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Preface

The book is intended for undergraduate senior students, graduate students, and
professionals interested in modeling fluid dynamics with commercial or national
laboratory software, such as Fluent, STAR-CCM, COMSOL, Fuego, and
OpenFOAM, or perhaps using their own computational tool. The book’s intent is
to provide a hands-on approach that focuses on applied theory and applications. The
book provides hundreds of tips, techniques, and tricks of the computational fluid
dynamics (CFD) and turbulence trade that have been accumulated by the author, as
well as published in many recent reports, articles, and books across the literature.

Key tips and guidelines in this book focus on “how to,” with step-by-step
instructions and examples so the reader will be able to proficiently

• Calculate eddy length, time, and velocity scales for the integral, Taylor, and
Kolmogorov eddies

• Compute the Reynolds number for many useful engineering systems
• Avoid dozens of CFD simulation pitfalls
• Develop “bullet proof” meshes
• Apply strategies associated with time steps, node distance, geometry domain, and

computational stability
• Improve data visualization images
• Select turbulence models
• Compute the y distance for y+ ¼ 1, 7, and 30
• Use guidelines associated with laminar and turbulent flow, fully developed flow,

natural circulation, boundary conditions, and initial conditions
• Apply dozens upon dozens of RANS, LES, and DNS modeling tips

In addition, the book includes the entire coding for MATLAB scripts that
calculate key laminar and turbulence parameters. This includes the LIKE algorithm
for estimating the integral eddy length scale, turbulence intensity, turbulent kinetic
energy, and turbulent dissipation. In turn, these parameters are used to estimate many
other useful turbulence variables, such as the integral, Taylor, and Kolmogorov eddy
velocity, length, and time scales, as well as the distance y from the wall for any value
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of y+. Another MATLAB script calculates the peak velocity for laminar and turbu-
lent natural circulation flows. The script also calculates the convective heat transfer
coefficient and key dimensionless numbers such as Prandtl, Grashof, Nusselt, and
Raleigh. Both horizontal and vertical geometries are calculated, although the empha-
sis is on vertical flows. The laminar regime is valid for 0.001 < Pr < 1,000 and has
been validated for a horizontal pipe with air and water and a vertical plate with air.
Finally, the book includes a MATLAB function that is useful for calculating the
physical properties for liquid lead, lead bismuth eutectic, bismuth, and sodium.

The book assumes the reader has at least taken ordinary and partial differential
equations. Though not absolutely necessary, a basic fluid dynamics course would be
helpful. The material is useful for senior projects in mechanical, civil, chemical, and
nuclear engineering, as a first year of graduate level CFD and turbulence modeling,
and for applied commercial and research applications. The major goal of the book is
to provide as many useful and practical guidelines for applications that involve fluid
flow, such as engineering (mechanical, civil, chemical, and nuclear), aerospace,
naval, energy systems, military, micro- and nanodevices, medical, and the environ-
mental sciences.

There are most certainly many great books written for CFD (e.g., J. Anderson’s
Computational Fluid Dynamics and Computational Fluid Dynamics for Engineers
by B. Andersson et al.), as well as turbulence modeling (e.g., John Hinze’s Turbu-
lence: An Introduction to Its Mechanism and Theory and David Wilcox’s Turbu-
lence Modeling for CFD, Third Edition). So, why add another book to the already
crammed field? The author’s goal and motivation are to fill an important gap, a
special niche, that is sorely lacking in the field: to provide a comprehensive set of
practical, hands-on guidelines that can guide beginners, intermediate users, and, on
occasion, perhaps even experts. The book is therefore a comprehensive summary of
“how to” and therefore has detailed descriptions of what works and what does not in
the field of CFD and turbulence. The book is based on the author’s 34 years of
engineering work at three national laboratories and tested through various courses at
the University of New Mexico.

Finally, the book contains some recent, practical theories recently published by
the author, as well as unpublished material. This includes methods to estimate the
peak laminar and turbulent natural circulation velocities, the “LIKE” algorithm, the
estimation of stable turbulent-flow time steps based on the turbulence viscosity, and
practical engineering applications for engineered surfaces (e.g., dimples and swirl).
There is a recent, strong interest in the use of dimples to increase heat transfer and
reduce fluid drag in compact heat exchangers, impellers, fins, power plant equip-
ment, vehicles, aerospace, and, of course, golf balls.

Albuquerque, NM, USA Sal Rodriguez
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Chapter 1
Introduction

Choose a job you love, and you will never have to work a day
in your life.

—Confucius

Abstract The motivation for learning and mastering CFD and turbulence modeling
is based on their ever-increasing potential to solve problems, especially those that
cannot be resolved experimentally due to physical limitations, economic cost, safety,
time constraints, or environmental regulatory procedures. Current and future
employment trends, computational capacity growth, and experimentation costs
favor CFD. The integration of CFD, theory, advanced manufacturing, and experi-
ments will lead towards even more economical and faster development of prototypes
and systems for more streamlined concept-to-market development. As Moore’s law
eventually ceases to apply, quantum and nano-computing devices, as well as quan-
tum algorithms, will continue the computational growth trend for many decades to
come, if not centuries. The near future holds the potential for simulations that are
thousands of times faster than is currently feasible. This fascinating subject is
elaborated further in Sect. 5.2.

1.1 Motivation for CFD and Turbulence Modeling

Computational fluid dynamics (CFD) is not just “eye candy” designed to amaze and
provide great careers. When done correctly, CFD can be a powerful tool for the
prediction of system behavior and the design of more efficient and innovative
systems; CFD can be used to validate system performance metrics, increase opera-
tional safety, yield higher profit margins, and provide many other desirable
attributes.

In terms of job potential, CFD is geared for significant growth that is fueled by a
powerhouse of more efficient and powerful algorithms, Moore’s law, and advances
in parallel computing and visualization (College Grad 2017). But, depending on
which expert is consulted, Moore’s law has already reached an asymptote (Alfonsi
2011) or will reach it sometime after 2017. Indeed, as of 2004, the computing
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industry is relying on multicore and manycore processors to increase computing
performance (Alfonsi 2011). In any case, as Moore’s law eventually ceases to apply,
quantum and nano-computing devices, as well as quantum algorithms, will continue
the growth trend for many decades to come, if not centuries (Rudinger 2017; Singer
2019). Though still in their infancy, quantum algorithms can already solve linear
systems of equations (Singer 2019), which, of course, are essential for CFD solvers.
And to further sweeten the prospect toward CFD’s bright future, it is expected that
quantum algorithms will result in an exponential decrease of the time required to
solve systems of linear equations (Singer 2019).

Fortunately, CFD offers solutions in many areas that have substantial growth
potential, including:

• Flow dynamics and heat transfer (pipes, pumps, fans, turbines, heat exchangers,
boilers, combustors)

• Aerodynamics (automobiles, aerospace, missiles, ships, torpedoes, submarines)
• Micro- and nanotechnology (lab on a chip, cooling and heating, heat pipes)
• Engine design (efficiency, power, heat transfer, combustion)
• Power plants (chemical, solar, nuclear, wind, bio, coal; waterless power produc-

tion, smart grids, micro grids)
• Heating, ventilation, and air conditioning systems (from homes to large

buildings)
• Internal combustion
• Casting, soldering, liquid plastics and metal flow, 3D printing
• Weather prediction
• Rheology (deformation and flow in rivers, lakes, oceans)
• Cooling applications for dense circuitry, micro and quantum computers
• Aerosol dispersal
• Biological and chemical attack modeling
• Medical applications (blood flow, medical devices)
• Petrochemical, industrial applications
• Military
• And much, much more

Certainly, there are many great books already published in CFD (Anderson 1995;
Andersson et al. 2012; Hinze 1987), computational methods (Ferziger and Peric
2002), as well as turbulence modeling (Wilcox 2006), with many other great books
too numerous to cite here, but that are cited throughout the relevant chapters in this
book. Therefore, to avoid repetition, the goal and motivation for this book are to fill
an important gap, a specialized niche that is greatly lacking in the field: to provide a
comprehensive set of practical, hands-on guidelines and examples designed to assist
beginners, intermediate users, and, on occasion, perhaps even experts. This book is
therefore a comprehensive summary of what works and what does not work in the
field of CFD and turbulence, based primarily on CFD and turbulence modeling
experience at three national laboratories and academia, as well as recent advances in
fluid modeling found in the literature.

2 1 Introduction



1.2 Computational Advantages of CFD over
the Experimental Approach

CFD provides system designers and analysts a tool that is not only cheaper than
experiments but also generates more data, including data that is not currently
measurable with current instrumentation. For example, consider a pipe undergoing
flow, with one million computational nodes. If CFD is coupled with heat transfer,
then each computational node is just like a thermocouple, a pressure transducer, a
flow meter, and so forth. When was the last time that a million sensors were applied
onto a single experiment? Thus, CFD allows analysts and designers to probe deeper
and wider into the details of system behavior than experimentation ever could (Clark
et al. 1979). If done correctly, this enables the development of more efficient energy
systems that are cost-competitive and environmentally friendlier.

Consider CFD as a tool that allows analysts to dynamically in time “x-ray” the
system of interest, enabling them to view exactly how the fluid is behaving in real
time, find any design flaws and inefficiencies, and thereby provide insights that can
improve the design. And as computational power grows, more refined analysis can
be conducted, especially via large eddy simulation (LES) and direct numerical
simulation (DNS). For example, Fig. 1.1 shows turbulent flow in a pipe with a
sharp contraction and expansion, using the dynamic Smagorinsky LES turbulence
model and five million hexahedral elements. The flow is from the left to the right,
and the simulation shows large eddy structures that provide insights regarding
pressure losses in pipe components. As another example, Fig. 1.2 shows a DNS
simulation of a water jet with 63 million hexahedral elements and flowing against
gravity. The jet’s external and internal eddy structure is shown on the left-hand side
and right-hand side, respectively. As computational power increases, it is not
unusual to have fluid combustion calculations involving DNS with billions of
elements (Cheng 2008).

Another practical advantage of CFD over experiments is its ability to modify
nature selectively, for the purpose of investigating physical behavior that is other-
wise impossible to gauge. The possibilities are practically limitless. For instance,
with a single stroke on the input file, an analyst can “delete” gravity, or double its

Fig. 1.1 LES turbulence modeling of a pipe with a sharp contraction and expansion
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strength, to investigate the impact of gravity on a buoyant flow. As another example,
Andre Bakker performed CFD of a tyrannosaurus rex and found out that the dinosaur
had less fluid drag than modern vehicles (Bakker 2002)! Anderson cites an engi-
neering situation where wind tunnel results were inconclusive for an airfoil (Ander-
son 1995). The experimental data was not clear as to whether the flow was laminar or
turbulent. However, CFD simulations corroborated that the flow was indeed turbu-
lent by using a judicious choice of turbulence models. As final example, consider a
safety analysis on a scaled nuclear reactor to investigate its behavior under severe
conditions. For this hypothetical situation, the transient is initiated with a large,
double-ended guillotine break that may occur as a result of a strong earthquake. As
the analysis proceeds, the reactor core can be completely destroyed in the virtual
world, without releasing radiation, without causing damage to the environment, and
at a mere fraction of an experiment’s cost, assuming anyone would even pay for such
scaled experiment!

Thus, CFD simulations and its plethora of sensitivity studies and modeling
techniques can provide an upper edge to analysts. This includes system analysis
that is experimentally impossible due to physical limitations, economic cost, safety,
time constraints, or regulatory procedures.

Fig. 1.2 DNS of jet flowing against gravity. Left, full jet; right: cross section

4 1 Introduction



1.2.1 Simulation Economics

With faster computation year after year and more efficient numerical and data
visualization algorithms, it is not surprising that CFD becomes less expensive with
the passage of time, while experiments become more expensive because of regula-
tions. Anderson noted that there is a downward trend associated with computation
cost, with approximately 1/10th reduction every eight years (Anderson 1995). On
the other hand, the cost for experiments increases year after year due to inflationary
pressures on experimentalist’s salaries, expensive equipment, and costly regulations.
Certainly, many environmental, safety, and health (ES&H) concerns are justified,
while others challenge common sense. Nevertheless, whether justified or not, ES&H
regulations typically increase with time.

1.2.2 Future Capabilities and Opportunities

Near-term goals for CFD analysts and researchers include the generation of secure,
environmentally benign energy at a competitive cost, as well as the production of
waterless power. For example, the typical evaporative water loss though cooling
towers in a nuclear plant is estimated at 80,000,000 gallons per day. With
diminishing natural energy resources and limited freshwater supplies, waterless
power production will provide a solution that replaces cooling towers with passive,
waterless heat transfer mechanisms. CFD will always be at the forefront of advanced
nuclear reactor designs, more efficient power sources with decreased environmental
footprint, improved aerodynamics, medical devices, nano- and microtechnology,
and many other industrial processes. This is particularly so as designs become more
complex, and the impact of Multiphysics is incorporated into designs.

In the area of transportation, CFD continues to be at the forefront of aerodynamic
designs that reduce fluid drag, thereby increasing distance traveled per unit energy
consumed. These improvements include race cars (Fig. 1.3) (SimScale 2017;
Rodriguez et al. 2017), commercial vehicles, and the Department of Energy
(DOE) SuperTruck Initiative (DOE STI 2017) (Fig. 1.4). Started in 2009, the DOE
SuperTruck Initiative aims to develop and demonstrate a 50% improvement in
freight efficiency. As of 2017, current SuperTruck efforts and commercialized
technology include bumpers, as well as roof, gap, and chassis fairings. Figure 1.4
shows a SuperTruck built by Cummins/Peterbilt. Surface dimpling (akin to golf ball
dimpling) for additional drag reduction is being considered to reduce parasitic drag
loss and thus increase fuel efficiency. These low-drag surfaces are also suitable for
commercial and military aircraft, missiles, rockets, submarines, and watercraft.
Recent wind tunnel data verifies the many beneficial properties of engineered
surfaces in transonic (Kontis and Lada 2005; Kontis et al. 2008), supersonic
(Sekaran and Naik 2011), and hypersonic (Babinsky and Edwards 1997; Abney
et al. 2013) surfaces and airfoils.
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Other novel CFD applications of recent interest which are in the area of micro-
and nanofluidics include advanced heat pipe designs, micro heat pipes, propulsion
systems, micro cooling systems, quantum computers, micro- and nanobots, sensors,
and medical devices such as “lab on a chip.” During the latter part of the twentieth
century and the early part of the twenty-first century, the confluence of CFD and
advanced manufacturing (AM) demonstrated significant design cost savings that are
without precedent in the field of engineering and manufacturing. For example, the
development of prototypes that used to require weeks to months can now be
achieved within a day or so (AT Kearney 2015; Rodriguez and Chen 2017).

In the future, the integration of CFD, theory, AM (i.e., 3D printing), and exper-
iments will lead toward even more economical and faster development of prototypes
and systems that are closer to being market-ready. The technological quad
represented by these tools, and their interaction, is shown conceptually in Fig. 1.5.

Fig. 1.4 Aerodynamic Cummins/Peterbilt SuperTruck. (Source: US Department of Energy)

Fig. 1.3 Simulation of Formula 1 race car. (Courtesy of SimScale 2017; A. Arafat, modeler)
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It is conceived that theory will guide an initial design concept, CFD will be used to
investigate its virtual behavior, AM will be used to manufacture prototypes, and
experiments will validate their design performance (or lack thereof!). Then, the
process will be iterated, until the design reaches the desired design performance
metrics (e.g., lower flow drag, higher thermal efficiency, and so forth). Other worthy
design-guiding criteria include an optimal rate of return on investment, safety
metrics, minimized environmental impact, etc. In summary, it is envisioned that
theory will guide the CFD simulations, which will drive the AM design. Then, AM
will be used to expedite cost-effective prototypes for experimentation, functional
testing, and marketing. This, in turn, will serve to enhance the theory, and so forth, in
a continuous-improvement cycle with much synergism and profitability.

1.3 Jobs and Future Employment Trends

Certainly, CFD is a multidisciplinary field with wide usage in the fields of mechan-
ical, nuclear, chemical, electrical, and civil engineering. However, CFD also has
substantial applications in areas such as physics, mathematics, chemistry, biology,
medical, computation, nanotechnology, and AM. It is therefore not surprising that
CFD involves many different subjects, as shown in Fig. 1.6. The more subject
matters the CFD analyst masters, the more rewarding their careers will be, literally
and figuratively.

Future job trends are positive, especially when experience is combined with the
most advanced modeling tools and other technologies, such as AM, computer-aided
design, and optimization. Just in the area of mechanical engineering, there were
277,500 jobs in 2014, with a projected growth to 292,100 by 2024 (College Grad
2017). Median annual salary ranged in 2014 from $76,190 (machinery manufactur-
ing) to $94,640 (research and development). For comparison, a worker that earns the
minimum wage of $7.25/h (national standard as of 2017), and that works a typical

Fig. 1.5 The technology
quad: theory, CFD, AM, and
experiments
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work year of 2000 h, would make $14,500; this is 5.25 to 6.5 times less than the
salary of a median mechanical engineer.

College Grad also offered several insights for future job employment trends
(College Grad 2017):

Prospects for mechanical engineers overall are expected to be good. They will be best for
those with training in the latest software tools, particularly for computational design and
simulation. Such tools allow engineers and designers to take a project from the conceptual
phase directly to a finished product, eliminating the need for prototypes. Engineers who have
experience or training in three-dimensional printing also will have better job prospects.

For the above reasons and more, those who take the time to master CFD and
turbulence modeling will reap many rewards. In summary, the possibilities offered
by CFD are limitless, if done correctly. If only. . . In what follows, it will be
endeavored to provide such guidance.
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Chapter 2
Overview of Fluid Dynamics
and Turbulence

I am an old man now, and when I die and go to heaven there
are two matters on which I hope for enlightenment. One is
quantum electrodynamics, and the other is the turbulent
motion of fluids. And about the former I am rather optimistic.

—Sir Horace Lamb, circa 1930

Abstract The first part of the chapter provides a review for mass, momentum, and
energy conservation, as well as turbulence theory and modeling. Then, the historical
development and importance of the Reynolds number (Re) is firmly established,
leading to guidelines for calculating Re for many useful engineering geometries.
Fully developed laminar and turbulent flow is described, as well as insights regard-
ing the turbulent kinematic viscosity. Finally, isotropic turbulence and Taylor eddy
theory are introduced, to lay a foundation regarding their merit and practical
applications in CFD modeling; this development culminates in Sect. 3.7, where
numerous practical drag reduction and heat transfer applications are described in
more detail.

This chapter is intended as a review for mass, momentum, and energy conservation
as well as turbulence theory and modeling. It is therefore ideal for those desiring a
quick review or perhaps who have never had a fluid dynamics course. Though the
chapter contains many insights, readers with a background in fluid dynamics and
turbulence may skip the chapter and proceed into the delights of computational fluid
dynamics (CFD) and turbulence modeling in the chapters that follow.

The interested reader is referred to Anderson (1995) for a well-documented,
detailed comparison of integral vs. differential control volumes as well as the
conservative (Eulerian; fixed-space tracking) vs. nonconservative form (Lagrangian;
follows the mass, i.e., moves with the flow). For this book, the Eulerian differential
approach is considered, mostly because of its straightforward relationship with
regard to coding; however, as so eloquently shown by Anderson, transformations
from one form onto another are fairly straightforward, despite the seemingly differ-
ent formulations.
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The interested reader is also strongly recommended to review the excellent
description, derivation, and utility of the mass, momentum, and energy conservation
equations provided by the unrivaled classic, Transport Phenomena (Bird et al. 1960,
2007). An excellent and unparalleled review of turbulence modeling is found in the
classics Turbulence (Hinze 1987) and Turbulence Modeling for CFD (Wilcox
2006).

Conservation of physical quantities is of crucial importance in CFD. In its most
basic form, this involves either the conservation of mass or momentum as the
governing equation but more often than not both. If the system involves energy
changes, then the conservation of energy comes into play as well. For example,
during natural circulation, a heated wall causes the fluid mass to undergo motion as a
result of changes in density, which in turn is a function of temperature. Additional
conservation mechanisms must be included if more complex physics are involved.
As an example, the conservation of species must be considered as well during
combustion. Structural analysis can be added when the fluid dynamics and structural
displacements are coupled, e.g., turbulence motion in a flow can cause a nuclear
reactor fuel bundle to oscillate (Rodriguez and Turner 2012); see Fig. 2.1. When
additional physics are added beyond the conventional mass and momentum CFD
governing equations, the simulations are typically called “multiphysics.”

Note: unless otherwise specified, the units used in this text are Système Interna-
tional (SI), with length based on meters (m), mass in kilograms (kg), time in seconds
(s), and temperature in Kelvin (K).

Conservation of a given quantity basically means that it is neither destroyed nor
created, but is instead transformed from one form onto another. For example, a
falling rock through air involves the change of potential energy onto kinetic energy,
as well as energy that opposes the air resistance. And once the rock strikes the
ground, some kinetic energy is transferred to deform the ground and the rock, while
some of the energy transfers onto sound energy. Thus, mass, momentum, and energy
are in continuous change as engineering processes advance. Quite briefly, mass is
neither created nor destroyed but is instead transformed (no particle physics

Fig. 2.1 Mass, momentum, energy, and structural Multiphysics analysis of a nuclear fuel bundle
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processes are considered here). The same conservation principle applies to momen-
tum and energy, meaning these quantities are neither created nor destroyed but are
instead transformed. These ideas are expounded in the sections that follow.

2.1 Introduction to Conservation of Mass

To say that mass is conserved means that a fundamental principle of nature is
satisfied, namely, that the system’s mass quantity remains unchanged. In its simplest
form, a liquid undergoes motion, so it “flows.” As the liquid flows, it continues to
have the same amount of mass despite the degree of rotation, stretching, or transla-
tion. For example, in a closed system, 1 kg of water can flow as gently or as
vigorously as desired, and for as long as desired, but in the end, there will still be
1 kg of mass, and its composition is still H2O. Even if the water boiled while flowing,
there would still be 1 kg total of H2O liquid and vapor.

Certainly, lead can be transformed into gold with a powerful particle accelerator,
as high-speed nuclei shear off three protons from the lead atoms. However, in the
context of CFD, atomic species are preserved, though chemical species can react,
such as during combustion. In this context, mass conservation means that the
quantity of mass is preserved at the atomic level. Consider the following simple
chemical reaction for the production of water, 2H2(g) + O2(g)! 2H2O(l). This says
that two hydrogen molecules combine with one oxygen molecule to form two water
molecules. Stated differently in terms of atomic species conservation, four hydrogen
atoms combine with two oxygen atoms to form water that has a total of four
hydrogen and two oxygen atoms. Thus, the gaseous hydrogen and oxygen molecules
are transformed into liquid water, but the atomic species is preserved. This is a
conservation of mass for a reactive fluid.

Another way to view conservation of mass is to consider 1 g of wood. Burn it for
a few seconds, and then weigh its charred remains. Assume the ashes weigh 0.1 g.
Where did the remaining 0.9 g go? The missing wood mass has formed into
combustion by-products. For this simplified example, there are now 0.9 g of
combustion by-products in the form of soot, CO2, CO, water vapor, and other
chemicals. However, despite the chemical reactions, no mass was lost or gained,
and no atomic species were transformed—mass was conserved.

Consider a system in a Cartesian space, as shown in Fig. 2.2. Let the system have
multiple mass inlets and outlets. If more mass is coming into the system than is
entering, then the system will accumulate mass and vice versa. Said more succinctly,
the system’s mass accumulation with respect to (WRT) time is the net inflow minus
the net outflow. When viewed from the so-called “conservative” (Eulerian) invariant
form, this is expressed as
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dρ
dt

þ∇
! � ρV

!� �
¼ 0 ð2:1AÞ

or

dρ
dt

¼ �∇
! � ρV

!� �
¼ �ρ ∇

! � V!
� �

� V
! �∇!
� �

ρ: ð2:1BÞ

In this context, ∇
! � ρV

!� �
can be thought of as the overall rate of mass addition

per unit volume due to convection associated with velocity and density gradients
(Bird et al. 2007).

The above equation indicates that the density change WRT time is balanced by
the fluid velocity divergence and density gradients, respectively. Here, without loss
of generality (WLOG), and due to its simplicity, the velocity is expressed in
Cartesian coordinates as a function of the x, y, and z coordinates as well as time, t.
Thus, the velocity can be expressed as

V
! ¼ V

!
x, y, z, tð Þ ¼ u i

! þ v j
! þ wk

! ð2:2Þ

where

u ¼ velocity distribution in the x-direction ¼ u(x,y,z,t)
v ¼ velocity distribution in the y-direction ¼ v(x,y,z,t)
w ¼ velocity distribution in the z-direction ¼ w(x,y,z,t)
ρ ¼ density ¼ ρ(x,y,z,t)

Another way to view the velocity divergence is to consider it as the time rate of
change for the moving volume of fluid, per unit volume, with overall units in inverse
time. The velocity divergence therefore represents a fractional change per unit
time—it describes how much a fraction of mass changes WRT time.

Equation 2.1B can be expanded explicitly into its divergence and gradient
operators, respectively.

Fig. 2.2 3D Cartesian
system showing the u, v, and
w velocity components
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∂ρ
∂t

¼ �ρ
∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

� �
� u

∂ρ
∂x

þ v
∂ρ
∂y

þ w
∂ρ
∂z

� �
: ð2:1CÞ

The terms are interpreted as follows:

∂ρ
∂t ¼ mass change per unit volume WRT time; mass accumulation per unit volume.

ρ ∂u
∂x þ ∂v

∂y þ ∂w
∂z

� �
¼ mass transfer per unit volume due to velocity gradients.

The velocity gradient, ∂u∂x, represents the change of the velocity component in the x-
direction (i.e., u) WRT x and so forth.

Therefore, the product of the density and the velocity gradient, ρ ∂u
∂x, is the transfer of

mass per unit volume associated with the x-direction as a result of motion arising
from the u velocity component, etc. Finally,

u ∂ρ
∂x þ v ∂ρ

∂y þ w ∂ρ
∂z

� �
¼ mass convection per unit volume.

Example 2.1 Derive the conservation of mass equation for an incompressible fluid
that has reached steady state (SS).

Solution While the system was evolving WRT time, there were density changes.
But, as the density approaches SS, it becomes constant as a function of time, so its

derivative is zero; thus, ∂ρ∂t ¼ 0. In fact, for any SS system, the time derivative is zero.
In other words, “SS” explicitly means that the variable does not change WRT time.

Because the fluid is incompressible, the divergence of the velocity is zero (this
will be discussed in detail later in this chapter). Therefore,

∇
! � V! ¼ ∂u

∂x
þ ∂v

∂y
þ ∂w

∂z
� 0:

Consequently, the first term on the right-hand side (RHS) of Eq. 2.1C is zero,

�ρ
∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

� �
¼ 0:

This leaves behind a single term in parenthesis, which happens to be zero because
the other terms in the mass conservation equation are zero as well,

� u
∂ρ
∂x

þ v
∂ρ
∂y

þ w
∂ρ
∂z

� �
¼ 0:

If the flow is only one dimensional (1D), or can reasonably be approximated as
1D, then the above simplifies even more. WLOG chose the x direction, so the y and
z terms drop out:
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u
∂ρ
∂x

þ v
∂ρ
∂y

þ w
∂ρ
∂z

¼ 0:

Dividing by u, ∂ρ∂x ¼ 0, which implies that if the derivative were integrated, then
ρ ¼ constant. (Note that only one direction is being considered, so the partial
derivative becomes an ordinary derivative.) Thus, if the flow is 1D, SS, and
incompressible, then its density must be constant.

A simple yet very useful relationship for a SS system with fixed density and
velocity is

_m ¼ ρVA ð2:3Þ

where

V ¼ average fluid velocity
A ¼ flow area

If the SS system has multiple n inlets and/or p outlets, or perhaps various flow
areas, velocities, and/or densities, then it is convenient to apply the following
formulation:

Xn
1

_min ¼
Xp
1

_mout ð2:4AÞ

where

_min ¼ total inlet mass flow rate
_mout ¼ total outlet mass flow rate

That is, the above expression expands as follows by using Eqs. 2.3 and 2.4A:

ρ1,inV1,inA1,in þ ρ2,inV2,inA2,in þ � � � þ ρn,inVn,inAn,in

¼ ρ1,outV1,outA1,out þ ρ2,outV2,outA2,out þ � � � þ ρp,outVp,outAp,out:
ð2:4BÞ

Example 2.2 Consider a system with two inlets and three outlets, each with a
different density, velocity, and flow area. Express the SS mass flow rate explicitly
in terms of ρ, V, and A.

