and/or buoyancy play substantial roles are cited

by Newman et al. (1981).
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Dεθθ
Dt

= cεθ1

εθθ

k
Pk − c′

εθ2

ε

k
θu j

∂


∂x j
− cεθ3

ε2
θθ

θ2
− cεθ4

ε εθθ

k
+ ∂

∂x j

(
cεθ

k

ε
u j uk

∂εθθ

∂xk

)
(5.24)

with: cεθ1 = 1.4; c′
εθ2

= 1.6; cεθ3 = 1.0; cεθ4 = 0.9 cεθ = 0.22.

They applied the above equation within a second-moment closure to a range of
homogeneous and inhomogeneous simply sheared flows with impressive results.
A similarly wide range of free flows was successfully examined by Craft (1991)
also using a version of Eq. (5.24) in conjunction with the TCL closure (see Craft
and Launder, 1989, 1991) in which:

cεθ1 = 2.6/r ; c′
εθ2

= 1.6/r ; cεθ3 = 1.0 f ; cεθ4 = 0.92 f ;
cεθ = 0.18 where f =

(
1 + 1/2 A1/2

2 A
)−1
.

Moreover, in the first term on the right of Eq. (5.24), instead of strictly the produc-
tion of k, Craft (1991) found that the eddy-viscosity form of Pk , i.e. νt(∂Ui/∂x j )

2

gave overall better results.
While the above studies had examined exclusively free flows, several groups

in Japan (notably those of the late Professors Nagano and Kasagi) have addressed
problems of heat transfer through wall-bounded shear flows for a variety of thermal
boundary conditions and Prandtl numbers in which a transport equation for εθθ
has been solved. The focus has been almost exclusively on flows for which DNS
data are available to assist the calibration of the various terms requiring modelling,
with especial focus being given to the low-Reynolds-number sublayer. This work
has been summarized in some detail by Nagano (2002) in a chapter of the book
edited by Launder and Sandham (2002). For that reason no attempt is made to
repeat that coverage here. It is worth noting, however, that some of the source-
term coefficients are assigned substantially smaller values than in the free shear
flow models discussed above; for example, the high-Reynolds-number asymptotes
proposed by Nagano (2002) are:

cεθ1 = 0.77; cεθ2 = 1.8; cεθ3 = 1.0; cεθ4 = 0.9.

Despite the considerable research efforts summarized above, a large proportion
of the CFD community still prefers to prescribe the thermal to dynamic time-
scale ratio rather than solve a transport equation for εθθ . While acknowledging
that such simplified approaches cannot deal with extreme situations such as the
grid-turbulence decay with different initial levels of r , it is felt that, for the major-
ity of flows, a simpler algebraic approach offers a satisfactory and less costly route.
The use of a constant time-scale ratio (Spalding, 1971) is now recognized to have
only limited use but later contributions have linked values of r to stress or heat-flux
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invariants. For example, Craft et al. (1996a) recommended:

r = 1.5 (1 + A2θ ) ; A2θ ≡ (
θui

)2
/kθ2 (5.25)

a version currently widely used for free shear flows, including flows substantially
modified by buoyancy. Indeed, that approach is now generally preferred by the
Manchester group to the transport-equation strategy of Craft and Launder (1989)
noted above.
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6

Modelling in the immediate wall vicinity and at low Ret

6.1 The nature of viscous and wall effects: options for modelling

The turbulence models considered in earlier chapters were based on the assumption
that the turbulent Reynolds numbers were high enough everywhere to permit the
neglect of viscous effects. Thus, they are not applicable to flows with a low bulk
Reynolds number (where the effects of viscosity may permeate the whole flow) or
to the viscosity-affected regions adjacent to solid walls (commonly referred to as
the viscous sublayer and buffer regions but which we shall normally collectively
refer to as the viscous region), which always exist on a smooth wall irrespective
of how high the bulk Reynolds number may be. In other words, while at high
Reynolds number, viscous effects on the energy-containing turbulent motions are
indeed negligible throughout most of the flow, the condition of no-slip at solid
interfaces always ensures that, in the immediate vicinity of a wall, viscous contri-
butions will be influential, perhaps dominant. Figure 6.1 shows the typical ‘layered’
composition for a near-wall turbulent flow (though with an expanded scale for the
near-wall region) as found in a constant-pressure boundary layer, channel or pipe
flow. Although the thickness of this viscosity-affected zone is usually two or more
orders of magnitude less than the overall width of the flow (and decreases as the
Reynolds number increases), its effects extend over the whole flow field since, typ-
ically, half of the velocity change from the wall to the free stream occurs in this
region.

Because viscosity dampens velocity fluctuations equally in all directions, one
may argue that viscosity has a ‘scalar’ effect. However, turbulence in the proximity
of a solid wall or a phase interface is also subjected to non-viscous damping aris-
ing from the impermeability of the wall and the consequent reflection of pressure
fluctuations. This ‘wall-blocking’ effect, which is also felt outside the viscous layer
well into the fully turbulent wall region, directly dampens the velocity fluctuations
in the wall-normal direction and thus it has a ‘vector’ character. A good illustration

167
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Fig. 6.1 Velocity distribution and the characteristic flow regions in a constant-
pressure boundary layer. Left: a linear plot normalized with the free stream
velocity U0 and boundary-layer thickness δ. Right: the same profile in a semi-
log plot U+ = U/Uτ = f (yUτ /ν), with experimental data of Wieghardt (1943),
Reθ = 15, 570, and a computation with a WIN model.

of this effect is the reduction of the surface-normal velocity fluctuations that has
been observed in flow regions close to a phase interface, where there are no viscous
effects, for example the DNS of Perot and Moin (1995).

Non-viscous wall effects have already been recognized in Chapter 4 where the
influence of the wall was accounted for by adding (for the simple linear mod-
els) ‘wall-echo’ corrections to the pressure-strain term, associated with the surface
integral in the Poisson equation for pressure, Eq. (4.3), or by imposing empirical
constraints (such as via the stress invariant A which vanishes in the two-component
limit at a wall). The direct effect of the wall on turbulence becomes ever stronger,
however, when approaching even closer to a rigid surface through the viscosity-
affected layer. Thus, if the governing equations are to be integrated up to the wall
(hereafter, the Wall-INtegration or ‘WIN’ strategy), in addition to including vis-
cous effects, a number of other modifications to the turbulence models need to be
introduced to account properly for the impact on the turbulence that a solid wall
imposes.

Yet, provided that flow conditions are not too extreme, a popular approach that
avoids the complications of the viscous region and the need for modifying the high-
Re form of the turbulence models is commonly adopted. It draws on the fact that
the important mean and turbulent flow quantities are nearly functions just of the
normal distance from the wall (provided that all variables are non-dimensionalized
by the wall shear stress, the density and the fluid viscosity). Thus, in making cal-
culations of flow over rigid surfaces, all the dependent variables appearing in the
closure scheme are matched to the ‘universal’ values at some point beyond the
viscous region. In this way the viscosity-affected region is ‘bridged’ and, instead
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Fig. 6.2 Illustrations, from left, of computational grids for integration up to the
wall (Wall Integration, WIN) and for wall functions (WF), with a typical velocity
distribution and wall-nearest grid node P used in the WF approach.

of exact boundary conditions at the wall, these are replaced by conditions at the
first grid node (lying outside the viscosity-affected layer) using a set of algebraic
relations or wall functions (WF). These wall functions may be obtained either by
prior integration of much simplified forms of the governing equations (momentum,
energy, turbulence quantities) or by using experimental or DNS information about
the variation of mean velocity, temperature or other scalars (plus the required tur-
bulence variables) in terms of the non-dimensional wall distance and wall shear
stress. This approach has long been regarded as an appealing, economical alterna-
tive to integration up to the wall, because – in principle – it makes it possible to use
unmodified high-Re models and a much coarser computational grid than is needed
to solve the flow and turbulence equations all the way to the wall. The two options
are illustrated in Fig. 6.2.

The near-wall region is insufficiently universal, however, for the above approach
to be satisfactory in all circumstances. Transpiration through the wall, steep stream-
wise pressure gradients, buoyancy, swirl (as, for example, near a spinning disc)
and steep temperature gradients (due to large imposed wall heat fluxes or frictional
heating) are some of the influences that may cause this region to differ from its
so-called universal behaviour that is presumed to apply in the chosen wall func-
tion. Many other situations are even more critical, for example, separated and
re-attaching flows.

The surest way to account for such influences is to extend the calculations up
to the wall itself; but as implied above in the left illustration of Fig. 6.2, such
computations require many more grid points clustered in the vicinity of the solid
walls, frequently requiring an order-of-magnitude increase in computation time.
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170 Modelling in the immediate wall vicinity and at low Ret

At the practical level there is thus always an issue of whether it is better to save
computational cost and turnaround time (or, equally, to use the computational time
saved by covering the main part of the flow with a finer grid). In fact, the newer
wall functions, considered in Chapter 8, can cope reasonably well with many of
the complex flow features that lie beyond the scope of the original wall-function
approaches. For flow situations that cannot be thus modelled, however, the WIN
treatment to be presented in this chapter is advocated.

6.2 The structure of the near-wall sublayer

6.2.1 Wall-limiting behaviour of the Reynolds-stress
and stress-dissipation components

For flows parallel and very close to an impermeable wall the rates of change of
fluid velocity in the streamwise and spanwise directions (here denoted as x1 and
x3, respectively) are small compared with the steep variation normal to the wall.
The fluctuating velocity can then conveniently be expanded in a Taylor series in
terms of the wall-normal coordinate x2, i.e.1

ui (x2, t) = ai + bi x2 + ci x
2
2 + di x

3
2 + · · · (6.1)

where coefficients ai , bi and ci are random functions of time and x1 and x3 (but
not of x2) with zero mean values. For flows in the continuum regime there is no
relative velocity between a rigid, impermeable surface and the fluid in contact with
it. This constraint applies not simply to the mean velocity in a turbulent flow but
to the fluctuating turbulent velocities too, so that ai = 0 in all fluctuating velocity
components. Consequently, the Reynolds stresses all go to zero at the wall and
thus the shear stress transmitted between the fluid and the wall must be exerted by
viscous action alone, just as in a laminar flow. The turbulent velocity components
do not all increase in a similar way as one moves away from the wall, however.
Now, the continuity equation for the velocity fluctuations in an incompressible flow
is divergence free, i.e.

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0. (6.2)

This equation applies everywhere, including the fluid–wall interface, x2 = 0.
There, however, ∂u1/∂x1 = ∂u3/∂x3 = 0 since at the wall u1 and u3 are zero
for all x1 and x3. It then follows from Eq. (6.2) that

1 In parallel with the general index notation, ui = f (t, xi ), velocity fluctuations and coordinates will also some-
times be denoted in common Cartesian coordinates ui ≡ (u, v, w) = f (t, x, y, z), where y is the direction
normal to the wall.
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∂u2

∂x2

∣∣∣∣
x2=0

= 0. (6.3)

Thus, from the above expansion, while u1 and u3 increase linearly with wall dis-
tance for small x2, the component normal to the wall, u2, can only increase as x2

2 .
As a result, the turbulent stress components take the following wall asymptotes (i.e.
for x2 → 0)

u2
1(x2) = b2

1x2
2 + 2b1c1x3

2 +
(

2b1d1 + c2
1

)
x4

2 + · · ·
u2

2(x2) = c2
2x4

2 + · · ·
u2

3(x2) = b2
3x2

2 + 2b3c3x3
2 +

(
2b3d3 + c2

3

)
x4

2 + · · ·
u1u2(x2) = b1c2x3

2 + (b1d2 + c1c2)x
4
2 .

(6.4)

(The last of these equations presumes that u1 and u2 are correlated at the wall, i.e.
that b1c2 is non-zero or, equivalently, that limx2→0 ( u1u2 )

2 /u2
1 u2

2 �= 0, as is well
confirmed by DNS data.)

Note also that

k = 1

2

⎡⎢⎣(b2
1 + b2

3

)
︸ ︷︷ ︸

A

x2
2 + 2(b1c1 + b3c3)︸ ︷︷ ︸

B

x3
2

+
(

c2
1 + c2

2 + c2
3 + 2(b1d1 + b3d3)

)
︸ ︷︷ ︸

C

x4
2 + · · ·

⎤⎥⎦
= 1

2
(Ax2

2 + Bx3
2 + Cx4

2 + · · · ). (6.5)

Thus, in summary, for small x2:

u2
1 ∼ u2

3 ∼ k ∝ x2
2 , u2

2 ∝ x4
2 , u1u2 ∝ x3

2 . (6.6)

These inferences are directly confirmed by Fig. 6.3, which shows the near-wall
variation of the four stress components for the DNS of fully developed flow through
a plane channel at two Reynolds numbers,2 plotted in logarithmic coordinates and
non-dimensionalized by the friction velocity and the kinematic viscosity. The lines
superimposed on the DNS results have slopes 2, 3 and 4 and, as seen, these accord
very well with the stress variations given in Eq. (6.6).

The fact that u1u2 increases as the cube of the distance from the wall implies that
initially, for small x2, this turbulent shear stress will be negligible compared with

2 Note the different definitions of the channel Reynolds number used: Reτ = hUτ /ν and Rem = 2hUm/ν,
where h is the channel half-width, Uτ is the wall friction velocity and Um the channel mean (bulk) velocity.
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Fig. 6.3 Variation of turbulent stress components in a channel flow for Reτ = 550
and 2,000, showing the slopes of the wall asymptotes. From DNS data of Hoyas
and Jimenez (2006).

τν  = μ(∂U /∂y )/τw
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Fig. 6.4 A sketch of the turbulent, viscous and total shear stress across a fully
developed channel or pipe flow

viscous shear stress. As one proceeds further from the wall, however, one enters
a region where there is a rapid changeover to a regime where the turbulent stress
becomes the dominant contributor to momentum transfer (Fig. 6.4). Since the total
(viscous plus turbulent) shear stress is very nearly constant over what is a very thin
layer (compared with the shear flow as a whole), there will inevitably be a rapid
reduction in the slope of the mean velocity as one moves from a region where
viscous action (ν ∂U1/∂x2) is the predominant mechanism for momentum transfer
to one where most of the momentum transport is by turbulence (−u1u2). This rapid
changeover is clearly evident from the mean velocity profiles in Fig. 6.1.
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Fig. 6.5 Near-wall budget of kinetic energy in a plane channel flow for higher
Reynolds number, Reτ = 2,000, normalized with the inner-wall scales (in terms
of Uτ and ν). From DNS data of Hoyas and Jimenez (2006).

It has already been shown in §1.4 that, in a simple shear flow, the maximum
generation rate of turbulent kinetic energy occurs right in this changeover region.
To re-cap, this occurs where

d

dx2

[
u1u2

dU1

dx2

]
=0

or, on expanding the differential, where:

u1u2
d2U1

dx2
2

+ dU1

dx2

d u1u2

dx2
=0. (6.7)

On the assumption that the total shear stress (νdU1/dx2 − u1u2) is changing
much less rapidly than its constituent parts, we can replace the turbulent shear-
stress derivative in Eq. (6.7) by the (negative of the) corresponding derivative
of viscous stress. With this substitution and after cancelling the common factor
d2U1/dx2

2 , it emerges that the maximum turbulence energy generation rate occurs
where −u1u2 = νdU1/dx2, i.e. where the turbulent and viscous stresses are equal.
That is why, in simple shear flows along a wall, the peak in turbulence energy
production and thus of the turbulence energy itself generally occurs within the
viscosity-affected sublayer, as seen in Fig. 6.5 derived from the DNS of plane
channel flow by Hoyas and Jimenez (2006).

Next, let us examine the behaviour of the viscous dissipation rate ε=ν(∂ui/∂x j )2

very close to the wall. Steep u1 and u3 velocity gradients occur only in the x2
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direction while, from continuity, ∂u2/∂x2 = 0 at the wall. The turbulent dissipation
rate is thus obtained as:

ε = ν

⎧⎪⎨⎪⎩
(b2

1 + b2
3)︸ ︷︷ ︸

A

+ 4(b1c1 + b3c3)︸ ︷︷ ︸
2B

x2

+
[
4
(

c2
1 + c2

2 + c2
2

)
+ (

b1d1 + b3d3
)]

x2
2 + O

(
x3

2

) + · · ·

⎫⎪⎬⎪⎭ .
(6.8)

Now, at the wall itself (x2 = 0), the dissipation rate is expressible as:

εw ≡ ν
[(
∂u1

∂x2

)2

+
(
∂u3

∂x2

)2
]∣∣∣∣∣
w

. (6.9)

Moreover, since for small x2, k = 1
2 Ax2

2+ higher order terms, the wall value of
the dissipation rate may alternatively be written as (Jones and Launder, 1972a):

εw = lim
x2→0

2νk

x2
2

= ν ∂
2k

∂x2
2

. (6.10)

The first of the equalities on the right-hand side of Eq. (6.10) has often been used in
numerical computations as a boundary condition for ε, while the second is just the
diffusive rate of turbulence-energy transport to the wall. That is, turbulence energy
is diffused towards the wall by viscous action at precisely the rate at which it is
being destroyed by viscous dissipation. In Fig. 6.5 these processes are shown by ε
and Dv

k .
An alternative expression (Jones and Launder, 1972a) has sometimes been used

to define the wall boundary conditions for ε, namely

εw = 2ν

(
∂k1/2

∂x2

)2
∣∣∣∣∣
w

. (6.11)

It is interesting to note that unlike Eq. (6.10), which complies only with the first
term of the exact expansion, Eq. (6.11) agrees up to the second (linear) term.3

This prompted Jones and Launder (1972a) to introduce a new variable, the ‘quasi-
homogeneous’ dissipation rate (called by them the ‘isotropic’ dissipation rate)

ε̃ ≡ ε − 2ν

(
∂k1/2

∂xl

)2

∝ x2
2 + · · · (6.12)

which conveniently goes to zero at a solid wall, Fig. 6.6. An alternative transport
equation was then proposed for ε̃, with ε̃w = 0 as the wall boundary condition. The

3 Note that ε= ν
[

A + 2Bx2 +O(x2
2 )
]

and 2ν(∂k1/2/∂x2)
2 = ν

[
A + 2Bx2 + O(x2

2 )
]
, whereas 2νk2/x2

2 =
ν
[

A + Bx2 + O(x2
2 )
]
. In numerical computations, however, the latter (applied at the first node adjacent to

the wall, deep within the viscous sublayer) has been reported as the more stable wall boundary condition.
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Fig. 6.6 The true and ‘quasi-homogeneous’ dissipation rate in a plane channel
for Re = 5,600, Reτ = 180. From DNS data of Kim et al. (1987).

variation of ε and ε̃ in a plane channel flow obtained from DNS data shows that
their difference disappears at the edge of the viscous region even though for the
chosen case the Reynolds number is particularly low (Re = 5,600, i.e. Reτ = 180).

(An analogous ‘quasi-homogeneous’ version of the scalar dissipation rate is
sometimes applied in the near-wall modelling of the thermal field, see for exam-
ple Nagano (2002). Then, in terms of εθ (εθ ≡ εθθ/2) a quantity ε̃θ is introduced
where ε̃θ ≡ εθ − α(∂2θ2/∂x2

2), which, like the corresponding quasi-homogeneous
dynamic dissipation rate, ε̃, vanishes at the wall.4)

It is noted in passing that the standard linear eddy-viscosity stress−strain
relationship assumes that:

ui u j = −νt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
+ 2

3
δi j k.

Thus, it follows that for a two-dimensional flow within the viscous sublayer, where
∂Ui/∂x j reduces to ∂U1/∂x2 = const,

νt = −u1u2

/∂U1

∂x2
∝ x3

2 (6.13)

as confirmed also by the DNS data, Fig. 6.7, where the non-dimensional distribu-
tion of ν+

t ≡ νt/ν is shown for plane channel flows over a range of Re. Note that
the usual turbulent Reynolds number is closely related to the above-defined eddy
viscosity ratio, i.e. Ret ≡ k2/(νε)= νt/(νcμ) ≈ 11νt/ν.

4 Nagano also considers situations where the turbulent temperature fluctuations at the wall do not vanish but he
appropriately re-defines ε̃θ so that that quantity still vanishes at the wall.
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Fig. 6.7 Normalized eddy viscosity (ν+ = νt/ν) in a fully developed plane chan-
nel flow for different Reynolds numbers. Evaluated from DNS data of Moser et al.
(1999) and Hoyas and Jimenez (2006).

Regarding the component dissipation rates at the wall, from the expansions for
u1 and u3 above it is readily deduced that:

ε11

u2
1

= ε33

u2
3

= εw

k
. (6.14)

This result may be recognized as consistent with the formulation:

εi j = εui u j

k
(6.15)

which essentially implies the equality of the deviatoric stress and dissipation rate
tensors, i.e.

ai j = ei j

where, as a reminder,

ai j ≡ ui u j

k
− 2

3
δi j , ei j ≡ εi j

ε
− 2

3
δi j

presented in Chapter 3, (Eqs. (3.23) and (3.29)). This form has been proposed
either as a possible modelling for εi j in terms of ε and the Reynolds stress, e.g.
Daly and Daly and Harlow (1970), or (more usually) as the asymptotic limit at the
wall (among others by Hanjalić and Launder, 1976).

To deduce the corresponding forms for the 22 and 12 components of ui u j

and εi j (Fig. 6.8) we recall that

u2 = c2x2
2 + higher order terms
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oped plane channel flow for Reτ = 180. Left: actual variation of the dissipation
components. Right: variation of the normalized dissipation-rate/stress ratios
(εi j/ui u j )/(ε/k). Data from DNS of Moser et al. (1999).

and, thus, that the wall asymptote of ε22 is 2ν(∂u2/∂x2)2 = 8c2
2x2

2 . Consequently:

ε22

u2
2

= 8
ν

x2
2

= 4
εw

k
. (6.16)

The corresponding result for ε12 is readily shown to be:

ε12

u1u2
= 2

εw

k
. (6.17)

Thus, the last two results (Launder and Reynolds, 1983) show that Eq. (6.15) does
not correctly capture the limiting ratios of dissipation rates in all components of
the dissipation tensor. Models that do return the desired limiting levels in all com-
ponents are presented in §6.3.4. One final item to notice from Fig. 6.8 is that the
normalized dissipation for the shear-stress component ε12 does in fact fall to very
nearly its isotropic value (i.e. zero) by y+ = 20; but thereafter it increases again.
At such a low bulk Reynolds number, however, one should not take that result
as a general indicator that local isotropy will not apply for flows at much higher
Reynolds number.

6.2.2 The variability of the sublayer thickness

In this subsection, to avoid the appearance of double subscripts and to align with
conventional terminology (employed in the figures), the distance normal to the wall
is denoted by y with the streamwise direction and mean velocity being x and U .

As indicated at the start of this chapter, it is often assumed that the thickness
of the viscous sublayer yν (which we may take as the distance from the wall at
which the turbulent shear stress falls to some fixed small fraction of the wall shear
stress, 5%, say) is a universal constant when it is cast dimensionlessly in ‘wall
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178 Modelling in the immediate wall vicinity and at low Ret

Fig. 6.9 Velocity profiles in ‘universal’ coordinates for pipe flow at low bulk
Reynolds number. U D/ν ≡ ReD : , 1,740 (laminar); �, 2,440; , 2,615; ×,
2,975; , 4,430, +, 7,260; , 9,200. From Patel and Head (1969).

coordinates’: yνUτ /ν or, for brevity, y+
ν . In fact, the dimensionless thickness of the

sublayer is highly sensitive to the variation of shear stress across this thin region,
which in turn depends directly on the imposed streamwise pressure gradient or
body force and the bulk Reynolds number.

With τ+ = τ/τw (where τ is the total shear stress), it is found that noticeable
changes in the size of y+

ν occur when, within the viscous region:∣∣∣∣dτ+

dy+

∣∣∣∣ > 3 × 10−3. (6.18)

In fully developed pipe or channel flow (where dτ+/dy+ = ν/(hUτ ) ≡ 1/Reτ is
uniform across the duct of half-width or radius, h) this amounts to a bulk Reynolds
number of about 8 × 103, Fig. 6.9, (Page et al., 1952; Patel and Head, 1969). As
the Reynolds number is reduced below this value (and the negative dimensionless
shear-stress gradient normal to the wall, dτ/dy+, becomes larger) there is a pro-
gressive increase in y+

ν which continues until eventually the Reynolds number is so
low that the flow collapses to laminar flow. It is important to recognize, however,
that prior to collapse to laminar flow, the motion is genuinely turbulent although,
as noted, the dimensionless sublayer thickness is greater than is found in pipe flow
at much higher Reynolds numbers.

The phenomenon of increasing sublayer thickness is by no means limited to
duct flows. In accelerated boundary layers there is a strong decrease in shear
stress across the inner region of the layer and, again, the dimensionless thick-
ness increases noticeably when the parameter K ≡ (ν/U 2∞)dU∞/dx is greater
than about 1.5 × 10−6 (Launder, 1964a,1964b; Jones and Launder, 1972b; Spalart,
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Fig. 6.10 Variation of the Stanton number along a flat heated plate with a sud-
denly applied flow acceleration. Upper, free-stream velocity variation and K ;
lower, variation in Stanton number: ◦ ◦ ◦, experiment; —— predictions with the
simple integral method used by Moretti and Kays. From Moretti and Kays (1965).

1986). Such boundary layers are sometimes referred to as laminarescent (Kline
et al., 1967). Moretti and Kays (1965) showed that the thickening viscous layer in
strong accelerations may lead to a reduction in the Stanton number by more than
50%, Fig. 6.10. While, unsurprisingly, their simple integral method shown in the
figure was blind to the changes in turbulence structure causing the decrease in St,
even today many current models also fail to predict the phenomenon. Complete
collapse of the boundary layer to laminar (termed laminarization or relaminariza-
tion) eventually ensues if K is maintained at levels in excess of 3×10−6 (Launder,
1964a; Spalart, 1986).

Corresponding effects have been reported by McEligot and co-workers for gas
flows in ducts where the flow acceleration has been caused by intense heating
applied at the duct wall (e.g. Perkins and McEligot, 1975). Here again an equivalent
K value of the order of 10−6 produces significant thickening of the near-wall sub-
layer. Finally, for the case of negative shear-stress gradients, it is noted that closely
analogous behaviour has been found in vertical upflow through heated pipes and
on vertical plates due to the action of buoyancy (e.g. Carr et al., 1973). In this case
the shear-stress gradient arises from the reduction in fluid density as the wall is
approached. For a plane wall:
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∂τ/∂y ≈ (ρ − ρ∞)g (6.19)

a quantity that is negative since (it is presumed) the density decreases as the tem-
perature rises so that ρ < ρ∞. A review of the related experimental data up to the
late 1980s has been provided by Jackson et al. (1989). These authors note that the
serious effects of decreasing heat transfer coefficients of liquids operating near the
critical point were initially attributed to a form of film boiling (‘pseudo-boiling’,
Ackerman, 1970); only subsequently was it recognized that the associated strong
peaks in wall temperature were due to buoyancy increasing the effective sublayer
thickness.

When the shear stress rises with distance from the wall the effects are reversed:
that is, the sublayer thickness (normalized by friction velocity and viscosity)
reduces and skin friction and heat transfer coefficients are increased relative to
what would be expected with a strictly ‘universal’ sublayer thickness. Thus, for the
case of a mixed-convection downflow in a heated pipe, the sign of the buoyancy
contribution is reversed (since gravitational acceleration now acts in the direction
of motion of the flow) and heat transfer coefficients are increased5 (e.g. Cotton
and Jackson, 1987; Jackson et al., 1989). That is one of the reasons why, in heat
exchangers, the heated tube fluid is generally directed vertically downwards. The
shear stress also rises with distance from the wall in an adverse pressure gradient
where the boundary layer is heading towards separation and on a porous surface
through which there is blowing (e.g. Simpson et al., 1967; Baker and Launder,
1974). The measurement of wall friction in such circumstances is fraught with
uncertainties yet at least for the blown boundary layer it is established that a marked
reduction in the dimensionless sublayer thickness occurs.

Later sections (and chapters) will address, inter alia, the question of how the
thickening and thinning behaviour of the sublayer can be modelled. Finally, it is
noted that the above discussion has limited attention to flows parallel to a plane
wall. The impingement of the flow on the wall or surface curvature brings further
complications, some of which have been noted in Chapter 2.

6.2.3 Inviscid wall blocking, its nature and implications

As indicated above (§6.1), the influences of viscosity and non-viscous blocking due
to wall proximity upon the turbulent motion are very different in nature. Yet, in the
past, these effects have frequently been modelled jointly because both manifest
themselves in a damping of turbulence transport of momentum or heat normal to
the wall. However, as is well known, if Ret is small enough, viscosity affects all tur-
bulent interactions, leading, in the presence of shear, to a departure from isotropy

5 Collected experimental data for the Nusselt number in mixed convection for both upflow and downflow in
vertical tubes are included in Fig. 7.24.
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in even the smallest-scale motions (rendering invalid the principle of local isot-
ropy). In contrast, a solid wall or a phase interface flattens the turbulent structure
and imposes a selective damping, primarily of the normal-to-the-wall fluctuations,
causing the turbulence to approach a two-component state. Indeed, the wall reflects
the pressure pulsations, affecting the stress redistribution process over a region
that extends well into the fully turbulent flow. In contrast, the influence of viscos-
ity upon the turbulent stresses in high-Re flows remains restricted to the viscous
region, and even there it does not seem to be very strong. Simple eddy-viscosity
models, designed for integration up to the wall, employ a variety of damping func-
tions in terms of turbulence Reynolds number and wall distance to account for the
presence of the wall without distinguishing the true source of these effects. Such
a practice obscures the separate effects of viscosity and wall blocking and often
results in poor predictions in flow regions where these effects take different relative
magnitudes than in the simple wall flows used for calibration. A more consistent
approach requires each of the effects to be modelled separately, with coefficients
and functions tuned on the basis of experimental data obtained in flows where each
effect can be isolated. An illustrative example is the transition from the initial to
the final period of decay of isotropic turbulence. Calibrating that decay enables
the sink-term coefficient in the dissipation equation to be determined purely as a
function of Ret . Likewise, in a turbulent flow close to a free surface, where there
are no viscous effects (since there is no shear), the ‘impermeability’ of the inter-
face surface dampens the stress component normal to the interface surface (and
indirectly affects other stress components) in much the same way as in flows close
to a solid wall (e.g. McGuirk and Papadimitriou, 1988; Perot and Moin, 1995).
Another important example is provided in Table 4.1, §4.3.4, where it was shown
that the stress anisotropy in the fully turbulent region of a wall boundary layer (i.e.
outside the viscosity-affected region) is larger than in a homogeneous shear flow
subjected to a similar shear rate.

By discarding convective and diffusive contributions, the shear-stress transport
equation for the fully turbulent near-wall region (using the simple IP and lin-
ear return-to-isotropy models, Eqs. (4.9) and (4.7), respectively, with near-wall
corrections (4.12) and (4.14)) reduces to an eddy-viscosity form:

− u1u2 = 0.263
u2

2

k︸ ︷︷ ︸
cμ fμ

k2

ε

∂U1

∂x2
. (6.20)

In the conventional eddy-viscosity terminology the quantity 0.263u2
2/k would be

termed cμ fμ, where cμ is habitually taken as 0.09 and fμ is seen as a function
of a turbulence Reynolds number introduced to enable the eddy-viscosity formula
to apply all the way to the wall. Figure 6.11 compares the measured variation of
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Fig. 6.11 Variation of u2
2/k (vertical bars denoting the range of uncertainty of the

data) and 0.342 fμ (- - - -) across the inner region of turbulent wall flows estimated
from experimental data then available (Patel et al., 1985; Launder, 1986). DNS

data of u2
2/k: ——— Reτ = 590 (Moser et al., 1999); – – – Reτ = 2,000 (Hoyas

and Jimenez, 2006).

u2
2/k across the near-wall region for early high-Reynolds-number near-wall flows

(compiled by Patel et al., 1985) and more recent DNS data of the same quantity
with 0.342 fμ (the numerical coefficient is just 0.09/0.263). The variation of fμ
was estimated by Launder (1986), again from the then available experimental data,
from Eq. (6.20) following its rearrangement as:

fμ = −u1u2

/[
cμ(k

2/ε)∂U1/∂x2
]
.

Evidently, this latter quantity varies in much the same way as the normalized
variation of u2

2, suggesting that most of what is conventionally regarded as viscous
damping is, rather, the preferential damping of the fluctuations normal to the wall
principally by non-viscous effects! Equation (6.20) subsequently inspired Durbin
(1991) to propose an eddy-viscosity model in which a separate transport equation
was solved for a scalar ‘surrogate’ of u2

2 (designated ‘v2’), in conjunction with an
elliptic relaxation parameter ‘ f ’, that has become known as the v2− f model (see
§7.4.4). Later, Hanjalić et al. (2004a) and Laurence et al. (2004) independently
proposed versions of this model in which a transport equation is solved for the
ratio ζ = u2

2/k, which offers a number of computational advantages.
Of course, solving transport equations for all stress components, as is done with

a full second-moment closure, would naturally provide the wall-normal stress com-
ponent. In such models, viscous effects are still present but their influence is weaker
and confined to a thinner region next to the wall than with linear eddy-viscosity
schemes. Models of this kind are considered in the sections that follow. Before that,
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Fig. 6.12 Evaluation of c1 and c′
1 from DNS results of Φi j1 in a plane channel

flow for Rem = 5,600 (Kim et al., 1987). From Hanjalić and Jakirlić (2002).

however, it is instructive to examine the behaviour of the terms and coefficients
using the available DNS data for some simple generic wall flows.

Consider first the quadratic model of the slow pressure-strain term, Eq. (4.33)

Φi j1 = −c1εai j + c′
1ε(aikak j − 1

3 A2δi j ) (6.21)

in a fully developed channel flow. From the DNS results for the components ofΦi j1

and ai j , one can evaluate the two coefficients, c1 and c′
1, in Eq. (6.21). In such a

flow, four components ofΦi j are non-zero, but to evaluate the two coefficients only
two components are needed.6 Thus, using different combinations of two from the
four available components provides another test of the validity of the model: if all
combinations were to collapse into single curves for c1 and c′

1, this would provide
support for the form of the model of Φi j1 given by Eq. (6.21).

Figure 6.12 shows that this is indeed the case, at least for the near-wall region,
i.e. for y+ < 50. (Further from the wall the curves obtained from different pairs of
data, denoted 11–22, 11–33, 22–33, start to diverge.) However, even close to the
wall where the different pairings produce essentially the same results, the coeffi-
cients are far from constant: they exhibit a very strong variation across the flow
and even change sign. In fact, the data for y+ < 50 suggest that the two coeffi-
cients can be related to one another by c′

1 = −A2c1, shown by the solid lines in the
right-hand graph of Fig. 6.12. It should be noted that this large variation of both
coefficients is partly due to the (so far unaccounted for) viscous effects because the
flow considered is at a rather low Reynolds number, Rem = 5,600 (corresponding
to Reτ = 180).7

6 For example, if for the case i = j the normal stresses are successively given the values 1 and 2, Eq. (6.21) gives
−Φ111

/
ε= c1a11 + c′

1(a
2
11 + a2

12 − 1
3 A2) and −Φ221

/
ε= c1a22 + c′

1(a
2
12 + a2

22 − 1
3 A2). From these, c1

and c′
1 can be evaluated across the flow by feeding the DNS profiles of Φi j1 and Φi j2 and the components of

ai j .
7 Unfortunately, this is apparently the only set of DNS data for which results are available for both the slow and

rapid parts of the pressure-strain term, Φi j .

https://doi.org/10.1017/9781108875400.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.008


184 Modelling in the immediate wall vicinity and at low Ret

1.4

c 2*  , 
c 3*  , 

c 4*

11–22–12
22–33–12
11–33–12

1.2
1

0.8
0.6
0.4
0.2

0
–0.2
–0.4

0 20 40 60 80 100
y+

120 140 160 180

c2
*

c4
*

–c3
*

Fig. 6.13 Coefficients of the linear model ofΦi j2 , Eq. (6.22), evaluated from DNS
data for a channel flow at Rem = 5, 600 (Kim et al., 1987). From Jakirlić (2004).

A similar analysis can be applied to the models of the rapid term, Φi j2 . For
example, in the general linear model, Eq. (4.46), expressed in terms of Si j and Wi j ,

Φi j2 = c∗
2k(aik S jk + a jk Sik − 2

3 akl Sklδi j )+ c∗
3k(aik Wkj + a jk Wki )+ c∗

4kSi j (6.22)

all three coefficients c∗
2, c

∗
3 and c∗

4 can be evaluated directly using any combina-
tion of the DNS data for three components of Φi j2

8.The outcome is illustrated
in Fig. 6.13. The remarkable collapsing of solutions when using different com-
ponents supports the form (6.22) for modelling Φi j2 , but the strong variation of
all three model coefficients across the channel cross-section indicates the need to
express the coefficients as functions of suitable turbulence parameters, especially
when approaching the wall.

Following the same approach, one can also evaluate the coefficients in quasi-
linear models, Eq. (4.54) (i.e. Eq. (6.22) with the addition of the term quadratic
in stress, −c∗

5ai jPkk). However, such models contain four coefficients while only
three equations are at our disposal (see footnote 6, above). An analysis of the coef-
ficients for the two quasi-linear models, the HL (Hanjalić and Launder, 1972b)
and the SSG (Speziale et al., 1991) models, can be found in Jakirlić (2004),
who adopted the values for the coefficient c∗

4 as proposed by the model propo-
nents (a constant value, c∗

4 = 0.8, for the HL model and the functional form,
c∗

4 = 8.0 − 0.625AA1/2
2 for the SSG model (see Table 4.2)) and evaluated the

remaining three coefficients, c∗
2, c∗

3 and c∗
5.

The coefficients evaluated from different combinations ofΦi j2 components again
follow almost identical profiles, with similar shapes for the HL and SSG models,
as seen in Fig. 6.14. The coefficients c∗

2 and c∗
3 of the linear terms show reasonably

constant values over a large portion of the cross-section y+ between 35 and 140.

8 Three different combinations of indices using two diagonal components (recall thatΦ112 +Φ222 +Φ332 = 0)
and the only non-zero off-diagonal component Φ122 lead to a three-equation system, from which the three
model coefficients can be obtained.
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Fig. 6.14 Variation of coefficients c∗
2, c

∗
3 and c∗

5 with the adopted c∗
4 (in box) in

Eq. (4.54) evaluated from DNS results for a channel flow at Reτ = 180 for the
SSG model (top) and HL model (bottom). From Jakirlić (2004).

These values correspond reasonably closely with those proposed by the originators
of the models, Table 4.2, but clearly all coefficients need modifying as the wall is
approached. It is noted that in the region away from the wall the DNS data suggest
that the coefficient 2c∗

5 of the quadratic term takes a negative value of −1.25, which
is in reasonable agreement with the value −0.9 proposed earlier in the HL model,
but in contrast to the positive value, +0.9, proposed in the SSG model.

6.3 Wall integration (WIN) schemes

Integration of the turbulent transport equations to the wall is, in principle, a more
generally applicable strategy than adopting ‘wall functions’ (the subject of Chap-
ter 8). As will be inferred from the preceding section, the approach requires
substantial modifications to the high-Re turbulence models in order to account
for effects arising from low turbulent Reynolds number and non-viscous pressure
reflection by the rigid wall. This in turn requires a much finer grid resolution in
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and around the viscosity-affected sublayer, and, consequently, greatly increases
demands on computational resources, with often formidable constraints on the
numerical solver to ensure convergent solutions. WIN schemes (known also as ‘low
Reynolds number models’ or ‘near-wall models’) are available as eddy-viscosity
(linear and non-linear) as well as stress-transport models. While developed pri-
marily for treating the near-wall viscous region under non-equilibrium conditions,
some models have also been reasonably successful in predicting transition from
laminar to turbulent flow in certain circumstances. As would be expected, mod-
els that can distinguish between non-viscous blocking and viscous wall effects are
generally the more successful in predicting laminar-to-turbulent and reverse tran-
sition (such as bypass or separation-induced transition, or the revival of inactive
background turbulence and its subsequent laminarization, as may arise in periodic
flows).

6.3.1 Overview of the task

Numerous proposals for modifying second-moment closures (SMCs) to account
for low-Reynolds-number and wall-proximity effects can be found in the literature.
These modifications are based on a reference high-Re SMC which serves as the
asymptotic model to which the low-Re version should reduce for sufficiently high
Reynolds numbers and at a sufficient distance from any wall. Hanjalić and Laun-
der (1976), Launder and Shima (1989), Hanjalić and Jakirlić (1993), Iacovides
and Toumpanakis (1993), Shima (1993) and Hanjalić et al. (1995) all developed
their modifications from the basic SMC with linear pressure-strain models (see
Chapter 4), in which the coefficients are defined as functions of turbulent Reynolds
number and invariant turbulence parameters. Earlier models also used the distance
from the nearest solid wall. Most recent models are based on DNS data and a
term-by-term modelling that ensures model realizability, compliance with the near-
wall two-component limit for the second moments, as well as with the limit of
vanishing turbulence Reynolds number. Launder and Li (1994), Craft and Laun-
der (1996) and Craft (1998) used the cubic pressure-strain model, presented in
Chapter 4, in which the coefficients were determined by imposing, in addition to
the kinematic criteria discussed earlier, the two-component limit. Including this
constraint in the original model formulation for free flows reduces the need to
introduce further dependence on the available turbulence parameters to handle
wall-proximity effects. However, the complete elimination of ‘damping functions’
was not possible: some of the coefficients had to be formulated as functions of the
turbulent Reynolds number to account for viscosity, even though their influence is
limited to the viscous layer (e.g. Launder and Li, 1994).

Finally, as noted in §6.2.3, Durbin (1991, 1993) used elliptic relaxation to
account for the non-viscous blockage effect of a solid wall, while a switch of time
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and length scales from the high-Re energy-containing scales to Kolmogorov scales
when the latter become dominant, accounted for viscous effects.9 The elliptic relax-
ation approach seems to be somewhat less demanding on near-wall grid refinement,
but at present it has not been used to predict transitional phenomena, though some
modifications for this purpose have been proposed (Lien et al., 1998).

In principle, all proposals for extending the validity of the base model entail the
following:

● inclusion of viscous diffusion in all equations;
● provision of a non-isotropic model for εi j ;
● addition of further terms in the ε-equation (or other scale-determining equation

where used);
● replacement of some constant coefficients by functions of turbulent Reyn-

olds number, Ret = k2/νε, and turbulent-stress invariants or other available
turbulence parameters.

In constructing a consistent model that satisfies the conditions in the near-wall
region, one seeks to satisfy the limiting behaviour of each component of the
turbulent stress, as indicated in Eq. (6.6).

6.3.2 Stress budget at an impermeable wall

To gain some impression of the relative magnitude of the terms in the stress-
transport equation as one approaches very close to the wall, we turn to Eq. (6.1)
and add a similar polynomial expansion for the fluctuating pressure:

ui (x2, t) = ai + bi x2 + ci x
2
2 + di x

3
2 + · · · (6.23)

p(x2, t) = ap + bpx2 + cpx2
2 + dpx3

2 + · · · (6.24)

Recall that x2 is the direction perpendicular to the wall and that all coefficients are
functions of time (with a zero mean) and, in general, of x1and x3. Moreover, for
incompressible flow assumed here, ai = 0 and b2 = 0; however ap �= 0 since there
will be pressure fluctuations at the wall surface. To facilitate the presentation, the
stress-transport equation (2.18) is written in the symbolic form (see Eq. (2.21)):

Ci j = Pi j +Φi j + D p
i j + Dt

i j + Dνi j − εi j . (6.25)

Deep within the viscous region convective transport, Ci j , is often negligible as
are also the stress-production terms. The diffusion of stress by turbulent veloc-
ity fluctuations Dt

i j may also be shown from Eq. (6.23) to be smaller than the
remaining terms in Eq. (6.25), the largest contributors being proportional to x3

2 for

9 In fact, this scale switching does, implicitly, introduce the influence of turbulent Reynolds number.
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i = j = 1 or 3. Using Eqs. (6.23) and (6.24) to estimate the wall-limiting values
of the remaining terms in Eq. (6.25) produces the estimates given in Table 6.1.
For terms containing the derivative of fluctuating pressure, at the wall the momen-
tum equation for the fluctuating motion reduces to (∂p/∂xi )/ρ = ν∂2ui/∂x2

k from
which it follows that ∂ap/∂x1 = 2νc1, etc. In addition to the two columns for the
terms containing the fluctuating pressure, the second column provides the values
for their sum, Πi j , to assist later discussion.

It is noted that for i or j equal to 1 or 3 (in any combination) the stress-
dissipation rate εi j at the wall is finite and balanced by viscous diffusion, Dνi j ,
whereas, for all other stress components, both terms go to zero at the wall.10 It is
also interesting to note that the velocity–pressure-gradient correlation Πi j goes to
zero at the wall for all components, whereas the usual splitting into pressure-strain

and pressure diffusion,
(
Πi j ≡ D p

i j +Φi j

)
, results in finite (mutually balanced)

values of both terms for the shear-stress components u1u2 and u2u3.
The specific steps to modify a second-moment closure model for low-Re and

wall-proximity effects will be considered shortly. The modifications to be intro-
duced depend on the chosen high Reynolds number model, to which the near-wall
model reduces in regions sufficiently far from a rigid wall or free surface. In §6.3.4
we consider the steps required for the modification of models adopting the linear
IP and QI models of the pressure-strain term as outlined in §4.3 with the wall-
echo model of §4.4.5. This is followed by a brief account of the relatively small
corresponding adaptations with TCL models.

6.3.3 Scalar flux budget at a wall

A similar analysis can be performed for the scalar-flux equation by adding to
Eqs. (6.23) and (6.24) the polynomial expansion of the fluctuating temperature
in the wall-normal direction

θ(x2, t) = aθ + bθ x2 + cθ x
2
2 + dθ x

3
2 + · · · (6.26)

For a wall at a constant temperature, there are no temperature fluctuations and
aθ = 0, but for other thermal wall conditions (in particular, the case of an imposed
heat flux) this is not the case.

Recalling the exact scalar-flux equation (Eq. (2.22)) for a steady flow (neglecting
convection and body forces other than buoyancy)

0 = P
θ i + PU
θ i + Gθ i +Φθ i + Dαθ i + Dνθ i + Dt

θ i + D p
θ i − εθ i (6.27)

and implementing Eqs. (6.23), (6.24) and (6.26), one can arrive at the wall budget
for an impermeable wall. However, unlike the stress budget, the situation is not

10 Although obtained by way of a quite different path, this result for εi j is not in conflict with the linkage between
dissipation rates and stresses obtained in §6.2.1.
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Table 6.1 Wall-limiting behaviour of the leading terms in the Reynolds stress budget

i j Φi j Πi j ≡
(
D p

i j +Φi j

)
D p

i j Dνi j −εi j

11 2ap∂b1
/
∂x1x2 −4νb1c1x2 −

(
2ap∂b1

/
∂x1 + 4νb1c1

)
x2 2νb1b1 + 12νb1c1x2 −2νb1b1 − 8νb1c1x2

22 4apc2x2 −4νc2c2x2
2 − (

4apc2x2 + 4νc2c2x2
2

)
12νc2c2x2

2 −8νc2c2x2
2

33 2ap∂b3
/
∂x3x2 −4νb3c3x2 −

(
2ap∂b3

/
∂x3 + 4νb3c3

)
x2 2νb3b3 + 12νb3c3x2 −2νb3b3 − 8νb3c3x2

12 apb1 −2νb1c2x2 − (
apb1 + 2νb1c2x2

)
6νb1c2x2 −4νb1c2x2

23 apb3 −2νb3c2x2 − (
apb3 + 2νb3c2x2

)
6νb3c2x2 −4νb3c2x2

13 ap
(
∂b1

/
∂x3+∂b3

/
∂x1

)
x2 −2ν

(
b1c3 + b3c1

)
x2 −ap

(
∂b1

/
∂x3 + ∂b3

/
∂x1

)
x2 2νb1b3 −2νb1b3

−2ν
(

b1c3 + b3c1
)

x2 + 6ν
(

b1c3 + b3c1
)

x2 − 4ν
(

b1c3 + b3c1
)

x2
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190 Modelling in the immediate wall vicinity and at low Ret

unique because the budget will depend on the thermal conditions at the wall
(whether in the form of a prescribed constant or variable temperature, or of an
imposed flux, including a perfectly insulated wall). Moreover, if buoyancy effects
are significant, requiring the inclusion of Gθ i , the wall budget will also depend on
the orientation of the wall with respect to the gravitational vector. A further param-
eter that influences the wall scalar flux budget is the molecular Prandtl number
which expresses the ratio of the molecular diffusion of θui by viscosity and ther-
mal diffusivity (Dνθ i and Dαθ i , respectively), see §2.3.2. The reader can find such an
analysis for different non-buoyant flows in Nagano (2002) and in Dol (1998) and
Dol et al. (1999) for natural convection in a side-heated vertical plane channel.11

Two extreme situations where the wall boundary condition on θ2 may be
important are flows at very high Prandtl number, where because of the very low
molecular thermal conductivity turbulent heat transport is still important deep
within the viscous layer, and cases such as arise in nuclear-reactor heat exchangers
where temperature fluctuations at the wall may cause long-term fatigue damage to
the metal surface of the heat exchanger.

6.3.4 Accounting for near-wall effects in second-moment closures

Stress production and redistribution

We begin by noting the obvious: stress production due to the rate of strain, Pi j , is
treated in its exact form and thus needs no modification. Concerning the pressure-
containing correlations, although the Poisson equation, Eq. (4.2), governing the
fluctuating pressure, p, contains no viscosity (since ∂

/
∂xi (ν∂

2ui

/
∂x2

j ) = 0), there
are clearly strong viscous influences on the other terms, which in turn affect the
pressure fluctuations. Even so, the importance of this effect is not certain because
the pressure fluctuations are found from integration over space. As a result, a sig-
nificant contribution to p arises from interactions outside the viscosity-affected
region. Partly for this reason and partly because there were no indications of sig-
nificant viscous effects on u2

2

/
k, the early models (Hanjalić and Launder, 1976, and

11 In contrast to the viscous stress diffusion in Eq. (2.18), the molecular diffusion of θui cannot be considered in
its exact form except when the molecular Prandtl number, Pr ≡ ν/α , is unity. For more general cases when
the molecular effects are significant, the molecular diffusion of θui needs to be modelled. Dol et al. (1999)
used

Dα+ν
θ i = ∂

∂xk

[
αui

∂θ

∂xk
+ νθ ∂ui

∂xk

]
= 1

2
(ν + α) ∂

2θui

∂x2
k

+ 1

2
(ν − α)

(
θ
∂2ui

∂x2
k

+ ui
∂2θ

∂x2
k

)
.

Due to the large difference between the typical scales of the fluctuations and their second derivatives, the
correlations in the last terms are small and can be neglected (a position supported by the DNS of Versteegh
and Nieuwstadt (1998), at least for the side-heated infinite vertical channel).
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subsequent publications) found no justification for including viscous modifications
to Φi j . However, the evidence from more recent direct numerical simulations has
suggested substantial influences of both viscous and non-viscous wall effects on
Φi j (though it is difficult to distinguish one from the other). This is implied in
Fig. 6.12 by the strong variations of coefficients in the quadratic model for the
slow pressure-strain term, Φi j1 . Similar remarks can be made for the rapid term,
Φi j2 , concerning the near-wall variation of the coefficients shown in Figs. 6.13 and
6.14 for the linear and quasi-linear models, respectively.

In addition to the high-Re wall corrections introduced in §4.3.4, there have been
several proposals to account for near-wall effects on Φi j that extend up to the wall.
Basically, such modifications entail expressing coefficients of the models of Φi j in
terms of the turbulent Reynolds number and turbulence invariants (the latter aiming
to represent non-viscous wall blocking). Some specific models are discussed below.
First, however, some general ideas and constraints are considered.

Let us examine the behaviour of the exact terms in the ui u j equation, particularly
of terms involving the fluctuating pressure, in the limit as the wall is approached.
As seen in Table 6.1, at the wall, Φi j = 0 for all i = j , but Φ12 �= 0 and is
balanced by the pressure diffusion. By way of contrast, expansion of Eqs. (6.23)
and (6.24) implies ai j �= 0 for all i = j , but a12 = 0. As has already been noted in
Chapter 4, Rotta’s linear model of Φi j1 with c1 a constant, Eq. (4.7) (or Eq. (4.33),
with c′

1 = 0), cannot satisfy the wall-limiting behaviour of the exact pressure-
strain term. Experience suggests that it will be too demanding to devise a selective
function c1 that will distinguish the diagonal from the off-diagonal components of
Φi j . As mentioned earlier, Launder and Tselepidakis (1993) ensure that c1 satisfies
the wall limit by multiplying it not only by A, but also by a function of Ret , c1 =
6.3AF(1 − f ), where F = min(0.6, A1/2

2 ) and f = max[1 − Ret/140, 0]. Used in
conjunction with an early form of TCL model for Φi j2 , and with modifications of
the ε-equation, as discussed later, they reproduce satisfactorily the near-wall DNS
stress profiles of Kim et al. (1987) for Re = 5, 600 and Re = 13, 750.

As seen in Table 6.1, the sum of pressure-strain and pressure diffusion, Πi j ≡
D p

i j + Φi j , goes to zero (though not at the same rate) for all i and j . This is why
some researchers have proposed modelling Πi j instead of Φi j , or at least (since
boundary conditions and model constraints more appropriate to the former have
been applied and no explicit modelling of D p

i j has been proposed) interpreting the
model as simulating Πi j rather than Φi j . Lumley and Newman (1977) modelled
Πi j − εi j jointly, whereas Launder and Shima (1989) (subsequently with reopti-
mized functions by Shima, 1993) proposed a model of Φi j − εi j which employs
the standard high-Re Basic Model of Φi j with the Gibson and Launder (1978) wall
correction,Φwi j , but with all coefficients dependent on the stress invariants, A2 and
A3.
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192 Modelling in the immediate wall vicinity and at low Ret

Fig. 6.15 Lumley’s two-component (‘flatness’) parameter for turbulent stress
(A) and its dissipation-rate equivalent (E) in the recirculation region behind a
backward-facing step (a); stress flatness parameter in boundary layers in zero,
favourable and adverse pressure gradients (b). Symbols, from DNS data; lines,
computations with the HJ model.

Hanjalić and Jakirlić (1993) and subsequently Hanjalić et al. (1994, 1995) also
used the high-Re Basic Model as their starting point but, recognizing that close to
a wall the turbulence spectrum is largely populated by smaller-scale eddies, they
included the anisotropy invariants of the dissipation-rate tensor, εi j , to modify the
coefficients of the model. Thus, in addition to Ret , invariants of both the turbulent-
stress and dissipation-rate anisotropies, A2, A3, E2, and E3, appear as parameters
in the coefficients. This enables separate account to be taken of wall effects on
the anisotropy of the stress-bearing and dissipative scales, respectively. The DNS
data reveal the stress and dissipation invariants to be strikingly different in their
distribution (Hanjalić et al., 1997, 1999). As shown in Fig. 3.14(b), as one pro-
ceeds away from the wall, the dissipation-rate flatness parameter E approaches
its isotropic value of unity faster than the stress flatness parameter A, a behaviour
that also occurs in the flow behind a backward-facing step, Fig. 6.15a. The sen-
sitivity of the stress invariants to the variation of the total shear stress normal to
the wall (arising from the streamwise pressure gradient) is evident in Fig. 6.15b
where the flatness parameter A is plotted for boundary layers in zero, favourable
and adverse pressure gradients. Based on the above arguments, the following mod-
ifications (hereafter referred to as the HJ model) were introduced which made it
possible to reproduce the wall-limiting behaviour of all stress components (and
thus, indirectly, the two-component limit):

c1 = 2.5AF1/4 f + A1/2 E2

where F = min(0.6, A2), f = min[(Ret/150)3/2, 1]
c2 = 0.8A1/2, cw1 = max(1 − 1.75AF1/4 f ), cw2 = min(A, 0.3).
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6.3 Wall integration (WIN) schemes 193

Let us now turn to the corresponding developments with models using the two-
component-limit (TCL) approach to modelling near-wall turbulence. Because these
versions are designed so that Φ22 vanishes when u2

2/k goes to zero, it would be
expected that only a modest amount of viscous damping would need to be added to
enable the TCL model presented in Chapter 4 to be extended directly to the wall.
That is not entirely the case, however. Making a model consistent with the two-
component limit is not the same thing as enforcing compliance with it. However,
in working with TCL models, the wall corrections relating to the pressure-strain
correlation are indeed less strong and are effective over a smaller range of Ret than
those used with the Basic or QI Models.

First, we note a feature of the rapid part of Φi j that was brought to light from an
examination of DNS data by Bradshaw et al. (1987) at the first of the CTR-Stanford
Summer Schools on turbulence (but which has not, apparently, been published else-
where). In developing models for mean-strain effects on Φi j2 it has been assumed
that the mean velocity gradient that appears under the integral in Eq. (4.3) could
be assumed to be uniform for distances over which the two-point velocity correla-
tion appearing in the equation was significant. Bradshaw et al. (1987) showed that
while this approximation was indeed satisfactory over most of the flow, it did not
apply across the buffer layer where the mean velocity gradient changes so rapidly
with distance from the wall. Launder and Tselepidakis (1994) and a number of later
workers thus adopted an effective velocity gradient to be used in Φi j of the form:

∂Ul

∂xm

∣∣∣∣
eff

= ∂Ul

∂xm
+ cI l

2 ∂ f ∗(A)
∂xk

∂2Ul

∂xk∂xm
(6.28)

where, in the later paper by Launder and Li (1994), f ∗(A) was taken as A0.3(1 +
2.5A3), l = k3/2/ε and cI = 0.07. The only other modification applied toΦi j2 was
to limit the value of the coefficient c2 in Eq. (4.60) to c2 = min(0.55, A) with c′

2

remaining unaltered at 0.6.
Modifications to the ‘slow’ part ofΦi j are of a similar form to those shown above

for the Basic Model (though the wall-reflection coefficients do not appear). Thus,
Launder and Tselepidakis (1994) suggest that the coefficients in Eq. (4.34) should
become:

c1 = 6.3A(min [0.6, A2])1/2(1 − f ), c′
1 = 0.07, f ≡ max

[(
1 − Rt

/
140

)
, 0
]

a version retained by Launder and Li (1994). The scheme has been applied to a
number of simple shear flows, including plane channel flow, with a similar level
of agreement to that achieved by the HJ model above. Figure 6.16, from Laun-
der and Tselepidakis (1994),12 shows the distribution of turbulence intensities and

12 This version preceded the final form of the model and did not contain the term with coefficient c′
2 in Φi j2 ; in

compensation a weak wall-reflection term was employed.
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Fig. 6.16 Flow in a plane channel in orthogonal mode rotation, Ro = 0.05, Re =
6,200; (a) rms normal stresses; (b) mean velocity profile. Symbols, DNS data
(Kristoffersen and Andersson, 1993); solid lines, TCL computations; broken lines
computations by Kristoffersen and Andersson (1993) using the Launder and
Shima (1989) model. From Launder and Tselepidakis (1994). (ũi is the rms fluc-
tuating velocity in direction xi ; Uτ0 is the friction velocity for zero rotation at the
same Re.)

mean velocity for fully developed flow in a channel in orthogonal mode rotation.
Comparison is with the DNS data of Kristoffersen and Andersson (1993) and the
computations of Kristoffersen et al. (1990) from using the earlier second-moment
closure of Launder and Shima (1989) (which had been created when TCL ideas
were still being formulated and, as noted above, is thus based around adaptations
to the Basic Model). The data are at a sufficiently low bulk Reynolds number
(≈ 6,000) that, with the effects of rotation (Ro = 0.05), the wall-adjacent region
does not match the ‘universal’ state used as near-wall boundary conditions in the
application of the Basic Model (for higher Re and lower Ro) discussed in §4.5.2.
Recall that the Coriolis force arising from the rotation acts to augment velocity fluc-
tuations normal to the wall on the pressure side of the channel and to suppress them
on the suction side. There are equal and opposite effects on the streamwise velocity
fluctuations (so there is no net Coriolis force in the turbulence energy equation) but
these are outweighed by Coriolis effects on the shear stress which acts to increase
streamwise fluctuations on the pressure side. While both closure models reproduce
correctly the asymmetry that is induced in the flow, the TCL computations are in
especially close accord with the DNS data.

Craft (1998) has provided a more elaborate version of near-wall corrections
to the TCL model which he has applied over a somewhat wider range of flows,
including cases with impingement, separation and reattachment for subsonic and
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6.3 Wall integration (WIN) schemes 195

transonic flows. Many of these are included in Craft (2002), which appears in Laun-
der and Sandham (2002). In view of the algebraic complexity of the form proposed,
the interested reader is referred for further details to that publication.

Turbulent diffusion

In principle, one would expect significant effects of viscosity and wall block-
ing on triple velocity and scalar moments close to a wall which would need to
be accounted for, especially if the simple gradient-diffusion models presented in
§4.3.5 are used. The simplest approach is to make the ‘diffusion’ coefficients cs

and cθ in Eqs. (4.21) and (4.22) functions of the turbulent Reynolds number and
stress-anisotropy invariants. However, the DNS of channel flow at Reτ = 180 and
2,000 indicate that the turbulent diffusion becomes a minor part of the stress budget
(reaching a maximum for y+ between 15 and 50, as indicated in Fig. 6.5) (Kim
et al., 1987; Mansour et al., 1988; Hoyas and Jimenez, 2006). With the exception
of flows near a reattachment point, the triple moments and Dt

i j diminish rapidly as

the wall is approached (recall, Dt
i j ∝ xn+1

2 , where n ≥ 2 is the exponent of the
relevant stress component, i.e. ui u j ∝ xn

2 ; see Hanjalić, 1994). The same can also
be said for Dt

θ j , except that in flows dominated by buoyancy the gradient-diffusion
hypothesis is generally less satisfactory (see §4.6, Fig. 4.28). In view of the above,
the usual approach is to retain broadly the same model for Dt

θ j adopted in high-
Re regions, with possibly some empirical adjustments or the imposition of a lower
bound on the time scale, k/ε.

The DNS results for the plane channel (Kim et al., 1987) showed that the stress
diffusion by pressure fluctuations, D p

i j , reaches a maximum close to the wall within
or close to the edge of the viscous layer, but even here it is negligible compared with
other budget contributors. This finding provided justification for neglecting the
term (or modelling it jointly with the velocity transport), as discussed in §4.3.6.13

However, because of the non-zero pressure fluctuations at a rigid surface, for u2
2 and

u1u2 it is D p
i j that closes the budget of the ui u j equation at the wall. The budget

could be closed by an appropriate model of Πi j ≡ Φi j + D p
i j that approaches the

wall linearly (see Table 6.1). However, the u2
2 equation would still remain unbal-

anced. Because most current models use quadratic or higher order damping of Φi j ,
some workers introduce a separate model of pressure diffusion in a form that uses
unit vectors normal to the wall, which thus contribute only to the u2

2 and u1u2

components, i.e. to components containing velocity fluctuations normal to the wall
(Launder et al., 1987; Lai and So, 1990; see also Demuren, 1996). Nevertheless,

13 This practice may not be justified in flows governed by buoyancy, such as in Rayleigh–Bénard convection
where the DNS results (Wörner and Grötzbach, 1997) indicate that the pressure transport exceeds (and even
has the opposite sign from) the velocity diffusion.
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196 Modelling in the immediate wall vicinity and at low Ret

wall-normal vectors are best avoided unless the influence of the terms of which
they form a part is essentially confined to the viscous region.

Stress-dissipation rate

Most stress-transport models treat the dissipation tensor εi j as isotropic even at
relatively low bulk Reynolds numbers; so the most frequent form of the model –
at least for high-Re flows – is εi j = 2/3εδi j . Equipartition of dissipation among
the normal stress components and neglect of the viscous terms in the shear-stress
equation at sufficiently high Ret has been seen as justified, since, even when the
dissipation is not entirely isotropic, its anisotropy will still be weaker than the stress
anisotropy. Even where this condition is not in fact satisfied, any anisotropy can still
be absorbed in the model of Φi j , as argued by Lumley (1978). Anisotropic forms
of εi j have generally been adopted only for the region very close to a wall, the
degree of anisotropy usually being linked to the local stress anisotropy ai j and the
turbulent Reynolds number. A form, introduced by Hanjalić and Launder (1976),
and frequently used for modelling low-Ret turbulence is

εi j = 2/3εδi j (1 − fs)+ εui u j

k
fs (6.29)

where fs is a function of Ret . As fs → 1, Eq. (6.29) expresses the proportionality
of the large-scale (stress) and small-scale (dissipation) anisotropies, i.e. ei j = fsai j ,
where ei j ≡ εi j

/
ε − 2

/
3δi j was introduced in Chapter 3 (Eq. (3.29)). The empir-

ical function fs(Ret) should ensure a transition from one mode to another over
the appropriate range of Ret . Hanjalić and Launder (1976) chose fs to decay rap-
idly with distance from the wall so that an isotropic εi j was returned in the outer
part of the wall region even at relatively low bulk Reynolds numbers. However,
DNS data subsequently revealed a different trend: in plane channel flow for both
Rem = 5,600 (Mansour et al., 1988) and 14,000 (Kim et al., 1987): over most of
the wall region (up to y+ = 60) the dissipation tensor exhibited a high degree of
anisotropy very much in accord with εi j = εui u j/k, although ε12 appeared small
everywhere except very close to the wall (y+ < 10). These findings seem to sub-
stantiate arguments presented earlier that the dissipation anisotropy in near-wall
flows is predominantly caused by the strong wall influence, which permeates well
beyond the viscosity-affected region. Partly for that reason, but also to gain more
flexibility, several groups have introduced the second and third stress invariants,
A2 and A3, as well as the ‘flatness’ parameter A, Eq. (3.28) (Gilbert and Kleiser,
1991; Launder and Tselepidakis, 1993). Hanjalić and Jakirlić (1993) argued that
neither Ret nor A was well suited for modelling the type of variation of εi j exhib-
ited by the DNS data. A comparison of the variations of Ret for Rem = 5,600
and 14,000 (corresponding to Reτ of 180 and 390, respectively) shows that the
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turbulent Reynolds numbers coincide reasonably well up to y+ = 10 but thereafter
depart; thus the data indicate that Ret cannot be used to generate a universal fs

up to y+ = 60. On the other hand, the same data show that the stress-anisotropy
invariants and the flatness parameter A remain almost uninfluenced by the bulk
Reynolds number (see Fig. 3.14b), especially when plotted against y+ (as shown
in Fig. 2 from Hanjalić and Jakirlić, 1993). In contrast, the stress dissipation rate,
εi j , becomes isotropic progressively closer to the wall as Rem increases. In fact, for
the highest Rem , εi j already becomes isotropic by the edge of the viscous region,
as indicated by the dissipation-rate flatness E nearly reaching unity, Fig. 3.14b. For
low Rem (Reτ = 180) the function fs = 1 − √

A (Gilbert and Kleiser, 1991)
produced a variation of εi j close to that of DNS data apart from the near-wall
limits. However, that function produces the same degree of anisotropy in εi j at
very high bulk Rem , contrary to real flows, where εi j is essentially isotropic. The
function fs = exp(−20A2), proposed by Launder and Tselepidakis (1993), sat-
isfies the high Reynolds number limit, but not the low Rem case (Reτ = 180),
since the function already decays sharply by y+ = 30. For these reasons, Hanjalić
and Jakirlić (1993) proposed that fs should be modelled in terms of the flatness
parameter of the small-scale motion, E ≡ 1 − 9(E2 − E3)/8, where, it is recalled,
E2 ≡ ei j e ji and E3 ≡ ei j e jkeki are, respectively,14 the second and third invariants
of the stress-dissipation-rate tensor ei j .

An expression of the form fs = 1 − E4 satisfies the condition of local isotropy
of the small-scale motion at high Reynolds numbers, where E = 1 and εi j becomes
isotropic irrespective of ai j . It also satisfies the two-component limit where E = 0
and eαα = aαα for the remaining normal stress components (11 and 33). A test,
using the DNS data for ε and ui u j , reproduced εi j in close agreement with DNS
data for all three normal components of the dissipation, although it failed to bring
much improvement to ε12 (Fig. 6.17). Equally as good results were achieved by
including both the stress- and dissipation-rate anisotropy invariants: fs = 1 −
A1/2 E2. While not fully satisfying the small-scale isotropy limits noted above, this
form still proved to be satisfactorily accurate and computationally, more robust.
The dissipation anisotropy can then be expressed as:

ei j = ai j

(
1 − A1/2 E2

)
. (6.30)

A formally more rigorous non-linear relationship between ei j and ai j was proposed
by Hallbäck et al. (1990) based on the tensorial expansion of εi j in terms of the
stress-anisotropy tensor ai j up to quadratic terms and the second stress invariant.

14 Strictly, since ei j is expressible in terms of ai j and the stress invariants, there is no necessity to introduce the
dissipation invariants, i.e. the same result could have been expressed in terms of stress invariants and Reynolds
number. However, it helps algebraic transparency to do so and underlines clearly the different response of the
energy-containing and dissipation ranges to changes in Reynolds number and wall proximity.
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198 Modelling in the immediate wall vicinity and at low Ret

(a) (b)

Fig. 6.17 Components of εi j from Eq. (6.29) for different proposals for fs (using
ui u j and ε from DNS data of Kim et al. (1987) as a function of y+. From Hanjalić
and Jakirlić (1993). The variations of A and E across the channel for different Re
are shown in Fig. 3.14.

After imposing symmetry conditions, zero trace, and the Cayley–Hamilton theo-
rem on the ai j tensor, and truncating at third-order terms, the expression reduces to

ei j = ai j

[
1 + α

(
1

2
A2 − 2

3

)
− α

(
aika jk − 1

3
A2δi j

)]
. (6.31)

In fact, Eq. (6.31) can be recast in an alternative form to display better the near-wall
and far-from-the-wall contributions, which allows a more direct comparison with
the simpler linear model, Eq. (6.29),

εi j = ε
[

2

3
δi j (1 − fs)+ ui u j

k
fs

]
− αε

(
aika jk − 1

3
A2δi j

)
(6.32)

where fs = 1+α(A2
/

2−2/3). The first term is obviously the usual linear approx-
imation introduced earlier, Eq. (6.29), whereas the second introduces non-linear
effects. With α = 3/4, the model satisfactorily reproduced several sets of DNS
results for homogeneous turbulence (in contrast to the rather poor performance of
Eq. (6.29)), but had little success in reproducing the DNS results for plane channel
flows (i.e. the wall-limiting values of the εi j components), see, for example Jakirlić
(2004).

As indicated above, Eq. (6.29), while attractively simple, is not an exact limiting
form. As shown from the polynomial expansions for the velocity components, it
is correct if neither i nor j takes the value 2 (x2 being the direction normal to the
wall), as shown by Eq. (6.14), i.e. ε11 = εwu2

1/k and ε33 = εwu2
3/k. However,

if either i or j (or both) is 2, the wall asymptotes become ε12 = 2εwu1u2/k and
ε22 = 4εwu2

2/k.
A convenient invariant way of satisfying the above wall-limiting behaviour is to

recast Eq. (6.29) in the form
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εi j = 2

3
εδi j (1 − fs)+ ε∗i j fs (6.33)

and formulate ε∗i j in terms of the unit vector normal to the wall nk so that it does
satisfy the limiting wall ratios of dissipation rates (Launder and Reynolds, 1983).

Kebede et al. (1985) proposed an expression that ensures that the sum of the
diagonal components contract to 2ε

ε∗i j = ε

k

ui u j + ui uknkn j + u j uknkni + ukulnknlδi j

1 + (5/2)u puqn pnq/k
. (6.34)

Hanjalić and Jakirlić (1993) observed that the above wall corrections of ε apply
their effect too far beyond the intended near-wall region and devised a modified
form of the correction (to be used in conjunction with fs = 1 − A1/2 E2 in (6.33))

ε∗i j = ε

k

ui u j + (
ui uknkn j + u j uknkni + ukulnknlni n j

)
fd

1 + (3/2)u puqn pnq fd/k
(6.35)

which differs from the original expression by the introduction of a damping func-
tion fd = (1 + 0.1Ret)

−1 and the replacement of the Kronecker delta by products
of the unit wall-normal vector, n p. This modification was employed to produce the
results shown in Fig. 6.17.

‘Homogeneous’ stress dissipation rate

A different approach to satisfying the wall behaviour of εi j without resorting to unit
vectors is to derive the model from the transport equation for the two-point velocity
correlation (Jovanović et al., 1995). Here attention is given just to the viscous terms
of the resultant equations, i.e.

Du A
i uB

j

Dt
= · · · + ν

[
u A

i

∂2uB
j

∂x B
k ∂x B

k

+ uB
i

∂2u A
j

∂x A
k ∂x A

k

]
≡ · · · + V AB

i j . (6.36)

Introducing a local coordinate system with origin midway between A and B and
defining ξk ≡ x B

k −x A
k and x AB

k ≡ 1
2(x

A
k +x B

k ), the viscous term V AB
i j can be written

for the general case of non-isotropic, inhomogeneous turbulence as

V AB
i j = 1

2
ν
∂2u A

i uB
j

∂x AB
k ∂x AB

k

+ 2ν
∂2u A

i uB
j

∂ξl∂ξl
. (6.37)

In homogeneous turbulence all derivatives with respect to x AB
k vanish and, for A →

B, V AB
i j → Vi j , the latter representing the stress-dissipation rate in a homogeneous

flow, denoted εh
i j , i.e.

V AB
i j → Vi j = 2ν

[
∂2u A

i uB
j

∂ξl∂ξl

]
ξ=0

= −εh
i j . (6.38)
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In inhomogeneous turbulence, however, for A → B:

V AB
i j → Vi j = 1

2
ν
∂2ui u j

∂xk∂xk
− εh

i j = 1

2
Dνi j − εh

i j . (6.39)

From a comparison with conventional single-point splitting of the total viscous
term Vi j = Dνi j − εi j (see Chapter 2) it follows that

εi j = εh
i j + 1

2D
ν
i j . (6.40)

The above equation shows that the stress-dissipation rate tensor εi j contains a
contribution due to turbulence inhomogeneity, which appears in the form of the
stress diffusion by viscosity, and thus cannot be accounted for exactly by any alge-
braic interpolation of the type (6.29). However, that equation nevertheless seems
appropriate for the homogeneous part of the dissipation rate tensor, i.e.

εh
i j = 2

3
εhδi j (1 − fs)+ εh ui u j

k
fs (6.41)

where εh = ε− 1
2D

ν
k is the homogeneous part of the kinetic energy dissipation rate,

which can be obtained from ε, or from the solution of an equation for εh instead of
for ε (Jakirlić and Hanjalić, 2002). We return to this approach in the treatment of
low-Re modifications to ε in the next section.

The components of the full dissipation rate tensor can now be obtained from
Eq. (6.40), where Dνi j is the viscous diffusion of the corresponding stress compo-
nent, computed from the solution of the stress transport equation, which can be
reformulated in terms of εh

i j :

Dui u j

Dt
= · · · + 1

2

∂

∂xk

(
ν
∂ui u j

∂xk

)
− εh

i j · · · (6.42)

where the dots stand for all the other terms in the modelled stress-transport equa-
tion which remain unchanged. An advantage of using this approach is immediately
apparent: all components of εi j except ε22 now exactly satisfy the wall limits of
(εαβ

/
ε)(k

/
uαuβ) (i.e. 1 for α = β = 1 or 3 and α = 1, β = 3; 2 for α = 1

or 3 (or β = 1 or 3) and β = 2 (or α = 2). The only slight discrepancy
appears for the wall-normal component, α = β = 2, for which the model gives
(ε22

/
ε)(k

/
u2

2) = 3.5 instead of the exact limit of 4. Thus, the correction given
by Eq. (6.34) or (6.35), which has been used in many low-Re second-moment clo-
sures, is not necessary: the wall limits are satisfied directly by considering only the
homogeneous portion of the dissipation rate, i.e. using Eqs. (6.40) and (6.41). This
is illustrated by an a priori evaluation of components of εi j using the DNS data
for ui u j and ε for several generic flows, including flows in a plane channel, in a
rotating pipe and behind a backward-facing step: all show acceptable results (see
Figs 3–5 in Jakirlić and Hanjalić, 2002). To illustrate the fidelity with which the
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Fig. 6.18 Components of εi j at five locations (x/H = 4, recirculation zone;
x/H = 6, around reattachment; x/H = 10, 15 and 19, recovery region; H is the
step height) in the flow behind a backward-facing step at ReH = 5,100. Symbols,
DNS, Le et al. (1997); lines, Eqs. (6.40) and (4.41). From Jakirlić and Hanjalić
(2002).

DNS data are reproduced, Fig. 6.18. shows their results for perhaps the most chal-
lenging of the cases, the back-step flow at three locations: within the recirculation
zone, around reattachment and in the downstream recovery zone.

Jakirlić (2004) noted that the expression for εi j proposed by Hallbäck et al.
(1990) (noted above) based on a non-linear relation between ei j and ai j , Eqs. (6.31)
and (6.32), can also accord with the wall limits and provides very satisfactory
near-wall behaviour in inhomogeneous flows if the expressions are applied to the
homogeneous dissipation rate with the addition of the inhomogeneous term (i.e.
half the molecular stress diffusion as in Eq. (6.40)):

εi j = εh

[
2

3
δi j (1 − fs)+ ui u j

k
fs

]
− αεh

(
aikak j − 1

3
A2δi j

)
+ 1

2
Dνi j . (6.43)

The reconstruction of the εi j components using Eq. (6.43) for flow in an axially
rotating pipe and in the recirculating zone behind a backward-facing step repro-
duced the DNS data very well (Jakirlić, 2004).
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6.3.5 Low Reynolds number and near-wall effects on the dissipation rate
equation

In the earlier discussion of the exact equation for ε in high-Re flows remote from
walls, §3.4, it was concluded that two source terms, Pε4 and Υε, both of order
ε3/2/ν1/2 (or, equivalently, (ε/T )Re1/2

t ) dominate the ε-equation and that their dif-
ference balanced the convection and turbulent diffusion of ε. Consequently, all
other terms were formally omitted. As the wall is approached, however, the range
of eddy scales reduces and (partly because of the decreasing Ret and partly because
of the strong inviscid wall blocking) the assumption of local isotropy of the dissi-
pative motion ceases to be valid. Naturally, the viscous diffusion Dνε now needs
to be retained (and can be without approximation). Moreover, some of the mean-
strain terms that appear directly in the exact ε-equation, Pε1, Pε2 and Pε3 (which
were discarded in Chapter 5) also need to be considered. A comparative estimate
of the order of magnitude of all production terms can be made in terms of the
characteristic velocity scale for which k1/2 has usually been adopted, and the two
length scales: the energy-containing scale, l = k3/2

/
ε, and the Taylor scale, λ (after

Tennekes and Lumley, 1972)15

ui ∼ Ui ∼ k1/2, xi ∼ l, Si j ∼ ∂Ui

∂x j
∼ k1/2

l
, si j ∼ ∂ui

∂x j
∼ k1/2

λ
. (6.44)

Recall also that the dissipation rate can be expressed as both ε = 15νu2
1/λ

2 and
ε = clk3/2/ l, which results in a relationship between l and λ (and between Reλ and
Ret , Eq. (3.13)). Thus, the formerly neglected terms now scale as follows:

Pε1 + Pε2
ν

∼ sil skl Sik = O
(

k

λ2

k1/2

l

)
= O

(
k3/2

λ3

λ

l

)
= O

(
k3/2

λ3
Re−1/2

t

)
Pε3
ν

∼ uksil
∂Sil

∂xk
= O

(
k1/2 k1/2

λ

k1/2

l2

)
= O

(
k3/2

λ3

λ2

l2

)
= O

(
k3/2

λ3
Re−1

t

)
Pε4
ν

∼ siksil skl = O
(

k3/2

λ3

)
. (6.45)

On noting that Reλ ∝ Re1/2
t , one can replace λ in the estimate of Pε4 in the last

row of Eq. (6.45) to obtain Pε4 ∼ (ε/T )Re1/2
t as found in Chapter 3. By way of

contrast, the production terms in the first two rows of (6.45) decrease in magnitude
as Ret is raised, justifying their omission in modelling the ε-equation for high-Re

15 The use of the Taylor micro-scale, λ, in combination with the energy-containing velocity scale k1/2 is less
justifiable for high-Re flows because the two scales correspond to different wave number ranges of the energy
spectrum. Here, however, this practice is seen as providing an order of magnitude estimate of terms and the
effect of Ret .
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flows (Chapter 5). However, their inclusion is necessary at low Re and, arguably,
also in high-Reynolds-number flows in regions of strong wall influence.

