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Preface

Over the decade since the first edition of Modelling Turbulence in Engineering
and the Environment made its appearance, the wider topic of computational fluid
dynamics — or CFD as it is now universally known — has become even more firmly
established as the route to resolving important and possibly challenging questions
of fluid motion in the turbulent flow regime. As the reader may judge from the
Preface to that first edition (which follows), our view was that the progressive
shift, then underway, from using the Reynolds-averaged Navier—Stokes (RANS)
equations as the basis for accounting for turbulent transport (so-called RANS mod-
elling) to large-eddy simulation (LES) was not assuredly the preferred practice for
many applications.

The notion that, to improve the reliability of one’s CFD computations, one
needed to upgrade the modelling strategy from a RANS-based closure to LES
largely arose from the presumption that RANS-based modelling was invariably
associated with the use of a linear eddy-viscosity approximation. That presumption
we emphatically rejected. Our emphasis in the first edition was rather at a closure
level where turbulent momentum, heat and mass fluxes were found not from such
quasi-laminar constitutive concepts but rather by approximation of their own trans-
port equations, a path formally known as ‘second-moment closure’. Indeed, the
subheading to the book’s title was Second-Moment Routes to Closure. This overall
philosophy is one that we retain in the present edition, though, for reasons that will
shortly become clear, the subtitle has been changed to recognize the broader range
of modelling now included.

It is not argued that second-moment closure is always the best RANS approach
to follow, however. In simple shear flows where turbulence transport is small,
second-moment closures amount to what is tantamount to an eddy-viscosity model
(EVM) of turbulence. There are then clear advantages to making simplifications
to the physical model in order to achieve major savings in computational time,
whether from solving fewer equations or from faster rates of convergence — or,

iX
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X Preface

more usually, from both. Readers familiar with the first edition will thus find that
Chapters 1-7, where the key analysis and simplifications are made, are largely
unchanged apart from modifications to the wording to simplify or otherwise clar-
ify the meaning. Chapter 8, while presenting the same four alternative approaches
for bridging the near-wall viscous layer, includes a challenging application relating
to the urban environment to underline the applicability of the approaches beyond
engineering.

The principal changes in the second edition are the two additional final chap-
ters. The continuing rapid expansion in cheap computing power has stimulated
two major areas of growth. The first is the solution of the transport equations in
time-dependent mode, the unsteady RANS or URANS approach. This strategy was
included in the first edition as a section of a chapter, but the number and complex-
ity of the applications that have appeared in recent years now merit its figuring as
a major chapter in its own right. Overall, the considerable success of the URANS
approach, especially when adopted with a full or truncated form of second-moment
closure, raises fundamental questions vis-a-vis LES in modelling the large-scale
turbulence structures. Not all of those questions are yet resolved, but they are at
least given a preliminary airing in Chapter 9.

Finally, Chapter 10 brings a collaboration between what are sometimes seen as
opposing strategies. In many engineering or environmental problems, there are flow
regions where LES is clearly the best approach (or even the only viable scheme)
to employ. In many others, however, such as in flows bounded by solid walls, the
solution of the relatively thin but important wall-adjacent areas can be entrusted
to a RANS or URANS model. This practice mitigates the formidable grid den-
sity required in the wall region by the usual LES approach and equally, even with
a URANS solution, enables substantially greater time steps. Then again, in some
flow types, a RANS or URANS approach can perhaps cover the bulk of the flow
while LES is employed only in critical regions involving complex physis not ade-
quately accounted for by common RANS models. The final chapter thus considers
how the two approaches may be brought effectively together within a single numer-
ical solver, particularly considering the role and importance of the RANS model in
different applications and the issues of interfacing between the two approaches.

As for the new subtitle to this second edition, by ‘Rational Alternative Routes
to Closure’ we simply mean that the different approaches to modelling are based
on a mixture of rigorous analysis, experimental inferences and, hopefully, sound
physical insight while (echoing the first edition) giving particular emphasis to
second-moment approaches to closure.

In bringing this edition to publication, the authors have benefitted from many
individuals for information or advice, most of whom are already acknowledged
in the first edition’s preface. In addition, we would here mention particularly
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Preface xi

helpful interactions with Branislav Basara, Domenico Borello, Bruno Chaouat,
Sharath Girimaji, Muhamed Hadziabdic, Michale Hrebtov, Rustam Mullyadzanov
and Danesh Tafti. Finally, we are pleased to acknowledge a substantial contributor
to the present edition, Professor Alistair Revell from Manchester University. As a
specialist in the development and application of hybrid RANS-LES methods, he
has made major contributions to the shape and scope of the final chapter and his
name is, therefore, included on the title page.
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Preface to the First Edition

Scientific papers on how to represent in mathematical form the types of fluid
motion we call turbulent flow have been appearing for over a century while, for
the last sixty years or so, a sufficient body of knowledge has been accumulated
to tempt a succession of authors to collect, systematize and distil a proportion of
that knowledge into textbooks. From the start, a bewildering variety of approaches
has been advocated: thus, even in the 1970s, the algebraic mixing-length models
presented in the book by Cebeci and Smith (1974) jostled on the bookshelves with
Leslie’s (1973) manful attempt to make comprehensible to a less specialized read-
ership the direct-interaction approach developed by Kraichnan and colleagues. As
the progressive advance in computing power made it possible to apply the emerg-
ing strategy of CFD to an ever-widening array of industrially important flows,
however, EVMs based on the solution of two transport equations for scalar prop-
erties of turbulence (essentially, length and time scales of the energy-containing
eddies) emerged as the modelling strategy of choice and, correspondingly, have
been the principal focus in several textbooks on the modelling of turbulent flows
(e.g. Launder and Spalding, 1972; Piquet, 1999; Wilcox, 2000).

Today, two-equation EVMs remain the workhorse of industrial CFD and are
applied through commercially marketed software to flows of a quite bewildering
complexity, though often with uncertain accuracy. However, there has been a major
shift among the modelling research community to abandon approaches based on
the RANS equations in favour of LES, where the numerical solution for any flow
adopts a three-dimensional, time-dependent discretization of the Navier—Stokes
equations using a model to account simply for the effects of turbulent motions too
fine in scale to be resolved with the mesh adopted — that is, a sub-grid-scale (or sgs)
model. While acknowledging that LES offers the prospects of tackling turbulence
problems beyond the scope of RANS, a further major driver for this changeover
has been the manifold inadequacies of the stress—strain hypothesis adopted by lin-
ear EVMs. While such a simple linkage between mean strain rate and turbulent

xiii
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stress seemed adequate for a large proportion of two-dimensional, nearly parallel
flows, its weaknesses became abundantly clear as attention shifted to recirculat-
ing, impinging and three-dimensional shear flows. Although an LES approach will,
most probably, also adopt an sgs model of eddy-viscosity type, the consequences
are less serious for two reasons. First, the majority of the transport caused by the
turbulent motion will be directly resolved by the large eddies, and second, the finer
scale eddies that must still be resolved by the sgs model of turbulence will arguably
be a good deal closer to isotropy. Thus, adopting an isotropic eddy viscosity as the
sgs model may not significantly impair the accuracy of the solution.

However, to overcome many of the weaknesses of linear EVMs used within a
RANS framework, it is quite unnecessary to upgrade one’s modelling to LES level.
Rather than adopting a linear algebraic relation to link stress and strain, one can
obtain the turbulent stresses by solving closed forms of the exact Reynolds stress
equations. It is this approach that represents the main focus of the present book,
a modelling strategy known formally as second-moment closure, a label that also
embraces the corresponding modelling of turbulent heat and species fluxes. This
closure level, first advocated in the early 1950s (Rotta, 1951), has in principle a
far greater capacity than EVMs for capturing the diverse influences of complex
strain fields, body forces or substantial transport on the evolution of the turbulent
stresses. This is because the direct effects of strain field, body forces and convective
transport on the turbulent stresses appear directly in the second-moment equations
in forms requiring no approximation! It is true that modelling is still needed, both
in the second-moment equations and in the scale-determining equation, the lat-
ter of which must also be solved to complete closure. But, at the second-moment
level, one can proceed further by way of analysis while several additional invari-
ant parameters become available to help shape compliance with limiting states of
turbulence.

Admittedly, even with a well-constructed code explicitly designed for second-
moment closure (as many commercial solvers are not), such schemes require
typically twice as much computational resource as corresponding EVMs. But this
is a very small price to pay for predicting the flow correctly, while the computa-
tional costs will still usually be one or two orders of magnitude less than the cost
of obtaining an LES of the same flow.

Why, the reader may legitimately ask, if second-moment closure represents such
a major advance over eddy-viscosity approaches, has this situation not become
evident and widely accepted by potential users? The present authors can offer no
certain answer to that question. To those working at that closure level it is well
known. Indeed, in the more comprehensive current textbooks, one will at least
find signposts to modern forms of second-moment closures. But perhaps such
broad-coverage treatments, while of inestimable value as reference sources, are
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Preface to the First Edition XV

unable to justify the space for providing a detailed examination of particular mod-
elling forms or for showing a broad coverage of the successes and weaknesses of
particular models. Perhaps, we concluded, one needed a textbook that focussed
principally on second-moment closure, that provided the background in sufficient
depth, bringing to light strategies from earlier decades that are still useful and also
including the latest models available. Finally, one needed a textbook that discussed
in detail a comprehensive range of applications so that potential users could judge
the likely utility of the schemes in the flows that interest them. It has been our aim,
in the pages that follow, to provide such a coverage.

The writers themselves began working together on second-moment closure in
the late 1960s and over the ensuing forty-odd years have repeatedly interacted
on research strategy in this field, both in specific collaborative research projects
and through the ERCOFTAC! special interest group in turbulence modelling. Our
views on closure modelling, if not identical, are sufficiently closely aligned that,
when we learned that each of us was contemplating preparing a textbook on the
subject, we quickly decided that we should pool our efforts and produce a joint
volume. Throughout, this has been an equal partnership and, as in all our joint
papers, our names are sequenced alphabetically.

To a neutral and knowledgeable reader, the material presented may well be seen
as giving too great an emphasis to the authors’ own work. In part this ‘bias’ arises
from wanting to show the performance of particular models for a wide range of test
cases that (we have learned from experience) are sensitive to the modelling assump-
tions. We trust, however, that the cited references make the connection to (and the
dependence on) the work of others plainly evident. Indeed, our hope would be that
having had their enthusiasm for second-moment closure stimulated or reawakened
by the present text, many readers will be encouraged to plunge into at least some
of the other recent textbooks in turbulence modelling and, thereafter, to read the
original journal papers that are cited.

In fact, one of the choices made in producing this book is directly aimed at
encouraging the reader to progress into the original research literature. In present-
ing different models, while the main ideas and underlying principles have been
included (along with examples of a model’s performance), in many cases, we have
not given a complete mathematical statement still less the boundary conditions or
other essential numerical aspects of handling the equations appropriate to different
classes of flow.

While, in some respects, the book is more comprehensive in its coverage of
second-moment closure than most (perhaps all) alternative volumes on turbulence
modelling, there are also omissions about which some brief explanation needs to
be given. Although we make early reference to situations where the density fluctu-
ations in the convective transport term need to be acknowledged and modelled, the

1 European Research Community on Flow Turbulence and Combustion.
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reader will find that this is not a subject to which we return. The reason is simple:
we have ourselves done little work in the area, so our position statement could only
be arrived at by borrowing conclusions from what others have written. It would,
we felt, be better for the interested reader, instead, to digest directly the views of
those with greater experience. In fact, two such individuals, Tom Gatski and Jean-
Paul Bonnet (2009), have recently collaborated to produce a textbook specifically
focussed on compressibility in high-speed flow, which we commend to the reader.
Equally, while both of us have made proposals for obtaining the turbulent thermal
timescale by solving an equation for the dissipation rate of temperature fluctua-
tions, we nevertheless nowadays prefer to adopt simpler practices ourselves. Thus,
here we leave Nagano’s (2002) review to summarize the painstaking research and
optimization in this area carried out by Nagano and his colleagues. A final impor-
tant area where we offer no contribution is that of how to embed the concepts
of turbulent intermittency within the closure. Long ago, Libby (1975) proposed
a transport equation for intermittency that has been used and developed over the
ensuing decades by numerous workers, especially those working in combustion
and, more recently, those attempting to predict transition from laminar to turbu-
lent flow. In the latter area, the review by Savill (2002b) gives an indication of the
directions being followed to broaden the range of such flows that can be tackled.

Despite the care we have tried to apply in checking the typescript, we know
there will inevitably be errors in what is written, whether just typographical slips
or interpretational errors on our part. Readers are warmly invited to draw these
to our attention (in writing, please) so that in any future reprinting they may be
corrected.

In closing, we express our thanks to our host institutions for the infrastructure
support they have provided. In the case of one of us (KH), this also includes La
Sapienza University, Rome, where, as the holder of an EU-funded Marie Curie
Chair, he spent much of the period during the book’s preparation. Finally, we are
especially conscious that the task of preparing this book would not have been real-
izable without the contributions of many past and present colleagues. In particular,
we offer our thanks and appreciation to Tim Craft, Song Fu, Hector Iacovides,
Suad Jakirli¢, Sasa Kenjeres, Remi Manceau, Kazuhiko Suga and the late Ibrahim
HadZzi¢. We have also benefitted greatly over the years from inputs on various
aspects of modelling from Peter Bradshaw, Paul Durbin, Tom Gatski, Bill Jones,
Nobu Kasagi, Hiroshi Kawamura, Dominique Laurence, Michael Leschziner, John
Lumley, Yasu Nagano, Steve Pope, Bill Reynolds, Wolfgang Rodi, Roland Schies-
tel, Ronald So, Dave Wilcox and Micha Wolfshtein. Finally, we extend a special
thank you to the research students and postdoctoral researchers — too numerous
to name individually — with whom we have shared the occasional frustrations but,
ultimately, the pleasurable satisfactions of turbulence-modelling research.
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Principal Nomenclature

Symbol Meaning

A Lumley’s two-component stress (‘flatness’) parameter,
A=1-3(A— Aj)

As second invariant of stress anisotropy, A> = a;;a;;

As third invariant of stress anisotropy, A3 = a;;aray;

Ay scalar flux correlation function, 49 = (Qu;)? / (ﬁm),
Eq. (3.32)

AT coefficient in van Driest’s near-wall form of mixing-length
hypothesis

ai; Reynolds stress anisotropy tensor, a;; = u;u;/k — 25;;/3

B;, B magnetic flux density

b,] bij = al-j/2

b, ; third-order tensor in the model for ®y;,, Eq. (4.49)

b}’]’.l fourth-order tensor in the model for @;;,, Eq. (4.39)

C species concentration

C, pressure coefficient, C, = 2(P,, — Px)/pUZ

Cy constant in Kolmogorov’s —3/3 law for energy variation with

wave number, Eq. (3.6)
Cpes, Cppegs, ... coefficients in DES, DDES, IDDES

Cij cross (mixed) stress, Egs. (9.9, 10.12)

Cij convection of the Reynolds stress tensor, u;u;

Co; convection of the turbulent scalar flux, Ou;

Cop convection of scalar variance, 92

Cyp convection of a turbulence variable, ¢

Cu coefficient in eddy-viscosity formula

Cp specific heat at constant pressure

Cels Ce2, e coefficients of source/sink terms in the modelled & equation
Ci, Coy ... coefficients in the models of the pressure-strain term

Xvii
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Principal Nomenclature

SESES

d (= Lpgs)

dy
E

E

E,
E;
E(x)

€;
el-j

Foi

Smagorinsky coefficient, Eq. (10.14)

diameter, channel width

complementary stress production tensor

Dij = — (maUk/a)Cj + ujukaUk/8xi)

total diffusion of the Reynolds stress tensor

turbulent diffusion of the Reynolds stress tensor u;u; by
pressure fluctuations, Eq. (2.20)

turbulent diffusion of the Reynolds stress tensor u;u; by
velocity fluctuations, Eq. (2.18)

molecular diffusion of the Reynolds stress tensor u;u;,
Eq. (2.18)

total diffusion of scalar flux Ou;, Eq. (2.25)

turbulent diffusion of scalar flux Au; by pressure fluctua-
tions, Egs. (2.22, 2.25)

turbulent diffusion of scalar flux fu; by velocity fluctua-
tions, Egs. (2.22, 2.25)

thermal molecular diffusion of scalar flux Au;, Eqgs. (2.22,
2.25)

viscous diffusion of scalar flux Ou;, Eqs. (2.22, 2.25)

total diffusion of scalar variance 62, Eq. (3.20)

total diffusion of a turbulence variable ¢

turbulent diffusion of variable ¢ by pressure fluctuations
turbulent diffusion of variable ¢ by velocity fluctuations
molecular diffusion of variable ¢

effective length scale in DES, d= min(d,,, CpgsA),
Eq. (10.42)

distance to the nearest wall in Eq. (10.42)
two-component-limit parameter for dissipation tensor,
E=1-2(E;— E3)

integration constant in log-law, E ~ 8.4 for a smooth wall
second invariant of ¢;;, £, = e;;ej;

third invariant of e;;, E3 = e;jejrex;

contribution by the Fourier-mode wavenumber « to the
turbulent kinetic energy

fluctuating electric potential

stress dissipation-rate anisotropy tensor, e;; = &;;/& — %81» i

turbulent stress production due to all body forces, Eq. (2.23)
turbulent scalar flux production due to all body forces,
Eq. (2.23)
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Symbol Meaning

Fs production of a turbulence variable ¢ by all body forces

f scalar variable in Durbin’s elliptic relaxation EVM

f natural shed frequency

fp van Driest wall damping function, Eq. (10.15)

fi fluctuating body force

Jx ratio of unresolved to total turbulent kinetic energy in
PANS, fi = k./k

fi(=w) RANS/LES switching function, Egs. (10.31, 10.34)
Sr=max (1, Lrans/LLEs)

fw wall damping function in GL and HJ low-Re RSM

fa blending function in VLES, Eq. (10.33)

G spatial filter function, Egs. (10.8, 10.9)

Gij turbulent stress production due to gravitational force,
Egs. (2.19,4.74)

g gravitational acceleration constant

gi, g gravitational vector

H height of the step in flow over a backward-facing step

Ha Hartmann number

H, H» boundary-layer shape factor, 6*/6 (note §; = 6%, §, = 0,
Hy, = H)

h half width of a plane channel

h enthalpy, h = [¢,dT

h heat transfer coefficient, 1 = q,, /(©,, — O,.f)

1 alternative notation for the second invariant of stress anisot-
ropy, 1l = b,’jbj,'/z = A2/8

i alternative notation for the third invariant of stress anisot-
ropy, 11 = bijbjkbki/3 = A3/24

J Jayatilleke function (relative resistance of sublayer to heat
and momentum transfer from a smooth wall), Eq. (8.5)

K acceleration parameter, K = (v/ Ugo)(d Uy /dx)

K mean flow kinetic energy, K = %U z

k turbulent kinetic energy, k = %m

k* sub-grid-scale turbulence energy normalized by total (sgs
plus resolved) &, Eq. (10.40)

ks ‘scale-supplying variable’ in PANS (resolved k), Eq. (10.63)

L, L characteristic flow dimension

L integral turbulent length scale (usually defined as k%/2/e;

for definitions of bounded length scale in elliptic relaxation
models see Eqs. (6.74, 7.45))
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l turbulence length scale, k32 /¢

14 alternative turbulence length scale (used in Wilcox—Rubesin
model), £ = ¢, !

LppEs effective length scale in DDES, Eq. (10.45)

LippEs effective length scale in IDDES, Eq. (10.48)

Ly von Karman length scale, Eq. (10.36)

L;; Leonard stress, Egs. (9.9, 10.12)

M stress production due to fluctuating (electro)-magnetic
(Lorenz) force, Eq. (4.95)

N bulk-flow Stuart number, N = o B3L/pU,

Nu Nusselt number, Nu = hD/A, D denotes relevant length
dimension, for example, pipe diameter

ni, n wall-normal unit vector

P ,P,p instantaneous, mean and fluctuating pressure

Pt non-dimensional pressure gradient, P* = v(d P/dx)/pU?