Solution From Eq. 2.4A,

_m1,in þ _m2,in ¼ _m1,out þ _m2,out þ _m3,out:

Setting up the individual flows,

ρ1,inV1,inA1,in þ ρ2,inV2,inA2,in ¼ ρ1,outV1,outA1,out þ ρ2,outV2,outA2,out

þ ρ3,outV3,outA3,out:
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If the system consisted solely of an inlet and outlet (e.g., pipe, duct), the SS
conservation of mass reduces to

ρ1V1A1 ¼ ρ2V2A2: ð2:4CÞ

Example 2.3 A cylindrical pipe with a contraction reduces in diameter from 0.2 to
0.1 m. The fluid is water at 300 K and 1 atmosphere and is flowing at 1 kg/s. The
system is SS, isothermal, and incompressible. What is the exit velocity?

Solution Because this problem involves mass flow rate and velocity, Eqs. 2.3 and
2.4A will be needed as well as the water density. Note: there are many reliable
resources for physical properties, including REFPROP (Lemmon et al. 2010) and
CoolProp (CoolProp 2017). Based on the above pressure and temperature, the water
density is 996.6 kg/m3. Label the pipe inlet with subscript “1,in” and the outlet with
subscript “1,out.” The exit area for a cylinder is

A1,out ¼ π
D2

4
¼ π

0:1 mð Þ2
4

¼ 7:85E�3 m2

where D is the diameter. For convenience, the more succinct exponent notation “En”
will be used fairly often instead of “�10n.” Thus, 7.85E�3 is the same as
7.85 � 10�3.

Based on conservation of mass, the mass flow rate going into the contraction is

_m1,in ¼ ρ1,inV1,inA1,in

and the flow coming out is

_m1,out ¼ ρ1,outV1,outA1,out:

Because the exit mass flow rate was not specified, conservation of mass under SS
requires that it has the same value as the inlet mass flow rate, which was given.
Therefore,

_m1,out ¼ ρ1,outV1,outA1,out ¼ _m1,in:

Solving for the exit velocity,

V1,out ¼ _m1,in

ρ1,outA1,out
¼ 1 kg=s

996:6 kg=m3ð Þ 7:85E�3 m2ð Þ ¼ 0:128 m=s:

Note: unless the analyst is working for the military or systems that absolutely
must have high precision (e.g., the Hubble telescope lens), three or four significant
digits is typically all that is needed to get good engineering results; even two digits
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are reasonable, especially when applying correlations whose accuracy is oftentimes
less than two digits! A good example of this is the Dittus-Boelter equation, which
has an accuracy of ~�25% (Holman 1990), and yet, its value is oftentimes quoted
using three or more significant digits. A colloquial story warns engineers to not
“measure with a micrometer, draw a line with a ruler, and cut with an ax.”

Example 2.4 Consider the same geometry and fluid density as in Example 2.3. But
now, the fluid exits the contraction at an average velocity of 5 m/s. What is the
average inlet velocity and mass flow rate?

Solution Calculate A1,in because it will be needed later:

A1,in ¼ π
D2

4
¼ π

0:2 mð Þ2
4

¼ 3:14E�2 m2:

At this point ρ1,in and A1,in are known, but the inlet mass flow rate and the average
inlet velocity are not (the goal is to use _m1,in ¼ ρ1,inV1,inA1,in). Thus, there are two
unknowns and only one equation, so one more independent equation is needed.
Applying Eq. 2.4C, it is clear that

_m1,in ¼ _m1,out,

which means that

ρ1,inV1,inA1,in ¼ ρ1,outV1,outA1,out:

Solving for the inlet velocity, and noting that the density ratio drops out because
ρ1,in ¼ ρ1,out, then

V1,in ¼
ρ1,outV1,outA1,out

ρ1,inA1,in
¼ V1,outA1,out

A1,in
¼ 5 m=sð Þ 7:85E�3 m2ð Þ

3:14E�2 m2 ¼ 1:25 m=s:

Because of conservation of mass ( _m1,in ¼ _m1,out), the mass flow rate can now be
calculated from either _m1,in ¼ ρ1,inV1,inA1,in or _m1,out ¼ ρ1,outV1,outA1,out. This
implies that

_m1 ¼ ρ1V1A1 ¼ 996:6 kg=m3
� �

1:25 m=sð Þ 3:14E�2 m2
� � ¼ 39:1 kg=s:

The inlet mass flow rate makes intuitive sense, because the same amount of mass
flows throughout the system, thereby requiring that the fluid velocity be faster at the
exit (5.0 vs. 1.25 m/s) because the water flows through a smaller flow area
(7.85E�3 vs. 3.14E�2 m2). In other words, the flow is constricted. This same effect
occurs in rivers, where the wider streams flow slower than the narrower parts of the
river.
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2.2 Introduction to Conservation of Momentum

The key idea behind momentum conservation is that it is neither destroyed nor
created but that rather it is transformed from one type of momentum onto another.
This is really just Newton’s second law of motion being applied to a fluid:

F
! ¼ ma

!, ð2:5Þ

where

F ¼ force
m ¼ mass
a ¼ acceleration

That is, the fluid experiences various body and surface forces that inevitably
generate motion. Body forces refers to those forces that act directly upon the entire
mass enclosed by the volume (system) in question, such as gravity and electromag-
netic forces. Surface forces refer to those forces that act on the surface of the volume.
Surface forces include two categories: pressure as a result of the action from the
surrounding fluid and the viscous shear/normal stresses caused by frictional forces.
This is shown conceptually in Fig. 2.3.

If the body and surface forces are considered, then the invariant conservation of
momentum is

ρ
∂V
!

∂t
þ ρV

! �∇!V
! ¼ �∇

! � τ
!!�∇

!
Pþ ρg

! ð2:6Þ

where

P ¼ pressure
g ¼ gravity
τ ¼ shear stress

Fig. 2.3 Terms associated
with forces and momentum
conservation
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Certainly, conservation of momentum (AKA Navier-Stokes) in the above vector/
tensor formulation can look quite formidable to those who perhaps just recently
engaged in fluid dynamics. But do not forget that it is simply a glorified version of
“F ¼ ma”; each term of the momentum equation represents the spatial or temporal
way in which forces are transformed from one form to another:

ρ ∂V
!

∂t ¼ rate of momentum accumulation per unit volume. When there is no net
change WRT time, this term is zero, and the system is said to be at SS.

ρV
! �∇!V

! ¼ rate of momentum change due to convection per unit volume. This is
how velocity gradients push the liquid. This is the “accelerator” and source of
instabilities that lead to turbulence if the term is sufficiently high. Note that if the
flow is fully developed (FD), the velocity distribution does not change WRT to
position; in this special case, the partial of the velocity component is zero for such
direction.

∇
! � τ

!!¼ rate of momentum change per unit volume due to viscous forces. This term
forms the “brakes” that slow down a fluid and dampen instabilities; viscous forces
inhibit turbulence.

∇
!
P ¼ rate of momentum change per unit volume based on pressure gradients. This
term can arise from pumps, heat sources, etc.

ρg
! ¼ momentum rate of change based on gravity, per unit volume. This term is
important during buoyant flows.

As a helpful way of understanding the shear stresses, note that τij ¼ stress in the
j direction exerted on the plane perpendicular to the i axis, where τi,j ¼ i ¼ normal
stress (i. e., τii) and τi,j 6¼ i ¼ shear stress.

At this point, fluid behavior can be modeled once a Newtonian or non-Newtonian
shear function is specified. For Newtonian fluids, the stress is linearly proportional to
the velocity gradients,

τij ¼ fluid shear ¼
τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

�������
������� ¼ 2μsij � 2

3
∇
! � V!
� �

δij ð2:7AÞ

where

sij ¼ laminar shear ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
: ð2:7BÞ

Combining Eqs. 2.7A and 2.7B,
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τij ¼

2μ
∂u
∂x

� 2
3
∇
! � V! μ

∂u
∂y

þ ∂v
∂x

� �
μ

∂u
∂z

þ ∂w
∂x

� �
μ

∂v
∂x

þ ∂u
∂y

� �
2μ

∂v
∂y

� 2
3
∇
! � V! μ

∂v
∂z

þ ∂w
∂y

� �
μ

∂w
∂x

þ ∂u
∂z

� �
μ

∂w
∂y

þ ∂v
∂z

� �
2μ

∂w
∂z

� 2
3
∇
! � V!

�������������

�������������
compressible fluidð Þ:

ð2:7CÞ

Note that the diagonal terms include the divergence of the velocity vector. So,
Eq. 2.7C is suitable for compressible fluids; but if the divergence term is zero, the
expression becomes suitable for incompressible fluids.

τij ¼

2μ
∂u
∂x

μ
∂u
∂y

þ ∂v
∂x

� �
μ

∂u
∂z

þ ∂w
∂x

� �
μ

∂v
∂x

þ ∂u
∂y

� �
2μ

∂v
∂y

μ
∂v
∂z

þ ∂w
∂y

� �
μ

∂w
∂x

þ ∂u
∂z

� �
μ

∂w
∂y

þ ∂v
∂z

� �
2μ

∂w
∂z

�������������

�������������
incompressible fluidð Þ:

ð2:7DÞ

Note that most fluids are Newtonian, including all gases (Ar, He, H2, N2, CO,
CO2, air, etc.), homogeneous non-polymeric liquids, simple oils, and water (Bird
et al. 1960). However, there are also many non-Newtonian fluids, including:

• Blood, synovial fluids, DNA
• Liquid polymers, oobleck (cornstarch + H2O), slime (e.g., cloud slime), silly

putty
• Shampoos, conditioners, toothpaste
• Many salt solutions
• Many foods, including melted chocolate, ketchup, mustard, custard, mayonnaise,

cold caramel topping, syrup, molasses, whipped cream
• Silica nanoparticles in polyethylene alcohol
• Drilling mud, clay suspensions, sludge (e.g., Hanford waste tanks)
• Water-manure slurries with fibrous content greater than 10–20%
• Paints (e.g., latex)
• Paper pulp in aqueous solution
• Some lubricants

In general, sludge, slurries, polymers, pastes, and suspensions are
non-Newtonian. It has been suggested that any fluid whose molecular weight is
5000 or less is Newtonian (Bird et al. 2007); unfortunately, they did not include a
citation. If such molecular rule of thumb is used, then most polymers, DNA, and
complex molecules are non-Newtonian as well. Therefore, caution must be exercised
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when dealing with fluids for which the analyst is unfamiliar. Whether a fluid is
Newtonian or not has a significant impact on the velocity distribution; as always,
caveat emptor!

Here, a little detour is in order, with the purpose of clarifying whether a fluid is
compressible or not. After this brief detour, the discussion will continue by
expanding and then applying the vector Navier-Stokes equation into its three
Cartesian components, u, v, and w.

Quite often, much confusion arises regarding a fluid’s “compressibility” or lack
thereof. If the fluid is incompressible, then by definition,

∇
! � V! ¼ ∂u

∂x
þ ∂v

∂y
þ ∂w

∂z

� �
� 0: ð2:8Þ

Note that the strict (and mathematically correct) definition of “incompressibility”
is that the divergence of the velocity vector is zero. It is simply not correct to assume
that because density remains constant, such fluid must therefore be incompressible.
For example, water at room temperature can hardly be compressed such that its
density changes. However, if that same water were moved at a sufficiently high
velocity, then it would be compressible by definition! What happened here? The
issue is that “compressibility” is purely the net result of the sum of the three velocity
differentials found in the velocity divergence, Eq. 2.8. But, when the fluid velocity
approaches its material-specific sound speed, the fluid approximates a “compress-
ible” state. Thus, with a few exceptions, compressibility can be approximated as
follows: a fluid is said to be compressible if its speed reaches or exceeds 30% of its
sound speed. This is expressed as the ratio of the fluid speed and its sound speed and
is defined by the Mach number (Ma).

Mach number ¼ Ma � ufluid
usound

ð2:9AÞ

Macrit
>0:3 ) compressible

<0:3 ) incompressible

	
: ð2:9BÞ

Now consider a velocity vector field. If the gradient of the velocity is zero, must
each of its terms be zero? The answer is no. It is the sum of the individual
differentials in the velocity divergence that must be zero for a fluid to be considered
incompressible; thus, each term can be nonzero, so long as their sum is zero. At this
point, perhaps a few examples can help clarify these issues.

Example 2.5 Helium at 300 K and 1 atmosphere flows through a pipe. A positive
displacement pump increases the gas’s velocity until it becomes compressible. At
what velocity will the fluid become compressible?

Solution From REFPROP, usound for helium is 1019.6 m/s. Solve for ufluid from
Eqs. 2.9A and 2.9B:
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ufluid ¼ usoundMacrit ¼ 1019:6 m=sð Þ 0:3ð Þ ¼ 305:9 m=s:

Example 2.6 Redo the previous example, except now replace the helium with
water. At what velocity will the room temperature water become compressible?

Solution From REFPROP, usound for water is 1501.5 m/s. From Eqs. 2.9A and
2.9B,

ufluid ¼ usoundMacrit ¼ 1501:5 m=sð Þ 0:3ð Þ ¼ 450:5 m=s:

Granted, 450.5 m/s is a high velocity obtained in the case of Example 2.6, but
such velocity is certainly achievable in a water nozzle or jet. Most importantly, the
water in this example was at room temperature! Therefore, with fluids having a wide
gamut of sound velocities based on pressure and temperature, it is always a good
idea to check Ma, as the equations for incompressible fluids behave differently than
those of compressible fluids! A quick check is especially important when dealing
with fluids that have a high velocity or fluids for which the analyst is unfamiliar.
Consider these situations as red flags, and for which doubts can be quickly checked;
this is part of a good CFD analyst’s due diligence. It is not atypical to have someone
ask in engineering design meetings, as well as thesis and dissertation defenses,
“What is the Mach number?”, to which the reply is quite often, “Uh, I don’t know,
but it should be small. . .why? Aren’t we just modeling water?!?”

Example 2.7 Show that a system with the following velocity distribution is
incompressible:

V
! ¼ 2x2y i

! þ 3xy2 j
! � 10xyzk

!
:

Solution The flow’s compressibility, or lack thereof, can be investigated by
obtaining the divergence of the velocity:

∇
! � V! ¼ ∂u

∂x
þ ∂v

∂y
þ ∂w

∂z
¼ ∂ 2x2yð Þ

∂x
þ ∂ 3xy2ð Þ

∂y
þ ∂ �10xyzð Þ

∂z
¼ 4xyþ 6xy� 10xy

¼ 0:

Because the divergence is zero, the fluid is incompressible. Note that all three
terms are nonzero! But the compressibility criterion is based on the sum of the
divergence terms.

Example 2.8 Is a flow field with V
! ¼ 4x i

! þ 3y j
! � 6zk

!
compressible or

incompressible?
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Solution ∇
! � V! ¼ ∂ 4xð Þ

∂x þ ∂ 3yð Þ
∂y þ ∂ �6zð Þ

∂z ¼ 4þ 3� 6 ¼ 1: Therefore, this flow is

compressible.

Returning to the vector/tensor formulation for Navier-Stokes, it can be split onto
three Cartesian components, x, y, and z, resulting in three momentum equations: one
for the x-direction velocity u (Eq. 2.10A), another for the y-direction velocity
v (Eq. 2.10B), and the third for the z-direction velocity, w (Eq. 2.10C):

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ ∂τxx

∂x
þ ∂τxy

∂y
þ ∂τxz

∂z

� �
� ∂P

∂x
þ ρgx, ð2:10AÞ

ρ
∂v
∂t

þ ρ u
∂v
∂x

þ v
∂v
∂y

þ w
∂v
∂z

� �
¼ ∂τyx

∂x
þ ∂τyy

∂y
þ ∂τyz

∂z

� �
� ∂P

∂y
þ ρgy, ð2:10BÞ

and

ρ
∂w
∂t

þ ρ u
∂w
∂x

þ v
∂w
∂y

þ w
∂w
∂z

� �
¼ ∂τzx

∂x
þ ∂τzy

∂y
þ ∂τzz

∂z

� �
� ∂P

∂z

þ ρgz: ð2:10CÞ

For convenience, Eqs. 2.10A, 2.10B, and 2.10C can be expressed with explicit
representations for a Newtonian fluid as

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ μ

∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
� ∂P

∂x
þ ρgx, ð2:11AÞ

ρ
∂v
∂t

þ ρ u
∂v
∂x

þ v
∂v
∂y

þ w
∂v
∂z

� �
¼ μ

∂2v
∂x2

þ ∂2v
∂y2

þ ∂2v
∂z2

� �
� ∂P

∂y
þ ρgy, ð2:11BÞ

and

ρ
∂w
∂t

þ ρ u
∂w
∂x

þ v
∂w
∂y

þ w
∂w
∂z

� �
¼ μ

∂2w
∂x2

þ ∂2w
∂y2

þ ∂2w
∂z2

� �
� ∂P

∂z

þ ρgz: ð2:11CÞ

where μ is the dynamic viscosity, while the kinematic viscosity is expressed as ν ¼ μ
ρ.

Dividing by the density and substitution of the kinematic viscosity yields

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ ν

∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
� 1
ρ
∂P
∂x

þ gx, ð2:12AÞ
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∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ w
∂v
∂z

� �
¼ ν

∂2v
∂x2

þ ∂2v
∂y2

þ ∂2v
∂z2

� �
� 1
ρ
∂P
∂y

þ gy, ð2:12BÞ

and

∂w
∂t

þ u
∂w
∂x

þ v
∂w
∂y

þ w
∂w
∂z

� �
¼ ν

∂2w
∂x2

þ ∂2w
∂y2

þ ∂2w
∂z2

� �
� 1
ρ
∂P
∂z

þ gz: ð2:12CÞ

Equations 2.12A, 2.12B, and 2.12C assume that the fluid system is Newtonian,
Cartesian, laminar, and has a dynamic viscosity that is not a function of space. As
will be shown later, the above equations can be used for direct numerical simulation
(DNS) involving turbulent flow if sufficiently small temporal and spatial scales are
considered—more DNS details and guidelines are presented in Sect. 5.2.

The three independent equations discussed above in Cartesian coordinates, along
with the necessary equations to obtain closure (e.g., an equation of state for P and
auxiliary material properties for ρ and μ), can be solved for the three unknown
velocity magnitudes, u, v, and w. The velocity magnitudes can then be used to

compute the entire velocity vector, V
! ¼ u i

! þ v j
! þ wk

!
:

Again, the Navier-Stokes equation is simply an elegant form of Newton’s second
law of motion, as applied to fluids! In other words, the net change WRT time for
momentum is equal to the sum of all the body and surface forces. Notice that the
momentum conservation terms are in SI units of kg/m2-s2, e.g.,

ρ
∂u
∂t

¼½ � kg
m3

� � m
s

� �
s

¼ kg
m2s2

: ð2:13AÞ

Consider any of the momentum terms (they are homogenous in terms of units).
WLOG, choose the transient term and multiply it by volume. Then,

ρ
∂u
∂t

� �
� Vol ¼½ � kg

m3

m
s

s

� �
m3 ¼ kg

m
s2
, which is a force: ð2:13BÞ

Momentum p is defined as

p
! ¼ mV

! ¼½ � kgm
s
: ð2:14Þ

The change of momentum WRT time is

dp
!

dt
¼½ � kg

m
s

� � 1
s
¼ kg

m
s2
: ð2:15Þ

The above expression is a force as well, because the SI unit for force is measured
in Newtons, which is expressed in kg-m/s2. Thus, if the terms are multiplied by
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volume, the Navier-Stokes terms are in units of force. Furthermore, the change of
momentum WRT time is also a force. Thus, the Navier-Stokes equation can there-
fore be viewed as a glorified form of Newton’s second law of motion.

Example 2.9 Derive the SS equation for 1D momentum in the z direction for an
inviscid fluid (viscosity approaches zero or is zero) with no pressure force and
negligible gravitational effects.

Solution Because the flow is SS, has no pressure force, and has negligible gravi-
tation, the following terms are deleted,

∂w
∂t

���� þ u
∂w
∂x

þ v
∂w
∂y

þ w
∂w
∂z

� �
¼ ν

∂2w
∂x2

þ ∂2w
∂y2

þ ∂2w
∂z2

� �
� 1

ρ
∂P
∂z

þ ���gz:

Because the flow is only 1D in the z direction, u and v are zero. Furthermore, there
are no gradients in the x or y direction, so those derivatives are zero as well.
Therefore,

u
∂w
∂x

þ v
∂w
∂y

þ w
∂w
∂z

� �
¼ ν

∂2w
∂x2

���� þ∂
2w

∂y2

���� þ ∂2w
∂z2

� �
:

The expression therefore simplifies to

w
∂w
∂z

¼ ν
∂2w
∂z2

:

Because w is solely a function of z, the partial derivative is just an ordinary
derivative,

ν
d2w

dz2
� w

dw
dz

¼ 0:

Example 2.10 Derive the transient partial differential equation (PDE) for 1D
momentum in the y direction for a viscous fluid with no pressure force and negligible
gravitational effect.

Solution Because the flow is only 1D in the y direction, u and w are zero, so those
terms can be dropped. Furthermore, there are no gradients in the x or z directions, so
any derivatives WRT those coordinates are also zero. Starting with Eq. 2.12B,

∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ w
∂v
∂z

� �
¼ ν

∂2v
∂x2

þ ∂2v
∂y2

þ ∂2v
∂z2

� �
� 1
ρ
∂P
∂y

þ gy,

and simplifying, then the sought-after differential is
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∂v
∂t

þ v
∂v
∂y

¼ ν
∂2v
∂y2

:

Now, if the viscosity is negligible, then v ∂v
∂y � ν ∂2v

∂y2, which allows for further

reduction to

∂v
∂t

¼ ν
∂2v
∂y2

,

where v ¼ v(y,t).
The Navier-Stokes equation can be simplified into many, very useful engineering

and design equations. For example, for 1D SS flows under a constant pressure
gradient with negligible gravitational and inertial terms (e.g., a Hagen-Poiseuille
type of flow), the x-momentum equation simplifies to

ν
∂2u
∂x2

� 1
ρ
∂P
∂x

¼ 0: ð2:16Þ

For laminar Hagen-Poiseuille internal flow in a smooth pipe, the conservation
equation for momentum in cylindrical coordinates yields

ΔP ¼ 32
μLu
D2 : ð2:17AÞ

It is noteworthy that the above expression shows that the pressure drop is a linear
function of the velocity for a laminar flow; by contrast, the pressure drop is a
nonlinear function of the velocity for turbulent flows. This once again attests to
the linear nature of laminar flows and the nonlinear behavior of turbulence. So, for
example, to say that a laminar flow transitioned onto turbulence is the same as
saying that a linear system just became nonlinear and vice versa.

At this point, it is convenient to define a dimensionless quantity fDarcy as the
Darcy friction factor,

f Darcy � 64
Re

, ð2:18AÞ

which is applicable in the laminar regime for smooth, internal flow. As a cautionary
note, the literature also uses the Fanning friction factor. This can lead to problems, as
the Darcy friction factor is four times the Fanning friction factor. So, in the laminar
regime for smooth internal flow (e.g., pipe, duct),

f Fanning � 16
Re

¼ f Darcy
4

: ð2:18BÞ
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Now, to see the utility of the laminar Hagen-Poiseuille formulation discussed
above, recall the definition for Re and fDarcy. Then expand Hagen-Poiseuille as
follows, until a familiar expression for pressure drop is teased out,

ΔP ¼ 32
μLu
D2 ¼ 64

2
L
D

μu
D

¼ 64
2

L
D

μu
D

uρ
uρ

¼ 64
Re

L
D

ρu2

2
¼ f Darcy

L
D

ρu2

2
: ð2:17BÞ

Example 2.11 Pressure is imposed at the inlet of a long, isothermal, horizontal tube
with a 0.002 m internal diameter and is 0.006 m long, as shown in Fig. 2.4. Water
enters at atmospheric pressure and 350 K. There is a 1 Pa pressure drop across the
tube. What is the expected mass flow rate and average velocity?

Solution Assume the flow is incompressible and laminar for now (neither the
velocity nor the mass flow rate are known, so Re and Ma are unknown at this
point). Because the mass flow rate is sought, it is reasonable to consider

_m ¼ ρuA unknown : _m, uð Þ:

A pressure drop is given, so Eq. 2.17A can be used if the flow is laminar,

ΔP ¼ 32
μLu
D2 unknown : uð Þ:

At this point, there are two equations and two unknowns (mass flow rate and u); ρ
and μ can be obtained based on the water pressure and temperature. Thus,
μ ¼ 368.6E�6 Pa-s and ρ ¼ 973.9 kg/m3. The speed of sound for water can be
readily obtained from a database (e.g., Engineering ToolBox) (ETB 2017). For this
application, its value is 1555 m/s. The pipe has a circular cross section, so the flow
area is πD2/4 ¼ 2.83E�5 m2.

Solving for u from the pressure drop expression,

u ¼ D2ΔP
32μL

¼ 0:002 mð Þ2 1 Pað Þ
32 368:6E�6Pa � sð Þ 0:006 mð Þ ¼ 0:057 m=s

Fig. 2.4 Pressure force
driving a fluid through a
cylindrical pipe
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Now that u is known, the mass flow rate can be calculated:

_m ¼ ρuA ¼ 973:9 kg=m3
� �

0:057 m=sð Þ 2:83E�5 m2
� � ¼ 0:0016 kg=s:

Now that u and _m are known, are we done? Not yet. It is necessary to check Re
and Ma to verify that the correct equations were used. To this effect,

Re ¼ xcharucharρ
μ

¼ Duρ
μ

¼ 0:002 mð Þ 0:057 m=sð Þ 973:9 kg=m3ð Þ
368:6E�6 Pa � s ¼ 301

and

Ma ¼ u
usound

¼ 0:057 m=s
1555 m=s

¼ 3:67E�05 � 0:3:

Therefore, the flow is laminar and incompressible, thereby corroborating that the
equations used to solve the problem are valid in the applied domain.

2.3 Introduction to Conservation of Energy

As with conservation of mass and momentum, the key idea regarding conservation
of energy is that it is neither created nor destroyed but is instead transformed from
one type of energy into another. That is, in this non-quantum domain, energy does
not appear from “nowhere,” as some quantum mechanics processes do when nuclear
particles and energies appear and disappear during a certain amount of time. Instead,
the CFD point of view considers conservation of energy in the nano-, micro-, and
macro-world. Furthermore, conservation of energy demands (proves) that there is no
such thing as a “perpetual motion machine” with a limitless energy supply that
appears out of thin air.

Conservation of energy is sufficiently general that it applies to both stationary and
mobile fluids, as they undergo complex energy transfer mechanisms. Thus, it is
expected that in its full form, the conservation of energy PDE is a formidable
expression. On the other hand, the conservation of energy equation collapses to
the familiar heat conduction equation for an immobile fluid, as will be shown later.

Simply stated, the energy time rate of change in a given body is the sum of the net
heat fluxes plus the rate of work done on the body as a result of body and surface
forces. That is, the net useful product from an energy system is a function of how
much heat it generates minus how much work was required to extract the useful
energy minus any heat losses/irreversible processes. In other words, the governing
equation for the conservation of energy is the first law of thermodynamics, but in a
highly-generalized format.
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_E ¼
X
i

_Qi �
X
i

_Wi: ð2:19AÞ

Note that the traditional Rudolf Clausius sign convention is adopted in the above
equation, with a negative sign in front of the work term; whichever form is used, the
key is consistency in the application of the terms.

The heat rates are represented as

_Qi ¼ ∂Qi

∂t
¼½ �Nm

s
¼ J

s
heat generation, conduction,

heat transferred by the fluid, etc:

� �
: ð2:19BÞ

The rate of work W done by a force F on a fluid moving at velocity V is

_W ¼ ∂W
∂t

¼ F
! � V! ¼½ �Nm

s
¼ J

s
pressure, viscous, body,

pumping, etc:

� �
ð2:19CÞ

Note that a “motionless” body has internal energy (e). For a gas, e arises from the
random movement of the atoms/molecules via their translational, rotational, vibra-
tional, and electronic modes. On the other hand, a fluid in motion has the following
specific kinetic energy K due to its bulk movement,

K ¼ V2

2
: ð2:20Þ

Therefore, a fluid has a total energy based on its internal and kinetic energy:

Etot ¼ eþ V2

2
: ð2:21Þ

In its glorified, full-expression, differential Eulerian form,

∂ ρEtotð Þ
∂t

þ∇
! � ρEtotV

!� �
¼ ρ _Qþ ∂

∂x
k
∂T
∂x

� �
þ ∂
∂y

k
∂T
∂y

� �
þ ∂
∂z

k
∂T
∂z

� �
 �

� ∂ uPð Þ
∂x

þ ∂ vPð Þ
∂y

þ ∂ wPð Þ
∂z


 �
þ

∂ uτxxð Þ
∂x

þ ∂ vτxy
� �
∂x

þ ∂ wτxzð Þ
∂x


 �

þ ∂ uτyx
� �
∂y

þ ∂ vτyy
� �
∂y

þ ∂ wτyz
� �
∂y


 �

þ ∂ uτzxð Þ
∂z

þ ∂ vτzy
� �
∂z

þ ∂ wτzzð Þ
∂z


 �

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
þ ρF

! � V!