In the exact ε transport equation the mean velocity gradient appears through the
term:

Pε1 + Pε2 ≡ −2ν

(
∂ui∂u j

∂xk∂xk
+ ∂uk∂uk

∂xi∂x j

)
∂Ui

∂x j
. (6.46)

Having regard for the fact that, in a thin shear flow, the mean velocity is significant
only in directions parallel to the wall (so index i denotes 1 or 3), the second term is
evidently small compared with the first since, within the sublayer, rates of change
of the instantaneous turbulence field are much larger in direction x2 than in x1 or x3.
The first term can, in fact, be expressed in terms of Eq. (6.34) or (6.35). If direction
x1 is aligned with the near-wall mean velocity, both lead to the result (Launder,
1996):

Pε1 ≡ −2ν

(
∂ui∂u j

∂xk∂xk

)
∂Ui

∂x j
= − 4εui u j

2k + 5u2
2

∂U1

∂x2
=
(

4

2 + 5u2
2/k

)
εPk

k
. (6.47)

Equation (6.47) suggests therefore that at the wall the value of cε1 should be 2.0
rather than the lower values (typically from 1.0 to 1.44) used at high Reynolds
numbers.16 The changeover from the high Reynolds number limit to Eq. (6.47)
should consistently adopt the function fs , as in Eq. (6.29). Most of the earlier work
(e.g. Hanjalić and Launder, 1976) has adopted a value for cε1 that is independent
of Reynolds number.

Alternatively, since the first term in brackets in Eq. (6.46) is in fact εi j , one can
simply write Pε1 = −εi j∂Ui

/
∂x j . The second term, while (as argued above) neg-

ligible very close to a wall may conveniently be lumped with εi j since the two
contain certain terms in common (the contribution of the second term notionally
being recognized by adopting a coefficient somewhat different from unity). If, for
example, εi j can be modelled satisfactorily by Eq. (6.33) with (6.34) or (6.35), or
by using Eq. (6.41) in combination with the homogeneous dissipation rate, this
would in principle provide the low Reynolds number source of ε. However, at high
Reynolds numbers and away from the influence of the wall, εi j becomes virtu-
ally isotropic irrespective of the stress anisotropy, and Pε1 then makes a negligible
contribution to the total production of ε. However, from Chapter 5, in these circum-
stances the ε-equation is dominated by the difference between the same terms as at
high Re, namely Pε4−Υε. The common practice is to model the difference between
these two terms as (cε1Pk − cε2ε)(ε/k), though not associating individual terms

16 For the alternative scenario of flow on the axis of a plane impinging flow, where ∂U1/∂x1 = −∂U2/∂x2 are
the only non-zero strain elements, the corresponding expression for Pε1 does reduce to cε1 = 1.0.

https://doi.org/10.1017/9781108875400.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.008


204 Modelling in the immediate wall vicinity and at low Ret

with either of the terms in the exact equation. Thus, collectively, the modelling of
these source terms can be written as:

Pε1 + Pε2 + Pε4 − Υε = −εi j
∂Ui

∂x j
− cε1ui u j

∂Ui

∂x j

ε

k
− cε2

ε2

k
. (6.48)

There is, as implied in the foregoing, incomplete agreement in the turbulence com-
munity as to what exact terms are being approximated by the term with coefficient
cε1. Those concerned with flows remote from walls favour the idea (presented in
Chapter 5) that it is associated with (Pε4 −Υε) since the terms (Pε1 +Pε2) are then
absent or truly negligible. However, Jakirlić and Hanjalić (2002), who examined
exclusively internal flows, linked the term with (Pε1 + Pε2) and cited the DNS
results for a plane channel flow which display good support across the viscous
region, Fig. 6.19a. It would seem that both points of view have merit. In free shear
flows and in the outer regions of flows developing along a wall, the contribution of
mean-flow deformation to the spectral transfer of energy seems entirely credible.
As one approaches the wall, however, the character of the turbulent fluctuations
changes progressively and the range of wave numbers shrinks so there is less and
less of a spectral gap between energy generation and dissipation. In these circum-
stances, the mean-strain contribution to (Pε4 − Υε) will arguably diminish while
there could well be a progressive increase in near-wall effects from (Pε1 +Pε2). It
is, moreover, interesting that the coefficient cε1 should be constant. Indeed, Jakirlić
and Hanjalić (2002), in common with earlier proposals by Launder (1989) (and all
subsequent TCL computations, e.g. Craft and Launder (1996)) and Speziale and
Gatski (1997), adopted the value cε1 = 1.0. However, it is noted that if, instead of
ε, an equation is solved for the homogeneous dissipation, εh (i.e. Eq. (6.54) and
with εh used consistently in all the modelled terms), the difference between taking
cε1 = 1.0 and the ‘old’ value, cε1 = 1.44, is fairly small, Fig. 6.19b.

To complete the contribution of mean shear to the dissipation equation it
remains to approximate the source term Pε3 in the exact ε-equation which contains
∂2Ui/∂x j∂xk . This has commonly been modelled as:

2c′
ε1νukul

k

ε

∂2Ui

∂x j∂xl

∂2Ui

∂x j∂xk
(6.49)

which may be regarded as the result of applying the generalized gradient-diffusion
hypothesis (§4.3.6) to close the exact term. In this case the transportable fluctuating
quantity, ϕ, is ∂ui/∂x j . The value 1.0 adopted for c′

ε1 by Hanjalić and Launder
(1976) is, however, considerably larger than what has more recently been chosen
(e.g. Launder and Tselepidakis, 1993, take c′

ε1 = 0.43); so, arguably, that choice
was compensating for other omissions. The term is important only across the outer
part of the viscous region (commonly termed the ‘buffer layer’).
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Fig. 6.19 Comparisons of the contributions of Pε1 and Pε2 in the ε- and εh-
equations obtained by evaluating exact and modelled terms from the DNS of plane
channel flow, Rem = 5,600. Symbols, DNS data (Kim et al., 1987). From Jakirlić
and Hanjalić (2002).

A more elaborate model of this process has been proposed by Jakirlić and Han-
jalić (2002). Starting from the vorticity transport theory of Bernard (1990), with
some assumptions about the turbulence scales, they obtained:

Pε3 = −2ν

(
∂uku j

∂xl

∂2U j

∂xk∂xl
+ cε3

k

ε

∂ukul

∂x j

∂Ui

∂xk

∂2U j

∂x j∂xl

)
(6.50)

where cε3 = 0.2. Equation (6.50) can be regarded as a rational generalization of
the simpler model, Eq. (6.49). This scheme avoids using the square of the second
velocity derivative (a form which obviously lacks any sensitivity to the sign of the
curvature of the mean velocity profile). When implemented in the HJ near-wall
closure, together with the εh-equation, it proved to be robust and reproduced well
the flows in a plane channel, constant-pressure boundary layer, behind a backward-
facing step and in an axially rotating pipe, with stress fields and their budget in
good agreement with the available DNS results. Figure 6.20 shows some results for
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Fig. 6.20 Comparison of computations (lines, HJ RSM model with the εh-
equation) with DNS and measurements of low-Re flow over a backward-facing
step, ReH = 5,100; ER = 1.2. Top: homogeneous dissipation rates near the wall
(for linear and logarithmic distance scales); Middle: rms normal-stress and shear-
stress components. Bottom: mean velocity profiles at selected locations; Open
symbols: DNS (Le et al., 1997). Filled symbols: experiments (Jović and Driver,
1994). From Jakirlić and Hanjalić (2002).17

the back-step flow, illustrating the model performance in a low Reynolds number
separating turbulent flow.

Turning now to the sink term, for high Reynolds number, nearly isotropic tur-
bulence the coefficient cε2 was determined by reference to grid turbulence decay,

17 For this particular test case Craft (1998) found that while the TCL model also gave very satisfactory agreement
with measurements, so too did the linear k − ε eddy-viscosity model (even though in most backward-facing
step cases eddy-viscosity schemes seriously under-predict the length of the recirculating zone). It seems that
the combination of low Reynolds number and large expansion ratio led, rather fortuitously, to good agreement
with the eddy-viscosity model.
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and it is natural, therefore, that one should turn to low Reynolds number grid turbu-
lence to decide whether modifications are needed. The most complete experimental
turbulence decay data are those of Batchelor and Townsend (1948) whose results
were re-confirmed in a later, similarly comprehensive, examination by Bennett and
Corrsin (1978). These data sets suggest that below a value of Ret of about 10 the
decay exponent n in the relation k ∝ t−n increases from the high Reynolds num-
ber limit of about 1.2 to an asymptotic value of 2.5. Consequently, the coefficient
cε2 = (n + 1)/n should reach asymptotically the value 1.4 in the final period of
decay. If we assume the changeover to be describable in terms of the local value
of Ret , cε2 must be multiplied by some function, fε, to give the desired limiting
values of the decay exponent. Hanjalić and Launder (1976) took

fε = 1.0 − 0.22 exp[−(Ret/6)
2]. (6.51)

The ability of a model to reproduce the changeover from the initial to the final state
of decay of grid turbulence may not seem very important for practical applications.
Nevertheless, in transitional flows at low Ret and, especially, in flows undergoing
laminarization, the appropriate accounting for Reynolds number effects is impor-
tant. There is no reason to suppose much similarity between the low-Re sublayer
near a wall and the viscous decay of weak grid turbulence. However, the exponen-
tial term in Eq. (6.51) falls to zero so rapidly that fε is essentially unity over the
whole of the region near the wall where turbulent stresses are important.

There is, in fact, a more important modification to this sink term needed in wall
turbulence since, as noted in §6.2.1, ε is non-zero at the wall, while k varies as
x2

2 . Even with the introduction of fε, therefore, the sink term cε2 fεε2/k tends to
infinity as x2 goes to zero. A way to avoid this singularity is to replace ε2 in the
sink term by εε̃, where ε̃ was defined by Eq. (6.12).18 As noted in §6.2.1, ε̃ varies
as x2

2 near the wall and thus the term cε2 fεεε̃/k tends to a constant value as the
wall is approached. Thus, the model of the sink term can be summarized as:

Pε4 − Υε ≡ −2ν
∂ui

∂xk

∂ui

∂xl

∂uk

∂xl
− 2

(
ν
∂2ui

∂xk∂xk

)2

= −cε2 fε
εε̃

k
. (6.52)

Virtually all proposals for extending the ε-equation to the wall adopt this form. A
notable exception is the ε-equation of Durbin (1991, 1993) in the context of his
elliptic relaxation models, where the singularity at a wall was avoided by imposing
the Kolmogorov time scale as the lower scale bound. The sink term cε2ε2/k is
written as cε2ε/T , with T =k/ε prevailing throughout the flow except when it
becomes smaller than the Kolmogorov time scale ϑ = (ν/ε)1/2, which is finite at
a solid wall. (A more detailed overview of Durbin’s model is provided in §6.4.)

18 Models that adopt ε̃ as dependent variable use ε̃2 in the sink term.
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Finally, there remains the matter of viscous effects on the turbulent diffusion Dt
ε

to be accounted for. In most models the high Reynolds number form, cεukulk/ε,
is retained as the appropriate diffusion coefficient in the low Reynolds number
region, while Prud’homme and Elghobashi (1986) multiply the coefficient cε by a
viscous damping function, fμ. All proposals have included the exact viscous trans-
port ν∂ε/∂xk as an addition to the high Reynolds number diffusion model. There
is also the question of pressure diffusion D p

ε to be considered. In high-Re turbu-
lence no explicit accounting of this process was attempted. An order of magnitude
estimate of the term in the exact ε-equation suggests, however, that as the wall is
approached the process becomes significant. This suggests that a separate approx-
imation ought to be incorporated. A possible model for the additional term that is
significant only in the viscous region has been proposed:

D p
ε ≡ −2

∂

∂xk

(
ν

ρ

∂p

∂xi

∂uk

∂xi

)
= 2cε4

∂

∂xk

(
νε̃

k

∂k

∂xk

)
. (6.53)

Launder and Tselepidakis (1993) have suggested a value of cε4 of 0.92.

Equation for the ‘homogeneous’ dissipation rate

As discussed in §6.3.3, a way to satisfy the wall-limiting behaviour of εi j without
having to employ wall-normal unit vectors as in Eq. (6.34) or (6.35) is to use the
‘homogeneous’ stress-dissipation rate defined by Eq. (6.40). This makes it possible
to use the algebraic Eq. (6.41) directly without any correction. However, one needs
to provide the homogeneous energy-dissipation rate εh , which can be computed
by contracting indices in Eq. (6.40), i.e. εh = ε − 0.5Dνk and obtaining ε from
the solution of its transport equation. However, a preferable (and computationally
more convenient) route is to solve a transport equation for εh , which can easily be
derived from the ε-equation as

Dεh

Dt
= Dε

Dt
− 1

2

∂

∂xk

(
ν
∂εh

∂xk

)
. (6.54)

For further details, see Jakirlić and Hanjalić (2002).

6.4 Illustration of the performance of two near-wall models

The near-wall modifications of different terms in the second-moment closure dis-
cussed in the previous section have been implemented in various combinations in
certain of the high-Re models considered in Chapter 4, thus creating model vari-
ants that appear in the literature under the common label: low-Re second-moment
closures. Models vary in complexity, some focusing solely on handling the near-
wall layers to allow integration up to the wall (in which case they might more
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appropriately be labelled wall integration (WIN) models). Others are claimed to be
more complete and more general in the sense that they can also successfully pre-
dict certain phenomena linked explicitly with low Reynolds number effects, such
as laminar-to-turbulent and reverse transitions.19 We show below some examples
of the performance of two models presented in the previous section: the HJ and
TCL models (the latter as detailed in Batten et al., 1999) representing linear and
non-linear models.20

6.4.1 Applications of the HJ model

Wall boundary layers in strong pressure gradients

One of the important tests of any turbulence model is its ability to reproduce
how turbulence responds to an imposed strong and enduring pressure gradient. In
incompressible flows, the pressure gradient affects the turbulence field only indi-
rectly through the changes it brings to the mean strain. Nevertheless, marked effects
can be observed in all the turbulence properties, as clearly seen in the changes to
the stress anisotropy, which in turn feed into the mean velocity field. Because of
these indirect effects, the modification of the mean strain by a prolonged pressure
gradient is usually felt by the turbulence field as a cumulative effect which becomes
apparent further downstream. By solving transport equations for each of the non-
zero stresses one is better able to capture the dynamics of the stress field than with
a model directly relating the stress tensor to the deformation tensor.

Adverse and favourable pressure gradients exert important effects on the flow
development both in turbomachinery and in external aerodynamics. Strong adverse
pressure gradients may cause the flow to separate from the wall, while a strong
favourable pressure gradient may lead to boundary-layer laminarization. Fig-
ure 6.21 illustrates both cases with computations using the HJ model for boundary-
layer flows subjected to a range of pressure gradients: for adverse pressure
gradients, d P/dx > 0 (Fig. 6.21a), compared with experimental data of Nagano
et al. (1993), and for sink flows, d P/dx < 0 (Fig. 6.21b) for several values of the
acceleration parameter K (see §6.2.2), compared with DNS data of Spalart (1986).
Most turbulence models can reproduce effects of flow deceleration in the initial
region where the pressure gradient is moderate. However, further downstream
this becomes more challenging not only because the effective pressure gradient
becomes stronger, but also because of the increasing importance of transport on
the turbulent stress field. As seen in Fig. 6.21a, for a region below y+ = 100, the

19 In flows of practical relevance the main interest is in the laminar-to-turbulent transition in a near-wall layer,
but in more general terms, a ‘low Reynolds number’ model should also handle transition away from a solid
wall such as the change from the initial (inertial) to the final (viscous) regime in the decay of isotropic grid
turbulence, or transition in free shear layers, in separation bubbles, near wakes and other free flows.

20 Where ‘linear’ and ‘non-linear’ refer to the forms of Φi j2 adopted in the high-Re versions of the models.
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Fig. 6.21 Velocity and turbulent shear stress in a wall boundary layer subjected
to an increasing adverse pressure gradient (a) and (c) from Hanjalić et al. (1997,
1999); (b) and (d) in a sink flow at different acceleration parameters), Jakirlić
(2004).

mean velocity retains the standard log-law slope but with a shift below the standard
log-law line, while turbulent fluctuations also show a departure from inner scaling
(in terms of friction velocity and viscosity) that extends into the viscous sub-
layer. A major feature is the marked increase in the peak value of shear stress
(uv+ ≡ uv/U 2

τ ) and a shift of its location away from the wall as the pressure
gradient increases (for further details see Hanjalić et al., 1999). All these features
are well reproduced by the model, primarily because the dynamics of the stress
field are well captured but also, partly, due to the greater sensitivity of the model to
irrotational strain, enhanced by the inclusion of the vorticity term in the dissipation
equation, as discussed in §5.1.1 (the term in Eq. (5.3) associated with α3, proposed
by Hanjalić and Launder, 1980).21

21 It is noted that this corrective term has been found to worsen agreement in many recirculating flows and is thus
not recommended for general use. As seen also in Chapter 5, however, for attached boundary layers (as here)
it brings significant improvement.

https://doi.org/10.1017/9781108875400.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.008


6.4 The performance of two near-wall models 211

Figure 6.21b illustrates the performance of the model for strong negative pres-
sure gradients where the acceleration causes departures from the velocity log-law
in the opposite sense than in adverse pressure gradients. In a sink flow the accelera-
tion parameter K is uniform and all the flow properties develop to a self-preserving
state. A particular target is to predict flow laminarization at the appropriate value
of K (see §6.2.2). Computations for four values of K , ranging from moderate,
1.5 × 10−6, to very strong, 3.2 × 10−6, show that for the three values below the
critical value (of about 3.0 × 10−6) turbulent flow survives though the dimension-
less thickness of the viscous region increases progressively with K . This behaviour
accords with that found experimentally by Launder (1964a) and Jones and Laun-
der (1972b) in addition to the DNS by Spalart (1986) with which comparisons are
drawn in the figure. For K = 3.2 × 10−6, however, the computations generated a
flow field that eventually decayed to laminar.

Transition in a laminar separation bubble on a flat plate

Predicting forward transition is commonly regarded as one of the greatest chal-
lenges in fluid mechanics. The actual mechanism of natural transition (instability
and growth of perturbations in a laminar flow, amplification of instabilities, for-
mation of Tollmien–Schlichting waves and their breakdown into turbulence) is
beyond the reach of the RANS modelling strategy. However, transition in situa-
tions where most of the development stages of the foregoing sequence of processes
are bypassed by some externally imposed disturbances can be captured reasonably
well by statistical RANS models. Such cases of bypass transition may be provoked
by diffusion of turbulence into a boundary layer from the free stream or from some
other turbulence source, or by the ‘revival’ of decaying weak turbulence at transi-
tional Reynolds numbers in laminar-like flows22 when subjected to rapid straining
or unstable body force effects. It is equally possible that a boundary layer separates
while still laminar, forming a bubble and generating turbulence in the detached
shear layer and, at reattachment, some of this ‘turbulence-contaminated’ fluid pen-
etrates back upstream in the bubble and the incoming laminar flow. This kind of
separation-induced transition is often associated with adverse pressure gradients
and commonly occurs at the leading edge of an airfoil or gas turbine blade if the
blade or airfoil is misaligned with the approaching flow.

As an illustration of such separation-induced transition, Fig. 6.22 shows the pre-
diction of transition in a laminar boundary layer on a flat plate, where a separation
bubble was created by an adverse pressure gradient induced by imposing suction
along the opposite wall. This case provides a convenient test for RANS models
because the incoming flow is fully laminar and there are no uncertainties associated

22 A flow in which turbulence is so weak that mean flow parameters exhibit laminar features.
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Fig. 6.22 Transition to turbulent flow in a laminar separation bubble. Left:
streamlines and rms streamwise velocity fluctuations. Right: evolution of the max-
imum rms fluctuating velocity components (symbols, DNS of Spalart and Strelets
(1997); lines, computations with the HJ SMC). From Hadžić and Hanjalić (1999).

with the inflow state of turbulence at entry.23 Figure 6.22, left, shows that the HJ
model reproduced the streamline pattern and the turbulence intensity contours in
good agreement with the DNS results of Spalart and Strelets (1997). The transi-
tion to turbulence occurs suddenly, shortly after separation (within the first half
of the bubble), as signalled by the sharp increase in the maximum values of the
Reynolds-stress components along the flow. The model predicts a flow develop-
ment in reasonable agreement with the available DNS data though the computed
peaks are less pronounced and fall somewhat below the DNS results. In the recov-
ery region downstream of the bubble, the predicted values of stresses are in good
agreement with DNS data.

Oscillating boundary layer at transitional Reynolds numbers

Achieving the proper response to an imposed periodic succession of accelera-
tions and decelerations of the flow, such as encountered in oscillating (and other
periodic) flows, is another challenging test for a turbulence model. Oscillating
flows are encountered in various engineering applications such as in reciprocating
engines and their components, in aeronautics, and fluidic, pneumatic or cryogenic
devices. They also occur in living organisms. In comparison with a monotonic
acceleration or deceleration, oscillating flows may exhibit particular features, such
as flow reversal and hysteresis in the response of the turbulent stress components

23 In making these computations a very small level of isotropic turbulence, k1/2/U0 = 10−4, was introduced
into the incoming flow; but this does not need to be a permanent feature: once the bubble is created and a
source of turbulence established, this source feeds turbulence continuously upstream into the incoming flow
irrespective of the turbulence level of the entering fluid. However, one needs to begin computations with some
turbulence field either in the boundary layer or in the whole flow domain. Its level is immaterial provided it is
initially large enough to provoke transition in the reattaching flow.
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and other turbulence properties to the mean velocity and external flow conditions.
Of particular interest are oscillating flows at transitional Reynolds numbers (which
includes conditions encountered in blood flow in the arteries of large mammals),
where the favourable pressure gradient imposed during the acceleration phase may
cause flow laminarization, followed by a sudden ‘revival’ of weak decaying tur-
bulence following the onset of the deceleration phase, all within a single cycle.
The phase angle at which this transition occurs and, indeed, the transition itself
are very sensitive to the Reynolds number, ReδS , based on peak free-stream veloc-
ity and Stokes thickness δS ≡ √

2ν/ω (where ω is the angular frequency of the
flow oscillations). In oscillating flows in pipes or channels, the transition criteria
depend on both the conventional Reynolds number and that based on the Stokes
thickness (Hanjalić et al., 1995) or, equivalently, on the ratio of the pipe radius R
and the Stokes thickness, λ ≡ R/δS expressed in the form of the Valensi number
Va = R2ω/ν = 2λ2 (or, as is more usual in biofluid mechanics, the Womersley

number Wo ≡ R
√
ω
/
ν = √

Va). As noted by Hino et al. (1983), three different
turbulent regimes can be identified: a weakly turbulent (‘turbulescent’) regime, a
conditionally turbulent (‘bursting’) regime and a fully turbulent regime, depending
on the mean flow Reynolds and Valensi numbers (for further details see Hanjalić
et al., 1995). Although the unsteady dynamics and the true physical processes in
the turbulescent and bursting regimes are beyond the reach of RANS modelling,
the change to the fully turbulent regime (with a clear indication of the phase loca-
tion of the onset of the bursting regime) can be captured by a low Reynolds number
second-moment closure. This is illustrated in Fig. 6.23 for an oscillating boundary
layer. Figures 6.23a and 6.23b show the peak wall-friction factor and the phase
lead of the maximum wall stress with respect to the maximum free-stream veloc-
ity, while Fig. 6.23c shows the variation of the maximum wall shear stress over
the phase angle for a range of Reynolds numbers based on the Stokes thickness.
The comparison with the experimental data (for high Re) and the DNS results (for
lower Re) shows excellent agreement for all cases considered. These range from
the turbulescent regime (ReδS = 560, 600) where the profiles are close to the lam-
inar solution, through the bursting regime with a clear indication of the sudden
transition to turbulence (the broken diagonal line in the figure) to the fully turbu-
lent regime (where the flow is turbulent throughout the cycle) at the highest ReδS

of 3,400.

Rotating and swirling flows

The employment of a full SMC with low Reynolds number modifications that
allow integration up to the wall (the WIN approach) may be essential in flows
subjected to rotation and swirl. While, in cases of relatively low circumferential
velocity, the Basic Model with conventional wall functions (applied to the resultant
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Fig. 6.23 Oscillating boundary layer over a range of Reδs numbers (based on the
Stokes thickness δS = √

2ν/ω) and maximum free-stream velocity: (a) friction
factor, (b) phase lead of the maximum wall shear stress versus maximum free-
stream velocity, (c) variation of wall shear stress through a cycle. From Hanjalić
et al. (1995).

wall-parallel velocity,
√

U 2 + W 2, in the near-wall cell) may suffice (see §4.3.8),
for more intense rotation rates or swirl, both the axial and tangential velocity com-
ponents, U and W , and their vector sum depart from the common semi-logarithmic
law, thus invalidating the use of conventional wall functions. The problem can
sometimes be overcome by using more advanced wall functions, as discussed in
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Fig. 6.24 Axial velocity profiles in flow in an axially rotating pipe at different
rotation rates, N ≡ Wwall

/
Ub (with the laminar solution for all N). From Jakirlić

(2004).

Chapter 8. However, many rotating and swirling flows, especially at high rotation
rates, are prone to laminarization, which may require the application of a WIN
scheme to account for low Reynolds number effects and the partial or complete
collapse of turbulence. A number of examples of such flows can be found in Jakir-
lić et al. (2000) and Jakirlić (2004), including flows in axially rotating pipes, fully
developed channel flows rotating in orthogonal mode at high rotation speeds, rotat-
ing Couette flows, swirling flows in long straight pipes, in cyclone separators and
in a spin-down operation of a ‘rapid-compression machine’.24 In the last two exam-
ples, in contrast to any eddy-viscosity model, the WIN SMC approach reproduced
the vortex breakdown and the complex shape of the axial velocity with sharp peaks
and changes of sign, all in accord with the DNS database.

An illustration of the tendency for the flow to laminarize as the rotation rate
increases is shown in Fig. 6.24 for the case of flow in an axially rotating pipe.
The axial velocity profiles computed with the HJ model clearly show a trend
towards laminarization as the spin velocity increases relative to the bulk veloc-
ity. Admittedly, the progressive increase of viscous effects as the relative spin rate
is increased is too strong compared with the DNS results of Orlandi and Fatica
(1997), predicting complete laminarization at N slightly above 1.0, compared with
N ∼ 3.0 − 3.5 suggested by the experiments of Nishibori et al. (1987). These pre-
sumably non-linear effects could be attributed to an inadequacy of the Basic Model

24 This name refers to a valveless cylinder – piston assembly used for studying effects of swirl and compression
pertinent to idealized IC engines. First, the cylinder (or its head) is set in rotation to generate a swirling fluid
motion. After stopping the cylinder rotation abruptly, the fluid inside is subjected to a rapid compression by a
piston stroke. Spin-down studies focus on the subsequent evolution of the compressed turbulence in a decaying
swirl.
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Fig. 6.25 Modification of the mean velocity profile in a channel flow at Re =
9 × 104 due to a transverse magnetic field of different strengths (shown in the
usual semi-logarithmic plot). Symbols, experiments by Brouillette and Lykoudis
(1967); lines, computations with the HJ SMC+MHD effects. From Kenjereš et al.
(2004).

of the pressure strain and the HJ viscous modifications. Nevertheless, the example
demonstrates clearly the need to apply a WIN scheme.

Effects of a magnetic field

The effects of introducing an electromagnetic field into a general high Reynolds
number, second-moment closure were presented in §4.5.4. However, as noted in
that section, most industrial applications deal with flows confined by solid walls
where an (electro-) magnetic field is used to control the flow, heat or mass transfer,
or to generate specific effects (to generate an electric current or a propulsive force
or to pump a conducting fluid) such as in MHD devices. Thus, integration up to the
wall and accounting for viscous and wall proximity effects is essential to obtain
reliable solutions. It is noted, however, that no specific modifications to the model
are needed beyond those for a ‘neutral’ flow; it thus suffices to apply a WIN model
which performs well for the same or similar configurations where magnetic field
effects are absent.

Figures 6.25 and 6.26 illustrate an application of the HJ model in which the
magnetic effects in the ui u j equation presented in §4.5.4 (Eqs. (4.95)–(4.99)) and
in the ε-equation introduced in §5.1.2 (Eq. (5.8)) have been incorporated. The flow
is that through a plane channel at moderate Reynolds number (104 ≤ Re ≤ 105)

with imposed transverse and longitudinal magnetic fields. First, Fig. 6.25 shows
for Re = 9 × 104 a very strong ‘braking’ effect of the transverse magnetic field. (It
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is recalled that here the Lorentz force acts in the direction opposite from that of the
bulk flow.) For a range of relatively high Hartmann numbers (Ha = 60 to 375), the
computations achieve very good agreement with the experiments of Brouillette and
Lykoudis (1967). The braking effect, being directly proportional to the magnitude
of the velocity, has an increasing influence in the central portion of the channel,
while the effects in the near-wall viscous region are much smaller.

The effect of magnetic damping on the velocity fluctuations is illustrated in
Fig. 6.26a, where the computations with the same model are also shown for
a neutral (i.e. non-magnetic) flow (full lines), compared with the DNS data of
Moser et al. (1999). As seen, the transverse magnetic field (dashed lines) exerts
a much stronger effect than the longitudinal one (chain lines), and dampens all
components. It is again recalled that the fluctuating Lorentz force acts only in the
streamwise direction, thus suppressing directly only the streamwise velocity fluctu-
ations, ũ1. Nevertheless, this strong reduction in ũ+

1 ≡ ũ1/Uτ reduces the transfer
of energy to the other normal-stress components (compared with the neutral case)
through the redistribution process, Φi j , so that both ũ+

2 and ũ+
3 are also reduced. As

expected, the maximum damping appears around the peak of ũ+
1 where the fluctu-

ating Lorentz force is a maximum, while in the region very close to the wall the
effect is weak. A further increase in Ha would lead to flow laminarization and a
velocity distribution typical of a laminar Hartmann magnetic plane channel flow.

In contrast, when a uniform longitudinal magnetic field is applied, the mean
Lorentz force is zero and thus has no direct effect on the mean flow. However, the
flow is affected indirectly by the fluctuating Lorentz force acting in all coordinate
directions. Figure 6.26a indicates that the effect is relatively weak for the case
considered (Ha = 50), and even shows an increase in ũ+

1 compared with neutral
flow as one moves away from the wall.

The above conclusion, however, can be misleading as the friction velocity Uτ
also changes with the strength of the magnetic field. This is illustrated in Fig. 6.26b,
which shows the effects of the transverse and longitudinal magnetic fields on the
skin-friction coefficient C f ≡ 2τw

/
ρU 2

b = 2(Uτ /Ub)
2. For the longitudinal mag-

netic field, C f starts to decrease gradually for Ha > 30, but drops suddenly to the
laminar value for a neutral flow at Ha ≈ 40, indicating that the velocity fluctua-
tions have been totally suppressed causing the flow to laminarize, with no further
influence of the magnetic field. In contrast, for the transverse magnetic field, C f

increases steadily, reflecting the deformation of the mean velocity profile, which
becomes fuller as the magnetic strength increases (a consequence of braking the
fluid flow in the central region and increasing the velocity gradient at the wall).
For Ha > 60, the results approach the so-called Hartmann line, characterizing a
(laminar) Hartmann flow dominated by the magnetic field. While no experimental
data are available to confirm the above findings, it is noted that a very similar
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Fig. 6.26 Effect of longitudinal (B = [B1, 0, 0]) and transverse (B = [0, B2, 0])
magnetic field on the flow in a plane channel at Re = 2.2 × 104, computed with
the HJ SMC + MHD model. (a) rms turbulent velocity fluctuations; symbols,
DNS for non-magnetic flow (Moser et al., 1999); lines, computations: full lines
−Ha = 0; chain lines – longitudinal magnetic field Ha = 50; dashed lines –
transverse magnetic field Ha = 50. (b) Friction factor; symbols, computations,

transverse magnetic field, � longitudinal magnetic field. From Kenjereš et al.
(2004), Kenjereš and Hanjalić (2007).

distribution of the friction factor has been published by Gardner and Lykoudis
(1971) for a pipe flow subjected to a transverse magnetic field.

The above examples, while originally aimed at validating models of magnetic
effects in the context of a second-moment closure, also illustrate the potential for
using a magnetic field of different orientations to control the velocity or scalar fields
for different purposes. An example of such an application to control heat transfer in
natural convection (though using an eddy-viscosity/diffusivity formulation derived
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from the above second-moment closure applied in the ‘unsteady RANS’ mode (see
Chapter 9) can be found in Kenjereš and Hanjalić (2004).

6.4.2 Applications of the TCL and TCL-compliant models

Representative applications of low-Re models that apply the two-component limit
will now briefly be presented. As a reminder, the TCL constraint is applied so
that, as the wall is approached, the stress field will, in principle,25 automatically
comply with the requirement Φ22 → 0 as u2

2/k → 0, without having to employ
wall-damping functions (to modify the pressure-strain and pressure-scalar-gradient
models for wall proximity) containing wall-normal distances. The avoidance of
such wall-proximity functions is especially helpful when the surface is irregular
or in situations where, while the surface may be plane, the flow is strongly three-
dimensional. In these cases, as was shown in Chapter 4, the TCL model is clearly
superior to the Basic Model.

Historically, the development of the TCL model proceeded in stages that
included two major phases of extending computations through the viscous region
up to the wall itself. Thus, the computations of the rotating channel flow shown
earlier in Fig. 6.16 had been made with the coefficient c′

2 in the expression for
Φi j2 , Eq. (4.60), set to zero and thus still needed to retain a wall-proximity term
(although of much smaller magnitude than with the Basic Model).

Flow in rotating disc cavities

Effectively, that same model was subsequently successfully applied by Malecki
(1994) at ONERA-CERT to three-dimensional separating flows over an airfoil
and by Elena (1994) (see also Elena and Schiestel, 1996) to flows in disc cavi-
ties. A sample of the latter computations of a rotor-stator cavity is presented in
Fig. 6.27. Figure 6.27a provides profiles of radial and tangential velocity at 80%
of the disc radius, b (where s is the inter-disc spacing). It shows the characteris-
tic Ekman and Bödewadt layers which are generated adjacent to the spinning and
stationary discs respectively while, over the central 70% of the inter-disc gap, the
circumferential velocity is uniform. It is clear that the TCL-compliant RSM pro-
vides closer agreement with the experimental data of Itoh et al. (1990) than the
other models examined. The associated Reynolds stress profiles near the station-
ary disc26 appear in Fig. 6.27b. The TCL-compliant model returns stress profiles
close to those measured, which is consistent with the superior agreement of the

25 As noted in §4.4.5 and §6.3.4 (immediately following Fig. 6.15), ‘compliance with’ does not mean ‘enforcement

of ’. Reynolds number damping was thus also used to ensure u2
2/k did go to zero at the wall.

26 Near the rotating disc all except the TCL-compliant model exhibited laminar flow which is why the Ekman
layer predicted by the three other models is too thin.
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Fig. 6.27 Flow in a rotor-stator cavity. (a) Radial and tangential profiles of mean
velocity at r/b = 0.8: symbols, experiment (Itoh et al., 1990); · · · · · · · · · k −ε
EVM; - - - - - ASM; – – – Basic RSM; ——— TCL-compliant RSM. (b) Three
components of Reynolds stress tensor near a stationary disc normalized by stator
friction velocity Uτ s at r/b = 0.8: – – – – – Basic RSM; ——— TCL-compliant
RSM. From Elena (1994).
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Fig. 6.28 Flow development beneath a circular jet impinging normally on a plane
wall (in plane y = 0). Fully developed pipe flow at jet discharge two diameters
above the plate. Profiles at three pipe diameters from the impingement point. Left:
mean velocity profiles. Right: Reynolds stress normal to the wall. Symbols, HWA
data by Cooper et al. (1993). From Batten et al. (1999). MCL indicates the TCL
model with minor recalibration of low-Re functions.

mean-velocity predictions. While only three components of the stress tensor are
included here, similar agreement was achieved with the remaining three.

Impinging round jet

The more complete TCL model (Craft, 1991, 1998) with the additional elements to
Φi j2 associated with a non-zero coefficient c′

2 (i.e. Eq. (4.60)) is fully documented
in Batten et al. (1999) (including minor refinements to the original empirical sub-
layer functions). It is from this version that the following examples are drawn. The
first example, in Fig. 6.28, compares predictions obtained from several models with
experimental data of the axisymmetric impinging jet at a distance of 3 diameters
from the jet centre where the flow has become a radial wall jet. The TCL scheme
(labelled MCL to indicate the ‘modification’ to the sublayer functions from the
original by Craft, 1998) is in acceptably close agreement with the experimental
data with a markedly lower spreading rate than the other models tested.

Axisymmetric transonic bump

The second example is the axisymmetric transonic bump flow of Bachalo and
Johnson (1986) that has been used extensively for model benchmarking. The flow
geometry consists of a cylinder with streamlined leading edge whose axis is aligned
with the flow. Some way from the leading edge there is an axisymmetric ‘blister’
on the cylinder surface which causes the transonic entering flow to become super-
sonic. A shockwave forms just downstream of the maximum blister height that
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Fig. 6.29 Surface static pressure variation for transonic flow over an axisymmet-
ric bump on a cylinder. From Batten et al. (1999).

reduces the flow to subsonic speed and, thereafter, a limited region of flow separa-
tion. The variation of surface static pressure along the pipe is shown in Fig. 6.29,
starting at the maximum height of the blister (x/c = 0.5, where c is the chord
length of the blister) and extending to 0.5 c downstream of the blister. The modi-
fied TCL scheme predicts the shock location fractionally too early but reproduces
the reduced rate of pressure recovery over the range 0.8 < x/c < 1.1 (caused by
the recirculating flow) better than the HJ model.

The final example is the Mach 2, flat-plate boundary layer that encounters a
fin-plate junction (Barberis and Molton, 1995), a complex three-dimensional flow
that was the subject of a joint European-US CFD workshop on high-speed flows.
The experimentally observed streak-line directions on the plate surface shown in
the lower half of each diagram in Fig. 6.30 bring out clearly that multiple horse-
shoe vortices are created upstream of the fin. The TCL scheme, seen on the left,
while predicting the separation point a little late, does reproduce the second major
recirculating zone. In contrast, as seen from the right-hand figure, eddy-viscosity
models such as the SST of Menter (1994) lead to just a single horseshoe vortex.
Batten et al. (1999) showed that the surface pressure field is also captured most
successfully by the TCL scheme.

6.5 Elliptic relaxation concept

Recognizing that the major effect of a solid wall on the pressure fluctuations imme-
diately adjacent to the wall (and the only effect in the vicinity of a liquid free
surface) originates from the non-local inviscid wall blocking due to impermeability,
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Fig. 6.30 Surface streak-line patterns for flow past a fin-plate junction at Ma = 2.
Lower half of each figure: experiment (Barberis and Molton, 1995). Upper half:
CFD computations. Left, MCL model; right, SST Model (Menter, 1994). From
Batten et al. (1999).

Durbin (1993) proposed an elliptic relaxation (ER) of the pressure-strain term Φi j .
It is seen from Eq. (4.3) that integration of the Poisson equation for p (multiplied
by the instantaneous strain rate) leads to volume integrals consisting of two-point
correlations of various quantities evaluated at points x and x′, which we denote
temporarily by Ψi j (x, x′). Thus, the part of the pressure-strain term unaffected by
boundaries can be written as:

Φi j (x) = p

ρ

(
∂ui

∂x j
+ ∂u j

∂xi

)
= 1

4π

∫
V
Ψi j (x, x′)

dV (x′)
|x′ − x| . (6.55)

Assuming that the two-point correlation Ψi j (x, x′) can be expressed in terms of
its one-point limit and a simple isotropic exponential function (which corresponds
closely to measurements in homogeneous flows), i.e.

Ψi j (x, x′) = Ψi j (x′, x′)e− |x′−x|
L (6.56)

one can write

Φi j (x) = 1

4π

∫
V
Ψi j (x′, x′)e− |x′−x|

L
dV (x′)
|x′ − x| . (6.57)

Here L is the turbulence length scale, e−|x′−x|/L
/

4π(
∣∣x′ − x

∣∣) is the ‘free-space’
Green function associated with the elliptic operator −∇2 + 1/L2. Thus, Eq. (6.57)
can be inverted to

Φi j (x)− L2∇2Φi j (x) = −L2Ψi j (x, x). (6.58)
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In homogeneous turbulent flows the term involving the Laplacian ∇2 vanishes and
the source term on the right can be replaced by a homogeneous expression for the
pressure-strain term �h

i j for which any quasi-homogeneous model can be used.
Thus, Eq. (6.58) can be written as:

Φi j (x)− L2∇2Φi j (x) = Φh
i j . (6.59)

Equation (6.59) has an elliptic character implying that the Laplacian will account
for the conditions on the solid or free surface bounding the flow domain. The char-
acteristic turbulent length scale, L , when sufficiently far from a wall or free surface,
can conveniently be taken as k3/2/ε. With the appropriate boundary conditions,
Eq. (6.59) preserves the non-local character of the pressure-strain term and exerts
its damping due to wall blocking via differential, elliptic equations rather than as
an algebraic expression in terms of local quantities and wall distance as, for exam-
ple, in Shir (1973) and Gibson and Launder (1978) (Eqs. (4.12), (4.14)) or by the
use of stress invariants to signal wall proximity.

6.5.1 Durbin’s elliptic relaxation second-moment closure

Instead of applying the elliptic relaxation concept directly to the pressure redistri-
bution, Φi j , as outlined above, Durbin (1993) applied it to a group of terms in the
ui u j equation, denoted Π∗

i j (for notation, see Eq. (2.18) and §4.2)

Dui u j

Dt
= Pi j +Πi j − εi j + ui u j

k︸ ︷︷ ︸
Π∗

i j

ε − ui u j

k
ε + Dνi j + Dt

i j . (6.60)

Furthermore, the ‘redistributive tensor’ Π∗
i j , is expressed in terms of an elliptic

relaxation function fi j

Π∗
i j = k fi j (6.61)

so that Eq. (6.59) may be recast in terms of fi j

L2∇2 fi j − fi j = − f h
i j (6.62)

where

f h
i j = 1

k

[
Φh

i j −
(
εi j − ui u j

k
ε

)]
. (6.63)

It is necessary now to provide Φh
i j , for which one can use any ‘homogeneous’

model of pressure redistribution (that is, a form unaffected by wall proximity); for
example, Rotta’s model of the ‘slow’ term and the IP model for the ‘rapid’ part (i.e.
the combination that has been termed the Basic Model),

Φh
i j = −c1ε ai j − c2(Pi j − 2

3Pkδi j ). (6.64)
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By assuming isotropic stress dissipation, εi j = 2/3εδi j , which should be valid in
high-Re homogeneous situations, f h

i j can be expressed as27

f h
i j = 1

k

[
Φh

i j + ai jε
]

(6.65)

in which the second term can be absorbed into the ‘slow-term’ model in Φh
i j .

Boundary conditions for fi j

The boundary conditions for fi j are derived from the wall-limiting balance of
all terms in the velocity and pressure fluctuations in a Taylor series in the wall-
normal direction, Eqs. (6.23) and (6.24), and retaining only the leading terms, see
Table 6.1. Examination shows that at the wallΠ∗

i j is balanced by the viscous diffu-
sion and dissipation rate, giving the following exact wall boundary conditions for
the components of fi j :

f w11 = f w33 = − f w22 = 20ν2u2
2

εx4
2

, f w12 = f w23 = −8ν2u1u2

εx4
2

, f w13 = 0 (6.66)

where all variables on the right-hand side of Eq. (6.66) are evaluated at the wall-
adjacent grid point. However, for f w12 and f w23, in place of the above, an empirical
boundary condition is recommended, f w12 = f w23 = −20ν2u1u2/εx4

2 , to compensate
for the fact that u1u2ε/k does not reproduce exactly the correct behaviour of εi j in
the wall vicinity.28

6.5.2 Some shortcomings in and possible improvements to ER-SMC

The primary merit of the elliptic relaxation concept is the correct suppression of the
stress redistribution close to a solid wall, imposed by the wall boundary conditions
for fi j . That ensures that the pressure-scrambling term is balanced by the differ-
ence between the viscous diffusion and dissipation. This in turn ensures the correct
asymptotic behaviour of different components of ui u j and the two-component limit
of turbulence within the viscous sublayer where the wall-normal stress component
unun becomes negligible due to the effect of wall blocking.

However, Durbin’s original model also has some drawbacks. Two of the short-
comings and some proposals for their improvement are considered here. The
derivation of the elliptic relaxation equation was based on the assumption that the

27 Note that, for convenience, Φh
i j is used instead ofΠh

i j to indicate that we can use any of the existing (or other)

pressure-strain models; the difference D p
i j = Πi j − Φi j is negligible in ‘homogeneous’ regions away from

a solid wall. What matters is that the exact wall limits of Π∗
i j (Eq. (6.60), for individual terms see §6.3.2 and

Table 6.1) are ensured by the boundary conditions for fi j .
28 In different applications somewhat different values of the empirical coefficient have been adopted instead of

20.
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exponential correlation function in Eq. (6.56) is isotropic and symmetric, which
is not adequate in highly inhomogeneous and anisotropic turbulence in the vicin-
ity of a wall (Wizman et al., 1996; Manceau and Hanjalić, 2000; Manceau et al.,
2001). This inadequacy is reflected in an amplification of the elliptic relaxation
function, fi j , by about 50% over part of the logarithmic wall region which is suf-
ficiently far from the wall for the wall boundary conditions not to be influential.
This results in the log-region velocity distribution departing (slightly) from the
expected slope. This problem can be removed by adopting an asymmetric correla-
tion function containing the length scale gradient. The simplest, though not entirely
satisfactory, proposal is that of Wizman et al. (1996), which results in a modified
elliptic relaxation equation

∇2(L2 fi j )− fi j = − f h
i j (6.67)

instead of Eq. (6.62).
Other, more complex, forms of elliptic relaxation equation can be derived by

making different assumptions about the two-point correlation function. Gener-
ally these reproduce the logarithmic velocity distribution in a plane channel better
(Manceau and Hanjalić, 2000). However, in most cases these modifications lead to
some deterioration of the numerical robustness of the equation set because of the
need to include L within the elliptic operator.

Another serious drawback of the original ER model is the need to solve six
additional elliptic differential equations for components of fi j , which, despite their
simple form, make a significant extra demand on computer resources. Moreover,
the boundary conditions for f w22 and f w12, both proportional to a ratio of quantities
that vary with x4

2 , are not convenient, especially in thin, high-Re boundary layers
where a proper near-wall resolution requires strong mesh clustering: a small imbal-
ance between the numerator and denominator can lead to numerical instability. In
the next subsection an alternative approach is presented where this problem is to a
large extent avoided.

6.5.3 Elliptic blending second-moment closure (EBM)

In order to reduce the number of auxiliary differential equations needed to account
for the elliptic-relaxation effect, Manceau and Hanjalić (2002) proposed an ellip-
tic blending model, EBM. Besides reducing the computational task, the approach
simplified the boundary conditions, thus making the closure more robust and more
attractive for use in complex flows. The basic elliptic-relaxation concept was
retained, however. First it is noted that the six elliptic relaxation equations are
somewhat redundant: the function fi j is geometrical in nature, its role being to con-
strain the pressure-scrambling terms to comply with the true near-wall behaviour
by satisfying the wall boundary conditions, using a single length scale, L . It was
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thus conjectured that these goals could be achieved with a single elliptic equation.
This basic idea is not entirely new. Indeed, Durbin (1991) introduced a scalar ellip-
tic relaxation function f used in his (k − ε) v2 − f model (of which more is said in
Chapter 7). Manceau and Hanjalić (2002) intended extending the idea to second-
moment closure by introducing a scalar function f ≡ Φkl Mkl from which the
pressure-strain term could be reconstructed as Φi j = f Ni j , where Ni j is another
well-chosen tensor. While this approach seemed plausible, they reported that no
choice of a linear tensorial expression for Mkl and Nkl could rigorously ensure
the exact reconstruction of Φi j . Instead, a model was proposed that was based on a
blending of the near-wall and far-from-the-wall forms of the redistribution tensor:29

Φi j = (1 − α2)Φwi j + α2Φh
i j (6.68)

where α vanishes at the wall and tends to unity very far from it. The ellipticity
of the model is then enforced by solving an elliptic differential equation for the
blending function α:

L2∇2α − α = −1. (6.69)

For Φh
i j , Manceau and Hanjalić (2002) adopted the SSG model, but omitted the

quadratic part in the slow term (Eq. (4.33)), while for Φwi j the following expression
was proposed:

Φwi j = −5
ε

k

[
ui ukn j nk + u j ukni nk − 1

2
ukulnknl(ni n j + δi j )

]
(6.70)

where the wall-normal unit vector is computed from

n = ∇α
|∇α| . (6.71)

Likewise, the components of the stress-dissipation rate are expressed as

εi j = (1 − α2)
ui u j

k
ε + 2

3
α2εδi j . (6.72)

The model is closed by the equation for the dissipation rate, recast as

Dε

Dt
= c′

ε1Pk − cε2ε

T + ∂

∂xk

(
c′
μukulT

∂ε

∂xl

)
+ ν ∂2ε

∂xk∂xk
(6.73)

where T is the time scale for which the conventional definition k/ε is adopted
away from the wall. However, in order to avoid a singularity at the wall, where T

29 Originally, Manceau and Hanjalić (2002) proposed a blending in the form Φi j = (1 − kα)Φwi j + kαΦh
i j and

εi j = (1 − kα)εwi j + 2kαεδi j /3. Later, however, Manceau (2005) found that the simpler forms Eqs. (6.68)
and (6.72) satisfied the imposed constraints equally well and were more robust and performed better in more
complex flows.
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(like L) becomes zero, they argued that the turbulence scale at the wall must have
some finite, non-zero value to reflect the non-zero velocity correlations. Thus, fol-
lowing Durbin, they imposed the Kolmogorov time and length scales, ϑ ≡ (ν/ε)1/2
and η ≡ (ν3/ε)1/4, respectively, as the lower bounds so that the effective scales are
defined as

T = max

[
k

ε
, cτϑ

]
, L = cL max

[
k3/2

ε
, cηη

]
(6.74)

where cτ = 6, cL = 0.161 and cη = 70.
The coefficients in the source terms of ε are also modified by adopting cε2 =

1.83 (instead of the conventional 1.92), while c′
ε1 = cε1(1 + 0.03

√
k/(ui u j ni n j ),

where cε1 = 1.44. The functional form of the coefficient c′
ε1 avoids the need to

include second derivatives of velocity as employed in the conventional low-Re
modifications of the ε-equation (the term defined by Eq. (6.49), for example).

Note that the turbulent diffusion in the stress-transport equation is modelled in
the same way as in the ε-equation, i.e. using the time scale T from Eq. (6.74) with
c′

s = 0.21,

Dt
i j = ∂

∂xk

(
c′

sukulT
∂ui u j

∂xl

)
. (6.75)

Durbin’s ER model involves no damping functions and the only effect of viscosity
(apart from viscous diffusion, which is included in both the stress and dissipation
rate equations) comes from the Kolmogorov scales, which become effective only in
the viscous sublayer very close to a wall.30 Thus, for flows with low bulk Reynolds
numbers and especially for computing laminar-to-turbulent transition it is neces-
sary to introduce separate remedies to account for viscous effects (e.g. Lien et al.,
1998). These, inevitably, amount to damping functions in terms of the turbulence
Reynolds number as in conventional low-Re models.31

The same approach can be applied to a scalar field, i.e. the transport equation for
the turbulent scalar flux

Dθui

Dt
= P
θ i + PU

θ i +Φθ i − εθ i + Dνθ i + Dt
θ i (6.76)

Φθ i = (
1 − α2

)
Φwθ i + α2Φh

θ i . (6.77)

30 The intersection of the two scales, k/ε and ϑ (and, likewise of k3/2/ε and η), in wall-attached flows occurs
too close to the wall, typically at y+ ≈ 1. In order to make the scale switch effective at least over the viscous
sublayer, the Kolmogorov scales need to be multiplied by a coefficient much larger than unity to match DNS
data. This effectively shifts the intersection of the two types of scale and enlarges the region over which the
Kolmogorov scales are active.

31 For example, applying the model to homogeneous turbulence with no production (e.g. grid turbulence decay)
and assuming that at some point in the final period the Kolmogorov time scale will exceed k/ε, the ε-equation
will reduce to U (dε/dx) = −cε2

√
Ret (ε

2/k), which effectively implies that cε2 is a function of Ret . How-

ever, its monotonic increase with Re1/2
t does not correspond to the decay law k ∝ x−2.5, which is known to

prevail in the final decay period.
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Fig. 6.31 (a) Mean velocity profiles in a plane channel for a range of Reynolds
number (180 ≤ Reτ ≤ 1,800); (b) turbulent stress components for Reτ = 590.
Symbols, DNS (for Reτ = 180, 395, 590, Moser et al. (1999) and experiments

(Reτ = 708; 1,011; 1,655, Wei and Willmarth, 1989), ◦ u2
1; � u2

3; � u2
2; bro-

ken lines, original EBM model; full lines, modified EBM model. From Manceau
(2005).

Figures 6.31 and 6.32 illustrate the performance of the EBM model. First, velocity
profiles in a plane channel for a range of Re are presented in Fig. 6.31a, and the
components of the turbulent stress tensor are shown in Fig. 6.31b for a single value
of Re obtained with both the original Manceau and Hanjalić (2002) form and the
modified Manceau (2005) model, showing in both cases very close agreement with
the available DNS and experimental data.

The results for a plane channel rotating about a spanwise axis (in orthogonal
mode) are shown in Fig. 6.32 for a range of rotation numbers, Ro ≡ 2h�/Ub. It
is noted that this flow was computed by simply including the Coriolis (rotational)
production tensor Ri j = −2�k(u j umεikm + ui umε jkm) into the stress transport
equation (see Eq. (2.19)), where�k (�k ≡�) is the system rotation vector. In addi-
tion, the rotation tensor Wi j is replaced by the ‘intrinsic’ vorticity by adding the
system rotation vector, i.e. Wi j = 0.5(∂Ui/∂x j − ∂U j/∂xi )+ εmji�m (see §4.5.2).
No other modifications of the model to account for system rotation appeared to
be necessary as the adopted SSG model of the pressure strain Φi j is formulated in
terms of frame-indifferent variables ai j , Si j and Wi j . Moreover, since, in this case,
Ri j was negligible in the budget of all stress components (Ri j

/
Φi j = O(y−1) for

all i, j), no modification for rotation was needed in the EBM model (though this
may not generally be an appropriate simplification).

Figure 6.32 shows mean velocity, shear stress and the friction velocities on both
walls for Re = 7,000, all in very good agreement with the LES data even for the
highest rotation rate (Ro = 1.5), which shows clear signs of laminarization on the
suction side.
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Fig. 6.32 Mean velocity, turbulent shear stress and wall friction velocities in a
plane channel rotating around a spanwise axis for a range of rotational number
(Ro = 0, 0.16, 0.5 and 1.5) for Re = 7,000. Symbols, LES (Lamballais et al.,
1998); lines, EBM computations. From Manceau (2005).

Successful applications of EBM have also been reported for flow and heat trans-
fer in multiple impinging jets (Thielen et al., 2005), compressor cascades and blade
tip-leakage flows (Borello et al., 2005). Figure 6.33 illustrates the phenomenon of
symmetry breaking in a specific configuration of nine impinging jets in a staggered
(diagonally symmetric) arrangement (a quarter of the set is shown in Fig. 6.33)
caused by a weak vortex being trapped on one or the other side, off the diag-
onal. The complex three-dimensional flow (involving mutual interactions of the
neighbouring jets, their impingement on the wall, the formation of wall jets and
their collision which in turn creates fountain-like upward movements and the radial
escape of the fluid) leads to a highly anisotropic stress field that can be reproduced
only by a full second-moment closure. While the asymmetry of the near-wall flow
pattern has also been captured by some eddy-viscosity models, the EBM SMC
reproduced the experimental velocity and stress fields more accurately (Thielen
et al., 2003, 2005), which in turn resulted in much better predictions of wall heat
transfer.
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Fig. 6.33 Inherent asymmetry of the flow pattern caused by a weak embedded
vortex shifted to the upper side of the diagonal symmetry line in one of the quad-
rants of multiple-impinging jets. Velocity vectors plotted in a wall-parallel plane
at a distance z/D = 0.54. (a) Sketch of the configuration (one quadrant). (b) PIV
measurements. (c) Computations with the elliptic blending SMC. From Thielen
(2005).

In fact, proper resolution of the stress anisotropy proved crucial in predicting
heat transfer, as illustrated in Fig. 6.34, which shows the Nusselt number distri-
bution along the two lines through the jet centres, at x/D = 0 and 4.0 (denoted
by chain lines in the configuration sketch, Fig. 6.33a). Two popular eddy-viscosity
models, the k–ε model (with rudimentary log-law wall functions) and Durbin’s
elliptic relaxation v2 − f model (both considered in Chapter 7), returned seriously
inaccurate Nusselt number distributions, an understandable result in view of the
strong three-dimensionality of the flow and its complex structure. In contrast, the
EBM SMC reproduced the experimental Nusselt number very well even though
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Fig. 6.34 Nusselt number distribution along the target wall at the two cross-
sections indicated in the sketch (Fig. 6.33a) at x/D = 0 and 4.0. Symbols,
experiments (Geers, 2004). From Thielen et al. (2005).

the heat flux was computed using the relatively simple GGDH model, Eq. (4.18),
θui = −(cθkui u j/ε)∂


/
∂x j . As discussed in more detail in §7.3.2, the GGDH

model can be obtained by truncating the complete second-moment closure for the
scalar flux by omitting the transport terms (convection and diffusion). Its use in
conjunction with a full second-moment closure for the stress field is strictly an
inconsistent mixture of closure levels. However, in the case of a passive scalar with
Pr = O(1), its dynamics are governed to a large extent by the momentum trans-
port. Nevertheless, use of the GGDH expression requires that all components of
the stress tensor should be available. In a flow as complex as that considered here,
a differential second-moment closure is the only reliable route to obtaining them.
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7

Simplified schemes

7.1 Rationale and organization

Models for the turbulent stresses and scalar fluxes have been in widespread use
since the 1960s, incorporated within CFD codes of a wide range of types and capa-
bilities. Over this period the vast majority of computations have been made using
turbulence models simpler than second-moment closure. Quite clearly, such sim-
pler models must deliver satisfactory predictions of some of the flows of interest –
for otherwise they would have been discarded. This chapter is devoted to such
reduced models. The position adopted is that, of course, such simplification makes
sense, provided it is made with an appreciation of what has been lost in the process.

This truism applies as much to the numerical solver as to the physical model of
turbulence employed; for one would surely never use a three-dimensional, ellip-
tic, compressible-flow solver if ones interests were simply in computing a range of
axisymmetric, unseparating boundary layers in liquids. But, if we proceed in the
reverse direction, while it is not usually possible to apply a simple numerical solver
to flows well beyond the solver’s capability, it is all too easy to assume that a tur-
bulence model that functioned very satisfactorily in computing simple shear flows
will perform equally as well in computing complex strains or in the presence of
strong external force fields. That is why it is seen as important that simple (or sim-
pler) turbulence models should be arrived at by a rational simplification of the full
second-moment closure (having regard for the particular features of the flow to be
computed) rather than by adopting some constitutive equation as an article of faith.

The remainder of the chapter has been organized in three parts. The most exten-
sive, §7.3, considers algebraic truncations of the second-moment equations. In
favourable circumstances these approaches may lead to just as satisfactory pre-
dictions as the complete second-moment closures considered in Chapters 4 and
6, though there are certainly pitfalls for the unwary. The further steps required to
reduce such algebraic models to a linear eddy-viscosity form are examined in §7.4.

233
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A major area where such approaches can be beneficially applied is the near-wall
sublayer. There gradients of mean and turbulence variables normal to the wall are
usually so much steeper than in other directions that one does indeed have what
amounts to a flow in simple shear – albeit, as discussed in Chapter 6, with many
other complexities arising from wall proximity. First, however, in §7.2, we exam-
ine a different route to simplifying stress-transport closure whose useful range of
application is limited to two-dimensional shear flows but which can handle more
complex phenomena than an eddy-viscosity treatment permits.

7.2 Reduced transport-equation models

When the flows of interest can be treated as two-dimensional thin shear flows, the
analysis of the flow is simplified; for not only does the number of independent
variables decrease but so also does the number of dependent variables (since the
mean velocity in the third direction no longer appears1). That is true whether the
flows in question are laminar or turbulent. The present section examines what fur-
ther simplifications are possible if the flow is turbulent. The idea springs from
the fact that in the mean momentum equation only the shear-stress component
uv exerts a significant effect on the development of the mean flow.2 (Here and
throughout this section the usual boundary-layer notation is adopted with x denot-
ing the primary flow direction and y the principal direction of dependent-variable
variation, with the corresponding notation for mean and turbulent velocity compo-
nents, U, u, V, v.) The stress-transport equations are inter-coupled, of course, and
so, even if the normal stresses are not significant in the mean momentum equations,
they indirectly affect the development of the mean flow through their influence on
other stress components. Yet, the relative magnitude of the normal stresses changes
rather little from flow to flow: the streamwise component is always the largest
(since that is the only component receiving significant energy input directly from
the mean flow), while the other two components are smaller, depending for their
sustenance on ‘hand-outs’ from u2. If, then, the normal stresses are approximated
as being directly proportional to the turbulent kinetic energy, the number of stress
elements found via transport equations is reduced from four to two. Moreover,
since the k-equation contains no contribution from the pressure-strain term, the
couplings among the equations are simpler.

1 With the exception of an axisymmetric swirling flow.
2 The earliest model of this type is that due to Bradshaw (Bradshaw et al., 1967). Rather than solving an equation

for the shear stress, however, the turbulent kinetic energy was used as a cipher for it. The shear stress was then
recovered from the solution of the k-equation by assuming a direct proportionality between shear stress and
turbulence energy, a relationship that applies reasonably well provided one limits attention to external boundary
layers and excludes the viscosity-affected sublayer from the computations. The scheme proved particularly
successful in predicting the highly non-equilibrium (albeit two-dimensional) boundary layers included in the
landmark 1968 Stanford Conference on the prediction of two-dimensional turbulent boundary layers (Kline
et al., 1969).
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The foregoing is the rationale that led Hanjalić and Launder (1972b) to develop
the k−uv−ε model from their form of second-moment closure presented in §4.4.4
by taking u2 = 0.93k, v2 = 0.50k, w2 = 0.57k. The equation set solved was:

Duv

Dt
= −2.8

(
ε

k
uv + 0.07k

∂U

∂y

)
+ cs

∂

∂y

[
k2

ε

∂uv

∂y

]
Dk

Dt
= Pk − ε + 0.8cs

∂

∂y

[
k2

ε

∂k

∂y

]
Dε

Dt
= cε1

Pkε

k
− cε2

ε2

k
+ 0.5cε

∂

∂y

[
k2

ε

∂ε

∂y

]
. (7.1)

In the first line of Eq. (7.1) the value 2.8 refers to the value chosen for Rotta’s
return-to-isotropy coefficient,3 c1, and the value 0.07 is the coefficient that results
from combining the mean strain production term with the model of the rapid part
of the pressure-strain process. The diffusion coefficients cs and cε are those relat-
ing to the models of diffusion in the full stress-transport model (i.e. Eqs. (4.19) and
(5.11)) which were assigned the values 0.08 and 0.13, respectively. Certain ele-
ments of the stress-diffusion term which were negligible in thin shear flows were
discarded to leave the particularly simple form in Eq. (7.1).

The primary rationale for the development of this model was because it had
long been suspected (and contemporaneously emerging experimental data had con-
firmed, Tailland and Mathieu, 1967; Hanjalić and Launder, 1972a) that in strongly
asymmetric shear flows the shear stress would not vanish where the velocity gra-
dient fell to zero, due principally to the effects of shear-stress diffusion. This
difference had proved to be of significant practical importance in choosing the
design of rib-roughened fuel pins for use in the UK’s advanced gas-cooled nuclear
reactors (AGRs). The ‘pins’, in the form of circular sectioned, ribbed tubes (that
would contain the uranium-based fuel in operation), were tested to determine the
optimum form of rib roughening by inserting them at the centre of a long test pipe
(thus forming an annulus). While the Nusselt number for the ribbed tube could be
determined easily (by heating it electrically and measuring the power supply and
the wall temperature), to determine the wall shear stress on the ribbed tube one
needed to be able to remove the contribution of the smooth containing pipe to the
measured pressure drop along the annulus. Initially this was done by measuring
the radius of maximum velocity within the annulus (assuming that this was also
where the shear stress vanished). The results from these calculations seemed hard
to believe, however, and led to the commissioning of research leading to the above
model.

3 The value 2.8 is now seen as spuriously high. See the discussion in Chapter 4, §4.4.3.
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Fig. 7.1 Fully developed flow through a plane channel with ribs on one wall.
Symbols and chain line, experimental data (Hanjalić and Launder, 1972a); full
lines, computations (Hanjalić and Launder, 1972b).

The model was applied with reasonable success to the computation of the two-
dimensional boundary layer in zero pressure gradient, the plane two-dimensional
wall jet and to two plane free shear flows as well as to the flow in annuli where,
as indicated above, the radii of zero shear stress and maximum velocity did not
coincide. The most striking application to a strongly asymmetric flow, however,
was that through a plane channel with one of the walls roughened, results from
which appear in Fig. 7.1. Figure 7.1a shows that the model correctly captures the
displacement (relative to the peak mean velocity) of the position of zero shear
stress towards the smooth wall while it is noted, Fig. 7.1b, that the position of
minimum turbulence energy lies still closer to the smooth wall. Close accord with
the experimental data is achieved by the computations.

Some years later the same authors first addressed the problem of extending
second-moment closure to be applicable within the near-wall sublayer (Hanjalić
and Launder, 1976). Again, after formulating proposals for a complete stress-
transport model, simplifications were sought to reduce the model to the same
three-equation format proposed for flows at high turbulent Reynolds numbers.
However, a major step in the earlier simplification had to be replaced: one could
no longer presume that the normal stress perpendicular to the wall, v2, was propor-
tional to the turbulence energy since v2/k fell to zero as one approached the wall
(see Fig. 6.11). However, experimental data then available (Eckelmann, 1970) had
indicated that the correlation coefficient uv/[u2 ·v2]1/2 took a nearly constant value
of about ±0.47 not just in the fully turbulent region but over a large proportion of
the viscosity-affected sublayer too. Moreover, the lateral normal stress, w2, also
retained a value close to the average over most of the flow. Thus the following two
constraints were adopted to achieve the desired truncation:

uv/[u2 · v2]1/2 = ±0.47, (u2 + v2) = 4k/3. (7.2)
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These approximations were then inserted to simplify the complete closure which
had adopted the QI model for Φi j2

with γ = 0.4 (see Eq. (4.46)) and the linear
model for Φi j1

with Rotta’s constant now reduced to 1.5 as in the LRR proposals
for high Ret . The resultant three-equation model (which contained further low-
Reynolds-number amendments to both the shear stress and ε-equations) can be
written as:4

Duv

Dt
= −(c1 + fs1)

ε

k
uv − fs2

[
1.4

(
uv

k

)2

+ 0.03

]
k
∂U

∂y

+ ∂

∂y

[(
ν + 8.0cs

uv

ε

2
)
∂uv

∂y

]
Dk

Dt
= Pk − ε + ∂

∂y

[(
ν + 5.0cs

uv

ε

2
)
∂k

∂y

]
Dε

Dt
= cε1

ε

k
Pk − cε2 fε

εε̃

k
+ 4.0cε3ν

uv

ε

2 (∂2U

∂y2

)2

+ ∂

∂y

[(
ν + 4.0cε

uv

ε

2
)
∂ε

∂y

]
. (7.3)

The coefficients and functions in Eq. (7.3) were assigned the following values
and forms:

c1 c2 cs cε1 cε2 cε3 cε

1.5 0.40 0.11 cε2 − 3.5cε 1.8 2.0 0.15

fs1 fs2 fε

(1.0 + 0.1Ret)
−1 exp[−2/(1 + Ret/30)] 1 − 0.22[exp −(Ret/6)2]

All the c coefficients were taken over from the high-Re LRR model, except cε3,
which multiplies a term that is significant only in the viscous region and was absent
from the LRR scheme. That and the Reynolds number functions were chosen by
reference to the sublayer shear-stress and k distributions in channel flows at high
Reynolds number.

Figure 7.2 shows that, for fully developed flow through a plane channel, the
scheme captures the progressive thickening of the viscous layer as the bulk Reyn-
olds number is reduced below 104 almost as well as the complete second-moment
closures considered in Chapter 6. It also performs satisfactorily when applied to
4 In principle, solving a transport equation for only one component of a stress tensor is mathematically inconsist-

ent, but at the time of its appearance this model dealt only with two-dimensional flows with only one non-zero
shear stress component.
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Fig. 7.2 Application to low Reynolds number flow in a plane channel. Experi-
ments: �, • Patel and Head (1969); � Eckelmann (1970); —— computations.
From Hanjalić and Launder (1976).

Fig. 7.3 Variation of the shape factor for a strongly accelerated low Reyn-
olds number boundary layer. Symbols, experiment (Launder, 1964b). Lines,
computations with different initial conditions. From Hanjalić and Launder (1976).

highly non-equilibrium flows. Figure 7.3 shows the variation of the shape factor,
H (the boundary-layer displacement thickness divided by the momentum thick-
ness), for a boundary layer developing initially in zero pressure gradient which is
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subjected to severe acceleration between 14 and 21 inches (0.35–0.53 m) from the
leading edge before relaxing again in zero pressure gradient. The abrupt increase in
shape factor displayed by the data signals the progressive reversion of the bound-
ary layer towards laminar flow. (For a self-similar laminar boundary layer in zero
pressure gradient H ≈ 2.6 compared with values of between 1.6 and 1.2 for a tur-
bulent boundary layer, depending on Reynolds number.) Following the end of the
acceleration, the measured shape factor continues to increase close to the value for
a laminar flow before reverting back towards a value associated with the growth
of the Reynolds stresses and the re-establishment of a fully turbulent flow. The
computations were somewhat sensitive to initial conditions for the turbulent field.
Since neither the complete stress tensor nor the dissipation rate had been measured,
three sets of calculations were made to cover a range of alternative, plausible ini-
tial conditions. In view of this uncertainty the overall agreement in computing this
complex flow appears satisfactory.

The applications to which the above approaches have been put are all two-
dimensional thin shear flows where streamline curvature is not significant. Whether
the strategy could be extended (based on more recent closure concepts) to resolve
accurately two-dimensional recirculating flows is not a question that has been seri-
ously examined. For such situations, the usual path to simplification has been one
of those considered in the sections which follow.

7.3 Algebraic truncations of the second-moment equations

7.3.1 Simplification of the Basic Model from differential to algebraic form

A considerable simplification of the second-moment closure can, in principle, be
achieved by eliminating the transport terms in the individual stress-transport equa-
tions. That step reduces the set of differential equations to a system of coupled
algebraic equations. The simplest approach is just to set to zero the transport (i.e.
the convection and diffusion) terms and keep the form of the equations that is
strictly applicable only in local equilibrium. However, perhaps a better approxi-
mation can be made for those terms – one that retains wider applicability – by
expressing the transport in terms of that for the turbulent kinetic energy. The most
common approach is to apply the so-called weak non-equilibrium hypothesis (Rodi,
1972, 1976) in which the time and space evolution of the stress anisotropy tensor
is set to zero, i.e. one assumes that the stress anisotropy remains unchanged as the
flow evolves. In symbolic form this hypothesis can be written as:5(

D

Dt
− D

)
ai j = 0. (7.4)

5 Other transport approximations have also been made to arrive at an algebraic set of equations, for example
Mellor and Yamada (1974), Launder (1982).
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This hypothesis implies that the evolution of each component of the stress tensor
follows that of its trace, i.e. (twice) the turbulent kinetic energy. Inserting ai j ≡
ui u j/k − 2/3δi j and expanding leads to

Dui u j

Dt
− Di j = ui u j

k

(
Dk

Dt
− Dk

)
. (7.5)

Replacing each side of Eq. (7.5) by the corresponding source terms on the right-
hand side of the transport equations for the Reynolds stress and turbulence energy
leads to:

Pi j + Gi j +Φi j − εi j = ui u j

k
(Pk + Gk − ε). (7.6)

Equation (7.6), it is underlined, is an algebraic equation for ui u j in which Φi j

denotes the complete pressure-strain correlation comprising the separate parts dis-
cussed in Chapter 4, i.e.Φi j ≡ Φi j1

+Φi j2
+Φi j3

where here we take the force-field
part, Φi j3

, to be associated with buoyancy. Applications in this section have exclu-
sively employed the Basic Model for the separate parts of Φi j and assumed local
isotropy for the stress dissipation rate, Eq. (4.17). (An alternative strategy, pre-
sented in the following section, is based on the SSG model of Speziale et al., 1991.)
Insertion of the indicated models leads to the following implicit expression from
which ui u j can be computed:

ai j = (1 − c2)(Pi j − 2
3Pkδi j )+ (1 − c3)(Gi j − 2

3Gkδi j )

c1ε + (Pk + Gk − ε) (7.7)

or, equivalently

ui u j = 2

3
δi j k + k

ε

[
α1

(
Pi j − 2

3
Pkδi j

)
+ α2

(
Gi j − 2

3
Gkδi j

)]
(7.8)

where α1 and α2 are functions of Pk/ε, Gk/ε and of c1, c2 and c3.
This type of simplification is sometimes referred to as an algebraic stress model

(ASM) but, while retaining the same acronym, we shall designate it an algebraic
second-moment closure since the same approach is readily applied to scalar trans-
port too. It is noted that the relatively compact appearance of Eq. (7.8) is due to
the particularly simple modelled form of Φi j1

adopted by Rotta’s linear return-to-
isotropy model, which makes it possible to express ui u j in what is superficially
an explicit form (though this is not in fact the case as stress components appear in
the right-hand side of Eq. (7.8) in the production terms). The form given is strictly
applicable only to flows uninfluenced by a solid boundary. For wall boundary lay-
ers the appropriate wall-reflection terms must be included (Rodi and Scheuerer,
1983). Moreover, for low Reynolds number regions (see Chapter 6), the model of
εi j also contains ui u j , and this process should then be treated jointly with Φi j1

.
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Following an analogous route, one can derive an algebraic model for the scalar
flux. By applying the weak non-equilibrium hypothesis to the scalar flux (Gibson
and Launder, 1976), which implies that the anisotropy of the scalar flux vector
θui/(θ2k)1/2 remains approximately constant in space and time, i.e.

(
D

Dt
− D

)⎡⎢⎣ θui(
θ2k

)1/2

⎤⎥⎦ = 0, (7.9)

the sum of the transport terms of θui can be expressed as a function of the transport
of the turbulent kinetic energy and the scalar variance:

Dθui

Dt
− Dθ i = θui

(θ2k)1/2

[
D

Dt

(
(θ2k)1/2

)
− D(θ2k)1/2

]

= 1

2
θui

⎡⎢⎢⎢⎣ 1

θ2

⎛⎜⎜⎝Dθ2

Dt
− Dθθ︸ ︷︷ ︸

Pθθ−εθθ

⎞⎟⎟⎠ + 1

k

(
Dk

Dt
− Dk

)
︸ ︷︷ ︸

Pk+Gk−ε

⎤⎥⎥⎥⎦ .
Replacing the total transport of θui , θ2 and k by their source terms in the
corresponding transport equations leads to:

Pθ i + Gθ i +Φθ i − εθ i = θui

2

[
1

k
(Pk + Gk − ε)+ 1

θ2
(Pθθ − εθθ )

]
. (7.10)

Again, on inserting the Basic Model approximations for the separate contributions
to Φθ i and noting that εθ i is zero in locally isotropic turbulence, the following
implicit algebraic expression is obtained for the turbulent scalar-flux vector:

θui =
ui uk

∂


∂xk
+ (1 − c2θ )θuk

∂Ui

∂xk
+ (1 − cθ3)giβθ2

−c1θ
ε

k
+ 1

2θ2

(
2θuk

∂


∂xk
+ εθθ

)
+ 1

2k

(
ui uk

∂Ui

∂xk
+ giβθui + ε

) .
(7.11)

Equations (7.8) and (7.11) have been applied quite extensively, particularly in two-
dimensional thin shear flows where a marching scheme can be adopted for solving
explicitly what is strictly a highly non-linear set of equations (see, e.g. Hossain
and Rodi, 1982; Rodi and Scheuerer, 1983). In such an approach the ‘new’ values
of ui u j and θui at a downstream station (i.e. the quantities appearing on the left-
hand sides of those equations) are obtained using, on the right-hand sides of (7.8)
and (7.11), the values of the stresses and fluxes and the mean velocity and temper-
ature gradients from the already calculated upstream values. The new downstream
stresses and fluxes are then used in computing the mean velocity and temperature
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Fig. 7.4 Profiles of turbulent shear stress and heat flux across a slightly buoyant
turbulent thermal plane wake. Symbols, experiments (Kovasznay and Ali, 1974);
lines, ASM computations (Gibson and Launder, 1976). NB: the flow direction
is horizontal (x1) and the mean velocity and temperature gradients are vertical
(x3). The abscissa, η, denotes vertical displacement from the geometric symmetry
plane normalized by the wake half-width.

fields at the downstream station by solving the streamwise momentum and thermal
energy (or mean concentration) equations.6

An early application of this approach reported by Gibson and Launder (1976)
compares predictions of the spread of the wake of a horizontal, heated flat plate
(Kovasznay and Ali, 1974). Although apparently not intended, the Richardson
number of the wake was sufficiently high to cause weak buoyant effects which
are thought to be responsible for the different magnitudes of the shear stress and
heat flux on the two sides of the wake centre-line, Fig. 7.4. These are captured
reasonably well by the computations.