P wall-adjacent grid node

Pij stress production due to mean velocity gradient, Eq. (2.18)

Poi production of turbulent scalar flux Ou;, Eq. (2.22)

Pr production of turbulent kinetic energy k, Py = P;;i/2,
Eq. (1.5)

Poo production of the mean-square scalar variance 62, Eq. (3.20)

Py production of a turbulence variable ¢ by gradients of mean
and fluctuating properties

Pr molecular Prandtl/Schmidt number

0 criterion for eduction of coherent vortical structures,
0= —(SijSij — Wi;W;;)/2

q internal heat source

q. wall heat flux

Gu kinematic wall heat flux, ¢g,, = q; /pc,

R pipe radius

R, r thermal-to-mechanical timescale ratio, R = 02 /kegg;
r=1 / R

R;; Reynolds stress, Egs. (9.8, 10.12)

Ra Rayleigh number, Ra = g(®,, — @ref)L?’/ozv, where Lis a
characteristic flow dimension, ®,, and ®,,; denote the wall
and reference temperatures, respectively

Re, Reynolds number based on a characteristic flow dimension,
L and velocity, Uy, Re; = UyL /v

Re,, channel flow Reynolds number based on the mean (bulk)

velocity, Re,, = U,,2h /v
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Symbol Meaning

Rey Reynolds number of flow behind a backward-facing step of
height H

Rey magnetic Reynolds number, Rey, = oo UL, [(oo)~! is
known as the magnetic diffusivity]

Re, turbulent Reynolds number, Re, = k?/(ve)

Res, Reynolds number based on Stokes thickness and maximum
free-stream velocity

Rey Reynolds number based on momentum thickness, Rey =
Us0/v

Re, Reynolds number based on friction velocity and channel
half width, Re, = U;h/v

Re; Taylor microscale Reynolds number, Re; = \/1,7%)\ /v

R, flux Richardson number, Ry = —G; /P

Ri gradient Richardson number, Ri = R0y

Rij stress production due to system rotation, Eqgs. (2.19, 4.68)

R;; Reynolds stress, Egs. (9.8, 10.12)

R;j(x,x") two-point correlation tensor, R;; (X,X') = u; (X)u ;(x')

Ro bulk rotation number (various definitions according to spe-
cific application comprising rotating velocity divided by
some other reference velocity)

r radial coordinate

ri, T position vector

r mechanical-to-scalar timescale ratio, I = kegyg/ (0_28) =1/R

S salt concentration (‘salinity’)

Sw swirl intensity, a dimensionless ratio of the axial fluxes of
angular to axial momentum, S,, = 27 fOR UWrldr/n R*U bz
or S, = [ UWr2dr/R [ U*rdr

S invariant of the non-dimensional mean strain tensor,

S = V 51mn Snm

S invariant of the strain rate tensor, S = ,/S;; S}

S* alternative invariant of mean strain tensor used by Yakhot’s
group, S* = /28, Eq. (5.4)

S dimensionless mean strain (in  simple shear),
S =2(k/e)(S12812)'/* = (k/e)dU /dy

Sr Strouhal number, Sr = fL/U, dimensionless vortex shed-

ding frequency
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St
Sij
S,‘j
Ssl 3852 ,853

NS2

SESESESE
=<
=

S
kS

3
S
(]

g

8

ST

+H

S

AU
—uu;

U, v, w

Va

Wwall

Stanton number, St = h/pUxc),

mean rate of strain tensor, S;; = %(an/a)Cj +aU;/0x;)
non-dimensional mean rate of strain, S,- = Sijk/e

general symbols for the source and sink terms in the ¢
equation, respectively

fluctuating rate of strain, s;; = %(aui/axj + du;/0x;)
temperature [°K]

characteristic turbulence timescale, (usually 7 is taken as
k/e, but not in Eq. (5.23)); for definitions of bounded time-
scale in elliptic relaxation models see Eqs. (6.74, 7.35 and
7.44)

spectral energy transfer rate

tensor integrity bases

time

streamwise mean velocity component

filtered velocity in LES

Cartesian components of mean velocity

instantaneous, mean and fluctuating velocity vector

local time-averaged velocity, Eq. (9.1)

phase/ensemble averaged velocity, Egs. (2.8, 2.9, 9.7)

bulk velocity

buoyancy velocity, U, = (Bgq,o?/v)'/*

wall velocity

free-stream velocity

friction velocity, /7, /p

mean velocity non-dimensionalized with friction velocity,
Ut=u/U,

mean velocity for use in wall functions,

U*=Uk'Y?/U? = pUk'? /7,

streamwise velocity change across free shear flow
kinematic Reynolds-stress tensor

Cartesian representation of turbulent velocities

mean velocity component in direction y

Valensi number, Va = R%w/v

invariant of the non-dimensional rotation rate,

W= Wi j Wl‘ J

spanwise and circumferential velocity component
Womersley number, Wo = R/w/v = +/Va
circumferential velocity of rotating wall
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Symbol Meaning

Wi; mean rate-of-rotation tensor,
Wij = 1/2(3Ul/8x] — 8Uj/3xi)

Wi j non-dimensional mean rate-of-rotation tensor, Wi i=Wik/e

Wij fluctuating rate-of-rotation tensor,
Wij = 1/2(81/!,'/8)6]' — auj/axi)

X, X Cartesian coordinates in index and vector notation

X, y,z Cartesian coordinates

y wall distance,

yt non-dimensionalized wall distance, y* = U,y/v

y* alternative normalized wall distance, y* = k'/%y /v

Vi)2 half width of plane jet or wake

Greek Symbols  Meaning

o thermal diffusivity, @ = A/(pcp)

B thermal expansion coefficient, 8 = —(1/p)(dp/0®) |C7P

y molecular diffusivity of a scalar

y concentration (salinity) expansion coefficient, y = (1/p)
(30/9C) |o,p

A characteristic mesh size in direct and large-eddy simulations

) boundary layer thickness

81, 8% displacement thickness, 8, = [7°(1 — U/Ux)dy for a
uniform density

oo

8y, 0 momentum thickness §, = / % (1 — %) dy for
uniform density ’

85 Stokes thickness, 8, = +/2v/@

Sy viscous length scale, §, = v/ U,

8ij Kronecker unit symbol

€ dissipation rate of the turbulence kinetic energy Kk,
e = v(0u;/9x;)?

gl homogeneous dissipation rate of k, " = & — 15D}

ep turbulence energy transfer rates from production region in
multi-scale model

er turbulence energy transfer rates across the transfer region in

multi-scale model
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&w wall value of the kinetic energy dissipation rate
g ‘quasi-homogeneous’ dissipation rate of k, ¢ = ¢ — D] =
e —2v(3k'/?/dx,)?
et dimensionless dissipation rate (in wall units), e* = sv/U?
&ij stress dissipation rate tensor, &;; = 2v(du; /dx;)(du j/0xk)
eflj homogeneous stress dissipation rate tensor, Sihj = &;;—'1D};
Eijk viscous dissipation of triple velocity moments, Egs. (4.102,
4.103)
£0 dissipation rate of the scalar variance, €99 = 2c(06/0x J-)2
€ijk third rank alternating unit symbol (= +1 for i, j, k all dif-
ferent and in cyclic order; —1 for i, j, k all different in
anti-cyclic order; O in other cases)
e normalized effective wall-normal velocity v2/k in ¢- f
EVM
¢ enstrophy (mean square of the vorticity fluctuations),
{ = wjw;
n Kolmogorov length scale, n = (v3/g)!/4,
e mean scalar property in general (primarily used for mean
temperature)
0 momentum thickness
0 scalar property fluctuations
62 mean-square scalar fluctuations (scalar variance)
» Kolmogorov timescale, © = (v/g)!/?
K wave number, k = 27/
K von Karman constant in log-law, k &~ 0.41
K* von Karman constant in the velocity log-law normalized
with k172, k* = C}/4K
K von Karman constant in the log-law for temperature, k¥ ~
0.38
K* von Karman constant in the temperature log-law normalized
with k172, &% = ¢)/*k
A Taylor microscale, A= u%/(aul/axl)z, Eq. (3.11)
A thermal conductivity
A wave length
A ratio of shear stress at wall to that at edge of viscous layer,
Eq. (8.27)
A eigenvalue of mean strain rate
7 molecular viscosity of a fluid
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Greek Symbols  Meaning

Wy turbulent (eddy) viscosity of a fluid

o magnetic permeability

v kinematic molecular viscosity of a fluid, v = u/p

Vs kinematic turbulent viscosity of a fluid, v, = u,/p

vt non-dimensional turbulent viscosity, v," = v, /v

Vsgs sub-grid-scale eddy viscosity

v kinematic turbulent viscosity in the SA model

I1;; velocity—pressure-gradient correlation,
IT;j = (1/p)[ui(dp/9x;) — u;(dp/9x;)]

0, p, P instantaneous, mean and fluctuating fluid density

o electrical conductivity of fluid

Oy turbulent Prandtl-Schmidt number for diffusion of ¢

T total shear stress (viscous plus turbulent)

Tt non-dimensional shear stress, t+ = 7/1,,

Tjj stress tensor

rl.’j turbulent stress tensor, rl.’j = —puu;

ri‘;. viscous stress tensor, ri‘;. =2u(S;; — %Skkéij)

Tw wall shear stress

D, D, ¢ general variable: instantaneous, mean/filtered and fluctua-
tion

@ local time-averaged general variable, Eq. (9.1)

D;; pressure-strain correlation in the u;u; equation,
@, = (1/p) p@u;/ox; + ou;/oxr)

Dy; pressure-scalar gradient correlation in fu jequation,
Dy = (1/p)pdb /dx;

ou; scalar flux vector

o} general symbol for a turbulence variable

' generalized turbulent scale variable, ¥ = k™¢" ,

v parameter in SAWF scheme accounting for departures from
equilibrium, Eq. (8.31)

Q angular velocity

Q magnitude of the mean vorticity

Qe system rotation vector, angular velocity vector

£2;, Q mean vorticity vector, §2; = €;490U;/dx;, (2 =V x V)

w;, ® fluctuating vorticity vector, w; = €;jx0uy/0x;, (@ = V X V)

1) turbulence ‘frequency’ or specific dissipation rate, e/k
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Superscripts, subscripts

+ quantity normalized by wall units v and U,

* quantity normalized by wall units v and k'/? (but note U*
definition above)

instantaneous value of variable

/ turbulent fluctuating value of variable

root-mean-square value of turbulence variable

(e.g. iy = \/u:%)

c centre-line value (of a symmetric free shear flow)
c coherent
h homogeneous
int RANS/LES interface
mod modelled
n normal-to-the-wall direction
res resolved
s stochastic
Sgs sub-grid-scale
u unresolved
\% evaluated at edge of viscous sublayer
w wall value
o0 free-stream conditions
Abbreviations and acronyms (subjects)
AWF analytic wall functions
APG adverse pressure gradient
ASM algebraic second-moment (closure)
AR)SM algebraic (Reynolds) stress model
AFM algebraic flux model
BWT blended wall treatment
CFD computational fluid dynamics
CFL Courant, Friedrichs and Lewy number, Eq. (10.18)
Ccv control volume
DDES delayed DES
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XX Vil

DES
DIHRL
DNS
DSM
EAR)SM
EB
ELES
ER

ER
EVM
Exp.
FPG
GGD(H)
GWF
HRL
HTM

1P

LES
NWF
NLEVM
PANS
PITM
QI
RANS
RDT
RNG
RSM
SA
SAWF
SMC
SST
TRANS
URANS
VLES
WF
WIN
WMLES
7PG

detached eddy simulation
dynamically interfaced HRL

direct numerical simulation
differential second-moment closure
explicit algebraic (Reynolds) stress model
elliptic blending

embedded LES

elliptic relaxation

expansion ratio

eddy-viscosity model

experiment

favourable pressure gradient
generalized gradient diffusion (hypothesis)
generalized wall functions

hybrid RANS-LES

hybrid turbulence model
isotropization of production

large eddy simulation

numerical wall functions
non-linear EVM

partially averaged Navier—Stokes
partially integrated transport model
quasi-isotropic

Reynolds-averaged Navier—Stokes
rapid distortion theory
renormalization group theory
Reynolds stress model
Spalart—Allmaras

simplified analytical wall functions
second-moment closure
shear-stress transport (model)

time-resolved (triple-decomposition based) RANS

unsteady RANS

very large eddy simulation
wall function(s)

wall integration (model)
wall-modelled LES

zero pressure gradient
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Author abbreviations

CLS Craft, Launder, Suga
CKL Craft, Kidger, Launder
DFI Dianat, Fairweather, Jones
FLT Fu, Launder, Tselepidakis
GL Gibson, Launder

GS Gatski, Speziale

HJ Hanjalié¢, Jakirli¢

HL Hanjali¢, Launder

IM Jones, Musonge

IMG Jongen, Mompean, Gatski
LRR Launder, Reece, Rodi

LS Launder, Sharma

LT Launder, Tselepidakis

SA Spalart, Allmaras

SL Shih, Lumley

SSG Speziale, Sarkar, Gatski
Wi Wallin, Johansson
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Introduction

1.1 The fact of turbulent flow

Man has evolved within a world where air and water are, by far, the most common
fluids encountered. The scales of the environment around him and of the machines
and structures his ingenuity has created mean that, given their relatively low kin-
ematic viscosities, the relevant global Reynolds number, Re, associated with the
motion of both fluids is, in most cases, sufficiently high that the resultant flow is of
the continually time-varying, spatially irregular kind we call turbulent.

If, however, our Reynolds number is chosen not by the overall physical dimen-
sion of the body of interest — an aircraft wing, say — and the fluid velocity past
it but by the smallest distance over which the velocity found within a turbulent
eddy changes appreciably and the time over which such a velocity change will
occur, its value then turns out to be of order unity. Indeed, one might observe that
if this last Reynolds number, traditionally called the micro-scale Reynolds number,
Re,, were significantly greater than unity, the rate at which the turbulent kinetic
energy is destroyed by viscous dissipation could not balance the overall rate at
which turbulence ‘captures’ kinetic energy from the mean flow.

This immutable fact of turbulence life lies at the heart of the problem of com-
puting turbulent flows. Any complete numerical solution of the Navier—Stokes
equations must resolve accurately these fine-scale motions as well as the large-
scale overall flow picture in which we are interested. Because of the range of scales
to be resolved, from the fine-scale dissipative motions to the complete flow field,
it is only feasible at present to carry out such a direct numerical simulation (DNS)
of turbulent flow for relatively simple shear flows for overall Reynolds numbers
typically of order 10° and then only with ‘supercomputer’ scales of hardware.
If one is, thus, to embark on the computation of practically interesting turbulent
flows reasonably cheaply (recognizing that in most cases one needs to make tens
or even hundreds of computations of the same geometric configuration to obtain
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a sufficiently full picture), some form of modelling is essential to compensate for
being unable to resolve directly all the turbulence scales as well as the mean flow.

1.2 Broad options in modelling

Two broad strategies for modelling are commonly employed.

e [arge-eddy simulation (LES), where one resolves as large a proportion of the
turbulent fluctuations as one judges necessary (or can afford) and applies a model
— a sub-grid-scale (sgs) model — to account for the effects of those motions of
a finer scale than can be resolved with the adopted mesh. The principal needs,
so far as the dynamic field is concerned, are to account for momentum transfer
by the unresolved motions and to ensure that kinetic energy is removed from the
simulation at the appropriate rate (which amounts to modelling the effective sgs
stresses created in the fluid).

e Reynolds-averaged Navier—Stokes (RANS) equations, in which the effects of
all the turbulent fluctuations are subsumed within the model — generally termed
the turbulence model. As with LES, the non-linearity of the convective trans-
port means that models are needed to account for the effective turbulent fluxes
of momentum, enthalpy and chemical species in their respective transport equa-
tions. These are termed the turbulent (or Reynolds) stresses and the turbulent
heat or mass fluxes; they emerge naturally in Chapter 2 and are shown symbol-
ically as u;u; and GTj, where u; and 6 denote turbulent fluctuations of velocity
and the scalar in question about their mean value and the overbar implies time
averaging.

It is this second approach to modelling turbulence that is the principal focus of the
present book. There are also strategies that are, effectively, a blend of these two
approaches. Such schemes form the subject of the book’s final chapter; but, for
the present, they are not considered further, except to remark that the development
of such hybrid approaches reflects, in part, the inadequacies of the RANS models
that are most commonly used in engineering computations. Thus, if more gener-
ally applicable approaches to RANS closure are adopted, that, on the one hand,
reduces the need to resort to such hybrid LES-RANS schemes while, on the other,
also provides a more secure RANS component in situations where such combined
approaches are necessary or desirable.

A comparative illustration of the numerical resolution of turbulent flow in a
pipe or channel required by these different numerical approaches — DNS, LES
and RANS - is shown in Fig. 1.1. A random-like oscillating signal with sharp
peaks (top figure, left) provides a snapshot of the true instantaneous velocity, U,
in a vertical cross plane. A properly resolved DNS (with the computational cells
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DNS LES RANS
Direct numerical Large-eddy Reynolds-averaged
simulations simulations Navier—Stokes
y
X
Utx,)
Instantaneous Resolved Averaged
velocity profiles velocity profiles velocity profiles
(two realizations) (large scales only)
E(K) E(K)

spectrum
resolved

H@TS), @@ 1!
New gg;ﬁ Qg 2 iNey) i) Model
C\? Sage Pl Cz <P
Eddy spectrum Y
fully resolved Resolved

t

Fig. 1.1 Illustrative comparison of DNS, LES and RANS simulations of a fully
developed, steady turbulent flow in a pipe or a plane channel. Top: typical com-
putational grids and sketches of a set of instantaneous velocity profiles (U) from
DNS, filtered velocity profiles (U) from LES, and the time-averaged profile (U)
obtained by RANS. Centre: a sketch of the resolved energy spectrum E (k) for
DNS and LES (note: RANS is also called ‘one-point closure’ because it com-
putes the averaged turbulence properties at a point in space with no information
on the turbulence spectrum). Bottom: time signal at a point in the flow and typical
time steps for DNS and LES. The RANS solution, by definition, gives a constant
velocity at a point in a steady flow.
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smaller than the smallest important eddy size) will provide the complete range of
wavelengths of velocity fluctuations. The instantaneous velocity profile obtained
by LES (top figure, middle) also shows a range of wavelengths, but because the
computational mesh is coarser, the signal is somewhat smoother, representing the
filtered velocity U. High frequencies, i.e. those with a wavelength smaller than the
computational cells, are absent because they have been filtered out. The top-right
figure shows the time-averaged velocity U which exhibits a smooth profile that can
be obtained with a much coarser grid and which, for a simple shear flow such as
considered here, may be just two dimensional.

The second row of figures illustrates the resolved energy spectrum E (k) deter-
mined using each of the methods. Here E(x) represents the contribution to the
turbulence kinetic energy from all Fourier modes in the range from « to « + dx,
where k = 25 /A is the wavenumber modulus and A is the wavelength. Naturally,
DNS should provide the complete spectrum, while LES excludes only the high
wavenumber portion (beyond k. = 2w /A, where A is the characteristic mesh size).
In contrast, RANS can provide no information about the turbulence spectrum, but
simply the value of the turbulence energy that would be obtained by integrating
over the whole wavenumber range for any point in space.

The bottom figure illustrates the three methods in a different way: here a time
record of fluid velocity is shown at a point in space in a steady flow. Again, the
strongly oscillating peaky signal (such as would be recorded by a hot-wire ane-
mometer) is representative of a typical DNS of velocity fluctuations at a point.
The smoother oscillating signal is a typical LES result, whereas the RANS record
would simply give a constant value. Resolving the DNS signal requires very small
time steps, whereas LES tolerates a somewhat larger time step corresponding with
the coarser computational mesh.

Both LES and RANS have particular strengths and dedicated proponents.
Because, using LES, with the numerical solver one resolves directly a large pro-
portion of the energy-containing turbulent motions, the model is less crucial to the
computed behaviour of the flow than it is with RANS. Thus, a far from accurate
sgs model may nevertheless lead to satisfactory numerical simulations. Just how
important the sgs model is naturally depends on how large a proportion of the total
effect of the turbulence it is required to carry. Currently, the most common strat-
egy in sgs modelling is to assume that the magnitude of the components of the sgs
stresses is directly proportional to the corresponding components of the resolved
strain, the coefficient of proportionality being what is termed the sgs kinematic vis-
cosity. The computational cost of an LES calculation naturally depends greatly on
the fineness of the computational mesh chosen.