ð2:22Þ

where k ¼ thermal conductivity.
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[Note: the “modern” convention (perhaps “goal” is more appropriate) is to have
the thermal conductivity k be replaced with λ. As to how successful that has been is
debatable. But, in the turbulence literature, λ is traditionally reserved for the Taylor
length scale, and k is reserved for the turbulence kinetic energy. Because the thermal
conductivity will be used sparingly in this book, k and λ will be reserved primarily
for the traditional turbulence variables. As always, the definition of a term is based
on context!]

Each term in the energy PDE has the following interpretation:

∂ ρEtotð Þ
∂t ¼ accumulation of total energy; rate change of total energy in the fluid,

∇
! � ρEtotV

!� �
¼ total energy change due to fluid convection,

ρ _Q ¼ volumetric heat source (e.g., point source, nuclear, chemical, heated surface),
∂
∂x k ∂T

∂x

� �þ ∂
∂y k ∂T

∂y

� �
þ ∂

∂z k ∂T
∂z

� �h i
¼ rate of energy change due to conduction,

∂ uPð Þ
∂x þ ∂ vPð Þ

∂y þ ∂ wPð Þ
∂z

h i
¼ work done on the fluid by the pressure forces,

∂ uτxxð Þ
∂x

þ ∂ vτxy
� �
∂x

þ ∂ wτxzð Þ
∂x


 �
þ ∂ uτyx

� �
∂y

þ ∂ vτyy
� �
∂y

þ ∂ wτyz
� �
∂y


 �
þ ∂ uτzxð Þ

∂z
þ ∂ vτzy

� �
∂z

þ ∂ wτzzð Þ
∂z


 �

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ rate of work done on the fluid by the

viscous forces, and

ρF
! � V! ¼ rate of work done on the fluid by the body forces (note: V

!¼ velocity, not
volume!).

At this point, constitutive equations in the form of thermodynamic relationships
are used to provide closure. For instance, the internal energy e can be a function
solely of pressure and temperature,

e ¼ e T ,Pð Þ: ð2:23Þ

As a simple application, a calorically perfect gas has constant specific heat and no
pressure dependency:

e ¼ CvT : ð2:24Þ

Of course, Cv need not be constant and in fact is often a function of P and T.
As mentioned earlier, Eq. 2.22 includes fluid motion in various terms, thereby

coupling energy and momentum transfer. However, should the fluid become motion-
less (and with certain assumed conditions, such as k 6¼ k(x,y,z), ρ 6¼ ρ(t), no heat
sources, no body forces, and a calorically perfect gas), the generalized energy
equation collapses onto the well-known transient, 3D heat conduction equation, as
will be shown next. First, expand Etot into its two components (internal and kinetic
energy),
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Etot ¼ CvT þ V2

2
: ð2:25Þ

Next, substitute Eq. 2.25 into Eq. 2.22, and delete the terms discussed above
based on those assumptions. Then,

∂ ρ CvT þ jV2
� �h i

∂t
þ∇

! � ρ CvT þ ���
V2

2

� �
 �
V
!��� ¼ ρ _Q þ k

∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �

� ∂ uPð Þ
∂x

þ ∂ vPð Þ
∂y

þ ∂ wPð Þ
∂z

" #
þ

∂ uτxxð Þ
∂x

þ ∂ vτxy
� �
∂x

þ ∂ wτxzð Þ
∂x

24 35

þ ∂ uτyx
� �
∂y

þ ∂ vτyy
� �
∂y

þ ∂ wτyz
� �
∂y

264
375

þ ∂ uτzxð Þ
∂z

þ ∂ vτzy
� �
∂z

þ ∂ wτzzð Þ
∂z

24 35

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

þ ρF
! � V!

ð2:26AÞ

which reduces to

ρCv
∂T
∂t

¼ k
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �
: ð2:26BÞ

At this point, it is convenient to define the thermal diffusivity as

α ¼ k
ρCv

ð2:26CÞ

and insert it into Eq. 2.26B, yielding

∂T
∂t

¼ α
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �
¼ α∇2T : ð2:26DÞ

This completes the derivation of the well-known 3D transient conduction equa-
tion. Though fairly easy to derive from the generalized energy conservation equa-
tion, the point is just how physics-rich the generalized energy equation is and how
similar it is to the viscous flow of fluids in PDE:

∂u
∂t

¼ ν
∂2u
∂x2

þ ∂2v
∂y2

þ ∂2w
∂z2

� �
¼ ν∇2V : ð2:26EÞ
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2.4 Introduction to Turbulence Theory

Consider the Navier-Stokes equation in 1D, and assume the pressure and gravity
terms are negligible. WLOG, choose flow in the x coordinate, with v and w being
zero. Of course, turbulence is a 3D phenomenon, but the 1D case being considered at
this point describes a crucial transition from stability to instability—that is, from
laminar to turbulent flow:

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

 !
¼ μ

∂2u
∂x2

þ∂2u
∂y2

���� þ∂2u
∂z2

����� �
� ∂P

∂x

����
þ ���ρgx: ð2:11A0Þ

Collecting the remaining terms,

ρ
∂u
∂t

¼ μ
∂2u
∂x2

� ρu
∂u
∂x

, ð2:11A00Þ

which is the transient Burgers’ Equation. As discussed earlier, the second-order
derivative acts as a damping force, driven by viscosity. Thus, the higher the
viscosity, the higher the damping. This is confirmed when the above equation is
nondimensionalized (represented with the “~” symbol), whereby the viscous PDE
term now shows a crucial inverse Reynolds number (Re) dependency,

∂eu
∂et ¼ 1

Re
∂2eu
∂ex2 � eu∂eu∂ex ð2:11A000Þ

where

Re � xcharucharρ
μ

¼ Inertial convectiveð Þ force
Viscous force

: ð2:27Þ

At steady state, the Burgers’ Equation shows the following momentum balance,
ρu ∂u

∂x ¼ μ ∂2u
∂x2; that is, the convective term equals the viscous term. Using some

scaling analysis (refer to Sect. 6.4.2) allows the following interpretation for Re:

Re ¼ Convective force term
Viscous force term

¼ nonlinear
linear

¼ ρu ∂u
∂x

μ ∂2u
∂x2

	 ρu u
x

μ u
x2
¼ xuρ

μ
: ð2:28Þ

Re is therefore the ratio of the inertial and viscous force, and the higher the Re is,
the stronger the convective force is compared to the viscous force. For example, as
the dynamic viscosity μ increases, viscous damping increases, so Re decreases.
Conversely, Re increases as the viscous term decreases or the velocity increases.
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Note that the inertial (convective) term (the second term on the RHS of Eq. 2.11A”’)
increases rapidly as a function of velocity times the gradient of the velocity. As the
magnitude of the convective term continues to increase and eventually becomes
much larger than the viscous term, there results a “runaway” flow instability
whereby the damping effect is marginalized. Therefore, 3D instabilities form and
become rampant as Re continues to increase. From this critical point on, the laminar
flow becomes turbulent and evermore chaotic as Re continues to increase. That is, in
nondimensionalized form,

eu∂eu
∂ex � 1

Re
∂2eu
∂ex2 laminarð Þ ð2:29AÞ

and

eu∂eu
∂ex 
 1

Re
∂2eu
∂ex2 turbulentð Þ: ð2:29BÞ

Thus, when the damping force is much larger than the inertial (convective) force,
the flow is stable (laminar). By contrast, the damping force is much smaller than the
inertial force, and the flow becomes unstable (turbulent). Again, this is not surpris-
ing, as Re is the ratio of the inertial and viscous damping forces.

For convenience, let the momentum equation be described in its nonconservative
form, using the material derivative (defined later Eq. 2.42):

DV
!

Dt
¼ ∂V

!

∂t
þ∇

! � V!V! ¼ μ
ρ
∇2V

! � 1
ρ
∇
!
Pþ g

!
: ð2:30AÞ

After non-dimensionalizing the primitive variables and some algebra, Re appears
again:

D eV!
Det ¼ ∂ eV!

∂et þ e∇!� eV! eV!¼ 1
Re
e∇2 eV!� e∇!ePþ 1

Fr
eg!, ð2:30BÞ

where the Froude number, Fr, is defined as (White 1991)

Fr � u2

gxx
: ð2:30CÞ

Because there is a 1/Re coefficient in front of the normalized viscous damping
term, a decreased Re implies the second-order differential increases in magnitude.
That is, its “braking (damping) power” increases, thereby mitigating potential flow
instabilities. Thus, if any instabilities attempt to form turbulent coherent structures,
the damping force is sufficiently large to mitigate eddy formation, thereby allowing
the flow to continue in a stable, laminar fashion.
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The converse is true: decreasing μ decreases the viscous damping, and Re
increases. A larger Re means that the nonlinear inertial term increases. Because of
the inverse Re relationship, the second-order differential decreases in magnitude.
That is, its “braking power” decreases, thereby rendering it unable to mitigate flow
instabilities, inevitably causing a transition from stable laminar flow to unstable
turbulent flow. Thus, the turbulent instabilities arise from the nonlinear
convective term.

Thus, turbulence arises over the excess of the nonlinear convective term com-
pared with the linear viscous momentum term; the linear viscous term tends to
produce laminar sheets, while the nonlinear convective term tends to produce
sinuous coherent structures. Basically, laminar flow can be visualized as sheets of
flow moving past each other, much like poker cards being pushed gently, with the
cards sliding past each other, as shown at the top of Fig. 2.5. Laminar flows can also
be viewed as consisting of straight, coherent filament motion that does not crisscross.
As Osborne Reynolds noticed in 1883, when ink was injected into a horizontal
transparent tube with water flowing internally, the ink basically followed straight
lines when the flow was laminar, without deviating from their path (Reynolds 1883).
However, as the water velocity increased in “small stages,” the ink “would all at
once mix up with the surrounding water and fill the rest of the tube with a mass of
colored water. . .” Then, as Reynolds illuminated the flow with an electric spark, he
noticed that it was characterized by “distinct curls, showing eddies,” which are
shown conceptually at the bottom of Fig. 2.5. As the convective term increased,
the instabilities increased, producing an eddying motion that caused energetic local
swirling of the fluid—turbulent eddies. The vorticity in eddies is extremely high as a
result of their rotational nature, as the coherent structures stretch. Energy from the
main flow is nearly instantaneously transferred to eddies via mechanisms that are not
well-known (at least as of 2019). It is this energy that forms and feeds the chaotic,
large eddies. Because turbulent mixing generates hundreds to thousands of times
(or more) mixing than laminar flow, the net benefits are much higher heat transfer,
augmented species mixing, more efficient combustion, and so forth.

More often than not, unstable states eventually tend to transition into more stable
states. Paradoxically, turbulent flow is not a “stable” state onto which nature
transitions in order to achieve additional stability as the flow leaves the laminar
regime—quite the opposite! In general, the higher the Re, the higher the randomness

Fig. 2.5 Conceptual view
of flow if ink were placed in
the fluid:
laminar vs. turbulent
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in the flow. More paradoxically yet, the flow drag coefficient for certain curved
surfaces can decrease precipitously as Re increases (Eiffel paradox; discussed in
Sect. 3.7).

Figure 2.6 shows the velocity profiles in a pipe for the laminar and turbulent
cases. Notice that turbulence flattens the velocity profile in the center and increases
the velocity distribution near the wall; otherwise, the profiles would appear remark-
ably similar. Nevertheless, the flow behaves remarkably different! In reality, the
turbulent velocity profile shown in Fig. 2.6 is actually a time-averaged distribution.
As a result, the turbulent profile looks quite continuous. However, if instantaneous
snapshots were taken, the profile would be quite irregular (wavy), and because
turbulent flow is random, no two snapshots would ever look exactly the same!
However, in the limit as more and more snapshots are taken and averaged, the
profile approaches the shape shown in Fig. 2.6. The chaotic, non-repetitive behavior
is shown conceptually in Fig. 2.7.

As the flow transitions into turbulence, rapid pressure and velocity fluctuations
(also known as pulsations) occur in both compressible and incompressible flows.
Here, “fluctuations” refer to random, fast changes in a given variable, having
dynamic spatial regions that are generated as molecular motion swirls collectively,
forming “coherent structures.” Coherent structures are “grouped” fluid particles that
move in unison as they rotate, stretch, translate, and decay. These are the “distinct
curls” envisioned by Reynolds—turbulent eddies. As the flow becomes turbulent, it
forms 3D coherent structures that are unstable WRT time and space. This is what is
best described classically by Hinze as turbulent flow with “irregular”
(nondeterministic) fluid motion (Hinze 1987):

Turbulent fluid motion is an irregular condition of flow in which the various quantities show
a random variation with time and space coordinates, so that statistically distinct average
values can be discerned.

That is, random variations in pressure and velocity occur in space and time for
incompressible flows. And these random variations (fluctuations) conform to pre-
dictable statistics. Paradoxically, turbulent flow involves a high degree of random-
ness that generates rather predictable, coherent patterns! Besides velocity and
pressure fluctuations, compressible flows include density variations as well.

Fig. 2.6 Laminar vs.
turbulent velocity
distribution in a pipe
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There exist a wide range of spatial and temporal scales for eddies. Their spatial
range is as small as the Kolmogorov scale and about as large as the characteristic
flow length scale—the integral eddies (this subject and related definitions are
covered in detail in Sects. 3.1, 3.2, and 3.3). The time scales are associated with a
range of eddy sizes, with the largest eddies having the largest time scales and the
smallest eddies having the smallest time scales (they have shorter lives before they
decay unto laminarity). As a result of the different time scales, some fluctuations
seemingly appear as near-instantaneous manifestations, while others change at a
much slower pace. The fluctuations are much faster when compared to the time-
averaged flow properties. The time and space scales can be modeled mathematically
via Fourier analysis, with the time scale being associated with a frequency, while the
space scale is associated with a wavelength.

Turbulent flows require an energy source to feed its turbulent behavior, as eddies
decay rapidly WRT time; that is, the coherent structures diminish in size and
fluctuating magnitude, until they transform onto a laminar region in space having
no fluctuations and no randomness.

2.5 Introduction to Turbulence Modeling

Most engineering and industrial flows are turbulent (White 1991). One exception is
blood flow in a healthy person. However, as fatty deposits and cholesterol block the
veins and arteries, the flow area becomes constricted, so the flow becomes turbulent.
Another exception is a reentry vehicle as it pierces through the rarefied atmosphere.
This is a low Re problem because the kinematic viscosity is extremely large (density

Fig. 2.7 Time-averaged distribution (thick black line) vs. instantaneous velocity distributions (all
others)
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is very small, so the kinematic viscosity becomes very large). The vast majority of
nano- and micro-devices exhibit laminar flow, but there are exceptions (Groisman
and Steinberg 2000; Wang et al. 2014). For fluids with a relatively low viscosity,
such as water, if the fluid is flowing internally in a pipe or duct with a characteristic
length on the order of a cm or more, and at a speed of 1 m/s or higher, then the flow
will inevitably be turbulent. On the one hand, turbulence requires energy (e.g., a
pump). Generated at the cost of some pumping force or mechanism, turbulent flows
are highly diffusive, meaning they have a strong mixing capacity. Therefore,
momentum, mass, chemical species, energy, and so forth are rapidly “mixed,”
thereby generating countless practical engineering applications. So long as the cost
to generate turbulence is repaid via its mixing capacity, turbulence is desirable, but
the converse is also true. Consequently, it is crucial to understand how to model
turbulent flows for more efficient industrial processes, increased safety margins, and
higher profitability.

As noted in Fig. 2.5, a turbulent flow consists of the superposition of the
continuous spectrum of small to large eddies, as well as discrete regions where the
flow is laminar (e.g., the viscous sublayer, regions in the intermittent boundary, and
numerous tiny regions where the Kolmogorov eddies have decayed back to laminar
flow). Each eddy represents a coherent cluster of fluid atoms or molecules that move
in unison, hence the name, “coherent structure.” Because all turbulent flows involve
randomness, if an “instantaneous velocity snapshot” were taken of the fluid, the
velocity distribution would appear discontinuous, as shown in Fig. 2.7. For all
curves except the black, thick solid line shown in the center, the velocity distribu-
tions are similar to the random walk (path) of a dizzy person—they are rather
discontinuous and erratic. This is the case because the eddies move fairly indepen-
dently of each other, and it is their superposition over time that results in the more
familiar, time-averaged continuous distribution shown by the thick, black curve in
the central region of Fig. 2.7. The black curve was generated by summing 10 random
instances—the sum of the random instantaneous velocities converges onto a statis-
tically predictable, continuous, time-averaged velocity distribution. Thus, when it
comes to turbulence, there is order in disorder and determinism in randomness!

As noted already, the instantaneous velocity distribution is not smooth but is
instead composed of a multitude of irregular velocity distributions shaped by the
superposition of the eddies: any eddy moving forward generates a positive bump in
the velocity distribution, while those eddies that are circulating in a backward motion
generate backward bumps. In other words, the shape of the time-averaged velocity is
forged by the sum of the eddies, and the small, mid-sized, and large wiggles are
caused by the small, mid-sized, and large eddies, respectively; see Fig. 2.8. Note that
eddies typically have velocities that are about 1/100th to 1/10th of the mean velocity;
a methodology for calculating eddy velocity is presented in Chap. 3.

In summary, turbulent flow is the dynamic superposition of an extremely large
number of eddies with random (irregular) but continuous spectrum of sizes and
velocities that are interspersed with small, discrete pockets of laminar flow (as a
result of the Kolmogorov eddies that decayed, as well as in the viscous laminar
sublayer and in the intermittent boundary). In this sense, turbulent flow is intractable
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in its fullest manifestation; this is where good, engineering common sense and
approximations can deliver reasonable solutions, albeit approximate.

The first attempt to tract a seemingly intractable problem consisted of considering
eddy behavior over a sufficiently long period of time. This allows their behavior to
be time-averaged, thereby greatly simplifying its mathematical behavior (Reynolds
1895). Following Reynolds’ original notation (Reynolds 1895) (as well as others,
e.g., (Bird et al. 2007; CFD-online 2017a)),

u x
!, t
� �

¼ u x
!� �

þ u0 x
!, t
� �

ð2:31AÞ

or

u ¼ uþ u0 short‐handð Þ ð2:31BÞ

where

u ¼ instantaneous velocity has x
!, t dependence

� �
u ¼ mean velocity only has x

! dependence because it is integrated over a time
� �

u0 ¼ instantaneous velocity fluctuation has x
!, t dependence

� �
The above splitting (decomposition) of instantaneous flow into an average quan-

tity and its associated fluctuating quantity is called Reynolds decomposition, in
honor of its originator, Osborne Reynolds. The fluctuating quantities, e.g., u0, are
mathematical abstracts intended to quantify the eddy fluctuations. This reasoning is
similar to the stock market, where the minute-by-minute changes in stock prices are
analogous to the instantaneous changes in fluid velocity that are generated by the
eddy fluctuations. But, as stock prices are smoothed over a longer period, say daily,

Fig. 2.8 The relationship
between eddies,
instantaneous velocity
distribution, and time-
averaged distribution
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50-day average, and a 200-day average, the fluctuating price curve becomes
smoother and smoother, as shown in Fig. 2.9 (the longer the time-averaging, the
flatter the curve). Thus, the time-averaged price curves are analogous to the time-
averaged velocity, so economists ought to be good turbulence modelers, and perhaps
good turbulence modelers ought to make great stock market profits!

Note that some authors use a different notation than the original Reynolds’
formulation (e.g., Wilcox):

u x
!
, t

� �
¼ U x

!� �
þ u0 x

!
, t

� �
ð2:32AÞ

or

u ¼ U þ u0 short handð Þ: ð2:32BÞ

Clearly, u � U. The Reynolds notation offered by Eqs. 2.31A and 2.31B will be
used throughout this text because:

• Reynolds was the first to define the variable notation.
• A bar gives the sense of an operation (usually an average), while an uppercase

letter provides no mathematical guidance.
• The Reynolds notation is the most prevalent in the literature.

That said, serious turbulence students should always follow the context, as well as
be familiar with both notations.

Now define arbitrary variables ϕ and ϕ to represent the following primitive

variables: ρ, T, P, u, v, and w. More precisely, let ϕ ¼ f x
!, t
� �

indicate a spatial

and temporal dependency. Further, ϕ ¼ F x
!� �

represents the time-averaged primi-

tive variable obtained by integration WRT time,

Fig. 2.9 Stock market instantaneous and averaged prices have a similar nature as turbulent flow
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ϕ x
!� �

� lim
T!1

1
T

ZtþT

t

ϕ x
!, t
� �

dt: ð2:33Þ

T ! 1 refers to a sufficiently long time period, at least sufficiently long to
capture a reasonable number of fluctuations that yield a stationary domain. Equation
2.33 defines how a time-averaged (“mean”) turbulence quantity is obtained by
integrating all the instantaneous changes over a period of time. It is referred here
as the “bar operation,” and shortly, its utility will be demonstrated in the derivation
of the turbulent mass and momentum equations.

Example 2.12 Express the three instantaneous turbulence velocity equations in
terms of their mean and fluctuating velocity terms. For simplicity, consider a
Cartesian system.

Solution Let ϕ x
!, t
� �

¼ ϕ x
!� �

þ ϕ0 x
!, t
� �

in vector notation, or

ϕi xi, tð Þ ¼ ϕi xið Þ þ ϕ0
i xi, tð Þ in index notation where i ¼ 1, 2, 3 ¼ x, y, z:

This means that:

x1 ¼ x, x2 ¼ y, and x3 ¼ z:

ϕ1 ¼ u1 ¼ u,ϕ2 ¼ u2 ¼ v, and ϕ3 ¼ u3 ¼ w:

Then, u x, y, z, tð Þ ¼ u x, y, zð Þ þ u0 x, y, z, tð Þ,

where

u ¼ uþ u0 same as above, but in simpler notationð Þ
v ¼ vþ v0

w ¼ wþ w0

Example 2.13 What is the time-averaged x-direction velocity in Cartesian
coordinates?

Solution Recall that

ϕ x
!� �

¼ lim
T!1

1
T

ZtþT

t

ϕ x
!, t
� �

dt

and

ϕ x
!
, t

� �
¼ ϕ x

!� �
þ ϕ0 x

!
, t

� �
:

For this situation, ϕ ¼ u and ϕ ¼ u. From ϕ ¼ ϕþ ϕ0 ) u ¼ uþ u0. Now
substitute ϕ ¼ u and ϕ ¼ u onto the above integral:
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u ¼ lim
T!1

1
T

ZtþT

t

udt ¼ lim
T!1

1
T

ZtþT

t

uþ u0ð Þdt:

The above expression is simply the definition of u.

Example 2.14 What is the time-average of a time-averaged value?

Solution Consider u and perform the bar operation on it:

u ¼ lim
T!1

1
T

ZtþT

t

udt ¼ u:

So, the mean of a mean is still a mean.

Example 2.15 What is the mean of a fluctuating quantity?

Solution Apply the averaging operation onto u0 (i.e., the bar operation):

u0 ¼ lim
T!1

1
T

ZtþT

t

u0dt ¼ lim
T!1

1
T

ZtþT

t

u� uð Þdt ¼ u� u ¼ u� u ¼ 0:

Therefore, the time-averaged value for the instantaneous fluctuations is zero,
because in due time, the fluctuations should average out.

The equations listed below summarize many useful time averages:

u0 ¼ 0, ups and downs average out to zero;equal probabilityð Þ ð2:34AÞ
u ¼ u, the mean of a mean is a mean . . .ð Þ ð2:34BÞ

uu0 ¼ 0, taking the mean of a mean quantity times its fluctuation is 0ð Þ ð2:34CÞ
u0u ¼ 0, the mean of a fluctuation times its mean is 0ð Þ ð2:34DÞ

∂u
∂x

¼ ∂u
∂x

, differential is insensitive in space;commutationð Þ ð2:34EÞ

∂u
∂t

¼ ∂u
∂t

, differential is insensitive in timeð Þ ð2:34FÞ

u0iu
0
j 6¼ 0;where i 6¼ j, ð2:34GÞ

u0iu
0
i ¼ u02i 6¼ 0, ð2:34HÞ
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I ¼ It ¼ turbulence intensity ¼
ffiffiffiffiffiffi
u02

p
u

� u0

u
, ð2:34IÞ

abc0 ¼ 0, ð2:34JÞ
ab0c0 6¼ 0, ð2:34KÞ

and

aþ b ¼ aþ b linearityð Þ: ð2:34LÞ

The turbulence intensity is a very useful metric for characterizing turbulence. Of
course, the fluctuating velocity is difficult to estimate, though several very useful
approximations exist. For example, the turbulence intensity can be approximated as
a function of Re, showing that the turbulence fluctuations decrease as Re increases
(CFD-online 2017b).

I 	 u0

u
¼ 0:16Re �1=8

h : ð2:35AÞ

Equation 2.35A is suitable for the core of a fully developed internal pipe/duct
flow. Re uses the hydraulic diameter and hence the lower case “h.” From Eq. 2.35A,
it follows that

u0 	 0:16u Re ‐1=8
h : ð2:35BÞ

Of course, usage of Eq. 2.35B to estimate u0 alludes to a fluctuating quantity that
is somehow “characteristic” of a given turbulent flow and must be solely construed
as such. In reality, u0 will occupy a significant velocity range. Furthermore,
Eq. 2.35B shows a smooth, continuous Re dependency, whereas u0 is more akin to
a random compilation of discontinuous velocity spikes with an irregular pattern.
Therefore, how can u0 possibly relate to a continuous function of Re? Because
turbulence averages are routinely used to characterize flow, the above Re relation-
ship is fair game, especially if the eddy distribution covers a narrow wavenumber
range that contains a significant fraction of the eddy population—it therefore
characterizes the collective performance of a group of fairly similar eddies, whose
behavior reflects a reasonable segment of the turbulence behavior in question.

Note that when performing Reynolds decomposition, it is not a good idea to
ignore the instantaneous (primed) quantities. For example, ignoring u0 because
u0j j � uj j is not a good approximation, as fluctuations can be much larger than
0:1u. That is, the turbulence intensity can often exceed 10% or more, as those who
have flown can certify when they felt a turbulence bump in midair. Note that
absolute quantities were considered because fluctuations can be negative.
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Large fluctuations can be expected in the following situations:

• Flow near the wall (y+ in the range of 7–30)
• Free shear flow
• Atmospheric boundary layer flow
• High speed flows
• Complex geometries (e.g., heat exchangers, turbomachinery)

Now, if instead of a time average, a spatial average is desired, then

ϕ tð Þ ¼ lim
V!1

1
V

ZZZ
V

ϕ x
!
, t

� �
dxdydz: Note that V is volume, not velocity:ð Þ

ð2:36Þ

Because the definite integral is computed over a specific range in space, the
resultant is solely a function of time. Spatial averages are suitable for homogeneous
turbulence, i.e., for turbulent flows that, on an average basis, are uniform in any
direction. Other averages exist, such as the ensemble and Fabre averages; refer to
Wilcox (2006) for additional information. Ensemble averages are useful for exper-
imental flow measurements that decay as a function of time, while Fabre averages
are suitable for compressible fluids, where the density now requires an additional
Reynolds decomposition, ρ ¼ ρþ ρ0.

For the purpose of this text, only time averages as applied to Reynolds-averaged
Navier-Stokes (RANS) turbulence models will be considered. Thus, the flows
considered herein are incompressible and therefore do not require Fabre averages.
An “average redefinition” suitable for large eddy simulation (LES) will be consid-
ered in Sect. 5.1.1.

