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ABSTRACT

This report explains and discuss two main boundary condi-
tions for turbulence models: the integrating and the wall fun-
ction approach. The report thoroughly derives the law-of-the-
wall for both momentum and thermal field. The deviation of
these laws from DNS-data is discussed. The Wilcox k& — w tur-
bulence model constants are derived on the basis of the law-
of-the-wall and experiments. Using a simplistic treatment,
the low-Reynolds number modifications (damping functions)
to the £ — w model are explained.

Included in the report is also a guideline on the implemen-
tation of wall functions, both the standard and the Chieng-
Launder two-layer variant.

A new boundary condition for turbulence models combining
wall function and integration approach is presented.

Keywords: boundary condition, wall function, turbulence
model
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Nomenclature

Latin Symbols

&£ &

£
o
<

<
CER

< 8 &

Turbulence model constant
Specific heat

Various constants
Length-scale constant
Turbulence model coefficient

Skin friction coefficient, 27, /pU?

Hydrualic diameter
Rib-size
Turbulence model constant
Damping function
Functions
Channel half-height
Heat transfer coefficient
Channel height
Tensor indices,
streamwise: 1 (U)
wall normal: 2 (V)
spanwise: 3 (W)
Turbulent kinetic energy
Length scale
Nusselt number
Static pressure
Rib-pitch
Turbulent production,
Prandtl number
Functional Prandtl number
Heat flux
Turbulence model constants
Reynolds number, UH /v
Turbulent Reynolds number,
v /v, k[ (wv), k?/(ev)
Viscous sub-layer Reynolds
number, y,v/k, /v
u, based Reynolds
number, yu, v
Strain-rate tensor,
Temperature
Fluctuating temperature
Friction temperature,
(Tw — T)pcur [quw
Velocity
Fluctuating velocity
Reynolds stresses

Friction velocity, \/7,/p

Normalized value: 1000 x ., /Up

Streamwise coordinate
Wall normal coordinate

[K]

[m/s]
[m/s] A
[m?/s?]

[m/s]

[m]
[m]

iv

Greek Symbols

a Thermal diffusivity

a,a*  Turbulence model coefficients
B8,8*  Turbulence model coefficients
y Turbulence model coefficient
1) Characteristic length scale
A Cell size

€ Dissipation rate

n Normalized wall distance

K Van Karman constant

A Thermal conductivity, Cpu/Pr
v Kinematic viscosity

I Dynamic viscosity

p Density

w Specific dissipation rate

o,0*  Turbulence model coefficients
T Time

T Shear stress

Tw Wall shear, pu?
Superscripts

e Effective value

ot Normalized value using u:
T =T/T;

U+ =U/u,

yt =yur /v

k* =k/u?

et =ev/ut

wt = wr/u?

Tt =7/u

wt = u' [ u?

o* Normalized value using Vk:
v =yC VR (k)

vy =y Wy (k—w)
Subscripts

0 Non-modified value

1 First interior node

b Bulk value

CL Centerline value

HRN HRN (logarithmic) part

l Laminar quantity

LRN LRN (viscous) part

n North face value
P Node value

t Turbulent quantity

T Thermal quantity

v Viscous sub-layer value

w Wall value

T Quantity based on the

friction velocity



1 Introduction

One of the most common engineering problems is com-
puting turbulent flows that are influenced by an adja-
cent wall. Examples of this are flows in turbomachinery,
around vehicles, and in pipes. The main two effects of a
wall are:

¢ Damping the wall normal components, making the
turbulent flow anisotropic.

¢ Increasing the production of turbulence through the
shearing mechanism in the flow.

The wall gives rise to a boundary layer, where the ve-
locity changes from the no-slip condition at the wall to
its free stream value. The variation is usually largest in
the near-wall region, and hence the strongest gradients
are found here. Similarly, for heat transfer applications,
there exists a thermal boundary layer with equally large
gradients. Because both heat transfer and friction are
computed using gradients of the dependent variable, it
is very important to accurately capture this near-wall
variation.

The standard method is to apply a very fine mesh close
to the wall, to resolve the flow. This method is called the
integration method, which necessitates an LRN (low-
Reynolds-number) type of turbulence model. At higher
Reynolds numbers, the region under the wall influence
diminishes. However, because it is equally important to
accurately capture the near-wall gradients, a large num-
ber of nodes are then necessary. From an engineering
point of view, this becomes inconceivable and a function
that bridge the near-wall region is instead introduced,
thereby significantly reducing the computational requi-
rements. The anticipation is that this can be done with
only a small deterioration in the results. This latter ap-
proach is denoted the wall function method, which uses
an HRN (high-Reynolds-number) type of turbulence mo-
del.

2 Near-wall Physics

The near-wall region may be sub-divided into three dif-
ferent areas, Tennekes and Lumley [31]:

e viscous sub-layer 0 < y* < 5

e buffer layer 5 < y*™ < 30

e inertial sub-layer 30 < y+ < 200
The turbulence is negligible in the viscous sub-layer,
while the viscous effects are small in the inertial sub-
layer. In the buffer layer, however, both turbulent and

viscous effects are of importance, see Sahay and Sreeni-
vasan [29] and Fig. 1.
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Figure 1: Laminar and turbulent shear in the near wall
region. Channel flow, DNS-data, Re, = 395 [25].

2.1 Buffer Layer

The maximum turbulent production occurs in the buffer
layer at roughly yt = 12, slightly dependent on the Rey-
nolds number. Due to large variations in the different
turbulence source terms, see Figs. 2 and 3, the model-
ling becomes very difficult. Today there exists no general
method for applying a turbulence model, with the first
computational interior node located in the buffer layer.
Instead of trying to model the behaviour in the buffer
layer, the common practise is to place the first near-wall
node in either the viscous sub-layer (LRN-models), or in
the inertial sub-layer (HRN-models). A viscous appro-
ach is valid in the former case, while a turbulent ap-
proach is more correct in the latter, for the first interior
computational cell.

2.2 Viscous sub-layer

In the viscous sub-layer the following asymptotic re-
lation for the velocity, temperature, turbulence kinetic
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Figure 2: Production and dissipation in the k-equation.
Channel flow, DNS-data, Re, = 395 [25].
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Figure 3: Viscous diffusion, turbulent transport and

pressure diffusion terms in the k-equation. Channel

flow, DNS-data, Re, = 395 [25].

energy and dissipation rate is valid:
vt = yt (1)
Tt = Pryt (2)
k= C’1y+2 3)
et = O 4

where the variables are normalised ()* according to the
nomenclature.

The constants used in the relation for the turbulence
quantities in Fig. 4 are C; = 0.1 and C5 = 0.2, which gi-
ves close agreement in the wall vicinity. As can be seen
from the figure, the relations for the velocity, tempera-
ture and dissipation rate are a fair approximation, even
up to yt = 10, although the model for turbulent kinetic
energy yields a strong over-estimation for larger y* va-
lues. In light of this, a plausible turbulence model would
be to assume a variation in both the velocity profile and
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Figure 4: Near-wall variation in U, T, k,e. Channel flow,
DNS-data, Re, = 395 [25].

20
18r 1
16
14
12

10
¢ 100

Figure 5: Variation in U, T, k, ¢ in the inertial sub-layer.
Channel flow, DNS-data, Re, = 395 [25]. Labels as in
Fig. 4

the dissipation rate, while the turbulent kinetic energy
should be solved and not set a priori.

2.3 Inertial Sub-layer

The inertial sub-layer is the region observed from
around yT = 30 and outwards, where the assumed va-
riations are, see e.g. Wilcox [36]:

Ut = Z“Iny"+B ()
Tt = —Iny"+ By (6)
KT
1
kt = (7
VCu
et = <2 ®)




where k = 041, C,, = 0.09 and B = 5.25 are justified
by DNS-data. For air, Kays and Crawford [20] give the
following values: k7 = Pry/x = 0.48 and By = 3.9 in
the relation for the temperature. The inertial sub-layer
is also denoted the logarithmic (log) region, due to the
above characteristic profiles, which feature a logarith-
mic behaviour.

The models assumed for the inertial sub-layer are
compared with DNS-data in Fig. 5. There is excellent
agreement for both the velocity and temperature rela-
tions beyond y*™ > 30. The turbulent quantities are ho-
wever less accurate, and the assumed constant values
for the turbulence kinetic energy are not correct. At
yt = 100 there is a descrepancy of around 25% when
using either Eq. 7 or 8 as compared with DNS-data.