With a RANS approach, to a far greater extent than with LES, the fidelity
of the computed flow hinges on a wise choice of model. The great majority
of computations at present, particularly those for industrial applications for

https://doi.org/10.1017/9781108875400.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.003

1.3 A preview of the mean-strain generation processes 5

complex-shaped configurations, still employ a linear eddy-viscosity model where
the local value of the turbulent (or eddy) kinematic viscosity, v;, is computed in
the course of the solution, usually by way of supplementary transport equations
for what amount to representative length and time scales for the energy-containing
turbulent motions.

Within RANS there is, however, a hierarchy of alternative, more elaborate mod-
elling strategies available, ranging from non-isotropic turbulent viscosity models
to schemes which provide modelled transport equations of the individual turbulent
stresses (or second moments) as well as their diffusion (the third moments). The
focus of this book is on such alternative strategies with our primary attention being
on modelling the second moments. The reason for this choice is simply that tur-
bulent shear flows are not in any general sense describable by a model based on a
linear eddy-viscosity model, while a well-crafted second-moment closure extends
greatly the range of flows and phenomena that can be captured. Merely consider-
ing the stress-generation processes, as is done briefly in Section 1.3, allows one to
appreciate why turbulent flows respond, qualitatively, as they do to the application
of mean flow deformations of various types.

The discussion on modelling via second-moment closure has so far consid-
ered simply the turbulent stresses. If the processes of interest involve heat or
mass transport, the averaged forms of the thermal energy and species transport
equations likewise contain unknown turbulent second-moment correlations: the
turbulent heat and species fluxes. Within a linear eddy-viscosity scheme these rates
of transfer in any direction are taken directly proportional to the corresponding
spatial gradient of mean temperature and mean species concentration, respec-
tively. Such an assumption has similar shortcomings to that of the eddy viscosity
approximation for momentum transport. Solving transport equations for these other
second moments brings corresponding benefits to those for the turbulent stresses,
especially where buoyant force fields are significant.

1.3 A preview of the mean-strain generation processes
in the stress-transport equation

One of the attractions of second-moment closure compared with simpler
approaches to modelling is that the second-moment generation terms are exactly
represented and thus require no further approximation. This fact means that, where
these terms are major contributors to the budget for the second moment in question,
one is half-way to closure without having to make any approximations. More-
over, without completing a model for the remaining processes, one can often
infer the character of a turbulent flow just by simply noting how the generation
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Fig. 1.2 A simple shear flow: (a) typical mean velocity profile; (b) turbulent
normal stress components in a plane channel flow, as a function of the non-

dimensional wall distance x;' = xU; /v (where U, is the wall friction velocity

and v is fluid kinematic viscosity). From the DNS of Kim et al. (1987).

is distributed among the turbulent stresses or heat fluxes for different externally
applied conditions.

A formal derivation of the second-moment equations is deferred to Chapter 2 but
here, to convey in advance some impression of the insight gained from a knowledge
of the mean-strain generation process, we examine a few examples for commonly
arising strain fields. In the absence of force fields, the interaction between the mean
strain and the existing turbulence provides the source for further stress creation.
Thus, in most circumstances, once a flow becomes turbulent it remains turbulent.
The turbulent stress-generation tensor, ;;, in a uniform density flow will be shown

in §2.3 to be given by

aU; aU;
Pij :—(u,-uka—x:—l—ujuka—x;> (1.1)

where u;u; denotes the turbulent stress and dU; /dxy is the gradient of the mean-
velocity component in direction xj.

Let us first see how these generation terms are distributed among the different
Reynolds-stress components for the case of a simple shear flow where the mean
flow is purely in direction x; and varies only in the x, direction, Fig. 1.2a. This
is very nearly the situation that applies in a two-dimensional boundary layer. The
resultant values of P;; for each of the six stress components are obtained by assign-
ing appropriate values to i and j. The repeated subscript k signals that elements
carrying that subscript are to be summed with & taking successively the values 1, 2
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X2

X1

Fig. 1.3 Example of a mildly curved turbulent shear flow.

and 3. In the present case, however, the mean velocity varies only in direction x;,
so only k = 2 makes a contribution to P;;. The reader may thus readily verify that:

— oU;
2
P = -2 —
uy 11 1Z307%) 9%
M% Pzz =0
u; Py =0 (1.2)
uus Piz=0
urus Py =0
—oU;
i, Pi=—ui—.
Uy 12 us oxs

It is noted from the last of these results that the generation rate of the shear stress,
u Uy, is opposite in sign from the mean velocity gradient, a fact which explains
why the shear stress itself normally has a sign opposite from the velocity gradient.
Note, too, that turbulent velocity fluctuations in the direction of the mean veloc-
ity gradient are instrumental in creating that shear stress (or momentum transfer).
Regarding the normal stresses, it is perhaps surprising that the only component in
which there is a generation is the streamwise component, u?. As reference to thin
shear flow data readily confirms, Fig. 1.2b, this component is by far the largest
stress though turbulent fluctuations do occur in all directions. Where, in practice,
the source of the fluctuating energy (or normal stresses) in directions x, and x3
comes from will become clear in Chapter 2.

Let us next add a small degree of complexity to the strain field by imagining a
weak streamline curvature in the x;—x; plane, Fig. 1.3. We retain Cartesian coordi-
nates so the curvature manifests itself by a non-zero value of dU,/dx;. Thus, from
Eq. (1.1) the shear-stress generation becomes:

—JdU, —dU,
P =—|ui— ety 1.3
12 (uz 9% + u3 91, ) (1.3)

https://doi.org/10.1017/9781108875400.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.003

8 Introduction
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Fig. 1.4 Sketch of the stagnation region in a jet impinging normally on a flat wall.

It is evident from Fig. 1.2b that even far from the wall u_% is at least twice as large

as u3, a situation that also pertains in strong free shear flows, like a jet. In a flow past

a solid surface, however, as one progressively approaches the wall, the disparity
between the two normal stresses becomes progressively greater, Fig. 1.2b. Thus,
the effect of the curvature term in Eq. (1.3) becomes greatly amplified. Indeed, the
great sensitivity of boundary layers to wall curvature has been known for many
years (Bradshaw, 1973). If, however, one were to assume turbulent stresses were
represented by an isotropic turbulent viscosity, v,, one would conclude:

U U
Uiy = —V; —1+—2 . (1.4)
8)62 3)61

In this representation, the weighting of the two strain components is equal, each
being multiplied by the scalar turbulent viscosity.! The above example provides the
first illustration of the over-simplification produced by the eddy viscosity formula
alluded to in §1.2.

An even sharper example is provided in the case of impinging flow. Let us con-
sider the rate at which turbulent kinetic energy is being produced by virtue of the
mean-flow straining along the centre-line of a plane, symmetric stagnation flow,
Fig. 1.4. The turbulence energy, k, is just half the sum of the normal stresses and
its production rate, P, is thus:

aU;
P = —uju;—. (1.5)
jaxj

Along the symmetry plane the turbulence energy generation arises purely from the
normal strains, which, we assume, are adequately represented by the potential flow
solution for plane stagnation flow: dU,/dx; = —dU,/dx, = C, a constant.

! It should be recognized that Eq. (1.3) expresses the production rate of the shear stress, while Eq. (1.4) refers to
the shear stress itself. However, as will be seen later, at least in stress components with major stress generation
terms, the stress production rate is indeed closely related to the magnitude of the stress.
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Thus:
—U, —aU — =
Pk:—(2—1+u2 2):c(ug_ ). (1.6)

u; ax 28_x2
From Eq. (1.6) it is evident that for this flow the rate of production of turbulent
kinetic energy depends on the difference between the normal stresses, i.e. on the
anisotropy of the turbulent stress field. The value of P, may be positive, negative
or zero depending on the relative levels of the two normal stresses. If, however,
the turbulence energy generation had been represented by a turbulent viscosity, it
is easily verified that the following form would be obtained:

Py = 4v,C>. (1.7)

Equation (1.7) implies no such sensitivity to anisotropy; indeed, in all circum-
stances it returns an erroneously high energy generation rate. Computations of
impinging flows with eddy viscosity models thus lead to quite spurious peaks of
turbulence energy in the vicinity of a stagnation point unless problem-specific cor-
rections are adopted (Taulbee and Tran, 1988; Craft et al., 1993; Durbin, 1996). A
similar anomalous outcome of using eddy-viscosity models has also been observed
in other flows where normal straining plays an important role. For example, both
the analytical and numerical solutions for confined homogeneous turbulence sub-
jected to cyclic compressive/dilatational strain show that depending on the sign of
the strain the turbulence production takes alternately positive and negative values,
resulting in zero net production over a cycle (Hadzi¢ et al., 2001). Because of the
continuous dissipation, however, both the turbulent kinetic energy and the charac-
teristic turbulence frequency (the reciprocal of the turbulent time scale) eventually
decay, irrespective of the initial turbulence level, anisotropy of the stress field or
Reynolds number. In contrast, eddy viscosity models predict an erroneous con-
tinual increase of the turbulent kinetic energy because of the incorrect positive
generation of turbulence during the compression phase. Other examples where the
broad character of a turbulent flow can be inferred from considering the stress gen-
eration terms may be found in flows affected by body forces whether due to system
rotation (Coriolis force), density stratification (buoyant force) or magnetic field
(Lorentz force). Such cases are discussed in detail in §4.5.

1.4 Some consequences of the no-slip boundary condition at a wall

At arigid, stationary wall the velocity goes to zero, at least in the continuum regime
to which attention is limited. This condition applies to the turbulent fluctuations
as well as to the mean velocity. Thus the turbulent stresses all vanish at the wall
and wall friction is exerted through purely viscous effects just as in laminar flow.
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As is evident from Fig. 1.2b, however, the turbulent velocity components do not
all increase at the same rate as one moves away from the wall. There are several
reasons for this, as will emerge in Chapters 4 and 6, but one that is examined here
briefly is the constraint applied by mass conservation. For a uniform density flow,
as will be shown formally in §2.3, the turbulent velocity fluctuations as well as the
mean flow are divergence free:

ou; Jdur  Jdus

— 4+ —4+—=0. (1.8)

0x 1 8x2 8x3
This equation applies everywhere, including the fluid—wall interface x, = 0. But
on this surface du;/dx; = dus/dx3 = 0 since u; and u3 are zero throughout the
x1 ~ x3 plane. It follows that du,/0x, must also be identically zero there. Thus,
we deduce that, while the root-mean-square values of u; and u3 initially increase
linearly with distance from the wall, x,, the corresponding value of u, can only
increase as x%, while the shear stress uu, can at most increase as xg. These inferred
exponents of the different stress-component variations will be seen in Chapter 6 to
be fully in accord with DNS data.

The fact that uju, increases as the cube of the distance from the wall implies
that initially, for small x,, this turbulent shear stress will be negligible compared
with viscous shear stress. As one proceeds further from the wall, however, one
enters a region where there is a rapid changeover to a regime where the turbulent
stress becomes the dominant contributor to momentum transfer. Since the total
shear stress (viscous plus turbulent) is very nearly constant over what is a very thin
layer (compared with the shear flow as a whole), there will inevitably be a rapid
reduction in the slope of the mean velocity. That is, one moves from a region where
viscous action (vaU;/dx»,) is the principal mechanism for momentum transfer to
one where most of the momentum transport is by turbulence. This rapid changeover
is clearly evident from the mean velocity profiles in Fig. 1.1, top right (denoted as
RANS), and in more detail in Fig. 6.1.

In fact, in a simple shear flow, the maximum generation rate of turbulent kinetic
energy occurs right in this changeover region. For, this will occur where

d dU,
— | wmm—— ) =0, 1.9
dxs (Mluz dx, ) (1.9)
or, on expanding the differential, where:
d2 U1 dU] d uijuy
U2 ——

dx2 de de

u

=0. (1.10)
On the assumption that the total shear stress ((vdU, /dx,)—u u;) is changing much

less rapidly than its constituent parts, we can replace the turbulent shear-stress
derivative in Eq. (1.10) by the corresponding derivative of viscous stress. With this
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substitution and after cancelling the common factor d*U; /dx3, it emerges that the
maximum turbulence energy generation rate occurs where —uju; = vdU;/dx;,
i.e. where the turbulent and viscous stresses are equal!

The discussion above has brought out a few of the challenges posed by the near-
wall sublayer where viscous as well as turbulent transport is important. Although
the region usually occupies much less that 1% of the total flow volume, it is a
vitally important, albeit complex region to model. Indeed, the question of how the
flow within this sublayer is modelled is examined explicitly in Chapter 6.

1.5 Sequencing of the material

Following this brief glimpse of the potential and one of the major areas of diffi-
culty in modelling at second-moment level, Chapter 2 begins the formal journey
by developing the exact set of equations that needs to be modelled and then solved
within second-moment closure. These equations are ‘un-closed’, meaning that they
contain terms whose value is not directly knowable and for which closure approx-
imations must be provided. It also discusses some of the physical features of
turbulent flow that need to be borne in mind when devising closure approximations.
Chapter 3, while not directly concerned with closure, explores a number of issues
relating to turbulence characterization and introduces certain invariant parameters
that will be of great help in modelling.

Chapter 4 is the first chapter on turbulence modelling itself and it covers many
of the key aspects of closing the second-moment equations. Three types of process
are considered: the roles of pressure-containing products, triple and higher order
products and the dissipative actions of viscosity. Different levels of approxima-
tion are proposed, usually proceeding from the simplest to the most complex. This
chapter includes cases where force fields exert a substantial effect on the turbu-
lence structure. While buoyancy and rotation are the most common and important
of these, electromagnetic force fields are also important in a number of geophysi-
cal flows and also, potentially, in engineering where the emphasis is on turbulence
control. Chapter 5 explores routes for determining the turbulence energy dissipa-
tion rate and thus turbulent time and length scales of the energetic motions. To
complete this modelling trilogy, Chapter 6 develops the important modifications
to the closure model that are required if it is necessary or desirable to carry the
second-moment computations through the viscosity-affected sublayer to the wall
itself.

Not all practically interesting flows require a modelling strategy as compre-
hensive as second-moment closure, however. Thus, in Chapter 7 various types of
simplification are introduced that are applicable in particular types of flow. By
including a few examples where the approximations in question are manifestly
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unsuccessful, however, we hope to provide a reminder that such simplified schemes
always need to be applied with caution and with a broad qualitative understand-
ing of how the prevailing flow conditions are likely to affect the second moments
of interest. Provided that is done, the eddy-viscosity model, referred to dispar-
agingly above, may reappear as a simple yet viable approach for many nearly
two-dimensional thin shear flows where gradients normal to the wall far outweigh
those in other directions. Chapter 8 applies further modelling simplifications to the
wall-adjacent sublayer region. Even if one simplifies the model in this region to an
eddy-viscosity form, the requirements for an extra-fine mesh to resolve accurately
the complex variation of both the turbulence-field variables and the source and sink
processes that determine their level can mean that the great majority of computer
resources are consumed in resolving this region. Sometimes that is the inevitable
price to pay for reliable predictions; but in many others, simpler strategies are pos-
sible. Chapter 8 presents the strategy commonly used in CFD software and four
much newer approaches developed by the authors and their colleagues that provide
more comprehensive and reliable schemes.

Chapter 9 explores the additional possibilities that arise in certain types of
flow from treating the flow as unsteady — even if to an observer the flow may
appear steady. Such situations arise especially, though not exclusively, in condi-
tions where destabilizing force fields play a dominant role. Then the adoption of
a time-dependent solution of the mean and turbulent flow equations frequently
leads to the large-scale unsteadiness of the turbulent motion being rather well
resolved. Indeed, the faithful capturing of the turbulence macro-structure is partic-
ularly striking when second-moment-closure approaches are adopted. The scope
and limitations of this unsteady RANS (or URANS) mode of analysis is still the
subject of research though, from the examples presented, it clearly has a substantial
role to play in the hierarchy of approaches to capturing turbulent flows.

It is not implied, however, that a RANS or URANS approach to modelling is
always the best option. The greater detail and the greater assured accuracy of an
LES will, for particular flows, make the added computational cost and time worth
spending, especially if the region of flow where such an approach is adopted can be
limited. In Chapter 10, the concept of hybrid RANS-LES schemes is introduced,
where some of the most promising approaches are presented, in what is still a
rapidly evolving field. The aim of this hybrid strategy is to insert a more accurate
LES modelling just in a limited region where the RANS approach is particularly
liable to error. The most important issue in implementing such a strategy is how
one handles the interface conditions or the blending strategy between these two
modelling approaches.
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The exact equations

2.1 The underpinning conservation equations

It is presumed that the reader is familiar with the basic laws of mass, momentum
and energy conservation, which describe fluid motion and thermal transport. Never-
theless, it is instructive to outline the basic equations, their physical interpretation
and principles of averaging as used in RANS methods for computing turbulent
flows and associated transport phenomena. This short section will also introduce
the nomenclature and the assumptions adopted throughout the book.

2.1.1 Navier-Stokes equations of fluid motion

The instantaneous velocity field in a turbulent flow is described by the continu-
ity and the momentum (Navier—Stokes) equations expressing the conservation of
mass and momentum (Newton’s second law) for an infinitesimal control volume
(‘a point’) in space, which in conservative form may be written as:

93U _
ot 0X;

0, 2.1

3pUY  a(pU; ) .aP 8 | (a0 8U; 200
+ =) F'——+— —+ -5
ot ax; Xn: Yo9x Ox; H ax;  dx; 3 oxg 7

(2.2)
where P denotes pressure, o and [i are the density and dynamic viscosity of the
fluid, respectively, and F; denotes body force per unit volume. The term in square
brackets is in fact the viscous stress, 7;;, for a Newtonian fluid. Together with the

pressure it represents the total stress, i.e. the force per unit area acting on the sur-
face of an elementary fluid control volume. When spatial gradients of density are

13
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unimportant, the analysis in later chapters will generally employ kinematic
stresses, 7;;/p, and the corresponding kinematic viscosity v.

The circumflexes appearing above all quantities serve as a reminder that each,
potentially, will display fluctuations due to turbulence. In the majority of situa-
tions of practical relevance (excluding flows affected by buoyancy and combusting
flows), density and viscosity fluctuations at a point will be sufficiently small to
have negligible direct effect on turbulence and will therefore be disregarded. Fur-
thermore, in many cases of interest the fluid can be assumed to be incompressible
at any time instant, i.e. one where aU,-/ax,- = 0.

2.1.2 Scalar transport

The transport of some instantaneous scalar property @) by the turbulent motion can
be derived from the scalar conservation equation, which is expressed as:

3pO)  apU,0) . d 36
(%6) | 3PU;6) _ ( )

(2.3)

o1 ox; ° T ax; \Vox;

where p is the appropriate molecular diffusivity and Se is the source, i.e. the rate
of creation of the property per unit volume. As in Eq. (2.2), for many flows, the
turbulent fluctuations of density and molecular diffusivity can be neglected, though
their variation over the flow due to significant variation of temperature, chemical
composition and pressure must be accounted for.

The scalar property most frequently considered in engineering and environmen-
tal flows is the specific enthalpy of the fluid h for which case Eq. (2.3) denotes the
instantaneous energy conservation (the first law of thermodynamics). However, it
will be convenient to choose the temperature as the subject of Eq. (2.3), in which
case the instantaneous temperature, ©, is related to the instantaneous enthalpy, h,
via dh = cpd® where ¢, is the specific heat at constant pressure. SO is then
the internal source of energy per unit volume (heat generation by Joule heating,
chemical or nuclear reaction) divided by ¢, and y = A /c,, where A is the thermal
conductivity of the fluid. For convective heat transfer, with &) denoting temper-
ature, when the density is uniform, Eq. (2.3) is usually divided by p, in which
case y becomes the thermal diffusivity « = A/(pc,). Likewise, © can stand for
mass concentration of a species, with Se denoting the reaction rate (if any) for that
species.