At this point, the turbulent conservation of mass and momentum equations can be
derived by using Reynolds decomposition and integrating the equations over time
(the bar operation). Assume the fluid is incompressible (divergence of the flow field
is zero), SS, there are no heat sources, and the system is Cartesian (WLOG). Then,
the conservation of mass equation becomes

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0: ð2:37AÞ

Using Reynolds’ decomposition, let

u ¼ uþ u0

v ¼ vþ v0

w ¼ wþ w0

8><>: ð2:38Þ

Now substitute the decomposed velocities into the conservation of mass PDE,
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∂
∂x

uþ u0ð Þ þ ∂
∂y

vþ v0ð Þ þ ∂
∂z

wþ w0ð Þ ¼ 0,

which expands to

∂u
∂x

þ ∂u0

∂x
þ ∂v

∂y
þ ∂v0

∂y
þ ∂w

∂z
þ ∂w0

∂z
¼ 0:

Next, perform time-averaging on the conservation of mass PDE, i.e., integrate
over time via the bar operation. Recall that

u0 ¼ 0 ð2:39AÞ

and

u ¼ u: ð2:39BÞ

Therefore,

∂u
∂x

þ∂u0

∂x

���� þ ∂v
∂y

þ∂v0

∂y

���� þ ∂w
∂z

þ∂w
0

∂z

���� ¼ 0,

which results in the mass conservation PDE for turbulent flow,

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0: ð2:37BÞ

Thus, turbulent mass conservation is solely a function of the time-averaged
velocities. Next, a similar approach can be applied to the momentum equations, as
follows. WLOG, consider the x-direction in a Cartesian system with a turbulent flow
that is incompressible, unheated, and Newtonian. Because the flow is incompressible
and unheated, the density fluctuations can be ignored, and the gravitational term is
immediately neglected.

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ρ

∂u
∂t

þ ρ
∂uu
∂x

þ ∂uv
∂y

þ ∂uw
∂z

� �
¼� ∂P

∂x
þ μ∇2uþ ���ρgx:

ð2:40AÞ

Now apply Reynolds’ decomposition, where

u ¼ uþ u0; v ¼ vþ v0; w ¼ wþ w0; P ¼ Pþ P0: ð2:41Þ

Then,
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ρ
∂ uþ u0ð Þ

∂t
þ ρ

∂ uþ u0ð Þ uþ u0ð Þ
∂x

þ ∂ uþ u0ð Þ vþ v0ð Þ
∂y

þ ∂ uþ u0ð Þ wþ w0ð Þ
∂z


 �
¼ �∂ Pþ P0� �

∂x
þ μ∇2 uþ u0ð Þ þ ���ρgx

Again, recall that u0 ¼ 0 and u ¼ u, etc. After some straightforward
simplification,

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
þ ρ

∂u0u0

∂x
þ ∂u0v0

∂y
þ ∂u0w0

∂z

� �
¼ �∂P

∂x
þ μ∇2u:

For comparison with other texts, the averaged velocity in the second term on the
left-hand side (LHS) can be included into the partial differential terms by noting that
the system is incompressible. In such case, then

u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

¼ ∂uu
∂x

þ ∂uv
∂y

þ ∂uw
∂z

:

Therefore, the turbulent x-momentum becomes

ρ
∂u
∂t

þ ρ
∂uu
∂x

þ ∂uv
∂y

þ ∂uw
∂z

� �
þ ρ

∂u0u0

∂x
þ ∂u0v0

∂y
þ ∂u0w0

∂z

� �
¼ �∂P

∂x
þ μ∇2u: ð2:40BÞ

Applying the same operations to the y- and z-momentum equations,

ρ
∂v
∂t

þ ρ
∂vu
∂x

þ ∂vv
∂y

þ ∂vw
∂z

� �
þ ρ

∂v0u0

∂x
þ ∂v0v0

∂y
þ ∂v0w0

∂z

� �
¼ �∂P

∂y
þ μ∇2v ð2:40CÞ

and

ρ
∂w
∂t

þ ρ
∂wu
∂x

þ ∂wv
∂y

þ ∂ww
∂z

� �
þ ρ

∂w0u0

∂x
þ ∂w0v0

∂y
þ ∂w0w0

∂z

� �
¼ �∂P

∂z
þ μ∇2w: ð2:40DÞ

The material derivative operator, D, is defined as the superposition of the
following temporal and spatial derivatives:
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D
Dt

� ∂
∂t

þ V
!�∇!
� �

: ð2:42Þ

Now, Eqs. 2.40B, 2.40C, and 2.40D can be written succinctly in vector-tensor
format, along with the material derivative, such that

ρ
DV
!
Dt

¼ ρ
∂V
!
∂t

þ ρV
!
∇
! � V!¼ �∇

!
P�∇

! � τ
!!þ R

!!� �
ð2:43Þ

where

τij ¼
τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

�������
������� ð2:44AÞ

with i ¼ 1:3 for x, y, and z and j ¼ 1:3 for x, y, and z in Cartesian form. In its full
expression, the shear tensor τ is

τ ¼ �μ

∂u
∂x

þ ∂u
∂x

� �
� 2
3
∇
! � V! ∂u

∂y
þ ∂v

∂x

� �
∂u
∂z

þ ∂w
∂x

� �
∂v
∂x

þ ∂u
∂y

� �
∂v
∂y

þ ∂v
∂y

� �
� 2
3
∇
! � V! ∂v

∂z
þ ∂w

∂y

� �
∂w
∂x

þ ∂u
∂z

� �
∂w
∂y

þ ∂v
∂z

� �
∂w
∂z

þ ∂w
∂z

� �
� 2
3
∇
! � V!

266666664

377777775
:

ð2:44BÞ

Note that ∇
! � V!¼ 0 for incompressible fluids. The Reynolds stress tensor is

defined as

R
!!� �u0iu

0
j ¼ �

u0u0 u0v0 u0w0

v0u0 v0v0 v0w0

w0u0 w0v0 w0w0

264
375: ð2:45Þ

Note that R is a tensor formed by each of the three terms in the three momentum
equations, for a total of nine terms. Like τ, R is symmetric, meaning that only six of
the nine terms are independent. That is, Rij ¼ Rji.

Because it appears ubiquitously in turbulence literature, the mean strain rate
tensor S is conveniently defined here as

S
!!¼ 1

2μ
τ
!!
: ð2:46Þ
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At this point, either the three expanded momentum equations (Eqs. 2.40B, 2.40C,
and 2.40D) or the momentum vector-tensor representation (Eq. 2.43) can be used in
conjunction with Eqs. 2.44A, 2.44B, and 2.45 to calculate the RANS velocity
equation, if the expressions for the primed quantities for the six independent
Reynolds stresses were known! Because there are six unknown quantities, an
additional six independent quantities are still needed! This is the famous “closure
problem” that has plagued turbulence modeling since 1895 to the present and is not
going away any time soon. The Reynolds stresses are therefore approximated
(modeled) experimentally, empirically, or numerically (e.g., DNS). Bold engineers,
in a desire to reach closure, began attempting ways to relate the fluctuating properties
onto the averaged quantities, based on dimensional arguments and a gradient
transport analogy. So, for better or for worse, these arguments are employed fairly
commonly in turbulence research. In this case,

�u0iϕ
0 � ∂ϕ

∂xi
, ð2:47AÞ

where ϕ is any primitive variable, e.g., u, v, w, T, P, ρ, etc. An inspection of
Eq. 2.47A shows that it can be made fully dimensionless by including a quantity
that has units of m2/s. Out of incredible inspiration (or desperation!), a new quantity
was coined, “turbulent kinematic viscosity,” νt, which is analogous to the kinematic
viscosity. Hence,

�u0iϕ
0 ¼ νt

∂ϕ
∂xi

: ð2:47BÞ

The turbulent kinematic viscosity is typically orders of magnitude higher than the
fluid viscosity, thus providing a reasonable way to gauge the degree of turbulence in
a flow:

νt
ν

 1: ð2:48Þ

• Some Notes Regarding Turbulent Viscosity

That νt 
 ν is consistent with the expectation that the more turbulent the flow is,
the larger νt will be. At this point, it is noteworthy to point out that both the
kinematic viscosity and the turbulence viscosity have the same units and similar
names. But, that is where the similarities end. The kinematic viscosity is based on the
fluid type, pressure, and temperature and is a measure of damping, with higher
kinematic viscosity resulting in higher damping. On the other hand, the turbulent
kinematic viscosity is based on Re, where the higher Re is, the higher the turbulent
kinematic viscosity. Thus, the turbulent viscosity is a measure of the degree of
turbulence being experienced by the fluid, with higher turbulent viscosities implying
a higher degree of turbulence. Conversely, the smaller νt is, the lower the degree of
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turbulence in the local region. In fact, if νt ! ν, then it is a safe bet that the flow is
laminar.When turbulence codes under predict νt, they are said to be “overdamping”
(e.g., the SKE has a tendency to overdamp near the wall) (Zhao et al. 2017).

Note that whereas the dynamic and kinematic viscosities are always positive, the
turbulent dynamic and turbulent kinematic viscosities can become negative if the
eddies are violent enough to impart energy onto the mean flow. Though not
common, it is an issue associated with large-scale flows with high anisotropy such
as violent weather patterns (Sivashinsky and Yakhot 1985; Dubrulle and Frisch
1991; Sivashinsky and Frenkel 1992) and ferrofluids under alternating magnetic
fields at high frequencies (Shliomis and Morozov 1994).

Continuing on, each of the nine Reynolds stresses can finally be approximated
using Eq. 2.47B and letting ϕ0 refer to u0, v0, or w0,

R � �
u0u0 u0v0 u0w0

v0u0 v0v0 v0w0

w0u0 w0v0 w0w0

�������
������� 	 νt

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

������������

������������
ð2:49AÞ

where

νt ¼ μt
ρ
: ð2:49BÞ

However, a new unknown was introduced, νt, that now requires an additional
equation to solve.

The approximation from Eq. 2.49A takes inspiration from the Newtonian stress
tensor,

τ
!!¼ 2μ s

!!þ 2
3
μ� λ

� �
∇
! � V!
� �

I
!!

compressible,∇
! � V! 6¼ 0

� �
ð2:50AÞ

τ
!!¼ 2μ s

!! incompressible,∇
! � V! ¼ 0

� �
ð2:50BÞ

where

sij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
Laminar strain rate tensor:ð Þ ð2:50CÞ

The Boussinesq turbulence approximation (not to be confused with Boussinesq
buoyancy) assumes an analogous expression to the laminar Newtonian stress tensor,
thereby asserting that
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R
!!� 2νt S

!!� 2
3
k I
!!¼ νt

∂ui
∂xj

þ ∂uj
∂xi

� �
� 2
3
kδij ð2:51AÞ

where

I ¼ δij ¼
1 0 0

0 1 0

0 0 1

�������
�������, ð2:51BÞ

Sij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
turbulent strain rate tensorð Þ, ð2:51CÞ

and k is the turbulence kinetic energy.
The approximation asserts that the Reynolds stress tensor R is proportional to the

mean strain rate tensor S, with the proportionality being twice the turbulent kine-
matic viscosity. Thus, R is “aligned” with S along the principal axes (Hinze 1987;
Peng and Davidson 1999; Wilcox 2006). The vast majority of the RANS-based
turbulence models use this linear constitutive relationship for closure to estimate the
Reynolds stresses; this is at the core of many modern one- and two-equation RANS
models. The approximation is sometimes referred to as the Boussinesq hypothesis,
but because it is more akin to an “assumption,” Wilcox referred to it as the
Boussinesq assumption (Wilcox 2006). The “assumption,” of course, lies in the
belief that the Reynolds stresses behave in a similar fashion as the Newtonian stress
tensor; refer to the latter part of Sect. 2.5 for more information. Though greatly
successful, the Boussinesq approximation has some shortcomings, including the
following situations:

• Secondary motion in ducts (rectangular pipe flow in the corner region, semi-truck
vortex)

• Rapid changes in the mean strain rate tensor (rapid dilatation resulting in large
volume change, high Mach)

• Curved surfaces (concave, convex, large swirl angle, airfoils)
• Rotating fluids (turbomachinery, wind turbines)
• Nonhomogeneous turbulent flows

Under such situations, it is advisable to consider extended, nonlinear versions of
the Boussinesq approximation. There are many nonlinear constitutive equations in
the literature, some of which include the curl operator to evaluate the mean vorticity.
Such models are suitable for modeling curved surfaces, high swirl, secondary flows,
flow separation, recirculation, highly anisotropic flows, and so forth (Lumley 1970;
Bakker 2005; Alfonsi 2009; Wilcox 2006). Recent DNS and experimental data
investigations continue to show issues with the Boussinesq approximation; some
of these can be resolved using nonlocal, nonequilibrium approaches (Speziale and
Eringen 1981; Hamba 2005; Schmitt 2007; Hamlington and Dahm 2009; Wilcox
2006; Spalart 2015).

50 2 Overview of Fluid Dynamics and Turbulence



In any case, from dimensional analysis and the Newtonian analogy, Boussinesq
related the nine Reynolds stresses (with their primed quantities) into averaged
quantities. A few examples show how these quantities are derived.

Example 2.16 Find Rxx, Rxy, and Rxz.

Solution For Rij ¼ Rxx, it is clear that i ¼ x and j ¼ x, while u0x ¼ u0.

Rxx ¼ �u0xu0x ¼ �u0u0 ¼ νt
∂u
∂x

þ ∂u
∂x

� �
� 2
3
kδxx ¼ 2νt

∂u
∂x

� 2
3
k:

For Rxy, it is clear that i ¼ x and j ¼ y, while u0x ¼ u0 and u0y ¼ v0.

Rxy ¼ �u0xu0y ¼ �u0v0 ¼ νt
∂u
∂y

þ ∂v
∂x

� �
� 2

3
kδxy ¼ νt

∂u
∂y

þ ∂v
∂x

� �
:

For Rxz, i ¼ x and j ¼ z; u0x ¼ u0 and u0z ¼ w0.

Rxz ¼ �u0xu0z ¼ �u0w0 ¼ νt
∂u
∂z

þ ∂w
∂x

� �
� 2

3
kδxz ¼ νt

∂u
∂z

þ ∂w
∂x

� �
:

The remaining Reynolds stresses can be approximated in the same fashion.
At this point, the averaged-velocity Newtonian stress tensor and the Reynolds

stress tensor can be incorporated into the momentum equation(s) to solve turbulent
flows, provided a closure relationship for the kinematic turbulence viscosity is
properly defined. It is at this point that many RANS turbulence relationships come
into play, e.g., Prandtl’s one-equation model, the two-equation models (e.g., k-ε, k-
ω), and so forth. Once the Reynolds stress terms are determined, the momentum
RANS equations can be further rearranged and simplified. For example, the x-
direction in Cartesian coordinates for a Newtonian fluid yields

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ � 1

ρ
∂P
∂x

þ
∂ νt

∂u
∂x

þ ∂u
∂x

� �
� 2
3
k


 �
∂x

þ
∂ νt

∂u
∂y

þ ∂v
∂x

� �
 �
∂y

þ
∂ νt

∂u
∂z

þ ∂w
∂x

� �
 �
∂z

þ ν
∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
:

ð2:40B0Þ

2.5 Introduction to Turbulence Modeling 51



2.6 The Importance of the Reynolds Number and How
to Calculate It

When Osborne Reynolds considered internal pipe flow, he discovered that beyond a
certain criterion, flow became turbulent (unstable). He defined a dimensionless
quantity, based on three different types of fundamental system characteristics, that
is now called the Reynolds number (Re) in his honor. He also defined two “K”
numerical constants that bound the “critical (transition)” range in Re space. More
specifically, he showed via experiments that K ranged from 1900 to 2000 and
summarized his results as follows (Reynolds 1895):

ρxu
μ

< 1900 stable; laminarð Þ ð2:52AÞ

and

ρxu
μ

> 2000 unstable; turbulentð Þ: ð2:52BÞ

As a side note, it is pointed out that Reynolds’ original formulation in the
numerator has density first, followed by a length scale, and then a velocity. This
formulation is very popular and is the first time this dimensionless ratio was written
explicitly in such detail and particular order. However, other important literature
uses density first but swaps Reynolds’ ordering of the length scale with the velocity
scale (Schlichting 1979; Hinze 1987; Holman 1990). And, in yet another popular
permutation found in an esteemed classic, the order is length scale, followed by the
velocity scale, and finally density (Bird et al. 1960) (BSL). Wilcox probably
subscribed to the ordering of BSL, with the velocity being first, and then followed
by the length scale. However, Wilcox used the kinematic viscosity, so it is not clear
in which order he would have placed the density. Other fluid dynamics books follow
BSL (Bennet and Myers 1982), while the classic for flow drag follows yet a fourth
permutation (Hoerner 1992). Because there are three variables, there are six total
permutations, and at least four have been identified here. In any case, the present
work follows the ordering of BSL, as a way of honoring their outstanding contribu-
tions in many fluid fields. Of course, the order is immaterial in the sense that Re is a
product of three scalar quantities and scalar multiplication is associative. Thus, the
order is not important in terms of the final result. Furthermore, it is pointed out that
many popular permutations already exist in numerous serious tomes. That said, who
would feel comfortable using E ¼ c2m?

It is also noted for historical purposes that the oldest reference to the usage of
dimensionless dynamic similarity to solve flows occurred several decades before
Osborne Reynolds conducted his experiments (Reynolds 1883) and before he did his
theoretical work (Reynolds 1895). Indeed, the first reference related to the usage of
dimensionless dynamic similarity is attributed to George Gabriel Stokes (Stokes
1850; Rayleigh 1892, 1913; Rott 1990), who considered ratios that are remarkably
Re-like, such as (Stokes 1850):
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μu
xP

	 constant ð2:52CÞ

where P is the system pressure. Nevertheless, the earliest evidence of Re as used in
modern times is that of Osborne Reynolds (Reynolds 1883, 1895).

Reynolds’ “aha moment” came when he substituted Stokes’ pressure P with the
pressure drop from the Darcy experiments, which closely follows Poiseuille’s law
for laminar flow (Reynolds 1883). Then, he compared how the velocity dependence
changed as it transitioned from linear (1.0) to a power of 1.723 (Reynolds 1883; Rott
1990).

What is outstanding about Re is that it requires a simple set of just three—but very
distinct in essence—system parameters to characterize flow: one velocity, one
length, and one fluid physical property (if kinematic viscosity is chosen, which is
the ratio of the dynamic viscosity and density). This unique set describes whether the
system undergoes flow via contiguous, stable sheets or is instead comprised of the
superposition of unstable, multi-scaled eddies having random coherent structures.
Therefore, before any analysis is begun, wise analysts will first calculate Re (and
perhaps Ma and so forth), to determine the type of flow being analyzed. Though
simple enough to understand why, it is shocking to see how many systems are
modeled with the incorrect fluid dynamics. In other words, never use a turbulence
model if the flow is laminar and vice versa!

The kinematic viscosity ν is typically a function of temperature and pressure and
is well-defined for thousands of fluids. But, what are reasonable values for xchar and
uchar? In this context, “characteristic” refers to a system’s fundamental length and
velocity that best describe the system flow. The flow geometry dictates which
characteristic dimension xchar ought to be used to calculate Re. As might be expected,
the critical Re is geometry-dependent. Hence, criteria are summarized in the section
that follows for many important engineering applications.

2.6.1 Calculating Re for Diverse Geometries

As mentioned previously, different geometries involve different Recrit, where the
critical Re is defined as the point at which the flow has transitioned into turbulence.
Note that the ranges for a given geometry can vary substantially, depending on fluid
purity, experimental care, and other factors, including external vibrations induced by
pumps, surface roughness, and so forth. For example, under extremely careful
conditions, an internal pipe flow can reach Re up to 10,000 and still exhibit laminar
behavior. Although this is an extreme example, variations of plus or minus 10% are
not uncommon in Recrit experiments. Thus, an internal pipe flow could be turbulent
at 1980 or possibly be laminar at 2420. Therefore, care should be taken when
interpreting the value of Re.

Here, some semantics are in order. It is common to find “critical” and “transition”
associated with Re, and this can cause confusion. In particular, as a flow transitions
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from laminar to turbulent, some people refer to this as a “transition based on a
critical Re,” so the symbol Recrit is used. Then, for certain external flows, another
type of transition occurs, which is the transition whereby the drag coefficient drops
precipitously by a factor of about four or so; unfortunately, this “transition” is also
referred to as a “critical” transition and is oftentimes labelled as Recrit as well
(Hoerner 1992). Thus, Recrit can be based on the laminar to turbulent transition, or
it can be based on the abrupt drop in the drag coefficient (e.g., the Eiffel paradox). In
order to reduce ambiguity, the type of transition is specified for the geometries listed
below.

• Internal Pipe Flow

For a pipe with inner diameterD and length L, xchar¼D. uchar¼ average velocity,
which can be easily obtained from the mass flow rate,

_m ¼ ρVA

or

V ¼ _m
ρA

¼ uchar:

The laminar to turbulent transition occurs at Recrit ¼ 2200–2400. Wilcox uses
2300 (Wilcox 2006).

• Internal Duct Flow

For ducts (e.g., rectangular pipes; non-circular internal flow), xchar ¼ hydraulic
diameter (Dh),

Dh ¼ 4A
WP

ð2:53Þ

where

A ¼ flow area
WP ¼ wetted perimeter.

uchar ¼ average velocity and can be obtained from the mass flow rate. The laminar to
turbulent transition occurs at Recrit ¼ 2200–2400.

• Flow External to a Cylinder

For flow around (external to) a vertical cylinder, xchar ¼ outer diameter D.
uchar ¼ U1 ¼ approach velocity. The laminar to turbulent transition occurs at
Recrit 	 600–1000 (Schlichting 1979); drag transition Recrit > 2 � 105 to 5 � 105

(Schlichting 1979; Hoerner 1992).
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• Flow External to a Sphere

For flow around a sphere, xchar ¼ outer diameter D. uchar ¼ U1 ¼ approach
velocity. The laminar to turbulent transition occurs at Recrit > 300 (Blevins 1992);
drag transition Recrit > 1 � 105 to 3 � 105 (Schlichting 1979; Moradian et al. 2008).

• Flow External to a Cube or “Square Cylinder”

For flow external to a cube with side S, xchar¼ S. uchar¼U1¼ approach velocity.
The laminar to turbulent transition is in the range of 200 � Recrit � 260 (Sohankar
2006; Bai and Alam 2018); drag transition Recrit: none has been observed experi-
mentally up to Re ¼ 107 (Sohankar 2006; Bai and Alam 2018).

• Jet Flow

For jets, xchar ¼ jet orifice diameter D. uchar ¼ average velocity, which can be
obtained from the jet mass flow rate. The jet is fully turbulent when Recrit > 3000
(McNaughton and Sinclair 1966).

• Couette Flow

For Couette flow (specifically, flow between rigid parallel plates separated by a
gap H ), xchar ¼ H. uchar ¼ plate velocity [note: this type of flow is always fully
developed (FD)]. The laminar to turbulent transition is at Recrit ¼ 1500 (Wilcox
2006).

• Flow Over a Flat Plate

For external flow in the x-direction (WLOG) parallel to a flat plate of length L, the
laminar boundary layer δ(x) grows in the x-direction as follows (Blasius 1908):

δ xð Þlam 	 5x

Re 1=2
x

, ð2:54AÞ

while the turbulent boundary layer grows as

δ xð Þturb 	
0:036x

Re 1=5
x

: ð2:54BÞ

However, the characteristic length xchar for a flat plate is x, so Re reaches a
maximum at x ¼ L; this type of flow never becomes FD. uchar ¼ U1 ¼ approach
velocity. The laminar to turbulent transition occurs when Recrit ~ 5 � 105 to 106

(White 1991; Schlichting and Gersten 2000).

• Flow Over an Airfoil or Wing

For airfoils, xchar ¼ chord width (distance from the leading edge to the trailing
edge); for wings, use the mean aerodynamic chord, which can be approximated as
the average of the tip chord and the root chord (note that more complex approxima-
tions include integrals and the center of gravity). uchar ¼ U1 ¼ relative approach
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velocity; wind tunnel velocity. The laminar to turbulent transition occurs at
Recrit > 5 � 105 (approximated as flow over a flat plate).

2.6.2 Fully Developed Laminar and Turbulent Flow

If a flow is fully developed (FD), the velocity distribution does not change WRT
position; the partial of the velocity component for such direction is zero. Use the
following expression to determine if a laminar flow is FD:

Le
D

¼ C1 þ C2 Re h, ð2:55AÞ

where

Le¼ entrance length (i.e., the length at which the flow becomes fully developed)
D ¼ hydraulic diameter
Reh ¼ Reynolds number based on the hydraulic diameter

C1 ¼ 0:5, ð2:55BÞ

C2 ¼ 0:05: ð2:55CÞ

For turbulent flows, a common expression is

Le
D

¼ C1 Re
n
h, ð2:55DÞ

where

C1 ¼ 1:36, ð2:55EÞ

and

n ¼ 1=4: ð2:55FÞ

Note that the literature has several variants for the FD laminar and turbulent
expressions. In addition, various “rules of thumb” exist, including some for turbulent
flows, such as

Le
D

 10, ð2:55GÞ

while Nikuradse was more conservative, with
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Le
D

 40: ð2:55HÞ

Example 2.17 Find the entrance length for ammonia at 400 K and 1 MPa. The mass
flow rate is 0.001 kg/s in one case and 0.01 kg/s in the second case. The pipe in
question has a diameter D ¼ 0.3 m. What are the entrance lengths?

Solution Start by obtaining the necessary physical properties, ρ ¼ 5.31 kg/m3 and
ν¼ 2.62� 10�6 m2/s. Use the density to back track the average fluid velocity for the
first case,

u ¼ _m
ρA

¼ 0:001 kg=s
5:31 kg=m3ð Þ 0:0707 m2ð Þ ¼ 0:00266 m=s

Re ¼ 0:3 mð Þ 0:00266 m=sð Þ
2:62� 10�6 m2=s

¼ 304:

For this case, the flow is laminar, so

Le ¼ D C1 þ C2 Re hð Þ ¼ 0:3 mð Þ 0:5þ 0:05 304ð Þ½ � ¼ 4:7 m:

For the second case, the flow rate is 10 times larger, so the fluid velocity is
10 times larger, 0.0266 m/s. In this case Re is also 10 times larger, so Re ¼ 3040,
which is clearly turbulent. Thus,

Le ¼ C1DRe n
h ¼ 1:36DRe 1=4

h ¼ 1:36 0:3 mð Þ 3040ð Þ1=4 ¼ 3:03 m:

Notice that the entrance length for turbulent flow is always smaller than that of
laminar flows. Also, note that the rule of thumb for turbulent flows can be signifi-
cantly different than the curve-fit expression based on Re, as clearly shown in
Fig. 2.10.

2.7 Isotropic Turbulence Decay, Taylor Eddies, and Some
Applications

The word “isotropic” is derived from two Greek words, “isos” and “tropos,” which
mean “equal” and “way,” respectively. Whereas its root words might convey the
connotation that an isotropic flow is the “same way” throughout, a less restrictive
condition is applied in the turbulence world. Instead, for a turbulence flow to be
isotropic, its statistical properties must be the same in all directions, implying a
mathematical order. However, because no direction has a preferred statistical
turbulence distribution, a perfect isotropic flow is in perfect disorder, in the sense
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that all directions are very well mixed (redistributed) within the same magnitude;
hence, any initial molecular order is randomized equally in all directions. Thus, the
statistical properties of an isotropic turbulent flow will be the same if the coordinate
system is rotated or if the coordinate planes are reflected and translated. Because
isotropy is a mathematical idealization for a random process, perfect isotropy cannot
be generated experimentally nor does it exist in nature. Just like no two snowflakes
are ever the same, no two eddies can ever be the same, let alone an agglomeration of
millions of eddies. Hence, isotropy considers a statistical equivalence for eddies—a
sort of “composite behavior.” Fortunately, there are flows that reasonably approx-
imate isotropic conditions, including atmospheric flows, the core region of a square
duct, grid flow, high Re flows, and flows whose eddies are much smaller than
integral eddies (e.g., the flow core region at very high Re).

So, for example, in a Cartesian system, a homogeneous turbulence flow would be
indistinguishable whether an observer looked in the x, y, or z directions. WLOG, this
concept can be extended to non-Cartesian systems.