3 Law-of-the-Wall

The variation in the different parameters in the loga-
rithmic region, postulated in the previous section, is ba-
sed on the law-of-the-wall and its consequences. Be-
low, the law-of-the-wall for both momentum and tem-
perature are derived. The latter is an extension of the
former, based on the modified Reynolds analogy. The as-
sumed variation in the turbulence quantities can only
be proven, see section 3.3 and 3.4, in conjunction with a
specific turbulence model. In this paper the Wilcox k —w
turbulence model is used. The constants included are
derived in section 3.4.

3.1 Momentum

Assuming that a Couette-like flow prevails, the
following simplifications can be made to the momentum
equations:

e 1D flow, with variation only in the wall-normal
direction: ¢ = f(y).

e Fully developed flow with zero gradients in the
streamwise direction; 9/0zx = 0, apart from a
pressure gradient: p(z,y).

¢ Negligible convection.

The streamwise (z—) and the wall-normal (y—) momen-
tum equation then reduces to:

_ op d [ dU
0 = e +dy (udy puv) 9
oP 4, —
- e 10
0 9 + dy( pu'v') (10)

Because Eq. 10 is now an ordinate differential, it can
easily be integrated to yield:
P(z,y) = —pu'v’ + Py (z) (11)

Inserting this into Eq. 9, assuming that dpv'v'/dz = 0,
the integration yields:

dP, d (dU —
=— [ =24 — (p—=— — pu'v | d
0 dz y+/dy (Mdy puv) vz
0__@ + d_U_ w'v! — T,
=AYt TP w

(12)

At the centreline (y = h) — of a channel — the shear
stress, pu'v’, and the velocity gradient, 0U/d, are
zero and the pressure gradient can consequently be
established as:

dP, 1
w _ 1 13
dz B (13)

The shear stress variation can thus be written as:

u% —pu'v’ = (1— %) Tu

~~— turbulent
laminar

(14)



Note that u/v’ is negative and hence the left-handside
(LHS) of Eq. 14 — i.e. the total shear stress — linearly
decreases from the wall to the centre of the channel.
This is of course in excellent agreement with DNS-data
for fully developed flow, see Fig. 1.

If Eq. 14 is normalised with the friction velocity, u,

and a length-scale based on wall quantities: 15 .
yt =24 a5 Ut
14
10 b
The relation becomes:
U+ yt
dy—+ —uvt =1- ReT (16) 5 i

where the turbulent Reynolds number is defined as:
Re, =u h/v.

For a large ratio of Re,/y™, one can assume that the
total shear is constant. Hence the velocity and shear
stress can be written as a function of y* only:

Ut =fy")
—uvt = g(y")

(17
(18)

These relations are called the law-of-the-wall’ expres-
sed in inner variables, as proposed by Prandtl [27].

If the inertial sub-layer is instead approached from
the core of the flow, and the equation is normalised with
the mean flow length scale:

== 19
=g (19)
and the friction velocity, the following relation is given:
1 dU+ —
— —uvt=1-— 20
Re, dn " g 20)

For large Re, the first term on the LHS can be neglected
and thus the relation reduces to:

—uvt = G(n) (21)

Note however that this does not give a relation for U
itself. On the basis of purely dimensional grounds, it
is possible to establish a relation for the velocity pro-
file, similar to Eq. 17, although as a function of the wall
distance in outer variables only, van Karman [33]:

U-Uct

R F(n)

(22)
where U}, is the centreline velocity and Ut is the de-
fect velocity. This relation is called the ’velocity-defect
law’, Tennekes and Lumley [31]

Somewhere in the flow it is plausible to assume that
both relations for the U-velocity hold. Differentiating
Egs. 17 and 22 and adding a proportional constant as
done by Clauser [9] gives:

dF 4 df 1
2ot 23
" dn Y dyt Kk (23)
where « is the von Karman constant, equal to 0.4 — 0.42.
Integrating the latter relation gives:

f= %ln(gﬂ') + B (24)

25 .
!
—— DNS !
--- Linear /
20r - - Logarithmic B 1

log(y™)

Figure 6: U-velocity profile with linear and log-law ap-
proximation. Channel flow, DNS-data, Re, = 395 [25].

where B is an integration constant, which is given a va-
lue of 5 — 5.5 based on experimental data. The logarith-
mic law or log-law for the velocity is thus:

1
Ut = —In(y") +5.25

0.41 (25)

The velocity profile using this relation and the linear re-
lation, UT = y™T, is compared with DNS-data in Fig. 6.
The intercept between the two laws is found at y+ = 11,
located in the buffer layer, which is, as is obvious from
the figure, not accurately modelled by either of the equa-
tions.

0.01 w ‘ : 1

Prt—vt/a

260 360 40%
yt

Figure 7: Diffusivities and turbulent Prandtl number for

air. Channel flow, DNS-data Re, = 395 [25], [18].
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3.2 Energy/Temperature

An inspection of the structure of the governing equation
for energy and momentum reveals that the near-wall



mechanisms would be similar only if the Prandtl num-
bers (both the molecular and turbulent) are unity. The
definition of the turbulent Prandtl number is:
dUu
dy

The turbulent Prandtl number and the turbulent mo-
mentum diffusivity, v;, and turbulent thermal diffusi-
vity, a;, are plotted in Fig. 7. The definitions of v; and «;
are:

— dT ——
Pr, = u"u'ili—y/v’t' (26)

ulv!

= 2
v't!
= 2
YT dT/dy (28)

Reynolds, in an attempt to describe the heat exchange
process, proposed a model which is based on similarities
between the momentum and energy transfer. Reynolds’
analogy presupposes that the two diffusivities, v; and
oy, are equal and hence, from Eq. 26, that the turbulent
Prandtl number is unity, Pr; = 1. For a fluid with a unit
molecular Prandtl number, Pr = 1, this would result in
identical temperature and velocity profiles. The validity
of the Reynolds analogy can be observed in Fig. 7. As
noted the assumption of a constant Pr; can only be ac-
ceptable in the inertial sub-layer, and with a value less
than unity, Pr; ~ 0.8.

Although the validity of the Reynolds analogy is limi-
ted, there still exists a strong similarity between the ve-
locity field and the temperature field, which implies that
there could exist a corresponding law-of-the-wall for the
thermal field.

With the same assumptions as for the momentum
equation, i.e. 1D fully developed flow field and ther-
mal field, the energy (temperature) equation in the wall-
normal direction can be simplified to:

ldq d
Cdy dy

where C), is the specific heat of the fluid and « is the
(viscous) thermal diffusivity.

Note that the pressure gradient, contrary to the momen-
tum equation, does not appear in this equation. If a non-
negligible pressure gradient were present, much of the
similarity between the momentum and energy equation
would be lost.

Assuming that the turbulent heat flux, v'#, can be
described with the turbulent thermal diffusivity and the
turbulent Prandtl number, the relation can be re-written

dT]

as:
d
_df(n,
dy [(Pr Prt) dy

When integrating this equation from the wall to the
centre of the channel, the heat flux is found as:

Iz pe \ dT
C={—+—)—
(Pr + Prt) dy
where the integration constant, C, is a function of the
heat flux applied at the wall:

q’lU
=2 2
C= o (32)

(29)

(30)

(31)

Pr y:_rit
Air: 0.7 | 13.2
Water: | 5.9 | 7.55

Table 1: Critical y* values, air and water

Re-arranging and integrating once more gives:

qw _(p 4T
Cy Pr Prt dy
(33)
/ dT = _q_“’ d—y
p/Pr+ pe/Pry
On introducing normalised values:
yt = 4 (34)
v
T+ = (Tw = T)pCpur (35)
Qu
and re-arranging, the equation yields:
+
+
T+ = / 4y (36)
o 1/Pr+ (v/v)/Pr