Besides conventional sources or sinks, we can conveniently imagine the term
3‘9 absorbing any terms that, for a particular transported scalar property, do not
fit elsewhere. For example, the molecular diffusion process can be governed by a
more elaborate law than supposed by the simple gradient-diffusion relation while,
if © stands for temperature, the time-dependent term in the equation should strictly
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Fig. 2.1 Left: measured axial velocity fluctuations at a point in a steady turbulent
flow. Centre and right: a selection of time realizations and mean velocity profiles
across a cross section of a pipe.

be multiplied by the specific heat at constant volume divided by that at constant
pressure, a difference that can be absorbed into Se.

2.2 The Reynolds equations

As observed in Chapter 1, the numerical solution of Egs. (2.1) to (2.3) is the
target of direct numerical simulations (DNS). Because of the non-stationary, three-
dimensional character of turbulence, the equations must always be solved in
time and in all three space coordinates, thus inevitably requiring huge comput-
ing resources. Large-eddy simulations (LES) are less demanding because a coarser
grid and larger time increments are employed, with the effects of the unresolved
sub-grid-scale motion being accounted for by an empirical model for the sub-grid-
scale stress. Nevertheless, a large portion of the spectrum still needs to be resolved
numerically in time and three-dimensional space so that the computing resources,
especially for high Reynolds number, wall-bounded flows, remain formidable for
most industrial applications.

Thus, for the great majority of flows relevant to industry or the environment, the
RANS approach is at present the only practicable option. Not only does it tolerate
a much coarser computational grid, but, in many practical situations, the flow may
be regarded as steady in the mean; the problem then reduces to one involving only
spatial variations. Indeed, it even reduces to two space coordinates if the flow is
homogeneous in one direction or possesses axial symmetry.

An illustration of the instantaneous and averaged velocity field in a pipe is pro-
vided in Fig. 2.1. A time history of velocity at a point in a turbulent flow shows
irregular, non-repeating fluctuations, despite the fact that the average flow rate
is constant (a steady flow), Fig. 2.1, left. Likewise, a sequence of instantaneous
distributions of velocity across the pipe cross section shows a collection of
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Fig. 2.2 Illustration of time and phase averaging, respectively.

non-repeatable irregular curves (velocity field realizations) with only one common
value: zero at the wall, Fig. 2.1, centre. However, we are usually not interested in
the instantaneous values of velocity but rather in the averaged field and its effects
and consequences — forces on structures, friction, drag, heat and mass transfer.
The mean velocity profile for turbulent flow through a pipe, obtained by averag-
ing a large number of instantaneous realizations, is shown in Fig. 2.1, right. For
comparison, the laminar (parabolic) velocity profile for the same flow rate is also
shown.

2.2.1 Reynolds decomposition and averaging

The averaging of a fluctuating field can be accomplished in various ways, but most
methods make use of the Reynolds decomposition by which an instantaneous vari-
able & (velocity, pressure, temperature, etc.) is expressed as the sum of the average
or mean value, ®, and fluctuation around that mean, 174

d=>d4¢. (2.4)

The RANS approach necessarily implies time averaging over a sufficient time inter-
val for an unambiguous mean value to be established, and it is, strictly speaking,
applicable only to stationary flows, Fig. 2.2, left,
- 1 (7. -~
d(x;) = lim — D (x;, 1)dt = P(x;). (2.5)
=00 T Jo
It follows from applying this averaging strategy to each side of Eq. (2.4) that
— 1 [F
¢ = lim — [ ¢'(x;,t)dt =0. (2.6)

=00 T Jo

Thus, for stationary turbulence, the decomposition can be expressed in terms of the
independent variables as

Dx;, 1) = B(x;) + ¢ (xi, 1), Q2.7)
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The time averaging can also be applied to unsteady flows if the characteristic
timescale of the mean flow is much larger than that of turbulence. Of course, the
integration time interval t should always be sufficiently large to make it possible to
define uniquely the mean values of the turbulent fluctuations, but sufficiently small
for the mean value to be independent of t.

If the bulk flow varies significantly with time, and with a timescale not much
larger than those of the lowest frequency turbulent fluctuations, the time average
has no meaning and we need to use other ways of averaging. In cases where the
flow exhibits a periodicity (not necessarily sinusoidal or regular in any other way)
with an identifiable period 7,, it is convenient to adopt the phase averaging over
n, periods, Fig. 2.2, right

) 1 <.
P (x;) = nilinooﬁ X_;qxx,., 4 nt,). (2.8)

Practical examples of periodic flows are found not only in internal combus-
tion engines, reciprocating pumps and compressors and turbomachinery but also

in vortex shedding behind bluff bodies or certain natural convection flows in
enclosures.

For unsteady flows of a more general kind, the only option is the ensemble
averaging over n, independent realizations (‘samples’) of the same event,

ne

®(x;) = lim 1 Zci)"(x,-, 7). (2.9)

Ne—> 00 ne 1
In fact, ensemble averaging is the most appropriate way of obtaining the mean
value in a fluctuating field, where each realization should come from an independ-
ent measurement or computation. As such, however, ensemble averaging is highly
impractical and time consuming, and often simply not possible. In stationary and
periodic flows, it is reasonable to assume that both time and phase averaging are
equivalent to ensemble averaging.

In certain research studies of unsteady flows, ensemble averaging has been
applied to a series of time realizations of a characteristic flow structure, identified
by some predefined structure parameter (e.g. a two-point correlation of a prop-
erty); this is known as a conditional averaging. An example of such an approach
is shown in Fig. 2.3, where a symmetry-accounting ensemble averaging is applied
to process the DNS results in order to identify the averaged motion (‘the wind’) in
Rayleigh—Bénard convection (thermal buoyancy-driven fluid motion between two
infinite horizontal planes, where the lower wall is warmer than the upper one).
Note that in this example conventional time averaging over a sufficiently long time
interval gives zero mean velocity over the complete domain.

Further types of averaging can also be defined and used where convenient. For
example, in numerical simulations, the averaging is often applied over a surface or
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Fig. 2.3 Instantaneous (left) and symmetry-accounting ensemble-averaged (right)
fields in Rayleigh-Bénard convection. Top: temperature iso-surface coloured by
the kinetic energy. Bottom: temperature iso-contours with ensemble-averaged
velocity profiles. From DNS data of van Reeuwijk ez al. (2005, 2008).

a line along which the mean flow is expected to be homogeneous, thus enabling the
desired number of realizations to be achieved for a relatively short computational
time instead of collecting a large number of time realizations at a single point.

Finally, for flows where density variations are large (requiring the retention of
density fluctuations), some form of mass-weighted averaging is usually adopted.
The most widely used strategy is that alluded to by Reynolds (1895) but first
formally proposed by Favre (1965) in which the instantaneous velocity is decom-
posed into a density-weighted average velocity and the fluctuations about that
average

Ui(xi, 1) = V; + v, (2.10)
where V; = ,605/,0 and v; = pu;/p. Note that now pHu: = 0, but ; # 0.

Some rules on Reynolds decomposition

Irrespective of the averaging method, some common rules apply to all averaging
operators. Consider two instantaneous variables in a turbulent fluid flow

d=d+¢ and V=U4vy’
and note the following rules:

e multiplication by a constant ¢ has no effect on averaging

cd =cg=c<i>;
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e addition and subtraction also have no effect on averaging

PtV =0+ =0+U;
e differentiation and integration obey commutation rules (s denotes a time or space
coordinate)

9b  0d  9d [, - _

— ==, /éds: q>ds=/‘l>ds;
as as as

e multiplication is an exception to these rules because of the likely interaction

between fluctuations of different velocity components as well as with those

of a scalar property at a point; thus, the averaged product of the two fluc-

tuations is likely to be non-zero (i.e. the signals should be presumed to be
correlated)

@'Y’ #0 eventhough ¢ =0 and v’ =0.

Hence, the averaged product of the two instantaneous signals is

PU = (D +¢)(V +¢) = DU + DY/ + 9"V 40P = DU + ¢y, (2.11)
—_ =
=0 =0
For convenience, overbars and primes will hereafter be omitted (except where

needed to avoid ambiguity) so that capital letters will denote the mean, i.e. ® = D,
and lower-case letters the turbulent fluctuations ¢ = ¢’, i.e. ® = O + ¢.

2.2.2 Averaged conservation equations

The Reynolds decomposition of the instantaneous variables into mean and fluc-
tuating parts and averaging can now be applied to each term in the equations of
motion and scalar transport, Egs. (2.1) to (2.3). Habitually the averaging, denoted
with a bar over the variable symbol, is performed in time, but apart from the inter-
pretation, the same form of equation is recovered if one applies other averaging
procedures such as phase or ensemble averaging.

For every term except that involving the product of fluctuating velocities, the
averaging process simply leads to the instantaneous value being replaced by the
average. For the exceptional term, the convective transport of x;-momentum or of
some scalar quantity, the non-linearity of the term ensures a more complex result.

For the momentum equation

01‘0,' = (Uj +l/tj)(U,' +u;) = UjU,‘ +Uj1/ti +ujU,~ +uju;
= UjUi +l/tjl/ti. (212)

https://doi.org/10.1017/9781108875400.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.004

20 The exact equations

Thus, after some rearrangement and assuming density fluctuations at a point are
negligible, the averaged equations of motion are obtained as

9 3(oU:
30U _ (2.13)
ot 0x;

AU | (pU;U)) P 9 U, AU,

o1 ox; _Z Ton Tom [M\ay, Taw ) TP |
(2.14)

These equations, generally known as the Reynolds equations, differ from those
describing a laminar flow only by the presence of the final term containing averaged
products (‘one-point correlations’) of fluctuating velocities. The process it repre-
sents is the additional transfer rate of x;-momentum due to turbulent fluctuations.
While originating from an averaging of the convective transport on the left side of
the equation, habitually, it is brought to the right side, as in Eq. (2.14). Since the first
term within square brackets is the viscous stress, the second, —pu;u;, has naturally
been interpreted as a turbulent stress or, more formally, the Reynolds stress tensor.
As this tensor is symmetric, there are in general six independent components of the
Reynolds stress. They are unknown elements in the averaged equations of motion,
and the major theme of this book is developing a satisfactory, albeit approximate,
route for obtaining their values in order to close the Reynolds equations.

In the case of a flow with substantial density fluctuations, one cannot avoid con-
sidering the instantaneous density, and the averaging needs to be applied to the
original equations of motion, Eqs. (2.1) and (2.2). The decomposition of the instan-
taneous density into mean and fluctuation parts, p = p + p’, and averaging would,
however, generate several additional terms containing averaged products of fluc-
tuating variables: U;p'u;, U;p'u;, p'u;u;. These terms need to be approximated
in addition to the stress tensor pu;u;, thus adding further complexity to the task
of closing the Reynolds equations. The problem can be formally avoided by using
mass-weighted averaging, Eq. (2.10). In that case, the convection term in (2.2)
becomes

pU U = p(V; + )V + v) = pViVi + puiV; + pu; Vi + puiy
= pV,;V; + pyv;. (2.15)

The quantity ,5v—,v, is known as the mass-weighted Reynolds stress. Notice that,
contrary to ‘volume’ averaging, the number of turbulent correlations arising from
averaging the convective terms is just one — as in an incompressible flow. This
is the feature that has made the use of mass-weighted quantities in variable den-
sity flow so popular. However, while the averaged equations retain the same form
as for incompressible flow, the interpretation of the Reynolds stress is different.
This issue becomes of importance when attempting to compare the computed
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Reynolds stress with measurements which, depending on the technique used, may
provide either volume-weighted or mass-weighted averages, or even some mixed
average.

It should also be noted that while density-weighted averaging removes the extra
mathematical complexity associated with large density fluctuations, it does not
necessarily follow that the physical processes are adequately accounted for with
uniform-density models.

Applying averaging to the scalar-transport equation, Eq. (2.3), leads to the
following rate equation for the mean level of the scalar

3(p®) + d(pU,0) 0 (

=Se+ —
ot 3x; °F ox,

y@ — p«9_uj> . (2.16)
0x j

An overbar has been placed on Sg to serve as a reminder that the source term
may be non-linear and, in that event, its mean value may differ considerably from
that obtained by inserting just the mean values of the separate constituent terms.
Having drawn attention to this possibility, however, we shall not consider it fur-
ther in the present treatment, attention being limited to cases where the source or
sink term is effectively zero. Just as with the averaged momentum equation, the
additional convective flux of the scalar due to the turbulent velocity fluctuations is
conveniently interpreted as a supplementary diffusional process, which is why the
term pﬁj has been transferred to the right side of the equation. Like the Reynolds
stresses, this turbulent scalar flux is an unknown and will correspondingly require
approximation.

2.2.3 The modelling framework and rationale

In all practically interesting problems the mean momentum and continuity equa-
tions, together, in many cases, with one or more equations of the type (2.16) for
transported scalars, are to be solved numerically. The solving procedure will, in
all probability, be of fairly general construction designed to cope with different
flow problems ranging from some geometrically or physically simple flows (for
testing modelling ideas and concepts) to real-life three-dimensional flows of great
complexity. Ideally, the turbulence model — the scheme for determining u;u; and
G_Mj — should enjoy a range of applicability comparable with that of the numerical
procedure and should fit comfortably within it.

Schemes discussed in this book are one-point closures. As remarked earlier, in
such approaches, the only averaged products of fluctuating quantities that appear
are those in which the two or more quantities in question are evaluated at the same
point. “Two-point’ and spectral approaches have also been proposed and developed
(an extensive account can be found in the book of Schiestel (2008) and earlier in
Mathieu and Jeandel (1984) and Leslie (1973)). Models of this type are seen more
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as helping to reveal the underlying physics than as models for use in computational
procedures for engineering flows.

Within the single-point framework, there is a wide range of modelling
approaches. At present, most applied computational work on turbulent flows still
adopts the idea that the turbulent fluxes and stresses can be represented in terms of
effective turbulent diffusion coefficients for momentum, heat, chemical species and
other transportable quantities of interest. Approaches of this type range from sim-
ple mean-field closure (where the turbulent viscosity is expressed in terms of the
mean velocity field and flow topography) to the widely used two-equation models
where the effective diffusion coefficients are determined from local values of two
scalar properties of the turbulence (and which may or may not have a direct meas-
urable physical significance). These in turn are obtained from transport equations
similar to those describing mean flow quantities save that source and sink terms
always play an important role.

In some respects, it makes sense to consider models based on the idea of a
turbulent viscosity first before proceeding to the more advanced second-moment
treatments. The authors believe, however, that it is preferable to go directly to a
more comprehensive treatment from which ‘turbulent viscosity’ models emerge
as special cases under particular circumstances. Such an approach reveals more
clearly the shortcomings and limitations of the turbulent viscosity models. The
term ‘second-moment’ applies to models based on the exact transport equa-
tions for the second moments, i.e. for #;u; and Ou;, etc. These equations, while
exact, are unclosed: they contain correlations that are not exactly determinable
and which must therefore be approximated or ‘modelled’” in terms of quantities
that are.

Most of the chapters that follow consider in detail the strategies and issues in
the approaches to closure at this level and the application of the resultant mod-
els to a diversity of flow problems. Before considering the closure questions,
however, it will be instructive to examine the exact second-moment equations
and, in particular, the processes causing these quantities to depart from the
levels found in isotropic turbulence. These topics are developed in the next
sections.

2.3 The second-moment equations
2.3.1 Stress-transport equation

An exact equation describing the transport of the kinematic Reynolds stress u;u; is
derived from the equation for the velocity fluctuations u;. That equation is readily
obtained by subtracting the averaged momentum equation (2.14) from that for the
instantaneous velocity (Eq. 2.2)
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Dui 8”,‘ 8I/tl‘ 3U, 1 1 Bp
T Ly N
Dr T T Mk +p2n:fl 0 ox;
d du;
+ — vl—uiuk—i-u,-uk 2.17)
oxg | 0xg

in which we now use k rather than j as the repeated suffix. Multiplying Eq. (2.17)
by u; and averaging, then adding to it the mirror equation in which suffices i and
J are interchanged leads, after some manipulation, to

Duiuj 8ul~uj 8Llil/tj 3U 8U
_— = +Uk = u;u +l/t Ltk—
Dt ot Xy 8 Xk Xy
——
Ei/' c[j P,'j
4+ - Z( + )
Fij
d ad
L R
P 0x; 0X;
IT;
du; du
axk 8xk
AN BT (2.18)
— —uiu g || . .
il v
D[.”j+ij

The left side of the equation expresses the total rate of change of the quantity u;u;
for a small identified packet of fluid. The rate of change arises from an imbalance
of the terms on the right. Here the terms have been grouped, following well-
established practice, to allow physical interpretation of the processes. One line is
given to each process and, beneath each term, a shorthand label appears for the
process in question; that will be used to simplify the appearance of later equations.

The first two processes represent rates of creation of u;u;, in one case by the
action of mean strain, P;;, and in the other by body forces F;;. The first of these,
comprising products of Reynolds stresses and mean velocity gradients, can clearly
be treated exactly in a second-moment closure. If the body force is linear, as when
one examines the flow in a rotating coordinate frame, that too can be handled
without further approximation.

https://doi.org/10.1017/9781108875400.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.004

24 The exact equations

Each of the terms represents a physical process contributing to the stress budget
at a point in space. Identifying the physical character of each is a prerequisite for
its modelling and thus for closing the equation. This physical identification is par-
ticularly important for modelling the terms containing higher order moments and
derivatives of the fluctuating velocity and pressure (placed within boxes for empha-
sis), which cannot be computed from the available set of equations. For this purpose
some terms need to be expanded or reformulated to display their physical meaning
more transparently.

First, it is noted that the second term on the right is the sum of contributions to the
stress-transport balance by all (active) fluctuating body forces. Here attention will
be limited to buoyancy arising from thermal and/or concentration fluctuations cre-
ating density fluctuations, electromagnetic (Lorentz) and rotation (Coriolis) forces:

e
; Z fiuj+ f]”u,»

Fij

= (p'ujgi + p'uig;) /p+ (f,-Luj + ij”i) /0 =29 (Wjtm€ikm + Uillm€ jim),

Gij M;; Rij

(2.19)

where f stands for the fluctuating Lorentz force, and €2, represents the system
rotation rate (angular velocity).!

Clearly, the production of the turbulent stress by the Coriolis force can be
treated exactly, but the other two contributions require the correlation between the
fluctuating body force and velocity to be modelled, a topic dealt with in §4.5.

The physical meaning of the term involving the gradient of fluctuating pressure,
I1;;, is not so obvious and it is helpful to rewrite it as the sum of two parts: the diver-
gence of the pressure-velocity product DS and what (for incompressible flows) is
a traceless part since duy /0x; = 0, denoted as @;;,

1 ap L+ op ad 1 TR +1 au,»+au,-
——|ui—tuj— | =—— | —pWidx +u;é; -pl—+—).
P ox; T ox; X pp I Jeik ,op ox;  0x;
11;j Djj ®ij
(2.20)

' The Coriolis force per unit mass, —282 X ﬁ, written in index notation for a Cartesian coordinate system

as —€;; 29 U; (where ¢ is the third-rank alternating symbol) appears in the instantaneous momentum
equation (2.2) when it is transformed into a non-inertial frame rotating with angular velocity ;. The Reyn-
olds decomposition results in splitting the Coriolis force into its average, —€;;;2€2; U}, and its fluctuations,
—€;jk2Qpu j, which appear in Eqgs. (2.14) and (2.17), respectively. However, the transformation to the rotat-
ing frame also results in a centrifugal force (originating from the frame acceleration), —2 x (2 x x) =

-V [1/2(52 X x)z] = —Q%x, or Qi Q2 x;. Since no fluid flow parameters appear in the centrifugal force, it

exerts no effect on turbulence. Indeed, because the centrifugal force is irrotational and conservative (i.e. it
can be represented as a potential), it can be absorbed into the pressure gradient term as a modified pressure
P*=P — p(R x x)2 /2, where x is the radius vector of the point under consideration.
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The term D{’j can be recognized as a process that leads to a spatial transport of
uii, that is a diffusion of the stress by pressure fluctuations.?