A further interesting application is taken from the work of Rodi and Scheuerer
(1983) on mimicking the effects of streamline curvature on the development of
shear flows. They examined three different shear flows subjected to streamline cur-
vature, one of which was the mixing layer turned through 90◦ by the presence of a
nearby wall. Figure 7.5 compares the development of the boundary-layer thickness
arising from an array of different models. The experiments of Castro and Brad-
shaw (1976), shown by open circles, clearly bring out a distinct levelling off of

6 An explicit expression in θu j has also been developed by Abe and Suga (2001), for the case of non-buoyant
flows from a local-equilibrium analysis of the scalar flux transport equation. This is examined further in §7.3.3.

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


7.3 Algebraic truncations of the second-moment equations 243

Fig. 7.5 Development of a mixing layer turned through 90◦ and subsequent down-
stream development. From Rodi and Scheuerer (1983). (a) Flow configuration; (b)
development of mixing-layer thickness with distance: ◦◦◦ experiment (Castro and
Bradshaw, 1976); × × × stress-transport computations (Gibson and Rodi, 1981);
—- —- —- ASM; —— linear eddy viscosity; – – – and · – · – · empirically tuned
eddy-viscosity models.

the thickness of the mixing layer where the shear layer experiences the steepest
turning and, further downstream, a rapid restoration to a nearly linear growth rate.
This behaviour is well captured by the earlier DSM computations of this flow by
Gibson and Rodi (1981) using the Basic Model. The Rodi–Scheuerer computations
show, however, that the ASM scheme (long broken line) does just as well in mim-
icking the development of this flow, substantially better than the standard linear
eddy-viscosity model (solid line) and two other EVM schemes tuned empirically
to reproduce non-equilibrium effects in certain other cases involving streamline
curvature. However, both of the latter schemes exhibit, in the present case, a too
slow recovery. (One of these empirically modified eddy-viscosity schemes is noted
in §7.4.3, immediately following Eq. (7.38)).

ASM approaches have also been applied by Rodi and Scheuerer (1983) and oth-
ers to curved boundary layers where, in that case,Φwi j , the wall-reflection part of the
pressure-strain correlation, must be included (if a linear model forΦi j2

is adopted).
Although this adds considerable complexity to the algebraic form, if used within a
two-dimensional marching code, the additional terms can, as noted above, mainly
be computed at the upstream station in determining the downstream stresses so
there is little penalty in computing time. The approach has also been applied by
Naot and Rodi (1982a) to the computation of fully developed flows in straight
ducts and conduits of non-axisymmetric cross-section.7 Transport effects in such

7 However, the need to introduce influential wall-effect terms in a situation where all four duct walls may affect
the flow simultaneously involves an undesirable level of ad hoc interpretation. This weakness provided a
motivation for developing the more complete models of Φi j considered in §4.4.5.
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flows are small and, as would be expected, the predicted behaviour with an ASM is
little different from that obtained with the corresponding complete stress-transport
closure. Secondary flows (and thus transport effects) created in three-dimensional
flow around bends in a duct will ordinarily be much larger than the weak motions
in a straight duct generated by the anisotropic stress field. For flow through U-
bends of both round and square cross-section, Iacovides and Launder (1985) and
Choi et al. (1989), respectively, obtained much improved predictions from using
the ASM truncation than with earlier attempts using a linear EVM.

However, it should be emphasized that ASM closures have, in general, met with
less success in the prediction of free shear flows. Transport effects are far more
important in these flows (especially in axisymmetric – as opposed to plane – flows)
than in those developing along a wall so they pose a more significant challenge
for the ASM concept. Moreover, while the property of axisymmetry enables the
flow to be examined mathematically with only two space coordinates, so far as the
turbulence is concerned, the large eddies are being stretched in a more complex
way (see the discussion on the Pope correction in §5.1.1). Thus, if one were to
resolve the flow using a purely Cartesian (rather than a cylindrical polar) mesh,
the strain field would be unambiguously three-dimensional. As an illustration, Fu
et al. (1988) computed the round jet in stagnant surroundings with both differential
and algebraic versions of the Basic Model. They found that while the DSM scheme
gave (as reported in Chapter 4) significantly too great a spreading rate, the ASM
scheme was substantially worse because of the excessive levels of predicted turbu-
lent shear stress with a peak value 40% greater than with the DSM, Fig. 7.6, left.
Seeking the source of the anomaly, the transport contribution of the complete DSM
was compared with the approximation made for it with the ASM closure, Fig. 7.6,
right. If the ASM approximation were perfect, the normalized values shown in the
figure would return for each component the value unity. In fact, the estimate is
quite satisfactory for the normal stresses, but for the shear-stress component the
approximation fails very badly (being of the wrong sign over much of the flow), a
fault that Fu et al. (1988) concluded was due principally to the diffusional transport
simplification.

To handle flows more complex than thin shear flows it is not possible to escape
the uncomfortable fact that ASM models such as that presented above for the stress
and scalar-flux components are implicit in ui u j and θu j . Moreover, the coefficients
α1 and α2 have expressions in their denominators which may become very small
or even zero. These features may lead to singularities and numerical instabilities
sufficiently severe to prevent convergence in elliptic flows or, at least, to slow down
convergence to such an extent that it is faster to solve the complete second-moment
transport equations. In order to overcome such numerical problems, several explicit
ASMs have been proposed, a route examined in §7.3.3.
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Fig. 7.6 Comparison of ASM and DSM predictions for a round jet. Left: shear-
stress profiles; right: comparison of ASM approximations of transport with that of
a stress-transport (DSM) model (a value of 1.0 indicates perfect correspondence).
From Fu et al. (1988).

7.3.2 Further simplifications of ASM closures: implications for buoyant flows

In fact, the numerical instabilities that arise when the values of the denominators
in Eqs. (7.7) and (7.11) become extremely small can to a large extent be avoided
by introducing further simplifications, primarily by imposing the equilibrium con-
ditions, Pk + Gk = ε and Pθθ = εθθ , which imply the complete neglect of the
transport terms (convection and diffusion). In this case the ASM model for the
stresses still takes the form of Eq. (7.8) but the quantities α1 and α2 are functions
only of the coefficients figuring in the adopted models for Φi j and Φθ j .

Likewise the algebraic scalar flux can be written as:

θui = − 1

c1θ

k

ε

[
ui u j

∂


∂x j
+ (1 − c2θ )θu j

∂Ui

∂x j
+ (1 − c3θ )βgiθ2

]
. (7.12)

It is noted that the neglect of the two last terms in Eq. (7.12) leads to the widely
adopted eddy-diffusivity model for a scalar field with tensorial diffusion coeffi-
cients, known also as the generalized gradient diffusion hypothesis (GGDH; Daly
and Harlow, 1970),

θui = −cθ
kui u j

ε

∂


∂x j
. (7.13)

This form has already been introduced in Chapter 4 as a popular basis for approx-
imating the diffusion of the second moments and ε. Its use as a model for the second
moments themselves, however, is a much more sensitive modelling choice.

While the complete neglect of the transport terms is obviously a cruder approxi-
mation than the weak equilibrium hypothesis, Eqs. (7.5) and (7.9), neither is correct
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Fig. 7.7 Assessment of the weak-equilibrium hypothesis for turbulent diffusion of
the heat flux θui in an infinite vertical side-heated channel: Symbols, ◦ horizontal
component (i = 1), � vertical component (i = 2), from DNS of Versteegh and
Nieuwstadt (1998). Lines, Eq. (7.14), —– i = 1, – – i = 2. From Dol et al. (1997).

even for relatively simple flows, as Fig. 7.6 makes clear. The situation is possi-
bly exacerbated when buoyancy is involved, as may be illustrated by evaluating
the constituent parts of the ASM approximation from the available DNS data. For
example, for an infinite (fully developed) side-heated vertical plane channel, where
the flow is driven solely by buoyancy, convection is zero and the weak equilibrium
hypothesis relates only to the diffusive transport, i.e.

Dθ i = 1

2
θui

(
1

θ2
Dθθ + 1

k
Dk

)
. (7.14)

As seen in Fig. 7.7, the turbulent diffusion Dθ i , evaluated from Eq. (7.14) using
the DNS results for Dθθ and Dk , follows, to a limited extent, the DNS trend but
the agreement with the DNS data is far from complete. Whether or not that is
important, however, depends on how significant diffusion is relative, say, to gen-
eration. Thus, in some flows, whether one adopts the weak-equilibrium hypothesis
or totally neglects transport does not make a large difference – both suppositions
are inaccurate but unimportant. What is more important in ASM approaches is that
even the reduced algebraic flux relation includes all production mechanisms: those
due to mean scalar gradient, mean rate of strain and buoyancy.

Naturally, the inclusion of the terms involving gravity can be important in flows
driven or affected by scalar buoyancy. This is demonstrated by the two canonical
cases of natural convection on a heated wall, which differ only in the wall orienta-
tion, i.e. the orientation of the imposed bulk temperature gradient, which we may
take as (
w − 
b)/δ, with respect to the gravitational vector, g, where suffixes
w and b indicate the temperatures of the wall and bulk fluid, respectively, and δ
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Fig. 7.8 Sketch of Rayleigh–Bénard convection, ∇
||g (left), and of a vertical
side-heated infinite channel, ∇
⊥g (right).

denotes the fluid layer thickness. For fluid above a horizontal heated surface (or
beneath a horizontal cooled surface), known as the penetrative convective mixed
layer, the bulk temperature gradient is aligned (though with an opposite orienta-
tion) with the gravitational vector. In the case of a vertical heated wall, however, the
temperature-gradient and gravitational vectors are perpendicular. Analogous situ-
ations are also encountered in an infinite plane channel with one wall heated and
the other cooled where the duct axis may be either horizontal or vertical. When
orientated horizontally with the bottom wall heated, Fig. 7.8, left, there is no mean
flow and the resultant turbulent motion is known as Rayleigh–Bénard convection,
whereas in a vertical orientation, Fig. 7.8 right, it is simply referred to as side-
heated vertical channel flow. In both configurations, over the long-term average,
dependent variables change only in the direction normal to the plates. These may
be regarded as generic cases for wall-bounded natural convection. It is important
that any model which aims to reproduce flows where the wall orientation relative
to gravity is changing over the domain can reproduce both cases.

As discussed in general terms in Chapter 4 with reference to Fig. 4.22, the
difference in relative orientation of the temperature-gradient and gravitational vec-
tors leads to striking differences in both the turbulence and bulk flow properties
in the two cases. The Rayleigh–Bénard case cannot be modelled accurately with
simple eddy-diffusivity models. Due to the horizontal homogeneity of the bound-
ary conditions, the mean temperature becomes almost uniform owing to the large
buoyancy-induced vertical mixing (except within the thin conductive sublayers
adjacent to the walls). Moreover, as noted above, the mean velocity is zero; thus,
the only non-zero source in the equation for the turbulent heat flux, whether it
be the complete or reduced ASM form, Eq. (7.11) or (7.12), is the third term (in
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the numerator, so far as (7.11) is concerned) representing the buoyant production.
Clearly, the GGDH formula, Eq. (7.13), cannot provide sensible results for this
case since it links heat fluxes purely to temperature gradients.

In the case of a convective boundary layer along a heated vertical wall or an
infinite side-heated channel, the problem is somewhat different, but still challeng-
ing. Here the wall-normal (horizontal) heat-flux component, which is the primary
interest for heat transfer, can be reproduced reasonably well from a simple or gen-
eralized gradient-diffusion approximation; but the buoyant source in the k- and (if
one adopts the usual modelling strategy) ε-equations is associated with the vertical
flux component (i.e. aligned with the gravitational vector). It is true that modelling
the vertical heat flux in terms of the (negligible) vertical mean-temperature gradi-
ent effectively eliminates the effect of buoyancy on the turbulence field. This is not
as serious as it may at first appear, however, for in this configuration most of the
turbulence energy is created by mean shear (that arises from the buoyancy-driven
shearing of the mean velocity field).

Overall, but especially for vertically stratified flows (of which Rayleigh–Bénard
convection is an important limiting case), an essential prerequisite for reproducing
the turbulent heat flux correctly is to determine the scalar variance, θ2, by solv-
ing its modelled transport equation rather than by applying a local-equilibrium
algebraic truncation.8 While, in Chapter 4, complete second-moment closures (and
even a partial third-moment closure) were applied to this type of flow, here the use
of an algebraic flux model, even in the reduced form, Eq. (7.12), has been found
to be adequate in modelling the observed flow phenomena provided that the above
strategy for obtaining θ2 is followed.

To illustrate this last point, Fig. 7.9 shows the wall-normal heat flux in an infinite
plane channel with one wall heated and the other cooled for the two generic cases
(i.e. horizontal and vertical orientations) introduced above. The symbols denote
the DNS results. Kenjereš et al. (2005) found that neither of the gradient models
(SGDH and GGDH) nor even the reduced algebraic expression containing all the
production terms, Eq. (7.12), reproduced the turbulent heat flux accurately in both
flows. They then proposed an equation derived by truncating a closed form of the
transport equation for θui , using the non-linear part of Eq. (4.35) and including the
controversial proposal of Jones and Musonge (1988) to remove a proportion, c∗

1θ ,

8 The scalar variance has sometimes been evaluated from the truncation of its transport equation (3.16) by

assuming local equilibrium, Pθθ = εθθ , and a constant scalar-to-dynamic time-scale ratio, θ2ε/kεθθ , resulting

in θ2 ∝ −(θu j k/ε)(∂
/∂x j ). Obviously, in flows driven solely by buoyancy, this approximation would make
the algebraic flux models (7.11) and (7.12) grossly in error as both would result in zero levels of flux when

the mean scalar is uniform, as in the examples discussed above. In practice, appreciable levels of θ2 may be
present, driven by diffusion or convection from nearby regions; but to capture that a transport equation must
be solved for the mean-square temperature variance.
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Fig. 7.9 Wall-normal turbulent heat flux in a side-heated infinite vertical plane
channel for Ra = 5 × 106 (upper) and in Rayleigh–Bénard convection for
Ra = 6.3 × 105 (lower), computed from Eq. (7.15) using the DNS data for all
variables appearing in the expressions. Symbols, DNS by Versteegh and Nieuw-
stadt (1998) (upper) and Wörner (1994) (lower). Lines, Eq. (7.15). From Kenjereš
et al. (2005).

of the production of heat flux by mean temperature gradients.9 The model takes
the form

θui = − 1

c1θ

k

ε

[
(1 − c∗

1θ )ui u j
∂


∂x j
+ (1 − c2θ )θu j

∂Ui

∂x j
+ (1 − c3θ )βgiθ2

]
+ c′

1θai jθu j (7.15)

with c∗
1θ = c2θ = c3θ = 0.4, c′

1θ = 1.5. Figure 7.9 shows the application of
Eq. (7.15) to the two generic cases sketched in Fig. 7.8. The lines have been cal-
culated by feeding the DNS results for all variables on the right-hand sides of
Eq. (7.15), showing reasonably satisfactory agreement with the DNS data.

The algebraic flux model (7.15) has also been applied successfully, in conjunc-
tion with the elliptic-relaxation EVM, to a range of buoyancy-driven enclosed flows
(Kenjereš et al., 2005). Further illustration is provided in Fig. 7.10, left, which
shows the evolution with time of the mean temperature profile in a stagnant, strat-
ified layer from the initially linear distribution (from 22◦C at the bottom to 37◦C
at the top), as heating from the bottom progresses.10 Apart from the sharp temper-
ature fall from the hot wall within the thin conductive layer, the temperature over
the mixed layer is almost uniform, though there is also a slight overshooting at the
9 The proposal is controversial because pressure fluctuations (the only mechanism for causing such an effect)

do not appear in the part of the heat-flux equation that contains mean temperature gradients, i.e. ui Dθ/Dt .
Nevertheless, as remarked in Chapter 4, Jones and Musonge (1988) make a reasonable case for including the
modification.

10 In common with the usual practice for flows in the atmosphere, the vertical coordinate is taken as z.
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Fig. 7.10 Penetrative convection into an initially thermally stable layer heated
from below. Left: the mean temperature field at t = 0, 2.40, 3.38, 4.38, 5.36, 6.39
and 7.34 minutes after the onset of bottom heating. Right: vertical heat flux. From
Kenjereš and Hanjalić (2002, 2009).

upper edge of the mixed layer, indicating efforts to penetrate the upper, stably strati-
fied fluid. Early computations by Zeman and Lumley (1976) of this type of mixing
using an elaborate second-moment closure have successfully captured the main
features. However, the predictions obtained by the reduced algebraic stress and
flux models, Eqs. (7.8) and (7.12), reproduce the experimental results of Deardorff
et al. (1969) equally as well.11 In contrast, the inadequacy of the gradient-transport
model for the heat flux (i.e. the GGDH model) is brought out by the dotted lines in
the figure: the mean temperature profiles display a non-uniform distribution with
substantial gradients across the whole layer, an inevitable consequence imposed by
this model since it relies on temperature gradients to produce the vertical heat flux
which removes heat supplied from the bottom.

Figure 7.10, right, shows the vertical component of the heat flux, normalized by
the characteristic velocity and temperature scales, w∗ ≡ (βgqwzinν)

1/3 and 
∗ ≡
qw/w∗, where qw = q ′′

w/(ρcp) denotes the kinematic heat flux and zinν the height
of the mixed layer.12 When plotted against the vertical coordinate normalized with
zinν , all predictions collapse onto a single curve showing remarkable congruence
with several laboratory and aircraft field measurements as well as with the available
LES results. It is noted that the heat flux is positive over the bulk of the mixed layer,

11 Similar quality predictions were also obtained with a reduced differential stress/flux model in which the dif-

ferential transport equations were solved for the vertical heat flux θw, the temperature variance θ2 and the

vertical normal stress w2 (or, alternatively, for the kinetic energy k) (Kenjereš, 1999).
12 The use of z as the vertical coordinate in horizontal stratified flows is so well established in the literature that

it seemed preferable to conform with this tradition.
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Fig. 7.11 Development of a mixed layer in a double-diffusive system. Left: sketch
of the configuration illustrating the initial salt-stratified layer with a uniform tem-
perature (broken lines) and the typical temperature and concentration profiles
after heating from below (full lines). Right: temperature profiles at different times
(hours) after the onset of heating. Symbols, experiments (Bergman et al., 1985);
lines, predictions with an AFM model. From Hanjalić and Musemić (1997).

reducing in intensity with height as the fluid gradually absorbs the heat supplied
from below. Close to the top of the upper layer, an inversion is created where the
heat flux changes sign since here somewhat cooler fluid penetrating the upper stable
layer is heated by the warmer fluid around and above it. It is interesting that in this
inversion layer the AFM shows better agreement with the LES results of Schmidt
and Schumann (1989), whereas the reduced differential flux model agrees better
with the laboratory experiments of Deardorff et al. (1969).

Similar, if still more challenging, problems are encountered in double-diffusive
systems with buoyant effects arising from both thermal and concentration fluxes.
Figure 7.11 examines the development of such a mixed layer in a double-scalar
field, a situation already introduced in §4.5.3 where Fig. 4.26 showed some results
of a full second-moment-closure application. It is recalled that the mixed layer is
formed when an initial isothermal layer, stably stratified by a salt concentration
which increases with the layer depth, is subjected to heating from below, Fig. 7.11,
left. Here the same situation has been computed with a version of the algebraic flux
model showing reasonable agreement with measurements for a succession of time
instants, Fig. 7.11, right.13

13 In fact, the results in Fig. 7.11 have been obtained with a still simpler model using the GGDH expression,
but with a variable turbulent Prandtl–Schmidt number (determined analytically from the AFM truncation
as in Gibson and Launder, 1976) and expressed in terms of buoyancy parameters gβ(k/ε)2(∂
/∂z) and
gγ (k/ε)2(∂S/∂z), where β and γ are the temperature and concentration expansibilities, defined by Eq. (4.89).
The fact that the model reproduces uniform temperature and concentration despite using the GGDH (which,
as argued above, would produce zero scalar flux) can be explained by the variable turbulent Prandtl–Schmidt
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The reduced algebraic flux model, Eq. (7.12), in conjunction with either the
differential or algebraic model for the stresses, has been successfully applied to
Rayleigh–Bénard convection, as well as to a range of buoyancy-driven flows in
various enclosures (Kenjereš and Hanjalić, 1996; Kenjereš, 1999; Hanjalić, 2002).
The same model used in an unsteady mode (URANS) was also found to reproduce
a winter diurnal cycle in a mountain valley capped by an inversion layer, subjected
to daily ground heating and night cooling (Kenjereš and Hanjalić, 2009); for further
details see Chapter 9.

7.3.3 Explicit algebraic second-moment closures (EASMs)

Perhaps recognizing the inconvenience of employing the implicit ASM approaches
discussed above in other than ‘marching’ flows, Pope (1975) proposed transform-
ing the system of implicit algebraic equations for the Reynolds stresses into explicit
form although the algebraic complexity of the task meant that attention was lim-
ited to two-dimensional flows. Subsequently, however, Gatski and Speziale (1993)
(GS), with the help of MathematicaTM (Wolfram, 1988), developed a general trans-
formation for any linear model ofΦi j . A full account of the approach is provided by
Gatski and Rumsey (2002) (in Launder and Sandham, 2002). The resultant equa-
tion, including terms up to quadratic in strain-and-rotation-rate products, can be
written as:

ai j = −λ1 S̃i j − λ2(S̃ik W̃k j + S̃ jk W̃ki )+ λ3(S̃ik S̃k j − δi j S2/3) (7.16)

where, as a reminder, the dimensionless strain and rotation parameters introduced
in Chapter 5 are defined as follows:

S̃i j ≡ 1

2

k

ε

(
∂Ui

∂x j
+ ∂U j

∂xi

)
, W̃i j ≡ 1

2

k

ε

(
∂Ui

∂x j
− ∂U j

∂xi

)
, S ≡

√
S̃mn S̃mn.

The λ coefficients take the following form:

λ1 = n
[
(4/3)− c2

]
, λ2 = (1/2)n2 [2 − c4]

[
(4/3)− c2

]
,

λ3 = n2 [2 − c3]
[
(4/3)− c2

]
where n = (c1/2 + Pk/ε − 1)−1 and c1, . . . , c4 are coefficients in the GS presen-
tation of linear pressure-strain models. For the Basic Model these take the values
c1 = 3.6, c2 = 0.8, c3 = 1.2, c4 = 1.2; for the SSG model the values are

c1 = [3.4 + 1.8Pk/ε], c2 = 0.8 − 0.65A1/2
2 , c3 = 1.25, c4 = 0.4.

numbers which contain the scalar gradients in both the numerator and denominator making the model sensitive
to very small gradients.
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Fig. 7.12 Mean velocity profiles for channel flow rotating in orthogonal mode,
Ro = 0.21. Symbols, experiment (Johnston et al., 1972); lines, computations:
(a) DSM of Speziale et al. (1991); (b) EASM based on the closure model of
Speziale et al. (1991). From Gatski and Speziale (1993). U denotes the bulk
velocity.

For a more complete presentation the reader is referred to Gatski and Speziale
(1993). The performance of their EASM scheme was compared with results
obtained with the original, complete SSG DSM for a number of rotating flows. As
an example, Fig. 7.12 compares results for these two options for the case of fully
developed flow through a plane channel rotating in orthogonal mode from which it
is seen that there are only small differences between the two sets of calculations. Of
course, diffusional transport is not a highly important ingredient in fully developed
channel flow (while convective transport is zero) so the result here should not be
seen as being inconsistent with the less satisfactory comparison between ASM and
the parent DSM found by Fu et al. (1988).

Further analysis in transforming the ASM equations to explicit form has been
contributed inter alia by Taulbee (1992), Girimaji (1996) and Wallin and Johans-
son (2000). The last of these adopted the quasi-isotropic model (Eq. (4.46)) for
Φi j2

, following the suggestion of Taulbee (1992) that the free coefficient in that for-
mulation, denoted c2, should be assigned the value 5/9 (rather than the originally
proposed value of 0.4), a choice that considerably simplified the algebra. Later,
Johansson’s group (Grundestam et al., 2005) proposed a more elaborate formula-
tion based on a non-linear form of Φi j2

together with the k−ω turbulence energy
and scale equations which they also applied to channel flow in orthogonal-mode
rotation for values of the rotation parameter (inverse Rossby number), Ro, up to
0.77. At these extremely high rotation rates the DNS data of the turbulent shear
stress with which they compared their computations apparently showed no change
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of sign as the suction surface was approached. The EASM scheme captured this
complex behaviour fairly well.

7.3.4 Empirical non-linear eddy-viscosity models (NLEVMs)

Both before and after the work of Gatski and Speziale (1993) discussed in §7.3.3
above, several groups of workers proposed ad hoc explicit quadratic non-linear
models for the connection between the stress and the mean strain and rotation ten-
sors. These had been developed with the goal of removing specific weaknesses of
linear eddy-viscosity models. These schemes can be expressed as follows:

ai j = −2
νt

k
Si j + ca

νt

ε

[
Sik Sk j − Skl Sklδi j/3

] + cb
νt

ε

[
Wik Sk j − W jk Ski

]
+ cc

νt

ε

[
Wik W jk − Wlk Wlkδi j/3

]
(7.17)

where νt ≡ cμk2/ε.
Proposals of this type were made, inter alia, by Nisizimi and Yoshizawa (1987),

Speziale (1987b), Myong and Kasagi (1990), Rubinstein and Barton (1990) and
Shih et al. (1995). Yet, from a comparison of the different proposals, Suga (1995)
concluded that there was scarcely any point of concurrence in the proposed values
of the empirical coefficients among the various schemes, other than that of the lin-
ear term cμ. That fact suggested that the proposals would have added little breadth
of applicability since they were calibrated to cope just with simple plane shear
flows and the particular class of ‘difficult’ flows for which the non-linear terms
were tuned to resolve. The above conclusion led Suga (see also Craft et al., 1996b,
1997b) to focus on developing cubic non-linear EVMs. The coefficients were still
based on calibration against test flows where a linear eddy-viscosity model failed to
return satisfactory predictions. By formulating the model at cubic level, however,
an appreciably larger number of empirical coefficients became available to allow
tuning against a substantially wider range of flows.

On converting to the dimensionless strain and rotation rates used earlier, the
constitutive relation adopted can be written as:

ai j/cμ fμ = −2S̃i j + ca(S̃ik S̃ jk − S2δi j/3)+ cb(W̃ik S̃ jk + W̃ jk S̃ik)

+ cc(W̃ik W̃ jk − W̃kl W̃klδi j/3)+ cd(S̃ki W̃l j + S̃k j W̃li )S̃kl

+ cg S̃i j W̃kl W̃kl + ce(W̃il W̃lm S̃mj + S̃il W̃lm W̃mj

− 2S̃lm W̃mnW̃nlδi j/3)+ c f S̃i j S̃kl S̃kl (7.18)

where here the dimensionless strain and rotation parameters employ the ‘quasi-
homogeneous dissipation rate’, ε̃ ≡ ε − 2ν(∂k1/2/∂x j )

2, introduced in Chapter 6,
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Fig. 7.13 Stress anisotropies for homogeneous turbulence subjected to different
dimensionless shear rates. Symbols, S = 3.5, Champagne et al. (1970); S = 6.0,
Tavoularis and Corrsin (1981); S ≥ 15, DNS, Lee et al. (1990). Lines model the
calibration from Eq. (7.19). From Craft et al. (1996b).

which goes to zero at the wall. The coefficient cμ was tuned by reference to the
various data of simply strained homogeneous shear flows, Fig. 7.13.14 The adopted
form of this coefficient was:15

cμ = 0.3

1 + 0.59[max(S,W )]1.5

(
1 − exp

[ −0.36

exp(−1.26 max[S,W ])
])

(7.19)

where as a reminder, W is the scalar rotation rate parameter, W ≡
√

W̃i j W̃i j .
The near-wall damping function fμ was proposed as:

fμ = 1 − exp
[−(Ret/90)1/2 − (Ret/400)2

]
(7.20)

though it is unlikely that viscous effects are in fact active in modifying turbulence
for values of Ret as high as Eq. (7.20) implies.16 The recommended values for the
other coefficients are listed in Table 7.1.

Figure 7.13 shows the variation of the anisotropic stress tensor as a function
of the dimensionless strain rate from the experiments of Champagne et al. (1970)

14 With cf = −cg , see Table 7.1, the linear term is the only one that contributes to the shear stress in simple
shear.

15 The use of both turbulent Reynolds number and a dimensionless strain rate in reducing the turbulent viscosity
as the wall is approached is a strategy also adopted within a linear eddy-viscosity scheme by Cotton and Ismael
(1998).

16 In a subsequent study, Craft et al. (1997b), Reynolds number effects were active only within the buffer layer
while additional near-wall damping was applied through the variation of A2, which was obtained from its own
transport equation, Eq. (7.21).
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Table 7.1 Coefficients in the NLEVM of Suga (1995) and Craft
et al. (1996b)

ca cb cc cd ce cf cg

−1.6 1.6 4.16 −640c2
μ 0 −320c2

μ 320c2
μ

Fig. 7.14 Axisymmetric impinging jet for Re = 22,000, H/D = 2; r radial dis-
tance from stagnation point, D jet diameter, H jet discharge height above plate:
(a) mean velocity; (b) shear stress; (c) rms turbulent velocity normal to plate; (d)
Nusselt number distribution along plate. Symbols, experiments: ◦◦◦ Cooper et al.
(1993); ��� Baughn and Shimizu (1989), Baughn et al. (1992); computations:
- - - linear EVM; —— NLEVM. From Craft (1996b).

and Tavoularis and Corrsin (1981) and from DNS simulations (Lee et al., 1990).
Agreement of the three component anisotropies with these data is satisfactorily
close though, as noted above, the functional dependence of cμ was explicitly tuned
to achieve the best results possible. The (negative of the) value of the ordinate
for a12 is proportional to cμ. The decrease in the value of this quantity at high
strain rates is an important feature that should be built into any model aspiring to
reasonable generality.

The scheme was applied by its originators to a range of flows in which significant
straining other than simple shear was present, including curved channel flow and
swirling flow through a straight pipe. Figure 7.14 shows results for the turbulence
field in an impinging round jet close to the stagnation point and the resultant effect

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


7.3 Algebraic truncations of the second-moment equations 257

Fig. 7.15 Decay of axial velocity at the centre of a wingtip vortex downstream
from the wing trailing edge. Symbols, experiments (Chow et al., 1997); compu-
tations, – ·· – linear k − ε EVM, · – · – · cubic NLEVM, - - - - Basic Model DSM,
——– TCL DSM. From Craft et al. (2006b). The too rapid decay of the axial
velocity signals a too rapid mixing out of the vortex. The coordinate origin is the
trailing edge of the wing and c denotes the wing chord.

on the mean velocity and heat transfer coefficient. The very great improvement
relative to that of a linear eddy-viscosity model is plain; in turn this led to the
markedly greater accuracy in the computed distribution of Nusselt number along
the plate shown in Fig. 7.14d.

Some years later, however (Craft et al., 2006b), it was found that the wingtip vor-
tex downstream from an aircraft diffused much too rapidly with this scheme, the
results being only slightly better than those obtained using a linear EVM, whereas
the TCL stress-transport closure reproduced a good deal more accurately the slow
decay of the vortex, Fig. 7.15. (The decay of the swirl velocity means that the static
pressure at the centre of the vortex rises with distance downstream and thus the
streamwise velocity at the centre of the vortex – which is what is shown in Fig. 7.15
– decreases downstream. The too rapid decay predicted, especially with the lin-
ear and non-linear EVMs, signals the fact that too much mixing with the outer
non-swirling fluid is occurring.) In this case, as part of the calibration process, the
model had been tuned to capture correctly the damping when angular momentum
increased with radius. It had not been similarly tested when the angular momen-
tum decreased with radius for evidently, in the form applied, excessive mixing is
then provoked. This failure underlines the fact that empirically based models run
the risk of generating spurious answers if one strays far beyond the range of flows
used in calibrating the coefficients of the model.

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


258 Simplified schemes

Fig. 7.16 Near-wall normalized profiles of rms turbulence intensities and dis-
sipation rate. Symbols, DNS (Kim, 1989); lines, computed behaviour with a
k − ε− A2 NLEVM. From Craft et al. (1997b).

A further weakness emerged when extending the model to handle simple shear
flows within the viscosity-affected sublayer. For, while the profiles of shear stress
and turbulence energy were well predicted, there was too little difference in the
levels of the normal stresses. It was felt that this weakness was linked with the fact
that while the model was designed to be consistent with the two-component limit
it did not enforce it. To address that shortcoming, Craft et al. (1997b) solved an
additional transport equation for the second invariant of the Reynolds stress, A2

(as well as those for k and ε̃). The exact transport equation for this quantity can be
organized in the form:

D A2

Dt
= 2

ai j

k
[Di j + Pi j +Φi j − εi j ] − 2

A2

k
[Dk + Pk − ε]. (7.21)

In order to complete closure, approximations for the diffusion, pressure-strain
and dissipation processes in (7.21) were made, drawn from second-moment-
closure experience, while the coefficients appearing in Table 7.1 became functions
of turbulent Reynolds number and the stress invariants. The reader is referred to
the original publication or to the later and slightly modified version of Suga et al.
(2001) for further details. Figure 7.16 provides an impression of the performance
of this three-equation scheme for low Reynolds number flow in a plane channel.
Figure 7.16a indicates that the variation of the normal stresses across the near-wall
region agrees closely with the DNS of Kim (1989), while Fig. 7.16b shows close
accord with the corresponding dissipation rate profile, including the sharp increase
in ε very close to the wall.
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Fig. 7.17 Velocity profiles on the symmetry plane of a sharp, square-sectioned
U-bend. Left: flow configuration. Right: mean velocity profiles at selected sta-
tions around and downstream from the bend. Symbols, experiments (Cheah et al.,
1996); · · · · · · · · · Launder–Sharma, linear EVM; ——k − ε− A2 NLEVM. From
Suga et al. (2001).

An extensive testing of this model was subsequently made at the Toyota
Research Laboratories for more complex three-dimensional flows relevant to sit-
uations found inside IC engines and to external automobile aerodynamics (Suga
et al., 2001). As an example, Fig. 7.17 examines the flow around a very tight
square-sectioned U-bend comparing computations with the NLEVM and linear
EVM schemes against experiment. The figures start 90◦ around the bend where
already the flow on the inside of the bend has separated. At this position both mod-
els are in good agreement with the experimental data. Further, around the bend
the separated flow region becomes thicker and only the NLEVM tracks the experi-
mental data at all closely. An interesting difference between the results of the two
models is that the NLEVM recovers from the separation much more rapidly down-
stream of the bend than the linear EVM even though at one diameter downstream a
large separation is still predicted with the former. This behaviour is fully in accord
with the experimental data.17

17 In a separate paper, Suga (2001) reports that for this flow the NLEVM model even gives superior predictions
to the TCL SMC presented in Chapter 4. Taking account of all the test cases examined, however, the TCL
scheme returned the better overall agreement with data.
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The Toyota group has also made proposals for corresponding algebraic mod-
els for the turbulent heat or species fluxes, θui (Suga and Abe, 2000). Here it is
first noted that the generalized gradient diffusion hypothesis (GGDH) of Daly and
Harlow (1970), Eq. (7.13), has been widely used to approximate the heat fluxes
in forced-convection situations in both near-wall and free flows. One of its virtues
(compared with simple gradient diffusion) is that, in a shear flow, it produces a heat
flux in the streamwise direction (where the mean temperature gradient is negligi-
ble) as large as or larger than that down the temperature gradient in the cross-stream
direction. However, this streamwise heat flux is in fact still much smaller than what
actually occurs. The anomaly is usually of little importance as the streamwise flux
is negligible compared with the mean-flow convective transport of heat. However,
Suga and Abe (2000) and Abe and Suga (2001) concluded from an extensive study
of near-wall heat transfer that there were distinct benefits in developing a more
general form than Eq. (7.13), not only to model the streamwise flux but also to
approximate the important cross-stream flux for varying states of turbulence over
a wide range of Prandtl number. Their recommended form (Abe and Suga, 2001)
is:18

θui = −cθk2

ε

[
cσ1

ui u j

k
+ cσ2

ui uk · u j uk

k2

]
∂


∂x j
(7.22)

where cθ = 0.4(1 − exp[−(20A)2])−0.25, cσ1 = 0.15 fb − fPr, cσ2 = 1 − fb − fPr

and

fPr = 1/[1 + (Pr/0.085)1.5], fb = (1 − fPr)
2 exp[−S∗ − (A/0.6)2]

where S* is the dimensionless strain rate S
√

2 and A is the stress flatness parameter,
1 − (9/8)[A2 − A3].

An example of their dimensionless temperature and heat-flux profiles for fully
developed plane channel flow is shown in Fig. 7.18. The walls were maintained
at different temperatures; thus, if the molecular transport contribution were zero,
the level of θv

+
would be equal to unity across the channel. The level of agree-

ment with the DNS/LES results is indeed impressive at all Prandtl numbers
though it should be emphasized that the model has been calibrated purely for two-
dimensional heat transport. It does not necessarily follow that agreement would be
as satisfactory for three-dimensional transport processes.

18 The form quoted in Suga and Abe (2000) also contains additional terms containing the mean vorticity tensor,
Wi j . However, Suga (personal communication) advises that these added terms had little effect.
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Fig. 7.18 Normalized turbulent thermal field for fully developed flow in a plane
channel with different temperatures applied to the two walls. Symbols, DNS/LES,
Pr = 7.0, 2.0, 0.71 (Abe and Suga, 1998); Pr = 0.1 (Rogers et al., 1989).

7.4 Linear eddy-viscosity models

7.4.1 Origins and scope

A turbulent flow in local equilibrium that is undergoing simple shearing – so that
the production rate of turbulence energy just balances the local dissipation rate –
satisfies the constraint:

Pk = −uv
∂U

∂y
= ε. (7.23)

(Here and elsewhere in this section we revert to conventional Cartesian coordinates
with y denoting the coordinate normal to the wall, or in the direction of shearing
for a free flow.) First we define a quantity cμ such that:

cμk2 ≡ uv2. (7.24)

Let us now multiply the left side of (7.23) by the left side of (7.24) and do like-
wise with the right sides of these two equations to maintain the equality. Then, on
dividing each side by ε and uv, it emerges that:

− uv = cμ
k2

ε

∂U

∂y
. (7.25)
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In this form, the quantity cμk2/ε is seen to play the role of a turbulent kinematic
viscosity. The quantity cμ is a contrived quantity introduced for convenience but
Townsend (1956) observed that in various two-dimensional thin shear flows it was
fairly constant, while, as noted in §7.2, Bradshaw et al. (1967) developed a very
successful early computational scheme for two-dimensional boundary layers which
included the supposition that uv/k was indeed constant.

An alternative and arguably somewhat deeper insight into why turbulent shear
flows will exhibit a viscosity-like transport behaviour in local equilibrium and sim-
ple shear is provided by the Basic Model. For then, as discussed in §6.2.3, the
shear-stress equation reduces to:

− uv = (1 − c2)

c1

v2

k︸ ︷︷ ︸
cμ

.
k2

ε

∂U

∂y
. (7.26)

In the above c1 and c2 are, respectively, the coefficients in Rotta’s linear return-to-
isotropy model of Φi j1

and the isotropization-of-production (IP) model for Φi j2
,

whose values are recommended as 1.8 and 0.6. The quantity v2/k is by no means
constant close to a wall, diminishing continuously as the wall is approached; but
this variation can usually be disregarded in the fully turbulent region while the
practice of mimicking the damping within the viscosity-affected sublayer by mak-
ing cμ a function of the local turbulent Reynolds number is long established despite
its obvious physical shortcoming.19

In fact, paradoxically, the immediate near-wall region of a turbulent shear flow
turns out to be the area where resort to linear eddy-viscosity models has often been
made, even when a higher order closure model has been adopted further from the
wall. For, while this is physically the most complex region encountered in terms
of the interactions expressed in the second-moment equations, there are also sim-
plifying features. Indeed, the flow there – away from the immediate vicinity of
stagnation or separation points – really is in a state of (intense) simple shear. Con-
sequently, the upstream history is usually of negligible importance even though, in
regions of the shear flow further from the wall, its influence may be vital. (It is that
fact of turbulence life that leads in many attached flows to a nearly universal var-
iation of the near-wall velocity and temperature when scaled suitably in terms of
wall variables.) Moreover, because of the complex form of DSM or ASM closures
in the viscosity-affected sublayer, the numerical solution of the strongly coupled
equation set is not straightforward. Indeed, charting a route between divergence

19 As discussed in Chapter 6, the damping of v2 relative to k as the wall is approached is largely an inviscid wall
blocking such as also occurs adjacent to the interface in free-surface flows or other moving interfaces where
viscous effects are normally negligible (e.g. Perot and Moin, 1995).
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of the iterative solution and generating spurious converged results rendered worth-
less by numerical diffusion or inadequately resolved source terms is not a task for
those needing rapid answers or with little accumulated experience! In these circum-
stances, a relatively economical and prudent approach that is often adopted is to use
a linear eddy-viscosity model to cover just the near-wall region where viscous/wall-
blocking effects are substantial, whether at two-equation level (where most of the
present examination is directed) or simpler schemes (one-equation k-models or
algebraic schemes, such as the mixing-length hypothesis).

Regarding the sections which follow, attention is given in §7.4.2 to models which
determine the turbulent viscosity by solving (in addition to the turbulence energy
equation) an equation for either the turbulence energy dissipation rate ε (or its asso-
ciated ‘quasi-homogeneous’ part ε̃) or the quantity ω (which may be taken as the
reciprocal of the turbulent time scale, k/ε). An important issue addressed is what
represents the best way of damping the turbulent viscosity as one approaches the
wall so that one mimics the y3 variation of shear stress that simple analysis and
DNS data have shown to apply. Simple eddy-viscosity models are nearly blind to
the effects of body forces or streamline curvature on turbulence structure. Thus, in
§7.4.3, simple ad hoc devices for restoring an appropriate sensitivity to these exter-
nal influences are briefly noted. In §7.4.4, the elliptic relaxation scheme, introduced
in Chapter 6 to handle near-wall influences in stress-transport models, reappears as
a useful component of eddy-viscosity models. Finally, in §7.4.5, we consider situa-
tions where zero- and one-equation models can perform as well as models requiring
an order of magnitude more computing power.

7.4.2 Popular two-equation EVMs

In the presentation above, two scalar properties of turbulence have emerged which
are evidently transported by the flow: the turbulent kinetic energy, k, for which an
exact transport equation was first published by Reynolds (1895) in his direction-
changing ‘Reynolds averaging’ paper, and its dissipation rate, ε. Or, since a
transport equation for k is nearly always adopted, some quantity comprising powers
of k and ε would, in principle, suffice just as well as the second variable. In fact, the
first proposal for a two-equation eddy-viscosity model was made by Kolmogorov
(1942) in a paper based simply on physical insight, intuition and dimensional anal-
ysis. His choice of second variable was the rate of energy dissipation scaled with
respect to the turbulence energy itself, ε/k, which is nowadays commonly given the
symbol ω. Kolmogorov’s insight into the nature of turbulence led him to conclude
that fine-scale dissipative interactions should be unaffected by processes modifying
the large scales of turbulence such as mean shear. Thus his transport equation for ω
contained a sink term but no source. Kolmogorov’s logic had led him to overlook
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the realities of the supply chain, however. The finest scales of turbulence responsi-
ble for energy destruction had themselves been created (as Richardson, 1926, had
much earlier remarked) by the successive breakdown of large eddies into finer and
finer scale structures – and this breakdown was certainly affected by large-scale
interactions.

In fact, many years later, Saffman (1970) proposed a transport equation for ω2

which, since Dω2/Dt = 2ωDω/Dt and conversion between the two is straightfor-
ward, we may regard as embracing the essence of a k−ω model. Saffman’s version
of the ω2 equation did, however, contain a source term proportional to the mean
velocity gradient squared and he applied the equation set (for k and ω2 with the
turbulent viscosity νt proportional to k/ω) to several self-preserving shear flows.
Over the ensuing 30 years there have been numerous contributions to refining the
model, initially, like Saffman, adopting ω2 as the dependent variable but, more
recently, following Wilcox, in terms of a transport equation for ω itself. A more
comprehensive account of the evolution of the k−ω linear EVM may be found in
the textbook by Wilcox (2000).

The other widely applied eddy-viscosity closure is the so-called k−ε model
which was originally developed in the late 1960s in D. B. Spalding’s group at
Imperial College, London. The initial development work was stimulated by the ε-
equation proposed by Davidov (1961) (as an element of a much more elaborate
closure) and Spalding’s encouragement for his group to explore several alterna-
tive two-equation EVMs. The first work on the high-Re form of the ε-equation
was undertaken by Hanjalić (1970). Following the rigorous derivation of the ε-
equation by Davidov (1959, 1961) and some of his conceptual proposals for its
closure, Hanjalic formulated a high-Re k−ε model and demonstrated its satisfac-
tory performance in a number of wall-bounded and free parabolic flows, especially
in symmetric configurations. However, the main focus of his doctoral research lay
in predicting flows where the surfaces of maximum velocity and zero shear stress
were not coincident, see §7.2. Consequently, his effort shifted to stress-transport
modelling (Hanjalić and Launder, 1972b) while the considerable further develop-
ment of the k−ε model required to enable integration of the dependent variables
across the viscosity-affected sublayer (with the goal of predicting partial or com-
plete boundary-layer laminarization, discussed in Chapter 6) was taken up by Jones
(1971) (see also Jones and Launder, 1972a). Minor adjustments of the model were
subsequently made to make the scheme consistent with an overall optimization
of the model for free shear flows (Launder et al., 1973; Launder and Sharma,
1974). In the 1980s, several alternative forms were proposed by other groups,
most of which were included in the first comparative testing of two-equation mod-
els for wall boundary layers by Patel et al. (1985), whose findings are reported
below.
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Table 7.2 Coefficients in turbulence models, from Patel et al. (1985)

Model Code D ε̃w (WBC) cμ cα1 cα2 σk σα

Launder– LS 2ν

(
∂k1/2

∂y

)2

0 0.09 1.44 1.92 1.0 1.3

Sharma

Chien CH 2νk/y2 0 0.09 1.35 1.8 1.0 1.3
Lam– LB1 0 ∂ε/∂y = 0 0.09 1.44 1.92 1.0 1.3
Bremhorst
Wilcox– WR 0 see note in text 0.09 1.11 0.15 2.0 2.0
Rubesin

Subscript α denotes ε or ω, as appropriate. WBC indicates ‘wall boundary condition’.

Other choices for the second dependent variable have also been made but these
have been neither as successful nor as extensively tested as those named above.
That is not to say that the above versions do not have their weaknesses. Besides the
inherent limitations associated with adopting the constitutive equation for a linear
eddy-viscosity model, both k−ω and k−ε schemes have their own particular weak
points as will be pointed out in this section. Fortunately, the weaknesses of the
models are, on the whole, rather different and arise in different types or regions of
flows. So, depending on the flow to be predicted one can choose which model is
the more likely to yield predictions closer to reality. One quite successful scheme
is a composite blend of the two models that transforms from one model to the
other depending on the proximity to a wall (Menter, 1994; Menter et al., 2003).
Before considering that, however, the mathematical forms, the major successes
and the principal shortcomings of the individual k−ε and k−ω models, will be
presented.

In their early comparative assessment of two-equation EVMs, Patel et al. (1985)
concluded that from the ten models tested, ‘it appears that the models of Laun-
der and Sharma (1974) and, to some extent, Chien (1982), Lam and Bremhorst
(1981) which are based on the k−ε model, and that of Wilcox and Rubesin
(1980) [based on the k−ω2 model] yield comparable results and perform con-
siderably better than the others’. As remarked above, the Launder–Sharma model
was just a minor (though modestly beneficial) recalibration of the original model
of Jones and Launder (1972a). The equations below together with Tables 7.2 and
7.3 set out the forms of these four models (the forms for all ten are given by
Patel et al., 1985):

Dk

Dt
= νt

(
∂U

∂y

)2

− ε + ∂

∂y

([
ν + νt

σk

]
∂k

∂y

)
(7.27)
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Table 7.3 Low Reynolds number functions, from Patel et al. (1985)

Code f1 f2 fμ E

LS 1.0 1 − 0.3 exp(−Re2
t ) exp

[ −3.4

(1 + Ret/50)2

]
2ννt

(
∂2U

∂y

)2

CH 1.0 1 − 0.22 exp[−(Re2
t /6)] 1 − exp(−0.115y+) 2ν(ε̃/y2) exp[−0.5y+]

LB1 1 + (7.05/ fμ)3 1 − exp(−Re2
t ) [1 − exp(−0.0165Rey)]2 × (1 + 20.5/Ret ) 0

WR 1 − 0.992 exp(−Ret/2) 1.0 1 − 0.992 exp(−Ret ) − 2

σω

(
∂�

∂y

)2

ω3
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k − ε model

νt = cμ fμ
k2

ε̃
, ε = ε̃ + D

Dε̃

Dt
= cε1 f1

ε̃

k
νt

(
∂U

∂y

)2

− cε2 f2
ε̃2

k
+ E + ∂

∂y

([
ν + νt

σε

]
∂ε̃

∂y

)
Ret ≡ k2/νε̃, Rey ≡ k1/2 y/ν, y+ ≡ yUτ /ν

(7.28)

k − ω2 model

νt = fμk/ω, ε = cμk/ω, � = k1/2/ω

Dω2

Dt
= cω1 f1ω

(
∂U

∂y

)2

− cω2ω
3 + E + ∂

∂y

([
ν + νt

σω

]
∂ω2

∂y

)
.

(7.29)

An important difference among the various models is the choice of characterizing
Reynolds numbers that modify the form of the model in the sublayer. Through-
out, the Launder–Sharma model adopts k2/νε̃ as the turbulence Reynolds number,
while Chien in places takes y+ as the relevant form, and the Lam–Bremhorst
scheme employs Rey in the fμ function. The impacts arising from these various
choices are by no means negligible if one is considering flows far from equi-
librium. For example, cases of laminar-to-turbulent transition in the presence of
substantial free-stream turbulence (sometimes referred to as diffusion-controlled or
bypass transition) are modelled more successfully by schemes using exclusively a
turbulent Reynolds number based purely on scalar properties of turbulence – see
Savill (2002a), who provides an extensive survey of conventional turbulence mod-
els applied to this class of flows.20 On the other hand, because the distance of
a node from the wall does not change from iteration to iteration, the use of the
normal distance y in the Reynolds number tends to be the more stable practice.

Regarding the wall boundary condition, the use of the quasi-homogeneous dis-
sipation (as in LS and CH) removes any ambiguity but at the expense of using a
variable that, as one approaches the wall, first rises to a peak then plunges to zero
at the wall itself. In consequence, these models are more costly to use for they will
require 20–30 nodes to resolve just the viscosity-affected region with reasonable
numerical accuracy. For the ω2 equation WR propose a wall-adjacent value equal
to 20/(cω2 y+2). For the test cases that Patel et al. (1985) examined, however, they
reported that their results were sensitive to the value of y+ at the near-wall node.
Their calculations reproduced below were made with the application point cho-
sen as y+ = 0.2. They observed that ‘smaller values did not lead to satisfactory
results’.

20 He concludes, however, that while two-equation EVMs with damping controlled by Reynolds numbers based
on turbulence properties produce satisfactory predictions of transition in some cases, a more comprehensive
model based on second-moment closure, possibly together with an equation for intermittency, is needed to
achieve reasonable breadth of applicability, especially when external turbulence levels are low (Savill, 2002b).

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


268 Simplified schemes

Fig. 7.19 Prediction of turbulent boundary layers in sink flows. Symbols, exper-
iments (a) velocity profile in a near-equilibrium boundary layer, K ≈ 2 × 10−6,
Simpson and Wallace (1975); (b) skin friction in a laminarizing boundary layer,
K ≈ 7 × 10−6, Badri Narayanan and Ramjee (1969). Lines, computations. From
Patel et al. (1985). Note that a turbulent boundary layer undergoes decay towards
laminar for K ≈ 3 × 10−6.

As Patel et al. (1985) also remarked, the conclusions drawn depend on the cri-
teria (or, essentially, the test cases) chosen for judging performance. From the
perspective offered by several decades, it may be said that the survey gave rather
too much attention to accelerating flows and too little to boundary layers in adverse
pressure gradients. Moreover, three-dimensional and recirculating flows lay outside
of what could then be included within the scope of a single Ph.D. thesis (Scheuerer,
1983). The four accelerating flows examined produced effects ranging from moder-
ate departures from the ‘universal’ wall law to complete laminarization. This range
is covered in the two examples in Fig. 7.19, the near-equilibrium flow of Simp-
son and Wallace (1975) and the very severe acceleration of Badri Narayanan and
Ramjee (1969). The Jones–Launder model had been developed with strongly accel-
erating flows in mind so it is less than surprising that the LS scheme emerged well
from that comparison. The only adverse-pressure-gradient flow considered was an
equilibrium boundary layer where the boundary layer skin-friction coefficient did
not fall below 0.0028, i.e. well removed from separation, and where both the LS
and WR models did well. It was only over the years that followed that the short-
comings of the above modelled form of the ε-equation in strong adverse pressure
gradients became apparent. As has been discussed in Chapter 5 (in connection with
complete second-moment closures), arising from deficiencies in modelling the dif-
fusion of ε, the equation then creates too large length scales close to the surface.
This problem is even more severe when used within an EVM – a weakness that the
ω-equation does not share.

Further Developments of the k − ε EVM: Scale Limiters

The intervening decades since the first extensive use of the above schemes has
seen a continuous development in two-equation eddy-viscosity models both in
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Fig. 7.20 Nusselt numbers downstream of an abrupt 2.5:1 enlargement in pipe
diameter; ReD = 4 × 104. Symbols, experiments, Lee (1984); – —– – —– k − ε
EVM without Yap correction; – - – - – k −ε EVM including Yap correction. From
Yap (1987).

eliminating weaknesses (where possible) and in providing an assessment of perfor-
mance over a greatly increased range of flows. To a large extent the former activity
went hand-in-hand with the latter since the exposure of a model’s glaring weak-
ness naturally provided a stimulus for further development. For example, an early
signal of the excessive computed levels of near-wall length scales generated by the
ε-equation in near-separating and recirculating flows was provided by computa-
tions of the thermal field downstream of an abrupt pipe enlargement (Chieng and
Launder, 1980) where the computed heat transfer coefficient at the reattachment
point was several times the measured value! A correction was thus subsequently
devised to drive the length scale back towards the level found in an equilibrium
near-wall flow.21 This took the form of an additional source, Sε, in the ε-equation
presented in Chapter 5, Eq. (5.12), known as the ‘Yap correction’ (Yap, 1987).
Figure 7.20 shows the application of this correction to an abrupt pipe expansion
with a radius ratio of 2.5. Experiments show that the peak Nusselt number, close to
the flow’s reattachment point, is four times the level found in fully developed pipe
flow. Computations with the original LS model, however, return a peak level some
10 times greater than the fully developed value. Evidently, inclusion of the Yap cor-
rection brought the computed values (with a peak 5 times that in fully developed
pipe flow) a good deal closer to the experimental data.

21 Here it is important to stress that ‘towards’ does not mean ‘to’. Tests using a one-equation EVM where the
length scale was assigned the same variation with distance from the wall as found in fully developed plane
channel flow led to Nusselt numbers up to 50% below those measured (Yap, 1987; Launder, 1988).
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Fig. 7.21 Application of damping functions for length scale control. Nusselt num-
ber distribution on the symmetry line for three-dimensional flow through a square
duct with square ribs placed symmetrically on two facing walls: experiments,
Baughn et al. (1991); – – – Eq. (5.12); ——— Eq. (5.14). From Iacovides and
Raisee (1999).

An unsatisfactory feature of the original Yap correction is the appearance of
the normal distance, y; so, while the term has been found to be effective in con-
trolling the near-wall levels of turbulent kinetic energy (and thus of skin-friction
and heat transfer coefficients) over a range of separated flows, in complex geome-
tries its appropriate interpretation involves a high degree of arbitrariness. Iacovides
and Raisee (1999), extending a suggestion of Hanjalić (1996), therefore proposed
a differential form of the Yap correction that was also introduced in Chapter 5,
Eq. (5.14). Figure 7.21 shows the variation of Nusselt number on the centre-plane
for repeating flow through a square-sectioned duct on which square ribs have been
mounted on two opposite faces. For this case the differential length scale lim-
iter returns results similar to (though somewhat better than) those obtained with
the original Yap correction in acceptably close agreement with experiment except
immediately downstream of the rib.

Both the extra source terms, together with the alternative version, Eq. (5.13),
due to Hanjalić (1996), have enabled the dissipation equation to return reasona-
bly satisfactory agreement with experiment over a range of separated flows such
as examined above. Indeed, for the case considered in Fig. 7.21, agreement was
as good as for the second-moment-closure computations by the same authors (not
shown). Unfortunately, news of these amendments has not spread as far as that
of the original model. Thus, in a number of published comparisons, the original
Launder– Sharma version without any length scale constraining terms is used for
separated flow computations. The above corrections were designed specifically to
improve the prediction of turbulent stresses and remove excessive wall heat trans-
fer rates in recirculating flows. However, they also reduce the tendency for the
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near-wall length scale to grow undesirably in adverse-pressure-gradient boundary
layers, leading to improved predictions of skin friction coefficient.

If one’s attention is confined purely to non-recirculating flows, however, an alter-
native route is to put additional emphasis on irrotational straining in the mean-strain
source term in the ε-equation. This approach (Hanjalić and Launder, 1980) has
been discussed in §5.1 in connection with second-moment closure (Fig. 5.2). It
was, however, also used with the k−ε EVM and brought significant improvements
to equilibrium adverse-pressure-gradient boundary layers (as well as to the rate of
spread of the round jet). Rodi and Scheuerer (1986) confirmed the effectiveness
of the additional source showing, inter alia, excellent agreement with the nearly
separating boundary layer of Samuel and Joubert (1974). However, as remarked
in Chapter 5, this irrotational-strain modification performs poorly in separated
flows – for example, shortening the already too short reattachment length behind a
backward-facing step – so it is not suitable as a general purpose corrector.

Finally, as already discussed in §5.1 for general cases, a way to introduce into
EVMs some control on the turbulence scale growth in non-equilibrium flows is
to make some of the coefficients in the basic ε-equation functions of the availa-
ble turbulence parameters, such as the moduli of the non-dimensional mean strain

and rotation rates, S ≡
√

S̃i j S̃i j and W ≡
√

W̃i j W̃i j , or of the ratio of the tur-
bulence energy production and dissipation, Pk/ε. For example, Durbin (1995)
proposed that the source-term coefficient in the ε-equation should take the fol-
lowing form: cε1 = 1.4

(
1 + a

√
Pk/ε

)
, where a is a coefficient, or the later variant

cε1 = 1.4

(
1 + 0.045

√
k/v2

)
proposed in the context of the elliptic relaxation

EVM (known as the v2 − f model, to be considered in §7.4.4).

The k−ω Model and the SST Variant

Over the years, the k−ω2 EVM has also been the subject of successive refine-
ments, the first major step being the decision to adopt ω as the scale-determining
variable rather than ω2, Wilcox (1988b). The model could be applied with fewer
adaptations to the viscous sublayer than the k−ε model but, conversely, was less
proficient in the outer region of a boundary layer, especially in the absence of free-
stream turbulence. In the mid-1990s Menter (1994) proposed adapting the model
so that it behaved like the k−ε model away from the wall (in particular, being able
to cope with external stream turbulence without anomalies) while reverting to the
well-calibrated original version of the k−ω model close to a wall. This approach
was blended with certain other limiters that caused the model, in a two-dimensional
shear, to respond more like a shear-stress-transport equation (leading to the scheme
being labelled the SST model). This version has been successfully applied to many
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two-dimensional boundary layers. Apsley and Leschziner (2000) report results
from consolidating and analysing multi-instition computions of a diversity of mod-
els attempting to capture separation in the asymmetric diffuser flow of Obi et al.
(1993). They concluded for this case the SST scheme, while separating too early,
did give the best overall agreement among the several linear eddy-viscoity mod-
els tested. Indeed it achieved a level of agreement with experiment comparable
with that returned by the basic second-moment closure. Thus, to some extent, the
model does live up to its ‘SST’ label. Leschziner and Lien (2002) found, however,
that in the supersonic, three-dimensional recirculating flow created by the inter-
section of a strut with a wing, the scheme created only a single horseshoe vortex
compared with the double vortices produced in both the experiments and the gen-
uine second-moment closures they examined. It appeared from this that, despite
the carefully conceived physical ideas that went into its construction, the model
lacked the capability of the real stress-transport schemes used in computing the
same flows. However, subsequently, Menter (2003) proposed a revised version of
the model that Levchenya et al. (2010) have applied to the wing-strut flow meas-
ured by Praisner and Smith (2006a, 2006b), a flow very similar to that examined
by Leschziner and Lien (2002) except that the former flow was subsonic. Fig-
ure 7.22 brings out clearly the multiple vortex structures created with the modified
SST model, which Levchenya et al. (2010) show is absent with the original k−ω
model. The consequent variations in Stanton number along the symmetry plane
approaching the stagnation point obtained with the different models are shown in
Fig. 7.22 (c) and (d). These lend strong support to the predicted vortex structure.

The most comprehensive account of developments with the k−ω model can be
found in the textbook by Wilcox (2000). The version recommended by Wilcox
incorporates improvements arising from a decade of testing and refining the
original model. The recommended form is:

Dk

Dt
= −ui u j

∂Ui

∂x j
− β∗kω + ∂

∂x j

[(
ν + νt

σk

)
∂k

∂x j

]
Dω

Dt
= −αω

k
ui u j

∂Ui

∂x j
− βω2 + ∂

∂x j

[(
ν + νt

σω

)
∂ω

∂x j

]
(7.30)

where
σk = σω = 2, α = 13/25, β = β0 fβ β∗ = β∗

0 fβ∗,

β0 = 9/125, β∗
0 = 9/100

and

fβ = 1 + 70χω
1 + 80χω

, fβ∗ = 1.0 (for χk ≤ 0)
or

fβ∗ = 1 + 680χ2
k

1 + 400χ2
k

(for χk > 0);
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Fig. 7.22 Flow past a symmetric airfoil abutting a smooth wall. (a) Flow config-
uration and streamline pattern on the symmetry plane upstream of the airfoil.
(b) Plan view of surface streaklines on the wall computed with the modified
SST model (Menter, 2003). (c) Computed Stanton number on the wall ahead
of the wing: symbols, experiments (Praisner and Smith, 2006b); computations
– – – Wilcox (1993) model; ——— Menter (1994). (d) As (c) except the lines
denote computations with the modified SST model (Menter, 2003) using – – –
ANSYS-CFX; —— in-house code. From Levchenya et al. (2010).

where

χω ≡
∣∣∣∣Wi j W jk Ski

(β∗
0ω

3)

∣∣∣∣ , χk ≡ 1

ω3

∂k

∂x j

∂ω

∂x j

and Wi j and Si j are the conventional mean rotation and strain rate tensors.
The empirical calibration of the coefficients and functions has clearly been

done with much care and, for example, impressive results are reported for the
three most commonly encountered self-preserving free shear flows, Table 7.4. As
Wilcox (2000) acknowledges, the earlier k−ω model (Wilcox, 1988a) clearly gave
too rapid spreading rates for these free-shear flows while the more recent version
achieves broadly satisfactory agreement – better on average than the original k−ε
model which is seriously unsuccessful for the round jet. Indeed, the k−ε model’s
spreading rate for this flow is similar to that for the Basic Model (second-moment
closure) whose performance was discussed in Chapter 4.
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Table 7.4 Spreading rates of commonly occurring self-preserving free
shear flows for three eddy-viscosity models, from Wilcox (2000)

Experimental k−ω EVM, k−ω EVM
Flow spread rate Wilcox (2000) k−ε EVM Wilcox (1988b)

Mixing layer 0.115 0.105 0.098 0.141
Plane jet 0.110 0.101 0.108 0.135
Round jet 0.095 0.088 0.120 0.369

The entries under experimental values are those of the present authors, based on
our interpretation of the best available experimental data.

Two cautionary remarks need to be made about the results reported in Table 7.4,
however. First, the rate of decay of ε with distance downstream in the round jet is
very rapid – so rapid that streamwise diffusion plays some role in the spreading.
El Baz et al. (1993) report that a boundary layer solver that neglects streamwise
diffusion overestimates the spreading rate strictly implied by the model by around
7% irrespective of grid density. Second, the relatively successful prediction of the
round jet spreading rate by the current k−ω model is acknowledged to be due
in large measure to the parameter χω which, as discussed in Chapter 5, §5.1.1,
is proportional to the ‘Pope correction’. The parameter provides a dimensionless
measure of the stretching of cross-stream vortex lines. It is zero in plane flows
but in axisymmetric flows, as the jet spreads, the circumference increases and the
consequent stretching of the vortex lines acts (according to the model) to increase
the dissipation rate and thus to reduce the turbulent viscosity. While the parame-
ter does enable the spreading rate of the self-preserving round jet to be predicted
(while having no effect on the plane jet and mixing layer), as reported in §5.1,
Huang (1986) found that, in the form proposed by Pope (1978), it leads to poor
predictions of the round jet in a moving stream, a flow where the standard form of
the ε-equation proves satisfactory.

It needs to be said, however, that the Wilcox-2000 version of the k−ωmodel pro-
vides more intricate interconnections than Pope’s original proposal. Indeed, Wilcox
(2000) reports satisfactory spreading rates for the radial jet (where vortex line
stretching also occurs), whereas Rubel (1985) had found that the Pope correction
in its original form gave a spreading rate for the radial jet less than half the reported
experimental value! So, it is possible that the most recent form of the Wilcox
k−ω model may also cope with round jets in co-flowing streams of arbitrary
magnitude.

One of the main virtues of the original k−ω model had always been that it
predicted, reasonably faithfully, the development of turbulent boundary layers in
positive (adverse) pressure gradients (in contrast to the too slow approach towards
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separation with the original k−εmodel, discussed above). Wilcox (2000) notes that
the various corrective terms embedded in the newer form of his model have been
chosen so that they have little if any effect on two-dimensional boundary layers
developing on plane surfaces. It may thus be supposed that the newer formulation
is equally as successful as its predecessor versions.

Durbin’s Realizability Constraints

Intrigued by the serious failure of the common two-equation EVMs to reproduce
properly the flow (and especially the heat transfer) in the stagnation region of
an impinging flow associated with the excessive production of turbulent kinetic
energy, Durbin (1996) proposed to cure the ‘stagnation-point anomaly’ by impos-
ing the realizability constraint 2k ≥ u2

α ≥ 0 on the stress–strain equation, i.e.
ui u j = −2νt Si j + 2/3kδi j . By noting that Si j is symmetric, with only diagonal
components in principal coordinates (with eigenvalues λ1, λ2, λ3), applying the
(more critical) lower bound on the principal stress components leads to

u2
α = −2νtλ

2
α + 2

3
k ≥ 0 and 2νtλ

2
max ≤ 2

3
k. (7.31)

Moreover, the λ are related by the continuity equation and the second strain
invariant (for an incompressible fluid):

λ1 + λ2 + λ3 = 0, λ2
1 + λ2

2 + λ2
3 = Si j Si j = S2

resulting in the eigenvalues22

λ1 = − 1
2λ2 ± 1

2

√
2S2 − 3λ2

2, λ3 = − 1
2λ2 ∓ 1

2

√
2S2 − 3λ2

2,

λ2 = − 1
2λ1 ± 1

2

√
2S2 − 3λ2

1.

For all the λ to be real the condition to be satisfied is 2S2 − 3λ2 ≥ 0. Thus,

|λmax| ≤
√

2
3S. (7.32)

Eliminating λmax leads to the realizability constraint on the eddy viscosity that can
be applied to any EVM

νt ≤ k√
6 S
. (7.33)

22 Note that S ≡ √
Si j Si j is the modulus of the absolute strain rate, not to be confused with two other non-

dimensional strain-rate parameters, S ≡
√

S̃i j S̃i j = Sk/ε or S ≡ (k/ε)dU/dy, introduced earlier.
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By noting that νt = cμ kT , the realizability constraint can be expressed in terms of
the upper bound on cμ or on the time scale T = k/ε

cμ ≤ 1√
6

ε

kS or T ≤ 1√
6cμS

(7.34)

or in a more convenient form

T = min

[
k

ε
,

a√
6cμS

]
(7.35)

where a ≈ 0.6, evaluated by fine tuning in some impinging and separating flows.
Note that this constraint limits the kinetic energy production to a linear

dependence on strain rate:

Pk ≤ kS/
√

6 . (7.36)

Equation (7.35) implemented in the standard k−ε and k−ω models was shown to
reduce the anomaly in stagnation regions for a range of flows (Medić and Durbin,
2002, among others) and would seem to be a generally desirable feature to incorpo-
rate within any eddy-viscosity model. However, it is not a panacea: in an impinging
flow turbulent stresses are really not created in the way that an eddy-viscosity
model supposes. Thus, rather like the numerous safety features in a modern auto-
mobile, the limiter enables one to avoid the more serious consequences of taking
an ill-advised route.

7.4.3 Accounting for curvature, rotation and other body forces in EVMs

Most flows that one is interested in computing in an industrial or environmental
context will be affected by complex straining or body forces. The subtle responses
of the stress field to streamline curvature and other secondary strains (that are
mimicked, albeit imperfectly, in full second-moment closures or NLEVMs) are
not remotely captured by the simplistic stress–strain connection used by linear
EVMs. Moreover, force fields exert different effects on different components of
the Reynolds stress. Thus, while the aggregate effect of the force field will appear
in the turbulent kinetic energy equation, that will usually not capture the effects that
the stress and scalar-flux fields actually experience. Indeed, in the case of Corio-
lis force, we have seen in §4.5.2 that the effects on the axial and wall-orthogonal
normal stresses are equal and opposite, and zero in the third direction. Thus, in
orthogonal-mode rotation in a duct, with any linear EVM, precisely the same flow
pattern is predicted as for a non-rotating channel!

In these situations, three levels of advice for the intended user of linear EVMs
may be offered.
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Level 1: take no corrective action. Despite appearances to the contrary, the weak-
nesses of the model may not in practice produce major errors in the
prediction of the flows of interest.

Level 2: make ad hoc adjustments to the model that are tailored to match the
conditions that apply specifically to the types of flow to be calculated.

Level 3: upgrade the level of closure.

Nothing more will be said here about Level 3 since that class of options is what
the rest of the book has been about. In the paragraphs which follow, the other two
approaches will be exemplified briefly.

As the first example of the Level 1 approach, the case of flow around a
square-sectioned bend is considered. Indeed, the three-dimensional flow around
a square-sectioned 90◦ bend had been chosen as one of the test cases for the 1980–
81 Stanford Conference (Kline et al., 1981, 1982). The computations submitted by
contributing groups produced a rather puzzling outcome, for two of the simplest
schemes, based on algebraic mixing-length models, gave the best results. Certainly,
the curvature was sufficiently strong that if the flow had been two-dimensional, it
would have been essential to account for curvature effects on the stress field. For
this highly non-equilibrium flow, however, the main problem was not the use of
turbulence models that were insensitive to the streamline curvature but rather the
scheme used next to the wall across the viscosity affected sublayer. In 1981, given
the modest available computing resource, only the groups using the simplest mod-
els could employ a fine enough grid to resolve this low-Re near-wall region. Those
using ‘advanced’ transport-equation models instead employed wall functions (the
subject of Chapter 8). At the time, however, only the most rudimentary versions
of wall functions were available. Now, the radial pressure gradient induced by the
bend creates a strong secondary flow in which the slow moving near-wall fluid is
carried to the inside of the bend. Indeed, the peak secondary velocity occurs right
in the viscous region. The implied skewing of the mean velocity vector within the
viscous region was entirely missed by the wall functions then in use. When, a few
years later, the sublayer was resolved by blending a two-equation EVM used for
the main flow with the mixing-length hypothesis across the near-wall sublayer,
excellent agreement with the experimental data resulted, Fig. 7.23. The details of
the mixing-length model employed are given in §7.4.7. The same approach was
also applied to the more complicated case of an unseparated 180◦ U-bend and
gave results that were less successful but which would probably be acceptable for
most engineering applications (though not as good as with an ASM closure) (Choi
et al., 1989). However, for the separated flow around the hairpin bend considered in
Fig. 7.17, the differences between the k−ε EVM predictions and the measurements
are so great that the computational results with that model are probably not useful.
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Fig. 7.23 Velocity profiles 0.25Dh downstream of a 90◦ bend: ◦ ◦ ◦ experiments
(Taylor et al., 1982); ——— computations using k − ε EVM with MLH sublayer
model. From Iacovides et al. (1987). W and Wb are the mean and bulk-mean axial
velocities, V is the negative of the radial mean velocity; r∗ and x∗ are radial and
span-wise normalized coordinates.

Thus, it is clear that the accuracy of the computations declines progressively as the
ratio of bend radius to duct side length diminishes and the flow becomes separated
and increasingly chaotic.

As a second example of where the ‘do-nothing’ policy is satisfactory, we con-
sider buoyantly modified flow (mixed convection) in vertical tubes, for example
Jackson et al. (1989), or natural convection in narrow vertical cavities – the
double-glazing problem (Ince and Launder, 1989). The gravitational vector directly
modifies the vertical velocity fluctuations – but, for a vertically directed flow, that
is not the direction in which the mean velocity and temperature are varying rap-
idly. The crucial direction of velocity fluctuation is normal to the wall; and this
direction for the flows considered is horizontal where buoyancy makes no direct
contribution. There are, of course, indirect contributions to the stress budgets (via
the pressure fluctuations) but these we may suppose to be not dissimilar in their
overall effect from simply including the buoyant term in the production term of
the k-equation. Figure 7.24 compares data of the mean Nusselt number for a range
of experiments, covering both up-flow and down-flow in vertical tubes, with those
emerging from a large number of test runs using a low-Re form of the k−ε EVM
(Cotton and Jackson, 1990). It is seen that the experimental behaviour is very well
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Fig. 7.24 Effect of buoyancy on Nusselt number in flow through vertical heated
pipes. Symbols, collected experimental data; – – – earlier theoretical estimate;
——– predictions with LS low-Re k−ε model. From Cotton and Jackson (1990).

captured by the model, including the serious impairment of the Nusselt number
relative to forced convection that occurs in up-flow when the buoyancy parameter,
Bo ≡ 8 × 104 Gr/Re3.425 Pr0.8, falls between 0.1 and 1.0. In contrast, substantial
augmentation of the Nusselt number is found in down-flow and also in up-flow
for sufficiently high values of the buoyancy parameter.23 However, capturing these
effects is not at all due to the buoyant terms in the turbulence equations (whose con-
tribution to the k budget is minor). Indeed, the most crucial aspect of the model is
the choice of the turbulent Reynolds number functions used to enable the equations
to be integrated up to the pipe wall!

Attention is now turned to situations where some explicit modification of the
model is essential. At Level 2, if one is keeping the eddy-viscosity stress–strain
relation, the routes for modifying the predicted behaviour are to make cμ a func-
tion of some dimensionless parameter relevant to the flow under study and/or to
make changes in the relevant transport equations. For example, in horizontal sta-
bly stratified shear flows, standard EVMs produce excessive mixing because the
crucial velocity fluctuations affecting mixing and entrainment are now vertical and
are thus directly damped by the stable density gradient. To mimic this, one can
make cμ a function of a buoyancy parameter (usually the flux Richardson number)
or, more simply, one can include the buoyant source in the k-equation but omit it

23 The rather cumbersome parameter adopted for the abscissa in Fig. 7.24 was first proposed by Hall and Jackson
(1969), who advocated the relation given at the top of Fig. 7.24 and shown by the broken line. Although not
included in the figure, other data sets shown in Cotton and Jackson (1990) confirm that the computed behaviour
in Fig. 7.24 for the buoyancy parameter greater than three in both upward and downward flow is closely in line
with experimental data.
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from the ε-equation,24 a practice which has been extensively adopted (see Chen
and Rodi, 1980). Since the buoyant contribution to k generation is negative in sta-
ble stratification, this omission leads to higher dissipation rates and thus to lower
kinetic energy and turbulent viscosity levels. Either approach is cheap and simple
but needs re-tuning as attention shifts from one type of flow to another. Moreover,
in really complicated flows, such as modelling flows in a room with discrete air
inflow and outflow ports and heat sources (whether from radiators, people or PCs),
a single choice of modification is unlikely to suffice.

Eddy-viscosity models have also been modified to account for the Lorentz force
acting on an electrically conductive fluid subjected to an electromagnetic field
(e.g. Ji and Gardner, 1997; Kenjereš and Hanjalić, 2000b). The straightforward
approach is to introduce additional source terms in both the k- and ε-equation listed
in Table 5.1. It is recalled that these terms have been derived from the exact def-
inition of the fluctuating Lorentz force, using Eq. (4.97) to model the correlation
of the fluctuating electric field and velocity, ei u j . For a uniform transverse mag-
netic field of constant strength, B0

25 (which is the most common configuration in
the magnetic control of metals), the expressions for both equations each reduce to
a single term. The tests showed, however, that this remedy was not sufficient and
that a magnetic damping was needed in both terms. Ji and Gardner (1997) multi-
plied the additional source terms (as well as the eddy viscosity) by an exponential
function, exp(−c2M N ), where N ≡ σ B2

0 L/ρU is the bulk flow Stuart number (a
magnetic interaction parameter). The above function was derived from an approxi-
mate analysis of the velocity decay under the action of a transverse magnetic field,
U (t) = U0 exp(−t/TM), by taking TM ≡ ρ/σ B2

0 as the characteristic magnetic
braking time. Kenjereš and Hanjalić (2000b) replaced N by the ratio of the dynamic
to magnetic time scales, T /TM , and thus approximated the extra source terms in
the k- and ε-equations as

SM
k = −σ

ρ
B2

0 k exp

(
−c1M

σ

ρ
B2

0

k

ε

)
, SM

ε = −σ
ρ

B2
0ε exp

(
−c1M

σ

ρ
B2

0

k

ε

)
(7.37)

where c1M = 0.025 was determined from the validation of Eqs. (7.37) against the
DNS data for a plane channel flow subjected to a uniform transverse magnetic field
(Noguchi et al., 1998). An illustration of the performance of the above model is
provided in Fig. 7.25 arising from the high-Re flow of mercury in a rectangular
channel subjected to a finite length transverse magnetic field. The results were
obtained with the low Reynolds number k−ε model of Launder and Sharma (1974)
with the additional source terms from Eqs. (7.37) (in which just one additional

24 The discussion is centred on modifications to the k–ε model because that seems to have been the model chosen
for these adaptations. Equivalent modifications could be made to (and would also be needed for) the k−ω
model.

25 This symbol is unrelated to the Hall-Jackson symbol of the same form appearing in Fig. 7.24.
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Fig. 7.25 Upper: a sketch of a mercury flow passing through a finite length mag-
netic field. Lower: velocity profiles at the magnet inlet (x = 0.2 m), half-way
through (x = 0.352 m) and at the magnet outlet (x = 0.504 m). Lines: compu-
tations with the Launder and Sharma (1974) low-Re k−ε model with magnetic
source terms, Eq. (7.37). Symbols, measurements by Tananaev (from Branover,
1978). Re = 2×105, Ha = 700, N = 2.45. From Kenjereš and Hanjalić (2000b).

model constant, c1M , appears and with no magnetic damping of eddy viscosity).
This form produced the characteristic M-shaped mean velocity profile (only the
lower half of the profiles is shown) in satisfactory agreement with the available
experimental data.