This gives the variation of T+ as a function of y*, alt-
hough in an integrated form, which is not preferable
when making comparisons with the law-of-the-wall for
the momentum equation. The formulation could ho-
wever be simplified if it were possible to divide the near-
wall region into a laminar and a turbulent layer. In
the case of the momentum equation, the velocity profile
follows approximate a linear relation in the viscous sub-
layer (laminar) region and a logarithmic relation in the
inertial sub-layer (turbulent) region. If the thermal fi-
eld behaved similarly, the above integral can be divided
and integrated successfully. The location of this parti-
tion depends on the molecular Prandtl number, which
for a value of unity would be identical to that of the mo-
mentum equation, i.e. y* = 11. For a lower value of the
Prandtl number, e.g. air (Pr = 0.71), this critical value
will be higher, with the opposite being true for a high
Prandtl number fluid, e.g. water (Pr = 5.9). Examples
of these cross-over locations, or critical y+ values, are gi-
ven in table 1, see also Kays and Crawford [20]. Taking
the value for air, the two integrals would be:

13.2 yt dut
Prdy* +/ W
Y 13.2 (v /v)/Pry

where it was assumed that the turbulent part could be
neglected in the first integral and the laminar part in the
second integral. The first integral is easily integrated to
yield the linear-law for the temperature as:

Tt = 37

0

To y13.0 = Pry™ (38)
However the second part can only be integrated if the
variation in v; /v and Pr; is known. In the inertial sub-
layer the turbulent Prandtl number can with acceptable
accuracy be assumed constant. The ratio v;/v, or the



turbulent Reynolds number, can be approximated using
the mixing-length theory, which gives:

V= UKy = % =ry* (39)
Adopting this and evaluating the integral yields:
v gt P +
+ - @ _ (Y
T13.2—>y+ - P'I"t /1'3.2 K;y"r - K ln (132) (40)

Thus the law-of-the-wall for the thermal field, or the
temperature log-law, is, adding Eq. 38 and 40

Pr; yt
T+ =13.2P —In{=— ) =2. In(yt .
3.2Pr + - n<13.2 075In(y™) + 3.9
(41)

where the constants are found by using properties for air
(Pr = 0.7 and Pr; = 0.85) and the van Karman constant,
k= 0.41.

The two formulations, the linear-law and the log-law,
are compared with DNS-data in Fig. 8. Similar to the
momentum (velocity) model, the agreement is less ac-
curate in the buffer layer where neither equation gives
acceptable performance. For air, the cross-over between
the two laws is found at y* = 13.2, and hence the lami-
nar thermal layer extends further out than the laminar
momentum layer.

20 T
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18 — DNS / 1
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16 - - Logarithmic | ~

14
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Figure 8: Temperature profile with linear and log-law
approximation. Channel flow, DNS-data, Re, = 395 [18].

3.3 Turbulence

There is a number of different approaches to the turbu-
lent law-of-the-wall, or log-laws, where the derivations
below mirror that of Wilcox [36]. If 1D fully developed
flow is assumed, and the pressure influence is neglected
(even in the streamwise direction) the Wilcox k—w! HRN

1Note that the log-law may be derived for any turbulence model.
The Wilcox k — w is used however, because it will later be used in the
description of blending turbulence model.

model (see section 3.5) reduces in the inertial sub-layer
to:

d ( dU
16 e
av\> i} dk
0 = 't (d—) — ﬁ k + 0o d_ (Vt@) (43)
3 auN?® ., d{ dv
w = F (45)
w

where the laminar viscosity in the diffusion terms is
neglected. Note that the neglected pressure gradient in
the momentum equation (Eq. 42) is a severe limitation
in the following derivation. This makes the wall func-
tion approach even more questionable for the turbulent
quantities than for the velocity field.

The above equations can be satisfied in the inertial
sub-layer with the following set of wall functions, see
Wilcox [36]:

v = “n(¥)+8 (46)
K v
w2
k = L 47)
/IB*
ur
= 48
w Ty (48)
Vi = UrKy (49)

These relations can be proven by re-inserting them into
the above transport equations. Using Eqs. 49 and 46 in
Eq. 42 yields:

_d d r Yyur _
-t [ (en () e8)] -
_i( “Tl>_i(2)_0

ay \"ey) Ty T

Thus these wall functions satisfy the momentum equa-
tion. Eqgs. 46, 47, 48 and 49 are substituted into Eq. 43
which gives:

ur  ul

2
oo i (2 ()] s e

+a*i [u K i<i)] =
ay |“"ay \VE)| ~

(51)

The turbulent kinetic energy equation is also fulfilled.

Turning to the dissipation rate equation, Eq. 44, and



using the wall functions, Eqs. 46, 47, 48 and 49, gives:
d ru YU 2 U 2
— e _‘rl T _ T
o= 5 Gen )] -4 (75)
eoiy [y ()] =7 (53)
g— T - = —_— - -
dy dy \VB*ky kY

2 ur —1

2 d
Byt 7y (“T’“y wa—*m?)
-(2) (- 8) -
“\wy) U B VB y?

(., _B 2 0 _
—( ﬂ*>+nm 0 =
()

o \B

(52)

To satisfy the last relation, it is necessary to establish
an identity between coefficients &, 3, *, v and o.

3.4 Turbulence Model Constants

0.3
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Figure 9: Shear stress to turbulent kinetic energy.
Channel flow, DNS-data, Re, = 395 [25].

3.4.1 Coefficient, 5*

Experiments have shown that the shear stress and the
turbulent kinetic energy is related as

Tey = 0.3pk (53)

in the logarithmic region. The validity of this approx-
imation is shown in Fig. 9. If the shear stress can be
assumed to be constant and the laminar part is neglec-
ted, then:

(54)

- 2
Tey = TI +T¢ = Ty = pU;
~—~
~0

where the friction velocity is defined as u, = /74/p-
Now, using the relation for the turbulent kinetic energy

from Eq. 47 and the measured relation of above, Eq. 53,

we can write the coefficient as:
u?

VB

2 =0.3pk=0.3
Plir =550 P (55)

B* =0.09

3.4.2 Coefficient, §

By studying how grid-turbulence dies out, it is possible
to determine the coefficient, 3. In decaying turbulence,
the turbulence equations simplify to:

dk = —pg*wk (56)
dr
g, (57)
dr

Solving this equation system gives:
k ~7B*/8 (58)

Measurements [32] indicate that the turbulence kinetic
energy decays as:
ke~ n =1.25+0.06 (59)

and hence the ratio 8*/8 = 1.25 + 0.06. With g* = 0.09
from above, the correct value for 3 would be:

B =0.069 —0.076

The k — w turbulence model by Wilcox [34] gives this
coefficient the value of § = 3/40 = 0.075.

3.4.3 Coefficients, g, o*

There is no consensus within the turbulence modelling
community about the values for these coefficients. Diffe-
rent Schmidt numbers are arrived at depending on the
set of experimental data used. In recent years there has
also been a greater tendency to introduce modifications
for these coefficients, and the values used in turbulence
models thus differs. The two Schmidt numbers for the
k — w model [34] are optimised to:

3.4.4 Coefficient, v

The final coefficient, v, is set using the deduced relation
from the specific dissipation rate equation, Eq. 52. With
k = 0.41 and the above constants, « is calculated as:

B k2o  0.075 0.4120.5
=2 _ = - =0.553 (60)
1T T /3 009~ o090

In the Wilcox k£ — w model ~ is given the value of 5/9 =
0.555.



3.5 HRN Turbulence Model

On the basis of the above derived turbulence constants
it is possible to write the Wilcox k£ — w model as follows:

vy = k (61)
w

Dk i d . . Ok

D—T—Pk—ﬂ kw+6—l_j|:(l/+0' Vt)@a:j] (62)

Dw  w 5y, 0 Ow

D_T B WEP'“ B ﬁw + ij |:(V + Uyt) 8$J:| (63)

with the constants as derived earlier:

v =5/9, f* =9/100, 8 =3/40, c* =1/2, 0 = 1/2

4 Modelling Near-wall
lence

Turbu-

With respect to wall treatment, there are two different
categories of turbulence models. The first are the LRN-
models, which use a refined mesh close to wall in order
to resolve all the important physics. The second met-
hod employs the HRN-models, which bridge the near-
wall region using wall functions. The latter approach is
of course less demanding of computer resources, but a
significant amount of information is lost.

The wall function method is based on the previously
mentioned law-of-the-wall’ and is strictly valid only in
the inertial sub-layer (log-layer), 1D fully developed flow,
where the pressure gradient can be neglected. The situ-
ations in which all these simplifications are fulfilled are
relatively few, and the predictions made using wall fun-
ction or HRN turbulence models are thus generally less
accurate than those that apply the integrated method of
LRN turbulence models.