The stress-transport equation can now be conveniently represented in symbolic
form:

Lij+Cij = Pij + Gij + Mij + Rij +Pij — &ij + (D}, + Dj; + D). (2.21)

Fij Di;

A pictorial representation of the various terms and their physical meanings is
shown in Fig. 2.4. The correlation between fluctuating pressure and fluctuating
strain,®;;, is a very important one. As mentioned above, its trace is zero, and if
one forms the transport equation for the turbulent kinetic energy by taking half the
sum of the equations for the three normal-stress components (i.e. those for which i
and j take the same value, uuy; /2), this term is zero for incompressible fluid flow.
Thus, in an incompressible flow the pressure-strain process makes no direct contri-
bution to the overall level of turbulence energy but serves, inter alia, to redistribute
energy among the normal-stress components.

The terms comprising D, ;are easily recognized as diffusive in character since
we see from integrating them across a thin shear flow bounded by non-turbulent
fluid that they make no contribution to the average level of u;u; at any section
even though, within the shear flow, the correlations themselves are non-zero. Their
effect is thus to promote a spatial redistribution. Note that the total diffusion term
D, ; consists of viscous diffusion D}; and turbulent transport by fluctuating veloc-
ity D} ; and by fluctuating pressure DZ The term D;; describing diffusive transport
by molecular action is negligible over all or nearly all the flow. However, it is
invariably important within the viscous layer next to a solid wall.

Finally, the term ¢;; represents (very nearly) the destruction rate of u;u; by vis-
cous action. Unlike viscous diffusion, the dissipation terms cannot in general be
ignored. We can see this is so by contracting Eq. (2.18) to produce an equation
for the transport of kinetic energy. Then, for the thin shear flow discussed above,

2 Other decompositions of /7;; have been considered. Lumley (1975b) proposed
1 ap ap 2 dpuy 2 dpuy
I =] - P PR I 8 - 8
Y |:,0 (u, 0x; Tt ax; ) 3 P ax, + 3p oxn

and Mansour et al. (1988) suggested

1 ) a 1 uju; opu 1 uju; opu
L B B B e
P 0x; x; p k 9xp

In both cases the first term on the right is traceless, thus redistributive, whereas the second term has a character
of turbulent transport by pressure fluctuations. However, both decompositions lead to non-physical solutions
in some generic flows (Groth, 1991). For example, in a flow that is homogeneous in direction x3, D3P3 is identi-
cally zero, whereas both expressions will give erroneous non-zero turbulent transport also in the homogeneous
directions.
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Transport in by: ] Transport
Convection C;; P ;)0 d_l:c]t_fon out
i dz
Viscosity Dj; N I~
Fluctuating “1 Redistribution @,
velocity D:-]- L %
V] dy
Fluctuating N
pressure 7 o
P
Dij J Dissipation g Va '\
dx

Fig. 2.4 Pictorial representation of the physical meanings of terms in the u;u;
equation (after Bradshaw, 1976).

D, makes no contribution to the overall level of turbulence energy at any section,
while @;; vanishes identically at all points. The term P, will be positive, repre-
senting the continual removal of energy from the mean flow by the action of the
Reynolds stress on the mean shear. Thus, if &, were negligible, there would be a
limitless growth in the turbulent kinetic energy of the flow. Such a scenario is con-
trary to both intuition and observation. The crucial difference between ¢;; and the
viscous diffusion term D;; is that the former comprises correlations of fluctuating
velocity derivatives and, in the finest scales of motion present, turbulent velocity
derivatives are very large.

The role of stress generation

Further consideration of @;;, D;; and ¢;; is deferred to Chapter 4. It will, however,
be instructive to explore in a little greater depth the glimpse provided in Chap-
ter 1 into specific forms that the production tensors take in a few cases. In most
practical flows, the production terms firmly stamp the character of the resultant
turbulent stress tensor. First, consider the case of simple shear, with dU, /dx, = A,
where A is assumed positive and all other components of mean velocity and their
derivatives are zero. From the stress transport equation (2.18) applied to individ-
ual components we see that stress production is non-zero only for the u% and uju;
components, as summarized in Table 2.1. From the upper row of Table 2.1, Pj,, the
production rate of %1 is negative (since u3 is undoubtedly positive); though short
of a proof, the reader will accept the likelihood that u7u; is consequently negative
(i.e. of the same sign as its production rate), which in turn gives the ‘sensible’ result
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Table 2.1 Stress production rates due to primary and secondary shear

Pij P Pxn P33 P12

U
Due to primary shear 8_1 =\ —2uuz) 0 0 —u%)»
X2

Il
>
o

|
[N}
<
:‘
3
>

|
<

—1o

)

.Uy
Due to curvature perturbation e
X1

that the generation of u? is positive. There is no direct production of either u3 or
u%. This does not mean that there will be no turbulent fluctuations in the x, and x5
directions for we have already noted that the pressure-strain correlation ®;; serves
to redistribute energy among the various normal stresses. Nevertheless, we should
expect — and this is amply confirmed by experiment — that u7 would be the largest
of the normal-stress components in simple shear (see, for example, Fig. 1.2).

Figure 2.5 illustrates, for this case, the flow of kinetic energy from the mean
motion to turbulence, its exchange among components and ultimate destruction
by viscosity. This same budget applies very nearly to other thin shear flows (pro-
vided dU;/dx; and dU,/dx, <K 0U;/dx,). We focus for the moment on the
interaction among stress components. The self-sustaining character of turbulence
in a simple shear is emphasized by the clockwise circular arrow connecting the
stresses in Fig. 2.5: turbulent velocity fluctuations in the direction of the mean-
velocity gradient (u3) promote a growth in shear stress, which, in turn, serves
to augment the intensity of streamwise fluctuations. Pressure interactions deflect
some of this energy to fluctuations in the direction of the velocity gradient —
and so the sequence repeats itself. It is what we might call turbulence’s eternal
triangle.

xzy
Y,

e

Fig.2.5 A schematic diagram of energy flow and stress interactions in a thin shear
flow. Pressure interactions are indicated symbolically by ‘waves’.
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The lower line in Table 2.1 shows the effects of superimposing on the primary
shear a weak (but not negligible) secondary strain 6 (6 = dU,/dx;), which rep-
resents a curving of the mean-flow streamlines. The shear stress and the normal
stress in the direction of the velocity gradient are directly modified and their effects
reinforce one another. That is to say, if § is positive, the extra contribution to P,
will tend to enlarge the (negative) magnitude of uju,, while the contribution to
P>, leads to an enhancement of u%, which in turn helps amplify uu; through the
principal contribution to Pj,. It is this mutual reinforcement property of P;;, repre-
sented in Fig. 2.6 by the broken lines, that makes turbulent shear flows so sensitive
to weak streamline curvature.

2.3.2 Transport equation for turbulent scalar flux

Buoyancy has an effect on turbulence generation that in some respects is akin to
streamline curvature. It is more complicated, however, for it involves a coupling of
the Reynolds stress and scalar flux fields 6u;. The corresponding equation for Qu;
is obtained by multiplying Eq. (2.3) by u;, then adding it to Eq. (2.2) multiplied by
6 and averaging. The result may be expressed as

DOu; _ 00u; U 30u; ( GIC) _8U,-)

k uiuk——i-Huk—

Dt ot + Xy Xy Xy
~— ——
Lo Coi Poi=P2+PY
1 _
+529fi”
_\’:_z
Foi
1 0
__9_p
P 0x;
Iy,
(@t )89 ou;
8xk axk
€6

a a6 ;[ ——
+ — | au;— +v0—| —0Ou,uy (2.22)
axk Bxk axk

Dg;+Dy; +Dy;

where
e~ - _
For=—Y 0ff =p0gi/o+0f/p —2Qbuje (2.23)
1Y " T —
0i Mo Roi
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Fig. 2.6 Stress couplings in weakly curved shear flows: full arrows indicate the
production due to primary strain and broken arrows indicate production due to
secondary (curvature) strain. The pressure-strain effect is indicated symbolically
by ‘waves’.

represents the sum of the production of scalar flux by fluctuations of different body
forces — gravitation, Lorentz force and Coriolis force.

Just as in the stress equation, the correlation containing the fluctuating pressure
gradient, I1y;, is conveniently decomposed into a divergence part representing the
turbulent diffusion of the scalar by pressure fluctuations, Dj, and the remaining
term ®y; interpreted as ‘pressure scrambling’ of the fluctuating scalar field, i.e.

179 3 [1— 1~ 90
0P T (Zp8su )+ —p— (2.24)
P 0x; dxx \ p P 0x;
——
Iy; DP Dy;

The scalar flux transport equation can now be written in symbolic form,

Loi +Coi = 'PQ@; + 7)(5 + Goi + Mo + Roi
——

Poi

+ ®p; — e0: + (Dy; + Dy, + Djy; + Djy). (2.25)

Doi

D

i

The emerging equation is similar in structure to that describing the transport of
Reynolds stress. The generation terms Pp; comprise products of second-moment
correlations and mean-field gradients and will not require approximation. Diffu-
sive transport of Qu;, i.e. Dy, is caused by velocity and pressure fluctuations and
by molecular transport. The last of these consists of two terms: one associated with
scalar conductivity/diffusivity and the other with fluid viscosity. Pressure fluctu-
ations also play a non-dispersive role (®y;), which we shall later see is of vital
importance. Note that, unlike @;;, since ®y; is a vector, it cannot be contracted to
show its redistributive character, but nevertheless one can expect that it contributes
to diminishing both the magnitude of and the differences between components of
the scalar flux by ‘scrambling’ turbulent eddies.
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Table 2.2 Heat-flux generation rates due to a temperature

gradient 0® /dx>

Poi Po1 Po2 Po3
U, I —] — 00

Due to shear —— —ujuy— — Quyp—— —Uy— 0
dx2 0xo axp dx2
U, — 00

Due to shear —— 0 —u5— 0
dx3 0x2

The role of flux generation

The unknown processes in Eq. (2.25) will be approximated in Chapter 4. Here
we consider briefly the form taken by the generation terms under a simple tem-
perature gradient d®/dx, in a fluid moving in direction x;. If the background
Reynolds stress field is isotropic (#;u; = &;ju,U,,/3), the only direction in which
a heat flux is generated is that of the temperature gradient x,, and the sign of
Py is opposite from that of the temperature gradient. This is also the case in
a non-isotropic stress field if the mean shear lies entirely in a plane normal to
the temperature gradient (i.e. dU;/d x5, see the last line of Table 2.2). When the
direction of mean velocity gradient coincides with that of the temperature gra-
dient, however, a streamwise scalar flux is generated, contributions arising from
both Pg) and PY. If one accepts the idea that the stresses and fluxes will be of
the same sign as the generation terms, we can see that the two contributions to
the generation reinforce one another, both being of the same sign as the product
d®/dx,)(dU,/dx,).

With the above information, it is now possible to infer the effect of a buoyantly
stable stratification of fluid on the stress generation rates. Turbulent fluctuations
in density, o/, give rise to a fluctuating body force per unit mass —p’g/p in
the vertical direction, g being the gravitational acceleration. Thus, in the Reyn-
olds stress equations, with x, vertically up so that the gravitational vector is
defined as g = (0, —g, 0), we find non-zero buoyant generation components as
follows

G = —2p'u28/p, G = —p'u1g/p. (2.26)

If the fluid in question is a perfect gas, p’/p = —0/® (where © stands for temper-
ature and the origin on its scale is absolute zero), and so the generation rates can
be written as

Gor = +20u,8/0©, Gio = +0u8/0. (2.27)

In a stably stratified medium, 0® /dx, is positive. To fix ideas let us suppose
that dU;/dx; is also positive. So, Py and thus (we suppose) G, are negative.
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Likewise, from the above discussion, Py and hence Gy, will be positive. Thus,
there is a double-edged effect of buoyancy on the Reynolds shear stress: G, will
tend to reduce u%, thus diminishing P, (see Table 2.1), while Gi,, being of the
opposite sign from Py, will also act to reduce the vertical transport of streamwise
momentum by turbulence.

2.3.3 A ‘model’ without modelling

In the foregoing subsections we obtained the exact transport equation for u;u; and
Qu; and examined the form that the generation terms in these equations take in a
few situations. As noted, these generation terms are exact. Of course, before the
transport equations can be used to find the stress and flux levels, models must
be devised for the unknown processes — the task of Chapter 4. To round off this
section, however, we can make some qualitative estimates without resorting to
mathematical modelling, by simply making the simplistic assumption that

Value of second moment o< Generation rate of second moment

x Turbulence time scale.
Thus:
Ou; = coT,(Poi + Gar). (2.28)

The choice of turbulent time scale 7; and how to compute it is deferred to Chapter 5.
However, the basic idea can readily be tested by looking at ratios of the scalar
fluxes.
Thus:
@ _ Po1 + Yo
Ou, B Paoz + Goa

In a mildly heated shear flow without body forces, in which d® /dx, and dU;/dx,
are the only non-zero temperature and velocity components, one finds from exper-
iment that the left side of Eq. (2.29) is approximately —1.3 in an equilibrium
free flow, and the right side is about —1.6. Near a wall the ratio of the tur-
bulent heat fluxes is larger, about —2.2, as is correspondingly the ratio of the
generation terms (about —2.1). Thus, there does indeed seem to be more than
a casual connection between the left and right sides of Eq. (2.29). The success
is particularly striking when set against the background of results given by sim-
ple eddy-diffusivity models. Such schemes would predict that, because there are
no x; gradients in mean temperature, the turbulent flux in that direction would
be zero!

When considering the Reynolds stresses one needs to apply this simple concept
to departures from the isotropic state (the deviatoric part of the stress tensor u;u ;).

(2.29)
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This is not inconsistent with (2.28); the isotropic value of a vector is of course zero.
Accordingly:

1 1
ity — =8t = Ty (Pij - §8i,-73kk> : (2.30)

In fact, this formula, arrived at by a much less direct route, has formed the basis of
many successful predictions of turbulent free shear flows as discussed in §7.3.1.
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3

Characterization of stress and flux dynamics: elements
required for modelling

3.1 Introduction

Before embarking on the primary topic of this book, the modelling of turbulence
via second-moment and partially time-resolved closures, it is appropriate, briefly,
to review some of the features of real turbulence that will have to be accounted
for or, at least, acknowledged. Such a survey could be an extensive one for there
is a great deal that is known and documented on the subject. Attention is limited
here, however, to what are seen as essentials to modelling. Those wishing to equip
themselves with a fuller background than is provided herein will find extensive
coverage in the broader-based textbooks on turbulent flows, for example, those by
Pope (2000) or Schiestel (2008) or, indeed, the earlier treatises by Hinze (1975)
and Monin and Yaglom (1975).

The present chapter covers two main themes. The first is an examination of
two vitally important scalar properties of turbulence, the turbulent kinetic energy,
k, and the corresponding mean-square scalar variance, 62, together with their
respective rates of dissipation by molecular action. This occupies §3.2-§3.6. The
second theme is an examination of some intrinsic properties of the Reynolds-
stress tensor and scalar-flux vector that provide powerful aids in modelling these
quantities.

3.2 Energy flow processes in turbulence

Equation (2.18) provided the Reynolds-stress transport equation whose closure (i.e.
conversion to a closed, soluble form) will be the primary focus of later chapters.
For present purposes, however, the equation is undesirably complex. Thus, here we
examine, instead, the equation for the turbulent kinetic energy, k, i.e. half the sum
of the normal stresses: k=[u? + u3 + u3]/2 =u?/2. While, clearly, the transport
equation for k can be deduced straightforwardly by contracting Eq. (2.18), it can
also be obtained directly by multiplying the instantaneous momentum equation for

33
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ﬁiz (U; + u;) by u; and averaging. Here it is assumed that body forces are absent
and that the physical properties of the fluid are constant:

1

ot * E)xj
_ wdPEp) | wd <v8(U,- +u,-))

Bx,- a_x, 8x.,~

(a(Ui Yu) AU +upUi + u»])

(3.1)

After discarding vanishing terms in Eq. (3.1) and taking all but the convective
transport terms to the right-hand side, the required equation for k£ may be expressed
as:

Dk 9k ok 8 ( ok pu; —— IU; du; \°
—E—+UJ—:— v————ujk’ —uij_— =V - (32)
Dt 0t 0x; 0x; 0x; P 0x; 0x;

Dy Pr €

where k' denotes the instantaneous turbulence energy, %u iu;. In words, the equation
expresses the fact that, as a small fluid element is carried along, its turbulent kinetic
energy changes as a result of a net imbalance among the processes on the right-hand
side, namely, diffusive transport, Dy, due to viscosity and turbulence (associated
with both velocity and velocity—pressure interactions), production of turbulence
by deformation of the mean velocity field, P, and dissipation of k by viscous
action, &.

The corresponding mean kinetic energy equation may likewise be obtained by
multiplying the momentum equation by the mean velocity and averaging:

y (a(Ui +u) 9 [WU; +u)W; + ul-)]>

ot + 8Xj

Uid(P+p) Ud (vo(U;+u;)
- + - -
8x,~ axj

ax‘/’

which can be manipulated to the following transport equation for K= U?/2:

DK A(PU; 32K au;\> 9 aU;
_ = — ( )+U 5 — V| — ——(U,-uiuj)+uiuj—. (33)
Dt POx; 0x; 0x; 0x; 0x;

a b c d e

Thus, the mean kinetic energy of a particle will change through a net imbalance in
the contributions from the following:

(a) reversible working by mean pressure gradients,
(b) viscous diffusion of K,

https://doi.org/10.1017/9781108875400.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.005

3.2 Energy flow processes in turbulence 35

(c) viscous dissipation,
(d) reversible working by the Reynolds stresses on the flow field,
(e) loss of mean kinetic energy to turbulence.

The attribution of the last of the above processes is self-evident since the same term
appears in the turbulence energy budget, Eq. (3.2), but with an opposite sign.

It is worth noting that both the turbulent and the mean kinetic energy equa-
tions were first presented by Osborne Reynolds in his ‘Reynolds averaging’ paper
(Reynolds, 1895) that provided the starting point for all RANS work. Although
the turbulent kinetic energy is a scalar quantity, noting its response in various Sit-
uations has proved very helpful in guiding modelled forms of both the stress and
scale-determining equations. Specifically, five particular cases are noted:

dk
(i) energy decay in homogeneous turbulence U 1= —&
X1

ok
(i) rapid distortion U i = Pr
X

(iii) diffusion-dissipation equilibrium 0 = Dy — ¢
(iv) local (turbulence energy) equilibrium 0 = Py — ¢

d
(v) convection-diffusion equilibrium U Py Dx.

X1
These reduced forms of the turbulence energy equation provide pivotal test cases
for modelling turbulence and are thus frequently used for choosing at least some
of the empirical coefficients in the models. While examined in more detail in later
chapters, the following briefly serves to explain the relevance of each case.

(1) In the absence of production agencies (no strain rate, no body forces),
homogeneous turbulence will freely decay through viscous dissipation. This
process is irreversible. Experiments show (and DNS studies confirm) that,
provided the turbulent Reynolds number (of which more shortly) is suffi-
ciently high, the turbulence energy exhibits a power-law decay with time (or
equivalently in space): k o« t™" (or k o« x™") with n &~ 1.2, trianagular
symbols in Fig. 3.1. Matching that exponent allows the empirical coefficient
associated with the sink term in the scale-determining equation to be fixed.

(i1) In a turbulent flow suddenly subjected to a strong mean rate of strain, the
dissipation can, for a time, be neglected compared with the imposed produc-
tion. Such a situation arises, for example, when turbulence is passed through
a duct whose cross-sectional dimensions are changing rapidly. Various test
data have been provided by experiment and DNS. Indeed, for the latter, vis-
cous dissipation can be ‘switched off’ to provide a pure test case. Equally,
rapid distortion theory (RDT), a linear, analytical treatment of turbulence, is
specifically designed to be applicable in such extreme deformations.
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Fig. 3.1 Decay of isotropic turbulence generated by a grid in a wind tunnel. Left:
a sketch of the experiment and decay of kinetic energy along the tunnel. Right:
experimental results for the initial (‘inertial’) period. From Pope (2000), adapted
from Comte-Bellot and Corrsin (1966).

(iii) For the case of fully developed flow through a pipe or plane channel, the
production of energy is negligible near the axis while convection is zero by
definition. Then, the dissipative loss of turbulence energy is made good by a
diffusive inflow of energy from regions nearer the duct or pipe wall. A similar
situation may arise in stagnant, separated flow regions, for example behind a
blunt obstacle. It is essential to account correctly for the resultant turbulence
energy levels in order to predict accurately the turbulent heat transfer rates
from the obstacle. This diffusion-dissipation balance is also the limiting form
of the k-equation in the viscous layer adjacent to a smooth wall; however, in
this case, the diffusive mechanism is predominantly viscous.