It is likely, however, that for more complex and variable magnetic fields, which,
as discussed in §4.5.4, are known to exert a strong effect on the turbulent stress ani-
sotropy, such a relatively simple EVM will be too crude to capture the interactions
between the velocity and magnetic fields.

A further example of a modification of an EVM for forced convection is that
made by Kato and Launder (1993). The problem of interest was the very com-
plex coupling between the natural vibration frequency of a square-sectioned bridge
beam pinned at its ends and the natural vortex shedding from the downstream edges
of the beam due to the wind normal to the beam. Only a short time period was avail-
able for the study and, thus, modelling at a more complex level than a simple eddy

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


282 Simplified schemes

viscosity could not be contemplated. However, it was known that EVMs gener-
ated excessive turbulence-energy levels near the front stagnation point due to the
erroneous assumed relation between the stress and strain fields in what is close
to an irrotational deformation. That would lead, in turn, to the suppression (or, at
least, a strong damping) of the Karman vortex street on the downstream side of the
bar. This natural vortex shedding was, however, central to the problem under study
and had to be maintained. Accordingly, the energy-generation term that appears in
both the k- and ε-equations was modified by introducing the vorticity to replace
partially the strain rate. Thus, in place of Pk = 2cμεS2 the form P ′

k = 2cμεSW
was adopted, where S and W represent non-dimensional rates of strain and rotation
introduced earlier, in §5.1.1.

Thus, in an irrotational deformation (such as occurs near the front stagnation
point) the generation rate is zero, while in simple shear the same generation rate
is returned as with the conventional EVM generation term. This modification does
indeed avoid the very severe damping of the Karman vortex on the downstream side
of the beam that would otherwise occur due to the excessive turbulent viscosity
generated in the region of the front stagnation point. Although not suitable for
general use, this simple device led to close agreement with experiments and has
been applied by several other groups seeking to predict similar phenomena.

Several groups have added special-purpose source terms to the ε-equation to
account for the effects of streamline curvature. Streamline curvature arises over
such a wide variety of flows in such a range of forms, however, that one cannot
expect that a source term devised for one class of curvature-modified flow will
carry over, without modification, to some other class. The severity of the effect is
greatest if the radius of curvature points in the direction of maximum mean veloc-
ity gradient. Thus, a substantial correction is needed to mimic the flow induced
by a spinning cylinder (where the principal velocity gradients occur in the radial
direction), while for a spinning disc (where the radius of curvature is parallel to the
disc while the velocity gradient is normal to it) in principle no correction should be
needed. An early attempt to provide a curvature correction by Launder et al. (1977)
made the sink term in the ε-equation a function of the local curvature ‘Richardson
number’:

Sink of ε = −cε2
ε2

k
[1 − ccRic] , Ric ≡ k2

ε2

Vθ cosα

r2

∂(r Vθ )

∂r
(7.38)

where Vθ is the swirl velocity and α is the angle between the radius of curvature
vector and the mean velocity gradient vector. This proposal led to satisfactory pre-
dictions for flow past cones, a spinning cylinder and for boundary layers on curved
surfaces. However, as seen from the computations of the curved mixing layer by
Rodi and Scheuerer (1983) in Fig. 7.5, this modification (which gave the predicted

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


7.4 Linear eddy-viscosity models 283

behaviour shown by the lowest curve in that figure) led to a much too slow recovery
downstream from the effects of curvature in that flow.

From the above it may be concluded that if one needs to account accurately for
streamline curvature in a flow significantly different from cases where such ad hoc
curvature modifications have been successfully calibrated, upgrading the model to
a NLEVM is a safer route to follow for modest additional cost.

7.4.4 Elliptic relaxation applied to EVMs

As shown in §7.4.1, application of the basic second-moment closure to an equilib-
rium near-wall flow leads, for the case of simple shear, to Eq. (7.26) for the shear
stress, u1u2:

−u1u2 = c′
μ

u2
2

k

k2

ε

∂U1

∂x2
.

This, in turn, suggests that the eddy viscosity should be defined as

νt = c′
μu2

2k/ε ≡ c′
μu2

2/T (7.39)

and not as νt = cμk2/ε ≡ cμk/T , as would be adopted by a conventional eddy-
viscosity model. As remarked in §7.4.1, due to inviscid wall-blocking effects, close
to a solid wall or a free surface, the wall-normal stress component, u2

2, is much
smaller than k, and so c′

μ would need to be larger than cμ to give the correct
level of turbulent viscosity. In the semi-logarithmic region, which usually serves
for calibrating some of the model coefficients, u2

2/k is about 0.3–0.4. Indeed, the
kinematic eddy viscosity evaluated from νt = −u1u2/(∂U1/∂x2) using the DNS
data for a plane channel (or equally the earlier experimental data appearing in
Fig. 6.11) shows a very close similarity with that obtained from Eq. (7.39) across
the whole wall layer except very close to the wall, deep within the viscous sublayer
(x+

2 < 5), Fig. 6.11. Thus, the use of Eq. (7.39) largely removes the need for the
damping function, fμ. However, the problem is that two-equation eddy-viscosity

models do not provide the wall-normal turbulent stress component, u2
2, which is

a vital element of Eq. (7.39). An option would be to solve a modelled transport
equation for u2

2 from a second-moment closure in addition to k and ε; but such an
approach would be mathematically inconsistent and not coordinate-frame invariant
since u2

2 is just one component of a second-rank stress tensor, ui u j .

The v2 − f Model

By noting that in the wall layer of attached, near-equilibrium flows the produc-
tion of the wall-normal stress component, P22, is nearly zero and that the other
terms in the stress-transport Eq. (6.60) involve only u2

2, k and ε, Durbin (1991)

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


284 Simplified schemes

proposed a surrogate scalar transport equation for a quantity he termed v2 derived
from Eqs. (6.60) and (6.61). Thus, in addition to the k- and ε-equations, elements
of the elliptic relaxation model, Eqs. (6.62) to (6.65), are introduced but for a sin-
gle scalar function f ( f ≡ f22). In a turbulent wall boundary layer v2 is indeed
the wall-normal stress component, u2

2; but its role in an elliptic-relaxation EVM
is to provide an additional velocity scale that characterizes the turbulent trans-
port as implied by Eq. (7.39). The k-equation takes the standard form, while
Eq. (6.73) is applied to obtain ε, except that v2 appears in the model for turbu-
lent viscosity in both equations (and, of course, in the momentum equations). The
complete model can be summarized by the following equation set (in addition to
Eq. (7.39) and including also Durbin’s realizability constraint (7.35) implemented
in the definitions of the time and length scales, Eq. (6.74)):

Dk

Dt
= Pk − ε + ∂

∂xk

[
(ν + νt)

∂k

∂xk

]
(7.40)

Dε

Dt
= cε1Pk − cε2ε

T + ∂

∂xk

[(
ν + νt

σε

)
∂ε

∂xk

]
(7.41)

Dv2

Dt
= k f − v2

k
ε + ∂

∂xk

[
(ν + νt)

∂v2

∂xk

]
(7.42)

f − L2 ∂
2 f

∂x2
k

= (c1 − 1)

(
2/3 − v2/k

)
T + c2

Pk

k
(7.43)

T = max

[
min

(
k

ε
,

ak

v2cμ
√

6Si j Si j

)
, cT

(ν
ε

)1/2
]

(7.44)

L = cL max

[
min

(
k3/2

ε
,

k3/2

v2cμ
√

6Si j Si j

)
, cη

(
ν3

ε

)1/4
]
. (7.45)

In the above, a is the symbol that appeared in Eq. (7.35) with the proposed value of
0.6. It is noted that coefficients c1 and c2 originate from the linear pressure-strain
model (the former coming from Rotta’s return-to-isotropy model, Eq. (4.7), and the
latter being the coefficient γ in Eq. (4.48)). Originally, Durbin used the values from
the LRR (QI) model (1.5 and 0.4, respectively) but subsequently settled for c1 = 1.4
and c2 = 0.3 with cε1 = 1.4[1 + 0.045

√
k/v2]. The coefficients in the expressions

for the time and length scales, (7.44) and (7.45), take values cT = 6, cL = 0.17
and cη = 80, which are slightly different from those in the second-moment-closure
version (§6.5).

The equation set (7.39)–(7.45) is designed to be integrated up to the wall, using
the exact boundary conditions for k and v2 (both equal to zero) and εw = 2νk/y2
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at the wall-adjacent node, while the wall value of f , i.e. fw, is determined from the
wall-limiting balance of the terms in the v2 equation:

Dv2

Dt

∣∣∣∣∣
y→0

= 0 = k f︸︷︷︸
∝y2

− v2

k︸︷︷︸
∝y2

ε + ∂

∂y

(
νe f f

∂v2

∂y

)
︸ ︷︷ ︸

∝y2

(7.46)

which results in

fw = −20ν2v2

εy4
. (7.47)

Successful predictions of a range of flows have been reported by Durbin (1991,
1995), Behnia et al. (1998) and Medić and Durbin (2002) among others.

However, the wall boundary condition for f , Eq. (7.47), may cause compu-
tational instability as the equation is sensitive to the near-wall grid clustering:
a small imbalance between the numerator and denominator (both varying as y4

since, in the wall limit, v2 ∝ y4). Thus, contrary to most other WIN models, the
original v2 − f model does not tolerate very small wall-normal dimensions of
the wall-adjacent grid cell. The problem can be avoided by solving the v2 and f
equations, (7.42) and (7.43), simultaneously; but most CFD codes use the more
convenient segregated-solver approach. Alternative formulations of the v2- and f -
equations have been proposed which enable one to set fw = 0 (e.g. Lien et al.,
1998), but these perform less satisfactorily than the original model and require
some re-tuning of the coefficients. An alternative strategy is to derive an equation
for some product of v2 and k that has more convenient wall boundary conditions.
Such approaches are considered below.

The v2/k − f Models

An improvement in the computational robustness can be achieved by solving a
transport equation for the ratio ζ = v2/k instead of v2 as proposed by Hanjalić
et al. (2004a) and, independently, by Laurence et al. (2004). The ζ -equation can
be derived directly from the v2 and k-equations, but unavoidably an extra ‘cross-
diffusion’ term, X , appears.26 Hanjalic et al. neglected that term (compensating for
its omission by a slight adjustment of some of the coefficients) so that the equation

26 The extra diffusion term X originating from the direct derivation of the ζ -equation from the k and v2 equations

X = 2

k

(
ν + νt

σζ

)
∂ζ

∂xk

∂k

∂xk

is generally insignificant, though close to a wall it may exert some influence.
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Table 7.5 Summary of coefficients in the ζ − f model

c′
μ cε1 c1 cε2 c∗

5 σk σε σζ cT cL cη

0.22 1.4(1 + 0.012/ζ ) 1.4 1.9 0.65 1.0 1.3 1.2 6.0 0.36 85

retains the simple source−sink diffusion form.27 Another novelty is the applica-
tion of the quasi-linear pressure-strain model in the f -equation, based on the SSG
formulation of Speziale et al. (1991), which brings additional improvements for
non-equilibrium wall flows.

After some simplification, the model equations for ζ and f (thus termed the
ζ − f model) are:28

Dζ

Dt
= f − ζ

k
Pk + ∂

∂xk

[(
ν + νt

σζ

)
∂ζ

∂xk

]
(7.48)

f − L2 ∂
2 f

∂x2
k

=
(

c1 − 1 + c∗
5

Pk

ε

)
(2/3 − ζ )

T (7.49)

where c∗
5 = 0.65 (compared with the value 0.45 in the SSG model, Eq. (4.54)).

Some further minor adjustments to other coefficients were also made, the full set
of coefficients being given in Table 7.5.

From the computational point of view, the ζ– f model offers two advantages
compared with the original v2 − f model:

● Instead of ε appearing in the v2-equation, which is difficult to model correctly
very close to a wall, the ζ -equation contains the kinetic energy production Pk

(this replacement comes directly from the derivation of the ζ -equation). This is
much easier to reproduce accurately if the local turbulent stress and, hence, the
mean velocity gradient are captured properly – which is the main goal of all
models.

● Because ζ ∝ y2 as y → 0, the wall boundary condition for ζ (deduced from
the limiting form of the ζ budget, Eq. (7.48)) reduces to a balance of only two
terms,29 the elliptic-relaxation function, f , and the viscous diffusion Dνζ , both
with finite values at the wall. In comparison, Pkζ/k is negligible as it varies as
y3 (indeed, as y4 if an eddy viscosity is used),

27 While adopting the same variable, Laurence et al. (2004) follow somewhat different arguments and keep the

form of the v2/k equation (in their article denoted as ϕ) in the form directly derived from the k and v2

equations, thus retaining the cross-diffusion term, X .
28 The application of the SSG model, Eq. (4.54), results in an additional source term in the f -equation (c∗

2/3 −
c∗

3)Pk/k ≈ 0.008Pk/k, which can be neglected.
29 Provided the extra term X is neglected.
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Dζ

Dt

∣∣∣∣
y→0

= 0 = f︸︷︷︸
∝y0

− ζ
k
Pk︸︷︷︸

∝y3

+ ∂

∂y

(
νe f f

∂ζ

∂y

)
︸ ︷︷ ︸

∝y0

. (7.50)

Thus, the wall boundary condition for f becomes:

fw = −2νζ

y2
. (7.51)

The fact that both the numerator and the denominator of fw are proportional to
y2 (instead of y4 in the original v2 − f model, and with y = 0 being a singular
point in both cases) improves the stability of the computational scheme even in a
segregated solver.

It is noted that Eq. (7.51) is identical in form to εw, Eq. (6.10) (apart from the
opposite sign), and can thus be treated jointly in the computational procedure.
Alternatively, by analogy with the Jones-Launder (1972a) model for the ‘quasi-
homogeneous’ dissipation rate ε̃ (see Eq. (6.12)), one can solve (7.49) for a variable
f̃ , which conveniently goes to zero at a solid wall or surface interface, i.e. f̃w = 0.
Then one can evaluate f (for use in the ζ -equation) from

f = f̃ − 2νζ

y2
. (7.52)

Illustrations of the performance of both the ζ − f model and the original v2 − f
model are provided in Fig. 7.26, which shows predictions of heat transfer in a round
impinging jet issuing from a fully developed pipe flow, and in a pipe expansion.
Both models, as expected, show similar performance, though the ζ − f model
reproduces the trough in Nusselt number in the impinging jet, Fig. 7.26a, slightly
better. The main advantage, however, is the improved computational stability and
faster convergence. More details can be found in Hanjalić et al. (2004a) and Tatschl
et al. (2006).

Subsequently, elliptic-relaxation-based linear EVMs, both in the original v2 − f
and v2/k − f formulations, were extended to non-linear versions (e.g. Pettersson
Reif, 2006) and applied to buoyancy-driven flows (e.g. Kenjereš et al., 2005).

7.4.5 Hybrid blending of DSM and EVM schemes for numerical stability

It is common numerical practice, in applying high-level CFD to elliptic and three-
dimensional flows, to employ a simple linear EVM during the initial stages of
iteration and then to switch over to a physically better founded turbulence model
when the residuals have dropped sufficiently. This practice is designed to cope
with the fact that higher order models are numerically less stable than a purely
diffusive stress–strain linkage, especially during the early stages when the system
of equations is very far from converged. Basara and Jakirlić (2003) have, how-
ever, proposed an interesting variant on this strategy, in which DSM and EVM
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Fig. 7.26 (a) Nusselt number along the wall beneath an impinging jet (Re =
23, 000, h/D = 2); symbols, experiments of Baughn and Shimizu (1989) and
Baughn et al. (1991). (b) Stanton number downstream from a backward-facing
step (Re = 28, 000 based on step height and free-stream velocity at step); sym-
bols, experiments (Vogel and Eaton, 1985). Full line ζ − f model; dotted line
v2 − f model. From Hanjalić et al. (2004a).

approaches are blended together from the outset in such a way that the scheme
largely retains the stability of eddy-viscosity models but with an enhanced model
performance more reminiscent of DSM schemes.

The procedure is as follows. First one solves for all the stress components with
the chosen DSM model but uses the output from this step simply to compute the
turbulence energy, k, (obtained as half the sum of the normal stresses) and its gen-
eration rate, Pk. The stresses that are applied in the momentum equations are then
found from a linear eddy-viscosity approach that indirectly employs information
from the stress transport equations. Thus, in terms of a k−ε model:

ui u j − 2

3
δi j k = −2νt Si j where νt = cμk2/ε.

Unlike a conventional EVM, however, the quantity cμ is now a variable to be
computed at each point in the solution domain from:

cμ = Pk/(k
2S2/ε), S ≡ √

2Si j Si j .

It is readily shown that this choice amounts to minimizing the sum of the mean-
square differences between the values of the stresses computed from the eddy-
viscosity formula and those obtained from the stress-transport equation. For one
then seeks the value of cμ for which [ui u j −2/3δi j k +2cμk2Si j/ε]2 is a minimum.
On differentiating this with respect to cμ and setting the result to zero, the above
expression for cμ is obtained.

On the face of it, it would seem that this strategy entails doing all the work asso-
ciated with a DSM without benefiting from using the computed stresses (obtained
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from their individual transport equations) where they could be most effective – i.e.
in the momentum equations. However, Basara and Jakirlić (2003) have reported the
application of this approach to a range of flows involving significant streamline cur-
vature that produces poor agreement when used with a conventional linear EVM
(including stagnation flow, flow around a U-bend and swirling pipe flow). In all
cases the predictions with the hybrid scheme outlined above were only marginally
inferior to those obtained with the SSG second-moment closure, both approaches
displaying generally satisfactory agreement with the experiments.

7.4.6 One-equation EVMs based on a transport equation for νt

The idea of providing the eddy viscosity directly from a transport equation for
this term emerged at an early stage in the development of RANS closures (Nee
and Kovasznay, 1969). It was perhaps felt that, by determining the quantity that
an EVM needed directly from its own transport equation, the scheme would be
more generally applicable than, say, a one-equation scheme based on the k trans-
port equation. Several proposals for such one-equation models have subsequently
been proposed, whether derived empirically or from the modelled k and ε (or ω)
equations using the eddy-viscosity definition νt = cμk2/ε. A more rigorous route
may also be considered starting from Dνt/Dt = −D( ui u j Si j/2S2), but the result-
ant equation is complex and has not led to a usable form of model. Currently, the
model of Spalart and Allmaras (1992), developed primarily for boundary layers
in external aerodynamics, has gained substantial popularity among the aeronautics
community. The model is highly empirical, however, with a number of functions
lacking a transparent physical basis. Thus, like any other one-equation EVM, it has
serious limitations in flows other than those for which it was specifically tuned. It
is thus our view that if one seeks to compute other than a limited range of attached
boundary layers (for which the model has a very good track record), it is preferable
to confine the use of one-equation approaches to cover just the near-wall region.
This is what is done in the next section. Alternatively, the use of the model should
at least be limited to the attached region of a turbulent flow if one adopts the hybrid
RANS-LES strategy, DES, considered in Chapter 10.

7.4.7 Prescribed length-scale schemes for the near-wall sublayer

While, as noted above, algebraic and one-equation eddy-viscosity models are still
used in a few particular areas to cover the whole shear flow to be computed (see
also the textbooks by Cebeci, 1999 and Wilcox, 2000), the role considered here is
their employment as models to cover simply the near-wall sublayer. The superfi-
cially illogical rationale for adopting a simpler closure right in the region where the
turbulence interactions are the most complex arises from two directions of thought.
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First, this is a region where convective transport is often negligible, where the flow
is essentially in simple shear and where, over the years, a lot has been learned
empirically about using such simple models to capture the essentials of the flow.
Second, there are considerable computer savings to be gained from such a simpli-
fication – at least 60% and probably more if one would otherwise adopt the k−ε
EVM, not to mention savings in user-diagnosis time. There are certainly situations
where the approach is not appropriate – transition from laminar to turbulent flow
triggered by external turbulence is one – but at this level of modelling no one is
claiming universality.

Two levels of modelling are examined. One-equation EVMs, in which a trans-
port equation is provided for the turbulent kinetic energy; while determining the
near-wall energy dissipation rate and turbulent viscosity by way of a prescribed
length scale:

ε = k3/2/ l, νt = cμk1/2l. (7.53)

A further level of simplification leads to the mixing-length hypothesis (Taylor,
1915; Prandtl, 1925), a zero-equation model. The form follows directly from
manipulating the turbulent kinetic energy equation as follows. Using the above
prescribed-length-scale form for the turbulent viscosity, the turbulence energy
equation in local equilibrium (i.e. zero transport) is just:

cμk1/2l

[
∂Ui

∂x j

(
∂Ui

∂x j
+ ∂U j

∂xi

)]
= k3/2

l
. (7.54)

If now the turbulent kinetic energy is eliminated from Eq. (7.54) by using the
turbulent viscosity formula, it becomes

cμl2

[
∂Ui

∂x j

(
∂Ui

∂x j
+ ∂U j

∂xi

)]
= ν2

t

c2
μl2

or, finally, on taking the square root of each side and rearranging:

νt = l2
m

[
∂Ui

∂x j

(
∂Ui

∂x j
+ ∂U j

∂xi

)]1/2

(7.55)

where lm ≡ c3/4
μ l, the mixing length, is to be prescribed. In fact, both G. I. Tay-

lor and L. Prandtl arrived at their results not from a local-equilibrium analysis but
by considering the momentum transfer associated with the displacement of a small
fluid package in a simple shear flow by a distance proportional to lm in the direction
of the mean velocity gradient. Taylor (1932) later argued that rather than momen-
tum it was more appropriate that vorticity should be considered as the transported
fluid property. It is arguably for that reason that Eq. (7.55) is nowadays known as
Prandtl’s mixing-length hypothesis (MLH). An assumed mixing length increasing
linearly with wall distance or a uniform value proportional to the width of a free

https://doi.org/10.1017/9781108875400.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.009


7.4 Linear eddy-viscosity models 291

shear flow enabled Prandtl and his students to compute a number of simple flows.
Their proposals did not extend up to the wall itself, however. For the viscosity-
affected sublayer, the van Driest (1956) proposal is the most commonly adopted
formula for the near-wall variation of lm . This arose from the recognition that the
linear variation of lm in the fully turbulent region had to be further damped as
one approached the wall and the turbulence Reynolds number decreased (a quan-
tity which, at the algebraic level of modelling adopted by the MLH, was taken
proportional to y+):

lm = κy
[
1 − exp(−y+/A+)

]
. (7.56)

Van Driest proposed that the coefficient A+ should take the constant value, 26. In
many (but by no means all) cases the velocity vector over the sublayer region where
the MLH is to be employed can be treated as unidirectional and then Eq. (7.55)
reduces to the form originally proposed by Prandtl (1925):

νt = l2
m

∣∣∣∣∂U

∂y

∣∣∣∣ . (7.57)

However, the more general form of the sublayer model, Eq. (7.55), was used to
compute the flow around the 90◦ bend shown in Fig. 7.23, because of the strong
skewing of the velocity vector across the sublayer that occurred in that case. As
noted in §4.4.3, the use of the MLH across the near-wall sublayer made a low-Re
treatment feasible (at a time when a low-Re k−ε model was simply too costly to
use in this three-dimensional elliptic flow) and achieved very satisfactory accord
with experiment.

By the late 1960s, several groups had found that the form proposed by van Driest
(used within two-dimensional boundary-layer solvers) did not adequately mimic
the effects of strong streamwise pressure gradients or wall mass transfer discussed
in Chapter 6. Thus, attention was turned to altering A+ from the constant value
of 26 to a functional form that depended on dimensionless acceleration or wall
mass-transfer parameters (e.g. Launder and Jones, 1969; Cebeci and Mosinskis,
1971; Kays and Moffat, 1975). The most widely tested form of such proposals,
at least from the standpoint of forced convection heat transfer, is probably that in
the textbook by Kays et al. (2004). They suggest a two-step correction: first the
equilibrium value of A+ is obtained from

A+
eq = 25/(τre f /τw)

1/2 (7.58)

where τre f is the shear stress evaluated at y+ = 3A+
eq . Then, because of the lag

between the actual value of A+ and its equilibrium value, the current value of A+

itself is determined from:

d A+/dx+ = C(A+
eq − A+) (7.59)
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where, the authors remark, ‘a value of C = 2.5 × 10−4 has frequently been used’.
This proposal does not seem to have been adopted as a sublayer model in conjunc-
tion with a more elaborate treatment for the fully turbulent part of the flow but,
in view of the extensive empirical calibration, such a combination should be both
successful and economical.

The principal reason that mixing-length schemes are not used to resolve the
wall sublayer region in most CFD codes is that the MLH does not cope well in
separated flows where mean-velocity gradients are low but turbulence levels are
high. Then, the one-equation approach has more commonly been adopted in which
a transport equation is solved for k. A popular route has been to adopt the proposals
of Wolfshtein (1969). In this scheme the length scale variation is prescribed for
the two roles indicated in Eq. (7.53), i.e. to determine, from knowledge of the
turbulence energy, the energy dissipation rate and the turbulent viscosity. While
the length scale appearing in the two parts of Eq. (7.53) is the same in the fully
turbulent region, as the turbulent Reynolds number becomes low it is damped at
different rates in its two roles:

lε = cl y(1 − exp[−y∗/A∗
ε]), lν = cl y(1 − exp[−y∗/A∗

l ]) (7.60)

where y∗ ≡ yk1/2/ν, A∗
ε = 3.8, A∗

l = 62.5.
The greatly different values for the two exponential damping coefficients above

mean that the dissipation length scale reaches its linear, high Reynolds number
form much faster than the viscous length scale (which is also having to account
for the non-viscous damping of v2). This one-equation near-wall strategy has
been applied in several studies, including that of Iacovides and Raisee (1999)
predicting flow through a rib-roughened channel and that of Yap (1987) for heat
transfer downstream of a backward-facing step. Both these explorations led to the
conclusion that the above choice of coefficients, calibrated for flat plate condi-
tions, underestimates heat transfer coefficients by typically 30% in separated-flow
regions. It would appear that the above damping coefficients depend (just as does
the MLH) on the way the shear stress varies across this low-Re sublayer, i.e. that
some correction of the same type as (though possibly weaker than) that recom-
mended in Kays et al. (2004) for determining A+ should really be added. While
this approach does not appear to have been used with one-equation EVMs, the con-
cept has been successfully imported into one of the newer, even more economical
‘wall-function’ schemes discussed in Chapter 8.
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Wall functions

8.1 Early proposals

The term wall functions was first applied by Patankar and Spalding (1967) as
the collective name for the set of algebraic relations linking the values of the
effective wall-normal gradients of dependent variables between the wall and the
wall-adjacent node (in a numerical solver) to the shear stress, heat or mass flux at
the wall.

The underlying purpose of wall functions, as originally proposed, was to allow
computations to escape the need to model the very complex flow dynamics asso-
ciated with the low-Re region that formed the subject of Chapter 6. It may seem
absurd that in the region which, from a physical point of view, contains the most
complex viscous and turbulent interactions, one resorts to algebraic rather than dif-
ferential relations to resolve the flow. We note, however, that in Chapter 7 the ability
of very simple eddy-viscosity models of turbulence to handle the sublayer has been
demonstrated. Wall functions may be seen simply as an extrapolation of that sim-
plification strategy, i.e. an even cheaper approach to capturing the essentials of the
viscosity-affected layer, by exploiting the fact that gradients of dependent variables
normal to the wall are dominant and that transport effects are relatively uninfluen-
tial. The present chapter first summarizes conventional wall functions and then
introduces four more powerful approaches that the authors and their colleagues
have developed more recently.

The link between near-wall values of a variable and the associated wall fluxes
is often the primary connection one needs to establish. However, even if one is
not immediately interested in wall fluxes, they often need to be evaluated to serve
as boundary conditions. In the limiting case, when the computational grid is fine
enough for the first node to lie within the viscous sublayer, where the velocity,
temperature, etc. vary linearly with the wall distance, one can use the exact laminar-
flow boundary conditions with the molecular transport properties. In that case, if

293
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the wall values of velocity and temperature are prescribed, the wall fluxes can be
computed explicitly from the wall gradients of velocity and temperature evaluated
simply from the difference between the values at the wall and the first node. Alter-
natively, if the wall flux is known, as is often the case in heat transfer, one can use
that to evaluate the wall temperature from the temperature at the near-wall node.
However, when the grid is too coarse to resolve properly the viscous/molecular
sublayer – as is usually the case in industrial computations – an alternative strategy
is needed. Either the mean velocity and scalar gradients between the wall and the
near-wall node are multiplied by the effective averaged value of diffusivity or some
other equivalent prescription is provided to determine the wall fluxes. In either case,
the appropriate connections are provided by what are known as wall functions.

The best known and still widely used wall function for the momentum equation
is more commonly known as the law of the wall. If it is supposed that, close to a
wall, in a slowly developing, two-dimensional turbulent flow, the mean velocity U
at a point is a function only of the height y above the wall, the local wall shear stress
τw and the fluid properties ρ and ν, one can express the velocity in dimensionless
form as:

U

Uτ
= f

(
yUτ
ν

)
or U+ = f (y+) (8.1)

where Uτ ≡ √
τw/ρ is the already introduced friction velocity. This and the viscous

length, ν/Uτ , provide what Eq. (8.1) implies are universal inner velocity and length
scales, respectively. The above form, which developed from a series of experiments
in Germany in the 1930s, led Coles (1956), following an exhaustive re-analysis of
the then available data, to comment: ‘The relationship [(8.1)] is taken for practical
purposes as a unique and universal similarity law for every turbulent flow past a
smooth surface.’

Deep in the viscous sublayer this relation simply expresses the linear connec-
tion between velocity and distance from the wall: U+ = y+. Of more practical
interest is the form that Eq. (8.1) takes in the region close enough to the wall for
the equation still to be valid but far enough from it for direct viscous effects to be
negligible. Several arguments have been advanced that in these circumstances the
velocity should increase as the logarithm of wall distance:

U+ = 1

κ
ln y+ + B or U+ = 1

κ
ln Ey+ (8.2)

where κ ≈ 0.41 is the von Karman constant, E ≈ 8.4 and B = (1/κ) ln E ≈ 5.1.
Indeed, as Coles (1956) had so emphatically shown, many flows measured in

the laboratory (or resolved by DNS), such as two-dimensional boundary layers in
weak streamwise pressure gradients and duct flows, do accord closely with this
form; some illustrations are provided in Fig. 8.1. However, most of the flows that,
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Fig. 8.1 Semi-logarithmic velocity distribution for various Reynolds numbers.
Left: DNS of a fully developed plane channel (Hoyas and Jimenez, 2006). Right:
experiments and DNS data for constant-pressure boundary layers. Solid lines
show the variation of U+ = y+ and Eq. (8.2).

practically, one wishes to compute are not of such relatively simple form and, for
these, Coles’ declaration cited above is manifestly incorrect.

The limitations of Eq. (8.2) are shared by the corresponding formula for the
temperature variation:


+ ≡ ρcp
√
τw/ρ(
−
w)

q ′′
w

= 1

κ̃
ln y+ + B̃ ≡ 1

κ̃
ln Ẽ y+ (8.3)

where κ̃ stands for the thermal von Karman constant (usually taken to be 0.38), and
the quantity Ẽ depends on the molecular Prandtl number of the fluid, Pr. Alterna-
tively, by eliminating y+ with the help of Eq. (8.2), the following widely used form
of equation for 
+ is obtained:


+ = κ

κ̃

[
U+ + 1

κ
ln

Ẽ

E

]
≡ σ
[U+ + J ]. (8.4)

In the above equations, q ′′
w is the heat flux to the wall (i.e. heat transfer rate per

unit surface area) from the fluid and σ
 is the turbulent Prandtl number for heat
transport. The quantity J (often termed the Jayatilleke function) depends on the
ratio of the molecular to turbulent Prandtl numbers and can be determined from
experimental data (Jayatilleke, 1969) or from analysis, assuming a distribution
of turbulent viscosity and Prandtl number over the viscous region. A particularly
simple analytical form proposed by Spalding (1967) has been widely used:

J = 9.24

{(
Pr

σ


)3/4

−
(

Pr

σ


)1/4
}

(8.5)
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but other somewhat different forms are also found in the literature.1 The func-
tion J provides a measure of the relative ‘resistances’ of the sublayer to heat and
momentum transport. When Pr is less than σ
, J is evidently negative.

Suppose that the heat flux, q ′′
w, is the quantity one wishes to find from a numerical

solution of the flow and thermal energy equations. If the semi-logarithmic veloc-
ity and temperature profiles are assumed to apply in the fully turbulent near-wall
region, there would be no need to adopt the highly compressed and expensive grid-
ding required to extend the numerical calculations right down to the wall where the
molecular-conduction boundary condition applies. One could employ a relatively
coarse near-wall mesh with the near-wall node located in the turbulent regime;
then, one simply rearranges Eq. (8.4) to obtain the heat transfer rate in terms of the
distance of the wall-adjacent node, yP, and the temperature, 
P:

q ′′
w = κ̃ ρcp

√
τw/ρ [
P −
w]

ln Ẽ y+
P

. (8.6)

While Eq. (8.6) has been used successfully to compute heat transfer rates in many
attached flows, a disastrous weakness of this approach is that if the wall shear stress
should fall to zero, so also does the wall heat transfer rate. It is, in fact, commonly
the case that heat transfer coefficients are close to a maximum at stagnation points;
so then the equation gives patently absurd results!

An important step towards improving this situation was proposed by Spalding
(see Launder and Spalding, 1974). He recognized that while the friction veloc-
ity,

√
τw/ρ, provided a satisfactory proxy for the turbulent velocity scale in local

equilibrium, in far-from-equilibrium situations (where there was no longer that
close connection between turbulent velocities and wall friction) it was necessary
to employ a velocity scale directly related to the turbulence itself. The chosen scale
was the square root of turbulence energy, k1/2. Now, in local equilibrium,

√
τw/ρ =

c1/4
μ k1/2. Moreover, in Eq. (8.2), the wall stress implicitly appears in two roles: as

the proxy for k, just noted, and as a measure of mean strain rate; in this latter
role the friction velocity needs to be retained. The law of the wall for velocity and
temperature is thus reorganized as:2

1 Jayatilleke (1969) proposed originally.

J = 9.0

[(
Pr

σ


)3/4
− 1

][
1 + 0.28 exp

(
−0.007

Pr

σ


)]
.

2 In the literature, c1/4
μ is sometimes absorbed into y∗ rather than into E , i.e. y∗ = c1/4

μ k1/2 y/v ≡
(c1/4
μ k1/2/Uτ )y+, in which case Eqs. (8.7) and (8.8) would contain E and Ẽ instead of E∗ and Ẽ∗.
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U ∗ ≡ Uk1/2

(τw/ρ)
= 1

c1/4
μ κ

ln

(
E c1/4

μ k1/2 y

ν

)
= 1

κ∗ ln E∗y∗ (8.7)


∗ ≡ (
−
w) ρcpk
1/2

q ′′
w

= 1

c1/4
μ κ̃

ln

(
Ẽc1/4
μ k1/2 y

ν

)
= 1

κ̃∗ ln Ẽ∗y∗ (8.8)

where κ∗ ≡ κc1/4
μ , κ̃∗ ≡ κ̃c1/4

μ , E∗ ≡ E c1/4
μ , Ẽ∗ ≡ κ̃c1/4

μ and y∗ ≡ k1/2 y/ν =
(k1/2/Uτ )y+.

If now Eq. (8.8) is rearranged, the following formula for heat flux is obtained
from the temperature at the near-wall node, yP:

q ′′
w = κ̃∗ρcpk1/2

P [
P −
w]

ln Ẽ∗y∗
P

. (8.9)

The change from Eq. (8.6) to (8.9) has a very great effect on computed Nusselt
numbers in impinging flows. Now, instead of returning zero values at impingement
or reattachment points, since the near-wall levels of k are high, heat transfer coef-
ficients are always large and of the right order of magnitude (even if they might be
in error by 50% or so). If the wall heat flux is prescribed as a boundary condition,
Eq. (8.9) can equally be used to obtain 
w.

In precisely the same way, Eq. (8.7) can be arranged to provide an expression
for the wall shear stress in terms of values appearing at yP:

τw

ρ
= κ∗UPk1/2

P

ln E∗y∗
P

. (8.10)

In computational codes, Eq. (8.10) is usually reformulated as:

τw = μeff
w

UP − Uw
yP

(8.11)

where Uw stands for the velocity of the wall if it is moving relative to the coor-
dinate frame. That has the same form as for laminar flows or when equations are
integrated up to the wall, except that, instead of the molecular viscosity, one adopts
an effective ‘wall’ turbulent viscosity:

μeff
w = ρκ∗k1/2

P yP

ln(E∗y∗
P)
. (8.12)

The above treatment naturally raises the question of how the level of turbulence
energy used in the above formulae is to be obtained. The recommended approach
is to solve a transport equation for k in the usual way (or, for the components of
the normal stresses, if a second-moment closure is used), a choice that focuses
attention on how the kinematic generation and dissipation terms are to be com-
puted. Boundary-layer solvers (which deal for the most part with flows near local

https://doi.org/10.1017/9781108875400.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.010


298 Wall functions

equilibrium) sometimes adopt simply the values of these quantities evaluated at the
near-wall node, P:

Pk, P = τ 2
w

ρ2κ∗k1/2
P yP

and εP = k3/2
P

cl yP

(8.13)

where cl = κ∗/cμ = κ/c3/4
μ ≈ 2.5.

However, because production and dissipation rates vary so greatly over the thin
viscosity-affected zone next to the wall, it is preferable to determine their aver-
age values by direct integration over the near-wall control volume. A commonly
adopted approach, simplified from Chieng and Launder (1980), is to assume a
distinct switch-over at a dimensionless wall distance, y∗

v , from a purely viscous
sublayer to a fully turbulent region where the length scale increases as3 κ∗y/cμ.
Now, if it is assumed that over the fully turbulent part of the control volume (i.e.
for yv ≤ y ≤ yn) the turbulent shear stress is uniform and equal to (τw/ρ), while
being zero within the viscous layer, the mean turbulence energy generation rate
over the near-wall control volume, Pk , is given by:

Pk = 1

yn

yn∫
yv

(τw/ρ)
2

κ∗k1/2
P y

dy = (τw/ρ)
2

κ∗k1/2
P yn

ln

(
yn

yv

)
. (8.14)

Unlike the production rate, the dissipation rate is non-zero in the viscous layer.
Assuming that across the viscous layer the energy dissipation rate is given by
Eq. (6.10) and that the value of k at the edge of the viscous layer may be taken
as that at node P, then the dissipation rate within the sublayer is uniform, equal to
2νk P/y2

v . Within the turbulent region the dissipation rate is given by:

ε = k3/2

κ∗c−1
μ︸ ︷︷ ︸

cl

y
. (8.15)

Thus, the spatially averaged dissipation rate over the near-wall control volume can
be expressed as:

ε̄ = 1

yn

⎡⎣ yv∫
0

2νk P

y2
v

dy +
yn∫

yv

k3/2
P

cl y
dy

⎤⎦ = 1

yn

[
2νk P

yv
+ k3/2

P

cl
ln

(
yn

yv

)]
. (8.16)

The strategy set out above (but with Eq. (8.13) being adopted rather than the
more elaborate, and accurate (8.14) and (8.16)) is what is commonly termed
‘standard wall functions’ (SWF).

3 This length scale is consistent with a local-equilibrium situation where production and dissipation of turbulence
energy are in balance.
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It is noted that the above basic rationale has also been extended to provide ‘stand-
ard’ wall functions for flows over rough walls by simply replacing the reciprocal of
the viscous length k1/2/ν (or Uτ /ν) by the equivalent (sand-grain) wall roughness
h, so that the non-dimensional wall distance of the point P in Eqs. (8.7)–(8.12) is
defined as y∗ = y/h. The resultant expressions are then entirely independent of
the fluid viscosity, a state known as ‘fully rough’.

8.2 Towards a generalization of the wall-function concept:
preliminaries

As outlined above, commonly used wall functions are based on several assumptions
that are supposed to be valid throughout the fully turbulent near-wall layer.

1. The mean velocity follows a semi-logarithmic distribution, Eq. (8.2), which is
universal in form when scaled with the inner velocity and length scales, Uτ and
(ν/Uτ ). The same applies for mean scalar properties – temperature or species
concentration – using the corresponding inner wall scales, Eq. (8.4).

2. The turbulent shear stress is presumed to be equal to the wall shear stress, i.e.
−ρuv ≈ τw.

3. The ratio of the turbulent shear stress and kinetic energy (sometimes termed the
‘structure parameter’, Bradshaw et al., 1967) is presumed to be constant, i.e.
−uv/k = c1/2

μ ≈ 0.3.
4. The turbulent kinetic energy is in local equilibrium, i.e. the net transport by

convection and diffusion is negligible so that Pk ≈ ε.
5. As an indirect corollary of the above assumptions, the turbulent length and time

scales increase linearly across this flow region, i.e. l = k3/2/ε = cl y and T =
k/ε = cT y (where cl = κ/c3/4

μ as already defined and cT = κ/(c1/2
μ Uτ )).

These assumptions are reasonably well satisfied in simple wall flows such as
the constant-pressure boundary layer, plane channel or pipe flow, as has been
established from numerous experiments and DNS studies. None of the above
assumptions can be relied on, however, in more complex flows.

A question that sometimes arises in computing complex flows (where the wall-
adjacent flow structure undergoes very great variations with position along the
wall) is what remedial measure should be taken if a limited number of wall-
adjacent nodes have y+ (or y∗) values below that for which the appropriate log-law
wall function is applicable. This may occur if the mesh density is increased with-
out due care, especially when using automatic gridding, a practice often employed
in industrial computations. In some commercial CFD codes a remedy is provided
for such eventualities where the wall functions for the velocity and temperature
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Fig. 8.2 Numerical computations of flow in a plane channel with different
uniform grids, using standard wall functions, Re = 13,750. From Jakirlić (1997).

are switched from the logarithmic expressions, Eqs. (8.2) and (8.3), to linear ones,
U+ = y+ and 
+ = Pr y+ whenever y+ < 11.6 (this being approximately the
value at which the linear and the logarithmic velocity profiles intersect). This prac-
tice is not advised, however, when used with a high-Re closure and a coarse mesh.
While it will correctly place the first grid point on the linear (laminar) line (thus, if
y+

P = 5, the value of U+
P would also be set to 5), in computing the next node from

the wall, a high-Re model will not have the essential embedded viscous damping
effects. The outcome of following such a practice is that the velocity profile would
still follow a semi-logarithmic curve, but one lying well below the correct line. In
these circumstances, less damage is done if no switch is activated at all: at the first
node U+ will lie incorrectly on the logarithmic line, but apart from that, the profile
will generally follow the proper logarithmic distribution and return reasonably cor-
rect levels of wall friction. This is illustrated in Fig. 8.2, where computed profiles
for fully developed flow in a plane channel at a relatively low Reynolds number are
presented using three different uniform grids, with 15, 30 and 60 grid nodes across
the channel half-width. In all cases the standard high-Re basic second-moment
closure is used with the standard wall functions. Very similar values of wall fric-
tion (within 2%) were obtained in all three cases, despite the fact that for the two
finer grids the first grid nodes lie deep in the viscous region. In all three cases the
results for the mean velocity, shear stress, kinetic energy and its dissipation rate
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Fig. 8.3 Velocity profiles for flow behind a backward-facing step. Symbols,
DNS and experimental data; lines, low-Re SMC computations with the Hanjalić–
Jakirlić model. From Hanjalić and Jakirlić (1998).

collapse well with the DNS results in the fully turbulent region for y+ > 30. Much
larger errors would be generated by adopting the above noted ‘switch’ to the linear
‘laminar’ wall function.

Of course, for more complex flows that depart far from equilibrium, the use of
standard wall functions is in any case not appropriate, as illustrated in Fig. 8.3.
The figure shows velocity profiles (in wall coordinates) at two positions for the
flow development behind a backward-facing step. While it is to be expected that
the velocity profile in the separation bubble should not follow the semi-logarithmic
distribution, it is seen that long after reattachment in the recovering boundary layer
the velocity is still significantly different from the equilibrium distribution. In such
flows, especially when laminar-to-turbulent or reverse transition (laminarization) is
expected, one should never attempt to compute the flow behaviour using standard
wall functions. For flows at high Re or Pe, when tackling a problem requiring a
too extensive or complex solution domain for a WIN treatment to be feasible, one
should rather employ one of the more advanced wall treatments described in the
remainder of this chapter, which do not rely on the equilibrium assumptions listed
above. Four such generalized approaches are presented, each of which has certain
specific merits and appeal. These are:

● analytical wall functions (AWF) (the Manchester scheme);
● simplified analytical wall functions (SAWF) (the Delft scheme);
● blended wall treatment (BWT);
● numerical wall functions (NWF).
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8.3 Analytical wall functions (AWFs)

The greatest problem with the rudimentary (though widely used) standard wall
functions presented in §8.1 is that CFD is used to predict difficult flows. In such
situations the near-wall mean velocity only rarely displays the presumed logarith-
mic variation with wall distance. Besides the effects of severe pressure gradients,
which take the near-wall flow far from its equilibrium state, force fields (most com-
monly due to gravity, but also from other agencies as considered in Chapter 4) or
unusual boundary conditions (like a porous surface) can have a similar effect. So,
if wall functions are to be a useful replacement for WIN treatments, a different
basis must be adopted for their construction. The schemes proposed in this and the
following section take as their starting point the idea that – instead of the profile of
mean velocity – the near-wall variation of turbulent viscosity should be prescribed.
While the normalized turbulent viscosity does not follow a universal pattern, its
variation displays much less change from flow to flow than the mean velocity pro-
file, especially if the thickening or thinning of the viscous sublayer noted in the
survey of §6.1 is incorporated empirically.

In adopting such an approach it is necessary to prescribe a sufficiently simple
distribution of turbulent viscosity to permit the analytical integration of a reduced
form of the momentum equation. In the scheme developed by Gerasimov (2003)
(see also Craft et al., 2002, 2004b), the turbulent viscosity, Fig. 8.4, is taken as zero
out to a distance yv from the wall and thereafter increases linearly with distance.

Thus, the turbulent viscosity may be prescribed as:

μt

μ
=
{

0 for y∗ < y∗
v

κ∗(y∗ − y∗
v ) for y∗ ≥ y∗

v

(8.17)

where κ∗ ≡ cμcl and y∗ = ρk1/2 y/μ.
To this, in weakly non-isothermal flows, a uniform molecular viscosity is added

to provide the effective viscosity in the momentum equation. In flows with intense
wall or frictional heating, the variation of molecular properties across the sublayer
naturally needs to be accounted for. The reader is referred to Craft et al. (2002)
for suggestions of how this should be approximated analytically so as still to per-
mit analytical integration. A sketch of the distribution of molecular and turbulent
viscosities is provided in Fig. 8.4.4

4 The sketch and all the subsequent discussion presumes that the viscous layer thickness is less than yP. How-
ever, this may occasionally not be the case. Craft et al. (2002) include the corresponding analysis for the
exceptional situation where node P lies within the viscous layer. Where such situations are encountered in
some regions it is important that the transport equations used to resolve the flow beyond the sublayer should
include any viscous and wall-proximity terms appropriate to the model in question.
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Fig. 8.4 Assumed molecular and eddy-viscosity variation with the AWF scheme.

Having prescribed the viscosity variation, the task is to integrate the momentum
equation for the resultant velocity parallel to the wall, making simplifications to
enable the integration to be carried out analytically. The partial differential equation
in question may be written for the case where body forces in the x direction are
absent:5

∂

∂y

[
(μ+ μt)

∂U

∂y

]
= ρU

∂U

∂x
+ ρV

∂U

∂y
+ d P

dx
= CU . (8.18)

The conventional law of the wall presented in §8.1 may be thought of as result-
ing from neglecting entirely the effects of convection and pressure gradient on the
right-hand side of Eq. (8.18). In the present case, for an impermeable wall, it is
usually assumed that the second convection term involving the mean velocity nor-
mal to the wall can be discarded and that the remaining terms can be treated as
independent of y, equal to the value prevailing at the near-wall grid node, P. These
values are available, being computed during the course of a numerical computation
of the flow-field under study. Here the right-hand side is simply denoted as CU , a
quantity assumed to be independent of y.

A justification for this assumption is provided in Fig. 8.5 where the convec-
tion and pressure gradient (extracted from prior solutions using a WIN near-wall
model6) are plotted along the walls for various heights above the wall typical of
applications using wall functions (y+ = 20, 40 and 60). Two cases are shown:
the flow behind a backward-facing step (including the separation bubble) and in a
round impinging jet. All three lines in both (strongly non-equilibrium) flows show

5 The more general case with a gravitational force acting in the x direction is considered in Craft et al., (2002;
2004b).

6 Specifically, here the elliptic relaxation ζ− f model was used (see §7.4.4), but any other WIN model that
satisfactorily reproduces the flows in question, or DNS results, could have been used, leading to the same
general conclusions.
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Fig. 8.5 Illustration of the insensitivity of the non-equilibrium effects represented
by CU to the size of the wall-adjacent grid in flows over a backward-facing
step flow (left) and in an axisymmetric impinging jet (right). Pressure gradient
and convection terms are evaluated at the wall-adjacent grid nodes positioned at
—— y+

1 = 20, – – – y+
1 = 40, - · - · y+

1 = 60, indicating that pressure variation
is essentially the same for all grid sizes. From Popovac and Hanjalić (2007).

remarkable coincidence, justifying the assumption that CU is reasonably constant
over the wall-adjacent cell for a variety of cell sizes7.

Equation (8.18) can thus be integrated first across the viscous sublayer, then
across the turbulent region out to y = yn. At the interface, y = yv, the mean veloc-
ity, U , and its normal gradient are made continuous across the two regions, which
enables (after considerable algebra) the resultant velocity profile in the turbulent
region and the expression for the wall shear stress to be obtained as:

μvU = C

κ∗

[
y∗ −

(
1

κ∗ − y∗
v

)
ln Y

]
+ A

κ∗ ln Y + B (8.19)

τw =
√

k P

νv
A (8.20)

where

A ≡
μvUn − C

κ∗

[
y∗

n − y∗
v −

(
1

κ∗ − y∗
v

)
ln Yn + κ

∗y∗2

v

2

]
[(ln Yn/κ∗)+ y∗

v ] (8.21)

Y ≡ [1 + κ∗(y∗-y∗
v )]; C ≡ ν2

v

k P

CU ; B ≡ y∗
v C

(
y∗

v

2
− 1

κ∗

)
+ Ay∗

v . (8.22)

In applying the above formulae, the quantities in the definition of A with subscript
n are evaluated at the boundary of the control volume most distant from the wall,

7 The inclusion of streamwise pressure gradient to modify the standard wall functions was also proposed by
Ng et al. (2002), while it was also a common feature of earlier mixing-length schemes. However, as seen in
Fig. 8.5, the pressure gradient is in part balanced and compensated by convection with an opposite sign.
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Fig. 8.4. If the numerical scheme does not generate explicit values for velocity
there, the value may be interpolated from those at node P and the adjacent grid
node, N.

The corresponding thermal wall function is obtained by solving a reduced form
of the enthalpy equation for the near-wall temperature, again for the case of
negligible sources, e.g. from viscous dissipation,

∂

∂y∗

[(
μ

Pr
+ μt

σ


)
∂


∂y∗

]
= μ2

v

ρ2
v k P

(
ρU
∂


∂x
+ ρV

∂


∂y

)
≈ C
 (8.23)

where the second convective term may usually be neglected for an impermeable
wall:

C
 = μ2
v

ρ2
vk P

(
ρU
∂


∂x

)
and the term in parentheses is normally evaluated at node P and treated as independ-
ent of y. Integration of this equation with the expression for the turbulent viscosity
inserted leads, after requiring continuity of temperature and its gradient at y = yv,
to the following expression for the temperature variation in the turbulent region:

(
−
w) = Pr

μvκ̃∗

[
C
(y

∗ − y∗
v )+

(
A
 + C


[
y∗

v − 1

κ̃∗

])
ln Y


]
+ Pr y∗

v

μv

(
C
y∗

v/2 + A

)

(8.24)

where κ̃∗ ≡ Prκ∗/σ
; Y
 ≡ [
1 + κ̃∗(y∗ − y∗

v )
] ; A
 ≡ −q ′′

wμv/(cpρv
√

k P).

If the wall heat flux is known, the wall temperature is obtained by evaluating
Eq. (8.24) at yn or yP. Alternatively, if the wall temperature is prescribed and the
wall heat flux is to be determined, Eq. (8.24) is rearranged to provide an equa-
tion for A
 from which q ′′

w is obtained. For the more general case where buoyant
forces and/or large sublayer variations in viscosity occur, the reader is referred to
the appendices of Craft et al. (2002) or, in greater detail, Gerasimov (2003). The
latter is available in electronic form from the University of Manchester library.

In determining the turbulence energy for node P, ideally a finite-volume budget
over the near-wall cell should be applied in which diffusion to the wall is set to zero
(recall, k varies as y2 immediately adjacent to the wall). Diffusion and convection
through the other faces are handled by the same approximations made for any
standard interior cell in the solver being used. For the production and dissipation
rates within the control volume the following practices are recommended.

Because the local generation rate of k over the near-wall cell varies in a highly
non-linear way, its mean value, Pk , may be obtained by integrating numerically the
local formula for production rate over the cell as in Eq. (8.14):
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Pk ≡ 1

yn

∫ yn

0
νt

(
∂U

∂y

)2

dy =
(
τ
w
/ρ
)2

κc1/4
μ k1/2

P yn

ln

(
yn

yv

)
. (8.25)

Recall from §8.1 that the contribution to k production by the viscous region is zero.
The dissipation rate over the cell should likewise be found by integration. Across

the sublayer it has been noted earlier (Eq. (6.10)) that

ε = 2ν (∂k1/2/∂y)2 ≈ 2νk/y2

and, with a parabolic profile for k across this layer, a uniform value of ε is
returned, εν . For the turbulent region, ε is assumed to vary inversely with wall
distance:

ε = k3/2/(cl y).

Of course, at the interface between the two regions, the dissipation rates given by
these two formulae should be the same. If, however, the thickness of this dissi-
pation sublayer is taken as yv, the level of dissipation on the ‘viscous sublayer’
side turns out to be much less than on the turbulent side of the yv interface,
Fig. 8.6.

This anomaly can be removed by allowing the interface for dissipation to lie
much closer to the wall than the edge of the conventional viscous sublayer. Indeed,
by choosing the dissipation interface so that the two formulae give equal vales of ε
at that interface position, yd, one obtains

ydk1/2/ν = 2cl ≈ 5.1. (8.26)

Choosing a smaller sublayer thickness for dissipation than for production was, in
fact, a practice established in early one-equation models for the low-Re region (e.g.
Wolfshtein, 1969) as discussed in Chapter 7, Eq. (7.60). It also makes the distribu-
tion of ε using the AWF much closer in appearance to the variation revealed many
years later by DNS (e.g. Kim et al., 1987). In practice, the quantity k appearing
in Eq. (8.26) is normally taken as that at the cell node P, a choice that will usu-
ally overestimate k but which is numerically stable and will have relatively little
effect on the solution since it is the square root of turbulence energy that appears
in (8.26).

A further refinement of this AWF practice is important if the shear stress
changes so rapidly across the sublayer that the flow is either nearly separat-
ing or undergoing such rapid acceleration that laminarescence occurs (i.e. where
the viscosity-affected layer becomes significantly thicker in terms of y+ than
its ‘universal’ value). In these extreme conditions, as discussed in §6.2.2, the
dimensionless sublayer thickness, y∗

v , does not remain constant at its nominally
universal level. In some of the early mixing-length models (e.g. Cebeci and Smith,
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Fig. 8.6 Assumed dissipation rate; left, Chieng and Launder (1980); right, Craft
et al. (2002).

1974; Kays and Moffat, 1975) the viscous sublayer thickness was made directly
dependent on the normalized change in the shear stress across the sublayer (or an
approximation to it in terms of the streamwise pressure gradient). The above prac-
tice was used only with parabolic (boundary layer) solvers, however. Craft et al.
(2002) reported that such an approach seemed to be endemically unstable within
the present wall-function treatment applied in an elliptic solver. Instead, the desired
sensitivity was captured by making the mean dissipation rate in the sublayer cell
(which is inversely proportional to the length scale) dependent on the ratio of the
shear-stress change across the sublayer, λ, where:

λ ≡ μw
√
(∂Ui/∂x j )2w

μv

√
(∂Uk/∂xl)2v

. (8.27)

Further details are given in Craft et al. (2002).
Some impression of the importance of applying the above correction may be

gathered from Fig. 8.7, which shows, for the upward flow of air through a mildly
heated vertical pipe, the variation of Nusselt number with distance along the pipe.
Due to the decrease in density the near-wall flow is accelerated, which increases
the wall shear stress and, likewise, augments the rate of fall-off of shear stress with
distance from the pipe wall, which, in turn, causes a drop in Nusselt number. Even
in this mild heating case, the inclusion of sublayer thickening (through λ) makes a
noticeable contribution to reducing the Nusselt number; for if y∗

v is held constant
(the computational line denoted as ‘without F(λ)’) at its uniform-shear-stress level,
the resultant value of Nu is some 20% higher.

If the flow is directed downwards, the reverse effect occurs. Then the buoyant
force on the lighter near-wall fluid opposes the downward motion, reducing the
friction at the wall and thus causing a rise in shear stress as one moves away from
the wall. The sublayer thickness is then reduced, leading to higher heat transfer
coefficients.
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Fig. 8.7 Predicted Nusselt number for mixed convection at Re = 15,000 and Gr =
2.2 × 108 in upward flow in a heated pipe. From Craft et al. (2002).

Figure 8.8 shows the outcome of computing two cases of downward flow in
an annulus with several turbulence treatments. First, the very significant effect of
buoyancy on this flow is evident from the two runs using a WIN (or low Reyn-
olds number, LRN) model integrated up to the wall: in one case the density
was set uniform, eliminating any buoyant influence (denoted ‘forced convec-
tion’). Computations are shown for two values of the buoyancy parameter Bo ≡
8 × 104 Gr/Re3.425Pr0.8. The inclusion of buoyant terms in the momentum equa-
tion led, for the case of the low-Reynolds number model, to Nusselt numbers for
the two cases raised by 80% and 150% relative to the uniform-density case. The
low-Reynolds-number model (including buoyancy) matches the experimental data
particularly closely. However, nearly as close agreement is achieved with the AWF
treatment, strikingly better than with the standard wall functions (StWF).

The above examples adopted an eddy-viscosity model (see Chapter 7) in the core
region of the flow, a practice that is satisfactory for the simply sheared flows consid-
ered. For the more complex flow field created by the opposed wall jet illustrated in
Fig. 8.9a, computed by the large-eddy simulation of Addad et al. (2004), a jet of hot
liquid is discharged vertically downward (with mean velocity U jet ) against a slow,
upward-moving cold stream (with velocity Uch). In this case, the stress-transport
(TCL) closure leads to better modelling of the strongly recirculating flow away
from the wall, while the type of wall-function treatment predominantly affects the
depth of penetration of the thin, high-velocity wall jet. Figure 8.9b compares, for
different RANS treatments, the skin friction coefficient immediately downstream
from the wall-jet discharge with the LES results. There is evidently closer agree-
ment with the LES results as one successively refines the wall-function treatments
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Fig. 8.8 Mixed convection in downward-directed flow through a vertical annu-
lus. Left, flow configuration; right, Nusselt number variation for two values
of the buoyancy parameter. Upper, Bo = 0.78, Re = 6,000; lower, Bo = 2.89,
Re = 4,000. Symbols, experiments (Jackson et al., 2002). From Gerasimov
(2003); see also Craft et al. (2006a).

from the standard version to the AWF treatment and from an eddy-viscosity model
to the TCL second-moment closure. The corresponding temperature contours in
this flow have been examined in Chapter 4, Fig. 4.25, which showed that the TCL
model together with the AWF treatment also led to the best agreement with the
LES results.

The AWF approach has been extended to swirling flows by Zacharos (2010)
(see also Craft et al., 2008) for situations where the velocity vector parallel to the
wall undergoes strong skewing across the sublayer (as arises, for example, in flow
around a bend or close to a spinning disc). In that case, Fig. 8.10, left, one applies
the scheme as described above in the direction of the mean velocity vector at P

and also in the direction orthogonal to that velocity vector. For the latter case, the
velocity component is zero at both P and the wall (for a stationary wall), but due
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Fig. 8.9 (a) Sketch of a downward-directed wall-jet flow. (b) Predicted distribu-
tion of the friction coefficient in the isothermal case at Uch/U jet = 0.077. From
Craft et al. (2004b).

to the pressure gradient in that direction there will be a secondary-flow velocity
profile as sketched in the figure. An impression of the very great difference between
the flow pattern predicted by this wall-function treatment and the ‘standard’ log-
law approach appears in Fig. 8.10, right. This shows mean velocity contours for a
geometrically axisymmetric swirling flow close to the stationary wall within a very
thin rotor-stator disc cavity (though the computations are three-dimensional and
unsteady – a so-called URANS treatment, which is the subject of Chapter 9). The
AWF computation, Fig. 8.10a, brings out clearly the presence of spiral vortices that
are known to exist (see, for example, the review by Launder et al., 2010) within
what is known as the Bödewadt layer but which are not captured when standard
log-law wall functions, Fig. 8.10b, are used.

The AWF approach has been successfully adopted and extended by Professor
Suga and his co-workers at the Osaka Prefecture University, Japan. The first exten-
sion, in collaboration with the Manchester group, was to the flow over rough walls,
Suga et al. (2006). In this case the scheme was first calibrated so that it reproduced
data for a range of roughened pipes and was then successfully applied to separated
flows over sand dunes and a curved backward-facing step.

Next, the application of the AWF concept to the case of heat transfer from a
wall to high-Prandtl-number fluids was addressed, Suga (2007). As one considers
fluids of lower and lower thermal conductivity (or, in dimensionless terms, pro-
gressively higher values of Pr), the action of turbulence within the viscous region
(while being insignificant to momentum transport) makes a greater and greater
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predicted vortical flow structures close to the stationary disc of a rotor-stator disc
cavity using (a) AWF and (b) the standard log-law wall function, (StWF). Figures
show contours of velocity normal to the disc, U/�R, according to the indicated
scale. From Craft et al. (2008).
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Fig. 8.11 Near-wall thermal diffusivity distribution for high-Pr flows. Reprinted
from Suga (2007), Figure 3, with permission from Elsevier.

contribution to the resultant Nusselt number. The assumption of zero turbulent dif-
fusivity for y∗ < y∗

v self-evidently cannot capture this phenomenon. Suga (2007)
thus added a supplementary turbulent viscosity proportional to y∗3 (since uv ∼ y3

deep in the viscous layer, Eq. (6.6)), which was blended smoothly with the original
linear increase of turbulent diffusivity further from the wall, at y∗ = y∗

b (in Suga’s
scheme, y∗

v = 10.7, y∗
b = 11.7), Fig. 8.11. Although integrable, the resultant com-

plex equations are not reproduced here. The scheme was shown to reproduce the
Nu-Re variations over a wide range of Pr for duct and channel flows, including
rough walls. Subsequently, Suga and Kubo (2010) applied the same approach to
compute mass transport at a liquid−air interface.

Suga et al. (2013) have also examined in detail the use of the AWF approach
in impinging and separated flows. They concluded from examining a range of test
flows that the near-wall distribution of turbulent viscosity could not be satisfactorily
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Fig. 8.12 Friction and heat transfer distributions from computations of a back-
step flow using the linear LS and the non-linear CLS k − ε models for ER = 1.25
and ReH = 28,000: (a) friction coefficient; (b) Stanton number. Reprinted from
Suga et al. (2013), Figure 16, with permission from Elsevier.

modelled as a unique function of y∗. Their recommendation was, effectively, that
κ∗ rather than being a constant should be a function of the local average mean
strain rate across the wall-adjacent control volume. For the cases reported, cov-
ering plane and axisymmetric impinging jets as well as abrupt pipe expansions,
this adjustment clearly brought improved agreement with the experimental thermal
data. An important secondary finding from this study was that the overall agree-
ment with experiment also depended strongly on the level of turbulence modelling
used in the main part of the flow. This is illustrated by their computations of flow
over a back-step in Fig. 8.12, which shows that the use of the AWF scheme gives
much better results when used with the cubic non-linear EVM (Craft et al., 1996b)
than with a linear EVM. This result, consistent with that shown in Fig. 8.9, is hardly
surprising since, in separated and impinging flows, the turbulence structure is far
from that of a local equilibrium, simple shear flow for which linear eddy-viscosity
models are best suited. Indeed it underlines the fact that in making CFD compu-
tations with wall functions the user needs to consider the best combination of the
wall function with the model adopted for the rest of the shear flow.

8.4 A simplified AWF (SAWF)

A simpler version of AWF, organized into a form closer to the standard wall
functions8 (while still accounting for certain non-equilibrium effects), has been
developed by Popovac and Hanjalić (2007). The SAWF scheme is based on the
same principal ideas used in the above AWF, but starts with a prescribed linear dis-
tribution of effective viscosity, as shown in Fig. 8.13 (here assuming constant fluid

8 Thus, originally labelled generalized wall functions (GWF).
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Fig. 8.13 Assumed turbulent viscosity distribution in the SAWF scheme.

properties), which allows a straightforward integration of Eq. (8.18) with a much
simpler resulting velocity profile:

μeff

μ
=
{

1 y∗ < y∗
v

κ∗y∗ y∗ ≥ y∗
v .

(8.28)

It is readily seen that the turbulent viscosity can be written as μt/μ = κ∗y∗ − 1,
to which Eq. (8.17) of the AWF reduces if the thickness of the zero-μt sublayer is
assumed fixed, i.e. y∗

v = 1/κ∗ ≈ 4.45. While this assumption for μt is less widely
applicable than allowing for a variable y∗

v adopted by the AWF approach,9 it offers
advantages in greatly simplifying the integration, making it possible to formulate
the wall functions for velocity and temperature in the form of conventional standard
logarithmic expressions, so that they can be implemented more easily in existing
in-house or commercial CFD codes.

With the above assumed distribution of μeff, Eq. (8.18) can be integrated twice
over the two parts of the near-wall cell, following the same steps as in deriving
AWFs. The two integration constants, appearing after the double integration of
(8.18), are deduced by imposing equal values and gradients of U at the edge of the
viscous sublayer, yv. Because at this interface μeff = μ, equal velocity gradients
on both sides of the interface guarantee continuity of the shear stress. After some
rearrangement, the final integration from the wall to the point P at the cell-centre
node leads to:

UPk1/2
P

(τw/ρ)
− CUμ

κ∗ρk1/2
P τw

(y∗
P − 1/2y∗

v ) = y∗
v + 1

κ∗ ln

(
y∗

P

y∗
v

)
. (8.29)

The left-hand side of Eq. (8.29) can be conveniently rearranged into a product of
the dimensionless velocity and a function containing the non-equilibrium effects

9 It is noted that neither holds universally, especially in and around singularities such as stagnation, separation
and reattachment; for some illustration based on a posteriori tests, see Popovac (2006).
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represented by CU . For convenience (though not a necessary step) one can neglect
1
2 y∗

v compared with y∗
P, leading to

UPk1/2
P

(τw/ρ)
− CUμy∗

P

κ∗ρk1/2
P τw

= U ∗
P − C∗

U y∗
P

κ∗ = U ∗
P

(
1 − C∗

U y∗
P

U ∗
Pκ

∗

)
= U ∗

Pψ (8.30)

where

ψ = 1 − CU yP

ρκc1/4
μ k1/2

P UP

= 1 − C∗
U y∗

P

κ∗U ∗
P

(8.31)

and

C∗
U = CUμ

ρk1/2
P τw

= μ

ρk1/2
P τw

(
ρ
∂U

∂t
+ ρU

∂U

∂x
+ ρ V

∂U

∂y
+ d P

dx

)
P
. (8.32)

As before, the above integration is based on the assumption that CU is constant
over the cell and known from the previous time step or iteration10. The ‘non-
equilibrium’ function ψ is thus a correction to the velocity distribution accounting
for convection and pressure gradient in the wall-adjacent cell. The terms on the
right-hand side of (8.29) can be grouped to give

y∗
v + 1

κ∗ ln

(
y∗

P

y∗
v

)
= 1

κ∗ ln

(
eκ

∗ y∗
v y∗

P

y∗
v

)
= 1

κ∗ ln(E∗y∗
P) (8.33)

where E∗ ≡ eκ
∗ y∗

v /y∗
v remains to be determined. The right-hand side of Eq. (8.33)

has the form of the conventional logarithmic velocity distribution. In an equilib-
rium turbulent wall layer when CU can be set to zero, Eq. (8.29) gives the standard
logarithmic law, Eq. (8.2) or (8.7), in which the integration constant has been
determined empirically. One can also argue that the logarithmic expression on the
right-hand side of Eq. (8.33) is valid only in the turbulent wall region, and here y∗

v

(incorporated in E∗) can be interpreted as the lower bound of y∗ below which the
logarithmic velocity is not valid. This means that y∗

v here represents the thickness
of the complete viscosity-affected near-wall layer and not just the zero-μt sub-
layer.11 The lower limit of the logarithmic law is usually taken as the intersection
of the linear and logarithmic velocity laws, Fig. 8.1, which occurs at y+ ≈ 11. This
corresponds to y∗ ≈ 20, which gives E∗ = eκ

∗ y∗
v /y∗

v ≈ 4.8 (consistent with the
standard value E = 8.4, see definitions after Eq. (8.7)).

10 The SAWF has also been used in an unsteady RANS mode (some examples appear in Chapter 9); then the
non-equilibrium functions ψ and ψ
 also include the time derivatives of the mean velocity and scalar.

11 This apparent inconsistency in interpreting and assigning different values to y∗
v on the two sides of equation

should be regarded as approximations associated with different terms. The region between the edge of the zero
μt sublayer and the lower bound of the logarithmic expression is the ‘buffer’ zone in which both the viscous
and turbulent contributions to the shear stress are influential.
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Replacing the left- and right-hand sides of Eq. (8.29) by Eqs. (8.30) and (8.33)
gives

U ∗
P = 1

ψκ∗ ln(E∗y∗
P) (8.34)

which has the standard form of the semi-logarithmic velocity law, apart from the
non-equilibrium function ψ , defined by Eq. (8.31).

For practical implementation into a CFD code, one can again express the wall
stress in the convenient form

τw = μeff
w

UP − Uw
yP

ψP (8.35)

where μeff
w is the effective ‘wall viscosity’ introduced earlier, Eq. (8.12), which can

now be written as:

μeff
w = ρκ∗k1/2

P yP

ln(E∗y∗
P)

= μ y∗
P

U ∗
P

(8.36)

where, it is recalled,

κ∗ = κc1/4
μ , U ∗

P = 1

κ∗ ln(E∗y∗
P), y∗

P = ρk1/2
P yP

μ

and, as before, P denotes values at the wall-adjacent node.
As expected, for flows in local equilibrium, CU = 0, ψ = 1 and the equations

reduce to the standard wall functions. The effect of introducing the non-equilibrium
function ψ to modify the velocity distribution in boundary layers with moderate
adverse and favourable pressure gradients is illustrated in §8.5 in conjunction with
a combined WF+WIN treatment.

One can follow an analogous approach to derive the corresponding wall function
for the temperature (or other mean scalar) and approximate the effects of convec-
tion and the source terms through corresponding C andψ parameters by integrating
the mean energy equation twice:

∂

∂y

[(
μ

Pr
+ μt

σ


)
∂


∂y

]
= ρcv

∂


∂t
+ ρcpU

∂


∂x
+ ρcpV

∂


∂y
+ q̇ = C
 (8.37)

where q̇ denotes any internal heat source. The equation can be integrated to give


∗
P = σ


[
1

κψ

ln(Ey∗

P)+ J

]
= σ


[
ψ

ψ

U ∗

P + J

]
(8.38)

ψ
 ≡ 1 − σ
C
yP

ρcpκ
√
τw/ρ(
P −
w) = 1 − σ
C∗


y∗
P

κ
∗
P

(8.39)
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where


∗
P ≡ ρcpk1/2

P (
P −
w)
q ′′
w

and

C∗

 ≡ μ

ρc1/4
μ k1/2

P q ′′
w

[
ρcv
∂


∂t
+ ρcpU

∂


∂x
+ ρcpV

∂


∂y
+ q̇

]
P

. (8.40)

In flows with significant effects of buoyancy, Eqs. (8.34)–(8.40) can also be used,
but in that case C∗

U , Eq. (8.32), should include the buoyancy force (here assumed
to act in the x direction) βρgx(
 − 
0), where β is the volumetric expansion
factor and 
0 is the reference temperature. Moreover, for passive scalars without
any internal heat source and with only a mild pressure variation one can assume
that the time rate of change and convective transport of momentum and energy are
similar, allowing the assumption that ψ
 ≈ ψ .

However, in cases where buoyancy plays a dominant role, the question arises
whether, instead of Uk ≡ c1/4

μ k1/2, the velocity and temperature should be scaled
by the buoyancy velocity Uq ≡ (βgqwα2/ν)1/4 (where qw ≡ q ′′

w/(ρcp) denotes
the kinematic heat flux) commonly used for the mean temperature, especially for
thermal convection over horizontal heated surfaces (Adrian et al., 1986; Chung
et al., 1992). Indeed, in Chapter 9, Fig. 9.19 shows that the time-averaged tem-
perature profiles in Rayleigh-Bénard convection, obtained from DNS and unsteady
RANS (in Fig. 9.19 labelled ‘TRANS’) over a wide range of Rayleigh numbers
(105 − 109), collapse onto a single curve in the wall-adjacent region when scaled
with Uq . However, since the velocity averaged over the whole domain is zero, that
scaling makes sense only for the ensemble-averaged value (see §9) when resolv-
ing the ‘wind’ velocity in time and space. Hanjalić and Hrebtov (2016) examined
the scaling of both the velocity and temperature within a single convective roll in
Rayleigh−Bénard and penetrative convection (the experiment of Deardorff et al.,
1969) using three different velocity scales: Uq , Uτ and Uk . The short-time filtered
results (over about a quarter of the roll-over time) from the TRANS computations
using the WIN (low-Re) k − ε − θ2 algebraic flux-stress model (§7.3.2, verified
in Fig. 7.10) showed that the best scaling in the near-wall region in both flow
cases was achieved from using Uk . This is illustrated in Fig. 8.14 for the pene-
trative convection case by the velocity and temperature profiles versus the wall
distance z on several vertical cross-sections through a single convective cell. Sim-
ilar results are obtained for the case of Rayleigh−Bénard convection, where the
temperature and, in particular, the velocity also scale better with Uk than with
Uq .

To provide boundary conditions for the transport equations for turbulence quan-
tities (and to supply the velocity scale, Uk) one follows the usual approach of
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Fig. 8.14 Scaling the ensemble-averaged horizontal (‘wind’) velocity and tem-
perature within a single convective roll in penetrative convection over a heated
wall. (z denotes the vertical distance from the bottom wall, W is the velocity in
the z direction). From Hanjalić and Hrebtov (2016), reprinted by permission from
Springer Nature.

solving the equations over the wall-adjacent grid cells for k and θ2 (with k|w = 0
and θ2|w = 0 for a wall at constant temperature or ∂θ2/∂xn|w = 0 for an adia-
batic wall, or the appropriate value for an imposed wall heat flux) and prescribing
their production and destruction in terms of the SAWF. For the strain-rate pro-
duction in the k-equation, one can simply use Eq. (8.13), but now including the
non-equilibrium functionψ for velocity. However, in real-scale industrial and envi-
ronmental flows at high Ra (and Re), the first grid node in coarse meshes may be
expected to be located quite far from the wall (or the ground in environmental situ-
ations). Then, as argued in §8.1, it is rational to associate the stress at this node with
the local kinetic energy in addition to the wall/ground shear stress. Thus, while Uτ
enters the production through the velocity gradient, for the shear stress one can use
−ux uz ≈ c1/2

μ k, in which case the usual expression, Eq. (8.13), at node P becomes
(with z denoting the vertical direction)
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Pk,P = U 2
τ c1/2
μ k1/2

P

ψκzP

. (8.41)

Likewise, assuming that the wall-normal turbulent heat flux at node P equals
the kinematic wall heat flux, i.e. −θui ≈ qw,i , the body-force production of
k, Gk,P ≡ −βgi (θui )P, could be taken simply as Gk,P = βgi qw,i . However, as
noted above, for the first grid node placed well into the fully turbulent region in the
mixed layer (and thus not necessarily complying with the equilibrium assumption),
it is again more reasonable to relate the flux to the local k and the temperature
variance. An analysis of several LES and DNS data for Rayleigh–Bénard con-
vection (e.g. Peng et al., 2006) suggests that the flux correlation coefficient12,

−θuz/
√
θ2k = c1/2

μ,θ , reaches a value of about 0.3–0.4 at the base of the mixed
layer and remains reasonably constant throughout the layer. Adopting the above,
the buoyant production of k at node P over a horizontal wall can alternatively be

written as Gk,P = βgzc
1/2
μ,θ

√
θ2

Pk P. This expression, however, may not be fully ade-
quate for non-equilibrium situations as it is independent of the wall heat flux. By
analogy with the formulation of the strain-rate production, Eq. (8.41), one can com-
bine the two approximations for the wall heat flux and take the buoyant production
at P as:

Gk,P = βgi
√

qw, i

(
c1/2
μ,θ

√
θ2

Pk P

)1/2

(8.42)

which accounts for the direction of the wall heat flux with respect to the grav-
itation vector and thus should hopefully be applicable to any orientation of the
heated/cooled wall or ground.

The usual way of specifying the dissipation rate εP in the k-equation follows
from the similarity arguments and definition of turbulence scales, with the empiri-
cal coefficient chosen to match the production Pk,P in an equilibrium wall boundary
layer (as in Eq. (8.13) right):

εP = c3/4
μ k3/2

P

κzP

= k3/2
P

clzP

. (8.43)

Here the effects of buoyancy do not appear directly, but are accounted for through
the kinetic energy k P.

The above procedure is also followed in specifying the boundary conditions at
the ground via wall functions for the ε-equation, which is solved over the wall-
adjacent grid cell with the boundary condition at the surface itself: ∂ε/∂z|w = 0
and the pre-specified source terms defined by Eqs. (8.41)–(8.43).

12 Analogous to the local-equilibrium limit for shear stress: −ux uz/k = c1/2
μ ≈ 0.3 (where subscript x denotes

the wall-parallel and z the wall normal direction).
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The above arguments for the k-equation are also used for the scalar variance
equation. The production at node P is modelled by again assuming that −θuz =
c1/2
μ,θ

√
θ2k and using the temperature gradient obtained from Eq. (8.38), resulting in

Pθθ,P = qwc1/2
μ,θ

√
θ2

P

ψ
κ̃∗zP

. (8.44)

Finally, the destruction term is modelled as:

εθθ,P = 2εP
θ2

P

k P

. (8.45)

The performance of the above SAWF in buoyancy-driven flows is illustrated in
Fig. 8.15 by the unsteady RANS (TRANS) simulation of the same penetrative
convection of the mixed layer above a horizontal, heated wall mimicking the exper-
iment of Deardorff et al. (1969). The computations were generated on a coarse grid
of only (10 × 10 × 20) cells. The temperature evolution as well as the vertical tur-
bulent heat flux (shown here for the lapse time t = 7.40 minutes) exhibit very good
agreement with experiments as well as with the fine-grid one-dimensional compu-
tation (1×1×100 cells) with the WIN model shown earlier in Fig. 7.10. Moreover,
the time evolution of the mixed-layer depth (the inversion elevation) defined as the
height of the maximum negative heat flux (right figure) computed with 1D and 3D
approaches using different grids was shown to follow closely the 1/2-power law i.e.
Zinv/H ∝ t1/2 (Fedorovich et al., 2004).