The reason why there is still an interest in wall func-
tions is the need to reduce computational requirements,
as well as the better numerical stability and convergence
speed. If it were possible to improve the predictions
using wall functions, more problems of engineering in-
terest could be solved with academic quality, resulting
in fewer safety margins and less need of experimental
validation when designing new products.

The previous section derived the commonly used wall
functions based on the law-of-the-wall, while this section
will focus on alternatives to these wall functions.

However, before embarking on strategies in con-
structing wall functions, it is beneficial to study the
near-wall physics from a modelling point of view. Atten-
tion is first directed towards the LRN-models and their
damping functions.

4.1 LRN-models: Integration Method

It is generally implied that a turbulence model that can
integrated toward the wall is denoted a LRN turbulence
model. This is usually the same as including damping
functions for certain terms in the turbulence equations.
The damping functions are introduced to represent the
viscous effects near a wall. Successfully devised dam-
ping functions should reproduce the correct asymptotic
behaviour in the limit of a wall. The exception to the
rule that ’damping function = LRN’ is the HRN &£ — w
turbulence model by Wilcox (1988) [34]. This model can,
like the LRN version [35], be integrated to the wall but
without the need to employ damping functions. In this
paper the identity of damping function and LRN is used
for these models as well. This nomenclature thus helps
to distinguish them, with the ’88 model somewhat erro-
neously denoted the HRN k£ — w and the ’93 model the
LRN k — w model.

The Wilcox HRN k£ —w model was given in the previous



section and the LRN k£ — w model [35] is:

vy = oz*E (64)
w
« _ oy + Rei/Ry
¢ T 1Y Re/Ry, (65)
Dk N 0 . ok
D_T = P,—-[%%kw+ 6—1‘] |:(V +o0o Vt) (9.1']:| (66)
. 9 5/18+ (Re/Rp)"
B = 100 14 (Ret/Bep)? 67)
Dvw  w 5, 0 Ow
D_T = aEPk — ﬂw + 8—.’1,'] [(V + O'Vt) 8—17]:| (68)
o = 1 5a9 + Ret/R, (69)

a@* 9 1+ Re;/R,

where the turbulent Reynolds number is defined as
Re; = k/(vw) and the turbulent production as P, =
21,.5;;0U;/0x ;. The coefficients involved are:

a9 =1/10, o = B/3, 8 =3/40, 0" =1/2, 0 = 1/2
Rs =8, Ry = 27/10, R, =6

This model reduces to the HRN & — w, see section 3.5, if
the damping functions, Eqs. 65, 67 and 69, are set equal

to 1, 9/100 and 5/9, respectively.
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Figure 10: Damping functions in Wilcox k£ — w models.
Channel flow, DNS-data, [25].

4.1.1 The damping functions

The near-wall behaviour of the three important con-
stants o*,3* and a are shown in Fig. 10. The intro-
duction of the wall viscous effects, via the damping fun-
ctions in LRN-model can observed in the figure. The re-
sults are based on both a priori DNS-data, Re, = 395
[25], and also on a computation made using the k¥ — w
model.

As can be seen in the figure the damping functions are
most effective in the viscous sub-layer and in the inner

Ce

part of the buffer layer, while the HRN and LRN &k — w
formulations become similar in the inertial sub-layer.

In the limit of Re; = 0, i.e. at the wall, the coefficients
for the LRN and HRN formulation give:

LRN | HRN | LRN/HRN
ai_o |0025] 1 0.025
B:, |0.025 | 0.09 0.28
a0 222 | 055 4
B,~0 | 0.075 | 0.075 1
(aa*), o | 0.055 | 0.55 0.1

Thus, in the near-wall region, the production terms (first
terms on the RHS of Eqs. 66 and 68) of the LRN &k —
w model are reduced as compared with the HRN k& — w
model, through the reduced eddy-viscosity, v¢, via a*. In
addition, the dissipation term (the second term on the
RHS) of the k-equation, Eq. 66, is also reduced, through
B*.
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Figure 11: C;—coefﬁcient, LRN k£ —w and DNS Re, = 395
[25].

4.1.2 C, modification, o*

The most important damping function is the damping
of the turbulence kinetic viscosity, v;. This is done by
adding a damping function to C},, which reduces C,, to
an effective C}, according to:

AN
Ch=fuCu= (T)

Measurements and DNS show that the assumed relation
of u'v'/k = 0.3 is valid only in the inertial sub-layer. The
ratio is reduced in the near-wall region, as shown in Fig.
9. For a k — £ model the effective C, is computed as:

(70)

ve
C,= = (71)
Using a k — w formulation, both v; and ¢ in the relation
must be substituted with the appropriate definitions. In
the case of the LRN k — w turbulence model, ¢ is equal to



B*kw, while the turbulent viscosity is defined as in Eq.
64. The effective C}, thus becomes:
Ce — a*IB*

w

(72)

where a* and the second part (non 0.09) of §* perform
the role of the damping function, f,, found in k¥ — ¢
turbulence models. Any deviation from the correct C},
is primarily modelled with the damping function, a*.
Note however that the turbulence equations are strongly
coupled, and thus a change to the damping functions in
either k£ or w would also require a modification of a*.

The variation in the computed C; using the LRN k£ —w
is compared with DNS-data in Fig. 11. The agreement
is good, especially as compared to other models, see e.g.
Patel et al. [26].

4.1.3 Production-to-dissipation rate

Another important parameter in a turbulence model is
the correct modelling of the production-to-dissipation
rate, Py, /e. By comparing the HRN and LRN formulation
of the k¥ — w model, it is possible to show the effect these
damping functions have on the production-to-dissipation
ratio.

From Eq. 66, and assuming 1D flow, the production-
to-dissipation rate is:

2
&=a*ﬁ (d—U> /ﬁ*kwx
€ w \ dy
x [ Ur 2 * Ur ’
* ("5_31> /ﬁ ( ﬂsty)

_ (a + Re/Ryi) [1+ (Ret/Rep)’]
(14 Rey/Ry) [5/18 + (Ret/Rp)*]

(73)
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where 3} is the value of 8* in the logarithmic region,
B* = 0.09. The log-laws, Eqs. 46 and 48, were used in the
relations for dU/dy and w, respectively. The approximate
identity is correct only in the inertial sub-layer for which
the log-laws are valid. In the near-wall region, yt <
10, the above relation may only be used qualitatively.
The a priori computed production-to-dissipation ratios
for the HRN and LRN formulation are compared with
DNS-data in Fig. 12.

The LRN formulation, similar to the DNS-data, incre-
ases the production in the buffer layer, which results in
a 50% higher peak of k¥ for the LRN-model as compared
with the HRN-model. Slightly dependent on the Rey-
nolds number, DNS-data give the peak of turbulent ki-
netic energy at around yt = 15, close to the maxima of
the P, /e-ratio given in Fig. 12.

4.1.4 Rationale behind the o and * coefficients

As was previously shown, the damping function, a*,
was introduced to reduce the turbulence viscosity in the
near-wall region. This also effectively reduces the pro-
duction terms in the k- and w-equations. In order to pre-
dict the same level of turbulence, the dissipation term
in the k-equation must also be reduced. This can be ar-
ranged in three different ways:

DNS
-- LRNk—-w 1
- HRNk—w

Pk/E

0.8 / -]
0.6, / -
0.4} K 1

0.2 . 1

0 I I I I I
10 15 20 25

yt
Figure 12: Production-to-dissipation ratio, HRN and

LRN formulation of the k¥ — w. Channel flow, DNS-data
at Re, = 395.

30

¢ Decrease the coefficient for the dissipation term in
the k-equation.

e Increase the coefficient for the production term in
the secondary equation (¢ or w).

e Decrease the coefficient for the destruction term in
the secondary equation.

The last method is commonly employed in the £ — ¢ mo-
dels. By properly balancing the dissipation rate equa-
tion, a desirable level of k is predicted that matches the
computed . Because the production of dissipation is au-
tomatically decreased through the reduction of v;, the
simplest correction is to reduce the destruction term in
the dissipation rate equation. This is usually done in a
k — £ model by introducing a damping function f,, see
Patel et al. [26].