Much useful research has been conducted in the area of isotropic flow over the
past century (Taylor 1935a, b; von Karman and Howarth 1938; Millionshtchikov
1941; Hinze 1987), and there are literally thousands of references. Hinze provides an
excellent review for this topic; the interested reader is encouraged to consult it. A
rather small sampling of recent advances in isotropic flows includes (Nakano 1972;
Sivashinsky and Frenkel 1992; Gryanik et al. 2005; Holm and Kerr 2007; Mazumdar
and Mamaloukas 2012; Boschung et al. 2016; Boffeta and Musacchio 2017; Hirota
et al. 2017; Stepanov 2018). A good review of recent advances in homogeneous
isotropic flow is found in Benzi and Biferale (2015). Despite these advances,
researchers continue investigating and debating key aspects of isotropic turbulence,
albeit that this is a very simplified turbulence state (CFD-online 2017b)! Nearly a
century after Sir Horace Lamb’s jovial pessimism regarding turbulent flows, his
concerns regarding turbulence continue to be validated, even for the “simplest” of
turbulence flows—isotropic turbulence.

The k PDE is derived in Sect. 4.4. For convenience, it is expressed here to show
how substantially simplified isotropic homogeneous flows are in the mathematical
sense. In its full form for Cartesian coordinates, the k PDE is expressed formidably as:

Fig. 2.10 Laminar vs. turbulent entrance length
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ð2:56AÞ

In this context, k is the specific turbulence kinetic energy, in units of length
squared per time squared. Without any doubt, the 3D k PDE as expressed in
Eq. 2.56A presents a formidable challenge that has yet to be solved analytically!

Certainly, turbulent flow is always strictly a 3D phenomenon. Eddies are 3D
coherent structures shaped as curved sheets, ovaloids, and so forth that stretch
asymmetrically and chaotically in space and time. These 3D structures break up
into smaller structures as they stretch, until the eddies eventually become so small
that the viscous force overcomes them, causing these tiny coherent-motion clusters
to decay into laminar sheets. In other words, eddies are irregular 3D structures that
move irregularly through 3D space and time. Nevertheless, consider a drastic
simplification for turbulence flow, where the turbulent flow is assumed 1D, and
WLOG, choose the x-direction. Therefore, any derivatives WRT y or z are zero, and
so are the v and w velocity components. This results in the following significant
simplification of the k PDE expressed in Eq. 2.56A, which is now reduced to

∂k
∂t

þ u
∂k
∂x

¼ νt
∂u
∂x

þ ∂u
∂x

� �
� 2
3
k


 �
∂u
∂x

� εþ ∂
∂x

νþ νt
σk

� �
∂k
∂x


 �
: ð2:56BÞ

Despite its simplicity, the k PDE is still not solvable in an analytic fashion. The
above exercise shows just how significant and complex turbulence effects are, even
if just 1D is considered.

Now assume further still that the turbulence flow is far away from the wall, such
that there are neither large velocity gradients nor buoyancy effects that generate
significant turbulence. Assume further that there is no eddy convection or diffusion.
The turbulence phenomenon that is being considered at this point consists solely of
the transient decay behavior of eddies, with no explicit spatial dependency. Then,
with all these assumptions, such turbulent flow is often described as isotropic
homogeneous turbulence decay. Thus, the PDE equation is reduced such that it
only describes the eddy decay for homogeneous isotropic flows (i.e., the dynamic
eddy behavior as the eddies collapse onto laminar sheets):
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Thus, the formidable Eq. 2.56A is reduced to

∂k
∂t

¼ dk
dt

¼ �ε ð2:57Þ

where ε ¼ turbulent eddy dissipation (decay).
Notice that the partial derivative becomes an ordinary derivative because k and ε

are not functions of position for this extremely simplified situation. Therefore, the
ordinary differential equation expresses that as time increases, the eddy kinetic
energy decreases rapidly per unit time at a rate ε, until the flow becomes laminar;
at that point, k is zero, and there are no remaining eddies. This phenomenon can be
seen in a hot tub with jets—turn the switch off, and the eddies decay within a few
seconds into laminar flow. The same happens in a blender. As the blender’s blades
move rapidly through the liquid, they induce turbulent flow with perhaps hundreds
of thousands to millions of eddies. But, once the blender is turned off, the eddies
decay rapidly, and motion quickly ceases—all the eddies have “died off.” The
laminarization observed in the hot tub and blender confirms that the decay mecha-
nism for water-based fluids typically works within a time frame of approximately 1 s
or so, depending on the situation. Indeed, for isotropic homogeneous flow, theoret-
ical and experimental results indicate a fairly strong exponential decay of the
turbulent kinetic energy WRT time,

k � t�1:25: ð2:58Þ

Example 2.18 Use Eq. 2.58 to derive an expression for the isotropic homogeneous
decay (dissipation), ε.

Solution Begin by noting that ε ¼ � dk
dt .

Therefore, ε � � d t�1:25ð Þ
dt ¼ 1:25t�2:25.

For isotropic turbulence, the time average of the square of the velocity fluctua-
tions is equal, indicating that

u02 ¼ v02 ¼ w02, ð2:59Þ

where k is defined for a nonisotropic turbulent flow as (Prandtl 1945)

k ¼ 1
2

u02 þ v02 þ w02
� �

: ð2:60Þ

Therefore, for an isotropic flow,
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2
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� �

¼ 3
2
u02: ð2:61Þ

The dissipation ε for an anisotropic turbulent flow is rather complex (Taylor
1935a):

ε ¼ μ
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� �2
2664

3775: ð2:62Þ

But, once isotropy is invoked, the decay simplifies significantly (Taylor 1935a),

ε ¼ 6μ
∂u0

∂x

� �2

þ ∂u0

∂y

� �2

þ ∂v0

∂x
∂u0

∂y

" #
: ð2:63Þ

It is insightful that one of the pillars of contemporary turbulence modeling, David
Wilcox, referred to Taylor eddies in the following manner (Wilcox 2006), “Because
the Taylor microscale is generally too small to characterize large eddies and too large
to characterize small eddies, it has generally been ignored in most turbulence-
modeling research.”

Not surprisingly, as noted by Wilcox, the integral and Kolmogorov eddies are
most often than not readily discussed in the literature, but the Taylor eddies tend to
be ignored (Andersson et al. 2012). In what follows, some ideas from Taylor are
expanded, for the purpose of promoting Taylor eddies. One of Taylor’s goals was to
derive a “characteristic eddy” size described through various definitions. This
includes Taylor’s assertion that certain mid-sized eddies represent (Taylor 1935a),
“‘the average size of the smallest eddies’, which are responsible for the dissipation of
energy by viscosity.”

However, it can be inferred, that in Taylor’s context, “smallest eddies” do not
actually refer to the Kolmogorov eddies in this case but rather onto the eddies
associated with dissipation that are larger than the Kolmogorov scale. This was
clearly his intent, considering that he assumed a turbulent isotropic flow that can be
characterized using k, which is associated with energetic eddies. By contrast,
Kolmogorov eddies are characterized with some form of decay, say ε. Furthermore,
Taylor’s “characteristic eddies” are somewhat smaller than integral eddies because
they arise after breaking up from relatively larger eddies. Thus, using Taylor’s own
lingo, he referred to his “characteristic eddies” as some sort of mid-sized eddies
whose (Taylor 1935a) “length may be taken to represent roughly the diameter of the
smallest eddies into which the eddies defined by the scales ℓ1 or ℓ2 break up.”

The ℓ1 and ℓ2 eddies discussed by Taylor apply to a wind tunnel, and their length
scales are Prandtl’s mixing length and 0.2S, respectively. S is the grid size used to
generate the isotropic flow (Taylor 1935a), and therefore, 0.2S represents the length
of the integral eddies generated by the grid. Consequently, these “characteristic
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eddies” in Taylor’s research are most certainly eddies that are much larger than the
Kolmogorov eddies but are smaller than the integral eddies. Roughly speaking, these
are mid-sized, isotropic-like eddies. The eddies Taylor defined in this context are
now referred as “Taylor eddies” in his honor.

Wilcox and others also defined a mid-sized turbulence correlation scale λ such
that (Lesieur et al. 2005; Wilcox 2006)

λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
∂2f
∂y2

� �
y¼0

vuut ð2:64AÞ

where

f ¼ f x;rð Þ ¼ R11 x;rð Þ
u02 xð Þ

: ð2:64BÞ

After a rather extensive derivation, Taylor developed an expression for a “char-
acteristic length” λ based on turbulence correlation arguments for isotropic flows,

1
λ2

� lim
y!0

1� Ry

y2
, ð2:65Þ

where Ry is a complicated expression that describes the eddy curvature based on a
geometric series that is based on the mean of u0 derivatives (Taylor 1922, 1935a, b;
Hinze 1987). For the sake of brevity, Taylor’s key result indicates that

ε ¼ 15μu02 lim
y!λ

1� Ry

y2
: ð2:66Þ

Now, once the Ry function is substituted into Eq. 2.66 and its limit taken, Taylor’s
classic turbulence equation for his “characteristic eddy” size becomes

ε ¼ 15
μu02

ρλ2
¼ 15

νu02

λ2
: ð2:67Þ

Solving for u02 from Eq. 2.61 and substituting into Eq. 2.67 results in the familiar
dissipation equation for Taylor eddies, which is clearly only applicable under
isotropic conditions (Taylor 1935a; von Karman and Howarth 1938; Hinze 1987;
Wilcox 2006),

ε ¼ 15
ν u02
� �
λ2

¼ 15
ν 2

3 k
� �
λ2

¼ 10
νk

λ2
: ð2:68Þ

62 2 Overview of Fluid Dynamics and Turbulence



Upon solving for the “characteristic eddy” size λ, the classic Taylor length scale is
readily obtained.

λ ¼
ffiffiffiffiffiffiffiffiffiffiffi
10

νk
ε

r
: ð2:69Þ

For large Re, the decaying Taylor length can be estimated as a function of time as
(von Karman and Howarth 1938)

λ tð Þ ¼
ffiffiffiffi
νt
α

r
, ð2:70Þ

where α¼ 1/5 is ideal for situations where the larger eddies remain fairly constant in
size (von Karman and Howarth 1938).

As noted by Wilcox, Eq. 2.69 uses both k and ε simultaneously, where k is
typically associated with the larger eddies that contain the highest share of kinetic
energy (on the order of 80%), while ε is associated with decay, where the eddies are
at the opposite spectrum—their length scale is much smaller and have much less
kinetic energy. In fact, Taylor eddies are on the order of at least 70 times larger than
Kolmogorov eddies. Thus, as “hybrid” eddies, Taylor eddies are sufficiently large to
merit an energy definition that includes the turbulent kinetic energy k and sufficiently
small to merit approximation with dissipation ε.

It is therefore enticing that a single eddy characteristic scale can adequately
describe a very large number of eddies that span a large section in the continuous,
eddy-length range (e.g., Fig. 3.1). This implies that to some degree, there is a
“characteristic eddy” size that adequately models the behavior for an eddy size
range that can potentially do useful engineering work. This was no doubt a key
reason why Taylor expended so much effort to find such eddy scale. Furthermore, as
noted by Kolmogorov, the “most characteristic” turbulence-behavior motion prop-
erties are associated with eddies that are much smaller than the integral eddies
(Kolmogorov 1942); and no, he was not referring to the Kolmogorov dissipation
eddies. Instead, Kolmogorov was referring to the local eddy structure that can be
viewed as the energetic, “spatially homogeneous and isotropic structures”—the
Taylor eddies. Furthermore, the importance of Taylor eddies in the dissipative
process was advanced by Chou, and this notion guided part of the development of
both the k-ε and k-ω RANS models (Chou 1940, 1945); refer to Chap. 4. In addition,
researchers have recently demonstrated the benefits of incorporating features of the
behavior of Taylor eddies onto k-ε models (Myong and Kasagi 1990; Bae et al.
2016); see Chap. 4. Moreover, a relationship for eddy dissipation ε based on Taylor’s
λ eddy length scale was derived as well (Chou 1945).

εdiss,Chou ¼ 2νgmn
∂u0i
∂xm

∂u0k
∂xn

¼ � 2ν
3λ2

C � 5ð Þq2gik þ 2Cν
λ2

u0iu
0
k ð2:71AÞ

where
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gmn ¼ 1, ð2:71BÞ
q2 ¼ u0iu

0
k , ð2:71CÞ

C ¼ unitless constant
Thus, the larger the Taylor eddies, the smaller their impact on turbulent decay and

vice versa.
Expanding Eq. 2.71A and substituting the q2 relationship onto the RHS term,

εdiss,Chou ¼ � 2νC
3λ2

���� þ 10ν
3λ2

þ 2νC
3λ2

����� �
q2: ð2:72AÞ

If k ¼ q2/3, then the above expression collapses onto Taylor’s expression:

εdiss,Chou ¼ 10νk
λ2

: ð2:72BÞ

So, not only is Taylor’s eddy length scale (Eq. 2.69) confirmed by von Karman
(von Karman and Howarth 1938) but by Chou as well (Chou 1945). This further
reinforces the notion presented in Chap. 4 that Chou’s original k-ε work was
associated with the Taylor eddies and not the Kolmogorov eddies. Nevertheless, it
is clear that within some constant c,

kChou ¼ cq2: ð2:73Þ

It is also noteworthy that various double and triple correlations developed by
Chou involve the Taylor length scale (Chou 1945). It is therefore not surprising that
the Taylor eddy length scale has been included in the standard k-ε turbulence model
for improved turbulence modeling (Myong and Kasagi 1990).

So, what do Taylor eddies do for a living? Being much smaller than integral
eddies, Taylor eddies carry about 1/5th of the total turbulent kinetic energy. On the
other hand, they have a much higher count and are more ubiquitous than integral
eddies. In addition, integral eddies are anisotropic, whereas Taylor eddies are
isotropic. Thus, Taylor eddies exhibit a more nuanced disorderly behavior, having
more uniform randomness than integral eddies; that is, because Taylor eddies are
isotropic, this implies that the fluid is so well-mixed that it looks mathematically
similar in all directions; the same amount of k is expended in all directions, as
opposed to the preferred direction of integral eddies (which is along the main flow
direction). The higher degree of more uniform random fluctuations associated with
Taylor eddies inevitably contributes toward more thorough and uniform mixing of
the fluid in the flow core and in the range of 7 � y+ � 30. Furthermore, because
Taylor eddies have shorter lives than integral eddies, Taylor eddies tend to be in local
equilibrium and thereby react much faster under external stimulus.

Therefore, because Taylor eddies are numerous and ubiquitous, carry a reason-
able amount of energy, have a uniformly randomizing isotropic nature, and react
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rapidly to external flow conditions, their impact on turbulent flows cannot be
ignored. For example, isotropy can be engineered in compact heat exchangers,
resulting in enhanced heat transfer (Elyyan et al. 2008). Isotropy can also be
engineered onto solar energy collectors and other heat transfer surfaces, for the
purpose of increased mixing and heat transfer near walls (Rodriguez 2016).

2.8 Problems

2.1 A round pipe with a contraction reduces in diameter from 0.5 to 0.25 m. The
fluid is helium at 350 K and 2.0 atmospheres and is flowing into the pipe at
1.5 kg/s. The system is isothermal and incompressible. What is the exit
velocity?

2.2 A square pipe with a linear expansion increases from S ¼ 0.2 to 1.0 m. The
fluid is liquid lead at 700 K and 1 atmosphere and is flowing into the pipe at
10 kg/s. The system is isothermal and incompressible. What is the exit
velocity?

2.3 Helium at 950 K and 4.9 MPa flows through a nuclear reactor. A positive
displacement pump increases the gas’s velocity until it becomes compressible.
At what velocity will the helium become compressible?

2.4 If a system has the following velocity distribution,

V
! ¼ 4x2y i

! þ 4xy2 j
! � 60k

!
, is the flow compressible or incompressible?

Why?
2.5 Derive the transient equation for 1D momentum in the x direction for a viscous

fluid, with an external pressure force, and negligible gravitational effect. Now
assume the system approaches steady state and solve the PDE by letting the
pressure gradient be constant.

2.6 Explain why u0 ¼ 0 but u02 6¼ 0 (at least most of the time).
2.7 Find expressions for the following Cartesian Reynolds stresses: Ryx, Ryy, and

Ryz. Hint: use the Boussinesq approximation.
2.8 A jet at Recrit has an orifice at D ¼ 0.055 m, a mass flow rate of 1.9 kg/s, and

μ ¼ 1.55 � 10�6 kg/m-s. What is the average velocity at the orifice?
2.9 Water at 300 K and 200,000 Pa flows through a pipe. At what velocity will it

become compressible? Redo the problem for nitrogen gas at the same pressure
and temperature.

2.10 Assume a fluid is non-Newtonian, such that the Ostwald-de Waele model

applies, τyx ¼ �m du
dy

��� ���n�1
du
dy.

Let n ¼ 3 (so the fluid is dilatant), m ¼ μ, and u yð Þ ¼ u0
y
y0
� y

y0

� �4
 �
.

Find dτyx/dy and obtain the maximum value as a function of y. Hint: set the
derivative to zero and solve for y.
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2.11 Your new boss, Mr. Minimalist, wants you to use the CFD tool of your choice
to simulate a 2D rectangular flat-plate flow with the following characteristics.
The fluid velocity is uniform on the LHS atU1¼ 100 m/s. The RHS is open to
the atmosphere. The bottom is a smooth, horizontal, motionless wall. The top
boundary is open to ambient. The system length is 5.0 m and is 0.25 m wide.
The air is at 500 �C and atmospheric pressure. Describe and justify the
following key problem characteristics: compressible vs. incompressible;
Newtonian vs. non-Newtonian; and laminar vs. turbulent. Which fluid models
would you use?

2.12 A grad student had too much coffee and accidentally broke the only viscosity
meter. Unfortunately, the viscosity measurements were not completed. Con-
sider the student’s lab experiment, where flow over a long, horizontal flat plate
is initially laminar atU1¼ 55 m/s. Is it possible to obtain one more variable by
observing the flow, such that a kinematic viscosity can be backtracked, and if
so, which variable would that be? Assume that you now have the value of such
variable. Now calculate the fluid’s kinematic viscosity.
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Chapter 3
Applied Theory: Practical Turbulence
Estimates

Big whorls have little whorls that feed on their velocity, and
little whorls have lesser whorls and so on to viscosity.

—L. F. Richardson (1922)

We really don’t know a whole lot for sure about turbulence.
And worse, we even disagree about what we think we know! ...
Thus it might be wise to view most ‘established’ laws and
theories of turbulence as more like religious creeds than
matters of fact.

—W. K. George (2013)

Abstract The three key eddies are described in detail, with practical equations to
calculate their length, life time, and velocity. The LIKE algorithm is presented to
compute key turbulence parameters. Flow regions are defined and represented
mathematically for the viscous laminar sublayer and the log laws. Detailed descrip-
tions for calculating y+ are presented. The chapter concludes with a detailed descrip-
tion for dimpling and surface engineering applicable for drag reduction and heat
transfer enhancements. Both compressible and incompressible applications are
discussed; examples include golf balls, shark skin, vehicle surfaces, heat transfer
systems, wings and airfoils, turbulators, and diverse dimple geometries.

Without doubt, good simulations involving Reynolds-averaged Navier Stokes
(RANS), large eddy simulation (LES), or direct numerical simulation (DNS) provide
valuable knowledge that enable useful engineering designs, analysis, safety, optimi-
zation, and so forth. But how much information can be gleaned from back-of-the-
envelope (BOTE) calculations? The answer is that an astonishing amount of infor-
mation can be obtained quickly and inexpensively, well before any CFD or exper-
iments are conducted. These turbulence BOTE metric estimates can yield much
useful information, including:

• Eddy velocity, size, and time scales
• Number of elements needed
• Guidance for turbulence model selection and input
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• Dissipation ε, turbulent kinetic energy k, and turbulent kinematic viscosity νt
• Peak turbulence velocity
• Fluctuation metrics
• And much more

In what follows, the equations needed to calculate three key characteristic metrics
(eddy size, lifetime, and velocity) are described, starting with integral eddies,
continuing on to Taylor eddies, and finally, the Kolmogorov eddies. In these
sections, it will be noted that two key variables, k and ε, are needed to calculate
many of the eddy scales. These two turbulence variables can be obtained from
experimental data, CFD analysis, or through the LIKE algorithm, which is discussed
in Sect. 3.4.

To estimate this insightful information, it is necessary to have a feel for how
eddies (coherent structures) characterize turbulence. In particular, turbulent flows
can be understood as the superposition of small, medium, and large eddies that are
interspersed and dynamically interacting throughout the flow. The large eddies
correspond to the “integral eddies,” the medium eddies are the “Taylor eddies,”
and the smallest of the small eddies correspond to the “Kolmogorov eddies.”

Eddies span the continuum from small to large, with no single eddy size having a
preferential distribution; their inverse length distribution as a function of turbulent
kinetic energy k resembles a somewhat compressed Gaussian curve, with each curve
being lower as the Reynolds number (Re) decreases; see Fig. 3.1. The figure shows
that the eddy spectrum is continuous, with no single discrete length being unique

Fig. 3.1 Turbulent energy distribution as a function of eddy size—the Kolmogorov energy
spectrum

70 3 Applied Theory: Practical Turbulence Estimates



within the energy-containing and inertial subrange. On the other hand, the Kolmo-
gorov scale is uniquely determined for any system.

Whereas eddies span a wide length and turbulent energy range as shown
conceptually in Fig. 3.1, their collective behavior can be visualized as having
“characteristic” scales (e.g., length, time, and velocity) that provide reasonable
engineering estimates.

As Fig. 3.1 suggests, certain domains based on length can be observed, such that
eddies can be grouped into integral and Taylor eddy regions, as well as the
Kolmogorov eddy limit. But most importantly, the grouped performance of eddies
in each domain displays a behavior that allows analysts to reasonably estimate their
key turbulence metrics. These metrics include a characteristic eddy size, lifetime, and
velocity for all three eddy types. Then, these quantities can be used to compute
valuable properties of the turbulent flow, as will be shown in the sections that follow.

3.1 Integral Eddies

Large eddies are generated as the flow becomes unstable, as it becomes nonlinear.
The flow instabilities generate large clusters of fluid that are born as highly energetic
coherent structures that nearly instantaneously obtain k from the bulk fluid energy.
These eddies are very vigorous, as they carry approximately 80% of the total k. They
are therefore responsible for most of the diffusive processes that result in the well-
known energetic mixing that occurs in turbulence, including mass, momentum, and
energy. That is, integral eddies provide the highest degree of mixing within the fluid,
the greatest degree of heat transfer due to the mixing of hot and cold fluid clusters,
and so forth. Because of their relatively large size and k compared to the Taylor and
Kolmogorov eddies, integral eddies provide the most mixing, thereby easily
cornering this most important turbulence role. This situation is akin to comparing
bowling balls (integral eddies) moving at large velocities vs. golf balls and pebbles
(Taylor and Kolmogorov eddies, respectively) moving at slower velocities.

Integral eddies can be as large as the characteristic length of a system, and even
larger on occasion, up to about twice as large. How can this be? Consider internal
flow in a pipe where the characteristic length scale is diameter D. But, because
integral eddies stretch as they travel within the fluid, they can elongate like a 3D
oval, into large coherent structures with sizes up to twice the pipe diameter. Another
feature of large eddies is that they can flow up to about 30 pipe diameters before
decaying.

Integral eddies have a large degree of vorticity, akin to sheets of paper being
rolled, with the roll’s diameter becoming smaller and smaller as the large velocity
gradients continue curling the sheets. This is called vortex stretching and is the
primary process that breaks up the large eddies. Thus, as the large eddies stretch,
they reach a critical point as they break up into smaller eddies, which in turn continue
stretching, thereby generating even smaller eddies. This process is called cascading,
whereby integral eddies break up into smaller and smaller eddies. However, this
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process cannot go on forever; it is limited by the Kolmogorov eddy size. The
cascading process is shown schematically in Fig. 3.2.

Eddy cascading has been studied for many decades but is still not fully under-
stood. Researchers recently obtained images of a large eddy as it broke up into two
smaller eddies (Shesterikov et al. 2012). The turbulent flow occurred in a tokomak
plasma field, and five images taken every six microseconds show the large eddy as it
split into two smaller eddies.

As noted earlier, eddies in turbulent flows have a continuous-length spectrum that
is bounded from the integral to the Kolmogorov scale. In this context, an eddy can be
viewed as a local swirling motion associated with a length scale. Hence, the large
eddies are unstable due to various factors, which includes their highly energetic
motion, large structure, and by being surrounded by other eddies that stretch and
push the larger eddies in many directions. This inevitably causes the larger eddies to
stretch and break into smaller eddies, and so forth.

As can be seen, integral eddies play a substantial role in turbulence, so finding
their characteristic scales helps analysts estimate many fundamental properties of the
turbulent flow in question.

The integral eddy size can be characterized by ℓo, which represents the larger of
the large eddies (i.e., those for which the wavenumber κ!0; i.e., the eddies that
reside on the extreme LHS of Fig. 3.1). On the other hand, ℓ represents the “average”
size of the integral eddies. Fortunately, the two integral eddy length scales form a
linear relationship that can be expressed as (Hinze 1987)

ℓo � C1ℓ, ð3:1AÞ

where C1 is a constant.
In any case, ℓ is used throughout the book, as it is representative of the “averaged

behavior” of the integral eddies and because most relationships in the literature use
the scale directly.

Early researchers deduced a relationship for ℓ based on dimensional arguments
(Taylor 1935):

ℓ � k3=2

ε
: ð3:1BÞ

Fig. 3.2 Energy transfer
through cascading, from
large to small
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However, Eq. 3.1B can be made more precise by fitting it to experimental data
(Wilcox 2006),

ℓ ¼ Cμ
k3=2

ε
, ð3:1CÞ

where a reasonable value for Cμ is 0.09.
However, the values for k and ε are usually not known a priori. If such is the case,

the integral eddy size can be approximated as follows:

ℓ ¼ C1xchar, ð3:1DÞ

where xchar and C1 are defined by the system geometry. Section 3.4, under “Calcu-
lation of ℓ,” lists the relevant parameters for pipes, ducts (noncircular internal flow),
external surfaces, and wind tunnels; refer to Eqs. 3.17A, 3.17B, 3.18, 3.19 and 3.20.

Note that Eqs. 3.1B, 3.1C, and 3.1D do not correspond to an average integral
eddy size based on a rigorous mathematical definition nor do they represent a
maximum eddy size. Instead, the equations provide a practical metric for a “charac-
teristic” length that embodies a “representative” integral eddy size that the system
can support, a sort of eddy length that provides a reasonable scale for the composite
behavior of the larger eddies.

The integral eddy has a lifetime that corresponds to a time scale that represents
how long the eddy will exist before it decays away. If Eq. 3.1C is used, then the
appropriate (self-consistent) time scale is

τℓ ¼ Cμ
k
ε
: ð3:2AÞ

However, if an equation analogous to Eq. 3.1D is used instead (refer to Sect. 3.4
for these geometry-specific expressions that are based on xchar), then the
corresponding self-consistent equation is as follows:

τℓ ¼ C1xchar
k1=2

: ð3:2BÞ

The integral eddy velocity is the ratio of its characteristic length divided by its
time scale, which is appropriate (self-consistent) for both Eqs. 3.1C and 3.1D,

uℓ ¼ ℓ
τℓ

¼ k1=2: ð3:3Þ

It is noted that some researchers include a factor of the square root of 2/3 in the
integral eddy velocity (Andersson et al. 2012).

Note that the integral eddy length and velocity scales can be used along with the
kinematic viscosity to obtain the integral eddy turbulent Reynolds number, or more
specifically, ReT or Reℓ. If Eq. 3.1C is used, then
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Reℓ ¼ xcharuchar
ν

¼ ℓuℓ
ν

¼
Cμ

k3=2

ε

� �
k1=2
� �

ν
¼ Cμ

k2

εν
, ð3:4AÞ

where the kinematic viscosity is ν ¼ μ
ρ.

But, if an expression based on xchar in the form of Eq. 3.1D is used, then the self-
consistent Reℓ is

Re ℓ ¼ ℓuℓ
ν

¼ C1xcharð Þ k1=2
� �

ν
¼ C1

xchark
1=2

ν
: ð3:4BÞ

An inspection of Eqs. 3.4A and 3.4B shows that Re ℓ ¼ Cμ
k2

εν ¼ C1
xchark

1=2

ν , and

when this is divided by k1/2, implies that Cμ
k3=2

ε ¼ C1xchar � ℓ, which comes as no
surprise.

The integral eddy Reynolds number is uniquely specified for the integral eddies
as Reℓ, which is not to be confused with the system’s hydraulic Reynolds number,
Reh. The magnitude for Reℓ is typically lower than Reh, and the same trend can be
observed for the Taylor and Kolmogorov Reynolds numbers.