8.5 Blended wall treatment (BWT)

The SAWF scheme, summarized in Fig. 8.13, attempts to take account of turbu-
lent transport through the molecular sublayer but, like most other wall-function
strategies,13 requires that the wall-adjacent grid node should lie in the fully
turbulent region as it employs a high-Reynolds-number model. As already noted in
§8.2, with the steady increase in computer power there is a trend among industrial
users to employ finer meshes. There is thus a high probability that, at least in some
regions of complex flows, the wall-adjacent grid nodes will lie in the ‘buffer zone’
(the region between the viscous sublayer and the fully turbulent region) or even in
the viscous sublayer itself (though still insufficiently close to the wall to satisfy the
grid-density requirements for a WIN scheme). Thus, in such situations neither a
conventional WIN nor a WF approach is strictly applicable.

We consider here an approach that provides approximate boundary conditions
for situations where it is difficult to forecast where the wall-adjacent nodes will lie

13 But not the AWF scheme considered above nor the NWF approach considered later.
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Fig. 8.15 Coarse-grid (10 × 10 × 20) URANS (TRANS) +SAWF computations
of penetrative convection of a mixed layer into a stably stratified fluid (Deardorff
et al., 1969): top left: temperature evolution in time (compare with WIN solu-
tions in Fig. 7.10); top right: vertical heat flux (resolved, modelled and total) at
t = 7.40 min.; bottom: time evolution of the mixed-layer height computed with
different grids; Nz denotes number of vertical nodes. From Hanjalić and Hrebtov
(2016), reprinted by permission from Springer Nature.

(a situation that may commonly arise when using automatic gridding). Essentially
it applies a blending of two estimates of the wall friction (heat flux, etc.), one based
on the laminar flow limit and the other on a turbulent flow estimate. The method
should reduce to one of the above two procedures (WIN or WF) when the wall-
adjacent grid node happens to lie in the region appropriate to each approach. Of

https://doi.org/10.1017/9781108875400.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.010


8.5 Blended wall treatment (BWT) 321

course, in contrast to the WF approach, the BWT requires a WIN model in which
wall-proximity and viscous effects (that would be negligible if the first grid node
were in the fully turbulent region) are included. If the cell-centre lies in this low-
Re region, all the elements in the WIN model will be significant, but the boundary
conditions are provided in the form of wall functions, though also modified for
the viscous/molecular and other (inviscid) wall effects. The quantities for which
these boundary conditions ought to be specified with a BWT depend, as in any WF
approach, on the turbulence model used.

To illustrate the strategy, we consider the wall boundary condition for velocity
which needs to provide the connection between the velocity at the wall-adjacent
grid point P and the wall shear stress. The purely viscous and SWF schemes give
the following expressions for the wall stress:

τ νw = μ(UP/yP) and τ t
w = ρ[κUP/ ln(Ey+

P )]2. (8.46)

Let us explore the proposition that by blending these alternative formulae in some
appropriate way one can obtain the correct value of wall stress irrespective of the
value of y+

P . As a preliminary test of this idea Fig. 8.16 shows the variation of the
wall shear stress versus the location of the wall-adjacent grid point evaluated from
the above expressions for τ νw and for τ t

w using DNS data for a plane channel flow
at Ret = 800 (Tanahashi et al., 2004). The plots are presented in normalized form
for τ+

w ≡ τw/τwDN S versus the normalized wall distance of the wall-nearest grid
point, y+

P . In determining these values the DNS data for UP and the corresponding
wall distance yP are used to evaluate the wall shear stress using the above two
formulae.14

The ideal blended model would always give τ+
w = 1 irrespective of the grid-

node location. Such a result would be achieved if an expression for U+ was used
that fitted perfectly the complete sublayer and logarithmic region.15 However, the
above-listed expressions for τ νw and τ t

w reproduce wall shear stress only over seg-
ments of the flow. As expected, the viscous definition τ νw reproduces the exact
boundary value of τw at the wall and fits the DNS profile for values of y+ < 5;
but it falls off rapidly when moving further away from the wall. The fully turbu-
lent definition τ t

w on the other hand is very unrealistic in the viscous region and
reproduces the proper value of τw only in the fully turbulent logarithmic region,

14 For illustration we consider the standard log-law expressions using the friction velocity Uτ as the characteristic
velocity scale. Of course, for the purpose of deriving a more general compound wall treatment one should use

k1/2
P as the velocity scale and employ the analytical wall functions, AWF or SAWF, instead.

15 A number of expressions are available in the literature for the velocity profile in equilibrium wall boundary
layers, which closely fit the experimental data from the wall to the outer turbulent region (e.g. Reichardt, 1951;
Spalding, 1961; Musker, 1979; Liakopoulos, 1984; Shih et al., 2002). However, none of them accounts for
any non-equilibrium effects. Moreover, all these expressions are empirical, designed to fit only the velocity
(and, in some cases, temperature) profiles and cannot be easily generalized to provide wall functions for other
turbulence variables for which further empirical (curve-fitted) expressions would need to be invented.
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Fig. 8.16 Dependence of wall shear stress in a plane channel flow at Reτ= 800
on the location of the wall-adjacent grid node, evaluated by different blending of
the viscous and turbulent stress using DNS data of Tanahashi et al. (2004). From
Popovac and Hanjalić (2007).

which, in this case, is reasonably recovered for y+ > 30. In the buffer region
(5 < y+ < 30) both expressions give erroneous values for the wall shear stress.
However, if one adopts a simple blending that entails choosing the maximum of
the two:

τw = max(τ νw, τ
t
w) (8.47)

while it will give a large departure (∼ 25%) for y+
P ≈ 12 in the channel flow

considered, it returns only small errors for much larger or much smaller values of
y+

P .
In fact, one can generalize this ‘blending’ idea to any dependent variable for

which wall boundary conditions are needed, provided expressions for the wall limit
and the outer turbulent values are known (or can be provided from, say, standard
or more advanced wall functions). These would take the form ϕP = max(ϕν, ϕt),
where ϕ is the variable in question, and the subscripts ‘ν’ and ‘t’ denote the viscous
(wall-limiting) and fully turbulent values of the variable. Other, indeed better, types
of blending can be chosen than the simple example considered above; for example,

the quadratic mean proposed by Esch and Menter (2003): ϕP =
√
ϕ2
ν + ϕ2

t , or

a more general formulation ϕP = (ϕn
ν + ϕn

t )
1/n . None of these expressions has

any physical basis, but they all give the correct limiting behaviour: they reduce
to the viscous or the fully turbulent limit deep into their respective regions. This
is confirmed in Fig. 8.16, where two further blending strategies are shown. The
quadratic mean produces higher values than the target τ+

w over most of the flow,
leading to significant errors in computing friction and heat transfer. In order to
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achieve a better fit in the buffer region one can combine the viscous and fully
turbulent values by means of a suitably chosen smoothing function in terms of some
local flow quantities. Popovac and Hanjalić (2007) adopted the simple exponential
blending of Kader (1981), which can be organized in a general form as

ϕP = ϕνe−&ϕ + ϕt e
−1/&ϕ (8.48)

where &ϕ is a function of the normalized distance from the wall, y+, and molecular
Prandtl number, Pr.16 Equation (8.48) offers a convenient and simple way to pro-
vide ‘blended’ boundary conditions for all variables of interest. A straightforward
application of this scheme to the wall shear stress gives:

τw = τ νwe−& + τ t
we−1/& = (μe−& + μeff

w ψe−1/&)P
UP

yP

(8.49)

where the subscript P indicates that all variables are evaluated at the wall-adjacent
grid node and μeff

w denotes the ‘wall’ effective viscosity, defined by Eqs. (8.12)
and (8.36). A plot of Eq. (8.49) in Fig. 8.16 shows that it mimics the wall shear
stress better than the other blending options discussed above, although a significant
departure occurs in a narrow region around y+ ≈ 7. Of course, some other blending
could be devised that performed even better throughout the buffer region but at the
expense of simplicity. Moreover, achieving better tuning for a channel flow gives
no guarantee that the method will perform better in non-equilibrium flows.

Figure 8.17 provides a further, perhaps more convincing, application of the
blended wall treatment (BWT) based (for the turbulent limit) on the SAWF
approach. The velocity profiles have been computed from the blended expression:

U+ = y+e−& +
[

1

κψ
ln(Ey+)

]
e−1/&, & = 0.01y+4/(1 + 5y+) (8.50)

for boundary layers over a range of different values of the pressure-gradient
parameter P+ ≡ ν(d P/dx)/ρU 3

τ corresponding to strong adverse and favourable
pressure gradients. The comparison with the experimental data of Nagano et al.
(1998) (for P+ > 0) and Fernholz and Warnack (1998) (for P+ < 0) shows that
Eq. (8.50) successfully reproduces the experimental results in all cases for 0 <
y+ < 60. This result suggests that the BWT approach for the velocity allows the
wall-adjacent grid node to lie anywhere in this region, at least for attached flows.

16 In fact, Kader (1981) proposed a single expression for the temperature profile throughout the whole wall
boundary layer for various Pr:
+ = Pry+e−&
 + [

α ln(y+)+ β(Pr)
]

e−1/&
 , where α = 2.12 and β(Pr) =
(3.85 Pr1/3 − 1.3)2 + 2.12 ln(Pr) are the thermal boundary-layer parameters, and the blending coefficient
&
 is a function of the normalized distance from the wall y+ and the molecular Prandtl number: &
 =
0.01(Pry+)4/(1 + 5Pr3 y+). It is readily seen that by inserting Pr = 1, the above equations reduce to the
expression for the velocity profile U+ = y+e−& + [

ln (Ey+)/κ
]

e−1/& , where & = 0.01y+4/(1 + 5y+).
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Fig. 8.17 Velocity distribution in a boundary layer subjected to adverse (left) and
favourable (right) pressure gradients: a priori test of SAWF-based BWT. From
Popovac and Hanjalić (2007).

Similar validation for flows over a backward-facing step and in a round, imping-
ing jet reported by Popovac and Hanjalić (2007) also suggests that the BWT
strategy provides a reasonable account of wall boundary conditions. With the wall-
adjacent node placed in the buffer region, it achieves results close to those obtained
with a much finer mesh and much superior to those from using standard wall
functions.

As noted earlier, a practical advantage of Kader’s exponential blending is that
it can be applied in the same form to other variables for which wall boundary
conditions are required. The blending can be applied to any turbulence model, but
of course the specific formulation for turbulence properties depends on the model
chosen, i.e. on the dependent variables that are to be obtained in the main flow
region from the solution of turbulence-model equations. As most models solve
the kinetic energy equation (or the normal-stress components), the application of
this blending principle to the kinetic energy production Pk and dissipation rates ε
are considered. The expressions below are given for the BWT approach when the
elliptic relaxation (ζ−f ) eddy-viscosity model is used (for details see Chapter 7) as
the WIN limit (the latter version being adopted when the wall-adjacent grid node
takes a value of y+ < 5).

It is recalled first that computations with a sufficiently fine mesh in the near-
wall region should correctly reproduce both the turbulent stress and the velocity
gradient, which in turn should give a correct profile of Pk . When a coarse mesh
is used, however, neither the turbulent stress nor the velocity gradient is obtained
correctly. In the SWF approach the values of Pk and ε are imposed assuming local-
equilibrium conditions: a uniform shear stress and the velocity gradient obtained
from the standard log-law expression, Eq. (8.13). Once an analytical expression for
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Fig. 8.18 Illustration of the blended wall treatment (BWT): the Stanton num-
ber along the wall behind a backward-facing step computed with a coarse grid,
(y+

P )max = 25, compared with fine-grid integration up to the wall with v2− f and
ζ− f models with (y+

P )max = 1.2. From Popovac and Hanjalić (2007).

the velocity distribution across the near-wall region is available, however, one can
derive an expression for Pk by taking (∂U/∂y) in combination with the near-wall
and fully turbulent expressions for the turbulent stress. This, basically, reduces to
the blending according to Eq. (8.48), where ϕν here is the fine-resolved Pk value
from the WIN model, and ϕt is the coarse-mesh Pk from the SAWF approach:

Pk,P = −uv
∂U

∂y
= cζμ

ζPk2
P

εP

(
∂U

∂y

)2

P

e−& + c3/4
μ k3/2

P

ψPκyP

e−1/&. (8.51)

Note that cζμ = 0.22 and cμ = 0.07.
Likewise, a blending of the expression for ε in the viscous wall limit, εν =

2νk/y2, i.e. Eq. (6.10), with that obtained by assuming a universal fully turbulent
near-wall length scale (as adopted in SWF) leads to

εP = 2νk P

y2
P

e−&ε + c3/4
μ k3/2

P

κyP

e−1/&ε . (8.52)

As noted in §8.3, in connection with Eq. (8.26), because the viscous–turbulent
interface for the dissipation rate is substantially closer to the wall than the edge of
the viscous sublayer, it is advantageous to adopt a modified form of the expression
for the damping parameter, &ε, the form chosen being &ε = 0.01y+4/(1 + y+).

It is recalled that in the usual finite-volume approach it is not the local point
values of Pk and ε, but their averages over the cell, which are effectively needed in
the k budget for the cell containing node P. In general, these averaged values tend
to be less sensitive to the size of the wall-adjacent control volume and the actual
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position of the grid node than the local values. More details and illustrations can
be found in Popovac and Hanjalić (2007).

Figure 8.18 illustrates the potential of the BWT approach by comparing the Stan-
ton number along the wall downstream of a backward-facing step at ReH = 28,000
computed with a relatively coarse grid (with the maximum height of the wall-
adjacent grid node y+

max being 25), with results obtained from integration to the
wall (WIN) using a much finer mesh with y+

max = 1.2. A slight deviation from the
experimental data exhibited by both solutions is possibly a consequence of linear
EVMs being unable to account for the strong streamline curvature. However, what
matters here is that the BWT predictions are in close agreement with the WIN
results.

The most important benefits from using a blended scheme such as BWT come to
prominence when dealing with complex industrial flows. As remarked earlier, with
the ever increasing computing power, industry tends to use finer and finer grids in
its CFD applications, but for the very large Reynolds numbers that commonly arise
it is still neither practicable nor economically justifiable to integrate the equations
up to the wall.

Yet, it is highly probable that in some flow regions the wall-adjacent grid node
will fall within the viscous buffer region where neither the viscous layer nor the
fully turbulent boundary conditions are applicable. Figure 8.19 illustrates such a
case relating to the external aerodynamics of a road vehicle. The figure shows
predictions (obtained with the ζ− f model used with BWT) of the pressure dis-
tribution (in terms of the pressure coefficient CP ≡ 2(P − P∞)/ρU 2∞) on the
central plane around a 1:2.5 scale model of a real automobile. The values of
the wall-adjacent y+

P for two meshes (with 2.85 and 4 million cells), Fig. 8.19a
(upper right), show very strong variations around the vehicle ranging from typ-
ical viscous values of about 5 to fully turbulent values (around 30 for the finer
mesh and up to 60 for the coarser mesh). The predictions with the coarser mesh
(for which almost all the points lie in the fully turbulent region) show, by vir-
tue of the BWT strategy, fair agreement with experiments (but are not included
here). The results with the finer mesh (where most points lie in the buffer zone)
show the predicted CP in very satisfactory agreement with the measurements,
Fig. 8.19b.

A further successful application of the BWT approach to a very complex indus-
trial flow is that through the cooling jacket of an IC engine (Tatschl et al., 2006). In
this case, as in the car body study, current automatic-gridding software leads to a
wide variation of near-wall values of y+ or y∗. Although detailed experimental data
were not available for this case, the mean temperature rise of the water in passing
through the cooling passages agreed well with experiment when the model used
for the previous example was applied.
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Fig. 8.19 Computation of flow around a 1:2.5 scale model of a BMW automobile
with the BWT. (a) Vehicle examined (upper left); distribution of y+ for the wall-
adjacent grid nodes for two grids, 2.85 × 106 and 4 × 106 cells (upper right). (b)
Predicted surface pressure distribution around the centre-plane obtained with the
fine grid compared with measurements. From Basara et al. (2007).

8.6 Numerical wall functions (NWFs)

To conclude the chapter a further quite different wall-function approach is pre-
sented which can be applied irrespective of the variation of y∗ at the wall-adjacent
nodes. It is especially suited to flows where the structure of near-wall turbulence is
too far from its equilibrium state for the types of wall function described so far to
provide a reliable basis for capturing the actual flow behaviour. Then it may seem
that the only viable route is to use the WIN approach with a low-Reynolds number
model (whether with a stress-transport closure or some simpler scheme) integrated
right up to the wall – with all the associated penalties. This section explains how,
for many situations – probably the great majority – such a computationally costly
treatment can be avoided. The strategy is to adopt what have become known as
numerical wall functions (Gant, 2002; Craft et al., 2004a).

The essential idea is illustrated in Fig. 8.20. Within the main grid one adopts
a mesh spacing suitable for resolving the gradients of dependent variables and
source terms applicable to the problem in question except that the wall-adjacent
control volumes would usually be sufficiently large that they would cover all of the
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region where viscous effects are significant.17 However, the near-wall cell for node
P is itself divided into numerous ‘slices’ or sub-grid control volumes each with a
sub-node at the centre. Depending on the low-Re turbulence model to be adopted
and the flow under study, one can expect to employ between 10 and 35 sub-grid
control volumes. The numerical wall-function approach consists of exchanging
information between the main and sub-grids as described below.

We start at the point where an iteration on the main grid has just been com-
pleted (including node P and all such wall-adjacent nodes), returning provisional
(unconverged) values for all the dependent variables. Attention then shifts to the
sub-grid. A low-Re model must be used for this sub-region, of course, even though
a high-Re form would ordinarily be used for the main grid. For the cells of the
sub-grid (covering the control volume for node P, say) one normally takes the pres-
sure gradient in the direction parallel to the wall as uniform over all the sub-grid,
equal to that obtained from the main-grid iteration, i.e. (Pe − Pw)/�x . Where
the surface is highly curved, however, one may alternatively take account of the
variation of static pressure across the primary cell by evaluating the pressure var-
iation assuming radial equilibrium. Since the pressure gradient is thus known, the
variation of velocity normal to the wall, V , may be obtained from the continu-
ity equation (using sub-grid velocity components in directions parallel to the wall
from the previous iteration). Starting from the wall, where the normal velocity will
be zero for an impermeable surface, one may then work cell by cell out to the top

Boundary condition at n
interpolated from main 
grid nodes N and P

Main grid
scalar nodes

Sub-grid defined
within near-wall
main grid cell

Sub-grid nodes

W P
w e

E

τwall

N
n

e and w values interpolated from
main grid used to calculate
sub-grid pressure gradient

Fig. 8.20 Main and sub-grids used for the numerical wall-function approach.

17 This is not a requirement, however. If automatic gridding creates near-wall primary-grid cells within the low-
Re sublayer, the approach is still equally applicable provided the transport equations used in the main part of
the flow contain appropriate low-Re and other wall-proximity terms.
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edge of the sub-grid column. This approach is similar to that of a boundary-layer
solver though, in the present case, it may be applied, quite generally, to separating
or reattaching flows. However, the normal velocity is also obtained independently
on the main grid by solving the wall-normal momentum equation and, from the
values thus obtained at P and N, one can obtain the value at n by interpolation.
Because these two routes to obtaining the wall-normal velocity at n are not identi-
cal, small differences will generally exist between the values obtained. The practice
advocated by Craft et al. (2004a) is to adopt the value returned by the main-grid
computation and to scale linearly the normal velocities at all the internal sub-grid
nodes in correction. The sub-grid momentum equation(s) can then be solved for
the flow component(s) parallel to the wall and for any dependent variables of the
turbulence and mean-scalar fields. Coding of the sub-grid transport equations is
straightforward though Craft et al. (2004a) advise that stability is enhanced by
handling convection in the non-conservative form: ρU (∂φ/∂x) + ρV (∂φ/∂y),
where φ denotes any of the dependent variables, U, W, k, ε, etc.

Having obtained profiles of the dependent variables across the sub-grid one can
then work out the mean turbulence-energy dissipation and generation rates (or
stress-component generation and dissipation rates, if a second-moment closure is
employed up to the wall) across this region and the corresponding source and sink
terms in the equations for other dependent variables. Such vital information as the
wall shear stress and heat flux is also determined from normal velocity and temper-
ature gradients at the near-wall sub-cell having completed the sub-grid iteration.
Then, on switching attention to the main grid, one employs all the above quantities
derived from the sub-grid computation as source terms in the various budget equa-
tions for control volume P. One proceeds in this way, successively switching from
the main grid to the sub-grid, until the convergence criteria for the main grid are
satisfied. The above account may seem an awfully long-winded way of carrying out
the computation. However, as will shortly be seen, uncoupling the handling of the
low-Re region from the main grid and treating the former in a somewhat simplified
way enables the iteration to proceed to convergence far more rapidly, leading to a
major reduction in computer time.

As an application of this approach, the case of the normal impingement of an
axisymmetric jet onto a heated plane surface is considered. As discussed in §7.3.4
in connection with Fig. 7.14, this is a flow where assuming a linear eddy-viscosity
stress–strain law leads to highly erroneous results. However, Fig. 7.14 has shown
that a cubic eddy-viscosity model returns a behaviour in close accord with exper-
iment when applied within a low Reynolds number model across the whole flow.
First, Fig. 8.21 shows the variation of the Nusselt number along the heated plate
from the stagnation point radially outwards. The complete low-Reynolds number
cubic EVM captures reasonably well the double peak in Nusselt number shown
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Fig. 8.21 Variation in Nusselt number with radius for an axisymmetric impinging
jet. Jet discharge 4 diameters above plate, Re = 70,000 (Craft et al., 2004a). (a)
Heavy solid line, low-Re cubic EVM; other lines, log-law wall function with high-
Re cubic EVM; symbols, experiment (Baughn et al., 1991). (b) As for (a) except
numerical WFs replace log-law WFs. �x denotes the distance from the wall to
the near-wall node on the primary grid.

by the experimental data of Baughn et al. (1991) albeit at a level about 12%
higher than the measurements. If, however, the cubic EVM is used only in the
fully turbulent region and is matched to standard log-law wall functions to bridge
the sublayer a quite different behaviour is returned, Fig. 8.21a. Moreover, it is seen
that the actual distribution of Nusselt number is quite sensitive to the thickness
of the region over which the wall function is applied.18 This behaviour may be
contrasted with that obtained when, instead, the numerical wall functions (employ-
ing the cubic EVM) are applied to the wall-adjacent cells with the cubic EVM
in the fully turbulent region, Fig. 8.21b. In this case, the computed Nusselt num-
ber agrees closely with that obtained with the complete low-Re cubic EVM and,
as would be expected, is insensitive to the thickness of the region over which the
NWF is applied. Figure 8.22 shows the associated temperature profiles across the
radial wall jet at two radial positions downstream from the impingement point.
This brings out both how different the temperature profile near the stagnation point
is from the standard log-law result and how closely the profiles from the numeri-
cal wall function match those of the complete low-Reynolds number computation.
Indeed, the only major difference between the two approaches is seen in Table 8.1.
The CPU time per iteration with numerical wall functions is 20% less than for
the complete low-Re treatment, while more than six times as many iterations
were needed to achieve convergence with the low-Re approach. Thus, overall, the
numerical wall-function strategy requires only about 12% of the computer budget
needed for the full low-Re cubic EVM.

18 In this computation the independent variables were x and r , where x is the direction of jet discharge normal
to the wall. The symbol �x on the figure thus indicates the dimensionless thickness of the region (in terms of
wall units) where the wall function is applied.
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Table 8.1 Comparative performance of alternative wall treatments for
axisymmetric jet impingement, from Craft et al. (2004b)

Wall treatment Log-law WFs Numerical WFs Low-Re cubic EVM

Number of nodes 70 × 45 70 × 45(+40) 70 × 90
CPU per iteration(s) 0.158 0.260 0.324
Number of iterations 1426 1380 9116
Total CPU (s) 226 359 2955
Relative CPU time 1 1.6 13.1

Fig. 8.22 Dimensionless temperature profiles in the impinging jet flow at two
radial positions: —— cubic EVM across sub-grid matched to: —◦—◦— cubic
EVM on main grid; - - - cubic EVM across whole flow; ·-·-· cubic EVM matched
to SWF; · · · · · · standard log-law and sublayer profiles.

The approach has also been successfully applied to the case of flow induced in
the vicinity of a spinning disc (Craft et al., 2004a). This is a flow where it has
long been known that WIN eddy-viscosity schemes can successfully capture the
primary (circumferential) and secondary (radial) flow. The challenge, if one wishes
to economize on computer time through the use of wall functions, is associated
with the strong velocity skewing that occurs across the sublayer adjacent to the
disc. Wall functions that presume that the resultant wall shear stress at the disc
points in the same direction as the mean velocity at the last main-grid node (i.e.
node P in Fig. 8.20) will be seriously in error. However, because the NWF solves
(on the secondary grid) the velocity and turbulent flow equations down to the wall,
the correct behaviour is captured. While for that case the NWF required twice
the computer time of the standard log-law treatment, more than a 90% saving in
computer time was achieved from using the NWF rather than the complete low-Re
treatment!
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9

RANS modelling of unsteady flows (URANS)

9.1 Feasibility of URANS for inherently unsteady turbulent flows

The common perception of unsteady RANS (URANS) among the CFD commu-
nity is the straightforward application of a RANS model in time-dependent mode
(Eqs. (2.13, 2.14 and 2.16)) to solve flows that are unsteady in the mean. In most
cases the externally imposed time scale of the mean-flow unsteadiness is much
greater than the characteristic turbulence time scale, thus ensuring a sufficient
separation of scales for the time-averaged equations still to be valid. As already
introduced in §2.2.1, in such cases the time-averaging defined by Eqs. (2.5)–(2.7)
implies the integration over a finite time period which should be much shorter than
the time scale of the imposed mean-flow unsteadiness, but still sufficiently long
to capture the turbulence statistics embedded in the common (stochastic) Reynolds
turbulent stress. Under such conditions, the URANS computations can be expected
to return the main flow features; but the credibility of the results will depend on the
nature and dynamics of the flow unsteadiness and on the RANS turbulence model
that is employed.

However, a controversy still surrounds the question of whether the URANS strat-
egy can legitimately be applied to flows which are commonly regarded as steady (or
slowly varying) in the mean, but yet which are inherently unstable and, in important
respects, unsteady. The vortex shedding behind bluff bodies is the most common
such example, though, in fact, following separation, most shear flows exhibit some
overall unsteadiness. In some flows, however, especially those dominated by body
forces (e.g. those over curved surfaces, buoyancy-driven flows heated from below
or subjected to system rotation or electromagnetic forces), the flow remains steady
in the bulk but the internal instabilities generate unsteady motion in the form of
closed circulating structures. These features are found not only in turbulent flows
but also frequently in the laminar regime (e.g. Taylor–Görtler vortices, the already
noted von Karman vortex street or Bénard cells/rolls) and are regarded by some
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as a mode of mean motion. Some of these flows can still be averaged over a time
period much larger than the time scale of the periodic motion to provide an integral,
statistically steady field, which may have some practical relevance (e.g. in provid-
ing a reasonable estimate of total drag and heat transfer). However, as noted in
§2.2.1, in some flows such as those driven solely by thermal or concentration buoy-
ancy (Rayleigh–Bénard and penetrative convection into a stably stratified medium)
where the fluid motion consists only of large recirculating structures without exter-
nal flow, the long-time averaging makes no sense as the mean velocity is zero over
the whole domain.

In turbulent flows, however, the large periodic structures are turbulent, whether
the turbulence is generated by internal shear or by body forces within the struc-
tures, or entrained from the underlying surrounding stochastic turbulence field. In
fact, in most complex flows the turbulence can be regarded as comprising coher-
ent (organized) and incoherent (phase-random, broadband, stochastic) motions.
According to Hussain (1983), the coherent structures can be defined as ‘a con-
nected, large-scale turbulent fluid mass with a phase-correlated vorticity over its
spatial extent’. As such, the coherent vortical structures can indeed be regarded
as the flow itself; but that does not necessarily exclude them from being treated
by a turbulence model applied in URANS mode. In most cases the large coher-
ent structures are three-dimensional, quasi-deterministic and periodic (though not
necessarily regular), and act as the main carrier of momentum and heat, whereas
the stochastic turbulence often acts almost as a passive scalar. In other words, the
resolved stress and scalar flux associated with these coherent structures, if pres-
ent (the coherent Reynolds stress/flux), usually make a much larger contribution
to the total second-moment values than the stochastic constituents, ui u j and θui ,
at least in separated and body-force driven flows remote from a solid wall. Thus,
the solution of the usual RANS equations in a steady mode (i.e. without time and
space resolution of the large-scale structures) would require incorporating some
additional turbulence model for the large-scale coherent contribution to the stress
and scalar-flux field in addition to the usual modelling of the stochastic correla-
tions. Despite some early ideas for additional models of this type, the provision
of such models did not appear feasible as, unlike stochastic turbulence, large-scale
coherent structures usually depend on the flow configuration and thus differ from
one flow type to another. A more promising approach for treating turbulent flows
containing large organized structures (even if the flow is stationary in the mean) is
to apply the URANS approach, i.e. to solve the RANS equations in time and 3D
space and resolve the large structures in a manner akin to large eddy simulations
(LES) to account for their contribution to the total stress and scalar flux. However,
such an approach has limitations subject to the nature and properties of the organ-
ized structures. In that respect, a note of caution is warranted here. In turbulent
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flows, coherent motion at scales considerably smaller than the local characteristic
flow length scale are also found in many flows, especially wall-attached flows (e.g.
hairpins vortices, vortical pockets or streaks), which Hussain (1983) termed coher-
ent substructures. Unlike the large-scale coherent motion, resolving these coherent
substructures is beyond the reach of the common URANS approach; such struc-
tures can be satisfactorily resolved only by the proper scale-resolving methods,
such as LES or DNS.

As the RANS strategy is likely to remain the mainstay of industrial CFD (e.g.
Slotnick et al., 2014), either on its own or in combination with LES (as covered in
Chapter 10), further in-depth (re)assessments of advanced RANS models and their
limitations or potential when used in URANS mode is warranted. This is especially
the case when targeting complex engineering and environmental flows at high Re or
Ra for which well-resolved large eddy simulations are not obtainable or, at least,
not practicable, and where one is thus faced with a choice between a URANS
computation, a coarse LES or a hybrid RANS/LES approach using an affordable
(usually a RANS-type) mesh. These will be the main themes of the present chapter.

In the next section we discuss first the mathematical rationale of applying the
Reynolds-averaging concept to unsteady turbulent flows in general, and then focus
on the URANS application to flows dominated by large organized structures where
the approach seems broadly feasible, though with some snares and limitations.

9.2 Mathematical formalism

9.2.1 General remarks

We note first that Osborne Reynolds considered neither unsteady nor three-
dimensional flows but, curiously enough, in his original time-averaged Navier–
Stokes equation (Reynolds, 1895) he retained the time derivative of the mean
velocity and all (three-dimensional) velocity and stress components, perhaps
subconsciously allowing for the extension of his concept to more general non-
stationary turbulent flows.

Let us consider again the common Reynolds time averaging (see §2.2.1) by
redefining the Reynolds decomposition, Eq. (2.4), to handle unsteady flows. For
this purpose, as illustrated in Fig. 9.1, we replace the long-term averaged variable
�̄(xi ) by �̃(xi , t), the latter now itself time-dependent, representing the same vari-
able but averaged over a finite time period, τ , much shorter that the time scale of the
unsteady mean flow (if non-stationary) and also shorter than that of the large-scale
coherent structures if present, i.e.

�̂ = �̃+ ϕ, where �̃(xi , t) = 1

τ

t+τ/2∫
t−τ/2

�̂(xi , t)dt. (9.1)
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Fig. 9.1 A sketch of a typical time record of the instantaneous and locally time-
averaged velocity in a flow with organized (quasi-periodic) large-scale structures
evaluated using Eq. (9.1).

The implications of using this approach are illustrated by considering the
momentum equation. Inserting the instantaneous velocity decomposed as in
Eq. (9.1) into the instantaneous momentum Eq. (2.2) and averaging over the same
time period τ (assuming that the averaging operator commutes with time and space
derivatives) gives:

∂Ũi

∂t
+ ∂(Ũi Ũ j )

∂x j
=
∑

n

Fn
i − 1

ρ

∂ P̃

∂xi
+ ∂

∂x j

[
ν
∂

∂x j

(
∂Ũi

∂x j
+ ∂Ũ j

∂xi

)]

− ∂

∂x j

(
˜̃UiŨ j − Ũi Ũ j + ˜̃Ui u j + ˜̃U j ui + ũi u j

)
. (9.2)

Compared with the usual Reynolds momentum equation (Eq. (2.14)), Eq. (9.2)
contains, in addition to the stochastic Reynolds stress, ũi u j , four new non-linear
terms representing additional constituents of the stress tensor. The first two terms
˜̃UiŨ j − Ũi Ũ j

1 originate from the large-scale coherent-structures’ mutual interac-

tions, whereas the next two terms, ˜̃Ui u j + ˜̃U j ui are the mixed (or cross) stresses
resulting from interactions of the large-scale coherent and small-scale incoherent

(stochastic) motions. The first and second terms, ˜̃UiŨ j and Ũi Ũ j , can in prin-
ciple be evaluated from the time-resolved solution of Eq. (9.2) (a posteriori, or
in the course of solution using values at earlier time instants). However, since in
URANS the stochastic motion is not resolved (and is thus inaccessible), to close
and solve Eq. (9.2) the other terms must be provided from separate turbulence
models or some other approximations.2 Such a task is neither feasible nor practical

1 In LES, this term is known as the Leonard stress (see §10.2.1).
2 For solving steady (long-term-averaged) equations for a flow with strong internal unsteadiness, the first two

terms also need to be approximated by a separate model.
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as it involves a number of uncertainties. Unlike small-scale, stochastic turbulent
motions that follow some general pattern in most turbulent flows and obey certain
similarity laws (and are thus representable by a relatively general statistical turbu-
lence model following the usual RANS approach), the large-scale structures retain
memories of their origin and an awareness of their surroundings. They thus differ
in form, pattern and intensity from one flow to another. Moreover, all these correla-
tions will depend on the time-integration interval, τ , in the definition of Ũi , whose
choice is difficult to identify a priori on rational physical grounds.

9.2.2 Triple decomposition

For flows exhibiting distinct large-scale organized structures that are repetitive, a
more appropriate approach is the triple decomposition of the instantaneous motion,
which explicitly accounts for the periodic flow component:

Ûi = U i︸︷︷︸
mean

+ uc
i︸︷︷︸

periodic

+ us
i︸︷︷︸

stochastic

= Ũi︸︷︷︸
phase−averaged

+ us
i︸︷︷︸

stochastic

. (9.3)

The periodic component (relative to the time mean) is here denoted by uc, the
superscript c used to indicate its coherent character, while the stochastic fluctua-
tions (relative to the periodic motion) are denoted by us . As indicated in Eq. (9.3),
the sum of the first two terms, Ũi = U i + uc

i , constitutes the phase-averaged
motion, defined by Eq. (2.8)3 and illustrated in Fig. 2.2 (right). (Note that the phase-
averaged velocity Ũi is different from the local short time-averaged Ũi defined
by Eq. 9.1).

Substituting Eq. (9.3) into Eq. (2.2) and performing first the phase averaging
and then the time averaging, Hussain (1983) derived separate equations for each of
the three components, which in principle could serve for solving the time-averaged
momentum equation for flows that are stationary in the mean but contain both
periodic coherent structures and stochastic turbulence. However, here again we are
confronted with the fact that such a set of equations contains a number of self- and
cross-correlations involving all three components from Eq. (9.3). All these corre-
lations are unknown, and to close and solve the equations the correlations must be
approximated in terms of the available (solved) variables, as in RANS turbulence
models, for the stochastic stress. As already noted in §9.1, such a route is not tena-
ble, and the concept of triple decomposition does not really assist in the statistical
approach to solving unsteady turbulent flows. However, triple decomposition can
be useful in the analysis of turbulence and, as will be shown below, for gaining

3 Valid strictly for a regular periodic flow; for general irregular periodicity, ensemble averaging at a particular
phase of the structure is the more appropriate, see next section, §9.3.
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insight into the capabilities and limitations of conventional RANS when applied to
solving inherently unsteady flows.

Hence, we are left at present with the only viable option: to follow the stand-
ard Reynolds-averaging approach, but with the need to ensure the satisfactory
resolution of large-scale coherent structures to provide the resolved (coherent)
contribution to the stress and scalar flux. In practice, the remaining unknown cor-
relations, especially the mixed correlations, are then presumed negligible on the
grounds of large-scale separation (and thus a lack of correlation) between the
coherent and stochastic motion.

Thus, when one wishes or needs to extract what amounts to the effective turbu-
lent second-moments of any flow variables � and ! from a URANS computation,
one follows the above route in which, as in Eq. (9.3), the instantaneous fluid motion
is decomposed into its (long-term-averaged) time mean, a coherent (deterministic)
motion and the incoherent (stochastic) turbulence:

�̂(xi , t) = �̄(xi )+ϕc(xi , t)+ϕs(xi , t); !̂(xi , t) = !̄(xi )+ψc(xi , t)+ψ s(xi , t).
(9.4)

Performing a long-term averaging of their product at a point in space gives:

�̂!̂ = �̄!̄ + ϕcψc + ϕcψ s + ϕsψc + ϕsψ s . (9.5)

By assuming that the deterministic structures and the incoherent turbulence are not
directly interacting (ϕcψ s = ϕsψc = 0), the effective turbulent second-moments
are obtained as the sum of the deterministic (resolved, ‘apparent’) stress/flux and
the modelled turbulence:

�̂!̂ − �̄!̄ = ϕcψc + ϕsψ s . (9.6)

In the next section, the justification for such an assumption is examined by way
of an a posteriori scrutiny of flow over an infinite round cylinder, which may be
regarded as a paradigm of separated flows over bluff bodies.

9.3 The role of the URANS model: EVM versus RSM in flow over a cylinder

The challenges and uncertainties discussed above have nurtured a widespread view
that conventional RANS models are incapable of predicting accurately turbulent
flows dominated by inherent unsteadiness, especially those with significant regions
of separation. Besides the conceptual inadequacy of the Reynolds time-averaging
for treating internally unsteady flows, this negative perception has been reinforced
by unsatisfactory outcomes in using linear eddy-viscosity models (LEVM). How-
ever, ample evidence exists that higher order models – especially those capable
of reproducing reasonably well the stress anisotropy and phase shift between
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the stress and rate-of-strain eigenvectors when run in unsteady mode (URANS)
– can perform satisfactorily, at least for practical purposes, even in challenging
unsteady separating flows. This has been demonstrated for both generic as well
as more complex flows, e.g. a periodic synthetic jet (Carpy and Manceau, 2006),
a backward-facing step (Fadai-Ghotbi et al., 2008), a triangular cylinder (Johans-
son et al., 1993; Durbin, 1995) and flow over tube bundles (Benhamadouche and
Laurence, 2003) to name but a few. Moreover, URANS computations with stand-
ard RANS models are widely used in solving complex flows in industrial practice.
However, the open literature generally lacks any insightful analysis of the limita-
tions of such an approach and their origin, and equally any explanation of why only
some URANS models perform successfully in such flows.

As will be demonstrated in the following sections, for real-scale problems
where only relatively coarse meshes are available (whether for speed, economy
or resource limitations), second-moment (Reynolds-stress) closures and ration-
ally simplified versions thereof can offer sufficient sensitivity and receptivity
to inherent (absolute and convective) instabilities to capture the most salient
unsteady features. These include laminar-to-turbulent transition induced by sep-
aration and/or body force, in flows with strong internal forcing. Capturing such
flows is commonly regarded as inaccessible to RANS.

9.3.1 Flow modulation

In order to unravel some of the intricacies of applying the URANS strategy to sep-
arated flows, Palkin et al. (2016) assessed the performance of two wall-integration
(WIN) RANS closure levels: the linear elliptic-relaxation eddy-viscosity ζ− f
model (EVM), (§7.4.4), and the second-moment HJ model (RSM §6.4.1), in a
canonical, zero-turbulence flow normal to an infinite cylinder, with reference to
their LES data and the available DNS and experiments for Re = 3.9 × 103 and
1.4 × 105. Both the Reynolds numbers fall within the sub-critical regime with lam-
inar separation. A particular challenge for URANS (and a sensitive performance
indicator) is the well-known low-frequency flow modulation, detected experimen-
tally and by DNS and LES in flows separating from bluff bodies, but also in
many other periodic flows, such as in internal combustion engines. The modula-
tion, repetitive at irregular time intervals, thus with its own time scale, and with a
varying amplitude, has been detected not only in the detailed dynamics of the flow
(separation location, the size and shape of the recirculation zone), but also in its
integral parameters. The latter is illustrated in Fig. 9.2 by the time records of the
drag (CD) and lift (CL ) coefficients behind a cylinder, obtained from a posteriori
processing of the LES results. Palkin et al. found that while both models satis-
factorily predict the dominant frequency of vortex shedding (the Strouhal number,
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Fig. 9.2 Time records of the drag (CD) and lift (CL) coefficients on an infinite
cylinder in a sub-critical cross-flow at Re = 1.4 × 105 from LES, both revealing
low-frequency modulations. From Palkin et al. (2016). Reprinted by permission
from Springer Nature.

Fig. 9.3 Left: Portions of the time record of the drag (CD) and lift (CL) coeffi-
cients from LES and URANS (RSM and EVM) at Re = 1.4 × 105. Right: power
spectra of flow-normal velocity at x/D = 0.71, y/D = 0.66. From Palkin et al.
(2016). Reprinted by permission from Springer Nature.

Sr = 0.217), the low-frequency modulations are reproduced only by the RSM,
Fig. 9.3 (left), which also predicts the power spectrum in much closer agreement
with the LES than achieved with the EVM, Fig. 9.3 (right).

9.3.2 Modelled, resolved and mixed second-moments: a posteriori evaluation
from LES

We consider again the general momentum equation for unsteady turbulent flows,
Eq. (9.2), derived by implementing the triple decomposition of the instantaneous
velocity, Eq. (9.3), but now for the conditional phase-average velocity Ũi defined
as the ensemble average at a particular phase of the structure:
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Ũ (xi , t) = lim
N→∞

1

N

N∑
n=1

U (xi , t + tn). (9.7)

Here t is the time of the reference phase and tn is the instant of occurrence of a
characteristic repeatable ensemble pattern or event. (In a regular, periodic flow,
tn = nτp, τp being the time period, and Eq. (9.7) then reduces to the strictly
periodic phase averaging, defined by Eq. (2.8).)

With a focus on the stress term, Eq. (9.2) is recast as:

DŨi

Dt
= · · · − ∂

∂x j

⎛⎜⎝˜̃UiŨ j − Ũi Ũ j︸ ︷︷ ︸
Li j

+ ˜̃U i us
j + ˜̃U j us

i︸ ︷︷ ︸
Ci j

+ũs
i us

j︸︷︷︸
Ri j

⎞⎟⎠ (9.8)

where, by analogy with LES practice, the five constituents of the stress tensor are
grouped into the three terms labelled the Leonard stress, Li j , the cross (or mixed)
stress, Ci j , and the stochastic Reynolds stress Ri j .

Replacing the phase-average velocity by the sum of its components,
Ũi = Ui + uc

i , and omitting the correlations involving the mean velocity U i , the
terms Li j and Ci j can be recast in terms of the periodic (coherent) and stochastic
velocity, i.e.

Li j = ˜̃UiŨ j − Ũi Ũ j = ũc
i uc

j − uc
i uc

j ; Ci j = ˜̃U i us
j + ˜̃U j us

i = ũc
i us

j − ũs
i uc

j . (9.9)

In the usual URANS approach it is presumed that Li j = Ci j = 0 and Eq. (9.8)
is closed by a RANS model for Ri j and solved for the time-dependent Ũi . Sub-
ject to sensitivity of the applied RANS model to flow instabilities, the solution in
unsteady mode may be expected to resolve the large-scale coherent structures and
thus to generate itself the coherent stress. It is this resolved contribution which, in
principle, justifies the application of 3D URANS in complex flows irrespective of
the true nature (or interpretation) of the distinct (quasi-)deterministic large-scale
motion, whether considered as a mode of mean motion or as coherent turbulent
structures. However, the trustworthiness of the solutions will depend, in addition
to the choice of numerical scheme, greatly on the model for Ri j . As will be shown
below, in the flow over a cylinder, the appropriate ratio of the resolved and mod-
elled stresses is particularly important for correctly reproducing via URANS the
initial turbulence levels in the shear layer right after the laminar separation.

To provide some verification of the above common URANS practice, Palkin
et al. (2016) made a quantitative evaluation of the magnitude of the unaccounted
terms compared with the total Reynolds stresses in the above flow over a cylinder
using the well-resolved LES data; what matters in the end are the time-averaged
values. The ‘total’ (RANS) Reynolds-stress tensor can now be written as:
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UiU j − Ui U j = uc
i uc

j +
(

uc
i us

j + us
i uc

j

)
+ us

i us
j (9.10)

where, as noted above, the first term on the right-hand side comes from the resolved
URANS solution, while the last term is provided by the model. The mixed terms,
intractable using a RANS approach, are disregarded in the literature, considered
negligible due to scale separation, with little or no discussion of their importance
or relevance.

The a posteriori processing of the LES data was carried out from conditional
averaging of the LES signal by adopting a well-defined characteristic periodic state
when the lift force (or the lift coefficient CL ) is minimum or zero, though any other
identifiable state or event could have been used. Note, however, that because of
flow modulation, the local minimum and maximum values of CL vary from phase
to phase. Also, the time elapse between periods is not constant, though the variation
is only minor.

Figure 9.4 compares the coherent, stochastic and cross-correlations ũc
i uc

j , ũs
i us

j

and ũc
i us

j normalized with the inflow velocity U∞ for two Reynolds numbers.
The coherent and stochastic parts are extracted from LES data using conditional
averaging based on the trigger value of the lift coefficient, CL , and then the cross-
correlations are computed. The modelled sub-grid-scale stresses are not accounted
for in ũs

i us
j as they are negligible for Re = 3.9 × 103 and also not significant for

Re = 1.4 × 105.
As shown in Fig. 9.4, the non-dimensional correlations ũc

i uc
j for the two Reyn-

olds numbers have very similar amplitudes and spatial distributions. In contrast, the
ũs

i us
j stress is considerably higher at high Re with the peak values moving closer

to the cylinder as the recirculation bubble shrinks. Very similar non-dimensional
coherent and stochastic stresses are recovered from the experimental data of
Cantwell and Coles (1983).

Interestingly, the cross-term, ũc
i us

j , although significantly smaller than the sto-

chastic stress, ũs
i us

j , reaches up to 30% of its (stochastic) values at some locations
for the lower Reynolds number. However, for the case at higher Re, the ratio of
the peak value of ũc

i us
j/ũ

s
i us

j is around 5%, thus indicating a progressive decrease
with increase in Re, arguably justifying the neglect of the mixed correlations
for high-Reynolds-number flows. The percentage would be even smaller at high
Re if the stochastic fluctuations appearing in the denominator had included the
sub-grid-scale contribution.

The above LES-like scrutiny of the stress constituents provides at least some
justification for the application of the standard URANS approach with its com-
monly applied assumptions not only for computing high-Reynolds-number vortex
shedding over bluff bodies, but also in separating flows and other cases dominated
by quasi-deterministic, periodic structures. As shown, the coherent correlations,
resolved by URANS, are of the same order of magnitude as the stochastic stress
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Fig. 9.4 Coherent, stochastic and mixed correlations normalized with the incom-
ing velocity U∞ calculated from LES averaged at a constant phase corresponding
to the minimum lift force. Left: Re=3.9×103, right: Re=1.4×105. From Palkin
et al. (2016). Reprinted by permission from Springer Nature.

provided by a RANS turbulence model. On the other hand, the mixed (cross) corre-
lations, while non-negligible at low Re, steadily diminish relative to the stochastic
ones with increasing Reynolds number and, on the whole, their omission does
not undermine the URANS concept or its applicability to high-Re engineering
and environmental flows. However, as shown below, the predicted flow dynam-
ics may not accurately capture reality if the applied RANS model is too dissipative
or otherwise inadequate.

9.3.3 Mean and dynamic flow properties

In flows with strong inherent instabilities, most RANS models respond to flow
destabilization and reproduce unsteadiness when run in a 3D unsteady mode with
a sufficiently fine computational grid. The resulting velocity field is determined
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by the total stress which, in addition to the stochastic component provided by
the RANS model, also includes the contribution from the resolved large-scale
structures, in the spirit of LES. However, in contrast to LES where, for a suffi-
ciently fine numerical grid, the model of the fine sub-grid-scale stress becomes
virtually uninfluential, with a URANS treatment the stochastic model is always
important. Its role is not only to provide realistic stochastic (Reynolds) stresses,
but also to ensure sufficient sensitivity to instabilities to enable the initiation and
development of realistic large-scale coherent structures and, thus, the associated
coherent (resolved) stress. Second-moment-closure models, because they account
naturally for an anisotropic stress field and its non-coincidence in time with the
strain rate, are generally more sensitive and receptive to internal instabilities and
more successful in reproducing such phenomena, as shown in the URANS results
considered below.

Palkin et al. (2016) reported a detailed comparison of mean and dynamic param-
eters obtained from URANS computations employing both a representative RSM
and EVM, and from their own LES (as well as with other DNS, LES and experi-
mental results from the literature). All computations were performed for a domain
of 25D × 20D× (2–4)D with 13.4 × 106 cells employed for the LES over a span
width of 2D, and two coarser, typical WIN RANS grids with 3 × 106 (for 3D) and
0.94 × 106 cells (for 4D) for the RSM and EVM. Without going into fine-scale
detail, we focus on certain key features which illustrate the URANS capabilities in
vortex-shedding flows and the differences in performance between the two RANS
modelling levels.

First, it is noted that both models capture the flow unsteadiness for both Reyn-
olds numbers and accurately reproduce the shedding frequency. But, as noted in
Fig. 9.3, only the RSM captures the low-frequency modulations. At high Reynolds
numbers, the RSM is markedly superior to the EVM showing for all significant
flow parameters good agreement with the LES and experimental data. A general
impression of the mean velocity field at the higher Re is given in Fig. 9.5, show-
ing the streamwise and cross-flow velocity profiles at different locations within
the wake recirculation zone. Note that the RSM results for both the fine and
the coarse computational grids are quite similar, both being in closer agreement
with the reference LES and experimental data than the EVM results. Some differ-
ence between the fine and coarse RSMs (the latter labelled RSMc) appears in the
V-velocity profiles at x/D = 1.3 due to a too short bubble length returned by the
RSMc.

The failure of the EVM in this case and, indeed, in similar flows can be attributed
to an excessive eddy viscosity, which in turn can be traced to the inaccurate mod-
elling of the energy exchange between the modelled (stochastic) and resolved
motion. This is represented by the production of the modelled turbulent kinetic
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Fig. 9.5 Mean streamwise and cross-flow velocity profiles for Re = 1.4 × 105

at different locations in the cylinder wake from LES (13.4 × 106)), RSM (3.0 ×
106), RSMc and EVM (0.94×106 cells). From Palkin et al. (2016). Reprinted by
permission from Springer Nature.

energy, which for periodic flows for a particular phase is P̃k = −ũi u j (∂Ũi/∂x j ).
In complex flows, some of the constituent terms in P̃k can be locally negative
depending on the sign of the strain-rate components (especially the normal strains).
Moreover, in such flows, the local stress and strain rates are usually not aligned but,
in addition, in unsteady separating flows, the stress may exhibit a time lag or lead
relative to the strain (Palkin et al., 2016), which can further reduce the value of their
product and thus their contribution to P̃k . Indeed, regions of very low and even neg-
ative production P̃k have been detected in many flows, including the flow over a
cylinder considered here (Franke et al., 1989). But, as noted earlier (§1.3, §7.4.2),
linear eddy-viscosity models, by virtue of their constitutive equation, always pro-
duce unconditionally positive production. Even if the turbulence energy production
in a particular complex flow is never actually negative, modelling the flow with an
EVM often leads to excessive and unrealistic production rates. In contrast, with
the RSM computation, the exact definition of P̃k reproduces accurately the energy
exchange between the stochastic and resolved fields and thus has a clear advantage,
especially in capturing the initial stages in the development of internal instabilities.
That is the key to capturing the consequent flow development and its dynamics!

The accurate modelling of the kinetic energy production is also very impor-
tant for reproducing the growth rate of the turbulent kinetic energy in the initial
shear layer, a feature that has proved to be crucial for the accurate prediction of
separation-induced transition. It also affects the level and distribution of the kinetic
energy and, consequently, the effective eddy viscosity throughout the whole flow
domain. Thus, the proper capturing of the dynamics in unsteady turbulent flows
depends greatly on the RANS model for the stochastic turbulence, in particular
on the model’s receptivity to internal instabilities. The requirements boil down
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to reproducing the proper intensity and distribution of the effective viscosity,4

a prerequisite not only for reproducing accurately the stochastic stress, but also
for generating realistic coherent structures and the associated resolved stress. A
too high turbulent viscosity provided by the RANS model can supress perturba-
tions and instabilities; that may lead to a steady solution if the internal forcing is
insufficiently strong, or at least to incorrect unsteady solutions capturing only the
strongest, time-smoothed, coherent structures. Such solutions have been reported
in a number of EVM computations both for flow over a cylinder and for certain
other flows with quasi-deterministic structures. This is especially the case when
using a computational mesh that is too coarse to resolve large-scale structures (see
Fig. 9.10), or a too diffusive numerical scheme (e.g. Eça et al., 2014).

The above arguments are illustrated in Fig. 9.6 by comparing the modelled
and resolved kinetic energy in flow over a cylinder computed by representative
RSMs and EVMs. The k-ε-ζ - f elliptic-relaxation EVM, by virtue of the variable
ζ , accounts partially for the near-wall stress anisotropy and models the near-wall
eddy viscosity better than the standard k-ε or k-ω models in stagnation and sep-
arating flows. Nevertheless, Fig. 9.6 clearly shows that the EVM returns a much
higher modelled and a lower resolved kinetic energy than the RSM, over the whole
wake region.

The success of different RANS models in reproducing inherently unsteady flow
features is illustrated in Fig. 9.7, which gives an impression of the vortical struc-
tures on and behind a cylinder at a selected phase at Re = 1.4 × 105, resolved by
different simulation approaches. The vortex structures are visualized by the isosur-
faces of the Q-criterion defined as Q ≡ −(Si j Si j − Wi j Wi j )/2, where Si j and Wi j

are the strain and rotation rates.
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Fig. 9.6 Comparison of the resolved (left) and modelled (right) turbulent kinetic
energy from the URANS models. Re = 1.4 × 105. From Palkin et al. (2016).
Reprinted by permission from Springer Nature.

4 Recall that, in the elliptic-relaxation linear EVM applied here, the eddy viscosity is defined as νt = c′
μζk2/ε,

whereas the RSM ‘effective’ eddy viscosity is evaluated from νt = Pk/(2Si j Si j ).
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Fig. 9.7 Comparison of vortical structures educted by isosurfaces of Q = 0.5
coloured by axial velocity at Re = 1.4 × 105. Left: LES filtered to the RANS
mesh; centre: RSM, right: EVM (both for the coarse grid). From Palkin et al.
(2016). Reprinted by permission from Springer Nature.

For a fair comparison, the fine-mesh (13.4 M cells) LES results (not shown
here) have been a posteriori filtered onto the RANS mesh of 3M cells used for
the URANS solutions. All figures show similar overall structure patterns with a
clear indication of the dominant shed vortices, but with varying levels of detail
in their 3D evolution and embedded smaller scales. As expected, the URANS
resolved fewer smaller structures than LES. However, there is also a difference
in the number and size of the identifiable vortices resolved by the two methods.
The Q-criterion reveals that the RSM resolved a broader spectrum, including some
smaller eddies, than the EVM. This feature is also evident in the power spectrum
in Fig. 9.3, right.

There is also a visible difference in the size and population density of the struc-
tures in the initial shear layer where, compared with the EVM, the RSM displayed
some distinct small-scale vortices. These vortices contain energy, so their appear-
ance is in line with the previously noted higher resolved kinetic energy in the RSM
compared with that of the EVM. Thus, the lower modelled kinetic energy in the
RSM is compensated by a larger resolved contribution, which makes it possible for
finer structures to be resolved and identified. Their existence seems important for
reproducing certain subtle dynamical features of the flow such as the low-frequency
modulation of the flow as a whole.

Further insight into the capability of URANS for reproducing the subtle dynam-
ics of separation on the cylinder and other curved surfaces is provided by a closer
examination of the flow in the immediate vicinity of the cylinder upstream of
the separation-induced transition. As indicated in the previous section, the correct
reproduction of this region is important for the accurate prediction of the length
of the recirculation bubble and, consequently, of the flow as a whole. As shown in
Fig. 9.8 (left), the LES reveals the formation of near-wall eddy structures that roll
up on the wall surface to form an array of vortical structures embedded in the initial
phase of the separation shear layer, resulting in multiple local separations and reat-
tachments. Figure 9.8 (right) shows that the RSM resolved this feature rather well,
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Fig. 9.8 A blow-up of the instantaneous streamlines after flow separation on the
cylinder. Obtained from LES and URANS-RSM at the same phase based on the
lift coefficient. From Palkin et al. (2016). Reprinted by permission from Springer
Nature.

reproducing wall vortices, their growth and the associated periodic variation of the
angle of separation/reattachment (for details see Palkin et al., 2016). In contrast,
the linear EVM (not shown) failed to resolve this process due to its strong diffu-
sivity and consequent insensitivity to inherent instabilities, resulting in a notable
absence of small-scale near-wall structures.

9.3.4 A note on the URANS prediction of separation-induced
laminar-to-turbulent transition

The comparison above shows that, for successful URANS computations of the
flow around a cylinder in cross-flow in the sub-critical regime, it is crucial to
reproduce the origin of the laminar-turbulent transition and the rate of turbulence
growth in the initial shear layer. As is well known, no RANS model can predict
natural transition through all its stages in smooth, non-separating flows without
sufficiently strong externally imposed perturbations or inflow turbulence. However,
contrary to most EVMs, the low-Re RSM employed in the above computations
had been shown earlier to reproduce accurately a number of cases of by-pass
and separation-induced transition without any artificial triggering or use of inte-
gral flow parameters or any inflow turbulence (Hadžić and Hanjalić, 1999). The
success can be attributed to the low ‘effective’ viscosity generated by the RSM,
which, in contrast to an EVM, enables the laminar separating shear to respond
strongly to instabilities, more or less in a natural manner similar to an LES.5 This
is clearly seen in Fig. 9.8, which shows the shear layer instability, the formation of

5 Both RANS models applied here account for purely viscous and related near-wall effects. The EVM does that
by imposing the Kolmogorov scale as the lower scale bound, which is known to be insufficient for treating
transitional flows. The RSM does that in a more comprehensive, though still semi-empirical way, using model-
adapting functions in terms of the turbulent Reynolds number and the stress and dissipation-rate anisotropy
invariants (Jakirlić and Hanjalić, 2002).
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the subsequent vortices and transition to 3D turbulence closely in accord with the
LES on a much finer mesh.

It is also confirmed by good agreement of the energy spectra of the resolved
motion for values of the Strouhal number, Sr, up to Sr ∼ 5.0, though with some
mild overshooting in the RSM spectrum around Sr ∼ 1.0−2.0 (Fig. 9.3). Of course,
the numerical resolution also plays a role, especially in locating the separation and
the subsequent rapid spread of turbulence through the shear layer. At and immedi-
ately after the point of separation the turbulence model is dormant, the flow being
non-turbulent.

However, as noted above, the RSM shows the development of instability akin
to that in LES (Fig. 9.8). An initial, temporarily imposed ‘background’ turbu-
lence triggers the turbulence model in the shear layer and transition follows (and
the background turbulence is then removed). While the results do not necessar-
ily imply that the unsteady RSM applied here reproduces the real and complete
transition mechanism, the instantaneous velocity field does not look unrealistic
and is not very different from that obtained by LES. This result supports the
claim that a sensitive and receptive URANS model can be applied to reproduce
the separation-induced transition as encountered in flows over bluff bodies at
sub-critical Reynolds numbers.

9.4 URANS modelling of swirling flows and vortex precessing

A class of flows where the URANS approach has been broadly seen as a viable
option is swirling flows in hydraulic turbomachinery, especially for the analysis of
operation under off-design and transient conditions. The increasing proportion of
intermittent wind and solar power in electricity generation brings into focus the
flexibility of operation and rapid load-adjustment capability of the load-smoothing
hydropower plants over a wide range of operating conditions. Under such opera-
tion, however, the hydrodynamic instabilities in hydropower systems can cause not
only a loss of efficiency but also, more importantly, mechanical damage, material
fatigue and, ultimately, system failure. The intrinsic unsteadiness of swirling flows
in the diffusor (or ‘draft tube’) behind the turbine impeller at suboptimal conditions
often leads to the formation of complex unsteady vortical structures, characterized
by a vortex breakdown and a precessing vortex core which causes intense pressure
pulsations and vibrations of the turbine rotor, posing a serious threat to the system
reliability and safety.

While the subtleties of unsteady flow physics in turbine components can best
be captured by properly resolved LES (or hybrid LES-RANS), because of the
high Reynolds numbers and complex geometry of fluid passages, the (U)RANS
approach still prevails in design, analysis and optimization of the operating condi-
tions, especially when considering the whole turbine installation. However, as in
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Fig. 9.9 Time-averaged streamlines coloured by axial velocity magnitude in a
laboratory model of a Kaplan hydroturbine in an off-design regime (a load of
40% of the best efficiency point, BEP). Note that the circular cross-section
evolves into rectangular at the exit of the draft-tube bend. From Minakov
et al. (2017). Reprinted by permission of the publisher (Taylor & Francis, Ltd,
www.tandfonline.com).

other complex flows, the choice of an adequate RANS model poses a challenge.
In §4.3.8 and §6.4.1, it was shown that in contrast to a second-moment closure the
standard k-ε and other popular linear EVMs fail to reproduce the basic features
of several generic swirling flows even for steady and stable conditions. As shown
below, the same conclusions emerge when the goal is to capture the internal flow
unsteadiness and its dynamics in flows arising in hydroturbines and other devices
with strongly swirling motion.

We note first that the flow in hydroturbines is characterized by different phys-
ical phenomena from those in flows separating from bluff bodies considered in
§9.3. Under off-design conditions the flow usually separates from the turbine cone
with the formation of a recirculation zone in the cone wake. However, the dom-
inant effects come from the runner’s rotation resulting in a strong swirl behind
it. The resultant flow is largely governed by the pressure field and radial force
balance determined by the ratio of the circumferential and axial flow momentum,
usually characterized in term of the swirl number Sw. A stable swirl at a low Sw will
destabilize and become unsteady in otherwise stationary flows when Sw increases
beyond the threshold value for vortex breakdown to occur (Sw ∼ 05–0.6). Espe-
cially critical and challenging for a URANS simulation are the conditions when the
swirl breaks down and evolves into unsteady, precessing, single or multiple helical
vortices (Litvinov et al., 2018).

As an illustration of the potential and limitations of URANS applications to this
class of flows, we show some results of computations of flow in the draft tube of
a laboratory model of a Kaplan hydroturbine at a part load of 40% of the design
flow rate, reported by Minakov et al. (2017). Two linear EVMs and the Basic SMC
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from §4.3 were used, all on 2M and 6M grids.6 The results were compared with
LES on 6M and 19M grids and dedicated experiments. Figures 9.9–9.12 illustrate
the major findings.

First, a general impression of the capabilities of the tested models to reproduce
the bulk flow may be drawn from Fig. 9.9, which shows the time-averaged stream-
line patterns and the intensity of the axial velocity denoted by colour shades. The
EVMs on a typical RANS grid of 2M nodes predicts the flow incorrectly, whereas
the RSM on the same 2M grid and LES on 6M give very similar results in accord
with observations. This is further substantiated by a quantitative comparison with
the experiments, Fig. 9.11.

It is recalled that precession of the vortex core occurs under part load when
the flow has a considerable residual swirl. Vortex breakdown in such a flow leads
to the formation of a free recirculation zone at the flow axis and rotation of the
corkscrew-shaped vortex ropes (often visible by local evaporation and/or dissolved
air) around it. Figure 9.10 shows selected snapshots of the typical twin vortex ropes
downstream from the impeller, captured by different models and compared with
the experimental visualization of Skripkin et al. (2016).7 The ropes in Fig. 9.10,
consisting of two precessing helical vortices with somewhat different frequencies,
are identified by the instantaneous isosurfaces of selected values of pressure.

As seen in Fig. 9.10(a) and (b), the LES and experiments show strikingly simi-
lar vortex structures in the form of a twin corkscrew rope. The formation of these
structures influences the whole flow field, creating a strong back-flow in the cen-
tral region of the draft tube as indicated by the mean axial velocity profiles in
Fig. 9.11. It is interesting that the Basic RSM captures the vortex pattern rea-
sonably well, albeit with smoothed fine-scale structures, Fig. 9.10(c). However,
the EVM URANS computations on a 2M grid (not shown) did not maintain an
unsteady solution, though they did so on a finer grid of 6M nodes, resulting in
somewhat improved mean-flow patterns, but still failing to capture the multiple
helices and the associated pressure pulsations. Specifically, despite resolving the
unsteadiness, neither of the tested EVM URANS treatments – even on the 6M grid
– reproduced the twin-rope structure, as seen in Fig. 9.10(d) and (e). The k-ε reali-
zable model returns a single thick vortical bulb (Fig. 9.10 (d)), and the SST model
(Fig. 9.10(e)) gives only a hint of a possible double vortex initiation, but with only
one, irregularly shaped structure with no indication of a spiralling helix.

Profiles of the mean axial and tangential velocity components on a cross-section
immediately behind the turbine cone in Fig. 9.11 provide quantitative information

6 The realizable k−ε and the k−ω SST EVMs were considered as well as the detached eddy simulations
(discussed in Chapter 10) based on the SST model (DES SST).

7 The inflow conditions to the draft tube were generated from a precursor computation of the flow in the turbine
in a rotating reference frame by what is known as the ‘frozen rotor’ method.
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Fig. 9.10 Twin vortex ropes in the draft tube of a laboratory model of a Kaplan hydroturbine at low load (as in Fig. 9.9), computed by LES
and URANS-RSM and two EVMs, with meshes of 2M and 6M cells. Note: the EVMs reproduced unsteadiness only on themuch finer (6M)
mesh. From Minakov et al. (2017). Reprinted by permission of the publisher (Taylor & Francis, Ltd, www.tandfonline.com).
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Fig. 9.11 Axial (left) and tangential (right) mean velocity profiles on a draft-tube
cross-section right behind the rotor cone, obtained by different turbulence models.
Grids: URANS and DES: 2M; LES: 6M. From Minakov et al. (2017). Reprinted
by permission of the publisher (Taylor & Francis, Ltd, www.tandfonline.com).

about the flow field captured by different models. As shown, the RSM and DES8

(both on a 2M grid) and LES (on a 6M grid) reproduced the experimental data very
well for both velocity components. In contrast, both EVMs notably fail, as shown
by typical (inappropriate) solid-body-rotation profiles of the tangential velocity,
as well as unrealistic distributions of the axial velocity. The latter, being positive
over the entire cross-section, indicates the absence of any recirculation in striking
disagreement with the experiments.

Minakov et al. (2017) also presented the profiles of the turbulent kinetic energy
(not shown here), as a sum of the (much larger) resolved and the (smaller but impor-
tant) modelled contributions. Again, the RSM showed notably closer agreement
with experiments and LES than the two EVMs, in accord with the findings on
vortex shedding behind a cylinder discussed in §9.3.

The most important outcome from the formation of the precessing helical ropes
is the pressure pulsations in the draft tube that propagate throughout the whole
turbine and its system. In practice, it is important to know the character and
parameters of the pressure pulsations – their intensity (especially their maximum
amplitude) and frequency. The experimental pressure recordings are obtained from
measurements at a discrete point on a cross-section roughly half-way down the
turbine cone, flush-mounted with the interior wall surface. Figure 9.12 compares
the calculated and measured pressure time records (left) and the frequency spec-
tra (right). The LES results on the 6M grid and the RSM (as well as the DES,
not shown here) on a 2M grid return the experimentally recorded character of
pulsations rather well, with two slightly different characteristic frequencies identi-
fiable (at about 14 and 17 Hz) corresponding to the two ropes, and the maximum
peak-to-peak amplitudes of about 10 Pa. The LES signal is very close to the

8 Detached Eddy Simulation. A detailed coverage of this and other hybrid RANS-LES modelling strategies
appears in Chapter 10.
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Fig. 9.12 Time variation (left) and spectra (right) of pressure pulsation recorded
on the draft tube wall at the same cross-section as in Fig. 9.11. The vertical scale
corresponds to the experiments; other curves shifted down in steps of 10 and
1.0 Pa, respectively. From Minakov et al. (2017). Reprinted by permission of the
publisher (Taylor & Francis, Ltd, www.tandfonline.com).

experimental one with almost identical peak-to-peak amplitudes. The RSM also
reproduces the pulsations very well, though showing a somewhat smoother record,
but with almost the same amplitude maxima. In contrast, the EVMs on a finer grid
(6 M), despite capturing some unsteadiness, showed only very mild pressure varia-
tions with a grossly underestimated intensity. Interestingly, neither the experiment
nor any of the computations detected the frequency corresponding to the impeller
blades’ rotation speed of 40.5 Hz.

In summary, the results shown above provide considerable evidence that the
RSM, even at the basic level (i.e. the linear model of the pressure-strain corre-
lation, §4.3), is sufficiently sensitive to the strong flow unsteadiness associated
with the vortex ropes and precessing vortex cores and can be used to estimate the
level of the pressure pulsations in the hydroturbine draft tubes. Admittedly, for low
Reynolds numbers, as in the laboratory model examined above, and focusing only
on the draft tube, LES and, especially, hybrid RANS-LES schemes, such as DES,
could be affordable and computationally even more accurate than the RSM. But the
real advantage of URANS emerges when targeting real-scale applications at much
higher Reynolds numbers and in complex configurations. One should keep in mind,
however, that, in general, capturing unsteadiness with a URANS approach depends
on the intensity of the internal instabilities, the strength of the forcing (often pro-
vided by a body force), and on the type of RANS model used, as well as on the
discretization scheme, grid resolution and time-step adopted.

9.5 Capabilities of EVMs and ASM/AFMs within URANS

The previous sections have revealed gross failures of linear eddy-viscosity-type
models (including some improved versions such as the realizable k-ε, the SST-k-ω
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and the elliptic-relaxation k-ε-ζ - f ) when applied in unsteady mode to flows
dominated by large-scale vortical structures. Chapter 7, on the other hand, has
confirmed that turbulence models simpler than complete second-moment closure
can lead to satisfactory predictions of a diversity of turbulent flows. However,
the range of flows over which the simpler models are appropriate progressively
reduces as each successive level of simplification is applied. In the case of linear
eddy-viscosity models the range is narrowed to two-dimensional flows (or weakly
three-dimensional flows driven by pressure gradients) where transport and force-
field effects on the second-moments are unimportant. Moreover, all cases were
considered stationary and computed by solving the equations in steady-state mode
even though some of the flows may have had hidden internal unsteadiness and
periodic deterministic structures. The question thus arises whether such simplified
models, resolved in a URANS framework, might still perform successfully in flows
with some internal unsteadiness where steady solutions with the same model fail.

To conclude this chapter, a brief outline is provided of some flow classes where
linear eddy-viscosity models and other truncated second-moment closures return
acceptably accurate simulations of highly complex flows that would ordinarily be
seen as outside the scope of EVMs and, in some cases, beyond the capabilities of
steady-state RANS resolution.

EVMs applied to separated flows

The earliest examples of forerunners of the URANS approach appeared in the
papers by Celenligil and Mellor (1985), Ha Minh and Kourta (1993) and Johansson
et al. (1993). The first two examined the steady flow behind (different) backward-
facing steps but resolved the flow in a time-dependent manner. The former adopted
a rudimentary second-moment closure, while the latter employed a linear k-ε
EVM. Both sets of computational results showed that a succession of roller eddies
were shed from the lip of the step which lengthened the mean reattachment
length (compared with a strictly steady-flow computation) to values close to those
measured. In the case of the k-ε computations, however, this desirable outcome
was only achieved by reducing the coefficient, cμ, from its conventional value of
0.09 to 0.02.9 Moreover, while both these studies treated the momentum equa-
tions as unsteady, the flow was still handled as though it were two-dimensional (no
momentum equation was solved in the direction parallel to the step), so there was
no scope for stretching or bending of the shed vortices to occur. A similar approach
was taken by Kato and Launder (1993) to study the vibration of a square-sectioned
bridge spar induced by the wind flowing normal to it and the associated vortex
shedding on the downwind side. As noted in §7.4.3, they modified the turbulence

9 Of course, the model, thus adjusted, would then evidently give very poor predictions for turbulent flows not
dominated by such deterministic structures such as channel flow.

https://doi.org/10.1017/9781108875400.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.011


9.5 Capabilities of EVMs and ASM/AFMs within URANS 355

Fig. 9.13 Turbulent kinetic energy (modelled and total) behind a triangular cylin-
der. Symbols: experiments, lines: computations with URANS k−ε+WF. Adapted
from Johansson et al. (1993).

energy production term in the standard k-ε EVM by replacing the square of the
strain-rate tensor (Si j Si j ) by the product of the strain and vorticity tensors (Si j Wi j ).
This avoided the spurious excessive k-levels around the front stagnation point of the
beam (since the flow there was essentially irrotational) which would have grossly
attenuated the vortex street shed on the downstream side. The study found that,
over a limited range, the vortex-shedding frequency ‘locked-on’ to the natural fre-
quency of the spar, while the onset of ‘galloping’ oscillations was broadly in accord
with experiment.

A further two-dimensional unsteady computation of flow normal to a triangu-
lar cylinder (a ‘flameholder’) by Johansson et al. (1993) using the standard k-ε
model (with the standard value for cμ) appeared more successful. The periodic
vortex shedding and the mean velocity in the wake was in almost as good agree-
ment with the experimental data as those reported later by Durbin (1995) with
the more elaborate v2 − f model. Johansson et al. also showed, probably for the
first time, tolerably good agreement between the measured and computed time-
averaged turbulent kinetic energy after adding the (significantly larger) computed
periodic component to the stochastic part obtained from the turbulence model,
Fig. 9.13.

The successful performance of the standard k-ε model for this flameholder
example (with just a two-dimensional computation) is initially surprising. It
sharply contrasts with its notable failure in flow around a circular cylinder dis-
cussed in §9.3. There are, however, important differences. First, in flows around
a triangular cylinder (or other sharp-edged body) the separation points (or lines)
are fixed and symmetrical, whereas in flows over shaped bodies with a curved rear
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surface such as a cylinder, the separation location periodically moves over the body
surface and its dynamic behaviour is very dependent on the inflow conditions as
shown in Fig. 9.8. Second, in the flameholder flow, the incoming flow is turbu-
lent with a relatively high imposed turbulence intensity (5%), whereas in the case
examined earlier of flow around a cylinder, the incoming flow was non-turbulent
and subject to transition in the shear layer behind the body, as shown in Fig. 9.8
and discussed in §9.3.4.

One should note, however, that both the flows considered above are uncon-
fined. The presence of a solid wall in the close vicinity of (or even attached to) a
bluff body, such as flows over a backward- or forward-facing steps, wall-mounted
objects or similar configurations, will inevitably tend to suppress the separation-
induced instabilities, posing challenges to URANS predictions even when using
more advanced RANS models.

The first fully three-dimensional URANS explorations were those of Tatsumi
et al. (1999) and Kenjereš and Hanjalić (1999), the former examining a backward-
facing-step flow using the cubic NLEVM of Craft et al. (1996b) summarized in
§7.3.4. In that case, as in all the examples examined later in this section, the com-
putations have been made with precisely the model for the unresolved turbulent
transport originally proposed for steady-flow applications.10

Rotating disc flows

The next class of flows considered comprises those formed within the narrow,
enclosed cylindrical space between coaxial circular discs a short distance apart,
one or both of which rotate. The flow configuration is an idealization of that
which occurs in turbine-disc cavities or a stack of rotating computer discs. Con-
ventionally, these flows have been examined assuming the flow to be steady and
axisymmetric. The three-dimensional time-dependent results shown below are
drawn from the computations of Zacharos (2010). The effects of the unresolved
turbulence have been accounted for with the standard high-Reynolds-number k-
ε EVM using the Yap correction, Eq. (5.12). Instead of resolving the low-Re
sublayer, analytical wall functions (AWFs) have been used (§8.3) to enable an eco-
nomical yet reasonably comprehensive modelling of the sublayer region where the
mean velocity vector undergoes strong skewing.

The first example is of co-rotating discs at a spin Reynolds number of 1.46×105.
The shroud is stationary and this induces a radially outward motion near the two
rotating discs (the Ekman layer) with a return flow in the central region. Fig-
ure 9.14, left, provides a pictorial view for the case where the disc spacing is half
the radius; it shows the flow surface where the circumferential velocity is half the

10 Though, apparently for purposes of economy, the computations of Tatsumi et al. were made for a bulk Reynolds
number less than one-fifth of that prevailing in the experiment.
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Fig. 9.14 Flow in a co-rotating disc cavity, H/R = 0.5, Re� = 1.46 × 105. Left:
surface of circumferential velocity equal to half disc spin velocity (from Zacharos,
2010). Right: normalized axial vorticity contours on geometric symmetry plane
(from Iacovides et al., 2009).

disc speed. In this case, the time-dependent examination has revealed four large
eddies in both the upper and lower halves of the cavity. While the flow is globally
symmetric about the mid-plane, the four ‘eddies’ in the upper half are displaced
by 45◦ relative to those in the lower half. The axial vorticity on the geometric
symmetry plane, Fig. 9.14, right, thus exhibits eight trailing ‘tails’.