There is more to the damping functions than balan-
cing the equations, however. As previously discussed, it
is also important to predict an accurate production-to-
dissipation ratio, which puts an additional demand on
the actual values of k and ¢ = f*wk. In a k — w mo-
del, where the dissipation term is a function of both w
and k, it is unrealistic to believe that merely modifying
the w-equation would yield a correct Py /e, as well as a
correct level of k. Hence, apart from modifying the speci-
fic dissipation rate equation, the dissipation term in the
k-equation is also modified. In the LRN k£ —w model these
two aspects are accomplished through both an increase
of production of w (increasing «), and a reduction of the
dissipation term in the k-equation (decreasing 5*). Note
however that, contrary to the k—¢ model, the destruction
term in the secondary equation (¢,w) is unchanged.

Considering Patel et al. [26], it seems likely that the
minimum number of damping functions required for an
Eddy-Viscosity Model (EVM) to correctly predict the tur-
bulent kinetic energy, k, in the near-wall region is three.
In that paper the only model that accurately reproduces
the profile of k is the Lam-Bremhorst [21] £ — £ model,
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which is one of only two models tested employing three
damping functions.

4.2 HRN-models: Wall Functions

The rationale behind wall function is the reduced com-
putational requirement and the increase numerical sta-
bility and convergence speed. By adopting a mesh,
where the first interior node is located in the inertial
sub-layer, it is possible to use the law-of-the-wall to spe-
cify the boundary condition for the dependent variables
u, k and w.

4.2.1 Standard wall functions

In its simplest form, the logarithmic laws, Eqs. 46, 47,
48 are directly applied to the first interior node. These
wall functions are here referred to as the standard wall
function method. The three steps involved in a CFD-
code would then be:

e Solve the momentum equation with a modified wall
friction, either through an added source term or via
a modified effective viscosity.

e Set k at the first node iteratively with the use of the
law-of-the-wall.

o Set w with k.

In a turbulent boundary layer, the strongest velocity
gradient is found close to the wall. With a wall-
function based turbulence model, which utilises a relati-
vely coarse mesh, it is impossible to resolve these near-
wall gradients. The predicted wall friction would thus
be largely in error if a modification is not introduced:

oul L AU U

w Ay yI’
where the subscript p is used for the first interior node.
The necessary modification could either be made
through

(74)

(i) an added source term simulating the correct wall
friction or

(ii) a modified viscosity, an effective viscosity, u., that
ensures the correct friction even though the velocity
gradient is erroneous.

Through the law-of-the-wall:

1
v_1 In(Ey™) (75)
Uy K
the wall friction is computed as
_ puUk
Tw = In(Eyt) (76)

with 7, = pu?.

For a wall function based model this can either be set
directly using a source term, S,, = 7,- A, or via a modified
effective wall viscosity [10]:

_ puUpk

- = PUrYpk
Y In(Byf)

n(Eyg)

> fe =

11

The turbulent kinetic energy is set in the first node by
iteratively computing the friction velocity from the law-
of-the-wall. This iterative process is needed because u,
appears implicitly in the log-law. Initially u, is set from
Eq. 47, as u, = 3*'/4,/k,. Using this relation, a new u,
is found from the log-law:

Upk

Up = ———— Yplir
T In(Eyy)

v

where y.t (78)

The new value is then used to compute y, and re-fed
into the u, expression. This process is repeated until
convergence, with the turbulent kinetic energy finally
set as:

2
uz

VB*

For the specific dissipation rate, w, the friction velocity,
u,, is substituted by the relation for k& in the log-law as:

_ Ur _ /3*1/4\/]{:713 _ V kp
VBERY,  BrRy, B iky,

ky = (79)

(80)
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4.2.2 Launder-Spalding methodology

The standard wall function method is very limited in its
usage. This is especially true for re-circulating flows,
where the turbulent kinetic energy becomes zero in se-
parating and re-attachment points, where, by definition,
u, is zero. This singular behaviour severely deteriora-
tes the predictions of, for instance, heat transfer in rib-
roughened channels. Launder-Spalding [24] proposed a
modification to the standard wall function method that
involves the following steps:

e Solve the momentum equation with a modified wall
viscosity.

e Solve the turbulent kinetic energy, with modified in-
tegrated production and dissipation terms.

e Set € using the predicted k.

The same reason and method of specifying the wall
viscosity as for the standard wall functions apply in this
case. However, instead of using u, in the log-law, the

identity u, = C,l/ *Vk is utilised:

o = PO ar &1
€ ln(Ey;)
where y> is defined with & as:
1/4
g = YO VE (82)

p v

In the k-equation, the integrated production term is de-
fined from (1D):

ou
/pPkdy E/Tta_ydy

In the inertial sub-layer the laminar shear stress, 7, =
nOU [y, is negligible and, by assuming that the shear

(83)



stress is constant, the turbulent shear stress, 7, is equal

to the wall shear stress:
T=T+T¢ {r=7p,n=0} = 84)
Tt = Ty

The accuracy of this assumption is shown in Fig. 1. The
production can be set using the law-of-the-wall:

/pPkdy = /Twa—Udy =1 AU = ue%AU =
w y,, (85)
1/4
pCy' " VEU,k
={Eq. 81} =" _— 2 AU
a8 = )

The integration of [, (dU/dy)dy is equal to 7, AU,
since T, is constant.

To set the value for the dissipation rate, production is
assumed to be equal to dissipation:

The production can be re-written as:
P= —w 2 (87)
dy Ky

where the constant shear stress approximation, Eq. 54,
puv' = pu?, and the law-of-the-wall, OU /0y =
ur/(ky), were used. Integrating the dissipation rate
between the wall and the edge of the first cell, Ay, yi-

elds:

Ay
/ edy = /
0 0

The mathematical singularity at the wall of this equa-
tion (In(0)) necessitates re-consideration. The short-
coming of the above derivation is the assumption that
the law-of-the-wall is valid all the way from the wall,
which is erroneous.

However, by choosing a different relation for the in-
tegrated e, other approximations could be found. The
integrated velocity gradient in the production term can,
according to the mean value theorem, be re-written as:

J

for a certain value of U /0y. Approximating the velocity
gradient with discrete values, AU/Ay, and, assuming
that this value could be established in the inertial sub-
layer, the velocity gradient could be re-written with the
help of the law-of-the-wall:

U AU u
dy Ay KAy

Tey =

Ay U.,3_
K

2y = 2 fn(8) = (0]

(88)

AY aU

Jy

ou

ya_y (89)

dy = A

In(Ey*) (90)

Hence the integrated dissipation rate can also be written

as:
Ay Ay Ay
/ edy = Ppdy = {Eq. 87} = /
0 0 0

3
u
Kn(y)

—u'v'—d

Byy

= {Eq. 90} = u2Ay =

U %
wAy In(Ey*)
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Figure 13: Assumed variation of variables in the first
computational node, Chieng-Launder model. vs=edge of
viscous sub-layer.

Comparing the two formulations, Eqs. 88 and 91, gives:

In(Ay) — In(0) = In(Ey*) (92)
—_— N —

Eq. 88 Eq. 91

The latter formulation is used in the Launder-Spalding
model, with the integrated dissipation rate in the k-
equation set as:

3/4,3/2
8/453/

/sdy:C

where u3 in Eq. 91 has been substituted by C5/*k%/2.
Note that in [24], C), is used rather than 0,3/ *, although
this is most probably a typographical error.

The dissipation rate equation is not solved for the first
interior node, and ¢ is instead fixed according to:

*

Yp)

In(Ey,

(93)

N el

I3 =
KY KYp

(94)

which is a direct consequence of substituting the friction
velocity with the log-law for turbulent kinetic energy,

u, = Ca/*V/E, into Eq. 86.