Note that as the flow becomes more turbulent (i.e., as Reh or Reℓ increases), the
typical length of the eddy population decreases, while the number of eddies becomes
more numerous as the larger eddies split. It is possible to associate the integral eddies
with the magnitude of Reℓ and the Kolmogorov eddies (η), as follows:

η
ℓ
� Re �3=4

ℓ : ð3:5Þ

The rapid decrease of the smallest eddies compared with the integral eddies is
shown in Fig. 3.3.

Fig. 3.3 Ratio of Kolmogorov vs. integral eddies as a function of the turbulent Reynolds number
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3.2 Taylor Eddies

Taylor eddies are the “intermediate-sized eddies” that are too small to behave as
integral eddies and too large to behave as Kolmogorov eddies. In more ways than
one, Taylor eddies can be viewed as having a behavior that is a hybrid mixture of
integral and Kolmogorov eddies. For example, both Taylor and integral eddies are
characterized by turbulent kinetic energy k, which is attributable to their energetic
nature. So, whereas large eddies may contain about 4/5 of the total turbulent energy,
Taylor eddies have k approaching 1/5, which is still a significant quantity,
engineering-wise. Then, on the opposite extreme, both Taylor and Kolmogorov
eddies are characterized by dissipation ε, which is typically associated with eddy
decay. Therefore, Taylor eddies are best considered as “hybrid” eddies because they
contain features of both integral and Kolmogorov eddies.

The Taylor eddy characteristic length can be approximated for isotropic flows
based on a couple of straightforward simplifications (Wilcox 2006):

λ � ℓη2
� �1=3 ð3:6AÞ

where η is the Kolmogorov length scale; refer to Sect. 3.3. Note that the above
expression collapses to the Taylor’s length shown in Eq. 3.6B. However, because
Taylor’s expression is more familiar, is easier for obtaining the Taylor eddy char-
acteristic length for isotropic flows, and was derived from basic principles (Taylor
1935), it is therefore the preferred expression:

λ ¼ 10kν
ε

� �1=2

: ð3:6BÞ

The eddy lifetime before it decays is

τλ ¼ 15ν
ε

� �1=2

: ð3:7Þ

The Taylor eddy velocity is the ratio of its characteristic length divided by its time
scale:

uλ ¼ λ
τλ

¼ 10kν
ε

� �
ε

15ν

� �� 	1=2
¼ 2k

3

� �1=2

: ð3:8Þ

Finally, the Taylor Re is the product of the characteristic length of the eddy times
the eddy velocity, divided by the kinematic viscosity:

Re λ ¼ xcharuchar
ν

¼ λuλ
ν

¼
10kν
ε

� �1=2 2k
3

� �1=2
ν

¼
10kν
ε

2k
3

� �1=2
ν

¼ k
20
3εν

� �1=2
: ð3:9Þ
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3.3 Kolmogorov Eddies

As eddies evolve in time, the energy cascade refers to the situation where the kinetic
energy from the larger eddies is transferred onto smaller eddies, and from those
smaller eddies, onto even smaller eddies, and so forth, until a physics-based mini-
mum eddy length scale is reached, the Kolmogorov eddy. Thus, the length scale
limit occurs because the ever-smaller eddy k eventually becomes less than or equal to
the viscous term that dampens (overcomes) their small, rotational, eddying motions.
Thus, the Kolmogorov eddies are at the tail end of the energy cascade. The cascade is
a consequence of a break-up process as the eddy sheets rotate into finer and finer
rolls having higher and higher vorticity, which eventually breaks up the larger eddies
into the smallest eddies, as shown in Fig. 3.4. Another distinguishing feature of the
Kolmogorov eddy is that they have far less k than any other type of eddy.

Thus, the smallest eddies that a turbulent flow can physically sustain are the
Kolmogorov eddies; these are the eddies that decay onto very tiny laminar spots
within the fluid. As this happens, the Kolmogorov eddy energy is transferred back to
the fluid through viscous shear, from whence it initially came. Because Kolmogorov
eddies continue rotating similarly to scroll sheets that have smaller radii, these eddies
have the highest level of vorticity.

Kolmogorov eddies are very small and can be as small as a human hair, in the
range of 17–180 microns. Of course, this value depends heavily on the fluid type and
other flow characteristics, as will be shown later in this section. Notwithstanding
their small characteristic size, Kolmogorov eddies tend to be larger than the viscous
boundary layer near the wall. Because of their small size and energy, they have a
much shorter life span compared to integral and Taylor eddies. Further, the Kolmo-
gorov eddy time scale is much smaller than the mean-flow time scale (based on a
characteristic mean-flow velocity and length scale). Therefore, Kolmogorov eddy
motion is independent of the mean flow and the large eddies. As a result, energy
received by the large eddies corresponds to the heat dissipated by the small eddies
(provided that turbulence is at equilibrium). This premise was first postulated by
Kolmogorov in 1941 and is called “the universal equilibrium theory.” Kolmogorov
hypothesized that small eddy motion depends solely on two phenomena.

The first phenomenon is the rate of turbulent kinetic energy transfer from the large
eddies:

Fig. 3.4 The energy cascade
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ε �� dk
dt

: ð3:10Þ

Thus, turbulent dissipation is defined as the rate of change of the turbulent kinetic
energy with respect to (WRT) time—it represents the conversion of the eddy
turbulent kinetic energy back into internal energy. This represents how fast eddies
lose their fluctuating energy. The second phenomenon is the viscous dissipation, for
which ν characterizes how strong the damping viscous force is. Then, from the above
two, it is straightforward using dimensional arguments to derive the Kolmogorov
length, velocity, and time scales for the smallest eddies. Therefore, the Kolmogorov
length scale is

η ¼ ν3

ε

� �1=4

: ð3:11Þ

This is the smallest eddy length scale that can be supported by a fluid before its
viscous forces dampen the coherent structure back into laminarity.

The Kolmogorov eddy has a time scale before it decays that is approximated as

τη ¼ ν
ε

� �1=2
: ð3:12Þ

The Kolmogorov eddy velocity is

uη ¼ η
τ
¼ νεð Þ1=4: ð3:13Þ

Finally, the Kolmogorov Re is

Re η ¼ xcharuchar
ν

¼ 1: ð3:14Þ

Example 3.1 Prove that Re η ¼ 1. Hint: apply the basic definition for Re, using the
Kolmogorov characteristic length and velocity.

Solution xchar ¼ η ¼ ν3

ε

� �1=4
and uchar ¼ uη ¼ (νε)1/4. Therefore,

Reη ¼ xcharuchar
ν

¼
ν3

ε

� �1=4
νεð Þ1=4

ν
¼

ν3

ε νε
� �1=4

ν
¼ ν4ð Þ1=4

ν
¼ 1:
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3.4 The “LIKE” Algorithm: Computing Your Own
Epsilon, Turbulent Kinetic Energy, Turbulent
Kinematic Viscosity, and Reynolds Stresses

Oftentimes, beginners and perhaps even researchers who have studied turbulence for
years realize that turbulence involves many equations that are useful. But, how are
these equations related to each other? And perhaps most importantly, how can a
manageable set of turbulence equations form a closed set of independent equations,
with the goal of obtaining n equations that can be used to solve for an n number of
useful turbulence variables? Here, the “LIKE” acronym is used to describe a closed
set of four independent equations that can be used to estimate four key variables, and
these in turn can be used to estimate a significant set of additional useful turbulence
variables. Note that an acronym is typically a grouping of letters that is arranged to
help people remember a set of words, such as a mnemonic. In this case, the following
four letters represent four key turbulence variables that are “conveniently” arranged
into an acronym, that with a little imagination, forms the word “LIKE”:

L ¼ ℓ ¼ integral eddy length scale
I ¼ It ¼ turbulence intensity
K ¼ k ¼ turbulent kinetic energy

and

E ¼ ε ¼ turbulent dissipation

In what follows, guidelines are provided for calculating each of the four variables.

• Calculation of ℓ

Taylor deduced a relationship for eddy length based on dimensional arguments
for isotropic flow (Taylor 1935; Wilcox 2006),

ℓ � u03

ε
, ð3:15AÞ

which is akin to saying that

ε � k3=2

ℓ
ð3:15BÞ

because

u03 ¼ k3=2: ð3:15CÞ

Therefore,
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ε � W
ρ
¼ C

u03

ℓ
¼ C

k3=2

ℓ
, ð3:15DÞ

where C is a constant; Taylor used W/ρ to refer to the modern ε. Prandtl let C ¼ CD

for his one-equation transport model (Prandtl 1945). However, based on an exper-
imental data fit, Wilcox recommends C ¼ Cμ (Wilcox 2006). Therefore,

ε ¼ Cμ
k3=2

ℓ
ð3:15EÞ

where

Cμ ¼ 0:09: ð3:15FÞ

To see how this relates to the integral eddy length, simply solve for ℓ, yielding

ℓ ¼ Cμ
k3=2

ε
, ð3:15GÞ

which is the same expression found in CFD-Online (2017a) and many other refer-
ences. That the full expression for ℓ must include Cμ is clear because it is needed to
satisfy the Prandtl-Kolmogorov relationship; refer to Problem 4.3 in Chap. 4.

Note that u0 is the fluctuating velocity and ε is the turbulent dissipation. Gener-
ally, both variables are unknown. Fortunately, ℓ can be approximated because it
tends to be linearly proportional to the system characteristic length. That is, the
system characteristic length places a linear scale limit upon the maximum magnitude
of the integral eddy length:

ℓ � xchar: ð3:16Þ

However, the maximum length is usually not reached nor is there a “typical
value.” Therefore, conservative approximations are used, so some fraction of xchar is
considered, and this depends on the geometry (von Karman and Howarth 1938). For
example, for internal flow in a pipe, the characteristic length is D because it forms a
reasonable upper boundary for the length of the large eddies (though stretching will
make a small fraction of the large eddies larger than D). In any case, some fraction of
D is used to provide a reasonable estimate for ℓ (CFD-Online 2017a):

ℓ � 0:07D: ð3:17AÞ

A similar expression is (Minin and Minin 2011)
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ℓ � 0:1D: ð3:17BÞ

Either 0.07 or 0.1 is reasonable, with 0.07 being the preferred coefficient because
it is more limiting.

For noncircular internal flow, the hydraulic diameter Dh is factored in

ℓ � 0:07Dh: ð3:18Þ

For boundary layers generated by external flow over a surface, the hydraulic
boundary layer thickness δ is the system characteristic length scale, and therefore

ℓ � 0:4δ: ð3:19Þ

Finally, for wind tunnels, the grid spacing S is the system characteristic length
(Taylor 1935):

ℓ � 0:2S: ð3:20Þ

The above characteristic length represents the average eddy size downstream of
the grid, ℓ2. This length is twice ℓ1, the “Mischungsweg of Prandtl,” as Taylor would
fondly call it (Taylor 1935).

• Calculation of I

The turbulence intensity is often represented by the symbol I or IT, which the
literature defines in various ways, including (CFD-Online 2017b)

I ¼
ffiffiffiffiffiffiffiffiffiffi
2
3 k
� �
u2

s
, ð3:21Þ

where the flow is assumed isotropic, thus imposing that

u0x
2 ¼u0y

2 ¼u0z
2: ð3:22Þ

However, a simpler relationship can be obtained by approximating the turbulence
intensity as the ratio of the mathematical definition for root-mean-square (RMS)
velocity fluctuations u0 and the time-averaged velocity u: Therefore, the degree of
turbulence fluctuation in a generic system can be expressed as the ratio of the
“averaged velocity fluctuation” and the flow’s time-averaged velocity,
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I ¼ I t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 u02 þv02 þw02
� �r

u
¼ u0

u
: ð3:23Þ

If the flow is isotropic or nearly isotropic, then Eq. 3.22 can be substituted into the
above expression, thereby simplifying as follows:

I �
ffiffiffiffiffiffiffi
u0x

2
q
u

: ð3:24Þ

Moreover, if the following nonchalant approximation is made,
ffiffiffiffiffiffiffi
u0x

2
q

� u0x
�� ��, then

u0 � u0x
�� �� �uI: ð3:25Þ

An absolute value is assigned to the above expression because fluctuations can be
negative WRT the time-averaged mean velocity and hence can cause nearly-
instantaneous decreases in the mean. Another way of visualizing negative fluctua-
tions is that they decrease the mean velocity.

Thus, as turbulence intensity approaches 0, the flow becomes less and less
turbulent, while a value approaching 1 implies huge velocity fluctuations; I can
range to as low as 0.003 for highly aerodynamic airfoils, to as high as 0.3 for
atmospheric boundary layer flows; this indicates that turbulence exhibits a large,
two-decade range for I and should be approximated as carefully as possible
(be weary of using the CFD code default without investigating your specific
application).

Table 3.1 shows some estimates for I that can be used for various systems and
general conditions. However, more precise approximations can be made, as will be
shown later.

Generally speaking, as the hydraulic Re increases, I decreases, which implies that
eddies become smaller. This behavior is reflected through analytic expressions for
pipe and duct flows as power law functions of Re. These relationships have been

Table 3.1 Estimates for I

System or general condition I

Aerodynamic airfoils 0.003

Core flows 0.02–
0.05

Pipes, ducts, simple internal flows at intermediate to high Re 0.02–
0.12

High-velocity flows in complex systems (e.g., turbomachinery, heat exchangers,
baffles, high swirl devices, near the wall)

0.05–
0.2

Atmospheric boundary layer flows, gusting winds, tornadoes, hurricanes, oscillating
boundaries

0.3
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derived for at least six decades and have the following form (Sandborn 1955; Minin
and Minin 2011; Russo and Basse 2016; Basse 2017):

I ¼ C1 Re
�C2
h ð3:26AÞ

where Reh refers to the hydraulic Re.
The earliest verifiable version of a power law expression dates to 1955 and is

attributed to research conducted for the National Advisory Committee for Aeronau-
tics (Sandborn 1955),

Imeas,pipe center ¼ 0:144Re �0:146
h : ð3:26BÞ

Sandborn’s equation was derived for the pipe center for fully developed flow and
is based on data from several experiments.

Curiously, many unsuccessful attempts have been made by researchers (Russo
and Basse 2016), etc., to find the original reference for the following power law
equation:

I ¼ 0:16Re �1=8
h : ð3:26CÞ

An early citation for Eq. 3.26C is found in (Minin and Minin 2011), and perhaps
there are earlier citations as well.

More recently, power law expressions were developed by using CFD and exper-
imental data for fully developed pipe flow (Russo and Basse 2016). Russo and Basse
considered many cases, including compressible and incompressible flows, as well as
expressions for I that are based on the pipe axis and flow area. For I in the pipe axis,
they found that C1 is in the range of 0.0550 and 0.0947, while C2 is in the range of
0.0407 and 0.0727. For I computed based on flow area, C1 is in the range of 0.140
and 0.227, while C2 is in the range of 0.0779 and 0.100. This wide range is shown in
Fig. 3.5, which includes the Sandborn and 1/8th expressions as well. Figure 3.5
shows that I spans a range that differs by approximately 3.5 times between the peak
and the minimum values.

It is therefore necessary to sort through the expressions to look for patterns. First,
it is noted that compressible vs. incompressible flows did not result in significant
differences when compared to other factors. Some expressions were derived solely
on CFD, while others relied solely on experimental data. But without having error
bars and detailed descriptions of the CFD calculations and the experiments, there is
insufficient information to choose CFD over experiments, or vice versa. However,
from Fig. 3.5, it is clear that the Russo and Basse equations for the pipe area have a
higher I, which makes sense. In particular, turbulence fluctuations are larger near the
wall (but not in the laminar sublayer, of course) than at the pipe centerline. So, it
stands to reason that the area-based I is larger. As an aide to sort the expressions,
Figs. 3.6 and 3.7 attempt to seek such pattern, where Fig. 3.6 shows the pipe axis
expressions, and Fig. 3.7 shows the area-based expressions.
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Figure 3.6 indicates that the curves form a tighter fit; the compressible, the 1/8th
relationship, the CFD-based expressions, and the measured experimental data
expressions follow each other in a much closer pattern. If anything, the Sandborn
Equation now appears as an outlier WRT the other expressions; but it is still in close
range. Certainly, Eqs. 3.26B and 3.26C yield I values that can be sufficiently
different; refer to Example 3.5 in this chapter for an instance where their difference
was nearly 34%. However, the Sanborn Equation is the most limiting expression for
I based on the pipe axis, followed by the 1/8th expression. Because of its close fit to
the curves in Fig. 3.6, it is ventured that the 1/8th expression was derived for pipe
axis I. However, because of its better documentation and its lower limit bound, the
Sandborn Equation is preferred. On the other hand, if the reader seeks an upper limit,
then the work of (Russo and Basse 2016) should be consulted.

Fig. 3.5 The wide range in power law equations for turbulence intensity

Fig. 3.6 Turbulence intensity based on pipe axis
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Figure 3.7 indicates essentially the same pattern found in Fig. 3.6, though the
curves do not form as tight a pattern. Figure 3.7 indicates that the most limiting
expression is Eq. 3.26F, which was formulated using CFD for an incompressible
flow, with area-based I. The reader is encouraged to consult Russo and Basse (2016)
for upper limits based on area.

Based on experimental data, Russo and Basse (2016) and Basse (2017) recom-
mend that

Imeas,pipe axis ¼ 0:055Re �0:0407
h : ð3:26DÞ

Equation 3.26D is also recommended for smooth pipes (Basse 2017).
Likewise, based on experimental data for a smooth pipe,

Imeas,pipe area ¼ 0:227Re �0:1
h : ð3:26EÞ

Based on Fig. 3.7, the bounding limit expression for area-based incompressible
turbulence intensity is

IInc,CFD,pipe area ¼ 0:140Re �0:079
h : ð3:26FÞ

Finally, for smooth pipes, I based on the pipe area is

Ismooth,pipe area ¼ 0:317Re �0:11
h : ð3:26GÞ

Quite recently, it was determined that there is a relationship between pipe surface
roughness λ and turbulence intensity (Basse 2017), namely, that

Fig. 3.7 Turbulence intensity based on pipe area
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Ipipe area � 9
10

ffiffiffi
d
2

r
Note: d ¼ channel roughnessð Þ: ð3:26HÞ

To say the least, future research in the field of turbulence intensity should
reconcile the differences in the multiple expressions for I, as evidenced in Fig. 3.5.
An additional research area of strong merit is the development of I expressions for
external flows, such as flow over flat plates and airfoils.

• Calculation of k

Once I or u0 have been calculated using the previous expressions, it is straight-
forward to calculate k:

k ¼ 3
2

u0ð Þ2 ¼ 3
2

uIð Þ2 ð3:27Þ

where u is the time-averaged velocity. If u is unknown, but the mass flow rate is
given, then it is easy to obtain the velocity from _m ¼ ρuA.

• Calculation of ε

Once k is known, and in conjunction with the expressions for ℓ shown earlier, the
calculation of ε is straightforward:

ε ¼ Cμ
k3=2

ℓ
: ð3:28Þ

This completes the LIKE algorithm for estimating ℓ, I, k, and ε.

Example 3.2 Consider a pipe with D ¼ 0.025 with at an average velocity of
0.02 m/s. The fluid consists of nitrogen gas at 600 K and 5.0 � 106 Pa. Use LIKE
to determine the integral, Taylor, and Kolmogorov eddy length, time, and velocity.

Solution Actually, Example 3.2 was a “nefarious test question”; however, the “real
world” offers no qualms in terms of such scenarios. It is preferable to spend a few
minutes calculating Re than spending hours explaining why such calculation was not
made. In any case, for this situation, ν ¼ 1.09E�06 m2/s. Therefore,

Re h ¼ 0:025 � 0:02
1:09E � 06

¼ 459:

Clearly, the flow is laminar, so it cannot generate and sustain turbulent eddies!
This example reinforces the absolute need to always calculate Re.

Example 3.3 Redo Example 3.2, except that now the average fluid velocity is
2.0 m/s.
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Solution Re h ¼ 0:025 � 2:0
1:09E � 06

¼ 4:59E04, ∴turbulent:

Usage of the equations in Sects 3.1, 3.2, 3.3 and 3.4 are sufficient to solve this
problem. In particular, from Eq. 3.17A,

ℓ � 0:07D ¼ 0:07 � 0:025 ¼ 0:0018 m:

From Eq. 3.26C,

I ¼ 0:16Re �1=8
h ¼ 0:16 4:59E04ð Þ�1=8 ¼ 0:0418:

From Eq. 3.27,

k ¼ 3
2

uIð Þ2 ¼ 3
2

2:0 � 0:0418ð Þ2 ¼ 0:0105 m2=s2:

Finally, from Eq. 3.28,

ε ¼ Cμ
k3=2

ℓ
¼ 0:09

0:0105ð Þ3=2
0:0018

¼ 0:0538 m2=s3:

Now that the four LIKE variables have been calculated, the entire set of eddy
scales can be estimated. Namely, for the integral eddies, ℓ, τℓ, and uℓ are

ℓ ¼ 0.0018 m (already calculated from Eq. 3.17A),
τℓ ¼ C1xchar

k1=2
¼ 0:07ð Þ 0:025ð Þ

0:01051=2
¼ 0:0171 s (Eq. 3.2B),

and
uℓ ¼ k1/2 ¼ 0.01051/2 ¼ 0.1025 m/s (Eq. 3.3).
For the Taylor eddies, λ is found from Eq. 3.6B,

λ ¼ 10kν
ε

� �1=2

¼ 10 � 0:0105 � 1:09E � 6
0:0538

� �1=2

¼ 0:0015 m,

while τλ is obtained from Eq. 3.7,

τλ ¼ 15ν
ε

� �1=2

¼ 15 � 1:09E � 6
0:0538

� �1=2

¼ 0:0174 s,

and uλ proceeds from Eq. 3.8,

uλ ¼ 2k
3

� �1=2

¼ 2 � 0:0105
3

� �1=2

¼ 0:0837 m=s:

Finally, for the Kolmogorov eddies, Eq. 3.11 is used to obtain η,
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η ¼ ν3

ε

� �1=4

¼ 1:09E � 63

0:0538

� �1=4

¼ 6:99� 10�5 m,

while Eq. 3.12 provides τη,

τη ¼ ν
ε

� �1=2
¼ 1:09E � 6

0:0538

� �1=2

¼ 0:0045 s,

and uη is calculated from Eq. 3.13,

uη ¼ η
τ
¼ νεð Þ1=4 ¼ 1:09E � 6 � 0:0538ð Þ1=4 ¼ 0:0156 m=s:

A check of the LIKEMATLAB script found in Chap. 7 confirms the above values
to within round-off.

Example 3.4 Consider the same conditions as in Example 3.2, but now replace the
fluid with molten liquid lead bismuth eutectic (LBE). Use the LIKE and liquid-metal
physical properties calculator scripts found in Chap. 7.

Solution LBE melts at 397 K. Because the fluid is single-phase molten metal, the
high pressure should not impact the kinematic viscosity. For T ¼ 600 K,
ν ¼ 1.6873E�07 m2/s. For this situation,

Re h ¼ 0:025 � 2:0
1:687E� 07

¼ 2:96E05, ∴turbulent:

From the LIKE MATLAB script output:

Kolmogorov eddy size ¼ 2.04E�05 m
Kolmogorov eddy velocity ¼ 8.25E�03 m/s
Kolmogorov eddy time ¼ 2.48E�03 s
Taylor eddy size ¼ 6.36E�04 m
Taylor eddy velocity ¼ 6.62E�02 m/s
Taylor eddy time ¼ 9.60E�03 s
Integral eddy size ¼ 1.75E�03 m
Integral eddy velocity ¼ 7.30E�03 m/s
Integral eddy time ¼ 2.40E�01 s

3.5 Using LIKE to Obtain Key Turbulence Variables

Once the LIKE equations in Sect. 3.4 are solved, estimating the characteristic length,
velocity, and time for the integral, Taylor, and Kolmogorov eddies is trivial. The
MATLAB-like script in Chap. 7 already has all the eddy scale equations found in
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Sects. 3.1, 3.2 and 3.3. Furthermore, the four LIKE variables can provide additional
useful information through BOTE calculations, such as valuable turbulence metrics
and quantities required for input models. For example, the RANS k-εmodel requires
initial values for k and ε, which are already calculated by the LIKE algorithm.
However, if the user is interested in the k-ω model, input values for ω can be
estimated as follows:

ω ¼ k1=2

ℓ
¼ ε

β�k
ð3:29AÞ

where

β� ¼ 9
100

: ð3:29BÞ

If the code requires input for the kinematic viscosity νt, then

νt � μt
ρ
¼ Cμk

2

ε
, ð3:30Þ

which is the Prandtl-Kolmogorov relationship. Note that for turbulent flows, νt is
generally 10 to 1000 times larger than the fluid kinematic viscosity, ν. Furthermore,
the larger the ratio of νt vs. ν, the more turbulent the flow will be.

The turbulent Re, which is based on the integral eddies, can be estimated as

Re T ¼ ℓ
ffiffiffi
k

p
ν

� ℓu0

ν
: ð3:31Þ

ReT is typically about 10 to 100 times smaller than Reh, appears in many
turbulence models, and is useful for estimating the number of computational nodes
N needed for DNS:

N1D � Re Tð Þ3=4 ¼ nodes required in 1D DNS calculations ð3:32Þ
N3D � Re Tð Þ9=4to Re Tð Þ11=4 ¼ nodes required in 3D DNS calculations ð3:33Þ

A more precise relationship is as follows (Wilcox 2006; Sodja 2007):

N3D ¼ 110Re Tð Þ9=4: ð3:34Þ

The total computational processing unit (CPU) needed to solve 3D DNS prob-
lems is proportional to the turbulent Re to the very costly third power, indicating an
overwhelming increase in the required computational resources as Re increases:
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CPU / Re 3
T: ð3:35Þ

The Courant number for a DNS calculation can also be estimated:

Courant number ¼ u0Δt
η

< 1 DNSð Þ ð3:36Þ

where η is the Kolmogorov length scale.
The key advantage of LES is that it calculates the dynamic behavior of the larger

eddies, which generally includes the range from integral to Taylor eddies having the
lowest κ (see Fig. 3.1). If faster calculations are desired at the expense of accuracy,
then the LES calculation can capture the integral eddies and up to a scale that is five
to ten times larger than the Taylor length. Therefore, as a useful guide for compu-
tational node spacing, the eddy lengths can be estimated from the LIKE algorithm,
so that the mesh has node spacing that is suitable for LES simulations. Note that
failure to estimate the eddy size to ensure that the mesh elements are sized to
adequately model the larger eddies will inevitably result in significant errors, either
the analyst risks having node spacing that is close to or even larger than the integral
eddies or having elements that are at or smaller than the Kolmogorov length. In the
first situation, the calculation will not resolve the larger eddies, and in the latter case,
too many computational nodes will be generated, thereby unduly increasing com-
putational time and calculating too much damping.

Likewise, when modeling with DNS, all the length scales ought to be considered
(from integral to Kolmogorov). Thus, the mesh must be sufficiently discretized to
permit reasonable calculation of the limiting Kolmogorov eddy. In this context,
“reasonable” refers to the notion that there are sufficient calculational nodes to obtain
spatial resolution for the dynamic behavior of eddies. (This applies to LES and DNS
models, but not to RANS models because RANS does not calculate individual eddy
behavior.) Therefore, in any given direction, no fewer than two or three computa-
tional nodes ought to discretize a single eddy. In two directions, this requires 22 to 32

computational nodes per eddy and up to 23 to 33 for three dimensions. If the total
system volume is known, then it is just a matter of dividing its volume by the volume
occupied by a single Kolmogorov eddy to estimate the total number of eddies and
thus the total number of computational nodes required by the system. Considering
that in 3D, each Kolmogorov eddy requires between 8 and 27 nodes, the total
number of necessary computational nodes skyrockets very quickly. Fortunately,
these conservative nodal constraints can be loosened a bit, especially as
discretization studies are conducted. But clearly, LES and DNS calculations can
be very computationally intensive!

Another useful approximation is obtained rather quickly once the average veloc-
ity is calculated, such as from the mass flow rate, _m ¼ ρuA. Then, the peak
turbulence velocity is estimated as a rule of thumb as (Bird et al. 2007)
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uturb,max � Cu ¼ 5
4
u: ð3:37Þ

This expression is somewhat conservative, as it assumes that the peak velocity
fluctuation approaches 25%. Refer to Table 3.1 for more specific values.