Quite different large-scale structures appear in the case where one of the discs is
stationary (the so-called rotor-stator cavity). The number of separate lobes in this
case is known to depend on the disc spacing and the Reynolds number, Czarny
et al. (2002), though the most commonly arising structure is a double lobe as seen
in the flow visualization photograph in Fig. 9.15 (left). The vortical structure was
made visible by dye, which had been carefully injected into the cavity. The three-
dimensional, time-dependent calculation by Zacharos (2010) also predicts such a
two-eddy form for the same values of H/R and Re� (the Reynolds number based
on the spin velocity of the outer rim of the disc and the disc radius). In fact, the com-
putational contours show different levels of k1/2/�R rather than dye concentration.
The comparison is relevant, however, since the dark regions (in the left-hand figure)
where the dye remains concentrated indicate areas where turbulent agitation is min-
imal and thus where the modelled k-levels are very low (which appear as the dark-
est blue zones in the right-hand figure). In fact, when the discs are brought closer
and closer together, the large-scale vortices (that occupy the mid-height region
between the discs) disappear and are replaced by spiral vortex structures within
the near-wall radially outward and inward flowing layers near the rotating and sta-
tionary discs (the Ekman and Bødewadt layers, respectively). These very different

https://doi.org/10.1017/9781108875400.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.011


358 RANS modelling of unsteady flows (URANS)

Fig. 9.15 Flow within a rotor-stator cavity. H/R = 0.195, Re� = 0.9×106. Left:
streak-line flow visualization, Czarny et al. (2002); Right: computations showing
contours of k1/2/�R, Zacharos (2010).

coherent structures are also well-resolved with precisely the same methodology,
an example of which appeared in Fig. 8.10(a) in connexion with economical wall
treatments.

As a third example on rotating flows, Fig. 9.16 considers the case of flow
between contra-rotating discs, a case which is further complicated by the fact that
one disc rotates at twice the speed of the other. Iacovides et al. (1996) had earlier
examined this flow using a variety of turbulence models ranging from two-equation
eddy-viscosity schemes up to second-moment closure but assuming the flow to
be axisymmetric and steady. Their results achieved at best indifferent agreement
with the experimental data of Gan et al. (1995), the greatest discrepancy occur-
ring at r = 0.85R close to the slower disc where the computed radial velocity
was towards the disc centre, whereas the measurements showed an outward flow.
Moreover, near the faster disc the boundary-layer thickness was more than twice
as thick as measured. The flow predicted by the unsteady three-dimensional com-
putations, Fig. 9.16a, shows major improvements in resolving the Ekman layers
near each disc and, overall, a significantly closer agreement with the experiment.
There were comparable improvements also in the tangential velocity profiles (not
shown). Figure 9.16b provides a snapshot of the spiral flow structure present in this
case near the slower moving disc (the dark and light surfaces show contours of two
different values of axial velocity towards and away from the upper surface).

Buoyancy-driven flows

Kenjereš and Hanjalić (1999) (see also Hanjalić and Kenjereš, 2000, 2001)
have applied the URANS concept to Rayleigh−Bénard convection where a fluid
confined within infinite horizontal parallel planes is heated from below. In this
case, long-term time averaging results in zero mean velocity, and the fluid motion
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Fig. 9.16 Flow in a counter-rotating disc cavity with the faster disc (at x/s = 0)
rotating at twice the speed of the slower disc. (a) Profiles of radial velocity at
different radial locations. Symbols: experiments, Gan et al. (1995); —— URANS
k-ε EVM with analytical wall functions, Iacovides et al. (2009); (b) Visualization
of coherent vortex structure via isocontours of axial velocity towards and away
from the slower disc with velocity ±0.005� f ast R, Zacharos (2010).

takes the form of self-organized, unsteady convective roll structures (sometimes
referred to as the ‘wind’), which fill the whole flow domain and provide the mech-
anism for turbulent heat transport. For this reason Rayleigh−Bénard convection
has always posed a challenge for conventional steady RANS solvers.11 Later, the

11 Though, as reported in Chapter 4, second-moment closure has been successfully applied to related mixed-layer
problems.
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URANS, Ra = 1014LES, Ra = 109 URANS, Ra = 109

Fig. 9.17 Instantaneous streamlines in Rayleigh−Bénard convection seen on a
horizontal plane very close to the bottom-heated wall, z/D = 0.01 (left and cen-
tre) and z/D = 0.05 (right) for high Ra (from Kenjereš and Hanjalić, 2006). D
denotes height of computational domain.

same workers extended the approach to more general cases of thermal convec-
tion in different configurations, including the effects of a magnetic field (Hanjalić
and Kenjereš, 2000, 2001, 2002), and to both indoor and external environmen-
tal flows dominated by thermal buoyancy (Kenjereš and Hanjalić, 2002; Kenjereš
et al., 2002). The method employs a three-dimensional time-resolved solution of
the ensemble-averaged momentum and energy equations, closed by the algebraic
flux model (§7.3.2, Eq. 7.12) together with the θ2, k and ε equations (the AFM
k − ε − θ2 model) for the ensemble-averaged turbulence properties.12

Figure 9.17 compares the instantaneous streamlines on a horizontal plane very
close to the bottom-heated wall in an open-ended 4:4:1 Rayleigh−Bénard domain
obtained with a finely resolved LES (256×256×128 grid cells) and with URANS
on a much coarser grid (82 × 82 × 72) for Ra = 109 (left and centre figures)
(Kenjereš and Hanjalić, 2006). Of course, the patterns are not identical and, as
would be expected, LES captures finer structures that are inaccessible to URANS
on a coarse mesh; but the large-scale, organized structures (Bénard convective cells
with bounding sheet plumes) certainly look similar. Indeed, both methods returned
very similar Nusselt numbers (see Fig. 9.20), confirming that the small-scale tur-
bulence that remains unresolved with URANS plays only a minor role in heat (and
momentum) transfer. These findings provide confidence in applying the URANS
approach to much higher Rayleigh numbers beyond the present reach of LES, as
shown in Fig. 9.17, right, as well as to complex configurations of engineering and
environmental relevance.

Figure 9.18 shows the breakdown between the resolved and stochastic
(modelled) contributions, as in Eq. (9.6), to the vertical heat flux for a Rayleigh

12 To distinguish the physical situation modelled here from situations where URANS is applied to flows where the
mean-flow time scale is much longer than that for the turbulence, Kenjeres and Hanjalic labelled the approach
T-RANS implying Triple-decomposition (or Time-dependent) RANS.
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Fig. 9.18 Near-wall long-term-averaged turbulent heat flux for Ra = 109 with the
URANS modelled and resolved contributions, compared with the LES (Symbols)
and hybrid RANS-LES simulations. From Kenjereš and Hanjalić (2006).

Fig. 9.19 Near-wall long-term-averaged temperature 
∗ = (
w −
)Uq/qw for
RB convection at different Ra; URANS compared with DNS. From Kenjereš and
Hanjalić (1999).

number of 109. The total turbulent heat flux thus computed agrees well with the
LES (and also with a hybrid RANS-LES approach discussed in Chapter 10). The
resultant time-averaged temperature 
∗ = (
w −
)Uq/qw (where qw = q ′′

w /ρcp

is the bottom wall kinematic heat flux and Uq = (βgqwα2/ν)1/4 the ‘buoyancy’
velocity) is plotted versus the non-dimensional height z∗ = zUq/α (where α is
the thermal diffusivity and β the thermal expansion coefficient) in Fig. 9.19. For
Ra = 107 and 109, the two results collapse onto a single curve close to the wall in
close agreement with the DNS results for Ra = 6.3 × 105.
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Fig. 9.20 Nusselt number for Pr = 0.7 and 0.025 (left) and thicknesses of the
thermal and hydrodynamic boundary-layer, λθ and λv , for Pr = 0.71 (right) over
a range of Rayleigh numbers, indicating a change from Nu ∝ Ra1/3 towards the
ultimate Nu ∝ Ra1/2 regime, computed by URANS. From Kenjereš and Hanjalić
(2009).

As mentioned above, a major benefit of the URANS approach is its ability
to resolve the behaviour at very high Ra, far beyond the present reach of LES.
Figure 9.20 shows the Nusselt number obtained with URANS for Ra approach-
ing 1017. At much lower Rayleigh numbers the URANS results agree well with
the available experiments and DNS data both for air (Pr = 0.71) and for mer-
cury (Pr = 0.025) and with the accepted dependence of Nusselt number on
Ra: Nu ∝ Ra1/3. Moreover, the URANS results indicate a change in the regime
at Ra ≈ 1012 for Pr = O(1) (apparently associated with the laminar-to-turbulent
transition in the hydrodynamic wall boundary layer, Chavanne et al., 1996), and a
trend towards Kraichnan’s (1962) ‘ultimate’ turbulence state characterized by the
asymptotic solution Nu ∝ Ra1/2 for Ra approaching infinity. The URANS compu-
tations of the thicknesses of the hydrodynamic and thermal wall boundary layer,
shown in Fig. 9.20 (right), not only agree well with several experimental and DNS
data for lower Rayleigh numbers but also, Fig. 9.20 (left), show a steepening slope
of the Nu dependency from Ra ≈ 1013, arguably supporting Kraichnan’s proposal.

Environmental flows

As an illustration of the potential of the URANS approach for predicting large-
scale, unsteady phenomena in the environment, we consider the diurnal variation of
air movement and pollutant dispersal over a medium-sized city situated in a valley
during a critical windless period capped by an inversion layer.13 A slight increase

13 The terrain configuration and the meteorological scenarios mimic typical winter episodes in and around the
city of Sarajevo, Bosnia and Herzegovina.
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in the ground temperature during the day, with a somewhat elevated heating over
the distinct residential and industrial zones due to daily activities, representing heat
islands, is the only generator of air movements that adjust to the terrain orography
forming complex patterns of unsteady convective structures. In the absence of any
field data, Kenjereš and Hanjalić (2002) adopted a hypothetical scenario in which
the ground over the whole domain was uniformly heated and cooled over a daily
cycle in a sinusoidal manner with the diurnal and nocturnal temperature amplitudes
of ±1◦C. In addition, on the ground in the ‘residential’ and ‘industrial’ areas, addi-
tional cyclic heating and cooling was superimposed. This comprised a sinusoidal
variation in time within the subdomain areas, with mid-day and midnight temper-
ature extrema of ±2◦C and ±1◦C, respectively, at the centre of the two zones. The
amplitude of this local temperature variation reduced smoothly to zero at the sub-
domain edges. The two zones were also assumed to emit pollutants during the day
with 50% and 100% of the maximum non-dimensional emission flux (defined as
unity) for the two zones. The external conditions are defined by a uniform poten-
tial temperature of dry air in the lower atmosphere, capped by an inversion layer
in which the temperature increases linearly with height at a rate of 4◦C/km. Two
scenarios of thermal stratification were considered differing in the height of the
base of the inversion layer: for ‘weak’ stratification, the inversion layer begins at
z/H = 2/3(≈ 1600 m) from the deepest point in the valley, and for the ‘strong’
stratification at z/H = 1/3(≈ 800 m), where H is the domain height. The situa-
tion is characterized by a very high Ra, O(1017). The terrain configuration and the
boundary conditions for the considered scenarios are indicated in Fig. 9.21.

The complex flow patterns and their evolution over the cycle for the two strat-
ification scenarios (reflecting the terrain orography) are illustrated in Fig. 9.22.
For the weak stratification, at the peak ground heating at noon, the plumes and
the convective structures show a significant degree of self-organization and strong
vorticity concentration, with a tendency to erode the inversion layer (the region
between the dotted horizontal lines); but during the subsequent ground cooling
period this motion gets notably suppressed. In contrast, under a strong stratifica-
tion, the convective structures are weaker and remain confined within the lower
atmosphere below the inversion layer.

Naturally, the above difference in the flow patterns has direct repercussions on
the dispersion of pollutants, as illustrated in Fig. 9.23. A comparison of the pol-
lutant front, defined by 1% of the maximum emission concentration at the same
time (corresponding to early evening), shows that under weak stratification the
pollutant is being lifted above the ground, reaching and, in fact, locally penetrating
the base of the inversion layer. In contrast, for a strong stratification, much of the
pollutant remains close to the ground and spreads laterally. Although the imposed
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Fig. 9.21 Terrain orography of a medium-sized city valley capped by an inversion
layer with diurnal variation of the ground temperature and pollutant emission from
the two heat islands (residential and industrial areas). From Kenjereš and Hanjalić
(2002).

Fig. 9.22 URANS-computed streamlines projected on a vertical plane cutting
through heat islands. Top figures correspond to heating during the first daytime
cycle (at 12.00 hr) and the bottom to nocturnal cooling during the second cycle
(at 24.00 hr). Left: weak stratification; right: strong stratification. From Kenjereš
and Hanjalić (2002).

boundary conditions are purely hypothetical in an attempt to mimic a real envi-
ronmental problem, the results suggest that the URANS strategy can be usefully
applied to diagnosing urban pollution in situations which are inaccessible to other
computational approaches.

To close this section, we consider the URANS simulation of another case of a
windless diurnal cycle, this time a weakly stratified atmospheric boundary layer
topped by an inversion over an urban terrain with a large river, reported by Hrebtov
and Hanjalić (2017). With some simplification, the case mimics the real winter
environment of the city of Krasnoyarsk in Russia where the non-freezing River

https://doi.org/10.1017/9781108875400.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.011


9.5 Capabilities of EVMs and ASM/AFMs within URANS 365

Fig. 9.23 Upper : URANS predictions of the pollutant front (1% of maximum
concentration) in the early evening for weak (left) and strong (right) stratification.
Lower : concentration contours at 6.00 pm of the first day, corresponding roughly
to the top figures. From Kenjereš and Hanjalić (2002).

Yenisei (downstream from a hydropower water reservoir) acts as a thermal and
humidity source. The river width is about 1 km at its widest part, which is com-
parable with the inversion height. In such situations some rare natural phenomena
have been observed, featuring an undulating fog pattern along the river accompa-
nied by scattered vortical columnar structures (‘steam devils’) topped by vortex
rings.

An idealized full diurnal cycle was simulated over a domain of 32 km×17 km×
2 km meshed with a 322 × 172 × 102 grid (i.e. about 5.64 × 106 grid cells). The
same three-equation k − ε − θ2 algebraic flux RANS model was used as in the
previous example. Now, however, it employs the Simplified Analytical Wall Func-
tion strategy (SAWF, §8.4) for applying the ground boundary conditions, extended
to account for stratification effects and typical ground roughness in different zones
(Hanjalić and Hrebtov, 2016).

A realistic ground topography was generated from the Geographic Information
System (GIS) data. The reference potential temperature was specified from precur-
sor simulations of the evolution of the mixed layer over uniformly heated ground
into a stably stratified environment with a lapse rate of 4◦C/km until it reached the
targeted inversion base at a height of 1 km. The temperature above the inversion
layer (at 1.6 km) was assumed to be −3◦C. To simulate the running river surface,
a separate precursor simulation was conducted on a 2D finer mesh to determine
approximately the free-surface water velocity, which was then projected onto the
bottom boundary of the actual mesh. The on-site temperature measurements at 2 m
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above the ground for two weather stations showed the strength of the heat-island
effect of about 3◦C at its peak on windless days in winter. The spatial distribution
of the ground temperature was estimated from the diurnal cycle of human activity
and traffic intensity, accounting for building density and the location of the main
industrial facilities. The resulting normalized distribution was used to estimate the
urban heat-island temperature.

A generic, uniform, sinusoidal, diurnal temperature cycle (marginally different
from the measured one) was set for the ground ranging from −6◦C to −4◦C. In
the city area a heat-island temperature variation was added with amplitude of 2◦C.
The coldest time in the diurnal cycle corresponds to 06:00 and the warmest to
18:00. The temperature of the river water was assumed constant and equal to 0◦C.
The ground and the river were treated as rough surfaces defined in terms of the
equivalent roughness for the city centre, the surrounding scarcely populated area
and the river surface.

The strong heat transfer from the river throughout the whole diurnal cycle creates
the main plumes over the river that, in turn, largely govern the air movement over
the whole area. During the night phase the river is virtually the only source of heat
and the air motion is concentrated around the river. Over that period (Fig. 9.24,
left), the largest convective roll structures appear in the form of a pair of long,
counter-rotating convective rolls with axes aligned with the river, especially evident
in the straightest section of the river. Moreover, a number of concentrated vortices
and vortex rings are clearly visible along the river, superimposed on the two main
river-parallel rolls. Far enough from the river (though still above the city) the air
is stagnant. In the morning the solar irradiation and the increasing human activity
begin to heat the nearby ground, generating convective motion. As the heating pro-
gresses these rolls grow and begin to interact, intensifying the vertical heat transfer
and reinforcing the creation of new plumes.

The non-uniform ground heat flux and the warming of the adjacent air within
the ground layer create a horizontal temperature gradient towards the river, which
interacts with the gravitational vector acting as a baroclinic source of vorticity,
∇(βT )×g, with its axes normal to ∇T . In turn, this generates air movement in the
direction of the gradient, entraining air from the suburbs towards the river and then
into the plume rising above the warm water surface. The inversion layer acts as a
barrier to the vertical motion, however, turning the flow and inducing horizontal
spreading of the warm air away from the river at higher altitudes, thus creating a
horizontal circulation to and away from the river, as shown by velocity vectors on
planes normal to the river in Fig. 9.26.

The horizontal temperature gradient and the flow towards and away from the
river interacting with shear and buoyancy can also be linked with the horizon-
tal, counter-rotating roll pairs normal to the river over the city terrain. These are
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Fig. 9.24 A bird’s-eye view of vortical structure visualized by the Q-criterion,
coloured by helicity density ωi ui (red: positive; blue: negative). Left: 06:00;
right:18:00. From Hrebtov and Hanjalić (2017). Reprinted by permission from
Springer Nature.

especially evident at peak heating (Fig. 9.24, right), though disappearing at night
(Fig. 9.24, left). The width of the lineal vortex pairs is largest around and above
the river, but their diameter, vorticity and identity reduce with distance from the
heat source (provided by the river); hence their specific ‘trumpet’- or ‘carrot’-like
shapes, with roots pointing outward from the river. The pattern is well reflected in
the temperature and humidity distributions, especially at low elevations, as shown
in Fig. 9.26.

The interplay of several distinct large-scale vortex systems leads to a complex
flow picture, displaying a wavy pattern of moisture plumes over the river and a
chain of swirling columns topped by toroidal rings along the river. A bird’s-eye
view of the vortex structure over the terrain at two different times in the diurnal
cycle shown in Fig. 9.24 reveals such concentrated vertical vortex columns as well
as vortex rings superimposed on the two main river-parallel rolls in the horizontal
plane at higher elevations. This is in particular visible at peak cooling when the
river-normal ‘trumpet’ vortices are absent, Fig. 9.24, left.

Swirling columnar structures have long been observed in Nature above lakes
and large rivers when the temperature of the water surface is above the ambient,
as shown in Fig. 9.25 (left). Their origin and formation are discussed in detail in
Hrebtov and Hanjalić (2017). Suffice it to state here that the concentrated vertical
vortex columns, believed to be the precursors of the swirling ‘steam devils’, are
initiated by the interaction of some of the opposing river-normal longitudinal rolls
over the river surface, creating another distinct vortex system in the form of con-
centrated vertically oriented counter-rotating vortices on and around the river. The
toroidal rings on the top of swirling columns, however, seem to be created by a
roll-up instability in the vertical shear layers around the edge and near the top of
the columnar plume beneath the inversion layer. Presumably, they are also affected
by shear at the moving water surface, which seems to be the prevailing mechanism
during the night when the river plume is weak. As illustrated in Fig. 9.25 (right),
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Fig. 9.25 Observed and computed columnar structures over the river at elevated
temperature relative to the ambient in winter. Left: https://youtu.be/
hWOP3u_m9xQ; Right: URANS computations, from Hrebtov and Hanjalić
(2017). Reprinted by permission from Springer Nature.

the URANS computation reported by Hrebtov and Hanjalić (2017) reproduced the
overall shape and swirling pattern of the columnar structures, closely resembling
their natural appearance, Fig. 9.25 (left).

The velocity, temperature and humidity distributions shown in Fig. 9.26 reflect,
to a large degree, the vortical structures and flow patterns discussed above. The
left figure shows the temperature contours at peak heating with superimposed hor-
izontal velocity-vector projections for two cross-sections roughly perpendicular to
the river, just before and across the main island (the river surface is at the ordinate
height of zero, while the area below it shows temperatures on the river and ground
surfaces upstream from the plane). The temperature contours show an irregular
field with, as expected, the strongest disturbances over and around the river. In
both cases the inversion layer is clearly visible; it is noticeably eroded by upward
air movements at locations directly above the river. The stable stratification above
the inversion top is generally undisturbed. The velocity field is consistent with the
above pattern, i.e. air moves towards the river within the ground layer and away
from it at higher elevations. The typical sign reversal occurs at about one-third of
the inversion height, but at some locations this happens at higher altitudes, as for
example in the upper right figure. The inversion layer remains unbroken in all cases
considered, though with a distinct erosion above the main plume, manifested by a
bumpy pattern of the top temperature contours and a visible local depletion of the
inversion layer thickness.

Unlike thermal plumes driven by buoyancy, the humidity, modelled as a pas-
sive scalar, is completely governed by the convection and vortical structures. The
humidity distributions, together with the local velocity vectors, appear in Fig. 9.26,
right for the same time instant in the diurnal cycle as the temperature, but at
somewhat different cross-sectional planes. From the river, the vapour is transported
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Fig. 9.26 Horizontal velocity vectors and temperature projections (left) and
vapour concentration (right) on river-normal cross-sections (indicated in the plan
view at the top) at 18:00 hr. A segment of the local ground coloured in the same
temperature and humidity colour scales as the air above, depicts the river (orange)
and its branching around an island. From Hrebtov and Hanjalić (2017). Reprinted
by permission from Springer Nature.

almost vertically to the inversion base in the form of a condensed plume where the
local maximum of humidity concentration occurs, and then spreads horizontally by
convection. The overall mean-flow pattern shows that this spreading of moisture is
most intense in the direction away from the river, convected by the flow at upper
altitudes. During this process some of the moisture, entrained by the lower-altitude
flow, is transported backwards towards the river. At some locations the spreading to
left and right is almost equal while at other cross-sections one direction dominates
over the other.

It is further noted that the humidity distribution along the river exhibits a rel-
atively regular periodicity, reflecting the vortex structures in Fig. 9.24 (right). A
bird’s-eye view of the moisture concentration over the city, obtained by volume
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Fig. 9.27 Snapshots of instantaneous CO concentration distribution at 18:00 via
volume rendering. Left: summer; right: winter. The grey shades range from zero
concentration (fully transparent) to its maximum (fully opaque). From Hrebtov
and Hanjalić (2019).

rendering,14 indeed displays an undulating fog pattern along the river that qualita-
tively resembles the observation in the natural setting, as shown in Figs. 1 and 14
in Hrebtov and Hanjalić (2017).

Readers interested in microclimate impacts on pollution in the urban environ-
ment may also wish to consult the detailed follow-on explorations by Hrebtov and
Hanjalić (2019) of air quality for Krasnoyarsk using the same URANS model
for the same setting. This study focused on analyzing the origin of the sea-
sonal variation in the carbon monoxide levels in winter and summer observed at
different locations around the city despite a fairly similar emission from road traf-
fic throughout the year. Their predictions broadly captured the sometimes major
recorded differences in CO concentrations between winter and summer conditions,
attributed to a different role of the river on the local microclimate, acting as heat
source or heat sink depending on the season.

The instantaneous snapshots of volume rendering of the CO concentration at
18:00 in Fig. 9.27 give an impression of a typical late afternoon pollutant disper-
sion over the city in summer (left) and winter (right). Note that the greyscales in the
two figures, ranging from full transparency for zero concentration to full opacity
for its maximum, differ in absolute values, but they both show the maximum con-
centration in the same central downtown region, though with markedly different
distributions.

14 Volume rendering is a visualization method (widely used in medical diagnostics) now increasingly enter-
ing non-medical areas, particularly in the atmospheric and environmental sciences. It aims to convey what
the human eye actually sees by assigning a value of the ‘transparency’ or ‘opacity’ of a variable in any
computational cell, thus enabling the viewer to see fog or smoke in natural grey shades.
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Hybrid RANS-LES (HRL)

Co-authored with Alistair J. Revell

10.1 Introduction and overview

The focus of this book so far has been on the provision of turbulence modelling
closures purely within the framework of RANS or URANS methodologies. This
chapter provides an introduction and overview of a different class of approaches for
predicting turbulent flow, often referred to as Hybrid RANS-LES (HRL) methods.
As implied by its name, these approaches result from the direct combination of two
stand-alone frameworks, giving rise to something altogether new. Hybrid methods
seek to combine the robustness and favourable economic cost of RANS schemes
with the ability of Large-Eddy Simulation (LES) to capture the influential large,
energy-containing scales of turbulence.

Despite the established successes of engineering turbulence models presented
in earlier chapters, there is a continual demand for greater reliability in modelling
turbulent flows, driven by the goal of achieving assuredly accurate predictions of
flows in arbitrarily complex flows. Sacrificing the practicality and economy of a
time-averaged framework in favour of a time-dependent approach has become an
increasing trend since the start of the twenty-first century. The previous chapter
has shown that running a RANS solver in time-dependent (URANS) mode may
bring out new features of organized turbulence structures in the flow, which on
time-averaging the output produces a mean flow in much closer accord with exper-
iment than a computation in steady-state mode with the same model of turbulence.
Moreover, as demonstrated in Chapter 9, just as in steady-flow computations, the
success of these time-dependent solutions can be significantly improved by using
more advanced RANS treatments that better capture the turbulent stress field and
the response of the model to flow instabilities.

This desirable outcome can by no means always be guaranteed, however. More-
over, since the reliability of a RANS treatment is recognized to be lowest in regions
of separated flows, the idea emerged of employing a RANS model where the flow

371
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remains attached but LES in regions where the flow approaches separation and any
separated-flow region itself. The advantage provided by such scale-resolving meth-
ods had been apparent from the early days of turbulence modelling. In 1979, Dean
R. Chapman, the then director of the NASA Ames Research Centre, in a keynote
address to the 17th AIAA Aerospace Sciences Meeting, took stock of the rate of
advance in computational power and predicted that LES would be in regular use
for full-aircraft simulation by the 1990s (Chapman, 1979). By the end of the 1990s,
and in spite of Moore’s1 law, it had become apparent that the requisite computa-
tional resource still limited LES to low-to-moderate Reynolds numbers for flow
around, within or through objects of relatively simple geometry. Arguably, it was
from this recognition that hybrid methods were born. This was a time when the
advantages of scale-resolving methods were clear but where their applicability to
flows of practical engineering interest was, at best, of limited scope. Nearly two
decades later, in an article for Scientific American, Moin and Kim (1997), report-
ing the opportunities and challenges of predicting turbulence with supercomputers,
concluded that ‘it will probably be many decades before computers are powerful
enough to simulate in a detailed manner the flow over an entire airplane’. Indeed,
in 2014, in a NASA white paper setting out the computational challenges up to
2030 (Slotnick et al., 2014), LES was assessed as having only a medium likelihood
of being technically ready for full-aircraft simulation by that end point. Hybrid
RANS-LES was identified therein as becoming the primary workhorse over that
period (see Fig. 10.1).

In the great majority of cases where CFD is employed, RANS will continue
to be used alone to guide design or diagnose the origin of faults on account
of its ease of application and relative economy (particularly for plainly steady,
two-dimensional or axisymmetric flows). When, however, for industrial cases, par-
ticularly complex flow features are encountered or where there is a requirement
for assuredly great accuracy, regardless of cost, Hybrid RANS-LES will be the
preferred route. Interestingly, the NASA 2030 roadmap recognizes the potential
for improved accuracy from computations with Reynolds-stress transport models
(indicated as RST in Fig. 10.1) but makes reference to a decision point around
the year 2020, when efforts to yield high-accuracy predictions with these meth-
ods may instead be directed to hybrid approaches. This foreseen shift in focus
resulted from repeated indicators that to capture the frequency content required
for the computation of instantaneous effects (such as three-dimensional separation
and transient loading), some degree of scale resolution would be needed. Given
that LES will remain beyond reach for complex industrial applications for many
decades to come, HRL methods offer a promising way forward, aimed at bringing

1 Moore’s law rests on the observation that the rate of computational power, based on the number of microchips
one can accommodate on a dense integrated circuit, doubles roughly every two years (Schaller et al., 1997).
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Fig. 10.1 Predictions of the readiness of Large-Eddy Simulation over the past 40
years (Top) from Chapman (1979). (Middle) Adapted from the NASA 2030 CFD
Roadmap (Slotnick et al., 2014). (Bottom) The trend in microprocessor power
over this period. The top figure predicted full-aircraft LES to be feasible by the
1990s on computers using 106 megaflops (1012 flops), while the middle figure
predicts medium readiness by the year 2030, with computational power estimate
of 30 exaflops (1019 flops). The bottom figure demonstrates that growth rate has
been more or less constant (Rupp, 2015).
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the majority of the benefits of LES at a much lower computational cost. The man-
ner in which these approaches integrate and interface RANS modelling with LES
methods is the subject of this final chapter.

An overview is first provided of the computational requirements for full resolu-
tion before introducing the main classification of different methods in this category.
From there the LES rationale is briefly reviewed before moving sequentially
through a series of approximations entailing the need for progressively greater
modelling. A historical overview is provided of the principal methods in each cat-
egory with examples of their use, before bringing together key findings, ideas and
likely future developments.

10.1.1 General concepts of scale-resolving methods

The designation ‘scale-resolving methods’ includes any approach which aims to
resolve at least part of the unsteady content of a turbulent flow. Here, the word
‘scale’ refers to the energy spectrum, as introduced in Section 3.3. Direct numer-
ical simulation (DNS) and LES introduced in §1.1 and §1.2, along with hybrid
methods and unsteady RANS, can all be considered to be scale-resolving meth-
ods, to a greater or lesser extent. In steady flow RANS the state of the fluid at any
point depends on the mean and turbulent flow properties at that point and their
spatial gradients. In contrast, scale-resolving methods include non-local effects via
the continual interaction of intermittent turbulent structures around the point in
question. Figure 10.2 showing flow over a hill, illustrates this distinction. A steady
RANS scheme provides a single solution for all time while scale-resolution pro-
vides a continually changing flow field. The separation ‘point’ changes from a
single location in the former case to a range of positions in the latter, made possi-
ble by this non-local accounting of turbulence. The ability to track the dynamics of
coherent eddies is what produces this non-locality, a feature beyond time-averaged
approaches. Note, however, that URANS, considered in Chapter 9, retains at least
some of this scale-reolution capability. The classical way to represent and inter-
pret the range of turbulent scales or eddies present in a flow is via the turbulence
energy spectrum. This is essentially a map of the distribution of energy across the
complete range of eddy sizes, or length scales, at a single point in space and time.
Usually, as introduced in §3.3, the wave number is adopted rather than length,
with dimensions L−1. The turbulent kinetic energy at any given point in space
and time is the sum of the motion of eddies of all scales at that point; it is thus
the integral of the full energy spectrum. Often the majority of turbulent kinetic
energy at any given location arises from eddies of a narrow range of sizes whose
scale is closely linked to some geometric or flow feature from which the turbu-
lence was created in the first place. Since it contains such a large proportion of
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Fig. 10.2 Conceptual diagram showing separated flow over a hill. Grey lines show
boundary-layer profiles of mean-flow field, while blue quasi-ellipses represent
turbulent fluctuations. The red circle indicates the time-averaged point of flow
separation, while the red line terminating in arrow heads indicates the range of
the instantaneous point of separation.

the energy, it is called the integral length scale L. Turbulent scales interact with
each other and, in so doing, break down into progressively smaller eddies. The
smallest scales of motion, those in which the turbulence is finally dissipated, have
a representative size known as the Kolmogorov length scale, η, after the pioneer-
ing Russian theoretician, A. N. Kolmogorov, who made fundamental discoveries
about the universal nature of turbulence (e.g. Kolmogorov, 1941). This scenario is
illustrated in Fig. 10.3 for the case of flow around a wall-mounted cube. As sug-
gested by the sketch, the largest vortical structures in the wake, the integral length
scales, L, are of the same order of size as the cube height, H. Eddies of many sizes
(created by self-inter-tangling) are also shown but, while large in number, they
contribute a diminishing fraction of the total turbulence energy as the wave num-
ber increases. When, by such self-interaction these fine-scale turbulent structures
are broken down to the Kolmogorov scale, they have reached the smallest possible
size before being dissipated.2 The Reynolds number of these smallest scales (based
on the velocity gradient across them and their dimension) is of order unity.

A final scale of note is the Taylor length scale, introduced in §3.3, p.38.
As presented in that section, as the large, energy-containing eddies are broken
down into successively smaller eddies, these finer-scale motions progressively lose
their ‘memory’ of the mean-flow features from which they originated. Indeed, in
many circumstances, away from the constraints imposed by a wall (§6.2.1), the
finest-scale eddies become essentially isotropic. The Taylor length scale, λ

2 The Kolmogorov length scale is formally defined in terms of ν and ε in §3.4, p.43.
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Fig. 10.3 Conceptual diagram showing: (top left) the flow around a wall-mounted
cubic obstacle and the resulting turbulent flow field in its wake; (top right) the
related turbulent kinetic energy spectrum for a point in the wake of the cubic
obstacle; (middle and bottom rows) comparative representation of the trade-
off between direct resolution (in red) and modelling for DNS, LES and RANS
approaches to prediction of turbulence at a particular point. (The cut-off wave
number in LES depends on the filter size, i.e. the size of the grid cells, whereas in
URANS it depends on the type and level of the RANS model.)

(which is larger than the Kolmogorov length scale), is sometimes held to be the
approximate scale at which the turbulent eddies becomes isotropic.

A conceptual distinction between DNS, LES, URANS and RANS is suggested
in the lower rows of Fig. 10.3, where red-toned regions indicate wave numbers
over which scales are directly simulated, while, over the blank regions, an attempt
must be made to account for the energy contained therein using models. In a true
DNS, all scales of motion are simulated numerically. That is to say, the numerically
imposed spatial and temporal scales are sufficient to resolve directly the motion of
all scales of turbulent motion. In contrast to DNS, RANS methods employ only
modelling, while LES and URANS employ both modelling and simulation. Note
that the modelling of small-scale turbulence becomes simpler when the motion is

https://doi.org/10.1017/9781108875400.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.012


10.1 Introduction and overview 377

Fig. 10.4 Conceptual diagram showing comparison between (left) resolution of
all turbulent scales as in DNS, (right) modelling of all scales as in RANS and
(middle) combined resolution and modelling as in LES. (See also Fig. 1.1 for the
case of flow in a channel.)

isotropic. It is for this reason that many scale-resolving methods aim to resolve
scales as small as the Taylor length scale. Nevertheless, for high-Reynolds-number
flow this is a challenging target and modelling is commonly introduced in LES
treatments at scales substantially larger than this.

As a final point of note here, we recall from §3.3 that the integral of the energy
spectrum across all scales gives the turbulent kinetic energy, k:

k =
∫ κ∞

0
E(κ)dκ. (10.1)

For DNS, this quantity is readily available since all scales are resolved, k = kres ,
while for RANS the value is modelled, k = kmod .

For LES, we note that the situation is a little more complex, involving the sum
of both a resolved component and a modelled component:

k =
∫ κ=κmax

κ=0
E(κ)dκ + ksgs (10.2)

where κmax is the largest directly resolved wave number and ksgs is the turbulence
energy contained in scales too fine to be directly resolved (and which thus requires
modelling), known as the ‘sub-grid-scale’ (sgs) turbulence. These scenarios are
represented in Fig. 10.4. There are two particular challenges to computing the total
energy for LES that, in turn, are highly relevant to HRL methods. First, we need to
know the location in spectral space at which the turbulent structures switch from
being resolved to being modelled. With that decided, one can arrange an appropri-
ate numerical strategy for the former and the correct physical representation of the
latter. Without careful accounting of this location, it is possible (and indeed likely)
that part of the turbulence energy will either be double-counted or missed alto-
gether. The second issue is the transfer of information across the resolved/modelled
interface; most of the time energy moves from larger to smaller eddies, but not
always. For example, a flow with mean unsteadiness will include energy trans-
fer in both directions, and so we must include a means of moving energy both
from resolved to modelled scales and from modelled to resolved scales (known as
back-scatter).
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10.1.2 The scales of turbulent motion

A significant contribution by Kolmogorov (1941) was the recognition that turbu-
lence, a wholly complex phenomenon, could be represented and interpreted with
simple observations. Investigating the parametric dependence of turbulence across
different scales of the turbulence kinetic energy spectrum provides an example
of this. Kolmogorov demonstrated that the largest and smallest scales could be
approximated using simple dimensional arguments. While knowledge of the rate
of turbulence dissipation, ε, with dimensions [L2 T−3] is important across all scales,
approximation of the largest scales also requires the turbulent kinetic energy, k
[L2 T−2], to be known while, in the smallest scales, the key additional paramet-
ric dependence is on viscosity, ν[L2 T−1]. The situation has been discussed in
§3.3; to paraphrase the text following Fig. 3.4, we may regard the spectrum as
comprising three distinct regions: the largest scales (relating to energy and stress
production), the smallest scales (relating to energy dissipation) and a mid-range
of scales known as the inertial subrange. Kolmogorov recognized that, at high
Reynolds number, the mid-range scales become independent of both the largest
and smallest scales they bridge, achieving a universal state that holds true for all
flows in energy equilibrium. Dimensional arguments can be used to infer that the
variation of the spectrum in this region has the form:

E(κ) = Cκε
2/3κ−5/3 (10.3)

which implies that a graph of log E(κ) versus log(κ) will be a straight line of
gradient −5/3, a result that is widely confirmed by experiment (see, for example,
Fig. 3.5).

10.1.3 Approximating the cost of full resolution

It is common to make use of the scaling approximations presented in Table 10.1
to estimate the computational cost of a simulation. While the precise nature of
the computational domain and grid topology will vary from one case to the next,
some impression of the cost can be obtained by considering the simplest pos-
sible situation: a box of homogeneous turbulence at a given Reynolds number.

Table 10.1 Summary of scales

Length Time Velocity Reynolds No.

Integral L = k3/2/ε T = k/ε k1/2 k2/νε

Taylor λ =
√

10kν
ε

Tλ =
√

15ν
ε

√
2
3 k1/2

√
20
3

k
(εν)1/2

Kolmogorov η =
(
ν3

ε

)1/4
Tη =

√
ν
ε

(νε)1/4 1
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Homogeneous isotropic turbulence (HIT) occurs in the absence of solid bound-
aries, mean-velocity gradients and external forces. Without such forcing, the
turbulence will decay, and this decay process provides the basis for a detailed evalu-
ation of how the turbulent kinetic energy spectrum evolves. Figure 10.5 provides an
instantaneous snapshot taken from a DNS of a turbulent field in HIT at a Reynolds
number, based on the integral length scale of roughly 90,000. This simulation, by
Okamoto et al. (2007), employed a cubic box of 40963 points, i.e. almost 68 billion
cells, which helps one appreciate the vast range of spatial scales to be accounted
for.

Thus, to approximate the computational cost of simulating a HIT case, we con-
sider a box capable of simultaneously resolving both the largest and the smallest
scales of motion, as shown in Fig. 10.6. In this way we assume the maximum
spatial dimension to be resolved is equal to the integral length scale L and the min-
imum grid spacing to be the Kolmogorov length scale, η. Then, the number of cells
in each coordinate direction, and thus the total number of cells, can be determined
as a function of the turbulent Reynolds number Ret :

N x
cell = L/η = k3/2

ε
× ε1/2

ν3/4
= k3/2

(εν)3/4
= Re3/4

t (10.4)

N xyz
cell = (N x

cell)
3 = Re9/4

t . (10.5)

Fig. 10.5 Scales of turbulence in a DNS of homogeneous isotropic turbulence
(HIT), showing vorticity isosurfaces (adapted from Okamoto et al., 2007). Boxes
within the left image have side dimensions of 1/2, 1/4 and 1/8 of the full image,
and the inset scale indicates the size of the integral length, L, for this flow. A zoom
view of the 1/4-size box appears on the right with the corresponding sizes of the
Taylor length scale, λ, and the Kolmogorov length scale, η, shown in the inset.
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Fig. 10.6 Conceptual approach to approximating the cost of a DNS of homo-
geneous turbulence. Top left: domain size required to capture both the largest
scales (blue) and smallest scales (red). Top right: the overall box dimension is
approximated as a cube of side L, and mesh resolution η. Bottom: implications of
Eq. 10.7 comparing wall time (in seconds) required to compute a simulation of
varying Reynolds number, Ret , on computational hardware of various speeds.

A similar argument can be made for the number of time steps, Ndt , required to
capture accurately both the smallest scales as well as the largest scales:

Ndt = ncyclenresT Tη = k

ε
×
(ε
ν

)1/2 = k

(εν)1/2
= 80Re1/2

t (10.6)

where, typically, a simulation requires nres = 20 time steps to resolve a sin-
gle eddy motion and a typical simulation will need a factor of ncycle = 4 times
the integral time scale (hence the factor of 80 multiplying the turbulent Reyn-
olds number above). From experience, we know that the numerical solution of
the Navier–Stokes equations is dominated by a matrix inversion procedure, which
itself scales with the size of the domain. A typical solution algorithm for matrix
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inversion requires Nmatri x = 103 operations per cell at each time step (Pope, 2000).
While this is only an approximation, this number may be used to estimate the total
number of computational steps, or ‘floating point operations’ that are required to
resolve all scales of turbulence.

An estimate of the computation time required to simulate a case of HIT can
be obtained by dividing the output of Eq. (10.7) with the computational speed of
a given High-Performance Computing (HPC) machine, measured in floating point
operations per second (flops). While a modest desktop computer may, at the time of
writing, offer a speed of the order of 1 giga-(109) flops, the state of the art in scien-
tific computing facilities is currently measured in peta-(1015) flops, with exa-(1018)
flops on the horizon. The lower figure of Fig. 10.6, where different diagonal lines
represent different computational speeds, enables the cost of a DNS simulation to
be appreciated in the context of computational power. The figure is best consid-
ered in conjunction with Fig. 10.1, introduced at the start of this section, relating to
current objectives and trends in the growth of computational hardware. We can see
that a computation on a petascale facility of a box of homogeneous turbulence with
a turbulent Reynolds number of 106 will require months to compute. The implica-
tion is very clear: DNS for the simulation of turbulent flow at Reynolds numbers
of practical engineering interest is far beyond the reach of general purpose CFD;
for example, in the HIT case:

Ntotal = N xyz
cell Ndt Nmatri x = Re9/4

t × 80Re1/2
t × 103 = 8 × 104Re2.75. (10.7)

Thus, we are obliged to consider alternative methods that incorporate modelling.
It may be remarked in passing that HPC is closely linked with the field of turbu-
lence simulation because of the very high computational requirements that may be
involved. (As an example beyond the field of engineering fluid dynamics, the task
of weather prediction on a global scale may be cited.)

10.2 Large-eddy simulation

The aim of LES is to resolve only the larger and most energetic eddies with the
impacts of the remaining smaller eddies being accounted for by modelling. This
approach follows the common observation that 80% of the turbulent kinetic energy
is carried by a relatively small number of larger energetic eddies, e.g. Pope (2000).
An sgs model is employed to model the smaller eddies, which at this scale are dom-
inated by dissipative effects. As discussed in §10.1, turbulent eddies at such small
scales are less dependent on (indeed, are practically independent of) the geome-
try and mean flow, making them nearly isotropic in character, thus enabling their
approximation by relatively simple models.

While in steady RANS approaches a time-averaging procedure is used, for LES
the Navier–Stokes equations are instead filtered over a finite spatial range in order
to separate the turbulence into eddies that are to be resolved from those that are
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Fig. 10.7 Conceptual representation of the LES filtering operation. Left: the pro-
file for a Gaussian and a box filter in space, with respect to grid size �. Right:
the effect of filtering on the evolution of velocity. Comparison of instantaneous
component Û (t) and the filtered component U (t).

to be modelled. A low-pass filter, which allows lower wave numbers but removes
higher ones, is used to decompose the instantaneous flow quantities, �̂, into the
sum of a filtered component, �, and a residual component, ϕ. The residual com-
ponent, �̂−�, requires modelling and its impacts on the flow are accounted for
via the sgs model. The filtering operation, first introduced by Leonard (1975), is a
convolution defined as follows:

�(x, t) =
∫ +∞

−∞
G(�, x − x1)�̂(x1, t)dx1 (10.8)

where G is the spatial filter function with a width typically equal to the grid spacing,
�, which satisfies the normalization condition:∫ +∞

−∞
G(x − xi )dxi = 1. (10.9)

With finite-volume solvers, the filter for LES is usually chosen to be of box-type
or Gaussian, while for spectral solvers, a sharp cut-off filter is applied, as illustrated
in Fig. 10.7. It is important to note that, by virtue of the averaging applied by Eq.
(10.8), these filtering operations behave quite differently from the RANS operator.
The filtered Navier–Stokes equations may then be obtained for incompressible flow
as:

∂U i

∂t
+ ∂U iU j

∂x j
= − 1

ρ

∂P

∂xi
+ 1

ρ

∂τ
sgs
i j

∂x j
; ∂U i

∂xi
= 0. (10.10)

10.2.1 Sub-grid-scale modelling

In a similar manner to the RANS equations, the sgs stress tensor includes contri-
butions from both the filtered and the instantaneous velocity fields, and since the
contribution from instantaneous velocity is unknown, a closure is needed.
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τ
sgs
i j / ρ = Ûi Û j − U iU j . (10.11)

On substituting the definition, Ûi = U i+ui , the full set of terms requiring closure
(which for convenience are grouped into three sets) are as follows:

τ
sgs
i j /ρ = (Ui + ui )(U j + u j )− (Ui + ui )(U j + u j )

= (UiU j + uiU j + Ui u j + ui u j )− U iU j

= Li j + Ci j + Ri j

(10.12)

where
Li j = UiU j − U iU j are the Leonard stresses which represent the resolved

large-scale stresses and fluctuations resulting from the interactions between them;
Ci j = uiU j+u jU i are the cross stresses which represent the cross-interactions

between the resolved and the sub-grid stresses;

Ri j = ui u j are the sgs stresses.

All terms in Eq. (10.12) except for U iU j require modelling via τ sgs
i j . (In contrast,

when the common time-averaged RANS operator is employed, terms correspond-
ing to Li j and Ci j are neglected. However, as noted in Chapter 9 (§9.2.1), in
presenting the URANS approach using ensemble or phase averaging, the same
type of terms, Li j and Ci j , appear, with Ci j shown to be finite (in the URANS
framework) but negligible, especially at higher Re numbers.

Superficially, the filtered Navier–Stokes equation, Eq. (10.10), and the
Reynolds-averaged Navier–Stokes equation, as given in Eq. (2.14), appear identi-
cal in form, though the role of τ sgs

i j is rather different from that of a RANS closure
model. Nevertheless, a solver written for the RANS equations can be readily mod-
ified to solve the filtered Navier–Stokes equations instead. Indeed, it is possible to
‘transform’ a RANS solver to an LES solver with just a few lines of code, although
more fundamental changes to numerical methods, boundary conditions and data
output are also required.

In the following we introduce the most common sgs modelling approaches
employed by LES users, but this is by no means intended to provide a comprehen-
sive review of the topic. Readers interested in exploring in greater depth the further
development and considerations of LES filtering and sgs modelling are referred to
the several more comprehensive textbooks on this topic (e.g. Pope, 2000; Lesieur
et al., 2005; Sagaut, 2006; Schiestel, 2008).

The Smagorinsky model

The Smagorinsky model, the original sgs model proposed for LES (Smagorinsky,
1963), adopts the Boussinesq eddy-viscosity hypothesis. Its form closely follows
the mixing-length hypothesis (MLH) of Prandtl (1925). While the MLH, discussed
briefly in §7.4.7, is known to be extremely limited in its ability to represent the
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non-linear interactions governing large-scale motions in a turbulent flow, it remains
well-suited to the isotropic and small-scale turbulence at unresolved scales in LES.
In this context the form of the eddy-viscosity model is as follows:

τ
sgs
i j /ρ = − 2νsgs Si j + δi jτ

sgs
kk /3ρ (10.13)

where the sub-grid eddy viscosity, νsgs , is approximated as the product of repre-
sentative length and time scales. The length scale is provided directly from the
numerical grid, �, scaled by a constant, cs , known as the Smagorinsky constant.
The time scale is conveniently taken from the computed flow field via the invariant

of the resolved velocity gradient tensor,
∣∣S∣∣ =

√
2Si j Si j :

νsgs = (cs�)
2
∣∣S∣∣ . (10.14)

The rudimentary nature of the scheme needs to be emphasized: there is no
accounting for transport nor anisotropy, and no history effects are included. It
seems evident that more comprehensive modelling would be needed unless the
model is applied simply to the smallest scales of the spectrum. This is underlined
by the fact that the value assigned to the constant cs is case-dependent, and although
a value of cs = 0.1 is commonly used for many practical shear flow cases, quoted
values range from cs = 0.065 for turbulent channel flow (Moin and Kim, 1982) to
cs = 0.2 for HIT (Clark et al., 1979). Moreover, the Smagorinsky constant needs
to be reduced approaching a solid wall to reflect the reduction of turbulent stresses.
This is generally achieved via a near-wall damping function, fD, the most com-
monly adopted form of which being that proposed by Van Driest (1956) for use
with Prandtl’s MLH:

fD = 1 − e−y+/A+
(10.15)

with the damping constant A+ taken as 25. This value is close to Van Driest’s origi-
nal proposal of 26, though none of the schemes for causing A+ to vary, discussed in
§7.4.7, appear to have been explored. Clearly, in laminar flows the sub-grid model
should be switched off entirely, although this raises issues about the model’s capac-
ity to operate in cases exhibiting both laminar and turbulent flow, e.g. transition. It
is also seen from Eq. (10.14) that the viscosity is positive; thus, there is no mech-
anism to allow a negative migration, or ‘back-scatter’ of energy from sgs to the
resolved scales. Despite these drawbacks, the Smagorinsky model still enjoys a
great deal of use on account of its simplicity, though users need to be aware of its
shortcomings.

Part of the reason for the wide range in the values proposed for cs stems from
additional numerical diffusion arising from inadequacies of discretization schemes.
Garnier et al. (1999) demonstrated that the numerical discretization error for a
given code could be re-expressed in the form of a Smagorinsky model, where the
equivalent ‘extra’ value of cs is low for codes with low numerical diffusion and
high for codes with high numerical diffusion. It was shown that in cases where the
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Fig. 10.8 Conceptual comparison of different sgs modelling approaches for LES,
as represented by the turbulent kinetic energy spectrum. (Left) LES with a
Smagorinsky or other sgs model. (Middle) Implicit LES, where no sgs model
is used. (Right) A dynamic Smagorinsky model, where the constant cs is updated
in space and time based on the evaluation of two filtering operations.

equivalent false supplement to cs was high, the underlying effect of the actual sgs
model could be lost. In effect, the numerical error played the role of the sub-grid
model, and a separate model for τ sgs

i j was not required. While this may appear to be
an unwelcome effect, it is actually the essence of a well-established and still quite
widely used approach noted below.

Implicit filtering

The so-called implicitly-filtered LES (or simply Implicit LES) effectively provides
sgs dissipation through the inherent numerical losses incurred from the mesh,
and/or the particular numerical solving methods employed (see Fig. 10.8). Such
methods are particularly useful where the complexity of the sub-grid physics
exceeds the capabilities of the models available in the software, such as for com-
pressibility effects due to combustion or shock-turbulence interactions (e.g. Lele,
1994). A popular strategy is the MILES (Monotonically Integrated Large-Eddy
Simulation) strategy, a scheme proposed by Grinstein and Fureby (2002). While
simplicity is a clear benefit of this family of models, the lack of direct control
makes it difficult to fix the precise form of the filter, or to adjust the degree of fil-
tering to the local mean-flow field. As a counter to these limitations, the level of
numerical diffusion can be controlled by introducing higher-order schemes with
specific numerical features. For further details on this topic the reader is referred
to the comprehensive text by Grinstein et al. (2007).

Dynamic sub-grid-scale modelling

Dynamic sgs modelling seeks to overcome the weaknesses inherent in choosing
a constant Smagorinsky coefficient throughout a domain. Germano et al. (1991)
proposed the dynamic Smagorinsky model as a framework for automatically com-
puting the required value of cs(xi , t) as a function of space and time (see Fig. 10.8).
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The approach is based on the scale-similarity assumption, by relating the turbulent
stresses at one scale � to those at a larger scale n�, where n > 1 (commonly
n = 2, which, with uniform mesh spacing, can be achieved by using a subset of
the same grid). The assumption of scale similarity is used to define a value of cs

which satisfies both grid scales, i.e. cs |� = cs |n�. This is justified on the basis that
both scales appear in the inertial range of turbulence and thus are likely to be ‘scale-
similar’. The model is now more suitable than the original for flows containing both
laminar and turbulent regions, with the former corresponding to values of cs � 0.
The constant can even take negative values, corresponding to the transfer of energy
from smaller to larger scales, i.e. ‘back-scatter’ as introduced at the end of §10.1.1.
These benefits come at a cost, however, in the form of reduced numerical stability
and, possibly, the need for a finer mesh compared with the standard Smagorinsky
model to ensure that both mesh sizes lie within the inertial subrange. Modifications
proposed by Lilly (1992) and Meneveau et al. (1996) have helped to overcome
these shortcomings though, conceptually, the scale-similarity assumption would
not appear to be valid in regions where � approaches L or where either transition
or laminarization is present. Despite these limitations, the scheme’s undoubted suc-
cess may be attributed to the fact that the procedure effectively identifies a value
of cs which reduces the sensitivity to the mesh at any point (Pope, 2004). These
issues have been further addressed in the work by Bou-Zeid et al. (2005), which
proposes a scale-dependent framework based on local averaging of the flow field.

More complex approaches

There are many other approaches for estimating the sgs stresses. Among them, we
mention the Wall-Adapting Local Eddy-Viscosity (WALE) model of Nicoud and
Ducros (1999) that has received considerable attention. The model was developed
for wall-resolved LES of flows bounded by walls of complex configuration because
it reproduces the near-wall scaling for the eddy viscosity without requiring any
dynamic procedure or empirical damping. The WALE model is based on the square
of the velocity gradient tensor.

νsgs = (Cw�)2
(Sd

i j Sd
i j )

3/2

(Si j Si j )5/2 + (Sd
i j Sd

i j )
5/4

where Sd
i j = 1

2
(ḡik ḡk j + ḡ jk ḡki )− 1

3
δi j (ḡkk)

2 and, ḡi j = ∂Ūi/∂x j .

(10.16)

A mix of the local strain and rotation rates of the smallest resolved turbulent
fluctuations in the sgs viscosity is designed to detect the near-wall dissipative
structures, thus ensuring a proper near-wall behaviour by forcing the sgs eddy
viscosity to diminish to zero when approaching a wall.
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Another popular choice (which overcomes some of the limitations of the
Smagorinsky model) is the one-equation model for sub-grid kinetic energy, ksgs ,
which takes the form:

∂ksgs

∂t
+ ∂U j ksgs

∂x j
= −τ sgs

i j Si j/ρ − c1
k3/2

sgs

�

+ ∂

∂x j

(
ν
∂ksgs

∂x j
+ c2k1/2

sgs�
∂ksgs

∂x j

) (10.17)

where terms on the right side are the readily recognized processes of generation by
interaction of the sub-grid stresses with the strain field; dissipation by the fine-scale
unresolved motion; and molecular and turbulent diffusion. Yoshizawa (1982) took
the two empirical constants to be c1 = 1 and c2 = 0.1. The above approach intro-
duces additional information about the sgs which, in principle, allows improved
handling of non-equilibrium and time-history effects and spatial awareness into the
sgs. It is found to offer improved stability over the dynamic sgs model and has the
useful benefit of providing a means of directly computing the relative proportions
of resolved to total turbulence energy at any point.

10.2.2 Resolution requirements of LES

Away from a wall, LES can be performed on coarser grids than those needed for
DNS since this approach does not attempt to resolve the smallest scales of motion.
However, as the wall is approached, the grid requirement becomes severe, partic-
ularly at high Reynolds numbers, since the local turbulence integral length scale
is linearly dependent on wall distance, y. Even the largest eddies become small
close to the wall since there L ∼ y, requiring fine-grid resolution to completely
resolve them. The region over which viscous stresses dominate turbulent stresses,
i.e. the viscous sublayer, shrinks progressively as the Reynolds number increases,
enabling turbulent eddies to persist closer to the wall. These structures cannot be
readily ignored, since the near-wall region contributes substantially to turbulence
energy dissipation.

An illustration of the grid sensitivity of LES in near-wall turbulent flows is
provided in Fig. 10.9, from the work of Temmerman et al. (2005). The turbu-
lent channel flow at a Reynolds number, based on wall units, of Reτ = 2, 000
is computed using LES on two grids for a periodic domain of 2πh × 2h × πh.
The ‘coarse’ grid is based on a typical grid resolution for a RANS approach of
64 × 64 × 32 cells (in streamwise, wall-normal and spanwise directions, respec-
tively) with necessary near-wall refinement for the low-Reynolds-number region,
but high-aspect-ratio cells. The ‘fine’ grid resolution, of 512 × 128 × 128, has
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Fig. 10.9 Simulation results from LES at Reτ = 2, 000 for flow in a plane channel
with a coarse and a fine mesh. Left: Time-averaged velocity profile scaled by
wall units; Right: Instantaneous velocity contours from the two meshes on the
plane y+ = 6. Left: from Temmerman et al. (2005), reproduced by permission of
Elsevier; right: from Hadžiabdić (2005), reproduced by permission of the author.

a total number of cells 64 times greater than the coarse mesh. These mesh scal-
ing factors are indicative of the increased requirements when moving from RANS
to LES, with cell count increasing by factors of 8 and 4 in the streamwise and
spanwise directions, respectively, but only a factor of 2 in the wall-normal direc-
tion. With increased spatial resolution, an additional cost is necessarily incurred
by the requirement to ensure a suitable temporal resolution. For a given local flow
velocity, the requisite temporal resolution �t is directly connected to the spatial
resolution �x by the condition proposed by Courant, Friedrichs and Lewy (1928).
This condition, normally abbreviated to CFL, states that the local flow velocity U
should be smaller than the smallest resolvable velocity �x/�t ; or that the CFL
number:

CFL ≡ U�t

�x
(10.18)

should be a maximum of unity. As shown in the figure, the fine LES mesh pro-
vides reasonable agreement with the reference experimental data, but the prediction
returned from the coarse mesh is poor, particularly when scaled by wall units,
since the computed value of Uτ is under-predicted by almost 40%. Part of the
reason for this error is the failure to resolve the near-wall turbulence correctly. The
figure also shows contours of instantaneous velocity taken very near the wall sur-
face (y+ = 6) there is a striking difference between the flow structures predicted
by the two meshes. The coarse mesh predicts a series of long streaks, many of
which span the entire length of the domain. These so-called super-structures are
not physical and are a tell-tale sign of under-resolution in scale-resolving methods.
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In contrast, the near-wall streaks from the fine mesh are shorter, thinner and more
closely packed. This underlines the need for finer resolution of near-wall turbulent
structures in LES and the erroneous results that may arise from not meeting that
need. In the near-wall region it becomes impossible to define a clear separation
between large and small scales, in the same way one does away from the wall.
Thus, near-wall resolution requirements for LES are very high, essentially similar
to those of DNS. Usually, the grid resolution needed means that the majority of the
mesh nodes for the whole domain are in this region. These requirements are further
explored in the following section.

Best-practice criteria for wall-resolved LES

In his landmark paper estimating the readiness of LES for application to actual
problems in aerospace engineering, Chapman (1979) provided a detailed analy-
sis of the number of cells required for wall-resolved LES applied to a turbulent
boundary layer. He separated the flow into two regions: the inner and outer layers.

The outer layer of the boundary layer, beginning at about 0.1δ, where the mean
velocity is effectively independent of viscosity, is populated by eddies that scale
with the outer scales of the flow and is representative of the larger structures in the
energy spectrum. That is, it is of the order of the boundary-layer thickness, δ, or, in
the case of a simple internal flow, the channel half-height or pipe radius. Away from
a wall, the main physical guidance for mesh resolution comes from the turbulent
kinetic energy spectrum. Considering that the cut-off filter in LES should ideally
be placed within the inertial cascade (beyond which scales can more readily be
modelled), the grid resolution required to resolve scales is essentially independent
of Reynolds number, since progression to higher Reynolds number simply extends
the high-wave-number sgs-modelled region. Then the main concern is to ensure
sufficient resolution quality wherever turbulent flow is expected. By using an ide-
alized form of the energy spectrum, Chapman demonstrated that the number of
cells required to resolve the eddies in a unit volume of the boundary layer was
proportional only to the increasing volume of the boundary layer. An example is
provided in Fig. 10.10 to illustrate this concept. Since experimental measurements
show that in the absence of pressure gradients the turbulent boundary layer grows
downstream at a rate proportional to Re0.2, an extra Re0.4 cells are needed since
the streamwise resolution is unchanged. Chapman estimated the unit volume, δ3,
to require around 2500 cells. In practice, this value will depend on the particular
choice of solver and the numerics employed. With the availability of more accu-
rate experimental data, this number was more recently revised by Choi and Moin
(2012) to N outer

cell ∝ Re0.29. These authors also surveyed a large number of previous
studies and reported that requirements for N outer

cell /δ
3 fell in the range from 1,200

to 33,000. This very wide range resulted from a variation in Nx of more than six
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Fig. 10.10 Visualization of resolution requirement for a wall-modelled LES
applied to the calculation of a flat-plate turbulent boundary layer. Instantaneous
velocity contours are plotted at the back of the domain, along with a time-averaged
velocity profile of the boundary layer. In the foreground, isosurfaces of vorticity
are plotted and coloured with distance from the wall. The gridding arrangements
are shown by way of a (non-physical and not to scale) white cube of side δ. Blue
gridlines represent the outer layer comprising 8 × 24 × 24 = 4,608 cells, while
the red volume covers the inner layer, up to y/δ = 0.1 with 8 × 32 × 24 = 6, 144
cells. (Revell and Mole, Personal Communication.)

with at least a twofold variation in the other directions. Beyond the outer layer, the
flow may remain in an irrotational, inviscid state where the grid can be permitted
to coarsen rapidly, especially when an unstructured mesh is used.

The inner region of the boundary layer incurs meshing requirements which
are much more demanding, since here the effects of viscosity – and thus also
of Reynolds number dependence – are much stronger. Indeed, here the mesh
cells need to be scaled with wall units instead. If inner-layer eddies are to be
adequately resolved, streamwise and spanwise grid spacings of �x+ � 100,
�z+ � 20 are needed and with �y+ ∼ 1. Chapman estimated the number
of cells required to resolve a unit box to be proportional to Re1.8, subsequently
revised by Choi and Moin (2012) to be N inner

cell ∝ Re1.86. In terms of specific cell
dimensions for the inner layer, they propose �x+ ≡ �xU τ /ν ∼= 50 − 130 and
�z+ ≡ �zU τ /ν ∼= 15 − 30, while the wall-normal mesh resolution should start
with the first grid point or cell centre at y+ < 1 and with 10–30 points in the
wall-normal direction. Piomelli (2008) used the above recommendations to esti-
mate the computational cost and time to simulate a turbulent boundary layer. He
did this based on a standard workstation with a processing speed of 1 gigaflop. In
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Fig. 10.11 Cost (in CPU seconds) of making an LES simulation of a flat-plate
boundary layer. The calculations were performed on an AMD Opteron, using two
in-house codes and an open-source code (from Piomelli, 2008).

his comparison, shown in Fig. 10.11, he plotted the inner and outer region times
individually as well as their sum. The figure shows that even for a modest Reyn-
olds number of around 10,000, some 50% of the computational effort is used to
resolve the inner region, occupying around 10% of the flow. Doubling the Reyn-
olds number to 20,000 leads to the inner share increasing to around 99%, clearly
demonstrating the extremely high dependence of the resolution of the inner layer
on Reynolds number. There is thus a strong motivation to find less time-consuming
ways of resolving the inner region. Indeed, the options available for doing so
are considered in §10.3 and subsequent sections. First, however, an important
precursor issue is considered.

10.2.3 Interfacing LES and RANS strategies

If some alternative treatment, simpler and far less time-consuming than LES, is
to be adopted for the inner region or ‘zone’, then issues arise as to how one
handles the change in the representation of turbulence as fluid moves, or commu-
nicates by diffusion, between zones. Zonal methods which adopt separate RANS
and LES regions, each treated with separate methodologies, must resolve this fun-
damental issue. On one side, the flow equations in the RANS zone adopt the
RANS-averaging strategy (whether in steady or unsteady mode) used in earlier
chapters while, in the LES zone, fluctuations are resolved directly at wave num-
bers far greater than resolved with a URANS resolution (or are accounted for only
in their time-averaged effect in a steady RANS treatment). In the two-layer zonal
approach the wall-adjacent region is, however, usually handled by URANS, i.e.
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solved in time simultaneously with the outer LES and thus excited by LES fluc-
tuations across the interface. To a considerable extent that compensates for the
limitations of natural URANS scale resolving. The issue is discussed in more
detail in §10.5.2, where an a priori testing demonstrates satisfactory sensitivity
and responsiveness of the URANS-computed velocity and wall shear stress to LES
excitations.

However, in bulk zonal strategies where large flow regions (e.g. wall-attached
flow regions upstream of separation) are handled by a steady RANS and only some
or embedded zones are computed by LES, a representation of the turbulent fluc-
tuations in the velocity field, ui (t), must be introduced. This is required to switch
efficiently between a region of RANS solution and a region of LES, since the fluc-
tuations are not present in the averaged flow field of the RANS region (or are only
incompletely represented if a URANS treatment is adopted).

When ‘pure’ LES is applied to other than a fully developed flow,3 one encounters
an equivalent problem in assigning inlet boundary conditions to any fluctuating
variable. One might suppose that a reasonable approach would be to superimpose
a randomly fluctuating ‘white-noise’ velocity field onto the mean-flow profile to
trigger the generation of turbulence downstream. However, this is insufficient and
the flow quickly decays to a steady profile. The turbulent fluctuations themselves
may appear to be random but, as we have seen in earlier chapters, they are shaped
by a complex set of interacting physical processes. In fact, it is now appreciated
that a well-prepared ‘synthetic turbulence’ approach is able to provide an inlet
turbulence that is sustained as the flow develops downstream.

In this section, two principal methods for assigning inlet turbulence are consid-
ered: precursor methods and synthesised methods. An outline of both approaches
follows while, for further details, the reader is referred to Tabor and Baba-Ahmadi
(2010) and, more recently, Wu (2017), who provides a detailed review of LES inlet
techniques that includes an outline of their application within an HRL framework.

Precursor methods

For simulations where all or almost all the physical scales are to be simulated
directly, as in DNS or wall-resolved LES, defining the inlet boundary condition
requires significant care and attention (far more so than is needed for RANS meth-
ods). The accuracy of the downstream simulation is directly dependent on the
prescription of the inlet condition; without such careful definition, the value of
expensive simulations can be greatly reduced. There are several inlet techniques
specifically developed to achieve high-fidelity simulation, albeit at a cost.

3 In the case of fully developed or periodically repeating flow, the inlet boundary conditions at any point may be
successively updated by transferring values from the exit plane at the same (y, z) location and time (or even
from the preceding time-step) to the inlet plane: U (xin , y, z, t) = U (xout , y, z, t).
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Precursor or ‘recycling’ methods apply data from a separate, high-fidelity sim-
ulation to the inlet boundary of the target domain. There are two main categories
of this approach. The first, sometimes referred to as ‘strong’ recycling methods,
involves running a supplementary simulation in advance, to generate precise inlet
data. The supplementary simulation is usually periodic, and will often require a sig-
nificant computational effort to produce. Once completed, a velocity profile, Upre,
is extracted at the desired reference plane, xr p, and applied at the inlet to the target
domain, i.e.

U (xin, y, z, t) = Upre(xrp, y, z, t). (10.19)

For this method to work effectively, the geometry, mesh and Reynolds num-
ber of the supplementary simulation at the point xr p(t) should match those at the
inlet location, xin(t), of the target simulation. The data storage requirement may be
large, since data should cover a period in time equal to the required duration of the
target simulation. The cost can be reduced by invoking Taylor’s (frozen turbulence)
hypothesis, in which the variation of turbulence in time is taken as equivalent to that
in space. With that assumption one can instead sweep the location of the sampling
plane in the streamwise direction at a rate equal to the bulk velocity, Ub, at a single
instant of time thus, effectively, providing data for all required time.

While the above approach is only applicable to periodic precursor flows, a sec-
ond category of methods is available for cases where the upstream flow evolves in
a self-similar manner, such as the growth of a flat-plate turbulent boundary layer. In
these cases, a ‘recycling station’ is used to develop fully turbulent boundary con-
ditions from a mean-flow profile, within the same simulation as the target domain,
i.e. no precursor simulation is required. These ‘weak recycling’ methods, originally
proposed by Spalart (1988) and later extended by Lund et al. (1998) for the case of
a zero-pressure-gradient turbulent boundary layer, require an iterative rescaling to
take place between the domain inlet and a second location downstream. The fluctu-
ating velocity component from the downstream location is extracted and rescaled
according to the local Reynolds number of the turbulent boundary layer, before
being superimposed on the mean inlet boundary-layer profile obtained from a the-
oretical model. The process is repeated until the desired boundary-layer Reynolds
number is achieved at the downstream location. While limited to self-similar flows,
the approach is relatively simple to implement and found to be quite efficient. Nev-
ertheless, the technique remains inadequate in regions of strong pressure gradients
and tends to suffer from issues of spurious periodicity introduced by the recycling
process causing non-physical peaks in the spectra.

Synthetic methods – reconstructing the Reynolds stress tensor

Precursor methods are based on simulation data resulting from full solution of
the Navier–Stokes equations, which are then transferred or manipulated onto the
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required inlet plane as needed. In contrast, for synthetic inlet methods the turbulent
velocity fluctuations are synthesized artificially, without solving the Navier–Stokes
equations, a strategy that poses a formidable challenge. A stochastically varying
inlet condition must be created from a reduced set of low-order statistical data,
such as the mean velocity and an approximate Reynolds stress tensor. While some
knowledge of the low-order statistics may be available (or, at least, can be approx-
imated from prior knowledge plus concepts such as local equilibrium), a full-time
history of such data will almost certainly not be. The approach recognizes at the
outset that a precise definition is not practical and instead aims to minimize the
impact of the imperfect upstream boundary definition on the downstream domain.
Synthetic methods provide a low-cost strategy and their success is often measured
by the rate at which turbulent statistics return to expected levels downstream of the
inlet. That is, an ‘adjustment length’ is anticipated downstream from the start of
the domain where results are less reliable. While, unlike precursor methods, syn-
thetic methods are not able to provide an exact replication of turbulence, they are
considered the preferred option for more complex engineering applications and are
also the predominant approach used in HRL methods.

In general, synthetic methods work on the basis of performing a Reynolds de-
composition of the velocity field, in order to split the flow into mean and stochastic
components. The mean component is required as an input to the method, while
the stochastic component is synthetically generated so as to have a variance and
co-variance consistent with a prescribed Reynolds stress tensor. From the user’s
perspective, the inflow problem is then reduced to the prescription of low-order
statistical data over the inlet plane itself. In practice, these low-order statistics
may be obtained by experiment, theoretical approximation or, as is perhaps the
most common, by a separate or ‘precursor’ RANS study. Indeed, RANS statistics
may be interpolated from an entirely independent calculation with different mesh,
numerics and underlying code. As a natural evolution of this concept, it might then
become useful to couple the RANS data generated in one mesh, with the genera-
tion of synthetic turbulence and subsequent turbulent simulation in another; such an
approach can be termed embedded LES (ELES). This is described further in §10.4.

The simplest form of stochastically varying inflow condition is white noise.
However, as reported above, this choice does not work even if one scales the fluctu-
ations to match the magnitude of the Reynolds stress tensor. The missing ingredient
is coherence: the length and time scales of white noise are of the order of the cell
size and time-step size, respectively. Since the energy is evenly distributed between
low- and high-wave-number ranges of the spectrum, the classical energy cascade is
not established, and the fluctuations are quickly dissipated. It is thus apparent that
practical synthetic turbulence generators must take into account some higher-order
statistics, either explicitly or implicitly through the use of a length scale.
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There are several classes of synthetic methods available in the literature. These
include, but are not limited to, methods based on the following:

● Digital filtering methods: where statistical restrictions are placed on initially ran-
dom data in order to mimic physical constraints (e.g. Klein et al., 2003; Schmidt
and Breuer, 2015);

● Higher-order decomposition: where they exist, detailed DNS data providing
length-scale correlations in all coordinate directions can be reduced to provide
an approximation for turbulence statistics (e.g. Druault et al., 2004; Perret et al.,
2008);

● Fourier modes: fluctuations are generated based on the superposition of Fourier
modes at the inlet, according to a prescribed representation of the turbulence
energy spectrum (e.g. Smirnov et al., 2001; Davidson and Billson, 2006; Shur et
al., 2014);

● Synthetic methods: a strategy in which 2D or 3D patches of fluctuations
representing physical eddies are convected across the inlet boundary where
fluctuations are sampled and superimposed on the mean flow.

It is beyond the scope of this book to discuss all the above methods in further
detail, particularly as the first three are designed for use with DNS or LES meth-
ods. In the context of HRL methods, however, the fourth approach merits more
extensive consideration.

Synthetic eddies

The creation of a field of synthetic turbulent eddies, or local spots of coherent
fluctuations, provides a popular route for the generation of fluctuations. The first
appearance of this Synthetic Eddy Method (SEM), proposed by Sergent (2002),
introduced a random sequence of 2D vortices at different locations on the inlet
plane, where they remained for short periods before disappearing and reappearing
elsewhere on the same plane with a different intensity. In this way an attempt is
made to mimic the passage of a field of turbulent eddies through the plane. Jar-
rin et al. (2006) extended this idea to 3D patches of motion. In this framework,
synthetic eddies are generated with the intensity and sign of the fluctuations set to
satisfy the prescribed first- and second-order statistics. The size of the synthetic
eddies is a required user input, generally correlated to mean turbulence inlet data
from a precursor RANS calculation.

The SEM has proved to be simple to implement, and provides a reasonable
approximation to turbulent inflow at low computational cost. Since its inception
several derivatives of it have been proposed, which have incrementally improved
the performance. For external boundary layers Pamiès et al. (2009) split the inlet
plane into discrete regions or modes. Within each region a different calibration of
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the SEM was applied, in order to realize a specific arrangement of eddies with cer-
tain characteristic sizes and shapes. The eddy properties in each mode were set to
match the local flow physics (e.g. streaks very close to a wall, with more isotropic
eddies at modes away from the wall). In this approach, the selection of modes
and corresponding eddy properties are described as suitable for a zero-pressure-
gradient boundary layer. The adoption of the method for a significantly different
flow type would involve identifying the appropriate eddy characteristics and recal-
ibrating the modes; that assumes, however, the availability of relevant DNS or
experimental data for this purpose. Another extension of the SEM, the Divergence-
Free SEM (DFSEM), was proposed first for isotropic and, subsequently, for aniso-
tropic turbulence by Poletto et al. (2013), with the aim of reducing non-negligible
violations of mass conservation that had been found to cause numerical problems
in the original method. Since the synthetic turbulence generated is then divergence-
free, pressure fluctuations that would otherwise develop near the inlet are reduced.
For a compressible solver, this has the advantage of reducing the spurious noise
introduced at the inlet. For an incompressible solver, Poletto et al. (2013) report a
reduction in the number of inner iterations required for their pressure solver to con-
verge. Skillen et al. (2016) have proposed accuracy and efficiency improvements
to the standard SEM as well as an alternate fluctuation normalization factor. Their
scheme is based on a running average of the eddy concentration that guarantees the
desired statistical properties, regardless of the spatial distribution or length scale of
the eddies, thus correctly allowing for an inhomogeneous distribution of eddy size.

Figure 10.12 displays a comparison of the DFSEM with the vortex method of
Sergent (2002), demonstrating that turbulent structures appear almost immediately
downstream of the inlet in the former, when compared to the latter. The advantage
of introducing additional information about the three-dimensional size and shape of
the turbulent structures is clearly apparent also for the development of the Reynolds
stresses. Figure 10.12c indicates an immediate convergence to the values of stream-
wise normal stress, obtained from a periodic channel for the DFSEM, whereas for
the vortex method no correlation is present from the start of the domain, x/δ = 0,
and as such it requires a distance of almost 25δ to reach the correct levels.

10.3 The classification of hybrid methods

In the previous section the theory and framework for LES have been introduced. A
means for approximating the cost of the approach was considered and the dramatic
rise in these costs with increasing Reynolds number was noted. A clear conclu-
sion was that without some further simplifying strategy, wall-resolved (WR)LES
would not be usable for predicting high-Reynolds-number flows of industrial or
environmental interest for many years to come. There is thus a strong motivation
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Fig. 10.12 Comparison of two synthetic eddy strategies applied at the inlet of a
turbulent channel flow LES for Reτ = 395: the vortex method of Sergent (2002)
and DFSEM of Poletto et al. (2013). (a) contours of streamwise vorticity ωx at the
location y/δ = 0.05. Faint vertical black lines denote intervals of 5δ, (b) contours
of spanwise vorticity ωz at the centre of the domain, (c) profiles of the streamwise
normal component of Reynolds stress at different intervals downstream of the
inlet.

to increase the role of modelling beyond that adopted in WRLES, essentially
employing well-tested RANS models where it is known they reliably capture the
turbulence behaviour and leaving LES to handle the remainder of the flow domain.
It is from this standpoint that the main strategies for simplification are now explored
in the context of HRL methods. After more than two decades of research, it is
an area that has seen a large number of approaches and a sizeable community of
model developers and industrial practitioners. These methods have been developed
to address a wide range of different objectives and applications by researchers with
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Fig. 10.13 A sketch by Philippe Spalart during early work on Detached Eddy
Simulation, demonstrating the motivation for a methodology capable of operating
in both RANS and LES modes, but identifying the ‘grey area’ problem in the
region between the two (Spalart et al., 1997).

diverse backgrounds and motivations. This diversity makes it difficult to classify
approaches without exceptions, but in the following pages a framework is provided
for organizing the different approaches.

Spalart, one of the originators of Hybrid RANS-LES, communicated these issues
via a sketch during the early development of the seamless strategy for aerospace
applications (Fig. 10.13). The existence of the transition zone and the associated
challenges have come to be known as the ‘grey area’ problem, and a substantial
body of research has appeared in recent years aimed at minimizing the extent and
impact of its occurrence.

There are two main guiding principles that have broadly served to create a major
difference between most proposed methods. The first is the idea that the separate
strategies of RANS and LES are themselves mature and well understood; so, the
best way forward is to combine these methods in the most efficient way. Such meth-
ods are generally known as ‘zonal’ or ‘segregated’ approaches. The second is the
observation that both frameworks share commonality in their derivation and func-
tional form (particularly for the unsteady RANS equations). This has motivated the
development of ‘seamless’ (or ‘global’) frameworks which aim to adjust the func-
tion of a single baseline model, whether RANS or LES, to include the capability
of the other.4

There is an exception to the classification above: wall-modelled LES methods
which form a third category in Fig. 10.14. While these can be considered as zonal
methods, in this presentation they are treated separately. Their motivation has been
the adaptation of LES for high-Reynolds-number flows, and their development
has, in large measure, been driven by the LES community. A brief account of the

4 To avoid confusion, it is noted that throughout this chapter the acronyms RANS and URANS are not used
interchangeably, but each with a specific meaning: the RANS refers to the model whether solved in steady or
unsteady mode, whereas URANS refers to the (unsteady) mode of solution. Note also that the vast major-
ity of HRL schemes apply URANS in the ‘RANS region’, i.e. a RANS model solved in unsteady mode
simultaneously with a true LES or its surrogate in the ‘LES region’.
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Fig. 10.14 A conceptual classification of Hybrid RANS-LES and their sub-
classes.

different strategies is provided below as a preliminary to further discussion. It is
noted that each of the three categories of HRL contains a number of variants (sub-
models), which are difficult to classify in a clear-cut manner. The best known and
popular methods are noted in Fig. 10.14.