4.2.3 Improvements of the near-wall representa-
tion, Chieng-Launder model

It is evident from the above derivation that there is room
for improvement in the Launder-Spalding model, espe-
cially in its representation of the near-wall region. Chi-
eng and Launder [7] enhanced the model by introdu-
cing a more complete model of the near-wall turbulence.
They argued that there exists two distinct regions, the
viscous sub-layer and the inertial sub-layer, which have
different turbulent structure. The partition line between
these regions is defined by a viscous sub-layer Reynolds
number:

Yov'ky

v

Re, =

(95)

The near-wall variation in the variables assumed in the
Chieng and Launder model is shown in Fig. 13.
The turbulent shear stress is zero for y < y, and is

(91) linearly interpolated between the wall friction and the
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shear stress at the edge of the cell for y > y,:
7 =0 Y <o
(96)
- Tw)i Y>Yy
n

Ty = Tw + (Tn

where subscripts n and w are used for the value at the
north edge of the cell and at the wall, respectively.
The turbulent kinetic energy is approximated as:

2
k= k, (i) Yy <y
Yo 97)
k, —k,
k=k,+y Y > Yy
Yn — Yov

The dissipation rate is approximated in the region be-
low y, by the viscous sub-layer approximation used in
numerous k — € turbulence models, e.g. Jones and Laun-
der [15], while the log-law is used for y > y,:

(8\/E> ? vk,
e=2v =

e Y <y
6 2
/ /y Yo (98)
3/4,3/2
o= Gul kT Y > o
I‘n'/yp

The turbulent kinetic energy gradient in the first rela-
tion is approximated using the previously assumed vari-
ation in k in the viscous sub-layer, i.e. k ~ y2.

Because the finite volume method commonly applied,
and the strong variation in these quantities in the near-
wall region, it is advantageous to use integrated rela-
tions in the first computational cell. The resulting terms
are then incorporated into the k-equation, which is sub-
sequently solved. In additional and identical to the
Launder-Spalding model, the wall friction is corrected
and the dissipation rate set. However, before continuing
with the integration of k¥ and ¢, it is proper to define the
location of the viscous sub-layer. In the Chieng-Launder
model, y, is deduced from the assumption that the sub-
layer Reynolds number is constant and equal to 20, and
hence:

_ 20v
yv—m

However, since k, is unknown, the problem is not clo-
sed. k, is approximated by extrapolating the slope of &
from the computed %’s in the two first near wall nodes.
It should be noted however that this methodology is not
numerically satisfying. It can be shown using DNS-data
that Re, = 20 is found at y* = 11.5. The profile of k
around this value can be seen in Figs. 4 and 5. The max-
ima of % is found at y* = 15. Thus the computed slope
of k using nodes 1 and 2, located at say y* = 30 and
yt = 100 becomes negative, which may be of concern in
terms of numerical stability.

In the Chieng-Launder model, the common practise of
estimating the friction velocity with the turbulent kine-
tic energy is taken one step further, with the law-of-the-
wall modified as:

Uvk, 1 v
= —In (BT
v

Twlp K

(99)

(100)

where the new constants, x* = 0.23 and E* = 5.0, are
related to the standard values, through the identities:
K* = ch,l/ *and E* = EC,l/ *. For local equilibrium flow,
k = u2/,/C,, and with the above identities, the modified
law-of-the-wall reduces to the standard formulation.

The integrated production following the same grounds
as for the Launder-Spalding model yields (1D):

[ opidy =

v U Yn y | oU
= T —d +/ [Tw+ Tn —Tw)— | 7-d
A tay Y v ( )yn 6:1] Y
—_———
—0
(101)

The first part is identical zero, since the turbulent shear
stress is assumed to be zero in the viscous sub-layer. The
second part is split into two, where the first part is easily
integrated:

yn
/ Twa—Udy = 70 (Un — Uy) (102)

Oy

v

In the second part, the velocity gradient is re-written
using the law-of-the-wall:

Yn y]@U
n—Tw)— | 7—dy =
/v [(T T )yn oy

Yn
[ ooz e o

Tw (Tn - Tw)

= —=—(Yn — Yo
PV E*Yn, ( )

The wall friction, 7, used in these relations is deduced
from the above modified law-of-the-wall, Eq. 100.
The integration of the dissipation term is given as:

B3/?
) Jhi
/edy Re, +

! E(kiﬂ — k3/%) 4+ 2a (kM2 — kL/?) + /\]

(104)

Ta

where C; = 2.55. The constant, )\, depends on the turbu-
lent kinetic energy via variable a:

g [ = VOV + V)]
g | R v | 105)
A =2(—a)*/? [‘caun_1 \/Lf_z —tan™! \/Lf_tl] a<0
with
a=ky— My,, (106)
(Yp — yn)

4.2.4 Modification to the Chieng-Launder model

The assumption of Re, = 20 is not valid for all types of
flows. Using DNS-data on fully developed channel flows,
Re, = 20 is equivalent to y= = 11.5, which is the loca-
tion of the cross-over of the linear law, Ut = y*, and the
log-law, Ut = 1/kIn(Ey™). Thus, for equilibrium flows,
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Re, = 20is a good partition value, since the two formula-
tions become a laminar and a turbulent approximation,
respectively.

However, in a subsequently paper by Johnson and
Launder [14], it was found that the heat transfer predic-
tion could be improved by letting the viscous sub-layer
thickness, i.e. the sub-layer Reynolds number, vary ac-
cording to the turbulence level:

kv - kw
ky

where C' = 0.5C,C, and k,, is the linear extrapolated
turbulent kinetic energy at the wall.

Ciofalo and Collins [8] used an approach however
where they proposed to let the sub-layer thickness vary,
dependent on the turbulence intensity.

Re, = Re,o — CRe,

(107)

4.2.5 Extensions to the Chieng-Launder model

Amano et al. ([2], [3]) devised two different models ba-
sed on the same zonal principle as the Chieng-Launder
model. In both models, the dissipation rate equation is
solved using the layered approach rather than allowing
it to be set as in the Chieng-Launder model. The results
were only marginally improved however, and hence the
two-layered approach was extended in the second model
to a three-layered version. Here the parameters, 7, k, &
were allowed to vary in accordance with measured data
for the viscous sub-layer, the buffer layer and the iner-
tial sub-layer.

4.3 New Model: Blending Integrating
and Wall Function Boundary Condi-
tions

The physical treatment improved, w hen progressing
from the Launder-Spalding model to the more advanced
models, although at the expense of increased numerical
complexity. The modifications by Johnson and Launder
[14] and Ciofalo and Collins [8] showed that the impro-
vements with the zonal approach were not particularly
great if a variable sub-layer thickness was not included.
The further refinement by Amano et al. enhanced the
predictions only marginally, with a significantly increa-
sed complexity.

Thus, here, instead of further optimising the layered
models, a new strategy will be adopted.

Two main problems with wall-functions must be add-
ressed to make such an effort worthwhile:

¢ The negligence of the physics in the viscous sub-
layer,

e The necessity of locating the first computational
node in the inertial sub-layer

The first problem has been discussed in numerous pa-
pers, see e.g. Launder [22]. The conclusion made in
these studies is that the standard wall function formu-
lation (HRN-models) are indisputably inferior to the in-
tegrating formulation (LRN-models). This is particu-
larly true for non-equilibrium flows, where it is of cri-
tical importance to include the variation found in the

viscous sub-layer in order to accurately predict the wall
friction and heat transfer. To be able to significantly im-
prove the results, it is necessary to mimic the LRN met-
hod of resolving the viscous sub-layer, especially in non-
equilibrium regions. Thus the wall function approach
of bridging the viscous sub-layer seems unattainable,
apart from regions in which the flow is in equilibrium.
Hence the only possible path to reducing the computa-
tional demands and maintain accuracy would be a tur-
bulence model that adopts itself to the flow, employing
a LRN type model where necessary and switching to a
HRN type model otherwise. While such artificial intel-
ligence may sound incredible it is possible to achieve it
through a smartly devised model.

The second problem is associated with the underlying
physics of the wall functions, i.e. the law-of-the-wall.
When employing wall function, it is necessary to apply
the first computational node in the inertial sub-layer.
This fact is less of a problem in equilibrium flow but it
is accentuated in regions of flow separation?, where the
wall shear stress and hence y* decreases. For these re-
gions, the size of the first cell must be enlarged to ensure
that the cell node is kept within the logarithmic region.
Hence the mesh generation becomes a delicate business
using wall functions for re-circulating flows.

Both of the above explained problems are solved with
the two-layer Chieng-Launder model. The CL-model,
however gives rise to additional complexity. Through
prolonged mathematical operations the viscous sub-
layer and the inertial sub-layer are modelled simultane-
ously, although the author encountered numerical dif-
ficulties using this approach. If the two regionscould
be separate mathematically, a numerically simpler and
more robust wall function could be constructed.