(iv) For a shear flow along a wall, within the fully turbulent near-wall region,
provided streamwise pressure gradients are weak, convection and diffusion
terms will be negligible compared with the production and dissipation pro-
cesses. This situation is illustrated in Fig. 3.2, which shows the energy budget
for flow through a plane channel.

(v) Atthe free edge of a turbulent flow both production and dissipation can often
be neglected compared with convection and diffusion, which are roughly in
balance.

In free shear flows and, indeed, in most real flows in engineering and the
environment, al/ the terms in the energy budget are important. Figure 3.3 shows,
for example, the different terms in the budget for the case of a round jet in
stagnant surroundings. In this flow, like the boundary layer, turbulence energy
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Fig. 3.2 Budget of turbulent kinetic energy in a fully developed plane-channel
flow, normalized with the friction velocity, U, and kinematic viscosity, v.
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Fig. 3.3 Budget of turbulence kinetic energy in a fully developed round jet nor-
malized with U C3 (x — x0), where x is the streamwise coordinate, xg is the location
of the virtual jet origin and U, is the jet centre-line velocity (only half of the jet is
shown). From experiments of Panchapakesan and Lumley (1993).
production is provided by the transverse mean velocity gradient, here 0U /dr. How-
ever, the absence of a constraining wall means that the jet can expand freely and,
consequently, the convection and diffusion terms play a more important role than
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in the wall boundary layer. It is noted also that there remains a significant energy
production even on the jet axis where the mean radial velocity gradient is zero.
There the generation is due to streamwise gradients of mean velocity.

3.3 The spectral character of turbulence

The figures of energy budgets considered above make it clear that the energy dis-
sipation rate is nearly always a significant term in the turbulence energy equation.
Yet, those encountering this fact for the first time may well feel that the mathe-
matical form of the energy equation suggests otherwise. For example, to make a
rudimentary assessment of the relative magnitudes of the production and dissipa-
tion processes in the round jet, one might suppose that the characteristic turbulent
velocity is one order of magnitude smaller than the centre-line mean velocity,
U,, and that the characteristic length scale for both production and dissipation
processes is the radius of the jet, §,. One would thus conclude that:

(Pr) ~ <—maa—U> ~ U? x 1072

r

(&) du; \ v Ulx1072
ey=(vl—) )= ——
0x; Usé, 6,

where the angular brackets simply indicate an averaging across the shear layer, and
u and v denote velocity fluctuations in the axial (x) and radial (r) directions as
usual for two-dimensional flows. The above result thus suggests that () / (Py) =~
(U.8,/v)~". On the basis of this analysis one would not hesitate to conclude that
the dissipation contribution was negligible since the Reynolds number, U.§, /v, of
a turbulent round jet is at least measured in thousands (usually tens of thousands
and sometimes hundreds of thousands)! Even if one notes that the dissipation term
shown actually consists of nine contributing components (so the above order-of-

U. LU
—==107"-5,
8 8

magnitude analysis would have underestimated its value), the conclusion remains
the same: the dissipation term is negligible!

However, the ‘analysis’ above is defective and should be entirely disregarded!
There are two serious errors in the assumptions made about the scales, both asso-
ciated with the dissipation term. The first is the presumption that the appropriate
velocity scale to assign to u; is the same as that assigned for the turbulent shear
stress, uv. The second and even more serious error is that the characteristic length
scale for the dissipation be taken as the local radius of the shear flow. As is clearly
visible in the instantaneous fluctuating velocity trace shown in Fig. 2.1, there is
a wide range of time scales present in a turbulence signal and, correspondingly,
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Fig. 3.4 A schematic diagram of the energy spectrum for high Reynolds num-
ber turbulence. Here A denotes the Taylor microscale, Eq. (3.11), and n the
Kolmogorov length scale (defined below, p. 45).

a wide range of length scales. The dissipation of turbulence energy always takes
place predominantly in the very finest scales present for that is where the steep-
est velocity gradients occur. Indeed, the size of those length scales adjusts so as to
destroy energy at just the rate that energy is fed to them by the continual breakdown
of larger scale eddies into smaller and smaller scales of motion!

Thus, the view that emerges is that turbulence energy is ‘captured’ from the
mean flow by successive engulfment by the large-scale eddies. Thereafter, by a
process of eddy stretching and distortion, such newly captured turbulence energy
is progressively broken down, inviscidly, to finer and finer scales until eventually
the scales of motion are so fine (and thus the mean velocity gradients so steep) that
the kinetic energy is dissipated to thermal energy by viscous action. The turbulent
eddies that are too small to be involved significantly in the energy-capture process
yet too large to be responsible for significant dissipation thus play the role of energy
carriers, transferring energy from larger eddies to successively smaller ones. These
intermediate eddies form what is known as the inertial subrange, Fig. 3.4.

This spectral view of turbulence can be expressed mathematically by taking
the Fourier transform of the two-point velocity correlation! (cf. Hinze, 1975;

1 The two-point velocity correlation is defined as R; (X X) = u; X)u j(x’ ), where x and X’ = x + r denote
the position vectors (denoted for clarity in bold) of two points in space. Clearly, when r = 0, R;; = u;u;
and asr — 00, R;; — 0. Such two-point correlations provide a possible basis for determining length scales
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Monin, 1975; Pope, 2000), which brings into prominence the wave number x
(with dimension length~!) as the appropriate independent variable (rather than,
say, length scale or frequency). In a homogeneous flow the equation can be
written as:
dE (k)
ot
where E (k) is the kinetic energy per unit wave number, Py (k)is the turbulence
energy production rate per unit wave number and 7 (k) is the spectral energy
transfer rate. Note that [~ E(k)dk =k and [, 2vk?E ()dk = €.
In a strictly equilibrium flow where E (k) is invariant with time, the spectral
energy transfer rate at any wave number is equal to:

=P (k) — %T (k) — 2vK*E (k) (3.4)

T (k) = / ) [Pe (k) — 2vk*E (k)] dxc. (3.5)
0

For these mid-range wave numbers where neither production nor dissipation is sig-
nificant, 7 (k) = P = ¢. Figure 3.4 provides an impression of the distribution of
E (k) with wave number. Its variation within the inertial subrange is readily inferred
by dimensional considerations? if one supposes that it should depend simply on the
wave number and the energy throughput rate, which can be taken to be equal to &:

E (k) = Cce?Pk ™. (3.6)

This is Kolmogorov’s ‘minus-five-thirds’ law (Kolmogorov, 1941). Experimental
data suggest a value of 1.5 for the coefficient C,. In making measurements of
spectra using hot-wire anemometry (or other fast-response instruments) one only
records a one-dimensional slice of the spectrum. Provided the turbulent Reynolds
number is high enough, however, the minus-five-thirds law is plainly evident, as
seen in Fig. 3.5, which shows data collected by Saddoughi and Veeravalli (1994).
A further important spectral feature of turbulence is that as energy is conveyed
to higher and higher wave numbers, in the process of being stretched, twisted and
buffeted, the anisotropy of the velocity fluctuations of such eddies decreases. Lum-
ley (1967), for example, has analysed the case of a simple shear flow and concluded
in that situation that the spectral decay of turbulent shear stress in the inertial sub-
range should follow a —7/3 power law compared with the minus-five-thirds law for
the turbulence energy. Indeed, in modelling it is commonly supposed that by the
time energy has reached the dissipation range, the dissipation tensor is effectively

of the large-scale motion; for example, L= fooo Ry1dry/ u% , a quantity known as an integral length scale.

In this work, the scalar quantity K3/ 2/ ¢ is used throughout as the length scale representative of the large-scale
energy-containing eddies, but that varies through the turbulence field in a similar way to the integral length
scales.

In dimensional analysis, the possibly contributing quantities that are omitted are just as important as those
which are included. Thus, here, mean strain is excluded because the eddies in the inertial subrange are too
small to notice mean velocity gradients, while viscosity is dropped because their eddy Reynolds number is too
high for viscous stresses to constrain their motion significantly.
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Fig. 3.5 A collection of measured one-dimensional spectra in different flows at
different Reynolds numbers Re; (ranging from 23 to 3180). From Saddoughi and
Veeravalli (1994).

isotropic. For a homogeneous flow, that situation implies that the product of two

velocity derivatives can be expressed as follows:
du; ouy e
— — = — 45;x8,1—318k1—3i10k; 3.7
9%, 03 30v[ k871—8;8u—3i16k; ] (3.7)

(from which the reader may verify, by contracting the equation fori = kand j = [,
that it simply reverts to the definition of ¢). For the component terms of ¢ one finds,
by making all the indices equal in Eq. (3.7), that

du\* _ (w2 _ (Bus\T_ e (3.8)
0x1 0xo 0x3 15v

while for the other components of &:

dup \> duy\’ duz\’ 2e
8X2 8X3 a-x] 15v
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A non-isotropic turbulent flow in which the dissipation rate is nevertheless isotropic
(by virtue of the stretching that produces the very fine scales of motion in which
dissipation takes place) is said to be locally isotropic. 1t is still a matter of sig-
nificant controversy within the turbulence community whether local isotropy does
indeed prevail in commonly encountered fully turbulent shear flows. The assump-
tion will usually be made in the modelling chapters that it does but whether or not
that is strictly correct is usually not of great significance. Of greater importance is
the problem of characterizing correctly the large departures from local isotropy as
one approaches a wall.

It is finally relevant to note that Eq. (3.8) can be inverted to obtain an expression
for &, which, in terms of the first of the mean-square velocity derivatives, can be
written as:

O
s:lSv(%) : (3.10)

8x1

In flows where the turbulence level is low and the translational velocity uniform
(and in the direction x), it is possible to obtain a reasonably accurate estimate of
the above spatial velocity derivative from the (simpler to measure) rate of velocity
variation with time at the point in question, a strategy known as Taylor’s hypothesis
(Taylor, 1935). Moreover, Taylor introduced a turbulent length scale A (now known
as the Taylor microscale) defined as

W =u?/(uy/ox;)? (3.11)

in terms of which:
2
£ = 151%. (3.12)

Although Taylor linked the length scale A with that of the finest-scale eddies
responsible for turbulence energy dissipation that has long been recognized as
incorrect. Nevertheless, the Taylor microscale and the associated Reynolds num-

ber, Rexz,/u_%)\ /v, are firmly embedded in the turbulence lexicon. In isotropic

turbulence u_%z (2/3)k so, in terms of k and &:

——=,/—Re,. (3.13)

2 15v(2k/3) 20k2_ 20
Ree=y3F 7 =V3e=V3

The quantity Re, is a Reynolds number representative of the energy-containing
turbulent eddies and will recur frequently in the turbulence models presented in
Chapters 6-8.
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3.4 The s-equation

The energy dissipation rate is a major unknown in the k-equation. Although, to
close the stress-transport equations, one needs to model the Reynolds-stress dissi-
pation rate, &;;, providing a path to find ¢ is clearly a major step in that direction.
Moreover, in modelling other processes in the stress-transport equations, a turbu-
lent time scale is needed to characterize the rate at which the processes proceed.
That time scale is conveniently provided by the quantity k /¢, which will be denoted
hereafter as 7.

In this latter role, some have argued that ¢ is an inappropriate choice for the
scale-determining variable. However, the fact remains that it has been (and con-
tinues to be) the preferred variable over a range of turbulence models of differing
degrees of complexity. One obvious benefit of solving an equation for ¢ is that
one then determines directly the sink term in the k-equation without the need for
further explicit modelling. The reasons advanced for not choosing ¢ as the scale-
determining variable turn on the fact that its exact transport equation describes the
dynamics of the fine-scale dissipative eddies which are not representative of the
large-scale turbulence principally responsible for momentum and heat transport.
While this is certainly true for high-Reynolds-number turbulence not too close to a
rigid boundary, in the immediate proximity of a wall there are no large eddies and
viscous interactions exert an increasingly important effect on large-scale turbu-
lence transport. The main difficulty, however, is that few of the terms in the exact
equation for & can be used without further modelling in any closed form of that
equation. This problem is, however, one that is shared by all the alternatives and
may be considered one of the endemic difficulties in developing a modelled scale
equation.

The exact transport equation for € = v(du;/dx;)? can be derived by taking the
spatial derivative of the equation for the rate of change of the instantaneous veloc-
ity, multiplying that by 2 vou; /0x; and, finally, time averaging the product. Thus,
the left side of the transport equation becomes:

du; 9 (Du;\ D
2t 7 (—”) == (3.14)
8)6]' 3.Xj Dt Dt

It is noted that the quantity ¢ is not, strictly, the energy dissipation rate though in
regions where Re; is high, it differs negligibly from it.?

A substantial algebraic manipulation of the corresponding right-hand side of the
equation is needed to clarify the physical processes contained in the mathematics.

3 The true kinematic dissipation rate is 7;;5;; /o , where t;; = 211(s;j —8;j sk /3) is the fluctuating viscous stress
and s;;= (du; /dx j+0u j/9dx;)/2 is the fluctuating strain rate, so that:

2 2 — 2
1 [ 0u;  Ouj du; du; Ouj ou; Bzuiuj
e=vlo—+ ) =v|— | to—5 | =V |\5 ) T |-
2\ 0x; ax; 0x; dx; 0x; 0x; 0x;0x
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That is done by expanding and re-grouping terms in a similar fashion to that applied
to the equation for the second moments. The resultant complete equation for & can

then be written as:

Deg ae dUie
Dt ot Xk
S~ ——
L Ce
0x; 0x; ox; oxy | 0xy 0x; 0x;0X;
7351+P32 P83
du; u; 9 2087 u; 2u; \?
SOMRCRATRUCTY I | TN N Y i (3.15)
0Xx; 0x; 0X; P 00X 0Xp 0X;0X;
n —_—
P54 _7:5 T
+8 e n 8(—/)+ d 2v dp Juy
—(v— —(—uge — -]
00Xy Xy Xy k Xy p 0x; 0x;
Dy D! o7
Ds

where, ¢’ stands for the instantaneous value, v(du;/du j)z. The terms in boxes all
need to be modelled and their physical interpretation is not immediately obvious.

However, some insight may be gained by comparing this equation with the sim-
ilar but substantially simpler equation for the enstrophy (the mean square of the
fluctuating vorticity) { = w;w;, where:

8L£k

w,-zeijka—(oerV X u). (3.16)

J

The enstrophy, ¢, like the energy dissipation rate, consists of the averaged squares
of fluctuating velocity gradients. Indeed, from the general quadratic velocity-
derivative tensor, Eq. (3.7), it is readily deduced that in isotropic, homogeneous
turbulence:

. =¢/v. (3.17)

Indeed, even in a low Reynolds number channel flow, Gorski and Bernard (1996)
have shown from comparing the two sides of Eq. (3.17) (obtained from their
DNS data of this flow) that the equality expressed by that equation is very nearly

Because the derivatives of the fluctuating velocity are associated with the finest eddy scales, which are expected

to be isotropic at high Reynolds numbers, the second term in the two expressions on the right is usually
negligible.
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completely satisfied all the way to the wall despite the very strong inhomogeneity
present in the near-wall region.

The transport equation for ¢ can be obtained in an analogous fashion to that for ¢
(see Eq. (3.14)) by taking the curl of the fluctuating velocity transport equation and
multiplying each side of it by the right-hand side of Eq. (3.16). After manipulation
this leads to the following equation for the transport of ¢ (e.g. Gorski and Bernard,

1996):
a¢  AUk¢ oU; ou; 082;
— 4+ = 2w;0; — +2w; 2; —2ujwi—
ot Xy 0x; 0x; 0x;
Pei+P P,
T c (3.18)
0 ( g/)_i_va ; +2 8u,~ 2v8wi 86(),'
——(u wiw;— —2V————,
0x; ! 8xl.2 ]8xj 0x; 0x;
—— —
D{ 'P;4 T[
where £2; = €;jx(dU;/0x;) and ¢’ is the instantaneous value of ¢, i.e. w;w;. In

the above equation, the terms P, P;» and P,3 represent the enstrophy produc-
tion due to the stretching and bending of vortex filaments by, respectively, the
mean flow deformation (dU;/dx;), the mean vorticity, £2;, and its gradient. The
final production term P4 is analogous to P, except that now it is the fluctuating
strain that is responsible for the (self-) stretching of the vortex filaments. The terms
grouped under D, have a recognizable divergence form and represent the diffusion
of ¢ by turbulent velocity fluctuations and molecular action. The last term,77, is
the viscous destruction of enstrophy. It is finally noted that the enstrophy equation
contains no pressure fluctuations, which might indicate that, even near a wall, the
pressure-diffusion term in the ¢ equation was insignificant.

Returning to the ¢ equation, Eq. (3.15), we note first, from Eq. (3.7), that if the
dissipating eddies are isotropic, the fluctuating velocity-derivative products in P,
and P, are both proportional to €§;;; so, on multiplication by dU;/dxy, it is evi-
dent from continuity that the terms are zero in an incompressible flow. The term P
is also zero where the mean velocity gradient is uniform. Except possibly within
the ‘buffer’ region next to a wall where there is a very rapid changeover from
viscous to turbulent transport (with the associated rapid variation in slope of the
mean velocity discussed in §1.4), the process generally makes a negligible contri-
bution to the & budget. That leaves simply two remaining source terms, P, and 715,
whose magnitudes can be estimated by way of the Kolmogorov velocity and length
scales representative of the dissipative eddies:* vg= (sv)!/*, n= (v3/e)"/*. From

4 The forms of the dissipative scales emerge directly from assuming that their magnitudes are determined simply
by the viscous dissipation rate and the kinematic viscosity. Note that, in consequence, the Reynolds number of
the dissipative scales is of order unity.
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inserting these scales for the velocities and lengths appearing in the two source
terms we find:
N £3/2 £ 1n

Pu T~ O <W> ~0 (?Ret ) (3.19)
where, as a reminder, the time scale 7 is k/e. The Reynolds number formed from
the Kolmogorov scales is always unity irrespective of the bulk flow Reynolds num-
ber. The term Re, = k? /ve, introduced in Eq. (3.13), is, as already remarked, a
Reynolds number representative of the energy-containing turbulence and will usu-
ally simply be termed the turbulent Reynolds number. It is a key dimensionless
parameter in modelling and will recur repeatedly throughout the book, especially
in Chapters 6 and 8. Its maximum value in different turbulent flows typically
ranges from several hundred to several million though evidently the no-slip condi-
tion means that it falls to zero at a wall. Equation (3.19) implies that each of the
source terms is larger than the convective transport terms by the factor Re,1 ”? but
their difference must evidently be of magnitude O(¢/7"). How to characterize that
difference in terms of calculable parameters is seen as one of the principal chal-
lenges in turbulence modelling and will be a major topic of Chapter 5 with further
considerations in Chapter 6.

3.5 Transport equation for the mean-square scalar variance, 62

The mean-square scalar variance, 62, has already been introduced to characterize
the intensity of scalar fluctuations as well as to define a turbulence scale for a sca-
lar field. This variable plays the same role in characterizing a scalar field as does
k for the velocity field. Moreover, in stratified flows, 62 appears directly in the
buoyant source term in the vertical scalar flux equation (i.e. in the direction of the
gravitational vector), thus its modelling is essential in flows substantially affected
by buoyancy whether the stratification be caused by thermal or concentration
gradients.

The transport equation for 62, first presented by Corrsin (1952), is readily
obtained by multiplying Eq. (2.3) for the transport of a scalar, O, by twice the
fluctuating scalar, 26, and averaging:’

DO2 392 902 _ 90 30\ 9 902
= — 4 U—=—20u;— 20 — ) +— [a— —0%; ).
Dt ot ij 8x,~ 8x,~

—— J y

Loo Con Poo €00 Do

(3.20)

5 By analogy with k, some workers take 97/ 2 as the key turbulence scalar variable, and indeed have designated
it kg (e.g. Nagano, 2002). It is important to be alert as to which choice has been made when comparing, for
example, the ratio of dynamic and thermal time scales.
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The equation closely resembles the turbulence energy equation save for the absence
of pressure diffusion (since pressure does not appear in the &) transport equation).
The terms thus have a familiar physical meaning: Ly, the local time rate of change;
Cyg, the convective transport; Dyg, the (molecular plus turbulent) diffusion; Py,
production caused by mean scalar gradients; e4¢, the molecular destruction (the
rate of ‘scalar dissipation’).