Zonal methods. In these methods the prescription of RANS and LES regions
is made in advance, based on knowledge or anticipation of the flow and the need
to compromise between accuracy and cost. RANS regions are not limited to the
near-wall as in WMLES but may be applied more extensively. These methods are
more of a toolkit than a single approach, with different elements being interchange-
able, thus bringing different solution strategies together effectively and without
adversely impacting the prediction. A RANS treatment is used, where possible in
steady mode (if the flow is stationary in the bulk) or solved in time (for unsteady
flows without resolving any turbulence scales), while the LES-based treatment
is here minimized or ‘embedded’ within the RANS zone in regions where scale
resolution is deemed to be important. Usually, the LES is employed with an sgs
viscosity defined with a length scale based on the grid size, �. Such methods are
also known as segregated or ‘bulk zonal’ approaches to distinguish them from ‘wall
zonal’. The main challenge in their application lies at the interface where artifi-
cial/synthetic fluctuations need to be generated on the RANS side of the interface
to match the LES. Determining how realistic, instantaneous fluctuations can be
introduced at the inlet to the LES region is a crucial feature of these methods. In
the other direction, from LES to RANS, obtaining time-averaged quantities for use
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in the RANS equations is straightforward, although care must be taken to ensure
that the averaging window is sufficient. Overall, zonal methods provide the flexi-
bility to employ separate equations, separate grids, separate numerical settings and
in some cases entirely separate solvers!

Wall-modelled LES (WMLES). As a natural evolution from wall-resolved LES,
these methods employ approximations in the near-wall viscosity-affected region in
order to avoid the need to resolve this costly inner region of the boundary layer.
Away from the wall, these methods are no different from wall-resolved LES. The
level of approximation varies greatly, ranging from imposing energy equilibrium
and the omission of pressure-gradient effects to the inclusion of a stand-alone
RANS model in the near-wall region. Thus, the use of LES in this wall layer is
replaced by a less expensive strategy for computing the (time-dependent) wall
shear stress or by using transport equations solved in unsteady mode (URANS)
for different turbulence variables. Clearly, these methods are ‘zonal’ (‘wall zonal’)
since they switch from one approach to another close to the wall; but they differ
from the more general (bulk) zonal methods in that WMLES methods are gener-
ally based on using RANS to support the LES region, whereas bulk zonal methods
introduce regions of LES to overcome limitations of RANS. Much of the effort and
focus is placed on overcoming issues which arise at the interface between the two
regions.

Seamless methods. Where an approach is capable of switching automatically
between URANS and LES operation, it is generally referred to as a ‘seamless’ or
‘global’ method (also termed ‘non-zonal’ or ‘unified’). Seamless approaches are
based on the continuous treatment of flow variables whether they act in URANS
(usually in wall-adjacent areas) or LES mode. In the latter, the RANS solver acts as
an sgs model. Thus, the same equations are solved in time-dependent mode over the
whole domain (i.e. they encompass both regions) usually with the same numerical
solution algorithm.

Seamless methods exploit the intrinsic similarities of the RANS and LES equa-
tions and invoke criteria and frameworks to initiate switching between the two. The
mode of operation, RANS or LES, and consequently the location of the interface
is prescribed as a function of the solution and/or the grid spacing. Some schemes
effectively seek to extend LES frameworks to provide a reasonable approxima-
tion on coarse meshes, while others take the opposite approach, extending RANS
methods to offer scale resolution, thus named as ‘sensitized’ RANS. In some
approaches, authentic RANS and LES are blended via a continuous function in
terms of local grid size. In principle, all such approaches offer practicality since the
user does not need to know the flow in great detail in advance, i.e. one avoids the
need to prescribe the regions of the flow to be treated in URANS and LES modes.
However, on the down side, this can lead to situations where the switch between
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Fig. 10.15 Illustration of the conceptual difference between the two main
approaches to Hybrid RANS-LES for a plane channel flow at Reτ= 2, 000.
Left: Zonal two-layer method with a distinct interface between the wall-adjacent
URANS region (low-Re k-ε model with adjusted coefficient to match the LES
sgs viscosity at the interface), and a typical LES away from wall, for different
predefined locations of the interface. Right: Seamless method (DES97) based on
the Spalart–Allmaras one-equation RANS model modified by replacing the tur-
bulence length scale with the representative grid size acting as a surrogate of the
sgs model. From Hadžiabdić (2005), reproduced by permission of the author.

RANS and LES occurs in an unfavourable location, and there is less control of
associated mesh and numerics, as there can be with zonal methods.

The conceptual difference between zonal and seamless methods is illustrated
in Fig. 10.15 in terms of the effective (operational) eddy viscosity. The zonal
approach (left) employs a two-layer model with a predefined interface (shown for
three different locations); the LES region is clearly identifiable by a slowly vary-
ing Smagorinsky sgs viscosity, whereas in the RANS region the original model
is active only very close to the wall but damped further away to match the sgs
viscosity at the interface. In seamless methods (right) the eddy viscosity is contin-
uous, obtained from the same RANS model, but damped gradually (‘sensitized’)
away from the wall to serve as an sgs model (akin to one- or two-equation sgs
models, §10.2) in the outer (‘LES’) region. The onset of this LES region cannot
be identified by a clear-cut interface. The sgs viscosity is usually larger than with
a conventional LES, as seen in Fig. 10.15 (right); and the ‘true’ LES is eventually
recovered only very far away from the wall, if at all.
The grey area. As noted above, zonal methods require the user to identify in
advance which regions should run in scale-resolving mode and which regions need
only a time- or, more commonly, an ensemble-averaged solution. In doing so, the
user must recognize that there will usually be an adjustment region on either side
of the boundary where neither the RANS nor the LES solutions perform as would
be expected if either were used alone.
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Seamless methods do not require the advance specification of which regions
will be treated by which scheme; instead, there is a pre-assigned set of criteria
that determine the location of the switching from one mode to the other. The auto-
matic switchover is generally dependent on the evolution of the flow solution and
is then liable to change continually over the course of the simulation. While the
user may be able to deliberately steer a given region to be treated in either RANS
or LES mode by coarsening or refining the mesh appropriately, there is generally
no guarantee that the desired mode will always be applied in any given region.

A degree of uncertainty is associated with all the above approaches, whether
zonal or seamless. In each case, the user is required to make choices and so must
call on experience and knowledge of the simulation to decide which strategy is
best. The feature common to all is that a finite adaptation region will occur from
one strategy to the other. In the best case, the transition is achieved over a min-
imal distance and with minimal adverse impact on the prediction. At worst, an
unintended transition may adversely alter the evolution of the whole solution, or
errors arising at the interface may propagate throughout the domain and drastically
corrupt the accuracy of the prediction.

10.4 Bulk zonal models and embedded LES

As discussed in previous chapters, when employed appropriately, the predictive
capabilities of RANS models are capable of correctly predicting a wide range of
complex flow phenomena. In such cases, the use of a scale-resolving method must
be carefully considered. If an appropriate RANS method provides sufficient accu-
racy, the additional expense arising from the finer spatial and temporal resolution
requirements of full domain LES may not be justified. Restricting LES to a specific
portion of the domain, while maintaining a satisfactory RANS solution elsewhere,
is thus pragmatic and offers potential for gains in computational efficiency.

In general, zonal approaches seek to use LES regions, or other scale-resolving
methods, embedded within a RANS solution with an explicit, time-fixed, inter-
face defined. Each subdomain is then solved individually with a separate set of
transport equations. Unlike seamless (global) methods, there is a clear transitional
boundary between RANS and LES regions. By introducing a general framework
to incorporate RANS with LES in this way, one is able to select the level of clo-
sure that is particularly suited to the flow in question. This framework is then able
to benefit from the extensive collection of modelling developments accumulated
in recent decades in the domain of turbulence modelling. As described in §10.3,
there are two main categories of approach which can be considered to be zonal.
Bulk zonal is addressed in this section, while wall-modelled LES is addressed in
the next section.
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Fig. 10.16 A sketch of the three broad approaches adopted with Hybrid RANS-
LES. (Top left): wall-modelled LES ascribes URANS (or, less frequently, steady
RANS), or a wall-function model, to the near-wall, while the rest of the domain
uses LES. (Top right): seamless methods adopt a single set of equations such
that the solver switches automatically between RANS and LES. (Bottom): zonal
methods prescribe in advance where the solution should be from RANS or LES.
In each case, a region between the two modes, denoted the ‘Grey Area’, is marked,
representing a region where careful consideration of results is needed. Note that
the smooth line in the RANS region of WMLES (top left) does not necessarily
imply a steady RANS; usually a URANS solution is adopted (see footnote in the
introduction of §10.3).

In bulk zonal approaches, the RANS domain is used to provide boundary condi-
tions to the LES region, and, as such, the method is often referred to as ‘embedded
LES’ or ELES. In practice, the interfaces will be normal to the mean-flow direc-
tion, which can either be one-way-, i.e. transferring information in the direction of
the mean flow only, or two-way-coupled, in which case there is continuous com-
munication between the RANS and LES zones. Reducing the LES region delivers
greater cost savings while the turbulence-resolving capability for specific features
or physics that one identifies in advance is better handled by LES than RANS.
An early implementation of ELES was presented by Cokljat et al. (2009), who
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Fig. 10.17 Embedded LES applied to the flow around a simplified building,
adapted from Santasmasas et al. (2022). Top Left: schematic of domain displaying
blue LES region inside red RANS region; where synthetic turbulence (SEM) is
applied on the pale orange shaded plane. Top right: 3D view of embedded region,
showing streamlines at ground level and iso-contours of Q-criterion in white
within LES domain. Bottom row: comparison of total turbulent kinetic energy,
normalised by bulk velocity Ub, at symmetry plane (side view and top view) for
three cases: 1) where no SEM is applied, 2) the case where SEM is applied, and
3) experimental results from Meng and Hibi (1998).

considered fully developed flow through both a pipe and a channel and flow over
a backward-facing step. An interesting combination of both zonal and seamless
hybrid methods is proposed by Deck and co-workers (e.g. Deck et al., 2014) known
as Zonal Detached Eddy Simulation (ZDES), particularly with external aerody-
namics applications in mind. In ZDES, the user must define in advance where
the RANS model should operate and where a scale-resolving approach is required.
Figure 10.17 shows some recent results. A number of similar implementations have
followed that approach, including the work of Anupindi and Sandberg (2017), who
validated a two-region ELES solver that consisted of single RANS and implicit
LES zones with the transfer of variables handled at the interface. A more com-
prehensive review of the developments in this category is provided by Holgate
et al. (2019). Figure 10.17 shows recent results from Santasmasas et al (2022),
for the application of embedded LES to the flow around a simplified building.
The simulation passes from RANS to LES via the use of the Synthetic Eddy

https://doi.org/10.1017/9781108875400.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.012


10.4 Bulk zonal models and embedded LES 405

0.0
0 2 4 6 8 10 12 14

0.5

1.0C
f

1.5

2.0
periodic LES
ELES - EBRSM
RANS - EBRSM
ELES - SST
RANS - SST

Fig. 10.18 Demonstration of embedded LES for a turbulent channel flow. Top:
background simulation (transparent) is a RANS calculation, either k − ω SST
or EBRSM, while two embedded regions of LES are included in the domain,
from 3 < x/δ < 7 and 9 < x/δ < 13. Bottom: corresponding calculation of skin-
friction coefficient for each combination, where shaded blue regions denote the
location of embedded LES. The deviation from the periodic value (stars) at the
inlet to each embedded region is indicative of the development length needed,
x/δ ≈ 1. From Holgate and Revell, personal communication.

Method, introduced in the preceding section. The application of synthetic tur-
bulence at the RANS-LES interface is required to correctly predict levels of
turbulence arising over the top of the building. Without this, turbulence is observed
to be under predicted at the separation point and subsequently over predicted in the
wake.

The main challenge with ELES is the prescription of boundary conditions. Mov-
ing from a region of RANS, where quantities are time-averaged, to a region of
LES requires knowledge of the turbulent fluctuations present in the flow. In the
RANS region these quantities are represented by the Reynolds stress tensor, while
in LES these values are time-dependent and result directly from the simulation.
At the start of the LES domain, one must introduce turbulent fluctuations that are
sufficiently realistic to minimize any adverse impact on the downstream solution.
This has been described in §10.2.3. Such techniques necessarily incorporate signif-
icant approximation, and it is reasonable to expect that there will be an adjustment
region downstream of the interface. An effective synthetic turbulence method will
minimize this adjustment region. Figure 10.18 presents results from the case of a
turbulent channel flow, where two successive embedded LES regions are coupled to
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a background RANS simulation. In both cases, the expected value of skin-friction
coefficient, C f , is recovered within one channel half-height, δ, of the interface,
which is acceptably fast. The departure from the expected value of C f can be
reduced further by using a more advanced RANS closure – in this case, the elliptic-
blending Reynolds stress model (EBRSM). This is an expected result since the
accuracy of the synthetic turbulence depends on the predicted levels of turbulence
anisotropy fed into the algorithm, and serves to underline the benefits of employing
more capable RANS schemes in a zonal framework.

For a fully embedded region, one must also consider how flow moves from LES
to RANS. In this scenario the degrees of freedom are reducing rather than increas-
ing and, conceptually, at least, this is a more canonical problem. Often a moving
time average is applied wherein fluctuating quantities at the edge of the LES region
are averaged over a predefined time interval, or spatial region, so as to recover val-
ues suitable for matching with the RANS equations. More details of this can be
found in Von Terzi and Fröhlich (2010). A number of more integrated approaches
to zonal RANS-LES have been proposed, including the dual-mesh approach of
Xiao and Jenny (2012), wherein two separate solvers, one for RANS and one for
LES, are coupled together. As well as enabling mesh resolution to be targeted to
specific regions of interest, this method allows the user to retain elements of the
numerical solver and the mesh that are most suitable to the region in question, be it
RANS or LES. For example, the RANS solver can retain a more stable numerical
scheme on grids with higher aspect-ratio cells near the wall. Meanwhile, the LES
mesh can be more directionally uniform; one can thus select numerical options that
reduce artificial diffusion, that might otherwise adversely affect the stability in the
RANS region.

10.5 Wall-modelled LES

In order to avoid the expensive resolution of fine near-wall structures at high Reyn-
olds numbers, wall-modelled LES employs modelling approximations over the
inner region of the boundary layer and switches to LES for the outer region and
beyond. As discussed in §10.2.2, close to a wall it becomes impossible to define
a clear separation between large and small scales, in the same way that one does
well far from the wall. Thus, near-wall resolution requirements for LES and DNS
are similar, with the cell count in the first few per cent of the flow nearest the wall
often accounting for the vast majority of the overall grid numbers, even when the
most important physical features occur well away from the wall. Resolving this
issue has led to a great deal of effort in the LES community.

There are essentially two main approaches to approximating the wall shear
stress: wall functions and two-layer methods, Fig. 10.19.
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Fig. 10.19 The two main categories of wall-modelled LES approaches. (Left)
Wall-function-based LES, where simple models are used for the inner region of
the boundary layer. (Right) Two-layer methods, where full RANS approaches are
employed next to the wall, offering a wider modelling capability and, possibly,
the ability to cover a greater proportion of the near-wall region. Note that in both
cases the near-wall properties, here for convenience denoted by continuous lines,
are usually unsteady being excited by the LES solutions in the outer region.

Wall-function LES (WF-LES). These methods employ simple approximations to
cover the near-wall zone that is assumed to be in local equilibrium, thus avoid-
ing the need to resolve the costly innermost region of the boundary layer. Away
from that region, the approach is conventional, no different from wall-resolved
LES. Though the solution of a RANS model is not involved, many of the methods
borrow heavily from the simpler wall-modelling strategies developed for RANS
approaches and, as such, they are normally considered as an HRL approach. These
schemes range in complexity from applying a rudimentary logarithmic velocity
variation over the wall-adjacent cell, to the computation of a set of boundary-layer
equations on a separate numerical mesh (rather in the manner of the numerical wall
functions used with RANS closures discussed in Chapter 8). Near-wall turbulence
energy is generally estimated from the wall shear stress rather than from a transport
equation.
Two-layer methods. employ a stand-alone (U)RANS approach in the near-wall
region, as opposed to the simpler approximations used in WF-LES. In principle,
making a more complete modelling of the near-wall physics offers scope for captur-
ing such non-equilibrium near-wall phenomena as laminarization and is especially
beneficial in treating wall heat and mass transfer. They may likewise be applied
over a greater region near the wall than would generally be possible with WF-
LES methods, which, in turn, further reduces the computational burden of the
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LES. These methods are referred to as ‘zonal’ (or ‘wall zonal’) since they employ
RANS and LES in separate, generally pre-determined, regions of the computa-
tional domain. Considerable effort is focused on overcoming issues that arise at the
interface between the two regions, related to the fundamental differences between
the RANS and LES rationales. Methods that automatically update the location of
the interface are also available with the aim of avoiding the shortcomings arising
from a user-defined choice; but they are currently less common.

These approaches are examined further in the following sub-sections.

10.5.1 Wall–function approaches

Equilibrium-based wall models

The primary goal of a wall function for LES is to provide a value for the wall shear
stress (in both streamwise and spanwise directions, i.e. τw,x and τw,z with y the
wall-normal direction) as well as, where appropriate, the wall heat or mass fluxes.
Since their direct calculation would necessitate a fine near-wall mesh (which is not
provided), their estimation will generally employ a combination of modelling and
empirical approximations to account for turbulent mixing in the region from the
wall to the first grid point; the strategy is similar in principle to that presented in
Chapter 8 for RANS closures. Wall functions in LES are typically employed on
meshes with dimensions �z+ � �x+ � 100 and �y+ � 50. Thus, while the use
of such a coarse grid across this near-wall zone leads to major computational sav-
ings, there is also a very large variation in the instantaneous flow properties within
a single cell to be accounted for.

It is important to recognize that, when resolving eddies in a turbulent bound-
ary layer via LES, one simulates the actual physical processes involved rather than
modelling them. Indeed, certain physical processes must be correctly simulated to
obtain accurate mean-flow statistics. With a RANS approach, the viscosity-affected
layer and the fully turbulent region beyond may readily be treated separately,
with distinctly different models. With scale-resolving approaches, however, there
is a continuous sequence of physical interactions taking place between these two
regions, as indicated in Fig. 10.20. A representation of the first near-wall cell in a
wall-function approach is shown in the left figure, with the cell centre represented
by a black dot, located at y+ ∼ 50. A wall function must attempt to approximate the
motion in all these wall-adjacent cells. A view from above is provided on the right,
where all of the visible structures lie within the region covered by the wall function.

As described in the textbook by Hinze (1975) (presenting ideas and photographs
of the near-wall flow structure in a turbulent boundary layer reported by Kline
et al., 1967), a continuous cycle of non-linear interactions is present. Turbulent
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Fig. 10.20 DNS of a turbulent channel flow at Reτ= 395, demonstrating the mod-
elling challenge of a near-wall model (Revell and Santasmasas, Personal Com-
munication). Left: a slice through the domain showing contours of vorticity rep-
resenting turbulent sweep and ejection events, with a representative wall-function
grid superimposed for reference. Right: a view from above (with flow direction
now into the paper) of the turbulent structures in the same simulation, with stream-
wise streaks coloured red/blue to represent clockwise/counterclockwise rotation
about the streamwise x-axis.

‘bursts’ bring high momentum fluid from the fully turbulent layer down through the
inner layer (‘sweeps’), impinging on the wall and displacing the low momentum
fluid there upwards in the form of ‘ejections’. These events introduce a continual
variation in local values of wall shear stress, rising sharply during a sweep and
dropping during an ejection.

Such interactions inevitably lead to large departures from the time-averaged
form of the usual semi-logarithmic layer, Eq. (8.2), i.e.

U (y+) = Uτ

[
1

κ
ln y+ + B

]
. (10.20)

Moreover, the weaknesses of such a representation are even greater as one
departs from the idealized flows where such a mean-velocity variation is found.
Indeed, as discussed in Chapter 8, in the context of RANS modelling, such
simplistic wall-function methods are generally not valid in the presence of sub-
stantial adverse pressure gradients, three-dimensional flow and flow separation,
all of which are common in industrial configurations. For RANS methods, more
advanced wall functions accounting for non-equilibrium effects have been devel-
oped (§8.3–8.6), but there is currently little sign in the literature of such models
being used in or developed for WF-LES.

In fact, early research on LES was particularly constrained by computational
resources and so wall modelling was the only option. Deardorff (1970) reported
the first LES of a turbulent channel flow using a 3D domain of only 6,720 points
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(24 × 20 × 14). Both the average velocity and the second derivative of the filtered
velocity were assumed to obey the above log law, while the viscous contribution to
wall shear stress was ignored; thus, the resulting framework was entirely insensi-
tive to Reynolds number. Schumann (1975) developed a more general version, by
calculating an effective viscosity from the definition of wall shear stress, essentially
in the same way as the standard WF is applied in RANS software, Eqs. (8.10–8.12).

τxy

ρ
= (ν + ν t)

∂U

∂y
(10.21)

τxy

ρ

∫ yP

0

1

(ν + ν t)
dy =

∫ yP

0

∂U

∂y
dy (10.22)

τxy

ρ
=
[∫ yP

0 1/(ν + ν t)dy

yP

]−1
UP

yP

≡ νeff
UP

yP

(10.23)

where νeff represents the effective total viscosity in the first cell and subscript P

denotes the location of the first node away from the wall. Schumann’s approach
required a statistical average (e.g. a spanwise average in a 2D flow or a time aver-
age) in order to apply the log-law to the filtered velocity field. It also required the
mean wall shear stress to be prescribed a priori, which greatly limited its scope.
In place of the log-law, Werner and Wengle (1993) proposed an approach based
on a 1/7th power-law velocity profile, U+ ∝ y+1/7 which provides a more con-
venient (albeit, not assuredly more accurate) formula for determining τxy directly
from the velocity profile. However, these schemes, and a number of other similar
approaches, are essentially all limited by the basic assumption that the law of the
wall is applicable both locally and instantaneously, which is emphatically not the
case. Indeed, Radhakrishnan et al. (2006) demonstrated for the case of flow separa-
tion over a contoured ramp, that while advanced WMLES methods provided a good
representation of the flow (including separation and reattachment points), use of
Schumann’s wall-function approach entirely failed to identify any flow separation.

Improved analytical wall models

More complex formulations have been proposed to circumvent some of the more
restrictive assumptions described in the previous section. They amount to analytical
developments of the basic theory, made to incorporate the resolved turbulent struc-
tures in the outer layer. Here the motivation was provided by increasingly more
detailed data from DNS and LES simulations. Piomelli et al. (1989) introduced
modifications to account for the non-local nature of the near-wall structures. This
was achieved by including a spatial offset in the streamwise direction between
instantaneous velocity and wall shear stress, to account for tilted hairpin vortex
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structures. Marusic et al. (2001) extended this idea by separating the mean and fluc-
tuating components of the wall shear stress, so that associated rises due to sweep
events could be more directly scaled to available experimental data. These methods
still inherited limitations from the assumptions made for the log. law though their
dependence upon it was reduced through the use of the boundary-layer equations
shown in Eq. (10.24):

∂

∂y
(ν + ν t)

∂Ui

∂y
= Fi for i = 1, 3(i.e. x, z)

Fi = 1

ρ

∂P

∂xi
+ ∂Ui

∂t
+ ∂

∂x j
UiU j

(10.24)

where U and P represent the near-wall unresolved values, and νt is often approxi-
mated using the MLH. This equation can be integrated from the wall, y = 0, to the
first cell node, yP as follows:

τyi

ρ
=
[∫ yP

0

1

(ν + ν t)
dy

]−1 [
Ui,P − Fi

∫ yP

0

ydy

(ν + νt)

]
. (10.25)

Setting Fi to zero recovers the equilibrium ‘stress-balance model’ and the
log. law, Eq. (10.23). Wang and Moin (2002) compared the full-boundary-layer
equations for a trailing-edge flow with simplified cases where Fi = 0 and
Fi = (1/ρ)∂P/∂xi , as shown in Fig. 10.21. When the pressure-gradient term is
included, the location and discontinuous slope in skin friction is better predicted
than with the standard equilibrium wall function. The deviation from the full LES
around the trailing edge suggests convection terms play an important role there.

Hoffmann and Benocci (1995) developed a model based on the thin boundary-
layer equations, Eq. (10.24), with a further simplification to relate the velocity
gradient to the inviscid streamwise velocity gradient. That leads to an expression
in terms of the boundary-layer displacement and momentum thicknesses, δ∗ and θ .
Manipulation of this form by Bose and Park (2018) showed that pressure-gradient
effects can still be captured by resolving the outer layer, so long as the wall function
does not cover more than 20% of the boundary layer. This has been shown to be
practical and effective in several cases where the flow is attached, though it should
be noted that these approximations are not applicable to the case where the flow
becomes separated.

Numerical wall models

Regions of flow far from the wall can often be well predicted using wall-modelling
LES with large near-wall cells; but for physical processes like boundary-layer
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Fig. 10.21 Wall-modelled LES applied to the flow around the trailing edge of an
airfoil. Top: contours of streamwise velocity U/U∞ in a spanwise plane. Contour
levels cover the range U/U∞ = −0.3 (blue) to 1.2 (magenta) with increments
of 0.1, (Wang, 2005). Bottom: corresponding prediction of skin-friction coeffi-
cient, C f , for different versions of Eq. (10.24). Solid line: Fi = 0.; dashed line
Fi = (1/ρ)∂P/∂xi ; dotted line: reference results from wall-resolved LES (Wang
and Moin, 2002).

growth and separation that depend strongly on the character of the near-wall tur-
bulence, these approaches are severely limited. Balaras and Benocci (1994) have
proposed an extension of the above analytical approach. In place of the coarse
wall-adjacent cells they applied a fine near-wall mesh over the inner region of the
boundary layer, on which they solved the boundary-layer equations, Eq. (10.24),
via a general framework based on the wall-normal component of velocity rather
than specifically designating this as the y-component. (The approach has similar-
ities with the ‘numerical-wall-function’ strategy for RANS solvers presented in
§8.6.) Two-dimensional boundary-layer equations are solved, for both wall-parallel
components, and so the cost of the method is slightly greater than wall-function
versions such as that of Wang and Moin (2002) cited above. The approach has
been found to work well for a range of flows, including high-Reynolds-number
flow through a channel and square-duct flows, both stationary and rotating, with
notable improvements over analytical treatments.
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The numerical wall model and its derivatives have also been applied to cases
where the flow is driven by adverse pressure gradients producing flow separation.
Two such examples are the backward-facing step and the trailing-edge case of the
airfoil, which were considered by Cabot and Moin (2000). In their work they inves-
tigated a wall model based on the solution of Eq. (10.24) for these two cases: fully
including Fi and the simplification, Fi = 0. A clear advantage of the former was
found. Similarly, Diurno et al. (2001) demonstrated superior performance from a
numerical-wall-function approach applied to a backward-facing step at Reynolds
numbers based on step height of both 5,100 and 2,800, shown for the former in
Fig. 10.22. The flow reversal is seen to be predicted on the inner mesh at the flow
reattachment point. Accordingly, the prediction of skin-friction coefficient, C f , is
considerably improved compared with the algebraic model.
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Fig. 10.22 Left: the concept of numerical wall functions with LES. Right: com-
putations of flow over a backward-facing step from Diurno et al. (2001). Top:
time-averaged flow field showing separation and recirculation. Middle: a zoom
of the reattachment region, showing mean-flow vectors and streamlines as well
as flow vectors from within the numerical WF. Bottom: skin-friction coefficient:
Symbols: reference DNS data, Solid line: analytical WF + LES, Dashed line:
numerical WF + LES.
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10.5.2 Two-layer RANS-LES

In ‘two-layer’ approaches the aim is to use the RANS solution to replace entirely
the LES representation next to the wall. This practice permits a coarser near-wall
mesh, especially in the streamwise and spanwise directions. RANS is applied from
the wall surface up to an interface at a chosen wall-normal distance, beyond which
LES is adopted. While the location of the interface and, thus, the thickness of the
RANS layer can be chosen freely, the main modelling challenge is how to arrange
the switchover, since conceptually the RANS and LES models remain unmodi-
fied away from the interface. Such methods are clearly zonal in nature. While the
initial focus was on cases where the RANS–LES interface was parallel to the wall,
schemes have subsequently been generalized to treat separated and other complex
flows where the interface location may be freely chosen. Methods which intro-
duce more general zonal frameworks are described in §10.4. In some methods the
switch is imposed at a certain wall-normal distance, while in others the location of
the interface is free to adapt to the solution. The former can be referred to as having
a fixed (hard or static) interface, while the latter is termed a soft or dynamic inter-
face. The manner in which RANS and LES quantities are matched at the interface
also varies.

While a wall-function model will generally imply a local-equilibrium assump-
tion and provide little information about turbulent near-wall scales, a full RANS
approach can be significantly more capable and can therefore greatly improve the
range of flows for which the modelling is appropriate. In their work on numerical
wall models for LES, Cabot and Moin (2000) concluded that, despite the bene-
fits of computing the full form of the boundary-layer equations, Eq. (10.24), more
capable modelling of the near-wall structure would be necessary for complex flows
typical of those arising in industry.

Response of the RANS layer to LES solutions across the interface

Two-layer or zonal schemes pose both fundamental and practical questions what-
ever approximation is adopted. The basic challenge is to reconcile the filtering
operation underlying the LES representation with the RANS time/ensemble-
averaged framework, especially in the vicinity of the RANS–LES interface, where
both the LES and RANS solutions resolve the same range of turbulent scales. A
major uncertainty in the use of a RANS near-wall model lies in its sensitivity and
receptivity to the highly unsteady motion imposed on it by the LES solutions across
the interface; i.e. will the RANS side of the interface respond adequately and return
the proper dynamics to the LES?

To examine the response of RANS, Temmerman et al. (2005) conducted an a
priori test in which flow in a plane channel at moderate Re (about 11,000 based on
the channel half-width) was first solved by a wall-resolved, fine-grid LES. Then, an
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Fig. 10.23 A priori testing of the response of a RANS wall layer to an outer
LES. Top left: schematic of flow configuration. Top right: instantaneous velocity
plots for a priori RANS with LES data used as boundary conditions at the inter-
face. Middle: histograms of wall-parallel velocity Û at y+ = 30 and of friction
velocity Uτ Bottom: wall-normal variations of the correlations of the instantane-
ous streamwise and friction velocities (left) and their angles with respect to the
mean-flow direction (right). (Temmerman et al., 2005.)

independent one-equation EVM/RANS model (solving a transport equation for k)
was subsequently applied in unsteady mode in a predefined wall layer by feeding
the LES solution at its outer edge at y+ ≈ 65, mimicking the RANS–LES inter-
face, Fig. 10.23 (top left). A series of instantaneous velocity profiles in Fig. 10.23
(top right) obtained from the URANS computation shows a qualitatively similar set
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of realizations to those obtained from the fully wall-resolved LES. A quantitative
confirmation of the satisfactory response of the RANS computation is provided
in Fig. 10.23 (middle) comparing the time histograms of the fluid velocity at
y+ = 30 and the wall shear velocities obtained from LES and URANS. Finally,
the bottom graphs of Fig. 10.23 compare the wall-normal variation of the two-
point correlation coefficients u(y+)Uτ /urms(y+)Uτ,rms and αβ/αrmsβrms , where
both arise either from the LES or the RANS solution; Uτ is the friction velocity, α
is the angle of the wall-parallel velocity, while β is the angle of the wall stress
(all instantaneous), and the overbar indicates time averaging. These plots con-
vey information on the extent to which the RANS model preserves key statistical
parameters associated with the unsteady motion in the near-wall layer. The corre-
lations are also of interest in relation to the use of wall laws in approximating the
near-wall region; for, evidently, wall laws imply (inappropriately) a perfect correla-
tion between the motion at the outer edge of the wall-law region and the wall shear
stress (but see discussion re Fig. 8.10 drawn from Craft et al, 2008).

As is evident from Fig. 10.23, the RANS model captures (surprisingly well) the
correlation levels predicted by the LES solution. These results suggest a substantial
unsteady motion throughout the RANS region. Clearly, the unsteady LES motion
imposed at the RANS-layer edge decays only slowly through the RANS region,
and this has important implications for what should be the appropriate level of the
modelled viscosity in the RANS layer, especially close to the interface.

Fixed interface methods

An early example of this approach is the work of Davidson and Peng (2003), who
proposed a two-layer method where a RANS solver using a k − ω EVM was
interfaced with a LES scheme using a one-equation sgs model. Unsteady veloc-
ities were matched at a pre-determined location, while RANS-determined k levels
were converted to ksgs (see Eq. (10.17)) and a zero-gradient condition was imposed
on ω at the interface. The approach worked reasonably well, although the veloc-
ity indicated discontinuities across the interface; the authors also noted a lack of
high-frequency content.

A different two-layer approach was employed in the study discussed above by
Temmerman et al. (2005). They used both a one-equation EVM (Wolfshtein, 1969)
and a k-εmodel (Abe et al., 1994), interfaced with an LES using either the dynamic
Smagorinsky or one-equation sgs models. They also matched both velocity and tur-
bulent kinetic energy in the same way as Davidson and Peng (2003) but improved
continuity across the interface by matching also the turbulent viscosity. Their con-
dition required that the sum of both modelled and resolved components on both
sides be conserved, i.e.
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νmod
L E S + νres

L E S = νmod
R AN S + νres

R AN S. (10.26)

Since the instantaneous strain rate should be the same on both sides of the interface,
Eq. (10.26) should ensure continuity of the total turbulent stress.

A practical problem that occurs with virtually all forms of hybrid approach is
that they lack a mechanism for constraining the level of turbulence activity that
arises in the RANS layer. This arises from a combination of model-produced eddy
viscosity and the resolved motion. It should be borne in mind that the eddy viscos-
ity provided by a RANS turbulence model normally increases continuously away
from the wall (in the absence of any constraint that imposes continuity in the turbu-
lent/sgs viscosity and the associated stresses across the LES–RANS interface). The
implication is that the time-averaged solution in the inner layer will not normally
be compatible with the LES solution just beyond this layer. Thus, in practice, the
most important point is to assign an equivalent value to the proportionality con-
stant in the RANS eddy-viscosity model at the interface, i.e. to fix an equivalent
turbulent viscosity coefficient, cμ,int , based on LES quantities, i.e.

cμ,int =
〈
νmod

L E S

〉〈
νmod

R AN S/cμ
〉 (10.27)

where angled brackets denote averaging over any homogeneous direction or over
some predefined patch on both sides of the interface. In fact, νmod

L E S is the conven-
tional νsgs for LES, and νres

L E S = 〈UiU j Si j 〉/〈Si j Si j 〉, where Ui and Si j refer to the
resolved motion. The resulting value of cμ,int is then blended with the standard
value of cμ on the RANS side, as a function of the mesh density �y according to
the following function:

cμ = 0.09 + (cμ,int − 0.09)
1 − exp(−y/�y)

1 − exp(−yint/�yint)
. (10.28)

The use of spatial averaging in this way requires there to be a homogeneous direc-
tion in the flow, which limits the general applicability of the method. However,
Temmerman et al. (2005) showed that one can skip averaging by simply using
the instantaneous values of cinst

μ,int , which also proved beneficial in reducing any
unphysical inflection (termed the ‘logarithmic mismatch’) in the velocity profile in
the grey area around the interface. This anomaly, observed in many methods, both
zonal and seamless, has been attributed to insufficient effective (i.e. modelled plus
‘resolved’) viscosity in this region. Imposing instantaneous values of cinst

μ,int intro-
duces high-frequency fluctuations at and around the interface, similar in its effect to
the randomly generated ‘stochastic back-scatter’ proposed by Piomelli et al. (2003)
to cure the anomaly. Although this option cannot be claimed to generate realistic
streaks and other missing small-scale structures that are inaccessible to URANS,
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it seems that the use of cinst
μ,int provides some desirable extra unsteady forcing, thus

injecting a proportion of the missing high-frequency components and improving
the effective eddy viscosity.

The two-layer approach is observed to work especially well when using a two-
equation model, achieving improved predictions of the velocity field relative to the
one-equation model. This is primarily because the length-scale variable (here ε) is
allowed to respond to external perturbations via its own transport equation. In com-
parison to a typical seamless approach, it demonstrates a cleaner switch between
the RANS and LES regions, as already illustrated in Fig. 10.15. In this case, Tem-
merman et al. (2005) compared their strategy to the Detached Eddy Simulation
(DES) approach (see §10.6.6 for further details). It can be seen from Fig. 10.24 that,
for the case of channel flow at Reτ = 2,000, the switch from RANS to LES occurs
at a similar location (given by the vertical line), but the levels of turbulent (RANS)
viscosity are far higher for the DES than for the zonal model. Corresponding plots
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Fig. 10.24 Results from Temmerman et al. (2005) demonstrating the use of a
two-layer model applied to a turbulent channel flow at Reτ = 2,000; comparison
of two-layer method (left) with a seamless DES method (right), showing: (top
row) shear stress (modelled and resolved) and (lower row) viscosity ratio. The
shaded blue region approximates the reach of the RANS modelling in each case.
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of shear stress in Fig. 10.24 show that for the zonal model, the modelled shear
stress falls rapidly at the interface, to be replaced by the resolved shear stress. The
distance between this switch location and the point at which the modelled and
resolved stresses are equal is considered to be the transition region between the
two. For the DES, this region is much longer, since the modelled shear stress is
significantly larger than the resolved stress for some distance beyond the nominal
switch from RANS to LES. This is significant since it impedes the impact of scale
resolution in the LES region, because the high residual sub-grid viscosity acts to
dampen the resolved eddies. Only beyond the transition region does the eddy con-
tent become sufficient to account for the majority of the shear stress. The delayed
generation of resolved eddies in this region results in an upward displacement of
the log-layer region mentioned above, reducing the predicted wall shear stress and
the effective friction-velocity Reynolds number. Insufficient grid resolution in this
region can further exacerbate the problem.

Despite the benefits indicated above, the need to define a priori the location
of the interface presents some challenges. Temmerman et al. (2005) noted that the
dependence of their results on this issue was more complex than they had expected.
On the one hand, placing the interface closer to the wall resulted in an increase in
the level of resolved relative to modelled turbulence, as expected. On the other
hand, as the interface was moved towards the wall, the drop of eddy viscosity
across it became more severe, resulting in a correspondingly high velocity gradi-
ent in the same region. In fact, their results improved as the interface was moved
further from the wall. For example, an interface at y+ = 120 resulted in an error in
C f of 9%, while moving the interface to y+ = 610, i.e. well into the outer region,
reduced the same error to just 3%. The model is more successful when the RANS
solver is allowed to handle the inner layer entirely, and the LES is responsible only
for the larger structures in the core region of the flow, as shown in Fig. 10.25.
While one might rationally expect the accuracy to increase as the LES region
resolves a progressively greater proportion of the domain, this example demon-
strates that the optimum balance between RANS and LES is not so straightforward.
An attached near-wall flow can be handled well with a RANS approach (with
an appropriate level of model), but the introduction of a method which partially
resolves this region instead introduces problems of compatibility between the two
methods.

Dynamic interface methods

In cases where the flow is attached, or where the region of interest is away from
the wall, the selection of an appropriate distance from the wall to locate the
interface can be readily made; but in flows with a complex wall configuration it
may not be immediately obvious where the RANS region should be replaced by
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Fig. 10.25 Results from the application of the two-layer method (RANS k−ε +
dynamic sgs LES) to the flow over a periodic hill. Top: time-averaged flow field
indicating the location of the interface. Bottom: contours of streamwise vorticity
in planes normal to the flow where the interface is at y+ = 120 (left) and y+ =
610 (right), Temmerman et al. (2005).

the LES region. To address this issue, more general ways of defining the location
of the RANS–LES interface have been proposed, based on physical criteria. These
employ flow and turbulence parameters, possibly combined with the size of the
local grid cells. Two approaches of this type have proved successful in reproducing
a wide range of complex wall-bounded flows and heat transfer.
TU Darmstadt approach. The group of S. Jakirlić (see Kniesner et al., 2007)
proposed a version of the two-layer model which was able to dynamically self-
adjust the location of the interface (hence the label dynamically interfaced HRL
or Dynamic-interface hybrid two-layer (DIHRL)) as a function of a parameter
which measures the ratio of the LES-modelled turbulent kinetic energy to the total
turbulence energy in the LES region:

k∗ =
〈

kmod
L E S

kmod
L E S + kres

L E S

〉
≡
〈

ksgs

ksgs + kres

〉
(10.29)

where kres is calculated from on-line averaging over all grid cells at the interface on
the LES side as indicated by the angled brackets, and kmod

L E S(= ksgs) is obtained from
the sub-grid model (the Smagorinsky model or an equation such as Eq. (10.17)).
Where the value of k∗ rises above a pre-determined level, the interface is moved
further from wall; where it drops below the same value, the distance is decreased.
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Since the LES framework is developed on the basis that 80% of energy is resolved
and 20% is modelled (see §10.1), it is sensible to set k∗ = 0.2 in the first instance.

In the wall-adjacent region, a WIN eddy-viscosity RANS model (k-ε or ζ - f )
is applied and matched with the LES computations at the interface by impos-
ing the condition of equal total eddy viscosity on both sides, Eq. (10.26). This
constraint ensures that the instantaneous stress and strain rates are continuous
and the same equality applies for other modelled properties. Assuming that
νmod

R AN S|int = cμk2
sgs/εsgs , the kinetic energy and dissipation rates, needed for the

boundary conditions in the RANS model at the interface, can be evaluated from
the applied sgs model. For one-equation models such as Eq. (10.16), ksgs and εsgs

are readily available, while for the Smagorinsky model they can be obtained from

presumed local energy equilibrium of the sgs motion, ksgs = (cs�)
2|S|2/√cμ and

εsgs = (cs�)
2|S|3 (Mason and Callen, 1986).

It is noted that despite a relatively fast transition from RANS to LES sgs eddy
viscosity (which should promote fast generation of the resolved stress), the present
model is not immune to anomalous behaviour in the grey area around the inter-
face, particularly in attached equilibrium flows. This commonly leads to a notable
velocity mismatch in the logarithmic region in a plane channel. To cure this anom-
aly, Kniesner et al. (2007) applied an artificial forcing by introducing correlated
fluctuations using the digital filter-based method of Klein et al. (2003) for gener-
ating inflow turbulence for spatially developing LES or DNS. However, over the
range of separating flows tested, this remedy appeared unnecessary as no anomaly
was detected in flows where separation generated strong instabilities, particularly
in the separated shear layer. These, apparently, compensated for an insufficient LES
resolution of the broader-scale spectrum.

The above approach has been applied successfully to a number of flows, includ-
ing both pressure- and geometry-induced separation and cases with heated walls.5

Figure 10.26 shows some results for a flow characterized by shallow separation on
a smoothly contoured, wall-mounted 2D hump from the NASA Langley Research
database, Greenblatt et al. (2006), where the Reynolds number based on hump
length is around 106. Two cases were considered, a baseline flow and one with
steady suction through a slot at the hump crest immediately upstream of natural
separation aimed at suppressing separation. As can be seen, when computed on
similar meshes the prediction is improved with the two-layer model (denoted HRL
in the figure) compared with the coarse LES. The interface between RANS and
LES is represented by a black line, which begins smooth but becomes irregular
in the separated-flow region. Analysis indicated that when k∗ = 0.2, the interface

5 Flows over a heated backward-facing step, a periodic 2D hill, a 2D hump, including separation control by
flow suction, a 3D hill, a 3D separation in an asymmetric diffuser, swirling flows in an annular gas-turbine
combustor (Jakirlić et al., 2010).
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Fig. 10.26 Dynamic-interface hybrid two-layer method (DIHRL) applied to flow
over a wall-mounted hump at Re = 936,000 (Kniesner et al., 2007) without and
with separation suppression by steady suction. Top left: mean-velocity field and
the location of the automatic dynamic interface (solid black line). Top right: iso-
surfaces of the spanwsie vorticity coloured by local pressure coefficient. Bottom:
evolution of the mean axial velocity in both the baseline case and with a separa-
tion control for two LES (LESc: coarse grid with 2M cells as for HRL, LESref:
finer grid with 4M cells). Reproduced with permission of ERCOFTAC.

self-located at y+ ∼ 200 upstream of the separation and in the range 10 − 100 in
the recirculation region, denoted by blue contour zones on the plot.

The method was also applied to some of the flows using different WIN RANS
models in the wall-adjacent regions, i.e. the k-ε eddy-viscosity model (Launder
and Sharma, 1974; Chien, 1982, §7.4.2) as well as with the elliptic-relaxation
ζ - f model (Hanjalić, 2004a, §7.4.4). Contrary to expectation that the latter model,
accounting for stress anisotropy and elliptic wall reflections, would perform bet-
ter in separating flows (as it does when using a stand-alone RANS scheme for the
whole flow), the comparison showed a relatively small effect, hardly justifying the
increased computing time required by the more elaborate model. Presumably, this
could be attributed to the LES stress anisotropy and pressure field imposed upon
the RANS region across the interface compensating for the deficiency of the sim-
pler RANS model. However, benefits from using a more advanced RANS model
may be expected in situations involving walls of complex configurations and when,
for computational economy, the RANS region is made thicker, e.g. by assigning a
value to k∗ greater than 0.2.
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TU Delft approach. An alternative way of defining the interface and switching
dynamically between RANS and LES modes in a two-layer RANS-LES method
is to introduce a ‘grid-detection’ parameter α = f (L ,�) (hence the label αHRL).
This is akin to the DES practice, see §10.6.66 associated with the sink term in the
equation for turbulent kinetic energy (a prime constituent of most popular RANS
eddy-viscosity models). For this purpose, Hadžiabdić (2005) and Hanjalić (2005)
proposed to modify the k-equation as follows:

Dk

Dt
= Dk + Pk − αε (10.30)

where

α = max(1, L R AN S/L L E S), L R AN S = clk
3/2
tot /ε, L L E S = 0.8(�V )1/3,

(10.31)

ktot = kres + kmod is the total turbulence energy, and �V = �x�y�z is the local
cell volume.

The switching parameter α is inactive close to the wall, but is activated when
the turbulent length scale L R AN S becomes equal to the characteristic grid cell size,
just as in the DES approach (see §10.6.6). Thereafter, the RANS model acts in the
LES mode with L L E S as the characteristic length scale in the sink term, just as in
Eq. (10.17) for the sgs kinetic energy, ksgs . Moving further away from a wall, the
RANS eddy viscosity νR AN S

t continues to reduce until it reaches the value of the
LES sgs viscosity νL E S

t provided by the standard or dynamic Smagorinsky model.
Thus, a distinct feature of this approach (compared with the common DES practice
of switching the operating length scale from L R AN S to L L E S when transitioning
from RANS to LES mode and vice versa) is an additional criterion that triggers
the activation of the classic sgs viscosity based on the grid cell size. That ensures a
full switching of the RANS model to the conventional LES, i.e.

νt = max(νR AN S
t , νL E S

t ). (10.32)

This method was first tested and tuned using a WIN k-ε model but, aiming at hand-
ling flows and heat/mass transfer over complex (ribbed, pinned, dimpled or similar)
wall configurations, it was subsequently upgraded to the ζ - f elliptic-relaxation
model (§7.4.4) with νR AN S

t = c′
μζk2/ε (where ζ = v2/k) in the RANS layer, and

νL E S
t ≡ νsgs = (cs�)

2
∣∣S̄∣∣ in the LES region. A typical variation of the effective

eddy viscosity with wall distance in a plane channel, Fig. 10.27, shows the ‘buffer
zone’ between α = 1 and νR AN S

t = νL E S
t , in which a continuous transition occurs

from one region to another. The same figure shows the computed velocity profile
in a plane channel for a very high Reynolds number (Ret = 20, 000) using the ζ - f

6 The grid detecting parameter α is identical (save for a possible empirical constant) to the function fL used in
unified/seamless methods, primarily in later versions of DES, though in different contexts (see Eqs. 10.43 and
10.53) but for consistency we use here the original notation.
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Fig. 10.27 Plane channel flow computed by the ζ − f HRL method. Left: effec-
tive viscosity compared with that in the stand-alone RANS ζ − f model. Right:
mean-velocity profile for Ret = 20, 000 with indicated buffer region where the
grid-detecting parameter α is active. From Hadžiabdić (2005). Reproduced by
permission of the author.

model in the RANS region with the dynamic Smagorinsky model in the LES zone,
with the indicated location of the buffer zone from α = 1 to the interface where tur-
bulent viscosities on both sides are equal. A perfect log-law velocity is reproduced
with the buffer zone at a quite large distance from the wall – a desirable feature for
real flows at high Re. It is noted that a rapid fall of the effective viscosity in the
buffer zone (presumably assisted in part by the back-scatter from the dynamic sgs
in the Smagorinsky LES zone) excites the generation of the resolved stress suffi-
ciently to show no sign of any log-law mismatch (grey area) – a feature achieved
without employing any artificial forcing.

The performance of the model is illustrated by an internal flow with heat trans-
fer in a complex configuration relating to the internal cooling of gas-turbine blades,
Fig. 10.28. The blade trailing-edge region is cooled by relatively cool air7 which
passes over a matrix of staggered cylindrical pins, acting as promoters of vortex
shedding and turbulence (and also providing additional heat-transfer surfaces).
A generic set-up with parallel, differentially heated walls, mimicking the exper-
iment of Ames et al. (2007) for two Reynolds numbers (104 and 3 × 104 based
on pin diameter) was simulated by URANS, LES and HRL. The aim was to iden-
tify the optimum computational strategy for handling flows with challenging wall
configurations (Delibra et al., 2009, 2010).

The vortical structures that govern heat transfer and its enhancement computed
by the αHRL model using a relatively coarse grid with 1.3×106 cells are shown in
Fig. 10.28 (right). They agree qualitatively well with the LES results obtained on a
much finer grid of 5 × 106 cells. Admittedly, the finer-scale structures captured by

7 The air has by-passed the combustion chamber but has been heated significantly in passing through the
compressor.
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Fig. 10.28 Vortical structures educted by isosurfaces of the pressure Laplacian
(∇2 p = 9), coloured by temperature in a pinned passage (a periodic segment of
an 8 × 8 pin matrix) between heated walls mimicking internal gas-turbine blade
cooling, Re = 10,000. Left: LES (5 × 106 grid). Right: αHRL ζ − f (1.3 × 106

grid), top-wall heated. Reprinted from Delibra et al. (2010), with permission from
Elsevier.

the LES are missing, but they do not appear to significantly affect heat transfer as
indicated by the successful prediction of the end-wall Nusselt number, Fig. 10.30.

The functioning of the present LES-RANS hybridization is illustrated in
Fig. 10.29 in terms of the active turbulent viscosities, shown by cuts taken hori-
zontally and vertically through the bank of pins. The top figures show the νR AN S

t

field (blanked out where νR AN S
t < νL E S

t to indicate the interface). It is clear that the
RANS contribution is active only near the end walls and pins (near separation and
in the near-wakes), whereas νL E S

t (shown in the central figures) prevails away from
the walls and in the pins’ far wakes. In contrast to HRLs with a fixed interface based
on a pre-specified wall distance, here the location of the RANS/LES boundary,
defined in terms of physical flow properties obtained in the course of simulations,
shows irregular shapes reflecting the flow solution rather than the wall contours.
An impression of the αHRL prediction of convective heat transfer in this pinned
passage can be gained from Fig. 10.30. The top figures show the computed distri-
bution of the time-averaged Nusselt number over the end-wall surface, normalized
with the area-averaged value, Nu/Nuav, for both the above-mentioned Reynolds
numbers. The values compare reasonably well with the liquid-crystal data of Ames
et al. (2007),8 though with a somewhat larger non-uniformity in the upstream part
of the domain. The wall imprints of the vortical structures shown in Fig. 10.28 are,
however, reasonably reflected in the local Nusselt number distribution shown in
Fig. 10.30.

8 The colour scale of the computed results does not precisely match the liquid-crystal colour gradation due to
the lack of precise information.

https://doi.org/10.1017/9781108875400.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.012


426 Hybrid RANS-LES (HRL)

vt
RANS

vt
eff

vt
LES

vt
RANS

vt
eff

vt
LES

Fig. 10.29 The ζ − f αHRL turbulent viscosity fields in the horizontal mid-
plane (top) and in the vertical cross-plane (bottom) cutting though pins 1,
3, 5 and 7. (The presence of pins 2, 4, 6 and 8 – laterally staggered –
is also seen). Top row: νR AN S

t , middle: νL E S
t ≡ νsgs , bottom: effective vis-

cosity νeff
t = max(νR AN S

t , νL E S
t ). Reprinted from Delibra et al. (2010), with

permission from Elsevier.

A further pointer that the end-wall heat transfer is well predicted is provided
by the final part of Fig. 10.30. This shows the distribution of Nu/Nuav on a plane
that cuts pins 2, 4, 6 and 8. The agreement of the αHRL computations with the
experiment is very good and notably superior to the URANS results using the same
(stand-alone) ζ − f model and the same numerical grid. Admittedly, there is a
penalty to pay: while the same grid and the same RANS model were employed in
both, in comparison with a URANS solution, a hybrid approach resolves a larger
part of the turbulence spectrum; thus, for physical reasons, it requires a smaller
time step. Indeed, from a numerical viewpoint, the hybrid simulations are more
sensitive to the CFL number (Eq. 10.18) and require a smaller time step to ensure
CFL < 1 for numerical stability and a smooth convergence.

The αHRL was subsequently applied to some other internal flows, including tip
leakage and secondary flows in an axial compressor cascade with both stagnant
and moving casing (Borello et al., 2009).

10.6 Seamless methods

Seamless Hybrid RANS-LES approaches adopt a continuous treatment of flow
variables across a domain, using a single set of equations that is able to operate
in both RANS and LES modes.9 The popularity of these methods stems from the

9 As noted by Fröhlich and Von Terzi (2008), in principle, any RANS model can be turned into an LES model
by introducing the grid-cell size as a length scale of the model.
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Fig. 10.30 Time-averaged Nusselt number, Nu/Nuav, on the heated end-wall nor-
malized with the area-averaged value, Nuav. Liquid-crystal experiments of Ames
et al. (2007) and αHLR simulations on grids 1.3×106 and 4.4×106 cells, respec-
tively, for Re = 10,000 (left) and Re = 30,000 (right). Top: wall distribution around
the first four pins. Bottom: distribution along the line cutting pins 2, 4, 6 and 8 for
Re = 10,000. Comparison of computations using RANS and αHLR solving strate-
gies with experimental data. Reprinted from Delibra et al. (2010), with permission
from Elsevier.

direct way in which a baseline implementation (for either RANS or LES) can be
extended to include the other.

In the following section, we start by considering the use of the unmodified
(U)RANS or LES methodologies as a hybrid RANS-LES approach, as they often
were before the currently more common schemes were established. Several com-
monly used seamless methods, derived from RANS models, are then examined,
noting their differences, their shortcomings and proposals to mitigate them.

10.6.1 The need for a seamless framework

Before the advent of HRL methods in the late 1990s, a large number of stud-
ies explored the possibility of bridging the gap between URANS and LES
without explicitly modifying the solution framework. Here, the main problems
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encountered from attempting to do so are briefly examined, in order to highlight
the requirements for developing a functional seamless approach.

Very large eddy simulation

In the 1980s and early 1990s, the initial success of LES for simple cases, such as
channel and pipe flows, motivated its application to more complex flow configura-
tions at a time where computational resources were severely limited. Inevitably, the
mesh resolution of studies at that time was far below current best-practice guide-
lines. Eddy resolution often fell short of the inertial scales and so the complex
interaction between energetic modes was poorly captured or missed altogether.
This unavoidable ‘coarse LES’ methodology, became known as Very Large Eddy
Simulation (VLES),10 Ferziger (1996).

One may recall from the discussion about length scales in §10.2 that turbulence
remains anisotropic across most of the inertial subregion, where E(κ) varies as
κ−5/3. Towards the high-wave-number end of this subregion, the turbulent eddies
gradually lose any spatial bias they may have inherited from the mean-flow field
and become nearly isotropic in form. For such wave numbers, with magnitude
typical of the reciprocal of the Taylor length scale, it is reasonable to switch to
a standard sgs model, even the simple Smagorinsky version. Resolution down to
and beyond the Taylor length scale is computationally demanding, however, and,
from an early point in the history of LES, it became clear that simple sgs models
would be insufficient for complex geometries for all except quasi-DNS resolutions,
as discussed in Hussaini et al. (1989).

VLES generally failed because the rudimentary sgs models that were invariably
used could not take account of the complex interaction of non-local and strongly
non-isotropic turbulent structures, with which they were simply not equipped to
handle. When the cut-off frequency is placed in the vicinity of the turbulent stress-
producing scales, the result is a decrease in k and an increase in ε, which results in
a drop in viscosity while the small scales grow in a non-physical manner, as shown
qualitatively in Fig. 10.31.

Unsteady RANS and scale resolution

Chapter 9 has provided an overview of the potential and limitations of unsteady
RANS (URANS) for scale resolution via the inclusion of the time-dependent term
within the transport equations of both the momentum equations and the chosen
turbulence model. When compared to steady RANS, a URANS method is in many
cases able to provide an improved prediction for flows with a dominant natural

10 The acronym VLES had earlier been used in the literature (e.g. Ferziger, 1996) for certain other methods aimed
at adapting the sgs model used in LES to better predict flows dominated by distinct large-scale structures;
however, today the term VLES generally applies to coarse LES, as reported here.
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Fig. 10.31 Conceptual representation of the impact of applying either unmodified
URANS or under-resolved LES (VLES).

instability; but the success depends greatly on the type and level of the RANS
model adopted. Indeed, as demonstrated in Chapter 9, a key prerequisite is the
ability of the RANS model to reproduce at least some features of stress anisotropy
by which to ensure a realistic effective viscosity that would not damp the natural
instabilities present. This is especially the case in the near-wall region of separated
flows. Several examples of flows dominated by separation or a body force discussed
in Chapter 9 showed that URANS can often be used to show how large coherent
patches of fluid are periodically shed behind a bluff body or generated by buoyancy
or rotation.

However, as commonly applied, URANS methods, especially when imple-
mented with one- or two-equation linear EVMs, are limited in their ability to
provide an accurate account of how turbulent structures interact with themselves,
stretching and twisting each other apart in a non-linear fashion, characteristic of the
turbulence energy cascade. The high levels of turbulent viscosity in regions of flow
separation, produced by several of the early turbulence models, tend to dampen
even the largest resolved structures, making it impossible to account accurately for
even a small part of the energy cascade. Moreover, confusion can arise over how
to account correctly for the overlap of both the turbulence energy and stresses pro-
vided by the model with the contributions resolved by the unsteady solution of the
low-frequency motion. Without such careful accounting, this overlap can lead to
an excessive production of turbulence energy, which in turn further increases the
modelled viscosity and further dampens the resolved motion.

Where used correctly, a URANS solution describes the phase-averaged result for
the flow: a series of cyclically repeating large-scale organized structures observed
in Nature and detected in physical experiments by averaging data into discrete
portions of an imposed periodic flow. This holds true for cases with either a
strong externally imposed unsteadiness such as an oscillating channel flow or a
geometry-induced flow instability with time and length scales far removed from
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Fig. 10.32 Comparison of vorticity isosurfaces in the wake around a circular cyl-
inder at ReD = 50, 000. (a) SST 2D steady RANS, (b) SST 2D unsteady RANS,
(c) SST 3D unsteady RANS, (d) coarse mesh SA-DES, (e) fine-mesh SA-DES,
(f) fine-mesh SST-DES. Image from Travin, via Spalart (2009).

those of the turbulent scales of motion accounted for by the turbulence model.
As discussed in Chapter 9, the latter is referred to as a ‘separation of scales’
and is commonly regarded as a condition for the appropriate use of a URANS
approach.

Figure 10.32 from Spalart (2009) strikingly illustrates levels of turbulence res-
olution (represented by iso-vorticity surfaces) in the wake of a circular cylinder
achieved with methods of increasing eddy-resolving potential. These range from
RANS in different modes (2D, 3D, steady and unsteady) to DES with coarse and
fine meshes. Obviously, the first two examples − the 2D steady and 2D unsteady
RANS − make no sense here since turbulence structures, by their nature, are three-
dimensional and unsteady. On the other hand, the three examples of DES, all show
superior LES-like resolution, which improves with mesh refinement (parts d and
e) and, still further, when applying the more capable two-equation SST compared
to the one-equation SA RANS model (parts e and f). While the figure implies an
undisputed advantage of DES over URANS, this is, to an extent, misleading as
the applied RANS models (SA and SST) cannot be considered among the most
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capable representatives among the very wide range of RANS models.11 When
employed in a DES or other hybrid mode where RANS is applied only in lim-
ited (usually near-wall) regions, the weaknesses of simple RANS models may not
be significant. Their deficiencies may, in part, be compensated by unsteady exci-
tations and a pressure field propagating from the outer, more completely resolved
LES solution. Highly resolved fine scales as provided by LES and hybrid methods,
including DES, can be essential for some applications such as in aeroacoustics. But,
as demonstrated in Chapter 9, capturing the dynamics of major integral parameters
such as lift and drag coefficients in flows over bluff bodies, or dominant convec-
tive patterns and heat transfer in flows driven by buoyancy and rotation – where
the physics is governed by large-scale structures – can also be achieved by more
capable RANS models resolved in time on a typical RANS computational mesh.

Nevertheless, the labelling of URANS as a scale-resolving approach presents
us with a conceptual challenge. A key tenet of RANS methods (and a practical
advantage) is that they are independent of the mesh on which they are solved.
That is, a grid-independent solution is possible, which, numerics aside, is the une-
quivocal solution for a given model. In this sense a fundamental difference exists
between RANS and LES, since one is independent of the mesh while the other
is strongly linked to it. For LES, a grid-independent solution is difficult to define,
since in most LES formulations the grid acts also as the spatial filter and, instead,
one tends towards a DNS solution in the limit of progressive refinement. On the
other hand, accurate scale resolution with URANS is not guaranteed, even with a
grid-independent solution, particularly where there is no clear separation of spatial
scales between the dominant flow instability and the broadband turbulence.

10.6.2 Approaches which blend RANS and LES

Recognizing the shortfalls of VLES, Speziale proposed a methodology to bridge
the gap between LES and RANS, based on ‘state-of the-art Reynolds-Stress mod-
els’, which automatically recovers a competent Reynolds-stress model (RSM)
scheme in the coarse-mesh limit or DNS in the fine-mesh limit (Speziale, 1998a,b).
The Flow Simulation Methodology (FSM) was developed further by Fasel et al.
(2002), employing a function to blend between RANS and DNS by modifying the
stress tensor according to the local grid size.

τmodel
i j = f�τ

R AN S
i j (10.33)

f� = 1 − exp(−β�/η)
11 As shown in Fig. 9.7, a more advanced, anisotropy-resolving RANS model at second-moment-closure level

(or a simplified version thereof) when used in stand-alone mode, performs much better than the model shown
in Fig. 10.32c.
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where the function f� provides a simple blending between DNS (where there is
no modelling, i.e. f� = 0) and RANS (where all scales are modelled, f� = 1).
This function was sensitized to the mesh resolution, where η ≡ ν3/4/ε1/4 is the
Kolmogorov length scale and thus the ‘damping ratio’ �/η indicates the factor by
which the mesh resolution is coarser than needed for DNS. The method has been
used in a number of studies to good effect with particular focus on compressible
turbulent flows, though it is not limited to such cases. However, there are some
weaknesses in this approach, such as the calibration of the model constant β in Eq.
(10.33) and the need for a reasonably accurate estimate of η.

Furthermore, Eq. (10.33) implies that the RANS and LES momentum equations
are interchangeable although, since true RANS is only used when f� = 1, there
is a need to provide an average of the ‘blended’ velocity field for regions where
0 < f�< 1. In practice, this is achieved via an explicit averaging operation, which
requires a homogeneous direction in space. This limits the general use of this for-
mulation, since in more complex applications there will not be a homogeneous
direction. Furthermore, where the flow moves from an area of low to high grid
resolution, permitting a greater resolved content, turbulent fluctuations might need
to be introduced artificially. The FSM was shown to perform well for a range of
flows by Weinmann (2011), including the flow in a plane channel, around tandem
circular cylinders and through a 3D diffuser. The last case is shown in Fig. 10.33
compared with experimental data from Cherry et al. (2008). The scale-resolving
nature of the method is clearly demonstrated in the figure by the instantaneous
contours of vorticity.

Also of note here is the Limited Numerical Scales method of Batten et al. (2002),
which proposed a version of f� from Eq. (10.33) based on the ratio of the kinematic
viscosities computed for RANS and LES, rather than just the length scales.

10.6.3 Unified RANS-LES

A family of methods referred to variously as ‘unified’, ‘bridging’ RANS-LES,
‘sensitized RANS’ or even ‘second-generation’12 URANS models have attempted
to transform the classical URANS model described in the previous chapter into a
scale-resolving approach, i.e. one which moves from modelling the turbulence to
simulating it. Essentially, the URANS models are sensitized to internal instabilities
by decreasing the effective eddy viscosity. This is usually achieved by enhancing

12 The label ‘second-generation URANS’, introduced by Fröhlich and Von Terzi (2008), can be misleading as
modifications to a standard RANS model aimed at extending its applicability have been made in the past to
account for various flow features that remain inaccessible to the basic model such as extra- (or irrotational)
strain, swirl, stress anisotropy among others.
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Fig. 10.33 (Left) Conceptual diagram of the Flow Simulation Methodology
(FSM) approach, demonstrating how the blending function, f�, adapts from a
fine-mesh (1) to a coarse mesh (2). (Right) Performance of FSM for 3D diffuser
case. (Top) Streamwise mean velocity from experiment (Cherry et al., 2008).
(Middle) Streamwise mean velocity from FSM. (Bottom) Spanwise instantane-
ous vorticity from FSM. Middle and Bottom images reproduced from Weinmann
(2011).

the dissipation rate of the modelled turbulent kinetic energy either over the whole
flow or in regions prone to instabilities, in a continuous and thus ‘seamless’ manner.

Possible (albeit, not exclusive) modifications to the RANS models to expand
their potential for scale resolution (beyond that achievable with the unmodified
model when applied in unsteady mode) can be illustrated by way of the usual k-ε
model, but noting that the principle is applicable to any scale-providing variable
and equation:

Dk

Dt
= Pk − fLε + ∂

∂xk

[(
ν+ νt

σk

)
∂k

∂xk

]
(10.34)

Dε

Dt
= fε

(
cε1Pk

ε

k
− c∗

ε2

ε2

k

)
+ Sε3 + ∂

∂xk

[(
ν+ νt

σε

)
∂ε

∂xk

]
(10.35)

where νt= cμk2/ε and fL = max(1, L R AN S/L L E S) as in Eq. (10.43),13

13 Also identical to α in Eq. (10.31) in two-layer HRL, §10.5.2.
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fε > 1 is a function that enhances the complete source of ε;
c∗
ε2 < cε2, which reduces the sink of ε;
Sε3 is an additional source that increases the energy dissipation rate.

Thus, the dissipation rate in Eq. (10.34) can be modified directly by multiply-
ing it by a control parameter fL > 1 (as in Eq. (10.30)), usually defined in terms
of the ratio of the characteristic turbulence length scale and a representative grid
cell size (already introduced in §10.5.2 in a two-layer HRL, Eqs. (10.30–10.31)).
Alternatively, one may apply the same fL or some similar parameter directly
to the transport equation for turbulent eddy viscosity, as in the original DES of
Spalart et al. (1997). For two-equation and higher-order RANS models, the dissi-
pation rate can be modified through interventions in the scale-providing equations
(ε, ω or some equivalent) as indicated in Eq. (10.35). A way to achieve this is
by adding another source term (e.g. Sε3 in Eq. (10.35)) defined in terms of the
available flow and turbulence parameters. These are thus independent of the mesh
(‘grid-independent sensitizing’), as in Menter and Egorov (2005) outlined below.
Other routes focus on modifying the source terms in the scale-providing equation
via a control (or ‘grid-detecting’) parameter akin to fL (‘grid-based sensitizing’).
The control parameter can be applied to the whole source term (e.g. through fε),
or only to the source or sink (e.g. as c∗

ε2 in Eq. (10.35)). Usually, only one of the
above options is applied.

10.6.4 Grid-independent sensitizing of URANS

An example of a grid-independent method is the Scale-Adaptive Simulation
(SAS) approach of Menter and Egorov (2005). This introduces another scale
based on the second derivative of the velocity field via an additional term in the
scale-determining equation. This additional information is used to reduce the char-
acteristic length scale and, hence, the eddy viscosity in the RANS equations in
which it is inserted. It thus provides a means of enabling scale resolution. A pos-
sible theoretical origin of this approach may be found in the form employed in
Rotta’s length-scale (kL) equation (Rotta, 1951, 1972), which in its source terms
contains higher mean-velocity derivatives. In the original SAS model the product√

kL was adopted as the scale-providing variable obtained by way of its transport
equation that contained an additional source term S3 ∼ L/L K , where L K is the
von Karman length scale,

L K = κ
∣∣∣∣U ′

U ′′

∣∣∣∣ with U ′ = √
2Si j Si j and U ′′ =

√
∂2Ui

∂x2
j

∂2Ui

∂x2
k

. (10.36)

The authors claim that adding the length scale, L K , in addition to L, expands the
model’s scale-resolving potential beyond that of the single-scale parent model. One
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can argue, however, that the key addition is the second derivative of velocity that
acts as an instability sensor (detecting inflection-point instabilities) which gives
rise to inviscid instability modes (Saric et al., 2003). Subsequently, Menter and
Egorov (2010) extended the concept and offered SAS versions within the ε and ω
modelling frameworks.

It is reiterated that the key feature of the above approaches is that the grid scale
is not explicitly dependent on the mesh as it is with LES. However, it does require
a good approximation of the second derivative (which itself imposes a restriction
on the grid resolution), while, from a different standpoint, many would question
whether the local second derivative of the resolved velocity should play such a key
role in the modelling.

The above concept involving the second velocity derivative, reformulated and
re-labelled as eddy-resolving (or instability-sensitized) URANS, has been fur-
ther employed in the framework of the usual k-ε and k-ω models as well as in
combination with the elliptic-relaxation ζ - f EVM approach (Jakirlić and Maduta,
2015; Krumbein et al., 2020). It has also been employed in a second-moment
(Reynolds-stress) closure (Maduta et al., 2017), and applied to cases relevant to
flow control, aeroacoustics (Köhler et al., 2020) and bubble columns (Ullrich et
al., 2021) among others.

10.6.5 Approaches with a grid-based switch

In a seamless approach, the mode of operation, RANS or LES, and, consequently,
the location of the interface are intrinsically defined as a function of both the pre-
dicted flow field and the grid spacing. By comparing the transport equations for
both RANS and LES, it can be seen that the primary difference lies in the way in
which the Reynolds stresses are estimated. The momentum equation, Eq. (2.14),
rewritten as

∂(ρUi )

∂t
+ ∂(ρU jUi )

∂x j
= Fi − ∂P

∂xi
+
∂
(
τ R AN S

i j , τ L E S
i j

)
∂x j

(10.37)

can represent either RANS or LES, where Ui would be either a result of temporal
or spatial averaging, or filtering, respectively. The stress tensor, τ R AN S

i j , τ L E S
i j , rep-

resents stresses which arise from the decomposition for either RANS or LES, and
while, as described in §10.2.1, these terms represent different quantities, they may
end up being approximated in exactly the same manner. This similarity is partic-
ularly strong where the RANS approach incorporates a time-dependent term (i.e.
URANS), and where a linear eddy-viscosity model is used, since in that case the
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difference is reduced to the definition of the turbulent viscosity, νt . For example,
where turbulent stresses are defined as:

ui u j = −2
[
νR AN S

t , νL E S
t

]
Si j + 2

3
kδi j (10.38)

the turbulent viscosity approximation for both RANS and LES, with a Smagorinsky
model, Eq. (10.14), becomes

νR AN S
t ∝ L2T−1 = cμ

(
k3/2

ε

)2

T−1 and νL E S
t = (cS�)

2 T−1 (10.39)

where the precise choice for T−1 could come from either modelled turbulence quan-
tities (e.g. ε/k) or the mean-velocity field (e.g. S); at this stage this choice is not
important, since they are both determined from the flow computation itself. The
key difference between the two is the definition of the length scale, L . For LES it
is based on the local grid size, while for RANS it is based on local macroscopic
turbulence quantities. It is then logical for a global HRL approach to make use of
this distinction by introducing a simple function to switch between the two dif-
ferent definitions of the length scale. Given that one seeks to improve the level of
predictive accuracy by increasing the scale-resolved content, it makes sense to seek
the minimum of these two scales as:

L(R,L)min = min

[
cμ

k3/2

ε
, cs�

]
= min [L R AN S, L L E S] . (10.40)

Indeed, this argument is the basis for a number of seamless approaches, includ-
ing one of the most popular Hybrid RANS-LES approaches, Detached Eddy
Simulation, DES.14

10.6.6 Detached eddy simulation

Originally proposed by Spalart et al. (1997), DES is today a widely used scheme
among HRL methods, particularly in flows linked with the aerospace industry. In
DES, the objective is for the near-wall flow region, where turbulent length scales
are small, to be solved by a RANS treatment, while the field away from the wall is
computed via LES.15 The popularity of DES is due in part to its simplicity and its
practicality, since the work required to extend an existing RANS solver to handle

14 In fact, the principle of RANS–LES hybridization, outlined above and through Eqs. (10.37)–(10.40), applies
also to zonal approaches, apart from the fact that then there is a clear interface between the two schemes, which
is, of course, absent with seamless methods.

15 Such a general objective and the rationale of merging RANS and LES into a single algorithm (via a length-
scale/grid-size ratio control) may qualify the label DES to include the whole family of eddy-resolving schemes
between stand-alone URANS and LES. Nevertheless, in line with practice, and to acknowledge the method’s
originators, here we associate the acronym DES with the specific method introduced by Spalart et al. (1997)
(also termed DES97) and its subsequent versions.
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DES is straightforward. A simple switch in length scale is required, following the
principle set out in Eq. (10.40). It was originally developed for aerospace applica-
tions in largely attached, boundary-layer flows, and based around the one-equation
model for effective turbulent viscosity, νt , proposed by Spalart and Allmaras (1992)
(SA). As noted in §7.4.6, this is an empirically based model tuned to predict aer-
odynamic boundary layers at moderate to high Reynolds numbers. It takes the
form:

∂ν̃

∂t
+ ∂

∂x j

(
U j ν̃

) = cb1ν̃ω̃ − cw1 fw
ν̃2

d2
w

+ 1

σν

[
∂

∂x j
(ν + ν̃)

(
∂ν̃

∂x j

)
+ cb2

∂ν̃

∂x j

∂ν̃

∂x j

] (10.41)

where on the right-hand side are production, sink and diffusion terms. The invariant
ω̃ is the vorticity magnitude, dw is the near-wall distance and turbulent viscosity
νt = ν̃ fν1, so as to ensure that ν̃= κyU τ in the log-layer. The damping function
fν1 is defined as χ3/(χ3 + c3), where χ is the viscosity ratio ν̃/ν, and c denotes
a model coefficient. To extend this model to work within DES, the quantity dw in
Eq. (10.41) is replaced by d̃, defined as:

d̃ = min(dw,CDE S�). (10.42)

It is noted that, for the SA model, dw is the distance to the nearest wall since
the model does not solve a separate length-scale-determining equation such as
ε. Clearly, this definition requires a wall to be present, which for most practical
applications is indeed the case. Note that when DES is used with two-equation
RANS models, such as k-ε or k-ω, the RANS length scale L naturally arises
without dependence on wall distance, and directly replaces dw in Eq. (10.42).
The grid filter � is generally based on either the maximum dimension of the
local grid cell, �max = max(�x , �y, �z), or the cube root of the cell volume,
�vol = (�x�y�z)1/3. In regions of fine mesh, Eq. (10.42) allows d̃ to take a
lower value than returned by the SA model. This in turn allows for a larger dissi-
pation term, as seen in Eq. (10.41), which leads to a local reduction in turbulent
viscosity.

Calibration of DES

Calibration of the constant CDE S appearing in Eq. (10.42) is code-dependent and is
usually achieved via the simulation of decaying homogeneous turbulence, with the
constant chosen to achieve a balance of RANS and LES activity while matching the
measured rate of turbulence energy decay. For illustration, example results from a
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Fig. 10.34 Calibration of the SST-DES constant CDDE S based on decaying
homogeneous, isotropic turbulence, from Ashton et al. (2013). (Left) Sensitiv-
ity to different values of CDDE S for two grid resolutions: 323 and 643. (Right)
Sensitivity to different numerical schemes: UDS: first-order upwind, SOLU:
second-order linear upwind, CDS: central-difference scheme, Hybrid: see main
text. (Note that in the right figure the CDS (blue) and Hybrid (red) lines virtually
coincide, creating the impression of a purple line.)

calibration exercise are presented in Fig. 10.34.16 Increasing this constant effec-
tively increases the Delayed Detached Eddy Simulation (DDES) cut-off scale as
follows from Eq. (10.42) and thus extends the coverage of the RANS model to pro-
gressively lower values of wave number. Decreasing CDDE S has the opposite effect,
reducing the role of the RANS model, which results in too little damping at higher
wave numbers (i.e. smaller structures). This situation is reminiscent of the scenar-
ios presented in Fig. 10.31 and demonstrates the careful balancing act required to
maintain an appropriate representation of the energy spectra. Note that Fig. 10.34
presents results for two different grid resolutions, 323 and 643, each resulting in a
slightly different optimal value for CDDE S as a consequence of compensating for
each model’s natural dissipation in this flow. The dependence of this constant on the
local grid resolution places a significant limitation on the generality of the method.

The situation is further complicated when considering the artificial dissipa-
tion that can be introduced by the code numerics, especially for codes originally
designed for solving the RANS equations rather than LES (as is generally the case
for DES applications). Figure 10.34 demonstrates the impact of different numer-
ical schemes following calibration using the least dissipative scheme. The use of
a central-differencing scheme is seen to be vital since, when an upwind scheme
is used (whether of first- or second order), a significant broadband damping of
turbulence structures occurs.

Strictly, a central-differencing scheme is needed only where the model operates
in LES mode, bringing additional stability in the case where turbulent fluctua-
tions result in the continual change in local flow direction across a given cell from

16 Note that here the later version, DDES – i.e. delayed DES, is used as introduced in §10.6.7, hence labelled
CDDE S .
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one time step to the next. This is a common feature of LES due to the passage
of fine-scale turbulent fluctuations through the domain. However, applying cen-
tral differencing across the full domain is undesirable, since it introduces stability
problems for RANS models, particularly for high-aspect-ratio cells in the bound-
ary layer. Recognizing this, Travin et al. (2002) introduced a ‘hybrid’ numerical
convection scheme which allows the code to switch the convective scheme
depending upon whether the model is operating in RANS or LES modes (i.e.
as determined from Eq. (10.42), deploying an upwind scheme for RANS and a
central-difference scheme for LES).