Such a turbulence model will be presented here. A less
complete derivation is given in Bredberg et al. [6], where
predictions of heat transfer in rib-roughened channels
are included. The reader is referred to the paper for a
discussion of the accuracy and for comparisons between
the model and other turbulence models.

Dependent on some flow quantity, the model will eit-
her employ a wall function or use the integrating method
as a wall boundary condition, and hence greatly simp-
lify the numerical scheme as compared to the Chieng-
Launder model. The new model will, like the wall fun-
ction, approach reducing the computational demand —
by coarsening the mesh, when possible, and still be able
to produce accurate results through the use of the LRN
part of the model, when necessary. The physical conse-
quence of separating and re-circulating regions can ac-
tually be utilised with such an adopting turbulence mo-
del. In non-equilibrium nodes where the physics reduces
the yT value, the hybrid model automatically switches to
the LRN mode, producing accurate results even for a re-
lative coarse mesh. Thus even a uniform mesh could be
sufficient for complex re-circulating flow, and, as a re-
sult, reduces the workload of mesh-generation substan-
tially.

2Although the log-law in itself is rather questionable in such cir-
cumstances.
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4.3.1 Blending function

The critical part of a hybrid turbulence model is the con-
struction of the function that effectively changes the mo-
del into either LRN or HRN mode. It is numerically
undesirable to adopt a function that abruptly switches
between the two different modes. It is also physically
questionable, because the flow is only strictly laminar
in the immediate near-wall region — enabling an LRN
model to be used — while only in the inertial sub-layer
can the flow be treated as fully turbulent. The latter is
of course a requirement for using a wall function-based
HRN-model, see Fig. 1. In the buffer layer it is thus most
appropriate to employ a smoothing function that blends
the two formulation together. One of the simplest mat-
hematical functions that accomplishes this is the expo-
nential function, which can be designed to operate from
0 to 1 dependent on some flow quantity. On the grounds
of the above discussion, it would be most beneficial to
base the exponential function on y*. However owing to
numerical issues, it is disadvantageous to include any
wall distance, and hence the blending function is ins-
tead constructed using the turbulent Reynolds number,
Re, = v /v as:

—Re; /C (108)

f=eap
where C is a tunable constant.

The model is then constructed to linearly combine the
LRN and HRN formulations using this blending func-
tion. Since Re; = 0, and hence f = 1 at the wall, f is
multiplied with the LRN part and (1 — f) is multiplied
with the HRN part:

éror = forrn + (1 — f)durn (109)

where ¢ is some turbulent quantity. The LRN and HRN
parts needed in this model are treated separately below.

Yn
o P

Yv

T12 w

k

Figure 14: Assumed variation of variables first interior
node, new model.

T

4.3.2 HRN part: Simplified Chieng-Launder mo-

del applied to a k — w-type turbulence model

The logarithmic equations based on «,, Eqs. 25 and 41
are unsuitable in separated flows. This applies especi-
ally for heat transfer since the predicted Nusselt num-
ber becomes zero in separation and re-attachment points
using these equations. In contrast, experiments indicate
a maximum level of heat transfer at or in the vicinity of
these points (Launder [23]). Substituting u, with vk
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improves predictions for non-equilibrium flows. This is
utilised by the Launder-Spalding model and subsequent
models. In addition the HRN part of the new model as-
sumes a variation of the near-wall turbulence similar to
what is done in the Chieng and Launder model. Ho-
wever, since the viscous sub-layer is treated separately
from the HRN part in the new model, a simplified model
is sufficient here. The model is also adopted to a k — w-
type turbulence model.

The assumed variation of the dependent variables for
this model are shown in Fig. 14. Both the turbulent
kinetic energy and the shear stress have lost their li-
near variation in the inertial sub-layer, as compared to
the Chieng-Launder model. This of course simplifies the
treatment immensely. The specific dissipation is assu-
med to vary either according to the log-law, 1/y, or the
linear-law, 1/y2.

As was stated above, only the region above the viscous
sub-layer is of interest in this section. The integrated
production of turbulent kinetic energy in the HRN re-
gion, i.e. from y, < y < y,, is found as:

Yn v ___9U
/ pPrdy = / pulvla_ydy ~1w(U, =U,) (110)

v v

The last identity can be used only if it can be assumed
that the shear stress is constant and that the laminar
shear stress is negligible in the inertial sub-layer, see
Fig. 1 and the discussion in connection with Eq. 84.

The wall shear stress in the new model is set similar
to the Chieng-Launder model (see Eq. 100) as:

. &*pUpVEy
b ln(E*yp\/E/V)

where k* and E* are set to 0.22 and 4.5, respectively, in
order to comply with the equilibrium values of the k — w
turbulence model. The a priori result using this equa-
tion is compared with the turbulent shear stress predic-
ted using the LRN k£ — w model in Fig. 15. Note that

(111)
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Figure 15: The accuracy of the assumption, 7, =~
Channel flow.

Tt.

the turbulent production is negligible in the near-wall



region; hence any discrepancy comparing to the Chieng-
Launder model is a consequence of the simplistically as-
sumed variation in the turbulent shear stress. At this
moment it may perhaps be of interest to compare the
turbulent shear stress given by DNS-data, Fig. 1, with
the assumed variations of the two models. The assump-
tion of a constant turbulent shear stress beyond y, (new
model) is perhaps not any worse than the linear varia-
tion from the wall shear to edge of the cell in the Chieng-
Launder model. Note especially in Fig. 1 that the (lami-
nar) wall shear is higher than any given turbulent shear,
and hence the linear increase in the turbulent shear
from the wall shear is not physically founded.

The integrated dissipation rate of the turbulent kine-
tic energy is based on the logarithmic law, Eq. 48:

Yn Yn Yn \/E
edy = B*wkdy = / B*————kdy =
/u Yov Yo ’8*1/4"{/y
*3/4 3/2
:7’8 kp ln (y—n)
K Yo

(112)

where k£ was assumed constant.

Contrary to the Chieng-Launder model, the dissipa-
tion rate is not set using the log-law. Rather, the mean
integrated value from the log-law is used:

I S

Wy—n = dy =

Yn —Yv Jy, /8*1/4’€y

_ VEIn(yn/yy)
B4k (yn — yo)

4.3.3 LRN part: Standard k — w

The LRN part of the model is identical to the Wilcox k—w
[34] (HRN) turbulence model. The model was shown in
Eqgs. 61- 63, and is shown again here for clarity:

(113)

k
vy = -
w
Dk 0 ok
== _ p.—p* il * v
Dy % — B kw + oz, |:(I/+U V) 6&3]
Dw w 9 Ow
Dr = TR g [@””t) axj]
with the production of turbulence computed as P, =
2VtSij6Uj/3iL'j.

The model coefficients are:
B*=0.09, 8 =3/40, vy=5/9, 0" =1/2, 0 =1/2

The asymptotic boundary conditions applicable for the
turbulent quantities are:

ky — 0 (114)
Wy % (115)

The latter relation is valid only for computational nodes
within y* < 2.5 (Wilcox [36]). To establish a grid inde-
pendent solution, 7-10 nodes are required in this range.
Both requirements can however be eased, especially the
latter, with negligible deterioration of the predictions,
see e.g. Bredberg et al. [5], [4].

10 ‘
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—o— New, HRN part
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Figure 16: Integrated production term, k-equation.
Channel flow, DNS-data, Re, = 395 [25].
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Figure 17: Integrated dissipation term, k-equation.

4.3.4 The blending k — w turbulence model

The new blending k — w turbulence model is summarised
below and its performance is found in Bredberg et al. [6].
The production and dissipation terms in the turbulent
kinetic energy equation are:

Ay
Pudy = (116)
0
6U>2 Tw Un — Uy
Aylfu =) +Q-fH22 24 P
y [ fre (8y ( f) P Un
Ay
Brwkdy =  (117)

0
6v ,3*3/4]62/2

« OV Ll "8 (Y
18 /By;% bp . f)’{'(yn — Yo) t (yv>]

where P’ is the contribution of the non-primary shear
stress components (# dU/dy). The production term and
the dissipation term are shown in Fig. 16 and Fig. 17,
respectively.

Ay
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Figure 19: Sum of integrated source terms in k-equation.