Finally, if the turbulence is anisotropic, but flows over a flat plate, the root-mean-
square (RMS) of the turbulent velocity fluctuations can be approximated as

u02 :v02 :w02 � 4 : 2 : 3: ð3:38Þ

This implies that

u02

v02
� 2 ð3:39AÞ

and

u02

w02
� 4

3
: ð3:39BÞ

Substitution of Eqs. 3.39A and 3.39B into Eq. 2.60 (nonisotropic k) implies

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

u02 þv02 þw02
� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

u02 þ u02

2
þ 3
4
u02

 !vuut ¼
ffiffiffiffiffiffiffiffiffi
3
4
u02

r
: ð3:39CÞ

Wilcox briefly mentioned the following approximations, which are suitable for
anisotropic turbulent flow over flat plates (Wilcox 2006):

u02 � k, ð3:40AÞ

v02 � 2
5
k, ð3:40BÞ

and

w02 � 3
5
k: ð3:40CÞ

If Eqs. 3.40A, 3.40B, and 3.40C are substituted into Eq. 2.60, then
u02 þv02 þw02 ¼ k þ 2

5 k þ 3
5 k ¼ 2k:Therefore,
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kWilcox,anisotropic,flat plate ¼ 1
2

u02 þv02 þw02
� �

: ð3:40DÞ

Thus, the turbulent kinetic energy split approximations proposed by Wilcox are
not only reasonable and appropriately normalized but compare well with experi-
mental data (Wilcox 2006).

Example 3.5 Consider water flowing in a pipe with D ¼ 0.1 m, at an average
velocity of 5.5 m/s. The water is at 350 K and 5.7� 105 Pa. Suppose that you want to
use various RANS turbulence models, for which you will need as input the follow-
ing: k, ε, ω, and νt. Compute the four quantities and explain why this flow is highly
turbulent. What is the expected peak turbulence velocity?

Solution The water has ν ¼ 3.78 � 10�07 m2/s. So,

Re h ¼ 0:1 � 5:5
3:78E� 07

¼ 1:45E06, ∴turbulent:

From Eq. 3.17A,

ℓ � 0:07Dh ¼ 0:07 � 0:1 ¼ 0:007 m:

From Eq. 3.26C,

I ¼ 0:16Re �1=8
h ¼ 0:16 1:45E06ð Þ�1=8 ¼ 0:0272:

Note that if Eq. 3.26B were used instead,

Imeas,pipe center ¼ 0:144Re �0:146
h ¼ 0:144 1:45E06ð Þ�0:146 ¼ 0:0181,

which is considerably different, and thus somewhat disconcerting (hence the appeal
for more research in this area). For now, proceed with the results from Eq. 3.26C.

Then, from Eq. 3.27,

k ¼ 3
2

uIð Þ2 ¼ 3
2

5:5 � 0:0272ð Þ2 ¼ 0:0336 m2=s2:

From Eq. 3.28,

ε ¼ Cμ
k3=2

ℓ
¼ 0:09 � 0:0336ð Þ3=2

0:007
¼ 0:0787 m2=s3:

Note that the above four turbulence variables (ℓ, I, k, and ε) were obtained with
the four appropriate LIKE equations.

Then, from Eq. 3.29A,
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ω ¼ k1=2

ℓ
¼ 0:0335ð Þ1=2

0:007
¼ 26:1=s:

Next, the turbulent kinematic viscosity can be obtained from the Prandtl-
Kolmogorov relationship, Eq. 3.30,

νt ¼ Cμk
2

ε
¼ 0:09 � 0:0335ð Þ2

0:0787
¼ 0:0013 m2=s:

Regarding degree of turbulence, it is known that for pipes, a flow becomes
turbulent at a Re of about 2200. For this example, the flow is at Re ¼ 1.45 � 106,
which indicates a high degree of turbulence. But furthermore, note that the ratio of
νt vs. ν is extremely large:

νt
ν
¼ 0:0013

3:78E� 07
¼ 3:38E3:

As noted in Chap. 2, the turbulent kinematic viscosity can be orders of magnitude
higher than the fluid viscosity, thus providing a reasonable way to gauge the degree
of turbulence, namely, that

νt
ν >> 1 (with larger ratios implying a higher degree of turbulence; Eq. 2.48).
Finally, Eq. 3.37 can be used to estimate very quickly the peak turbulent velocity:

uturb,max � 5
4
u ¼ 5

4
� 5:5 ¼ 6:88 m=s:

Example 3.6 Consider the same system as in Example 3.5. However, the analyst
would now like to consider the feasibility of using LES and DNS models. What
distance between the computational nodes will be sufficient to resolve the integral,
Taylor, and Kolmogorov eddies?

Solution Use either the LIKE MATLAB script that is part of this book or the
equations in Sect. 3.4 to obtain the following output:

Kolmogorov eddy size ¼ 2.88 � 10�05 m
Taylor eddy size ¼ 1.27 � 10�03 m
Integral eddy size ¼ 7.00 � 10�03 m

So now, it is just a matter of dividing the length of each eddy by three along the
coordinate of interest (for a very conservative approximation, or by two for a coarser
estimate). For example, for the Kolmogorov eddy, the conservative approximation in
1D would be
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η
3
¼ 2:88E � 05

3
¼ 9:6E � 06 m:

For the Taylor eddies, the desired nodal distance for this situation in 1D is

λ
3
¼ 7:00E � 03

3
¼ 2:33E � 03 m:

In summary, the LIKE algorithm is quite useful, so perhaps the user will truly
“like” it!

3.6 The Viscous Sublayer, the Log Laws,
and Calculating Y+

Flow near a wall is complex, to say the least. To simplify the situation, imagine a
laminar, uniform liquid flow at U1 approaching parallel to a flat plate, as shown in
Fig. 3.8. The flow on the LHS is laminar; until at some point as the flow travels
further to the right, it begins exhibiting instabilities and eventually becomes
turbulent.

Proceeding perpendicularly from the wall (y ¼ 0) to the turbulent core, the flow
can be characterized into various regions that exhibit different behavior, starting with
the laminar sublayer, on to the buffer layer, followed by the log layer, and finally, the
defect layer. These regions are shown in Fig. 3.9, and are discussed next. Note that
the layer regions are an engineering construct (a convenience), with the layers
opportunely separated by dimensionless variable y+ (to be defined later). Another
dimensionless variable, u+, forms theoretically and experimentally validated func-
tions that are based on y+ and are unique for each layer. Thus, u+ ¼ u+(y+). u+ will be
defined shortly.

Fig. 3.8 Laminar and turbulent flow over a flat plate
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• The viscous sublayer

At the wall, a liquid has zero velocity due to “no slip.” Thus, barring
microbubbles formed by air or other miscellaneous gases, the liquid molecules
will be attached to the wall, whether smooth or rough. Then, at some point, the
viscous flow sheets begin to slip right by each other, without mixing, because they
are laminar. This behavior normally occurs when y+ is in the range of just slightly
above 0, to as high as 5 to 8, with 7 being a more typical value. This is shown in the
bottom LHS of Fig. 3.9. Thus, despite the fact that the flow in the sublayer occurs
beyond the turbulence transition point and well into the turbulence region, the
sublayer behavior consists of thin, laminar sheets without eddies. This is the case
because near the wall, the viscous force dominates. It is rather straightforward to
imagine that if the fluid velocity is zero at the wall and the velocity increases
gradually away from the wall until turbulence is achieved, then there must be a
laminar region where the flow is bounded by 0� Re < Recrit; such region is called the
viscous sublayer or laminar sublayer.

That said, it is interesting that studies have shown velocity fluctuations in the
viscous sublayer (Fage and Townend 1932; Chapman and Kuhn 1986; Hinze 1987;
Mansour et al. 1988). These observations include experimental measurements of
irregular fluctuations in w0 (z direction velocity component) using dopants. Both
experiments and DNS simulations show that k (the turbulence kinetic energy of
eddies) is a function of y+2 in the range of 0.3 < y+ < 3. It is surmised here that such
fluctuation observations could be due to the momentum effects arising from inter-
mittency occurring at the interface between the viscous sublayer and the buffer layer.
If so, the viscous sublayer is purely laminar in the narrow regions not affected by this

Fig. 3.9 Laminar (viscous), buffer, log, and defect layers
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particular type of intermittency. Intermittency has already been noted in the interface
between the log layer and the free stream (Corrsin and Kistler 1954; Klebanoff 1954;
Wilcox 2006). Another possibility for the experimental observation of fluctuations in
the viscous sublayer may result from eddies in the buffer layer that are sufficiently
large, energetic, and move toward the wall, such that they occasionally collide onto
the laminar flow near the wall; it is noted that the buffer layer has a high degree of
isotropy and turbulence intensity (Chapman and Kuhn 1986). Moreover, note that
the relationship between the flow velocity in the viscous sublayer and distance from
the wall is linear, thereby alluding to its laminar nature; turbulence is associated with
nonlinear velocity. Another possibility is the existence of streamwise vortices, which
may exhibit linear Rankine vortex-like motion in the domain of 0 < y+ < 5. Alter-
natively, vortices located at y+¼ 20 from the wall, but that are large enough to have a
radius of y+ ¼ 15, could generate the spurious fluctuations (Kim et al. 1987;
Rodriguez et al. 2012).

Finally, as will be shown later in this section, the viscous sublayer is thinner than
Kolmogorov eddies, so the sublayer is not able to support eddies; they simply don’t
fit in this small region! In summary, the viscous sublayer, though crucial for
turbulence CFD modeling, is not turbulent, despite existing in the “turbulence”
region (e.g., at distance x, for flow in a flat plate where Rex > Recrit)! However,
intermittency and/or turbulence intensity may occasionally make the laminar vis-
cous sublayer appear as turbulent.

At last, the dimensionless variable y+ is defined as follows:

yþ ¼ yu�
ν

ð3:41Þ

where

u� �
ffiffiffiffiffi
τw
ρ

r
: ð3:42Þ

The variable u� is commonly called the “friction velocity,” “wall friction veloc-
ity,” “wall shear stress velocity,” and “shear velocity.” It is also commonly
represented as uτ in the literature and has SI units of m/s. The variable y is the
distance perpendicularly away from the wall, with y¼ 0 defined as the wall interface.

The dimensionless variable y+ is a very interesting physical quantity, as it is
analogous to the key fluid dynamics dimensionless quantity, Re; in particular, both
are based on the product of length and velocity, which is then divided by kinematic
viscosity:

yþ $ Re
yu�
ν

$ xcharuchar
ν

(
: ð3:43Þ
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In this context, τw is the wall shear stress at y ¼ 0, has SI units in kg/m-s2, and is
defined as

τw ¼ μ
∂u
∂ y

����
y¼0

: ð3:44Þ

Unless an analytical solution is known for u(y), Eq. 3.44 requires an experimental
or theoretical velocity expression or input from a previous CFD simulation so that
τw can be evaluated. Fortunately, the literature has many expressions for calculating
τw directly, as will be noted later in this section.

Now that y+ is defined and is calculable from Eq. 3.41, the dimensionless velocity
distribution u+ for the viscous sublayer can be calculated for a smooth wall as a
simple linear function of y+:

uþ ¼ yþ: ð3:45Þ

The above relationship is valid for the viscous sublayer, which is defined as the
region where y+ < 7.

The linear expression for the viscous sublayer has been corroborated extensively
with experimental data. But most importantly, the viscous sublayer is a theoretical
solution for the Navier-Stokes momentum equation (Hinze 1987; Oberlack 2001).
Therefore, not surprisingly, the viscous sublayer is typically accurate to within 1% of
the measured flow. Thus, its simplicity should not be underestimated.

If the wall is rough, then the surface roughness λ must be accounted as well
(Hinze 1987; Wilcox 2006).

The dimensionless velocity u+ is defined as follows:

uþ � u
u�

: ð3:46Þ

At this point, y+ is obtained from Eq. 3.41, u� is known from Eq. 3.42, and u+ is
acquired from Eq. 3.45. Then, from Eq. 3.46, the sought-after turbulence time-
averaged velocity u is computed. In this context, u is the viscous sublayer velocity
in m/s if SI units are considered. That is, the ultimate goal is to calculate u, which
requires u�, u

+, and y+; a few examples will help clarify the process.
Note that each layer shown in Fig. 3.9 requires its own u+ formula as a function

of y+ because each layer exhibits different flow physics. But u� does not change, so
once its value is known, it can be used in any of the layer formulas. Furthermore,
Eq. 3.46 is appropriate for the entire y+ domain.

Note that most engineering viscous sublayers are very thin, as they tend to be
mostly on the order of micro-m to just a few mm in thickness; this is shown in
various examples found later in this section.

• The buffer layer
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The buffer layer is considered as the “intermediate layer” between the viscous
sublayer and the log layer. The buffer layer therefore exhibits a hybrid behavior,
having both laminar and turbulent characteristics. It is rich in coherent structures,
such as low-velocity streaks, streamwise vortices, and hairpin vortices (Kawahara
2009). Its y+ range is typically as low as 5 to 8 and as high as 30. One thing that
makes the buffer layer unique and powerful is its sharp velocity gradient, which
enables the turbulence production term to have the highest magnitude within the
entire flow. Recall that the viscous sublayer is too small to sustain eddies, and it is
noted that the log layer has a flatter velocity gradient than the buffer layer, so eddy
production is the largest in the log layer. The turbulence intensity has the largest
magnitude in the buffer region as well, thus implying that it generates the largest
eddies. Therefore, the buffer layer is characterizable as the region with the highest
degree of turbulence mixing.

A reasonable approximation for the buffer layer velocity distribution is (von
Karman 1939, 1940)

uþ ¼ 5:0 ln yþð Þ � 3:05, ð3:47Þ

which is valid for 5 � y+ � 30.

• The log layer

The “log layer” y+ ranges from 30 to 700 and is a region where the viscous and
inertia terms are much smaller than the turbulent shear terms. Like the buffer layer,
this region is characterized by turbulence intensity and production, but to a lesser
degree, because it has a smaller velocity gradient.

This layer is fondly referred to as the “log layer” because it includes a natural log
expression for its velocity distribution,

uþ ¼ 1
κ
ln yþð Þ þ C, ð3:48AÞ

which is valid for 30 � y+ � 700. For smooth walls,

κ � 0:41 ð3:48BÞ

and

C � 5:0: ð3:48CÞ

Recent controversy regarding the log law has resulted in much research. That
said, the log law has received confirmation using DNS and statistical methods, and
this also applies to power laws (Buschmann and Gad-el-Hak 2003; Wilcox 2006).
The log equation is very accurate if the flow is not detached or has large pressure
gradients. Readers interested in flows with large pressure gradients are referred to
(Shih et al. 1999) for a generalized form of the log wall. When used in the proper y+
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range, the log law equation typically compares to within 	5% of experimental
values. Fortunately, the log law is also applicable for both internal and external
flows. Most importantly, it is well-known that the log equation can be derived as an
exact solution of the Navier-Stokes momentum PDE (Kolmogorov 1942; Nazarenko
2000; Oberlack 2001).

The log equation is sometimes referred to as the “law of the wall,” and its most
formal and extensive name is the “von Karman-Prandtl universal logarithmic veloc-
ity distribution.” However, the inclusion of “wall” in its naming convention is
unfortunate, as the flow in question is clearly not at the wall; other researchers
have held the same misgivings for the naming convention (Schlichting and Gersten
2000). Nevertheless, because of the log equation’s excellent correlation with exper-
imental data for both internal and external flows, the term “universal” is appropriate.
Because it is an analytical solution for Navier-Stokes, “law” is reasonable as well.
Therefore, “universal log law velocity distribution” is recommended, and “log law”
is acceptable for brevity.

• The defect layer

For y+ greater than 700, the measured turbulent velocity exceeds the magnitude
predicted by the log law and is therefore called the “defect layer.” The Spalding log
law formula (discussed next) can be used for the defect layer in the range of 700 < y+

� 2000. Various formulations exist for the calculation of the defect velocity; the
interested reader is referred to Wilcox (2006).

• The Spalding log law formula

A single equation was proposed half a century ago that covers y+ from 0 to 1000
(Spalding 1961; White 1991; Patankar and Minkowycz 2017). Recent investigators
have shown that the Spalding equation is suitable for y+ up to 2000 (Osterlund 1999;
McKeon et al. 2004; Mandal and Mazumdar 2015).

Spalding’s equation has several amazing properties:

• A single equation covers the four layers (viscous, buffer, log, and defect) for 0 �
y+ � 2000.

• Collapses to the linear viscous sublayer formulation as u+ approaches 0.
• Collapses to the log law for large u+.
• Subtracts the first five terms of a Taylor series expansion for eκu

þ
and hence can

be simplified by only considering the higher order terms, beginning with n ¼ 5.
• Has excellent agreement with experimental data.

Spalding’s equation is as follows:

yþ ¼ uþ þ e�κC eκu
þ � 1�

X4
n¼1

κuþð Þn
n!

" #
for 0 � yþ � 2, 000: ð3:49AÞ

For this equation, it is recommended that the following κ and C values are used:
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κ � 0:4 ð3:49BÞ

and

C � 5:5: ð3:49CÞ

A quick inspection shows these values are similar to those used in the log wall
formula.

• The turbulent core and intermittency

Depending on the author, the turbulent core loosely includes the log and defect
layers. Thus, the core represents the production region that generates mid to large
eddies and whose span reaches the top of the turbulent boundary layer (recall that
y ¼ 0 is at the wall surface, the bottom).

Note that the turbulent boundary edge is typically shown as a smooth parabolic
curve, indicating its “time-averaged” nature. However, if instantaneous snapshots
were taken, the boundary would not be smooth but would instead have a discontin-
uous, jagged distribution as a result of the random velocity fluctuations that occur as
eddies are generated, transported, and decayed. Thus, at the region where the
turbulence boundary layer ends, there are myriads of superimposed dynamic sub-
regions where the turbulent boundary layer edge not only oscillates randomly
between laminar and turbulent flow, but its spatial distribution also changes WRT
time with irregular, nondeterministic patterns and motions. This is referred to as
“intermittency,” and its effect has been incorporated successfully into many turbu-
lence models (Corrsin and Kistler 1954; Klebanoff 1954; Wilcox 2006).

• Calculation of y+

At this point, it should be very clear that the spatial distribution of computational
nodes based on their y+ location is crucial, particularly because of the different flow
physics within turbulent flow. This assertion is important if accurate drag and lift
calculations are desired, as well as accurate calculations for surfaces involving
strong wall shear, swirl, rotational surfaces, turbomachinery, heat transfer, etc.

To find the value of y (in meters) for any desired dimensionless value of y+, first
calculate Re based on the characteristics of the flow. (Refer to Sect. 2.6.1 for
recommendations for applying Re onto systems with internal and external flows.)
At this point, it is necessary to obtain the appropriate characteristic length and
velocity, xchar and uchar, so they properly reflect their impact on Re:

Re � xcharucharρ
μ

: ð3:50Þ

The next step is to calculate the skin friction, Cf, which is defined as
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C f � τw
1
2 ρu

2
char

: ð3:51AÞ

At this point, the skin friction is calculated based on whether the flow is internal
or external. Traditionally, Cf is calculated for the skin friction of exterior flows over a
wall, while a friction factor f is calculated for the skin friction of internal flows
(Hoerner 1992). The boundary layer on an external flow can grow indefinitely, while
for internal flows, the boundary layer grows until the duct becomes “full of boundary
layer” if the duct is large enough; hence different xchar are used in Re, depending on
the flow geometry. The two cases are considered next.

• External flows

The Schlichting formula is valid up to Rex � 109 for smooth external plate flow:

C f ¼ 2 log 10 Re xð Þ � 0:65½ 
�2:3 ð3:52AÞ

where x refers to the location along the flat plate (or curved surface), that is, it tracts
how far the flow has traveled. Usually, x ¼ 0 is at the beginning of the plate on the
LHS, where the flow first comes into contact with the plate, as shown in Fig. 3.8,
while x ¼ L refers to the RHS extreme (opposite end of the plate).

Prandtl developed a more simplified skin friction formula for a smooth, flat plate:

C f ¼ 0:074Re �1=5
x : ð3:52BÞ

Despite their formulation differences, an overlay of Eqs. 3.52A and 3.52B shows
a remarkable similitude over a wide Re range.

• Internal flows

Blasius determined a simple relationship for smooth walls with internal flow:

C f ¼ f Darcy ¼ 0:316Re �1=4
h ð3:53AÞ

in the domain of

2500 � Re h � 1� 105,

where Reh is based on xchar ¼ hydraulic diameter (refer to Eq. 3.50).
A more complex formulation was proposed by Moody, which is valid for internal

flows with smooth to rough walls:
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C f ¼ f Darcy ¼ 0:0055 1þ 2� 104
d
D
þ 1� 106

Re h

� �1=3
" #

, ð3:53BÞ

which is subject to

4000 � Re h � 5� 108

and

0 � d
D

� 1� 10�2:

Note that the above Moody equation typically uses λ as the wall roughness,
instead of d, as is done here. However, λ is the Taylor length. Furthermore, though ε
is typically used in the literature as a metric for surface roughness, the turbulence
literature uses ε for dissipation, hence the notation conundrum.

In any case, recall from Sect. 2.2 that the Darcy friction factor is four times the
Fanning friction factor, so care must be taken to ensure that the proper friction factor
is applied:

f Darcy ¼ 4 f Fanning: ð3:54AÞ

Failure to use a consistent expression will result in the skin friction factor being
off by four, causing u� and the turbulent velocity to be incorrect. A clue as to which
factor is being referred is that if Eq. 3.54B is present, then Darcy is being used; if
Eq. 3.54C is used, then the Fanning friction factor is the appropriate friction factor.
Another clue is that chemical engineers generally use Fanning, while most other
engineering disciplines tend to use Darcy. In addition, the Moody chart is based on
Eq. 3.54B and hence its name. Some clever engineers can tell the difference based on
the relative magnitudes of the friction factors. These relationships are as follows:

ΔP ¼ f
L
D

ρU2

2
� f Darcy

L
D

ρU2

2
, ð3:54BÞ

and

ΔP ¼ f
4
L
D

ρU2

2
� f Fanning

L
D

ρU2

2
: ð3:54CÞ

An additional caution: many friction factor equations are commonly listed in the
literature using both the Darcy and Fanning format, so it must never be assumed that
a formula is associated with either. For example, the reader may encounter the
following explicit formulation, f ¼ 0:316Re �1=4

h ; which version is this? The
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Blasius equation is reported in the literature for 2000 � Reh � 1 � 105 as the
following two expressions:

f Blasius,Darcy ¼ 0:316Re �1=4
h , ð3:55AÞ

f Blasius,Fanning ¼ 0:0791Re �1=4
h : ð3:55BÞ

Of course, Darcy is four times larger than Fanning, but not all writers explicitly
specify which equation is Darcy and which one is Fanning, caveat emptor.

In any case, once Cf is known, it can be used to solve for the wall shear τw from
Eq. 3.51A, which, for convenience, is now rewritten as

τw ¼ C f
ρu2char
2

: ð3:51BÞ

Note that for internal flows, Eq. 3.51B must be used along with the Darcy friction
factor (refer to the discussion in Rows 2 and 3 of Table 3.2).

Wrapping it up, the variable u� can now be found from Eq. 3.42. Then, y+ is
obtained from Eq. 3.41, thereby allowing for the computation of u+ from the
appropriate layer equation; this is the case because u+ ¼ u+(y+). And now that u+

is known, Eq. 3.46 is easily solved, yielding u. This multistep process can be a little
daunting at first, so various examples are worked out later in this section (refer to
Examples 3.7, 3.8, 3.9 and 3.10).

Because various equations are required in this process and it is important to show
that n independent equations are used to solve for n unknown variables, for conve-
nience, Table 3.2 lists all the equations and unknowns needed to calculate y for any
desired value of y+. Table 3.2 assumes that xchar, uchar, ρ, ν, d (wall roughness, if
any), and flow type (internal or external) are known. In addition, the user decides a

Table 3.2 Calculation of y at the desired value for y+

Equation Unknown

1 Re ¼ xcharuchar
ν Re

2 External flow:
Cf ¼ [2log10(Rex) � 0.65]�2.3

Internal flow (with Darcy formulation so that the shear equation for τw in row
3 below is applicable):

C f ¼ f Darcy ¼ 0:0055 1þ 2� 104 d
D þ 1�106

Re h

� �1=3� 	

Cf, Re

3 τw ¼ C f
ρu2char
2

τw, Cf

4 u� ¼
ffiffiffiffi
τw
ρ

q
u�, τw

5
y ¼ yþν

u�

Backtracked from yþ � yu�
ν

� �
y, u�
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priori what value of y+ is desired so that y can be calculated. Some guidelines are as
follows:

• y+ ¼ 0.05 for the first computational node for DNS calculation of channel flow at
Re ¼ 3300.

• y+ ¼ 1 for the first computational node. This guideline is recommended by Fluent
(Fluent 2012) and is typically used in most RANS and LES models.

• y+ ¼ 5 for the first computational node if the Wilcox 2006 k-ω model is used.
• y+ ¼ 7 to figure out where the buffer layer ends.
• y+ ¼ 30 to determine where the buffer layer ends.
• Peak y+ (or y+ of interest) to ensure that the appropriate layer equation is used.
• And so forth.

Summary for calculating y+

As shown in Table 3.2, there are five unknowns for this process: Re, Cf, τw, u�, and y.
Therefore, five independent equations are required. For convenience, they are listed
in the table in the order that they are typically solved. Thus, Table 3.2 serves as a
roadmap for the calculation of y for any desired y+. Where appropriate, the user may
decide to employ a more relevant (system-specific) expression for Cf.

Example 3.7 Suppose an engineer wants to know how thick the viscous sublayer is
for a fluid with a given kinematic viscosity ν and friction velocity u�. Assume the
sublayer extends up to y+¼ 8. How far away from the wall does the sublayer extend?
(Refer to Fig. 3.8 for the orientation of y in terms of its relationship to the wall.)

Solution From Eq. 3.41,

yþ ¼ yu�
ν

:

In this case, solving for y and inserting the value of interest for y+ yields

y ¼ yþν
u�

¼ 8ν
u�

:

Example 3.8 It is desired to conduct CFD for flow that is parallel over a flat plate
that is 1.0 m long. The fluid is a gas with ρ ¼ 1.5 kg/m3 and μ ¼ 2.4 � 10�7 kg/m-s,
and the flow has a free stream velocity of 5.0 m/s. If the first computational node is
placed at y+ ¼ 1, how far away from the wall will it be?

Solution ν ¼ μ/ρ ¼ 1.6 � 10�7 m2/s. uchar is 5.0 m/s and xchar is 1.0 m. This yields

Re x ¼ xcharuchar
ν

¼ 1:0 mð Þ 5:0 m=sð Þ
1:6� 10�7 m2=s

¼ 3:13� 107:

So, the flow is clearly turbulent and the Schlichting formula (Eq. 3.52A) is valid.
Note that to be conservative, Re is calculated at its maximum value, which is
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achieved at x¼ L; this ensures that the first computational node is as close to the wall
as necessary. Once Rex is known, the skin friction is calculated using Eq. 3.52A:

C f ¼ 2 log 10 3:13� 107
� �� 0:65

� �2:3 ¼ 2:19� 10�3:

The wall shear can now be calculated from Eq. 3.51B:

τw ¼ C f
ρu2char
2

¼ 2:19� 10�3 1:5 kg=m3ð Þ 5:0 m=sð Þ2
2

¼ 4:10� 10�2 kg=m‐s2:

At this point, u� can now be found from Eq. 3.42:

u� ¼
ffiffiffiffiffi
τw
ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:10� 10�2 kg=m‐s2

1:5 kg=m3

s
¼ 0:165 m=s:

Finally, y is solved from Eq. 3.41, yielding

y ¼ yþν
u�

¼ 1ð Þ 1:6� 10�7 m2=s
� �

0:165 m=s
¼ 9:68� 10�7 m:

Example 3.9 Using the input and results from Example 3.8, how large is the
viscous sublayer, and how does it compare in this case with the Kolmogorov eddy
size?

Solution Suppose the viscous sublayer extends to y+ ¼ 8. Then,
y(y

+
¼8) ¼ 8y(y

+
¼1) ¼ 8�9.68 � 10�7 m ¼ 7.74 � 10�6 m. Applying the LIKE

algorithm (see Sect. 3.4), η ¼ 3.85 � 10�5 m. Thus, for this example, the viscous
sublayer is five times smaller than the Kolmogorov length scale and is therefore
unable to accommodate Kolmogorov eddies—they simply don’t fit! It might be
noted that out of hundreds of cases considered to date by the present author, not a
single case has been found where the viscous sublayer was larger than the Kolmo-
gorov length scale. Furthermore, as shown in Fig. 3.10 for turbulent flow over a flat
plate, the Kolmogorov scale is always larger than the viscous boundary layer for all
Re.