For passive scalars with a Prandtl-Schmidt number close to unity and compa-
rable boundary conditions, the relative magnitude of the various terms in the 62
budget is also broadly similar to the corresponding terms in the turbulence energy
equation. Thus, just as for the k-equation considered in §3.2, one can devise sev-
eral generic flows where only two of the terms in the complete 62 equation are
significant, which assists in the task of devising models of the unknown processes.
For example, for a boundary layer in the fully turbulent region close to a uni-
formly heated or cooled wall, the production and dissipation terms far outweigh
transport, so the thermal field is very close to a state of local equilibrium in which
Poo = 9o, the implications of which contribute, in Chapter 7, to modelling the
mean temperature distribution. The decay of turbulence energy behind a grid, as
noted in §3.2, provides the primary test case for calibrating the sink term in the ¢-
equation. The corresponding decay of thermal fluctuations downstream of a heated
grid (so that convective transport simply arises from the dissipation rate of tem-
perature fluctuations associated with conduction in the finest scales) might thus be
expected to provide vital information on how to model the decay of temperature
fluctuations.

In a way it does, but probably not of the kind a modeller would be hoping to
find. From a broad consensus of experiments (e.g. Lin and Lin, 1973; Warhaft
and Lumley, 1978; Warhaft, 2000) it is clear that the decay exponent m in the
expression 62 oc 1™ depends greatly on initial conditions — effectively on the ratios
of the length scales of the energy-containing parts of the dynamic and thermal
turbulence fields, Fig. 3.6. While the causes of this behaviour remain inadequately
understood, as Warhaft (2000) indicates, in flows where mean thermal gradients
are present (thus creating a source of temperature fluctuations) the time-scale ratio
for the thermal and dynamic turbulence heads towards a constant value irrespective
of its initial value.

In general, the budget for 62, like that for k, varies from one particular flow
to another even within the same broad class of flows. For example, in two-
dimensional free shear flows, mixing layers developing between two streams of
unequal temperatures display an overall excess of production over dissipation,
whereas in axisymmetric wakes, the average level of production is much less than
the average dissipation, resulting in an appreciable convective loss as the flow
develops downstream, Fig. 3.7.
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Fig. 3.6 Decay of grid turbulence downstream from heated grids. Reprinted
with permission from Warhaft and Lumley (1978). ©1978, American Institute
of Physics.

3.6 Transport equation for dissipation of scalar variance, &gy

Just as with the dynamic field, the dissipation rate of scalar variance,
ggo=2a(300/0x j)z, is the predominant choice for a second variable for the sca-
lar turbulence. This is used to obtain time and length scales representative of the
thermal turbulence and, of course, to determine the sink term in Eq. (3.20). This
variable turns out to be especially important in modelling reacting or combusting
flows (topics outside the scope of the present book). An exact transport equation
for 44 can be derived by a path analogous to that followed to obtain the e-equation:
first take the derivative with respect to x; of each side of the transport equation for
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Fig. 3.7 Dimensionless budget of mean square temperature variance in the wake
of a sphere. Reprinted with permission from Freymuth and Uberoi (1973). ©1973,
American Institute of Physics.

the instantaneous scalar (® + ) and then multiply each term by 406/dx; and
average each term. After some algebraic manipulation, one obtains:
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Just as for the corresponding £-equation, the source terms containing the mean-field
gradients are zero if the double products of temperature derivatives (or temperature
and velocity derivatives) are locally isotropic. The term P;,,3 is also negligible
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except possibly very close to the wall where there is a rapid changeover from
molecular to turbulent transport. The remaining source and sink terms, P,,,4 and
Tyg, can be shown to be the dominant terms by making an order-of-magnitude
estimate in terms of the Kolmogorov scales.® When it comes to modelling these
terms, however, one needs to allow both scalar and dynamic time scales to exert an
effect — certainly, if one requires the modelled equation to mimic the non-universal
decay of 62 shown in Fig. 3.6. As discussed in Chapter 5, therefore, many work-
ers (including the present authors) have usually preferred to prescribe the relevant
turbulent scalar time scale (and thus the local level of gy4) by other means.

3.7 Turbulence anisotropy, invariants and realizability

A primary aim of this book is to provide a path for determining the second moments
in a turbulent flow, namely the kinematic Reynolds stresses, u;u;, and the scalar
fluxes, W Because the stress tensor is symmetric, it will in general comprise six
distinct terms: three diagonal components (i = j), which stretch or compress a

fluid element (the normal stresses, u%, u%, u%), and three off-diagonal components

(i#£])), 1.e. uyuy = upuy, ujus = usu; and urusz = uszu,. At any point in a fluid,
the magnitudes of the different stress components necessarily depend on the ori-
entation of the coordinate system. Indeed, we can align the orthogonal coordinates
so that the shear stresses are all zero — the so-called principal coordinates — in
which case the normal stresses take their extreme values. These matters and some
consequences are examined in the following sections.

3.7.1 Turbulent stress anisotropy

In flows of practical interest the turbulent stress tensor is non-isotropic, a state
created partly by the deformation of the large eddies by mean strain or body forces,
partly by flow inhomogeneities and partly by boundary conditions. If the stress
tensor were isotropic, all the normal stresses would be equal and there would be
no shear stresses (for otherwise reorienting the axes would then cause the normal
stresses to be unequal). Thus, in isotropic turbulence, u;u ;= 28;;k/3. A departure
from the isotropic state provides a measure of the stress anisotropy which can be
expressed in terms of the deviatoric part of the stress tensor, i.e.

2 2
uinj = (uiuj - gkfsij> + gk(sij . (3.22)
—_ =
anisotropic isotropic

6 This necessarily requires that the molecular Prandtl-Schmidt number should be not too different from unity
(i.e. probably acceptable for gases and many liquids but not for liquid metals).
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Fig. 3.8 Stress ellipsoid (left) and a two-dimensional cut for x3 = 0 (right) for a
point in the selected coordinate system (x1, x2, x3) showing components of stress
anisotropy (deviatoric part of the stress tensor), a1y and apy. The principal stress
coordinate axes are denoted by x}, xJ.

The deviatoric part, made non-dimensional by dividing by k, is referred to as the
stress-anisotropy tensor, a;;:

dij. (3.23)
Note that the diagonal components of a;; must fall within the range

<ags =

(3.24)

SNSRI )
Wl &

(where no summation is implied on repeated Greek subscripts).”

It is only the anisotropic part of the stress tensor that transports momentum,
while the isotropic part is ‘inactive’. In treating the momentum equation, it can be
lumped with the mean pressure. The normal stresses at a point can be represented
by a ‘stress ellipsoid’ shown in Fig. 3.8. The magnitudes of the normal stresses
in the chosen coordinate system (x;, X, x3) correspond to the intersection points
of the axes with the ellipsoid surface, while the isotropic stress corresponds to
the sphere of radius 2k/3. The principal coordinates correspond with the major
and minor axes of the stress ellipsoid, and the (normal) stress components — the
principal stresses — are the eigenvectors of the stress tensor.

7" An alternative anisotropy tensor, usually identified by the symbol b; j» is also found in the literature, where the
deviatoric stress is normalized by the sum of the normal stresses rather than k:

ujuj 1 ajj
bijEil J 755112%
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3.7.2 Turbulent stress invariants and limiting states

For any second-rank tensor one can define a number of invariants, comprising
scalar products of the components which are thus independent of the coordinate
system. For the stress-anisotropy tensor there are three basic invariants, defined as
follows:

A1 =0a;=0, Ay =aja;, Az=a;aja (3.25)
or, in expanded form:

A2 - a12]* + a%z* + a:%?’*

) 2 2 2 2 2

= ay, + ay, + asy+2(ay, + ay; + ax) (3.26)
A3 - azlil* + a;z* + 033*

= a;, + a3, + a3;+3ajy(an + an) + 3ais(ar; + as;)

+ 3“%3 (ax + as3) + 6apaizas. (3.27)

Clearly, higher order invariants can be defined, but these can all be expressed (from
the Cayley—Hamilton theorem, see Chapter 4) in terms of A, and As. The invariants
provide, in a compact way, information about the character of the stress anisotropy.
This is most clearly illustrated by considering them in principal coordinate axes.
The second invariant, A,, is always positive and gives a direct measure of the stress
anisotropy: the larger A,, the more anisotropic is the stress field. The third invar-
iant comprises cubic products and thus can be positive (if two of the anisotropy
components are negative), thus producing a cigar-shaped stress ellipsoid, or nega-
tive (i.e. with only one negative component) when, in the limit, the stress ellipsoid
deforms to a pancake-shaped disc.® Thus, A3 gives more subtle information about
the nature of the stress anisotropy.

The anisotropy invariants can of course be combined in various ways to pro-
duce further invariants that will have different characteristics. One that is especially
helpful in modelling is what is known as Lumley’s flatness parameter (Lumley,
1978):

A=1-9[A, — A3]/8. (3.28)

What makes this parameter so useful is that, while it evidently equals unity
in isotropic turbulence, when the turbulence is so non-isotropic that one of the
normal-stress components is zero (what is known as two-component turbulence),
A is equal to zero. This surprising result is readily verified by working in prin-
cipal axes (though the * symbol will no longer be applied). If, say, u%: 0, then,
quite generally, the stress-anisotropy components can be written as: a;; = —%,

8 The deformation of an idealized turbulent eddy shape goes in the opposite manner from the deformation of the
stress ellipsoid: a cigar-shaped ellipsoid usually corresponds to a disc-shaped eddy and vice versa.
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= (% +6), azz= (% — §), where § is a constant lying in the range —1 < § < 1.
Then, it is readily verified from Egs. (3.26) and (3.27) that (A, — Aj3) is equal to
8/9 irrespective of the value of §.

In an analogous way, one can define an anisotropy tensor and its invariants for
the stress dissipation rate:

g 2
eij = % — g(sij, E] = ¢éji= 0, Ez = €€, E3 = €j€1C;- (329)

In a high Reynolds number flow away from the vicinity of a wall the stress-
dissipation invariants are all negligible, but close to a solid wall where there are
no large eddies they exhibit non-zero values, apparently irrespective of Reynolds
number (though smaller than the corresponding values of the stress invariants),
indicating an endemic departure from local isotropy.

The above stress invariants find many uses in second-moment modelling. First,
they help to define possible states of the stress tensor — sometimes termed reali-
zable states. Even some of the most successful models of turbulence can generate
non-realizable states (usually during iteration of an unconverged stress field) and,
if such an occurrence arises, it may shortly thereafter wreck convergence. It may
thus be desirable to build in checks to ensure that, even during progress to a solu-
tion, the turbulence field can only pass through a succession of realizable states
achieved, conveniently, by placing bounds on the stress invariants. Another role
for the invariants is just as parameters in modelling a process, a topic on which
much more will be written in later chapters.

To complete this examination of stress invariants we note three limiting states.
The first, which hardly needs mentioning, is that of isotropic turbulence where
Aj;and Aj are zero and, as noted above, A = 1. The other two states of par-
ticular fundamental interest are two-component turbulence and one-component
turbulence. Both can be reached, in principle, through the action of a force field
or by applying an axisymmetric deformation to an idealized turbulence field where
slip is permitted on the surfaces of the axisymmetric nozzle or diffuser. In such a
deformation, if the streamwise strain is dU; /dx, then from continuity and axisym-
metry considerations: dU,/dx, = dUz/dx3 = —%8U1/8x1. The stress field will

also remain axisymmetric through the deformation; thus, a», = az; = —aj1/2.
The two stress-anisotropy invariants thus take the following form for axisymmetric
flow:
35 3 3
Ay = Ea“, Az = Za“. (3.30)
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Fig. 3.9 Axisymmetric turbulence created by passing initially isotropic turbu-
lence through an area contraction (a) and expansion (b), leading ultimately to
the two-component and one-component limits, respectively.

Eliminating a;; between the two parts of (3.30) gives the following interrelation
among the invariants for axisymmetric, shearless flow:

372\
A= <§A2> (3.31)

where the positive sign refers to an area expansion and the negative sign to an
area contraction. In the case of a converging passage, the acceleration will stretch
eddies in the streamwise direction, Fig. 3.9a, but note that since the production
rate of streamwise normal stress, P;; = —2u_% (3 U, / Bxl), is negative, the stream-
wise normal stress will fall, while, correspondingly, the production of the normal
stresses in the duct’s cross-sectional plane is positive, and thus those stresses will
increase. In the extreme limit one finds u_%—> 0 and u_g = u_§—>k.

If, in contrast, isotropic turbulence is passed through a diverging axisymmetric
duct,’ Fig. 3.9b, the flow deceleration compresses the eddies in the streamwise
direction, which leads to an augmentation of the streamwise normal stress since the
production of that component is now positive, while that of u_% and u_§ is negative.

Thus in the extreme limit one now finds 3 = u3 — 0 and u7 — 2k.

While the limiting states described above cannot in practice be achieved in actual
experiments, there are real-life situations where the turbulence is constrained to the
two-component state. At a phase interface in the presence of a body force — the
most common example of which arises at the free (water—air) surface in a lake —

9 Imagining an inviscid flow with slip occurring at the walls, thus avoiding separation, an effect that would
certainly arise in a real flow.

https://doi.org/10.1017/9781108875400.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.005

3.7 Turbulence anisotropy, invariants and realizability 55

turbulent velocity fluctuations normal to the interface are suppressed, while those
parallel to it are effectively unconstrained. Similar effects caused by body forces
can arise in other situations such as the electromagnetic Lorentz force, which again
dampens velocity fluctuations in the direction of the force. An even more important
example is the limiting form of the anisotropy tensor very close to a smooth wall.
As shown in Chapter 1, the normal-stress components parallel to the wall then
vary as x7, while the component normal to the wall varies as x3; thus, in the limit
as the wall is approached u3 becomes negligible compared with the other normal-
stress components. This behaviour is well illustrated in Fig. 3.10, from the early
DNS channel flow data of Kim et al. (1987). Figure 3.10, left, shows the non-zero
Reynolds-stress components on a linear scale, while Fig 3.10, right, presents the
Reynolds stresses normalized by the turbulence energy, the logarithmic abscissa
scale giving especial prominence to the near-wall region. From the latter it is clear
that the stress field does reach a two-component state deep in the viscous sublayer.
The flatness parameter A thus also falls to zero in the vicinity of the wall, as seen
in Fig. 3.14.

As a final ‘canonical’ flow we consider the development of an idealized flow
through a rectangular-sectioned duct that gradually changes its shape but with its
cross-sectional area remaining constant, Fig. 3.11. Thus, the streamwise velocity
remains constant, there being neither stretching nor compression in that direction,
but the initially isotropic turbulence is subject to a plane-strain distortion. The mean
velocity field is thus: U; = const; Uy = —Us = —cx;. Consequently, P;; = 0 and,
initially, P>, = —P;33 since the stress field at the start is isotropic. Thus, the initial
development of the stress tensor will be one where a;; =0, a» = —a33,'% which
results in A, = 2a§2 and A3 =0.

We can now summarize the above examination of types of homogeneous tur-
bulent flows subjected to a variety of irrotational strains by plotting the limiting
processes and the resultant states of the stress field on the invariant map shown in
Fig. 3.12, a presentation first provided by Lumley (1978). The important conclu-
sion is that realizable turbulence must have values of the invariants that place them
within or on the boundaries of the triangular area shown.

Somewhat different shapes of the domain of realizable turbulence can be
obtained by choosing alternative invariants. For example, Pope (2000) uses the
quantities (1/24 A,)!/? and (1/48 A3)'/3, while Craft and Launder (2002b) adopt
A as an alternative to A3, thus confining the region of realizable turbulence to the
first quadrant, Fig. 3.13.

10 Although, when the distortion is first applied and the turbulence is isotropic, P33 = —Pp; , the consequent

increase in u% and decrease in u% reduces the magnitude of P33 relative to P> and consequently both a1 and
Az will slowly become non-zero as the flow develops through the distortion.
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Fig. 3.10 Distribution of turbulent stress components very close to the wall in a
plane channel flow, normalized with the wall friction velocity (left) and with the
kinetic energy k (right). Evaluated from DNS results of Kim et al. (1987).
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Fig. 3.11 Plane distortion created by passing initially isotropic turbulence
through a constant-area duct with a gradual change of its form.
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Fig. 3.12 Stress-invariant map, summarizing the realizable region of turbulence
and its limits.
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Fig. 3.14 Stress-anisotropy invariants (a) and comparison of the stress and
dissipation-rate flatness parameters (b) in a fully developed plane channel flow
(evaluated from DNS results of Kim et al., 1987; Moser et al., 1999 and Hoyas
and Jimenez, 2006).

To give some impression of how the invariants may be distributed across a wall-
bounded shear flow, Fig. 3.14 shows their variation in channel flow obtained from
the available DNS data. The peak values of the invariants A, and A3 actually occur
a little way from the wall though, as remarked above, A vanishes at the wall itself.
We note that while the dissipation flatness parameter, £, (Fig. 3.14b) also vanishes
at the wall, it rises more rapidly than A (increasingly so as the bulk Reynolds
number is raised) and approaches unity (its isotropic value) over the central half of
the channel.
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3.7.3 Anisotropy of the scalar field

The scalar flux is a vector and thus a strict scalar-flux analogue of the stress-
invariant map and realizability constraints on the stress invariants does not exist.
A variable that can serve as a measure of the anisotropy of a scalar field is the
scalar-flux correlation function:
4y = 01 (3.32)
02ukuk

One can, in fact, go further in pursuing an analogy with the stress field by defining
a mixed second-rank anisotropy tensor (Shih et al., 1990):
a = 67w — 9_”_9_”’ (3.33)
62 - ui—(Ouy)?

It is readily appreciated that from this one can construct invariants in just the same
way as for the stress tensor. Thus:
0 _ 0.0 0 _ 0.0 0 0 _ 0 0
Ay =ajaj;, Ay =ajagay, AT =9[1-3A,+2A5]/2.

As discussed in later chapters, the invariant Ay has been found to be a useful param-
eter in correlating variations of the scalar-to-mechanical time scale. However,
attempts to use one or more of the mixed scalar-dynamic invariants to refine the
empirical coefficients in the scalar flux equations (analogous to what is successfully
done for the stress-transport equations) has not met with significant success.
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4

Approaches to closure

4.1 General remarks and basic guidelines

The aim of turbulence modelling is to mimic those processes not exactly deter-
minable at the chosen level of closure in terms of mean and turbulence properties
that are. The challenge is sometimes referred to as the turbulence closure prob-
lem. It is recalled that the focus is on the second moments, @u;, which appear
as the unknown variables in the Reynolds-averaged mean momentum and sca-
lar transport equations. The processes in question are the turbulent transport of
momentum and any scalar of interest, represented by the turbulent stress, u;u;,
and scalar flux, Wj, respectively. These second moments are always tensors of
a higher order than the variables for which the mean-flow transport equations
are solved. For example, if ¢ is a scalar, gu; is a vector (a first-order tensor),
and if ¢ is a vector, gu; is a second-order tensor. This complicates the closure
task because, first, with closure at second-moment level, one needs to solve many
more additional equations to determine these unknown variables than for the corre-
sponding laminar flow. Moreover, to close the second-moment equations one has to
devise approximations for third moments for which experimental data are relatively
scarce.

At a practical level, one naturally wishes to adopt the simplest closure con-
sistent with achieving the desired accuracy and width of applicability. This goal
clearly affects the importance that different workers have attached to different clo-
sure principles. As a first requirement, any surrogate form must have the same
dimensions as the correlation it replaces; there is no controversy on this point.
Next, the mathematical character of the model should conform in various respects
with the original. For example, if the process requiring approximation is a second-
rank, symmetric tensor with zero trace, the search for a model should be limited
to forms possessing these properties. Although this principle is usually adhered to
at second-moment level, it is frequently ignored in modelling the third moments.