The third source term on the RHS of the turbu-
lent kinetic energy equation, Eq. 66, is the diffusion
term, which is not modified in the present model, with
the standard relation used. The accuracy using this
simplistic model is shown in Fig. 18.

It is interesting to combine the three terms on the
RHS of the turbulent kinetic energy equation in order
to estimate its balance. This is done in Fig. 19. Both
the DNS-data and the LRN %&£ — w mode yield perfect ba-
lance. The new model is not very well balanced, yielding
a large negative source in the buffer layer and slowly
increasing the value in the logarithmic region which yi-
elds a large positive source in the off-wall region. This
latter fact may be the reason why the new model gives a
fairly large discrepancy of the predicted % in the centre
of a channel.

The specific dissipation in the first near-wall node is
set as:

6v VEpIn(yn/yo)
o= O 1y Wn/Yy) 118
w fﬁyﬁ +(1 f)ﬁ*1/4ﬂ(yn_yv) ( )

--- DNS

logw(w"'

100

Figure 20: w variation.

A comparison with DNS-data and the LRN k& — w model
is shown in Fig. 20.

The wall viscosity is set as:

£*yvVky

_ (119)
In(E*ypvky V)

vy =fr+[1-f)|v+

To close the model, the blending function, f (Eq. 108),
and the viscous sub-layer values, vy, and k,, must be de-
fined. The viscous sub-layer thickness, y,, is calculated
using the definition of the viscous sub-layer Reynolds
number and the assumed variation of the turbulent ki-
netic energy:

yVk k, = k

— > Re, = { o = Revu/\/k_v (120)
yk { k, = Re,Vkv]y

2 < Re, = 121)
v € Yo = y\/kv/\/E (

The constants, C (in the blending function), and Re,
are optimised using DNS-data [25]. The combination of
Re, = 11 and C = 1.7 gave the overall best results, as
compared with DNS-data. The effect of these values is a
rather narrow blending region, see Fig. 21. The calcula-
ted y and k" using LRN k — w, [35] data (a priori) and
the selected constants are shown in Fig. 22.

The new model is defined by Eqs. 116, 117, 118 119
and the blending function, f:

—Re; /1.7

f = exp (122)

and the above routines for the specification of &, and v,,.
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Figure 22: Comparison of the new models variation of

viscous sub-layer quantities, with those given at Re, =
11 — yt = 6.9 (constant lines).

5 Modelling Near-wall Heat

Transfer

In contrast to previous sections, this one is written in
a brief and and abbreviated style. This is not to imply
that the thermal field is any easier to predict or that the
modelling is any simpler, but is merely a consequence
of the lesser efforts made to improve the thermal mo-
dels. To exemplify this, it can be noted that, in some
predictions, an RSM turbulence model — which involves
seven turbulent transport equations — is combined with
a constant turbulent Prandtl number heat transfer mo-
del, i.e. a zero-equation isotropic model. The turbulent
Prandtl number heat transfer model using the simple
gradient diffusion hypothesis, or SGDH, relies on the si-
milarity of the turbulence and heat transfer fields. The
SGDH assumes that they are identical apart from a pro-
portionality factor, the turbulent Prandtl number. The
validity of this approximation in fully developed chan-
nel flow can be seen in Fig. 7. Using the SGDH ap-
proximation, it is also implied that the thermal field is
isotropic. With an RSM the individual Reynolds stres-
ses are known however, and can be used to predict the
turbulent anisotropic level in the flow. If it is assumed
that the anisotropicity of the heat transfer is identical to
that of the turbulence, a GGDH, or Generalized Gradi-
ent Diffusion Hypothesis, model can be employed for the
heat transfer prediction.

Although a GGDH would be more appropriate than
a SGDH, the fundamental approximation of an identity
between the flow field and thermal field is still used, and
should be questioned. Similar to the turbulence field,
it is also possible to solve a set of equations for ther-
mal quantities. Examples of this approach are the two-
equation model, t*> — &, of the Nagano group, Abe et al.
[1] and EAHF (Explicit Algebraic Heat Flux) models of
So and Sommer [30] and Dol et al. [11]. Here, however,
only the simple model based on the turbulent Prandtl
number is used.

5.1 Integration Method

The integrated or LRN method implies that the heat
transfer is governed purely by viscous effects in the limit
of the wall. The heat transfer is thus estimated using
the Fourier law, such as:

Cpp dT

dr
A Pr dy

gy = (123)

a =
where A is the thermal conductivity given as = Cpu/Pr.
The [ in the heat flux indicates that it is the 'laminar’ or
the molecular part. Using the simple gradient diffusion

hypothesis (SGDH) for the turbulent region, the ’turbu-
lent’ heat flux is computed as:

Cp/’ft g

— 124
Pry dy (124)

qt =

The total heat transfer is then calculated by adding the
two parts together, ¢;o: = ¢ + ¢;.
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Figure 23: Coefficient, k7 in log-law for temperature.

Model Eq. 132 and DNS-data, Re, = 395, [18].

Using a constant Prandtl number model, it is under-
stood that all wall effects are embedded in the turbu-
lence model, and hence any LRN modifications to the
heat transfer model are normally excluded. However, as
shown in Fig. 7, the turbulent Prandtl number is also
affected by the wall, and there thus exists a number of
heat transfer models that include some wall modifica-
tions, see e.g. Reynolds [28] and Kays [19].

5.2 Wall Function Method

The law-of-the-wall for the temperature was derived in
section 3.2. From that the temperature profile in the
inertial sub-layer is approximated with a logarithmic
equation as given by Eq. 40:

T, —T
T,

Ty —T 1
(Tw . )pcur _ L@t + Br
w

KT
(125)

T+

I
I

with Br = 3.9 and kr = 0.48 for air (Pr = 0.71), see
experimental data in Kader and Yaglom [16]. The re-
ader is also referred to Huang and Bradshaw [12] and
Kays and Crawford [20] for a recent discussions on the
topic. Kawamura et al. [18] provide valuable DNS-data
for the temperature equation in fully developed channel
flow. The above relation for the wall temperature is not
commonly used, however, and T is instead expressed
with the normalised velocity, u™ = U/u,, as:

T+ = Pr, (u"' + Pry) (126)
where Pry; = Br/Pr; — B, and Pr, = k/kr, [16]. The
constant, Pry, depends on the Prandtl number, which
according to Jayatillaka [13] is:

3/4
(ﬂ) B 1]
P’f't

P
[1 +0.28exp (—0.007£)]
Pr

P’f’f =9.24

(127)

5.3 New Blending Model

During the numerical optimisation of the new model it
was found that the most appropriate blending parame-
ter for the thermal field was the normalised tempera-
ture, TT. The non-dimensionalised wall distance in Eq.
125, is however based on y = y,/k,3*/*/v instead of
the commonly used although less satisfying y+:

1
T* = —In(y*) + B}
kT

(128)

T* has not yet been given explicitly for the LRN re-
gion. Introducing normalised variables, T* = (T, —
T)pC, 3 /*Vk/qw and y* = yB*1/4\/k/v, Eq. 123 can be
re-written as:

Copv  T*qu y'v
Pr pcpﬂ*l/‘i\//; ,3*1/4\/E

Re-arranging, the linear law for temperature is given
(see also Eq. 38):

/ (129)

Guw =

T* = Pry* (130)
The non-dimensionalised temperature in the blending
model thus becomes:

T = fPry;+ (- ) | n(s;) + B (131)

where f is defined as for the turbulence field, see Eq.
108. To achieve accurate results with this heat transfer
model in the case of a first node location in the buffer
layer, the values of k7 and B7 must be modified. This
is not unreasonable since constant values are valid only
in the logarithmic layer. In the new model, we chose
to modify x7, which is reduced in the buffer layer, as
found from DNS computations [18] and [17]. Reasonable
agreement with the x7 predicted by DNS was found for
the relation:

k1 = 0.33[1 — exp(—Re; /5)] + 0.15 (132)

see Fig. 23. The expression gives k7 = 0.48 in the lo-
garitmic layer, as indicated by experimental data [12,
16,20]. Note that the DNS-data (Re, = 395) indicate
a slightly lower value of k7 = 0.42. There seems to be
a Reynolds number dependency for this coefficient, ho-
wever, as another DNS [17] (Re, = 150) yields an even
lower value, k7 = 0.36.

Results obtained using this model are presented in
Bredberg et al. [6].
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