Sensitivity of DES to the RANS model

The role of the RANS model is not trivial and it should be remembered that a
seamless method inherits many of the characteristics of the model embodied in it,
both its strengths and its weaknesses. This is particularly true where limitations on
mesh size are imposed as a consequence of the computational resources available.
Recall that while DES is not a zonal approach, the regions where it will act in either
mode can indirectly be ‘prescribed’ as a consequence of selective mesh refinement
or coarsening within a domain. This issue becomes more pertinent in the region
of a coarser mesh, where RANS is expected to play a greater role, and differences
due to the inherent capability of the RANS model employed will be amplified in
the overall DES approach. DES variants have been proposed based on a range
of turbulence models. We note, for example, two-equation models such as k-ω-
SST-DES proposed by Travin et al. (2002), non-linear eddy-viscosity models (e.g.
Greschner et al., 2008), elliptic-blending-based models (e.g. Ashton et al., 2013)
and full Reynolds-stress-transport models (e.g. Probst et al., 2011).

Indeed, the principle for DES may be generalized as outlined by Eqs. (10.34)
and (10.35), where the sensitivity to mesh resolution now enters via the term FDE S ,
defined as:

fL ≡ FDE S = max

(
1,

L R AN S

L L E S

)
= max

(
1,

k3/2/ε

CDE S�

)
. (10.43)

In an aeroacoustics study of a wake flow from a cylinder placed upstream of and
interacting with an airfoil, Greschner et al. (2008) compared several such mod-
els, demonstrating significant dependence of the results on the underlying RANS
model (see Fig. 10.35). In this case improved prediction of both the mean and tur-
bulent flow fields was obtained from DES variants based on more capable RANS
modelling. The figure also shows the extent to which RANS and LES modes vary
throughout the wake via the plotting of the following function:

F∗ = log(L R AN S/CDE S�) (10.44)
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Fig. 10.35 Turbulent flow over a rod-airfoil configuration, where Re based on
cylinder diameter is 48,000 (Greschner et al., 2008). Top: instantaneous variation
of RANS and LES zones, represented via the function F∗ (defined in Eq. (10.44).
Bottom: comparison of predicted mean and turbulent flow field around the airfoil
of chord length c, along the dashed black line in the top figure.

for which a negative value corresponds to a region where RANS is used and a
positive value to where LES is active. The figure clearly demonstrates the highly
unsteady variation of the two modes, which is a characteristic of seamless models
applied to separated flows, including bluff-body wakes. The selection of RANS or
LES is strongly dependent on the mesh resolution and, as a given mesh is refined,
a greater extent of the domain can be expected to operate in LES mode.

While the foregoing examples have been directed at predicting the dynamic
field, applications focused on the thermal field, often within internal passages,
are equally important. Dr D. Tafti and his team at Virginia Tech were one of
the first groups to apply DES to the heat-transfer performance of such com-
plex internal flows. The focus of their research was the internal cooling passages
within gas-turbine blades where the cooling potential was enhanced by the use
of square-sectioned ribs applied to opposite walls (Fig. 10.36). The sequence of
publications suggests that they had examined both LES (Sewall and Tafti, 2004;
Sewall et al., 2006) and DES studies in parallel. After examining fully developed
flow in stationary and rotating passages (Viswanathan and Tafti, 2005, 2006a), they
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undertook with DES the much larger computational study of flow along two lengths
of cooling channel connected by a sharp, square-ended U-bend, as indicated in
Fig. (10.36, left), Viswanathan and Tafti (2006b). It is from the last of these that
results presented here are drawn.

Their version of DES adopted a non-zonal strategy, employing as the RANS
model the original k-ω eddy-viscosity model of Wilcox (1988b) which resolved
the viscous sublayer. The near-wall node was located at y+ < 1 with three to four
nodes covering the sublayer region y+ < 10. The same k-ω model with the RANS-
generated length scale Lk-ω, replaced by the largest of a cell’s dimensions, �, was
used as the sgs model in the LES mode. The switchover from RANS to LES mod-
elling occurred when CDE S� < Lk-ω and, following Strelets (2001), the value of
CDE S was taken as 0.61. The grid around each of the ribs is shown in Fig. 10.36
(right). The total solution domain was resolved by 7.7 × 106 cells, modest by
today’s standards but, at the time, requiring parallel processing to achieve accepta-
ble run times. The forward time-step (non-dimensionalized by the bulk velocity and
hydraulic diameter of the channel) was 1×10−4 in all cases. The thermal boundary
condition imposed at the walls, including the three faces of the ribs exposed to the
flow, was that of uniform heat flux. Figure 10.36 (bottom) shows, for the centre
plane of the entry section upstream of the U-bend, the proportion of time that is
spent in LES, DES and mixed mode, i.e. each cell is assigned a value of 0 or 1 at
each time step depending on whether RANS or LES is used in that cell. The time
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Fig. 10.36 Modelling flow in an internal gas-turbine blade-cooling passage. Top
left: complete DES solution domain. Top right: details of the numerical grid
around a single rib. Bottom: LES (red), DES (blue) and mixed-mode regions on
the centre plane of the domain. Reprinted from Viswanathan and Tafti (2006b),
with permission from Elsevier.
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Fig. 10.37 Left: Comparison of the spanwise velocities above the fifth rib (y/e =
1.5) near the smooth side wall (z/Dh = 0.05). Right: heat-transfer augmentation
ratios at the centre of the ribbed wall upstream and downstream of the sixth rib.
Symbols: Experiments (Rau et al., 1998); LES results (Sewall et al., 2006). From
Viswanathan and Tafti (2006b). Reprinted with permission from Elsevier.

average of this quantity is plotted. The RANS/LES distinction is based on com-
parison between the turbulent scale and the grid scale which is fundamental to the
DES model. Thus, a value of 0.0 corresponds to a purely RANS mode, while 1.0
represents a completely LES operation. At inlet (on the left) the entering flow is
treated by LES but, as the flow develops downstream, the RANS mode becomes
increasingly used. By the sixth rib the flow treatment has become fully repeating
from rib to rib, with the LES mode being predominantly applied in the separated
shear layer and the recirculating region behind each rib.

Figure 10.37 (left) shows lateral velocities around the fifth rib close to the
smooth side wall compared with the fully developed LES of Sewall and Tafti
(2004) and the earlier experimental values by Rau et al. (1998). The DES results
agree reasonably well with both experiment and the LES computations – far
closer, Viswanathan and Tafti report, than when the same k-ω model is used in
a purely RANS mode. These secondary velocities are reported to be particularly
influential on the levels of heat-transfer coefficient. In fact, the computed Nusselt
number augmentation (relative to the Dittus-Boelter correlation for fully devel-
oped flow in a smooth straight duct) is compared with experiment and LES data
in Fig. 10.37 (Right) along the centre plane of the duct, upstream and down-
stream of the sixth rib. Evidently, there is again reasonable agreement among the
computations and experiments.

Figures 10.38–10.39 present corresponding comparisons in the square-ended
turning section of the U-bend. The LES computations had begun only three hydrau-
lic diameters upstream of the turn, using the earlier LES data (Sewall and Tafti,
2004) to provide appropriate initial conditions. Both sets of LES data had been gen-
erated on a substantially finer grid than the DES computations with, as an example,
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Fig. 10.38 Streamwise velocities halfway around turning section of U-Bend.
Left: y/Dh= 0. 02; Right y/Dh= 0.57. From Viswanathan and Tafti (2006b).
Reprinted with permission from Elsevier.

the elemental domain around each rib shown in Fig. 10.36 (top right) being mapped
by a 963 mesh rather than the 643 mesh adopted for the DES computations. The
distribution of streamwise mean velocity halfway around the turn is shown in
Fig. 10.38 along two lines. Clearly, the DES computations are in close accord with
the experiments but the LES show substantial differences.17 Viswanathan and Tafti
(2006b), commenting on this unexpected result, suggested that it ‘could be a con-
sequence of the inlet boundary conditions applied to the LES calculation upstream
of the bend’. The normalized Nusselt number within the smooth, square-ended
section of the U-bend and parts of the ribbed ducts immediately upstream and
downstream thereof is shown for both LES and DES computations in isometric
contour form in Fig. 10.39. The surface contour patterns of Nu are similar for both
though, in most regions somewhat lower levels of Nusselt number are returned by
the DES than the LES. This disparity is probably linked with the anomalous veloc-
ity profiles generated by the LES shown in Fig. 10.38, i.e. the thinner boundary
layers given by the LES would be expected to lead to higher heat-transfer coef-
ficients. Overall, the complete mapping of Nu around the U-bend given by the
DES results provides invaluable guidelines to the designer in detecting likely hot
spots.

The original DES method has been improved and refined over the years in
order to address commonly observed, anomalous behaviour for certain configu-
rations. Further details of these improvements are provided in the sections that
follow.

17 Viswanathan and Tafti (2006b) provide comparative profiles at six positions (rather than the two included here)
which consistently show that closer agreement with the experiment is achieved by the DES computations.
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Fig. 10.39 Nusselt number augmentation ratios in the vicinity of the 180◦ bend.
Left: DES Viswanathan and Tafti (2006b). Right: LES. Sewall et al. (2006),
Reprinted with permission from Elsevier.

10.6.7 Issues and improvements for DES: DDES and IDDES

Stress depletion, turbulent transition and grid-induced separation

In the first few years after its first appearance, DES was applied to a range of
flows of varying application area and degree of complexity. Its reputation grew
on account of the ease of conversion of existing solvers. However, a common
shortfall of the method was also soon identified. In areas of the boundary layer
that, for various reasons, resulted in a finer mesh resolution than intended,18 the
method exhibited a tendency to switch unexpectedly to LES mode within a region
of attached flow. These areas were characterized by regions in which L ≈ � due
to inadequate grid refinement or boundary-layer thickening. This sudden switching
of modes (from RANS to LES) meant that the shear stress was no longer deter-
mined from the RANS model but by the LES which, in turn meant that, in that
region, the mesh would need to be particularly fine in order to correctly account
for the turbulence via scale resolution alone (i.e. tending to wall-resolved LES).
Since this would usually not be the case, the total level of shear stress from the
simulation (i.e. modelled plus resolved) is reduced, an effect known as Modelled-
stress depletion (MSD), which results in the reduction of eddy viscosity far below
what the RANS model would have provided were it still applied in this region
(Spalart et al., 2006). While not always the case, this reduction of wall shear stress
can, in an adverse pressure gradient, lead to an entirely spurious separation of the
boundary layer, referred to by Menter and Kuntz (2004) as grid-induced separa-
tion. This adverse feature was corrected by introducing a shielding function by way
of a straightforward modification to the original formulation, leading to DDES.

18 For example, for structured meshes with block refinement where refinement zones encroached on the meshing
of the boundary layers.
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Fig. 10.40 (Top): different types of meshes for a boundary layer: (a) intended
operation of DES, (b) ambiguous definition of LES region due to finer mesh.
(Bottom): comparison of behaviour for a turbulent boundary layer. Left: mean
velocity; right: viscosity ratio. The shielding function fd , defined in Eq. (10.46),
is also plotted for reference. (Bottom figures from Haase et al., 2009.)

As shown in Fig. 10.40, the Type (a) mesh represents a common DES bound-
ary mesh design with relatively large grid spacing in the mean-flow direction.
The large space ensures the LES mode, CDE S�, is too large to be triggered in
Eq. (10.42). Meanwhile, for the Type (b) mesh, its spacing is sufficiently small to
trigger the LES mode in the outer part of the boundary layer, while RANS is limited
to a far narrower region than intended. A region exists in between the two, where
CDE S� = L , which gives rise to an ambiguous switching back and forth between
the two modes. This causes the ‘MSD’ problem since the turbulence length scale
at this point is not large enough to be captured by the mesh. In some cases, as
indicated above, the MSD will lead to grid-induced separation.

Various attempts were made to overcome the issues of MSD and grid-induced
separation, but most schemes introduced an arbitrary limiter to the DES length
scale, CDE S� and, as such, were not general. The first step towards a practical
and generally applicable solution was proposed by Menter and Kuntz (2004), who
made use of the F2 function of the SST model for shielding the RANS region. This
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correction proved to be successful across a broad range of flows though, since it
was shaped specifically for use with the SST model, a more general version of the
same strategy was proposed by Spalart et al. (2006) which could be used with any
baseline RANS model. They applied the model to several external aerodynamic
flows, including a multi-element airfoil, a cylinder and a backward-facing step.
These showed that ‘MSD’ could be reliably suppressed without severe dependency
on the mesh design. This approach was styled DDES; its implementation requires
a modification to the length scale L DE S = d̃ as shown in Eq. (10.45). It is noted
that the switch depends not only on the grid, but also on the eddy-viscosity field.
Note that the SA model uses the distance to the wall as the turbulent length scale
and so, in the original paper,

L DDE S = L − fd max(0, L − CDE S�) (10.45)

fd = 1 − tanh
(|8rd |3

)
(10.46)

rd = (νt+ν) /L2
[(
∂Ui/∂x j

)2
]1/2

. (10.47)

The ‘shielding’ function fd is set to unity in the LES region outside the boundary
layer and gradually transitions to unity within the boundary layer. The function rd

is a modified version of the ratio of the model length scale to the wall distance.
DDES has been increasingly used instead of the original DES, especially in

aerospace applications. An example of such applications is shown in Fig. 10.41,
illustrating simulation of flows over a generic transport aircraft (the NASA Com-
mon Research Model, CRM) that has also been studied experimentally at flight
Reynolds numbers in the pressurized cryogenic European Transonic Windtunnel
(ETW) (Probst et al., 2019). The simulations with the SA-based DDES were per-
formed for low-speed stall conditions at Re = 11.6 × 106, Ma = 0.25 and angle of
attack, α = 18◦ on a hybrid mesh of the aircraft half-model with around 50 × 106

grid points containing a structured block downstream of the wing to resolve the
wake region for which PIV measurements were available. For these conditions the
flow on the wing separates close to the leading edge and the models operate in LES
mode over a large zone between the wing and the horizontal tail plane, Fig. 10.41
(left). The performance of DDES simulations is illustrated in Fig. 10.41 (right) by
the vertical mean-velocity profiles at two streamwise positions in the wing wake.
The DDES velocity averaged over about a dozen flow-through times compares well
with the ETW PIV measurements, notably superior to the RANS predictions with
the same base k-ω model.

A further elaboration of DES has been proposed by Shur et al. (2008) which
they termed Improved DDES (IDDES), for application where scale resolution was
required in regions of wall-bounded turbulent flow. They had observed that due to
the shielding offered by DDES, a wall-bounded flow would often remain in RANS
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Fig. 10.41 DDES-SA of flow over a generic transport aircraft (The NASA
Common Research Model). Left: resolved turbulence (Q-criterion). Right: mean-
velocity profiles at two positions in the wing wake compared with measurements
and the base (SA) RANS, from Probst et al. (2019).

mode when no external forcing or geometry-related instabilities were present. This
problem can be partly overcome by introducing a fluctuating boundary condition
at the inlet, e.g. by applying synthetic turbulence at the inlet as described in §10.4.
Furthermore, the extent of the RANS region should be further reduced compared
to DDES so as to reduce the dissipative effects of larger length scales introduced
by the RANS model via the momentum equations.

Compared to DDES, IDDES employs RANS over a much smaller near-wall
region. The length scale is defined as:

L I DDE S = fB(1 + fe)L R AN S + (1 − fB)CDE S� (10.48)

where a blending function fB is introduced to ensure a rapid switch between RANS
( fB = 1) and LES ( fB = 0) methods, while the function fe is used to smooth the
Reynolds stress change in the interface region of RANS and LES. IDDES can be
interpreted as a two-layer wall-modelled LES approach, as introduced in §10.5.2,
and so, in comparison to DDES, it generally requires a significantly higher grid res-
olution. While, as demonstrated here, IDDES may provide an effective means of
obtaining superior accuracy for flows around simple geometries at moderate Reyn-
olds number, the practical utility of IDDES for high-Reynolds-number industrial
applications is limited.

Grey area mitigation

More recently, significant research and development activity has focussed on
reducing the ‘grey area’ issue in seamless methods. As a reminder of the discus-
sion in §10.3, the ‘grey area’ refers to regions of the domain where there is an
ambiguous split between turbulent scales accounted for by RANS modelling, and
scales resolved by LES. In this context, further improvements have been brought
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to both DDES and IDDES via the consideration of the LES sgs model. In the vast
majority of cases and, in particular, those prior to 2015, DES, DDES and IDDES
have employed a grid-size-based length scale as in the standard Smagorinsky or
one-equation models to account for sgs effects. This practice exhibits a number
of well-documented shortcomings, as discussed in §10.2. Of primary relevance in
this context is the inability of the Smagorinsky model to handle correctly low lev-
els of turbulence or the transition from laminar to fully turbulent regions of flow.
The simple and direct link employed with this model between sgs stresses and
the filtered velocity gradient generally leads to excessive levels of sgs viscosity in
regions of transition. In turn, this acts to hinder the resolution of scales relevant to
the transition process. In the context of seamless methods, the inherent weakness
in handling transitional flows hinders the ability of the flow to adapt from a RANS
region to an LES region. More advanced LES-sgs models have subsequently been
incorporated into a DDES framework with some success; one such example is the
WALE model, Eq. (10.16).

The LES length scale, originally based either on the volume,�νol=(�x�y�z)1/3,
or the maximum coordinate dimension of the grid cell, �max = max(�x,�y,�z)
has also been the subject of further innovation. One emerging option of note is the
vorticity-sensitized definition of � based on work by Chauvet et al. (2007), where
the LES length scale is adjusted to the local direction of the vorticity vector in each
cell, with centre r and cell vertices at rn is defined as:

�̃ω = 1√
3

max(In − Im), n,m = 1 to 8 (10.49)

where In = nω× (rn −r) and nω is the unit vector aligned with the vorticity vector,
with n = 1 . . . 8 defined as the general case for hexahedral cells.

Work by Mockett et al. (2015) considered a range of different combinations of
LES length-scale and sgs models applied to a range of flows. Figure 10.42 presents
a comparison of model performance for the case of a plane shear layer, where a
high velocity flow mixes with a lower velocity stream downstream of a splitter
plate. A stark difference is observed between the results, demonstrating that the
standard DDES combination of the Smagorinsky model and L L E S = �max leads to
a significant delay in the development of resolved turbulent structures downstream
of the end of the splitter plate, particularly when compared to the case where a
WALE sgs model is used with L L E S = �̃ω, as defined in Eq. (10.49).

10.6.8 Partially integrated transport modelling (PITM)

The PITM, proposed by Schiestel and co-workers, is another example of a for-
mal scheme to develop a hybrid approach from the concept of the turbulence
kinetic energy cascade (Chaouat and Schiestel, 2005; Schiestel and Dejoan, 2005).
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Fig. 10.42 Results for the plane shear layer case, described by sketch (bottom
left) of flow topology. Top: iso-contours of the Q-criterion, coloured by vorticity,
are displayed for four different combinations of sgs model and filter width: (a)
standard DDES using �max , (b) DDES using �̃ω, (c) WALE-DDES using �, (d)
WALE-DDES using �̃ω. Figure adapted from Mockett et al. (2015).

The method is inspired by the concept of multi-scale turbulence modelling (§5.3),
wherein the model accounts for energy transfer between multiple scales covering
different wave-number ranges of the spectrum (instead of the standard approach
with a single integral length scale). A standard RANS formulation is recast in terms
of the cut-off wave number, κc, so that the interval 0 < κ < κc is resolved and the
interval κc < κ < ∞ is modelled. A complex formal derivation leads to a set of
equations which resemble those derived for the partially averaged Navier–Stokes
(PANS) framework, §10.6.9, presented in Eqs. (10.54)–(10.58), the constants σk ,
and σε are here unmodified, so in the end the sole change with respect to the original
k-ε model is via a modified cε2:

c∗
ε2 = cε1 + r(cε2 − cε1) (10.50)

where r is defined as the ratio ksgs/ktotal , i.e. equivalent to the quantity fk in PANS
(see below). The κ concept has been extended by incorporating a model form of
the energy spectrum known as the von Karman spectrum, an analytical form for
E(κ), which can be integrated for κc < κ < ∞ to obtain a functional solution
where κc relates to the grid size:

c∗
ε2(ηc) = cε1 + cε2 − cε1

1 + βcη
2/3
c

(10.51)

where ηc is the familiar ratio L R AN S/L L E S defined here as κc L R AN S with κc =
π/�, and βc ≈ 3.0 is a model constant.
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Subsequent application of a more widely applicable model for the energy
spectrum that better describes the spectrum at low wave numbers (Chaouat and
Schiestel, 2009) led to the more general expression:

c∗
ε2(ηc) = cε1 + cε2 − cε1

(1 + βcη3
c)

2/9
. (10.52)

Originally developed within the k-ε framework, the PITM was subsequently ele-
vated to second-moment closure level with an elaborate stress- and dissipation-rate
sgs (‘sub-filter’) model. The new PITM was tested in a plane channel flow, includ-
ing cases of spanwise rotation and fluid injection through one of the walls, as well
as in a flow over periodic hills. In all cases satisfactory agreements with the ref-
erence data were achieved using relatively coarse computational grids (Chaouat,
2017).

It is noted, however, that the sub-filter stress model requires solving equations
for the six stress component and for the corresponding sub-filter dissipation rate,
which inevitably increases the computational time. Chaouat and Schiestel (2013)
estimated that roughly 30–50% more CPU is required than for conventional LES
(presumably on the same or similar grid) even when using the more costly dynamic
Smagorinsky eddy-viscosity model for the LES. In view of a potential reduction in
the number of grid points by a factor 5 to 10 compared with the properly resolved
LES, the authors argue that the estimated additional cost of about 50% still brings
the saving time of roughly 60–80%. Yet, the use of such an elaborate model might
pose computational challenges in handling real-life flows of complex configura-
tions. As shown in the previous chapters, second-moment closures have proved
in numerous cases to capture better the turbulence physics than the simpler lin-
ear eddy-viscosity models when both are used in stand-alone (U)RANS mode.
However, when blended with an LES in a hybrid approach, some of the RANS
shortcomings are compensated by the LES solutions in the adjacent or outer flow
region feeding the resolved velocity and pressure into the RANS field through the
fixed or floating interface. Thus, while the use of a more capable RANS model,
especially in flow over complex wall configurations, is always useful, one may
question the justification for employing such a highly elaborate model option in
most circumstances.

In line with the above rationale, some researches, aiming at the application
of HRL to complex flows, explored options to simplify further the earlier two-
equation PITM, while preserving its basic concept. Even then, in some complex
flows the use of the original formulation of Eq. (10.51) with the k-ε EVM was
found to cause some numerical instabilities, that led Kenjereš and Hanjalić (2005)
to suggest still further simplification of Eq. (10.51), similar to those shown in Eq.
(10.35):
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Fig. 10.43 Cold round jet impinging on a heated flat wall at Re = 23,000:
comparison of PITMα with RANS k-ε, LES and experiments. Left: Nusselt num-
ber distribution. Right: modelled and resolved turbulent kinetic energy. From
Hadžiabdić (2005).

c∗
ε2(ηc) = cε1 + cε2 − cε1

α
(10.53)

where α = max(1, clηc) = max[1, cl(L R AN S/L L E S] as in Eq. (10.31).
The performance of the above simplified PITMα model is illustrated for the case

of a cold round jet impinging on a heated plane surface. Figure 10.43 compares
Nusselt numbers and the turbulent kinetic energy with the RANS low-Re k-εmodel
of Abe et al. (1994) and wall-resolved LES.

Figure 10.43 (right) shows that the excessive levels of turbulence energy created
in a stagnation flow with the standard k-ε EVM (as discussed in §7.4.2) are avoided
with the PITM scheme. These computations were made with a computational mesh
of 1.5 M cells achieving an accuracy comparable with wall-resolved LES made on
a mesh of ∼ 10 M cells.19 We may note, however, that, as shown in Chapter 7, the
heat-transfer coefficient for this test case has been reproduced at least as accurately
by more refined RANS schemes.

The same simplified PITM was verified in an ERCOFTAC benchmark test case
of the flow over the Askervein Hill in Scotland, Fig. 10.44, for which a rich col-
lection of wind-field measurements is available. Figure 10.44 (left) shows the
terrain topography with locations of two measurement towers, CP and HT, as
well as the two lines, A and AA, along which the wind speed was measured at
a height of 10 m above the ground using cup anemometers, indicated by open cir-
cles. The figure on the right shows the fractional speed-up ratio �S along line

19 It is recalled though that the anomaly can be eliminated when imposing scale limiters from realizability
constraints, §7.4.2, and especially when accounting for the elliptic relaxation, as shown in Fig. 7.26.
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Fig. 10.44 Comparison of the PITM (Kenjereš et al., 2006a) and RANS computa-
tions (Abe et al., 1994) with measured velocity over the Askervein Hill, illustrated
by the distribution of the fractional speed-up ratio, �S, at 10 m above the surface
along line A.

A, defined as the normalized relative speed increase or decrease with respect
to the incoming wind mean velocity at the same height above the ground, i.e.
�S = [

U (x, y,�z)− U0(�z)
]
/U0(�z).

10.6.9 The partially averaged Navier–Stokes approach (PANS)

The PANS method, proposed by Girimaji (2006), is a popular alternative to DES,
with many similarities, though the framework is obtained by way of a quite dif-
ferent rationale. The original approach is based on the idea that the fraction of the
energy spectrum to be resolved by the sub-grid model is fixed from the outset, i.e.
it is not a function of the ratio of the RANS and LES grid scales as proposed by
Eq. (10.45). Thus, the PANS method implies a decomposition of the velocity field
based on kinetic energy content rather than on cut-off wave number. The ratios of
modelled (i.e. unresolved) quantities to total quantities, termed resolution control
parameters, are introduced for the turbulence energy, fk = ku/k, and energy dissi-
pation rate, fε = εu/ε. These ratios are then bounded between a minimum of zero,
implying no energy is left unresolved (as in DNS), and a maximum of one, which
indicates that all scales are modelled as in RANS. The new transport equations for
the unresolved k and ε are obtained from the substitution Dku/Dt = fk Dk/Dt
and Dεu/Dt = fεDε/Dt , resulting in

Dku

Dt
= Pu − εu + ∂

∂xk

[(
ν+ νu

σku

)
∂ku

∂xk

]
(10.54)
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Dεu

Dt
= cε1Pu

εu

ku
− c∗

ε2

ε2
u

ku
+ ∂

∂xk

[(
ν+ νu

σεu

)
∂εu

∂xk

]
(10.55)

νu = cμ
k2

u

εu

where, apart from the replacement of k and ε by ku and εu , respectively, the dif-
ference between this and the original form of the parent k − ε model can be
summarized as follows:

c∗
ε2 = cε1 + fk

fε
(cε2 − cε1) (10.56)

σku = σk
f 2
k

fε
, σεu= σ ε f 2

k

fε
. (10.57)

Assuming that a clear separation between energy-containing and dissipation
scales is achieved (high-Reynolds-number flow), εu is not expected to differ much,
if at all, from ε thus the model is simplified by assuming that εu ≈ ε, so fε is taken
as unity for most implementations of PANS. This leaves fk as the main variable to
be chosen. In the original version of PANS, during the model development and test-
ing, a fixed, intuitively chosen value of fk was prescribed, with reported values in
the literature commonly in the range 0.4 < fk < 0.7. The coefficients cε1 = 1.44,
cε2 = 1.92, σk = 1.0 and σε = 1.3 are those of the parent RANS model, which in
this case is the standard two-equation k − ε closure. The same applies to cμ, which
retains the standard value of 0.09. The latter choice is based on the argument that
with common values of fk in the range 0.4–0.7 and fε = 1, the desired reduction
in the turbulent viscosity for the unresolved motion, νu , is achieved by ensuring
that ku is sufficiently smaller than the total k, thus dispensing with the need for
modifying cμ (Girimaji, 2006; Basara and Girimaji, 2019).

The above modification can, to some extent, also be interpreted as an effective
reduction in cμ in the parent model, as follows:

νP AN S
t = cμ

k2
u

εu
= cμ

f 2
k

fε

k2

ε
= cP AN S

μ

k2

ε
. (10.58)

For the usual values of fk in the range 0.4–0.7 and with fε = 1, we obtain an equiv-
alent viscosity constant cP AN S

μ = cμ f 2
k / fε in the range 0.014 < cP AN S

μ < 0.044,
representing reductions from the standard value by 50–80%. The proposal for a
reduced cμ resonates with the idea behind Organized Eddy Simulation (OES), an
approach proposed by Ha Minh and Kourta (1993) applied to flow over a backward-
facing step in which the constant cμ was reduced from its standard value of 0.09 to
0.02, in order to permit a greater range of turbulent scales to be resolved. In the case
of OES this reduction was justified on the basis of a priori calculation of the flow
with a Reynolds-stress-transport model, which indicated that the effective viscosity
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was substantially lower in the wake region of a bluff body. (Further examples of
applications adopting this framework are given in Martinat et al., 2008.) However,
the PANS approach can by no means be reduced simply to the modification of cμ
while retaining the original model (here the k-ε model) as the equations for ku and
εu (if fε �= 1) with some other coefficients (primarily c∗

ε2) significantly different.
In order to enhance the fidelity of modelling near-wall flows and scalar transport,

especially in complex geometrical configurations, Basara et al. (2011) adapted
the PANS approach to the elliptic-relaxation concept (see §7.4.4). They derived
a PANS version of the k–ε–ζ– f model, which, in addition to ku and εu , involves
solution of the transport equation for the unresolved velocity scale ratio ζu = v2

u/ku

and the elliptic function fu analogous to Eqs. (7.48) and (7.49).

Dζu

Dt
= fu − ζu

ku
Pu + ζu

ku
εu(1 − fk)+ ∂

∂xk

[(
ν+ νu

σζu

)
∂ζu

∂xk

]
(10.59)

fu − L2
u

∂2 fu

∂x2
k

=
(

c1 − 1 + c′
2

Pk

ε

)
(2/3 − ζu)

Tu
(10.60)

Tu = max

[
ku

ε
, cT

(ν
ε

)1/2
]

and Lu = cL max

[
k3/2

u

ε
, cη

(
ν3

ε

)1/4
]

(10.61)

where Tu and Lu are the simplified, unresolved equivalents of the time and length
scale defined by Eqs. (7.44) and (7.45), and the coefficients take the same values
as in the parent model.

The wall boundary conditions, originally provided from the standard wall func-
tions (WF), §8.1, were subsequently advanced by employing a blended wall
treatment (BWT), §8.5, which combines the WF with wall integration (WIN) to
accommodate different near-wall grid resolutions. As discussed in §8.5, the scheme
applies WF, WIN or a blend of both depending on the position of the wall-adjacent
grid point, whether in the viscous, buffer or fully turbulent wall zone. The BWT is
particularly suited to the framework of the ζ − f model (either RANS or PANS)
because it ensures trustworthy and robust integration up to the wall when using a
wall-clustered or dynamically adapted meshes, as discussed below.

Extensions to the original PANS framework consider variations in spatial and
temporal values of the functions fk and fε, as well as specific calibrations in cer-
tain flows. A key aspect of the original PANS with prescribed values of fk and
fε is that there is no reference to the grid resolution; thus it is able to provide a
grid-independent solution. In this sense the model may be considered to resemble
a URANS approach with a modified coefficient cμ. However, lack of any depend-
ency on grid also removes the opportunity for the user to refine regions of the mesh
further where more complex flow physics are to be resolved, enabling the model
to switch to a scale-resolving mode. The assumption that a constant proportion of
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the spectrum is resolved at each point in the flow may also give rise to instabili-
ties, since regions of the domain where the mesh has been intentionally coarsened
are likely to be under-resolved. One way around this is to allow fk to vary as a
function of the mesh, as proposed by Girimaji and Abdol-Hamid (2005). They rec-
ommended that a precursor RANS calculation should be run in order to fix the
value of fk in the domain as follows:

fk(xi ) ≥ 1√
cμ

(
�i

Li

)2/3

≈ 3.0

(
�i

Li

)2/3

(10.62)

where �i is the representative grid size, usually (�x�y�z)1/3, L = k3/2/ε. Con-
dition (10.62) stipulates the smallest fk a grid can support at a given location.
This helps circumvent some of the limitations mentioned above, as it offers the
potential for such dynamic updates of fk and grid adjustments in the course of
simulations as might be desired, in particular for flows with unsteady mean motion
in complex geometries with moving boundaries. However, Eq. (10.62) employs
the total kinetic energy k for the length scale L, which requires an averaging of the
resolved velocity field in the course of the computation. That process is computa-
tionally intensive and generally impractical. In subsequent developments, Basara
et al. (2018) proposed solving a separate modelled equation for the resolved kinetic
energy, kssν , termed the scale-supplying variable (SSV),

Dkssν

Dt
= kssν

ku
(Pu − εu)+ ∂

∂xk

[(
ν + νu

σku

)
∂kssν

∂xk

]
(10.63)

which together with the unresolved kinetic energy, ku , provides the total turbu-
lence energy, k = kssν + ku . It is noted that the sole purpose of Eq. (10.63) and the
variable kssν is to obviate the need for expensive averaging operations.

In addition to a range of canonical benchmark flows, the PANS approach has
also been verified in and applied to a number of more complex, ‘real-life’ cases.
The scheme has been gaining in popularity, particularly in the automotive indus-
tries both for external car aerodynamics and for IC engines. An example of car
aerodynamics is the flow over a 1:2.5 scale BMW car model with full design
details, including mirrors, underbody configuration with an asymmetric exhaust
system, differential gear and (here non-rotating) wheels, including brake discs and
rim details (Jakirlić et al., 2014). Figures 10.45 and 10.46 compare some results
obtained by PANS as well as with steady and unsteady RANS20 using the same
k-ε-ζ - f RANS model. The oncoming air velocity is 140 km/hr (Re = 9 × 105)

20 Computed sequentially, starting with a steady RANS until a converged solution is reached (about 50,000
iterations), then switching to URANS and eventually to PANS, run over 15 and 10 flow-through times (FTT),
respectively.
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Fig. 10.45 Vortical structures educted by the Q-criterion (Q = 5, 000 s−2)
around a real car computed by steady RANS (∂/∂t = 0) (top left), URANS (top
right), PANS (bottom left) for the upper surface, and bottom right for under-
body, using the same k-ε-ζ - f RANS model as the base. Courtesy S. Jakirlić and
L. Kutej.

and the domain is meshed by 24–28 million polyhedral grids with regular hexahe-
dral cells clustered towards the solid surfaces to ensure that the maximum value of
y+ at the wall-adjacent cell centre was less than 20. Figure 10.45 illustrates a rich
variety of organized structures generated by separation from the car body and var-
ious protrusions with a clear identification of dominant horseshoe vortices in the
car wake, which are well captured by the PANS, but also, to a large extent, by both
URANS and even steady 3D RANS. The PANS results for the time-averaged inte-
gral properties (pressure, drag and lift coefficients) agree well with the available
windtunnel measurements on the same car model. This is illustrated in Fig. 10.46
by the mean pressure coefficients along the reference lines (y = ±0.14m on both
sides of the central line) on the upper surface and along the central line on the
underneath surface. The pressure coefficient is plotted for each wall-adjacent grid
cell (hence an impression of continuous lines) along the reference lines on all sides
of the car body. It is interesting that the computations show sharp peaks in the pres-
sure coefficients at some x-locations around design elements with sharp edges on
the car underbody, reflecting local complex flow patterns.

We note in passing that the vortex structures shown in Fig. 10.45 over the upper
car surface (compared with those of Spalart (2009) for flow over a circular cylinder,
Fig. 10.32) give quite a different impression of the comparative ability of RANS,
URANS and the scale-resolving methods, DES and PANS, although all deal with
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Fig. 10.46 Mean pressure coefficient on the upper surface and underbody on the
car model obtained by the PANS method. Courtesy S. Jakirlić and L. Kutej.

flow over bluff bodies. The resolved scales in Fig. 10.45 show much less difference
between the performances of the three modelling levels than those in Fig. 10.32.
This could partly be due to the complex shape of the car body with multiple sharp
edges fixing the locations of flow separations compared with the infinite smooth
cylinder surface in Fig. 10.32. However, the principal difference is that Spalart
compared RANS and DES solutions that all use the S-A and SST as the base RANS
models, whereas here, in all cases, the more advanced near-wall k-ε-ζ - f model
was employed. This, yet again, illustrates the important role of the RANS model,
especially when treating flows over solid boundaries of complex configuration.

The next example is a combusting flow in a single-cylinder AVL research IC
engine (Basara et al., 2020). The focus is on predicting cycle-to-cycle varia-
tions in a practically relevant periodic flow (that also involves relevant thermal
and concentration properties) under design operating conditions. For this purpose,
a PANS computation (in parallel with a URANS scheme using the same base
k-ε-ζ - f model) was combined with the AVL default models for treating spray
and combustion. The PANS solution was shown to reproduce the cylinder pres-
sure, temperature, heat release and concentration of emitted gases – including
their cycle-to-cycle variation – closely in accord with the laboratory measure-
ments. Interestingly, the authors reported that the URANS results also returned
a behaviour in reasonable agreement for most properties. Figure 10.47 shows a
selection of PANS results illustrating its potential for application in IC engines
with all major design features, including flow details through the valve port and the

https://doi.org/10.1017/9781108875400.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.012


458 Hybrid RANS-LES (HRL)

(a) (b)

(c)
80

60

40

20

0
720 740 760

Crank Angle [deg]

PANS SSV
Measured

R
oH

R
 [

J/
de

g]

780

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 10.47 PANS-ssv k-ε-ζ - f simulation of the AVL single-cylinder research
engine operating at 4,000 rpm. a) resolution parameter fk ; and (b) vortex struc-
tures educted by the Q criterion at 480 deg. crank angle; (c) heat release
cycle-to-cycle variation compared with measurements; Courtesy B. Basara and
Z. Pavlović.

time variation of the flow domain due to moving piston boundaries. The stretch-
able computational mesh was refined in the wall vicinity and continuously adjusted
throughout the cycles to the corresponding resolution parameter fk using Eq.
(10.62). An impression of the parameter fk and scale resolution is provided by
their snapshot for a particular crank angle in Fig. 10.47 (a) and (b). The cycle-to-
cycle heat release (Fig. 10.4c) averaged over a large number of cycles agrees well
with the measurements.

10.6.10 Links and similarities between different seamless HRL

The field of seamless HRL methods has evolved from several quite different
directions over the past two decades. It is thus interesting to note how the ideas
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have converged. Consider the strong similarities between Eq. (10.42) for DES,
Eq. (10.51) for PITM and Eq. (10.56) for PANS. They all have very similar
functional forms and although they may enter the equations at slightly differ-
ent points, it is possible to manipulate the equations to allow direct comparison.
Friess et al. (2015) noted this trend and proposed a general theory for these meth-
ods, known as H-Equivalence. In a follow-up work, Davidson and Friess (2019)
reflected on the possibilities that a unified theory could offer. While DES and, to
some extent, PANS were proposed on an intuitive basis, PITM has a more rigorous
derivation. While the task is not trivial, the PITM framework may be able to be
expanded to overcome some of the limitations of DES, such as the treatment of
length scales over highly non-uniform grids which habitually arise with industrial
CFD. More details about the links between DES, PITM and PANS can be found in
Chaouat (2017).

10.7 Hybrid RANS-LES models: summary and outlook

This chapter has provided an overview of the main HRL methods introduced since
the origination of this strategy, explaining their origin and demonstrating their
intended application. The chapter began by underlining the challenge posed by
the direct resolution of turbulent scales, before describing approaches which incor-
porate progressively more modelling. We first introduced LES, before exploring
wall-modelled LES and bulk zonal methods, finally arriving at the rich field of
seamless methods. In doing so, we have attempted to include a selection of the
most-widely used approaches: those most likely to be encountered in the current
application of industrial simulation strategies for turbulent flow. There are undoubt-
edly many more methods that have not been included here, because they remain,
at present, less widely used, or are very novel and still in the early stages of devel-
opment, or because they are very similar to other approaches already described.
The intention has been to chart the main milestones in this field, as opposed to an
exhaustive summary.

The overarching motivation for HRL methods is the opportunity to provide res-
olution of the relevant turbulence scales at a more affordable cost than is possible
with LES alone. The non-local interaction of multi-scale turbulent structures is par-
ticularly challenging to model in a general manner. It is undeniably the case that the
unsteady resolution of large, energy-containing, turbulent eddies achieved by HRL
methods can provide predictive accuracy superior to the use of URANS modelling
alone. Nevertheless, the role of the RANS component is also shown to be signifi-
cant, particularly given that it is usually required to account for important near-wall
processes. Although a broad range of RANS-modelling levels in HRL methods has
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been explored, ranging from one-equation models (as in DES97) to full second-
moment closure (as in the new PITM), there is a notable tendency among users to
underemphasize the role of the RANS model. Most HRL methods, irrespective of
whether of zonal, seamless or other type, employ the standard one- or two-equation
(k−ω or k−ε) eddy-viscosity models, presuming that the scale-resolving nature of
the results obtained are the dominant feature of the solution. While, in a correctly
implemented LES region, it is indeed true that large-scale structures will account
for the majority of the kinetic energy of the turbulence (notionally 80% or greater),
it is still the case that where the RANS mode is active, the HRL approach retains all
the characteristics of the particular RANS model upon which it is based, i.e. both
its strengths and its weaknesses. This is especially important where one is looking
to reduce the cost of the HRL solver by ascribing more of the domain to the far less
expensive RANS component.

However, the increased development and testing of HRL has demonstrated
that the choice of RANS model is very important, in particular when dealing
with flows over walls of complex topology and involving heat and mass trans-
fer and other surface phenomena. Such challenging features are encountered in
many areas of engineering and the environment. As broad examples we cite tur-
bomachinery (pinned, ribbed, grooved or dimpled internal blade-cooling passages,
blade-tip gaps, labyrinth seals), internal combustion engines (valves, cooling jack-
ets), thermal equipment (compact heat exchangers), electronic packages, as well
as in environmental flows over complex terrain and built/urban structures. If a
substantial flow portion is entrusted to RANS mode, whether intentionally (for
economy) or uncontrolled (due to the seamless RANS–LES interface and auto-
matic gridding), the (U)RANS region may include local separation, multiple vortex
systems and interactions, secondary flows, strong stress anisotropy, local transition
and laminarization. Capturing most of these and other phenomena requires a RANS
model free from topological parameters and capable of reproducing the basic near-
wall physics as well as ensuring sufficient receptivity to the LES forcing at the
interface. These requirements usually go beyond the capabilities of the common
eddy-viscosity models.

Second-moment closures, despite their well-established superiority in purely
RANS schemes, do not seem a rational option in this role in view of their substan-
tially higher computational costs. Moreover, the need for seamless HRL to operate
both in the RANS and LES (as well as in mixed) modes further militates against
their use. A rational compromise seems to be in using advanced eddy-viscosity
models that account in a physically sounder and transparent manner for the over-
all wall effects which, besides providing an effective viscosity, includes inviscid
wall-blocking and stress anisotropy, as offered, e.g. by the elliptic-relaxation
eddy-viscosity concept, or algebraic stress and flux models.
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As for the choice of the optimal HRL method, from the large range currently
available in the literature, it is not possible to give unambiguous recommendations
or absolute advice on which approach to use for any given scenario. Nevertheless,
some general observations and conclusions emerge, and are summarized in the
following paragraphs.

Zonal methods, which aim to employ separately the component parts of the
approach, i.e. RANS and LES, in their native format, are appealing where one
has already realized a certain level of understanding of the flow in question. For
instance, a RANS model can be applied in regions where it is known to perform
well, while the LES component can be restricted to regions where one expects to
encounter more challenging flow features, such as unsteady three-dimensional sep-
aration, to be influential. Or, alternatively, the LES component can be restricted to
locations where knowledge of the turbulent fluctuations is required for a different
purpose, e.g. for prediction of noise or thermal/structural fatigue. These methods
are, on the whole, more reliable at predicting such phenomena, although in this
case the major challenge is in generating an appropriate representation of turbulent
fluctuations, when moving from time-averaged (or coarse time-dependent) regions
to properly scale-resolving regions of the domain. Once these challenges have been
adequately resolved, zonal methods tend to be reliable in application to the majority
of flows, whether statistically steady, as in fully developed flow through a channel
of complex cross-section, or globally unstable, as in the case of the flow around
a circular cylinder. While zonal methods are therefore often understood to offer
a greater level of accuracy overall, they also often lead to greater computational
requirements than seamless methods, since in most cases they seek to use LES
over a greater proportion of the flow domain.

Seamless methods offer a more general framework, in which the method itself is
largely able to decide whether to operate in either RANS or LES mode, dependent
on local comparison of the turbulent scales, usually in relation to the local mesh
resolution. Seamless approaches benefit from a more flexible framework which
requires less advance knowledge of the flow. However, the decision to allow the
switching between RANS and LES to be more automatic can lead to less certainty
and several common shortfalls have been identified. For instance, small changes
in local grid density can have unintended impacts on the behaviour, resulting in
an ambiguous selection of either RANS or LES. Although, in more recent work,
these shortcomings have been addressed by modelling improvements, seamless
methods may in general be used with more confidence for flows where there is
a global instability present in the flow. For example, the case where a boundary
layer is fully separated as a consequence of a specific geometry, such as a wing at
high incidence or a deployed landing gear. The use of seamless methods for flows
where small local instabilities grow to dictate large-scale changes downstream,
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such as the pressure-induced separation from a smooth surface, tends to have a less
assured success.

As methods evolve further, it is likely that the number of HRL variants in reg-
ular use will reduce as improvements developed in one sub-group of methods are
applied to others and where the margins for further improvement become smaller.
Similarly, while there are still some active developments in the field, the number
of entirely new HRL approaches has reduced in recent years, as the community
converges towards a greater understanding of the common best-practice elements
to follow and the main pitfalls to avoid. On the other hand, the improved reliabil-
ity of HRL approaches has, in recent years, led to their use over a broader range of
applications than originally envisaged. Once restricted mainly to the domain of aer-
ospace, it is now common for HRL approaches to be used to good effect in a diverse
range of sectors, such as automotive, energy, environmental and even cardiovascu-
lar flows. Furthermore, these methods have been developed to incorporate various
additional physical modelling, such as fluid-structure interaction, acoustics, heat
and mass transport, multiphase flow, combustion and other chemical reactions.

While accumulated experience and know-how will often lead to a narrower
range of methods used by the majority, there will most likely remain a need for
approaches which offer a different balance between cost and accuracy. In much
the same manner as for RANS models, there will likely remain a need for faster
approximations that can cover a broader region of parameter space at the expense of
some accuracy in order to gain a greater understanding of the operational range of
a system than can be garnered from a few isolated design points alone. A carefully
selected combination of higher- and lower-fidelity methods can, in this context,
offer even greater efficiency in the exploration of a broad range of parameters. The
higher-order methods, used sparingly, can provide continual feedback and correc-
tion to the lower order methods and, in doing so, provide greater accuracy overall.
This is the basis for uncertainty quantification methods, which seek to quantify
the effect on predicted outcomes of different initial conditions. In most practical
scenarios a precise definition of the initial conditions, or indeed boundary con-
ditions, is impossible to provide. Small discrepancies can be amplified over time,
and eventually lead to an unexpectedly broad range of possible predicted outcomes.
Ensemble approaches, which combine large numbers of low-fidelity methods with
fewer high-fidelity runs, each with slightly different initial conditions, can offer the
basis for a more statistical prediction of the most likely outcome. In the outlook of
future developments in HRL sketched above, Artificial Intelligence and Machine
Learning are also likely to play an increasingly important role.

We expect the research field of Hybrid RANS-LES to remain a fertile area
for further innovation for many years to come, and for the employment of these
approaches in industry and the environment to continue far beyond. Until such time
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as the readily available computational resource is so great as to obviate the need for
modelling altogether, there will always be a need for a compromise between cost
and accuracy. In many cases we expect the use of turbulence models to provide a
suitably accurate solution in their own right, as described in the preceding chapters
of this book. However, in certain cases where higher accuracy is required or where
a more complex unsteady phenomenon is known to dominate, it is likely that a
Hybrid RANS-LES approach will be favoured.
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Hanjalić, K., Laurence, D., Popovac, M. and Uribe, C., 2005, Turbulence model and
its application to forced and natural convection, in Engineering Turbulence Mod-
elling and Experiments, Vol. 6 (Ed. W. Rodi and M. Mulas), 67–76, Elsevier,
Amsterdam.

Hanjalić, K., Borello, D., Delibra, G. and Rispoli, F., 2015, Hybrid LES/RANS of internal
flows: a case for more advanced RANS, in Progress in Hybrid RANS-LES Modelling,
NNFM, Vol. 130 (Ed. S. Girimaji et al.), 19–35, Springer, Switzerland.

Harris, V. G., Graham, J. A. and Corrsin, S., 1977, Further experiments on a nearly
homogeneous turbulent shear flow, J. Fluid Mech. 81, 657–687.

Heinz, S., 2020, A review of Hybrid RANS-LES methods for turbulent flows: concepts
and applications, Prog. Aerosp. Sci. 114(100597), 1–25.

Hino, M., Kashiwayanagi, M., Nakayama, A. and Hara, T., 1983, Experiments on the tur-
bulence statistics and the structure of a reciprocating oscillatory flow, J. Fluid Mech.
131, 364–400.

Hinze, J. O., 1973, Experimental investigation on secondary currents in turbulent flow
through a straight conduit, Appl. Sci. Res. 28, 453–465.

Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw Hill, New York.
Hoffmann, G. and Benocci, C., 1995, Approximate wall boundary conditions for large

eddy simulations, in Advances in Turbulence V (Ed. R. Benzi), 222–228, Springer.
Hogg, S. and Leschziner, M., 1989, Computation of highly swirling confined flow with a

Reynolds stress turbulence model, AIAA J. 27, 57–63.
Holgate, J., Skillen, A., Craft, T. and Revell, A., 2019, A review of embedded large eddy

simulation for internal flows, Arch. Comput. Meth. Eng. 26(4), 865–882.
Hossain, M. S. and Rodi, W., 1982, A turbulence model for buoyant flows and its appli-

cation to vertical buoyant jets, in Turbulent Buoyant Jets and Plumes, HMT Series,
Vol. 6 (Ed. W. Rodi), 122–178, Pergamon Press, Oxford.

Hoyas, S. and Jimenez, J., 2006, Scaling of velocity fluctuations in turbulent channels up to
Ret = 2003, Phys. Fluids 18, 0011702, http://torroja.dmt.upm.es/ftp/channels/data/.

Hoyas, S. and Jimenez, J., 2008, Reynolds number effects on the Reynolds-stress budgets
in turbulent channels, Phys. Fluids 20, 101511.
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New York.

https://doi.org/10.1017/9781108875400.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.013


References 479

Jackson, J. D., Cotton, M. A. and Axcell, B. P., 1989, Studies of mixed convection in
vertical tubes, Int. J. Heat Fluid Flow 10, 2–15.

Jackson, J. D., He, S., Xu, Z. and Wu, T., 2002, CFD quality and trust: generic studies of
thermal convection, Technical Report HTH/GNSR/5029, University of Manchester,
Manchester, UK.
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Kenjereš, S. and Hanjalić, K., 2007, Numerical insight into magnetic dynamo action in a
turbulent regime, New J. Phys. 9, 1–29.
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accelerated flow, 211, see also boundary layer,
accelerated; sink flow

acceleration parameter, dimensionless, 178, 209, 211
algebraic flux model (AFM), 248, 249, 251, 360

reduced, 246, 247–8
algebraic second-moment (ASM) closure, 240, 360

buoyancy effects, 245–52
explicit (EASM), 252–4

algebraic stress/flux models, see algebraic
second-moment (ASM) closure

algebraic stress model (ASM), 240
algebraic truncations of second-moment closures,

239–61
angular momentum, 257
anisotropy

of scalar field, 57–8
of stress dissipation, 53
of turbulence, 70
of turbulent stress, 50–1

anisotropy invariants, 51–7, see also invariants
of stress

transport equation, 258
of stress dissipation, 53

anisotropy tensor
of dissipation, 53
of stress, 50–1, 85–6, 239

asymmetric flows, 236
averaging

conditional, 17
density-weighted, 21
ensemble, 17, 19
phase, 16, 17
Reynolds, 35, 263
time, 16

axially rotating pipe, 215
axisymmetric contraction, 54, 159
axisymmetric expansion, 54
axisymmetric jet, see jet, round
axisymmetric turbulence, 53

backward-facing step flow, 206, 324, 338, 413
curved, 310
dividing streamlines, 154
failure of wall functions, 301
Stanton number, 325, 326

Basic Model, 66–84
applications, 77–84
coefficients, 68–9
dissipative correlations, 73–4
wall corrections, 69–72

Bödewadt layer, 219, 310
body force effects, 211
boundary conditions

wall, 77, 194, 225–7, 284, 324, 454
blended, 319, 321, 322, 323, 324
for dissipation rate, 174

elliptic-relaxation v2−f model, 283–4, 286
elliptic-relaxation second-moment model, 225–6
no-slip, 9–11

boundary layer
accelerated, 178–9
in adverse pressure gradient, 209, 210, 323, 324
blown, 180
constant pressure, 167, 238–9
in favourable pressure gradient, 209, 315, 323, 324,

see also sink flow
heat transfer, 165
laminarescent, 179
laminarization criterion, 179
oscillatory, 78
shape factor, 144, 238–9
in zero pressure gradient, see constant pressure

braking effect, 216–17
buoyancy, 17

effects, 28, 31, 316
inclusion in wall functions, 316

neutral, 120
thermal, 24, 147, 333, 360

buoyancy force, 316
fluctuating, 116
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buoyancy parameter, 251, 278, 279, 308, 309
buoyancy velocity, 316
buoyant flows

in the environment, 362
thermal plane wake, 242

buoyantly modified flow, see mixed convection

Cayley–Hamilton theorem, 52, 84–5, 86, 98, 110, 198
channel flow

curved, 256
plane, 167, 424, 450

budget of turbulent kinetic energy, 35–6, 173
DNS, 55, 95, 172
effect of wall-echo on stress components, 96
invariants, distribution of, 56
near-wall stress components, 56, 171–2
normalized eddy viscosity, 176
stress dissipation components, 177, 198
subjected to magnetic field, 128, 216
triple velocity moments, 139
variation of coefficients in the SSG and HL

models, 95
variation of ε and ε̃, 175
variation of the fw in the wall-echo model, 72

rotating, 194, 219, 253
side-heated, vertical, 247

clipping approximation, 132
closure

one-point, 21
second-moment, 60, 338, 343, 349, 354, 450, 460

for double diffusion, 124
elliptic blending, 226
elliptic relaxation, 115, 224
for low Reynolds number, 186
for MHD flows, 131
near-wall modifications, 208

spectral, 21
third-moment, 132, 153, 248
turbulence, 60

closure problem, 59
continuity equation, 21, 170, 274, 328
coordinate frame indifference, 61
Coriolis effects, 114
Coriolis force, 9, 24, 29, 112, 147, 194, 276
Coriolis term, 111, 113
correlation

temperature–pressure-gradient, 88
two-point, 39, 71, 89, 121, 223, 416
velocity–pressure-gradient, 64, 188

Couette flow, rotating, 215

decay of turbulence, 35, see also grid turbulence
density fluctuations, 18, 20, 21, 24, 116, 124, 135
detached eddy simulation (DES), 398, 418, 436–7

calibration of DES, 437–9
improved DES: DDES, IDDES, 443–9
sensitivity of DES to the RANS model, 439–43

diffuser, 78, 79
annular, 78

dimensional analysis, 40, 141, 263
dimensional consistency, 76
direct numerical simulation (DNS), 1, 2, 3, 374, 375,

377, 381, 387, 409, 431
disc cavity, 310, 311, 359

co-rotating, 356, 357
counter-rotating, 359

dissipation flatness parameter, 56
dissipation rate, 42, 43, 44, 76, 140, 329, 433, 434

diffusion
by fluctuating pressure, 208

effects of force fields, 111
effects of mean velocity gradients, 141
equation, 263
exact transport equation, 43
homogeneous, 200

behind a backward-facing step, 206
equation, 208

mean, 307
modelled transport equation, 76

in Basic Model, 76
diffusion, 150
force-field effects, 146
generation term, general, 142
sink processes (term), 148

prescribed, 289
quasi-homogeneous (‘isotropic’), 174, 286
true, 43
wall boundary condition, 174
in wall functions, 298

dissipation rate of scalar variance, see also scalar
dissipation

exact transport equation, 48
dissipation sublayer, 306
double-diffusive systems, 123, 251
duct flow, 105, 243

rectangular-sectioned, 55, 105
rough wall, 105
secondary flow, 103

eddy viscosity, see turbulent viscosity
eddy viscosity models, 263, see also turbulence

models
accounting for curvature and body forces, 263,

275–82
accounting for Lorentz force, 279
coefficients, 265
damping functions, 266
elliptic relaxation, 182
linear, 5, 78, 79, 81, 105, 113–14, 175, 222, 243,

261–92, 337, 344, 354, 435
non-linear, 85, 254–61, 439

cubic, 254
Ekman layer, 219, 356, 357, 358
electromagnetic control, 127
electromagnetic force, 11, 126–31, 332

https://doi.org/10.1017/9781108875400.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108875400.014


500 Index

elliptic blending model, 226–32, 439
elliptic relaxation equation

in elliptic blending model, 226–7
in second-moment model, 224–5

modified, 227
elliptic relaxation EVM, 282–7, 338, 345, 435
elliptic relaxation function

in second-moment model, 224–6
at a wall, 225–6

energy dissipation rate, see dissipation rate
energy spectrum, 374, 389, 449, 452

one-dimensional, 40–1
enstrophy, 44
enthalpy, 2, 14, 305

fin-plate junction, 222, 223
flow in annuli, 236
forced convection, 278, 281, 291, 308
free-surface flows, 69–70
free-surface jet, 82

plane, 81–2
stably stratified, 120
three-dimensional, 104

free vortex, 80–1
friction velocity, 296, 416

in a magnetic field, 217
in a plane rotating channel, 112–13

Froude number, 120

gas turbine, 78, 111, 211, 424, 440, 441
generalized gradient-diffusion hypothesis (GGDH),

74, 150, 204, 245, 260
geophysical flows, 11
gravitational force, 110, 303
Green’s theorem, 90, 118
grid turbulence

decay law
coefficient cε2, 2, 77, 206–7
final period, 207
inertial period, 36
transition from initial to final period, 181

heated grid
decay of temperature variance, 48

Hartmann laminar channel flow, 217
Hartmann line, 217
Hartmann number, 128, 217
heat flux from wall functions, 296, 297
heat flux, turbulent, 31, 92, 116, 247, 248, 361

in Rayleigh–Bénard convection, 80–1, 248–9, 361
in a side-heated vertical channel, 249

heat transfer coefficient, 180, 269, 270, 297, 443, 451
behind a backward-facing step, 291
in a heated pipe, 308
at reattachment, 297
in the stagnation region, 296

high Reynolds number hypothesis, 61, 73, 341, 343,
376, 378, 396, 412

homogeneous shear flow, 91, 93, 101–2, 108, 109, 181
hybrid RANS-LES (HRL), 12, 334, 361, 371, 459–63

classification of Hybrid RANS-LES, 396–402
grey area, mitigation, 398, 401–3, 447–9
interfacing LES and RANS, 391–2

precursor method, 392–3
synthetic eddies, 393–6

seamless HRL, 398–400, 426–59
blended RANS-LES, 431–2
grid-independent sensitizing of URANS, 434–5
links and similarities between different seamless

HRL, 458–9
unified RANS-LES, 432–4 (see also sensitised

URANS)
very large eddy simulation, 428

two-layer RANS-LES, 414–26 (see also
wall-zonal)

dynamic interfacing, 419–26
fixed interfacing, 416–19
numerical wall models, 411–13
response of RANS to LES across the interface,

414–16
wall-function LES, 407

zonal HRL
bulk zonal HRL, 402–6
embedded LES, 402–6

impermeability, see wall-blocking (or wall-echo)
effects

impinging flow, 8, 9, 83, 194, 203, 274, 275
impinging jet, see jet, impinging
incompressible flow, 20, 24–5, 45, 142, 170, 187, 209,

382
inertial subrange, 39, 40, 378, 386
integrity bases, 84, 85
invariants, 437

map, 55–6, 57, 110
of scalar flux, 57–8
of stress dissipation, 53, 192, 196–7
of turbulent stress, 51–7

in a plane channel, 56
inviscid damping, see wall-blocking (or wall-echo)

effects
isotropic turbulence, 42, 50, 53–4, 55, 67, 73, 114

Lumley’s flatness parameter, 52
subjected to a body force, 64
subjected to a rate of strain, 64
two-point correlation, 89

Isotropization of Production (IP) model, 114

Jayatilleke function, 295
jet

impinging, 83, 221, 257, 286, 303, 304, 324
multiple, 230
Nusselt number, 286
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plane, 81, 135, 142, 149, 161
spreading rate, 102–3, 142, 143
spreading rate by EVMs, 274

plane/round jet anomaly, 144, 155, 161
pulsed, 161

spreading rate, 161
radial, 144, 155

spreading rate, 273
round, 37, 38, 143, 149, 161, 244–5, 273, 329–30,

331
budget of turbulent kinetic energy, 36
in a moving stream, 143, 155
spreading rate, 102–3, 142, 143, 144, 244, 271,

274
spreading rate by EVMs, 274

swirling, 114
wall, see wall jet

kinetic energy, 344, 345, 346, 421, 452
instantaneous, 34
mean, 34, 35

equation, 34
turbulent, see turbulent kinetic energy

Kolmogorov scales, 46, 50, 187, 228, 347, 378, 379,
432

length scale, 45, 228, 374, 375, 378, 379
time scale, 207, 228, 378
velocity scale, 45, 378

laminarization, 179, 186, 207, 209, 211, 213, 215,
229, 264, 268, 407

due to intense heating, 179
due to magnetic field, 217

large-eddy simulation (LES), 2, 3, 15, 371, 381–96
Courant, Friedrichs and Lewy (CFL) number, 388
resolution requirements for LES, 387–91
sub-grid-scale modelling for LES, 382–7

dynamic sub-grid-scale modelling, 385–6
implicit filtering, 385
more complex approaches, 386–7
Smagorinsky model, 383–5

wall-modelled LES, 406
length scale, 384, 436, 447

integral, 39, 162, 374, 379
Kolmogorov, see Kolmogorov scales
near-wall variation, 299
Obukhov, 119
prescribed, 289–92
transport equation, 152

length-scale limiter, 270
limiting states of turbulence, 53

one-component, 53
two-component, 53, 54

local equilibrium, 35, 47, 69, 101, 108, 151, 239, 248,
261, 289, 296, 297–8, 315, 407, 414

local isotropy, 42, 53, 133, 181, 197, 202
logarithmic temperature distribution, 295

generalized, 315–16
logarithmic velocity distribution, 226, 294, 295,

313–15
effect of rotation, 215
generalized, 314

Lorentz force, 9, 29, 54, 126–7, 128, 129, 131, 148,
217

fluctuating, 24, 127, 129–30, 217, 279
instantaneous, 126

low-Re second-moment closures, see wall-integration
(WIN) schemes

Lumley’s flatness parameter
behind a backward-facing step, 192
in boundary layers for different dP/dx , 192
for dissipation, 56–7
in a plane channel, 57
for stress, 52

magnetic effects
contribution to stress generation, 127–30
on pressure-strain correlation, 130–1
in wall-echo model, 130

magnetic flux, 127, 128, 129, 130, 131
mass conservation, 10, 396
mean scalar transport equation, 21, 87
mean-square scalar variance, 33, 46–7
Millionshtchikov hypothesis, 134
mixed convection, 180

downflow in a pipe, 180
upward flow in a pipe, 308
in vertical tubes, 277

mixed layer, 124, 125, 148, 249–51, 365
in double-diffusive systems, 251
penetrative convective, 247, see also penetrative

convection
mixing layer, 47, 77, 135–7, 242, 243

curved, 242, 243, 282
salinity-stratified, 123
spreading rate by EVMs, 274
stably stratified, 136–8

mixing length, 290, 304
van Driest damping, 290

Moore’s law, 372
multi-scale approaches, see turbulence models,

multi-scale

natural convection, 17, 87
on a heated wall, 246
in a magnetic field, 218
in narrow vertical cavities, 277
in a side-heated vertical channel, 189, 248

Navier–Stokes equations, 1, 13–14, 62, 334, 381, 382,
383, 393–4

Nusselt number, 360, 362, 425, 427, 442, 443, 444,
450

in abrupt pipe enlargement, 269
in mixed convection, 308
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502 Index

in multiple impinging jets, 231, 232
in Rayleigh–Bénard convection, 360
in a round impinging jets, 256, 297, 330
in a square duct with square ribs, 270
in vertical heated pipes, 278, 308

one-point closure, see closure
orthogonal mode rotation, 194

partially-averaged Navier Stokes (PANS), 451–8
partially integrated transport model (PITM), 449–51,

452, 459
passive scalar, 47, 125, 232, 316, 333, 368
penetrative convection, 250
periodic flow, 17, 163, 186, 336, 338, 340, 344, 429,

457
pipe flow, 167, 178, 299, 428

at low bulk Reynolds number, 178
in a magnetic field, 218
stress distribution, 172
swirling, 79

plane jet, see jet, plane
plane-strain distortion, 55, 101, 163
Poisson equation for pressure fluctuations, 62, 65, 90,

168, 189, 223
pressure diffusion, 47

model, 75, 152, 153
of Reynolds stress, 64, 87, 188, 190
of turbulent kinetic energy, 34

pressure fluctuations, 24, 25, 29, 45, 62, 64, 65, 68,
70, 114, 167, 187, 189, 222, 249, 396

gradient, 24, 188
pressure gradient, 34, 36, 169, 192, 294, 302, 307,

310, 328, 389, 393, 400, 411
adverse, 144, 151, 154, 161, 180, 192, 209–11, 268,

274, 409, 413, 444
favourable, 209, 315, 323
fluctuating, 29, see also pressure fluctuations
radial, 276
sinusoidal, 78
streamwise, 290
in wall functions, 303, 314

pressure interactions, 34, 122, 131
in third-moment equation, 133

pressure-scalar-gradient process, 74
pressure-strain correlation, 27, 64, 114–15, 130–1,

193
pressure-strain model, 68–9, 225

in elliptic blending model, 227
rapid, 69, 108, 224, 284

isotropization-of-production (IP), 67–8
linear, 184, 186, 252
non-linear TCL, 97–110
quasi-isotropic (QI), 89–92, 97, 253
quasi-linear, 92–6, 285

slow
non-linear, 85–8

quadratic, 183
Rotta’s linear model, 66

from tensor expansion, 84–111
pressure-strain process, 64, 67, 71, 74, 84, 130

rapid, 64, 66, 67, 71, 89, 94, 190
isotropization-of-production (IP), 65

slow, 64, 67, 93, 101
wall-blocking (wall-echo), 65

pressure-strain tensor, 64, 67, 71, 84
principal axes

of Reynolds stress, see Reynolds stress tensor,
principal axes

of strain-rate tensor, 274
principle of receding influence, 60, 133
production of turbulence energy, 36, 40, 101, 144,

344, 354–5, 429
maximum in wall-adjacent flows, 173

radial jet, see jet, radial
RANS approach, 4, 15, 16, 35, 122, 336, 341, 381,

387, 407, 408, 414, 419, 435
RANS models, 2, 4, 124–6, 211, 332–70, 391–6,

414–26, 431–4, 439–43
rapid compression machine, spin-down operation, 215
rapid distortion theory, 35
rate of rotation, see rotation rate
rate of strain, see strain rate
Rayleigh–Bénard convection, 18, 146, 195, 247, 248,

252, 358, 359, 360, 361
the ‘wind’, 17

Rayleigh number, 87, 362
realizability, 50, 57, 60, 61, 109, 110, 132, 186,

274–5, 283, 451
realizable turbulence, 56
reattachment, 194–5, 201, 211, 301, 313, 346

length, 271, 354
point, 195, 269, 413

Reynolds decomposition, 16–19, 24, 126, 334, 394
rules, 18–19

Reynolds equations, 15–22
Reynolds number, 1, 38, 152, 338, 341, 343, 348, 353,

375, 378–80, 387, 393, 406, 413, 421, 424,
446

based on friction velocity, 131, 171, 419
based on momentum thickness, 149
based on Stokes thickness, 213
bulk, 61, 131, 167, 178, 194, 196, 237, 356
magnetic, 127
microscale, 1
turbulent, 35, 40, 42, 46, 167, 175, 181, 186

based on Kolmogorov scales, 1, 46
based on Taylor microscale, 42
based on wall distance, 267

Reynolds stress
budget

at a wall, 188
wall-limiting behaviour, 191

diffusion, 25
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by fluctuating pressure, 25, 195
by fluctuating velocity, 25
viscous, 25

dissipation
Basic Model, 73–4, 76–7
components behind a backward-facing step,

200–1
components in a plane channel, 177
effects of low Reynolds number, 196
homogeneous, 200
wall values, 198

generation
by body force, 23
due to buoyancy, 116–17
due to system rotation, 112–14
by electromagnetic force, 127–30
by mean strain, 23
the role of, 26–8

generation (or production) tensor, 6, 91
complementary part of, 85, 91

mass-weighted, 20
principal stresses, 51
spectral splitting, 162
transport equation, 22–8
wall asymptotes, 171

Reynolds stress tensor, 20, 26, 31, 33, 50, 53, 55, 121,
240, 255, 340, 393–6, 404

anisotropy, see anisotropy
deviatoric part, 31, 50, 51, 85, 176
ellipsoid, 51
principal axes, 50, 51

Richardson number, 118–20, 242, 282
flux, 118, 119, 279
gradient, 118, 119

Rossby number, inverse, 113
rotating coordinate frame, 23
rotating flows, 114, 147, 213–16, 253, 358
rotation number (parameter), 113, 194, 229
rotation rate, 24, 85, 112, 115, 142, 145, 214, 215,

229, 253, 271, 386
dimensionless, 254–5

rotor-stator cavity, 219, 220, 357, 358
round jet, see jet, round

salinity stratification, 124
scalar conservation equation, 14
scalar dissipation, 47–50, 164, 175

exact transport equation, 48
scalar flux, 28, 333, 337

budget, 30
diffusion

by pressure fluctuations, 29
exact transport equation, 28–31

wall budget, 189
generation, 30–1

scalar variance, 33, 46–8
budget in the wake of a sphere, 49

scale-adaptive simulation (SAS), 156, 434, 435

scale-resolving methods, 334, 372, 374–7, 388, 402,
404, 408, 431, 432, 456

cost of resolution, 378–81
Schwarz inequality, 107, 132
secondary flows, 103, 105, 426, 460
second-moment closure, 23, 338, 343, 349, 354, 450,

460
second moments, 22, 59, 339–42

buoyant coupling, 117
deterministic (‘apparent’), 338

separated flow, 36, 151, 152, 259, 270, 271, 277, 291,
310, 338, 354–6, 371–2, 375, 429, 439

separation, 155, 194, 211–12, 221, 313, 332, 338,
347–8, 413, 421–2, 443–7

bubble, 209, 301, 303
point, 222, 262, 348, 355, 375

shear flow
free, 36, 236, 244, 264

buoyancy effects, 166
homogeneous, 255

heat flux, 108–10
stress anisotropy, 70

simple, 6, 40, 69, 92
decay of turbulent shear stress, 40
maximum turbulence energy production, 10, 173

thin, 7, 203, 234, 262
buoyant coupling, 117
energy flow, stress interactions, 27
in a magnetic field, 131
mildly heated, 31
sensitivity to streamline curvature, 28, 242
stably stratified, 118, 279

sink flow, 209
boundary layer, 268

skin friction coefficient, 271, 308, 405, 413
in magnetic field, 217

source terms, 131, 143, 263, 279, 280, 329, 434
in exact dissipation equation, 45
in exact scalar-dissipation equation, 50
in low-Re dissipation equation, 202, 203
in mean-scalar equation, 315
in modelled dissipation equation, 142, 147
in scalar flux equation

gravitational, 116
special purpose, 281

specific heat, 14
spectral equilibrium, 158, 163
spectral transfer of energy, 40, 143, 204
spreading rate, 70, 102–3, 143, 149, 273, 274
stagnation flow, 8, 83, 313, 451
Stanton number, 273

in an accelerated heated boundary layer, 179
behind a backward-facing step, 287, 325, 326
on a wall ahead of a wing, 272

Stokes thickness, 213, 214
strain, cyclic compressive/dilatational, 9
strain rate, 35, 85, 101, 155, 223, 273, 275, 296, 343,

344, 417, 421
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dimensionless, 254, 255, 260
fluctuating, 43
high, 256
plane, 101
sensitivity to, 145

streamline curvature, 7, 28, 83, 239, 242, 263, 275,
276, 281, 282, 326

stress ellipsoid, see Reynolds stress tensor, ellipsoid
stress tensor, see Reynolds stress tensor
structure parameter, 299
Stuart number, 128, 279
sub-grid-scale model, 382–7
sublayer thickness, 178, see also viscous sublayer,

thickness
swirling flow, 69, 79–81, 213–16, 256, 309, 348–53
system rotation, see rotating flows

Taylor–Görtler vortices, 332
Taylor microscale, 42, 157, 202
thermal diffusivity, 14
thermal stratification, 125, 363
third-moment equations, 132, 137, 140
time scale, 9, 17, 31, 43, 46, 66, 85, 140, 141, 162,

164, 195, 332, 334, 338, 384, 394
dynamic, 50, 87, 248
magnetic, 280
mixed thermal-dynamic, 164
near-wall variation, 299
scalar, 50, 87, 164
in split-spectrum approach, 159
thermal, 46
transport equation, 152
upper bound, 275

time scale ratio, 47, 58, 87, 164, 165
time scale separation, 332
T-RANS, see unsteady RANS (URANS)
transition, 209, 211, 384, 402, 421, 443–7

bypass, 186, 211, 267
laminar-to-turbulent, 186, 228, 267, 289, 301, 338,

347–8, 362
natural, 211
in an oscillating boundary layer, 213
reverse, 186
separation-induced, 186, 211, 346, 347–8

transonic flow, 194–5, 222
triple decomposition, 336–7, 360
triple moments, 60, 62, 74, 75, 111, 123, 131, 132,

133, 135, 137, 138, 195
turbulence inhomogeneity, 199
turbulence models, 2, 333, 335, 348, 354, 358, 371,

429, 430, 439
k−uv−ε, 235
k−ε, 264, 265, 267–74
k−ω, 154, 264, 265, 272
k−ω2, 267

SST variant, 271–4
ζ−f , 284

coefficients, 285

multi-scale, 157–63, 449
one-equation, 263, 289
second-moment, 60

accounting for near-wall effects, 189–201
Basic Model, 68
elliptic blending, 226–32
elliptic relaxation, 224–5
TCL, 96

two-equation, 22, 264

v2−f , 283
turbulence Reynolds number, see Reynolds number,

turbulent
turbulence scales, 268, 283, 459, see also length scale;

time scale
limiters

Durbin’s realizability constraints, 274
lower bounds

in elliptic relaxation EVMs, 283
in elliptic relaxation models, 228

scale-determining equation, 5
general, 152–6
ω-equation, 155
ω2-equation, 264

turbulent kinetic energy, 25, 140, 344, 352, 355, 374,
376, 378, 381, 416, 433, 450

local equilibrium, 299
production, 9, 274
transport equation, 34, 263, 289

for particular flows, 35
for split-spectrum method, 159

turbulent stress, see Reynolds stress
turbulent viscosity, 8, 345, 417, 425, 429, 435–7

effective ‘wall’ viscosity (in SAWF), 313
effective ‘wall’ viscosity (in SWF), 297
in k−ε model, 263
in k−ω model, 264

near-wall damping, 264
with prescribed length scale, 289
relation to turbulent Reynolds number, 175
sub-grid-scale, 4

in v2−f model, 283
in various models, 157

two-component limit (TCL), 86, 97–110, 138, 168,
186, 190, 193, 197, 225, 258

two-component state, 54, 55, 181
two-point correlations, see correlation, two-point

U-bend flows, 259, 441, 442–3
unsteady RANS (URANS), 219, 316, 332–4, 428–31,

434–5
buoyancy-driven flows, 332, 358–62
co- and counter-rotating disc cavity, 356, 357, 359
environmental flows, 362–70
mathematical formalism, 334–7
Rayleigh–Bénard convection, 360
role of the model in URANS, 337–48
rotating flows, 356–8
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separated flows, 354–6
separation-induced laminar-to-turbulent transition,

347–8
swirling flows, vortex precessing, 348–54
triple decomposition, 336–7
unsteady RANS and scale resolution, 428–31

urban air pollution, 364

Valensi number, 213
velocity gradient, 384, 386

effective, 193
local inhomogeneity, 193

viscosity
dynamic, 13
kinematic, 6

viscous dissipation, 1, 34, 35, 45, 61, 76, 140, 173,
174, 305

viscous length, 294
viscous region, 167, 187, 208, 237

accounting for in wall functions, 302, 306, 313
buffer layer, 204
in a magnetic field, 216–17
in sink flows, 211

viscous sublayer, 55, 167, 174, 175, 181, 210, 225,
228, 282, 293, 294, 298, 302, 313, 319, 387,
441

dissipation rate, 306, 325
thickness, 177, 178, 180, 306,307

vortex shedding, 17, 281, 332, 338, 341, 343, 354,
355, 424

vorticity, 103, 109, 142, 144, 148, 155, 210, 357, 363,
367, 379, 430, 448

fluctuating, 44
intrinsic, 229
mean, 44, 91, 142, 260
transport theory, 205

wake
plane

spreading rate, 103, 149
thermal, 242

wall-blocking (or wall-echo) effects, 131, 167, 168,
180–5, 188, 263, 282, 460

wall correction, 72, 77, 96, 99
wall functions, 169, 293, 403, 407–13

analytical (AWF), 302–12, 356, 359
for buoyant flows, 305, 307, 308, 316–319
for high-Prandtl-number fluids, 310
generalized SWF, see simplified analytical (SAWF)
numerical (NWF), 327–31
simplified analytical (SAWF), 301, 312–19, 365
standard (SWF), 298

assumptions, 299
in swirling flows, 213–16

wall-integration (WIN) schemes, 168, 185–209
wall jet, 103–4, 308

negatively buoyant, 122, 123
opposed, 308
plane two-dimensional, 236
radial, 221, 230, 330

spreading rate, 221
three-dimensional, 103–4

spreading rate, 103–4
wall layer, 208, 282, 299, 314, 400, 415, 416

attached near-equilibrium, 283
wall-limiting behaviour

of dissipation tensor, 176
of turbulent stress, 171

wall treatment, blended (BWT), 301, 319–27, 454
dissipation, 324
kinetic energy production, 324
velocity, 324
wall shear stress, 323

wave number, 39–40, 158, 161, 204, 374, 375, 377,
381, 391, 428, 449

modulus, 4
weak non-equilibrium hypothesis

for scalar flux, 241
for stress, 239

wingtip vortex, 257
Womersley number, 213

Yap correction, 151, 269, 356
for second-moment closure, 151, 218
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