59
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This can be regarded as the application of a further fundamental concept: the prin-
ciple of receding influence. Broadly, the idea is that the nth-moment correlations
have markedly less effect on the mean flow than those of (n — 1)th order. So,
rules that are held inviolate for second moments are sometimes dispensed with
in the interests of algebraic and computational convenience in dealing with third
moments. It is clearly a matter of taste, and of the flows to be calculated, how freely
one invokes this principle. Everyone developing models at this level makes some
use of it, however, for it is that idea which ultimately legitimizes second-moment
closure.

Two further principles of mathematical physics have commonly been invoked in
determining modelling approaches. First, it is generally accepted that the approx-
imate forms should exhibit the same response to translations, accelerations and
reflections of the coordinate frame as the real processes (e.g. Donaldson, 1971).
The second constraint is that the modelled set of transport equations should be
rendered physically incapable of generating impossible or ‘unrealizable’ values

such as negative normal stresses or correlation coefficients (such as uju;/ u% u%

greater than unity, Schumann, 1977). Here the work of André et al. (1979) is also
mentioned: they devised a scheme for overwriting or ‘clipping’ the values of triple
moments whenever they reached physically unattainable values in comparison with
other double and triple moments. Although Schumann suggested ways of securing
‘realizability’, the interested reader is referred to the far more detailed treatment by
Lumley (1978). Unfortunately, although the principle of realizability is sound, its
adoption adds considerably to the complexity of the turbulence closure and only
the later generations of modelling proposals have employed realizable forms in
computations of inhomogeneous flows, for example Shih and Lumley (1985), and
Craft and Launder (1989). Models which, in principle, are capable of generating
impossible values of second moments may, in practice, do so for flows which are
of only academic interest. Indeed, second-moment closure studies of recirculating,
swirling and other complex flows have been made with forms that do not guaran-
tee realizability. However, employing fully realizable closures often increases the
convergence rates in flows requiring an iterative solution, while certain features
of turbulence that consistently eluded the simpler models (such as the observed
reduction of turbulent mixing at high strain rates) emerge naturally without specific
empirical tuning.

The next concept is self-evident but because it is key to a successful turbulence
model it is still worth emphasizing. The model should always be a physically
plausible substitute for the real process. This statement includes the choice of
contributing physical quantities; for example, whether the model should com-
prise exclusively turbulence correlations or include terms containing mean-field
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elements — and the way they are combined together. It is often helpful to explore
different ways of expressing the correlation of interest; one form might give much
more insight than another.

The above considerations can be summarized in a set of mathematical and physi-
cal rules with which every term in the equations defining a turbulence model should
ideally comply:

e dimensional coherence

tensorial (vector) order consistency

coordinate frame indifference (frame and index invariance)

realizability

limiting properties (which may also be a corollary of realizability, for example,
two-component turbulence)

® physical coherence, implying that turbulence correlations should be mod-

elled in terms of turbulence parameters instead of, for example, global
mean-flow characteristics such as the bulk-flow Reynolds number or pressure
gradient.

A considerable simplification to the task of turbulence modelling results from
applying the high Reynolds number hypothesis. Simply stated, the proposal
contains two complementary ideas:

(i) that the large-scale interactions predominantly responsible for momentum and
scalar transport are unaffected by the viscosity of the fluid;

(ii) that the fine-scale motions responsible for viscous dissipation are unaware of
the nature of the mean flow and the large-scale turbulence; their structure is
similar to that found in isotropic turbulence.

It is, in fact, well established that the fine-scale motion, particularly in regard to
higher moment correlations, is not exactly like isotropic turbulence, but neverthe-
less, if judiciously applied, both aspects of the high Reynolds number hypothesis
are very useful in turbulence modelling.

In the following sections we consider the principles and practice of modelling
the terms in Eq. (2.18) and (2.22) contained in boxes. First, exact (but unusable)
expressions for the important pressure-containing correlations will be obtained.
Then, in §4.3 what we term the basic models of each term will be presented.
Despite being largely based on intuition and heuristic arguments and being 50
years or more old, because of their simplicity, these models are still widely used in
industrial practice. Moreover, the basic closures are often the leading terms of more
elaborate, higher order models, which are then extensively considered in §4.4. The
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effects of various force fields on the pressure-containing correlations are the subject
of §4.5, while finally the role of triple moments and their modelling is considered
in §4.6.

4.2 Pressure interactions, ®@;; and ®y;: the Poisson equation

Modelling the terms involving fluctuating pressure interactions in Eqs. (2.18)
and (2.22) is the most challenging task in second-moment closure. Before con-
sidering arguments and routes for modelling these interactions, it is noted that
pressure fluctuations have a profound effect on turbulence dynamics. Pressure
perturbations travel in all directions through the fluid as waves, at a propaga-
tion speed which in an incompressible fluid is infinite. Thus, the effect is by
no means local, but is felt instantly over the whole flow domain, as may be
seen below from the Poisson equation that governs the fluctuating pressure. By
taking the divergence of the Navier—Stokes equations (2.2) and subtracting its
mean part, a Poisson equation is produced with the fluctuating pressure as its
subject:

19%p 02 U, du,,  3fi
——— = (g — Wgty) — 22— o
P 0x; 0X70X,, 0x,, 0Xx; 0x;

4.1

The equation can be integrated over volume V bounded by the surface A, using
Green'’s theorem, to yield the fluctuating pressure at a point defined by the position
vector x, Fig. 4.1:!

9* — dV (X AU’ du' dV (X'
p(x) = if ,—(u}u;n —u;ul’n)ﬁ_i_if et r:l (x')
47T 1% axlax;n 27-[ v ax’/n axl r
af/dv(p(/l)) 1 18 / 8 1 p(Z) (42)
_P [ X+—/—i—p/——dA
dm Jy ax; v 4 Jy Lr on on \r
P3) Pw)

where r = |x’ — x|. All variables under the integral sign (denoted by primes) are
evaluated at the point P’ with position vector X', Fig. 4.1.

As noted above, Eq. (4.2) is elliptic, implying that the resulting field is non-
local, i.e. it extends beyond the location of its source. Terms on the right of the
equation can be regarded as sources of pressure fluctuations. The first three terms,
' Green’s identity states that V(GVp) = VGVp + GV? p, where G and p are continuous functions.

Taking a volume integral and converting the first term into a surface integral using Green’s theorem, leads

to fA GVpdA = fV (VGVp + szp)dV. By assigning the Dirac delta function for the Green function,
G = 1/r, one obtains:

1 5 ,dV(X) 1 /‘ 1 9p’ , 0 (1
=—— | Vp —— 4+ — -— —-p — (- )|dA.
P& 4r /V P r + 4w JaolLr on P on \r
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Fig. 4.1 Sketch relating to the integration of the Poisson equation.
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Dy, Py, Py are the particular solutions of the Poisson equation for unconfined
space, whereas the last term, p(,,, becomes significant only in the proximity of
a solid wall. It is noted that p(;) is non-linear in velocity fluctuations, whereas
D2 1s linear both in mean velocity gradient and in velocity fluctuations. The term
p) arises from fluctuating body forces. It is to be expected that any comprehen-
sive model for the turbulent pressure-containing correlations (®;; and ®y;) will

comprise terms corresponding to the different sources in Eq. (4.2).

By multiplying Eq. (4.2) by (du;/dx; + 0u;/dx;) and averaging, the pressure-
strain process can be written as:

@ = P (i 04
Y ox;  0dx;

1 2uuy, \ 8u, dV(X)
4 Jy \ 0x;0x,, 8x, r

l]l

aum 8u, n
8x1 ij

1 8U1
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A fm
t 4 (axm)
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Bu, 8u])dV(X)

r

/\\/\

0x; 0x;

10 , 8ul 8uj , ou; n
ron p 8x, ax,- p ij

w
D; ;

https://doi.org/10.1017/9781108875400.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781108875400.006

64 Approaches to closure

where the primes denote that the quantity in question is evaluated at a distance r
from where @;; is determined (indicated by point P’ in Fig. 4.1). It is convenient
to write the above equation in the short-hand form:2

The constituents in the above expression are known by names that reflect the
content of the corresponding integrand in Eq. (4.3) and the physical process it
represents. It is recalled that the wave nature of pressure fluctuations tends to
destroy the coherence of eddy structures and to diminish any correlations that might
exist between different fluctuating variables. In free space, the first three terms rep-
resented by volume integrals will usually act, directly or indirectly, to reduce the
turbulent stress anisotropy. The last term, originating from the surface integral, will
generally counteract the isotropization trend through the induced inviscid blocking
of velocity fluctuations in the vicinity of a solid wall or phase interface.

In the absence of any mean strain or body forces and away from a wall or inter-
face the only non-zero term is the non-linear ®;; , which will redistribute energy
among the components and diminish any shear stress, causing turbulence slowly
to approach its isotropic state. If, however, isotropic turbulence is subjected to a
sudden rate of strain, the dominant action will be through the term @;;,, which is
linear (in the velocity gradient) and which acts rapidly to modify the preferential
feeding (production) of turbulence energy into particular coordinate direction(s)
by the active components of the mean rate of strain. A simple (though incomplete)
characterization of the process is that of reducing the anisotropy of the stress pro-
duction. Term @;;, will generally act in the same spirit if, instead of mean strain,
a body force is applied suddenly to isotropic turbulence. Finally, we may expect a
wall to modify the fluctuating pressure field in its vicinity by virtue of its blocking
effect.

Thus, to summarize the physical meaning and labelling of the constituents of the
pressure redistribution term @;;:

2 Instead of considering the pressure-strain correlation @;;, one may focus on the velocity—pressure-gradient
correlation [7;; as it appeared in the original Eq. (2.18) before being split into pressure-diffusion and pressure-
strain parts, [7;; ED{; + @;;, Eq. (2.20). Differentiating Eq. (4.2) with respect to x;, multiplying it by u ; and
averaging, and then adding it to the same equation with the indices /i and j interchanged gives an integral
equation for [T;; which is very similar to Eq. (4.3) except that all terms in the integrand which are evaluated
at point P(x) are differentiated by x;. IT;; can then be split into parts corresponding to the different terms in
the integral equation: IT;; = I1;; + IT;j, + Ij; + 1T il}’ and the component parts modelled separately just as
for @;;. The apparent advantage of this approach is that IT;; (and all its constituents) are zero at a solid wall,
whereas DS. and @;; are finite and of opposite sign at a wall. This should make the modelling easier in the
region very close to a wall, where Dipj (and thus &; ;) can be quite significant. It is recalled, however, that IT;;
is not redistributive (it has a finite trace even in incompressible turbulence). This is, in principle, an unattractive
feature because it invalidates the use of the redistribution constraint in modelling the component parts of I7;;.
However, because one needs to resort to a good deal of empiricism in closing the elements of either I7;; or
®;, both approaches eventually lead to the same model, except that, when choosing ®;;, one needs to provide
a separate model for the pressure diffusion. The latter issue is important only for near-wall modelling and for
certain cases of force-field-driven flows. These issues are considered further in Chapter 6.
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®;;, — return to isotropy of non-isotropic turbulence (the slow or non-linear
term)
&;j, —isotropization of strain production (the rapid or linear term)

® &;;, —isotropization of force production (the rapid or linear term)
ch.’j? — wall blocking (the wall echo term).

An analogous equation for @y; can be obtained by replacing (du;/dx; + du;/dx;)
by (36/9x;) in Eq. (4.3):

o, =P 0\ 1 2ujuy \ [ 90 \dV (X))
ej_p ax;) 4w Jy \9xdx, ax; r

Pojy
1 U\ (dun\ (90 \dV(X)
21 Jy \ 0x, x; 0x; r
<P,9j2
L A\ [ 90 \dV(X)
4 Jy \ 0x,, 0x; r
479]'3
1 10 00 00\ 0 (1
+ — -—— | p | — —pl—)]—1|—-)|dA 4.5)
4 Jo | ¥ On 0x; dx;)on \r
@4
or, in short-hand notation,
Dy = ¢9j1+@9j2+¢9j3+@}9”j (4.6)

ghere the component terms have similar physical meanings and labels to those in
ij*

In principle, approximations for the constituent processes in (4.3) and (4.5) can
be developed starting from the solution of the Poisson equation for the pressure
fluctuations. Analyses of this type have been presented by Naot et al. (1973);
Lin and Wolfshtein (1979) and others (in which it is assumed that the two-point
velocity-correlation tensor appearing in the kernel retains the exact, axisymmet-
ric form found in isotropic turbulence, thus permitting analytical integration). A
less formal approach is usually favoured, however. General surrogate forms are
assumed for the different component parts of ®;; and ®y;. Then, by insisting that
the model possesses certain symmetry and contraction properties of the original
process and that it should comply with some or all of the other physical con-
straints noted above (while also conforming with certain experimental data or direct
numerical simulations), the various constants in the model are determined.
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While such analytical approaches will form the main focus of this chapter, in
what follows, as indicated above, an even simpler, heuristic approach will be pre-
sented next based on intuition and experimental observations. This leads to simple
models of each of the constituents of the complete terms ®;; and Py;.

4.3 The basic second-moment closure for high-Re,; flow regions
4.3.1 Rotta—Monin return-to-isotropy models of ®;;, and ®y;,

To model the parts of @;; and Py arising from p(;), we seek forms containing only
turbulent quantities. Experiments indicate that grid turbulence made strongly non-
isotropic by passing it through a duct of rapidly changing cross-sectional shape
will gradually revert towards isotropy once the mean strain is removed. If the dis-
sipation process remains isotropic (i.e. local isotropy applies), we must conclude
that @; i, (which, like the other parts of @;;, is traceless) is the agency promoting
this reversion. The process occurs gradually due to non-linear turbulence self-
interactions. The simplest approach, and one that accords with intuition, is Rotta’s
(1951) linear return model. It assumes that @;; will act as a sink or source of the
stress component u;u; directly in proportion to its deviation from the isotropic
state scaled with an appropriate time scale which we take to be the turnover time,

T (T=k/e):

- 1 Uu;u; 2
@ijl = —C1 (uiuj — gukuk&j) /T = —C1¢& (TJ — 581‘]’) = —618aij. (47)

By applying this model to the decay of anisotropic turbulence (in the absence of
mean strain or body forces), the requirement that all normal-stress components

(i = j) should remain positive, implies that, if the stress dissipation remains iso-
tropic (i.e. &; = %5,-]-8), the coefficient ¢; must be greater than unity. Different
values have been suggested in the course of model development, depending upon
the scheme used to represent the rapid term (see below); the values commonly used
nowadays lie in the range 1.5 < ¢; < 1.8.

The corresponding process, @y, in the W equation is modelled, following
Monin (1965), as:

fo—
(pgjl = —Clgzeuj. (48)

However, the value of the empirical coefficient, c19, normally adopted (around 3.5)
is roughly twice as large as the value of ¢;. Part of the reason for this disparity
is the use of the dynamic time scale, k/¢, to characterize the process rather than
a time scale involving both the dynamic and scalar intensities. Several research
groups have used [(k/¢) (0_2/ £00) ] 172 a choice that brings the two coefficients closer
together.
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4.3.2 The isotropization-of-production (IP) model of @;;, and ®y;,

It is evident from Eq. (4.3) that since this term is multiplied by a mean velocity
gradient, the term will be non-zero only in the presence of a mean rate of strain. If
isotropic turbulence is subjected to a suddenly imposed velocity gradient, @;;, will
instantly become non-zero. An early analytical strategy for predicting the changes
to the stress field in this type of situation is known as rapid-distortion theory, rein-
forcing the descriptor rapid term. Although the process was entirely neglected
in some of the early closure proposals (e.g. Donaldson et al., 1972; Lumley and
Khajeh Nouri, 1974), today it represents a vital ingredient of all second-moment
closures. Its effects will tend to redistribute the action of the imposed strain, reduc-
ing the effective mean-strain generation in the components where the production
term is large and deflecting it in some proportion to other components. It is thus
supposed that the principal effect of the mean-strain part of the pressure-strain
process is, effectively, to reduce the anisotropy of the production tensor, leading to
a model analogous to Rotta’s model of the slow term, i.e.

1
Dij, = —C2 (Pij — gpkkgij) - (4.9)

Equation (4.9) is known as the isotropization-of-production (IP) model (Naot et al.,
1970). It combines simplicity with at least qualitative accuracy and has been used
in many computations of complex flows. Moreover, though inspired by intuition,
it is noted that if, as is often the case, the value of c; is taken as 0.6, in isotropic
turbulence subjected to a rapid distortion, one obtains the exact result obtained by
Crow (1968):

P10 = 0.4k (8—U 49U

2 ij 8x,~

) =0.8kS;;. (4.10)

Equation (4.9) can be regarded as a simplification of a more general non-linear
model discussed in §4.4, in which simply the leading linear term is retained. It has
been widely applied in a diversity of flows and has been found to be conclusively
better than the superficially more general ‘quasi-isotropic’ form, to be considered
in §4.4.3, at least when used in conjunction with the simple linear model of ®;; .

The idea underlying the IP model is readily applied to the force-field part of @;;
(as will be considered in §4.5) and, moreover, to the mean-strain contribution of
the pressure-scalar gradient to @y;,. Thus, for the latter:

_3U;
Dyi, = —cPl = +cpbup— 4.11)
axk

where the coefficient has been given values in the range 0.4 < ¢y < 0.55. Notice
that only the part of production of the fu; transport equation arising from 6 Du; / Dt
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Fig. 4.2 Map of proposals for coefficients in the Basic Model for @;;.

is included in Eq. (4.11) since it is only that part of the equation that contains
the pressure-fluctuation term. That has been the usual choice in modelling though
Jones and Musonge (1988) have argued that the mean-scalar-gradient part of the
generation also gets modified in some way by the pressure fluctuations (see §4.4.2).
With the coefficient ¢y set to about 0.5, Eq. (4.11) is distinctly more successful
than the formally more general linear quasi-isotropic form (c.f. §4.4) at least if the
proposal of Monin (1965) for @;4; is adopted.

4.3.3 Optimum choice of coefficients in the basic pressure-strain model

Equations (4.7) and (4.9) have been included as part of many different modelling
proposals and have been incorporated into several commercial software packages.
For this reason the pair of equations (including, where appropriate, wall-reflection
terms and other closure elements discussed below) is often referred to as the Basic
Model.

The question arises, however, as to what values should be assigned to the coeffi-
cients ¢ and ¢,. Values proposed for ¢, range3 from 1 to 5, while recommendations
for ¢, cover the range from zero to 0.8, Fig. 4.2. This array of different values sug-
gests, at first glance, that since such disparate pairings have been put forward, the
whole approach is worthless. Looked at with an experimentalist’s eye, however,
3 In fact, Naot er al. (1970) neglected entirely the slow, turbulence part of the pressure-strain process but

also assumed ¢;; = eu;uj/k in place of the more usual local isotropy (&;; = 2§;;¢/3). Their assump-

tions are equivalent to taking ¢; = 1 (rather than zero) together with ¢;; = 26;;¢/3. That is, —eu;u;/k =
—cy(e/k)ujuy —28;;k/3] — 28;;¢/3if c; = 1.
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one might be tempted to fit a straight line through the ‘data points’. Now, in the
case of a simple shear flow in local equilibrium (i.e. where turbulence generation
and dissipation processes are in balance) and where the dissipation is isotropic, it
is readily shown that, with these models, the resultant stress tensor depends not on
the individual values of ¢; and c; but rather on the single parameter (1 — ¢;)/c;.
The line in Fig. 4.2 is simply that corresponding to (1 — ¢;)/c; = 0.23, which evi-
dently does rather a good job of fitting the various proposals. What we conclude is
that, for simple shear flows in local equilibrium, the very different pairs of ¢; and
¢ lead to nearly the same results. In order to pick the ‘best’ pairing one needs to
look at non-equilibrium cases. It was noted above that a value of ¢, of 0.6 exactly
describes the case of isotropic turbulence subjected to rapid distortion, while direct
simulations of the return of anisotropic turbulence towards isotropy suggest a level
of ¢; from 1.5 to 2.0 if the level of stress anisotropy is similar to that found in a
typical free shear flow. The pairing usually adopted nowadays for ¢; and ¢, of 1.8
and 0.6 is fully compatible with these extreme cases and is marked by a circle in
Fig. 4.2.

Before leaving this topic, mention should be made of 