Example 3.10 Consider a turbulent flow in a smooth pipe with a mass flow rate at
0.05 kg/s, ρ ¼ 15.0 kg/m3, μ ¼ 3.89 � 10�5 kg/m-s, and D ¼ 0.1 m. Find the peak
turbulent velocity.
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Solution ν ¼ μ/ρ ¼ 2.59 � 10�6 m2/s. The flow area is

A ¼ π
D2

4
¼ π

0:1ð Þ2
4

¼ 7:85� 10�3 m2:

The average turbulent velocity can be obtained from the mass flow rate equation:

_m ¼ ρuA

or

u ¼ _m
ρA

¼ 0:05 kg=s

15:0 kg=m3ð Þ 7:85� 10�3 m2
� � ¼ 0:425 m=s:

This velocity represents the average velocity across the tube. Re can now be
calculated so that y+ can be obtained, and from it, the turbulent velocity at the pipe
centerline:

Re ¼ 0:1 mð Þ 0:425 m=sð Þ
2:59� 10�6m2=s

¼ 1:64� 104:

Now calculate the friction factor based on Re:

Fig. 3.10 Viscous sublayer vs. Kolmogorov eddy size
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C f ¼ f ¼ 0:0055 1þ 2� 104
λ
D
þ 1� 106

Re h

� �1=3
" #

¼ 0:0055 1þ 2� 104
0:0
0:1

þ 1� 106

1:64� 104

� �1=3
" #

¼ 0:0068:

Note that the friction formula based on Darcy is consistent for use with the wall
shear formula below:

τw ¼ C f
ρu2char
2

¼ 0:0068
15:0 kg=m3ð Þ 0:425 m=sð Þ2

2
¼ 0:0092 kg=m‐s2:

Then, the friction velocity is

u� ¼
ffiffiffiffiffi
τw
ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0092 kg=m‐s2

15:0 kg=m3

s
¼ 0:0247 m=s:

The peak velocity is at the centerline, so y ¼ D/2 ¼ 0.05 m. At this point, y+ can
finally be calculated:

yþ ¼ yu�
ν

¼ 0:05 mð Þ 0:0247 m=sð Þ
2:59� 10�6m2=s

¼ 477:

The value of y+ allows for the log wall equation to be used, in order to solve for
u+:

uþ ¼ 1
κ
ln yþð Þ þ C ¼ 1

0:41
ln 477ð Þ þ 5:0 ¼ 20:0:

Now it is possible to solve for u from Eq. 3.46, so the turbulent velocity at the
center of the pipe is

u ¼ uþu� ¼ 20:0 0:0247 m=sð Þ ¼ 0:494 m=s:

Alternatively, the turbulent velocity can be more easily approximated from
Eq. 3.37:

uturb,max � 5
4
u ¼ 5

4
0:425 m=sð Þ ¼ 0:531 m=s,

which shows that the agreement is heartwarming vs. the log wall.
Finally, as a couple of brief side notes in relationship to Fig. 3.8, it is pointed out

that the approaching flow need not begin as laminar; a situation where a wind tunnel
generates turbulent flow using grid spacers could have been considered, whereby the
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flow over the plate starts with a turbulent boundary layer, instead of transitioning
from laminar to turbulent flow. Furthermore, a liquid was chosen for this example, so
the discussion of microbubbles could be introduced. Microbubbles attach to a wall
and can act as a lubricant as the liquid slips past the microbubbles that are attached to
the wall (Tabeling 2009; Bolaños and Vernescu 2017). This mechanism is a key
factor in the usage of shark skin for the reduction of flow drag; refer to the next
section for more discussion on this fascinating subject.

3.7 Dimples, Shark Skin, and Surface Engineering for Drag
Reduction

It is well-known that as Re increases, the coefficient of friction decreases in the
laminar region and generally decreases in the turbulent region, as shown in Fig. 3.11.
But in some geometries (notably round surfaces, such as cylinders, spheres, and
certain airfoils), the drag coefficient drops precipitously at a critical point under
turbulent Re; this is known as the drag crisis (or the Eiffel paradox, after its
discoverer (Eiffel 1913)). At this drag transition point, the wake behind a round
object becomes smaller, thereby significantly reducing the frictional drag (Rodriguez
et al. 2015). This is one of various key design parameters for golf balls, as they are
intended to travel in Re space in the range of the critical drag domain, as shown in the
following example.

Example 3.11 Consider a warm spring day at 70 �F (294.3 K) at a golf course at sea
level. The official golf ball diameter is 0.0427 m. Suppose a lethargic amateur can hit
the ball to 50 miles per hour (22.4 m/s). Will the ball be in the drag crisis domain?

Fig. 3.11 Drag coefficient as a function of Re for smooth and dimpled golf balls (flow over a
sphere)
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Repeat the exercise for a professional golfer who can hit the golf ball to 180 miles
per hour (80.5 m/s).

Solution The air kinematic viscosity is 1.52 � 10�5 m2/s. Getting Re is straight-
forward, and its magnitude is compared with the drag curve for the dimpled golf ball
in Fig. 3.11.

For the listless amateur,

Re ¼ xcharuchar
ν

¼ 0:0427 � 22:4
1:52� 10�5 ¼ 6:29� 104:

For the professional golfer,

Re ¼ 0:0427 � 80:5
1:52� 10�5 ¼ 2:26� 105:

As one of life’s “mysteries,” the amateur and the professional golfers will indeed
hit their dimpled golf balls such that they travel within the minimum and maximum
range of the drag crisis regime, respectively (notice where Re for the two cases
compares vs. Fig. 3.11). Therefore, both drastically different swings will benefit
from significantly reduced air drag! Coincidence? Notice that if the golf ball were
smooth, then all amateurs would never enter the drag reduction domain, because the
minimum Re shifts at �1 � 105. Clearly, modern dimpled golf balls were designed
with mass commercialization in mind!

Thus, the Eiffel paradox initiates the drag crisis, and the dimples precipitate
(shift) the effect at a lower Re. But, that is not to say that dimpling cannot reduce
drag as well, because it can, when done correctly.

In the golf world, people figured out centuries ago that a used golf ball travels
farther than a new, smooth ball. Through the years, people have discovered that golf
balls with dimples can travel nearly twice as far (all other things being equal)
because the dimples reduce the surface drag (Baek and Kim 2013). Curiously,
n engineers will provide at least n + 1 different explanations as to how this is
accomplished. However, engineers generally agree that the boundary layer is
reduced through dimpling, and the location at which detachment occurs on the
golf ball is moved further downstream. Other effects may occur, including the
rotation of the golf ball through the Magnus effect. Many researchers have recently
used experiments and CFD to investigate drag reduction in golf balls, with just a few
listed here for the interested reader (Ting 2003; Baek and Kim 2013; van Nesselrooij
et al. 2016). However, the Magnus effect is not present in dimpled stationary fixed-
wing airfoils, and yet they exhibit drag reduction, as will be discussed next. This
indicates that various complex physics are involved in dimpled drag reduction.

Again, consider Fig. 3.11, which shows the drag coefficient as a function of Re for
smooth and dimpled golf balls (or drag coefficient for flow over smooth and
non-smooth spheres). For Re in the range of 1000 to about 100,000, the drag
coefficient for a smooth sphere is about 0.47 to 0.5 (Hoerner 1992). But for Re
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slightly higher than 100,000, a “critical point” is reached, whereby the drag drops
precipitously by a factor of three for the dimpled ball and by a factor of five for the
smooth ball. Note also that the dimples cause the golf ball to reach the critical point
sooner in Re space, which essentially allows the golf ball to reach the highly reduced
drag region at a lower velocity. (That is, the golf ball’s characteristic length is
constant and so are the physical properties of air at the moment the ball was struck,
so lower Re implies lower velocity.)

That said, is it possible for a non-spherical geometry to benefit from dimpling?
That is, can curved surfaces and even flat surfaces experience a drag decrease
through judicious dimpling? The answer is yes, and many useful engineering
benefits have been observed experimentally.

Dimpling has been applied to airfoils at subsonic to hypersonic Mach number
(Ma), with many outstanding results. For example, in the subsonic range, wind
tunnel experiments show drag reduction and increased angle of attack (Prasath and
Angelin 2017). In the transonic range, with Ma between 0.8 and 1.4, decreased
pressure was observed in dimpled vs. undimpled surfaces (Kontis and Lada 2005).
Shock wave attenuation was observed at Ma ¼ 1.4 because of dimpled surfaces
(Kontis et al. 2008). In the supersonic range atMa¼ 2.2, reduced lambda shock was
observed in dimpled surfaces (Sekaran and Naik 2011). Finally, in the hypersonic
range, experimenters noted a 20% skin friction reduction and reduced flow trail at
the downstream surfaces at Ma ¼ 5 for dimpled vs. undimpled surfaces (Babinsky
and Edwards 1997). More recent experiments at Ma ¼ 6 showed that dimpled
surfaces had an impact on eddy spacing, increased flow symmetry, and increased
heat transfer (Abney et al. 2013).

A theory-founded methodology (“right-sized dimpling,” RSD) was developed
recently to calculate dimple size and distribution based on system characteristics
(Rodriguez 2017). RSD output was first compared with commercial golf ball
dimpling and with a dimpled heat transfer experiment (Choi et al. 2013), to validate
its predictive capability. Thereafter, RSD was applied to a CFD model of a Ford
Mustang hood (Rodriguez et al. 2017). The simulations showed 25% less drag for
the dimpled vs. the undimpled hood. In addition, it was shown that the flow pattern at
the back (near the trunk) had a smaller wake pattern, as shown in Fig. 3.12. The
simulations were based on an interesting, though informal experiment conducted by
the “MythBusters,” whereby a dimpled car showed an 11% increase in fuel effi-
ciency (MythBusters 2009). Of course, even higher fuel savings can be achieved
because the MythBusters dimpling pattern and geometry were ad hoc, as opposed to
using theory-based engineered dimpling, such as RSD. Thus, the potential for
reduced vehicle drag and fuel savings is significant. However, it is likely that most
car buyers will not be attracted by the aesthetics of a dimpled vehicle. On the other
hand, selective dimpling of certain strategic vehicle zones ought to reduce such
reluctance.

Besides drag reduction, dimpling offers the additional benefit of enhanced heat
transfer, as evidenced by both experiments (Abney et al. 2013; Choi et al. 2013) and
CFD calculations using RSD (Rodriguez 2016, 2017). As noted in Fig. 3.13,
judicious dimpling patterns exhibit significant heat transfer enhancement. This is
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not surprising, because dimpling can bring turbulence closer to the wall, and
therefore, more heat is transferred from the wall and carried away by the fluid.
Figure 3.13 shows the impact of dimpling on a solar energy collector.

But, can flat surfaces benefit from dimpling, especially when the Eiffel paradox
presumably applies to highly curved surfaces? Yes, recent experiments have shown

Fig. 3.12 Drag reduction in
a vehicle using dimpling

Fig. 3.13 Significant heat transfer increase as a result of right-size surface dimpling
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that dimpled flat surfaces exhibit notable drag and heat transfer improvements (Choi
et al. 2013). The surface-engineering gains also apply to internal channels with
circular and hexagonal dimples, ribs, and grooved surfaces (Bilen et al. 2009;
Sripattanapipat et al. 2019).

In addition, researchers have recently focused on biomimetics, whereby surface
features found in nature have been applied onto engineering designs, oftentimes
resulting in more optimized systems. For example, shark skin features have been
used for drag reduction and antifouling properties (Pu et al. 2016). Note that these
surface features, as opposed to “dimples” manifested as surface cavities, have nano
and micro features that reside on the exterior of the surface (and hence are sometimes
called “pimples” instead of dimples, or more simply, exterior dimples) (Mustak et al.
2015). That is, pimples are extensions outside of the surface that are sufficiently
large such that they can be sensed by human touch. These features help trap air
pockets, thereby allowing sharks to more easily flow (slice) through water. Drag
reduction can also be achieved in airfoils and wings by using zig-zag turbulators
(Popelka et al. 2011) and vortex generators (Popelka et al. 2011; EDF 2019). In such
case, the zig-zag turbulators increased the lift-to-drag ratio of airfoils by approxi-
mately 11%. Other variations to the theme include exterior dimples (Mustak et al.
2015), as well as noncircular dimples (e.g. hexagonal and rectangular) (Hong and
Asai 2017; Sripattanapipat et al. 2019).

Another area with strong potential includes static (motionless) swirl-generating
surfaces, as shown in Fig. 3.14. Swirling promotes azimuthal momentum at the
expense of the axial momentum, as shown in Fig. 3.15. It is this 3D rotational motion
that generates additional mixing of mass, heat, and momentum in focused regions, as
shown in Fig. 3.16 for a swirling jet (Rodriguez 2011). The figure is based on LES
calculations of a swirling jet and includes swirl angles from 30� to slightly past the
formation of the central recirculation zone (CRZ), which occurs at a swirl angle of

Fig. 3.14 Helicoid swirl device and associated velocity distribution
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Fig. 3.15 Normalized azimuthal and axial velocities

Fig. 3.16 Velocity vector (total velocity), azimuthal velocity, and axial velocity as functions of a
jet flow with moderate swirl angles
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about 42–45�. For higher angles thereafter, the azimuthal velocity diminishes rapidly
(Loitsyanskiy 1953; Rodriguez et al. 2012); see Fig. 3.15. This critical transition can
also be noticed in both Figs. 3.16 and 3.17. Figure 3.17 is an extension of Fig. 3.16
and shows LES calculations for the azimuthal velocity as a function of swirl angle θ
ranging from 15 to 75� and Re from 5000 to 50,000. For readers interested in swirl
BCs, Sect. 6.2.2 describes how to model circular boundary conditions.

The literature is filled with many swirl applications, including chemical species
mixing and combustion (Nirmolo 2007; Yongqiang 2008; Valera-Medina et al.
2009; Stein 2009), heat transfer (King 2005; Rodriguez 2011, 2016; Illyas et al.
2019), aircraft design and safety (Batchelor 1964; Kavsaoglu and Schetz 1989;

Fig. 3.17 Impact of Re and swirl angle θ on the azimuthal velocity field
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Rusak and Lamb 1999; Pandya et al. 2003; Nelson 2004; Whitehead 2009), and
nuclear reactors (Kim et al. 2007; Lavante and Laurien 2007; Nematollahi and Nazifi
2007; Johnson 2008; Laurien et al. 2010; Rodriguez 2011). Recent approaches
evaluate the minimum pressure while identifying the most stable vortices
(Nakayama et al. 2014); this approach has a strong potential to optimize swirler
design. Furthermore, it is noted that whereas there are more than 20 distinct
axisymmetric vortices (e.g., Chepura, Loitsyanskiy, Batchelor, Lamb-Oseen, Bur-
gers, Gortler, Rankine, Sullivan, Newman, etc.), these vortices have various key
behaviors in common (Rodriguez et al. 2012). One shared characteristic is that their
azimuthal velocity is sine-like, so they can be expressed using a truncated Laurent
series. Furthermore, their azimuthal velocities are bounded on one extreme by the
forced-Rankine vortex and by the Lamb-Oseen vortex on the other (Rodriguez et al.
2012).

Finally, consider internal flow in a pipe, as the fluid is pumped with a variable-
speed pump that undergoes a velocity increase. As the flow transitions from laminar
to turbulent flow, the pressure drop will increase rapidly as the system transitions
from linear to nonlinear dynamics. That is, as Re increases, the flow physics
undergoes a drastic transformation: whereas the pressure drop is a linear function
for laminar flow in a pipe, the pressure drop increases as an exponential function of
the velocity for turbulent flow, namely,

ΔPlam � Re, ð3:56AÞ

while

ΔPturb � Re 1:8: ð3:56BÞ

Clearly, design advantages can be obtained by running a system in the turbulent
regime, but doing so must be accomplished without unduly increasing the pressure
drop, which can result in diminished performance in other areas. This is a cost/
benefit issue that warrants optimization.

And this reverts us to Osborne Reynolds’ terse, cryptic, and happy moment at his
lab (Reynolds 1883):

The result was very happy.

Reynolds’ epiphany came immediately after he substituted the pressure P with
the pressure drop from Darcy’s experiments, which closely followed Poiseuille’s law
for laminar flow. Using a relationship somewhat similar to Stokes’ work 33 years
earlier (Stokes 1850),

μu
xP

� constant, ð3:57AÞ
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Reynolds formulated his dimensionless number, Re,

ρxu
μ

> 2000 unstable; turbulentð Þ: ð3:57BÞ

In his “aha moment,” Reynolds realized there was a relationship based on Re to an
exponential power from 1.0 to 1.72 for the pressure drop, as the flow transitioned
from laminar to turbulent flow, respectively. That is, the dynamics changed from
linear to nonlinear during the transition (compare Eqs. 3.56A and 3.57C):

ΔPturb,Reynolds � Re 1:72: ð3:57CÞ

And happier even more so, the 1.72 relationship was obtained experimentally by
Reynolds, whereas the 1.8 relationship (Eq. 3.56B) was obtained through analytical
means.

3.8 Problems

3.1 A cylindrical pipe with D ¼ 0.5 m has an average velocity of 12.5 m/s. The
fluid consists of pressurized air at 600 K and 5.0 � 106 Pa. Use LIKE to find
the integral, Taylor, and Kolmogorov eddy length, time, and velocity.

3.2 An equilateral triangular duct with side S ¼ 0.5 m has an average velocity of
6.33 m/s. The fluid consists of liquid sodium at 1 atmosphere and 450 K. Use
LIKE to find the integral, Taylor, and Kolmogorov eddy length, time, and
velocity.

3.3 A flat plate 10 m long is exposed to liquid sodium flow at U1 ¼ 6.33 m/s. The
sodium is at 1 atmosphere and 450 K. Use LIKE to find the maximum integral,
Taylor, and Kolmogorov eddy length, time, and velocity. Hint: because Re
grows WRT plate length, find Rex at x ¼ L.

3.4 It is desired to design an ethanol distillation plant with a cylindrical condenser
pipe that is shaped as a spiral. The mass flow rate is 0.15 kg/s,
μ ¼ 0.0011 kg/m-s, and ρ ¼ 789 kg/m3. It is desired to run under turbulent
flow so that the heat transfer is sufficiently large. Assume Re ¼ 3000. Find D.

3.5 Consider SAE 40 oil flowing in a cylindrical motor manifold with D¼ 0.07 m,
at an average velocity of 1.25 m/s, μ ¼ 0.0113 kg/m-s, and ρ ¼ 829.1 kg/m3.
Suppose that you want to use a k-ω RANS turbulence model and want to
compare the CFD output with your own, back-of-the-envelope values for k, ω,
νt, and peak turbulence velocity. Calculate the four quantities.

3.6 An engineer would like to use the LES turbulence model to simulate the eddies
up to the Taylor length scale. The system consists of a 3D rectangular duct with
internal flow, with water flowing at an average velocity of 7.5 m/s. The duct
has side S ¼ 0.11 m. The water is at 350 K and 5.7 � 105 Pa. Find λ. Hint: use
the LIKE algorithm to obtain the necessary input for the λ length scale.
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3.7 A system analyst would like to apply a RANS-based turbulence model for flow
parallel to a flat plate that measures 2.0 m long. The fluid is a heavy gas with
ρ¼ 10.3 kg/m3 and μ¼ 2.4� 10�7 kg/m-s. The flow has a free stream velocity
of 4.5 m/s. If the first computational node is placed at y+ ¼ 1, how far away
from the wall will it be?

3.8 A pipe with D ¼ 1.0 m has water flowing at an average velocity of 5.0 m/s and
is held steady for data acquisition. Then, the water velocity is increased in
5.0 m/s increments and held steady once again, and so forth, until reaching
50.0 m/s. The water is at 350 K and 5.7 � 105 Pa. Use LIKE and the formula
for the length scale for Kolmogorov eddies to plot η for the entire velocity
range.

3.9 Repeat Problem 3.8, but now plot the viscous sublayer thickness for the entire
velocity range.

3.10 For those who had the fortune (or misfortune!) of solving Problems 3.8 and
3.9, overlay the viscous sublayer thickness curve with the Kolmogorov eddy
length scale curve. Is the Kolmogorov scale larger than the viscous sublayer? If
so, why might that be?

3.11 A pipe with an elliptical cross section has a semiminor axis ¼ 0.2 m and a
semimajor axis ¼ 0.3 m. The fluid consists of liquid sodium at 1 atmosphere
and 500 K. Find the viscous sublayer thickness, y at y+ ¼ 5, as well as the
integral, Taylor, and Kolmogorov eddy length scales.

3.12 Show that Spalding’s equation reduces to the laminar viscous sublayer for
small y+.

3.13 Show that Spalding’s equation reduces to the log layer for large values of y+.
3.14 Consider a turbulent flow in a rough pipe with λ ¼ 0.001 m. The pipe has a

mass flow rate of 0.045 kg/s, ρ ¼ 14.7 kg/m3, μ ¼ 3.77 � 10�5 kg/m-s, and
D ¼ 0.1 m. Find the peak turbulent velocity. Recall that the peak velocity is at
the pipe centerline and use an appropriate log law.

3.15 A turbulent flow in a rough pipe with λ ¼ 0.002 m and D ¼ 0.1 m has a mass
flow rate at 0.05 kg/s, ρ ¼ 15.0 kg/m3, and μ ¼ 3.89 � 10�5 kg/m-s. Plot the
velocity distribution from the wall to the centerline. Make sure there are
sufficient points to clearly show the various layers, and label the regions.

3.16 Assume an isotropic flow with k~t�1.25. Find an approximation for the Taylor
length scale λ as a function solely of the kinematic viscosity ν and the Taylor
time scale, t ¼ τλ.
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Chapter 4
RANS Turbulence Modeling

An ideal model should introduce the minimum amount of
complexity while capturing the essence of the relevant
physics.

—David Wilcox, 2006

Abstract The turbulent kinetic energy equation is derived and explained in full
detail. The motivation and development of RANS-based models is provided, with
the aim of generating a deeper understanding of turbulence phenomena. This
includes the detailed descriptions for key k-ε, k-ω, and SST hybrid models. Funda-
mental RANS terms are explained, such as turbulent kinematic viscosity, produc-
tion, and decay. RANS models are evaluated and compared, and the best overall
turbulence model is suggested. Model applicability, best performance regions, and
deficiencies are discussed for zero-, one-, and two-equation RANS models. Com-
pelling reasons for avoiding the standard k-ε are provided. Multiple insights regard-
ing ties associated with the development of k-ε and k-ωmodels are presented, such as
the Taylor scale and eddy dissipation.

Wilcox summarized it quite well: an “ideal” turbulence model ought to require a
minimal number of equations and variables, but at the same time, it should be able to
model features that are important for designers, researchers, engineers, physicists,
mathematicians, and so forth. Unfortunately, the literature shows that turbulence
models tend to become more complex as their ability to capture physics increases. A
somewhat analogous view for turbulence models is that they ought to capture as
many of the physical features displayed in turbulent flows, while having a minimal
number of ad hoc fits, stitches, and patches. Furthermore, such model should be
purely based on variables that reflect the correct physics. For example, if the
turbulent kinetic energy k refers to the energy of the large integral eddies, would it
be acceptable to couple k with the small Kolmogorov eddies? These issues, as well
as how turbulence models were derived, and their applicability (or lack thereof), are
covered in the sections that follow.
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4.1 The Mechanics Behind Reynolds Stress Transport
Models

At this point, Chap. 4 extends the theory and modeling presented in Chap. 2 in
Sects. 2.4 and 2.5. It is now a matter of moving forward toward closure, based on the
desired Reynolds-averaged Navier-Stokes (RANS) modeling complexity; there are
zero-, one-, and two-equation models, as well as the so-called second-order closure
models. The latter are also referred as second-moment closure models, stress trans-
port models, Reynolds stress models (RSM), and Reynolds stress transport (RST)
models. Note that these models are not the same as shear stress transport (SST)
models, which unfortunately have similar-sounding names.

The following sections extend turbulence modeling by zeroing in on the unan-
swered issues that remained from Chap. 2. This is particularly so for the Reynolds
stress tensor R, to point out what is still needed to have a full set of n independent
turbulence equations, thereby solving n unknowns. Then, it is shown that applying
the Boussinesq approximation is not sufficient for closure, so the path forward is to
perform a set of mathematical operations that lead to additional independent equa-
tions, with the aim of finally providing closure to the turbulence problem. In
particular, the R tensor is derived mathematically in its exact form from the
unoperated Navier-Stokes momentum equation by taking its first moment based
on the fluctuating velocity, and then a time-average is performed. The resultant
R tensor is used in RSM models and is therefore part of the motivation. But most
importantly, the k PDE is derived from R by taking its trace, and it is this k PDE that
is used in most zero-, one-, and two-equation RANS models (e.g., Prandtl, k-ε, k-ω,
SST, etc.).

4.2 The Derivation of the R Tensor for Turbulence
Modeling

Because the RANS closure process is rather long-winded, it is sketched from a
“bird’s-eye view” (roadmap) in Fig. 4.1a, with the hope that the overall approach is
clear, especially once the full details of the derivation are covered! The figure shows
how the Navier-Stokes momentum PDE is time-averaged to get the exact RANS
momentum PDE, which is then used to derive the exact Reynolds stress tensor
R PDE. In this context, “exact” refers to the PDE version that was derived mathe-
matically using no approximations, while “solvable” refers to the PDE version that
was derived from the “exact” PDE using engineering approximations. In summary,
the overview shown in Fig. 4.1a is covered in details in Sects. 4.2 and 4.3.

To begin the process, recall that if the kinematic viscosity is constant and the
gravitational term is negligible (or is lumped with the P term), the original
(unoperated) Navier-Stokes equation is simply
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Fig. 4.1 (a) Bird’s eye view showing how the Navier-Stokes momentum PDE is used to derive the
exact RANS PDE and the exact R PDE. (b) Bird’s eye view showing how the exact R PDE is used to
derive the exact and solvable k PDEs

4.2 The Derivation of the R Tensor for Turbulence Modeling 123



∂ui
∂t

þ uj
∂ui
∂xj

¼ ν
∂2ui
∂xj∂xj

� 1
ρ
∂P
∂xi

: ð4:1Þ

Recall that the RANS momentum equation was derived in Chap. 2 by replacing
u with uþ u0 and simplifying. In its vector-tensor notation, the equation appears as
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where the mean strain rate tensor for an incompressible fluid is

Sij ¼ 1
2
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þ ∂uj
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� �
: ð4:2BÞ

At this point, the mean strain rate tensor can be included in the momentum
equation, and the vector-tensor equation can be expanded in the x-, y-, and z-
directions of a Cartesian system. The PDE for the x-momentum is
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and similarly for the y-momentum,
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and for the z-momentum,
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The primed terms are a direct consequence of the time-averaging that was
performed earlier (see Chap. 2). An inspection of the last term in parenthesis on
the RHS of each of the above x-, y-, and z-momentum equations shows how the
R tensor is assembled. In particular, each of the three PDEs contributes three primed
quantities, for a total of nine terms, namely,
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The three terms on the top column of the tensor correspond to the x-momentum
Reynolds stresses, followed by the middle column with its three terms corresponding
to the y-momentum, and likewise for the bottom column.

R has many useful properties, including positive definiteness. Fortunately, the
tensor is symmetric as well, so only six of the nine Reynolds stress terms are
unknown. For example, Rxy ¼ Ryx.

This is where the linear Boussinesq approximation provides additional closure
information, e.g., more relationships that can be substituted onto the RANS momen-
tum equations. Recall the definition for the Boussinesq approximation, viz.,

Rij � 2νtSij � 2
3
kIij ¼ νt
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� 2
3
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For convenience, the entire set of nine components are summarized here (though
there are only six independent components). As shown in Example 2.16 in Chap. 2,
the individual components are rather straightforward expressions of the Boussinesq
approximation. The three x-momentum Reynolds stresses are
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and
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while the three y-momentum Reynolds stresses are
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Finally, the three z-momentum Reynolds stresses are
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At this point, it is desirable to incorporate the R terms into the RANS PDE. For
example, the x-direction Cartesian RANS equation transforms into a more manage-
able, computationally solvable expression:
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The same can be applied to the y- and z-momentum equations, resulting in the
following two PDEs, respectively:
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Notice that at this point, the six unknown, independent R components are
resolved thanks to the Boussinesq approximation. But in doing so, the process
introduced two new variables, k and νt! So, at this point, closure is closer, but not
fully achieved. Fortunately, patience is a good trait of turbulence modelers!
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The above three PDEs can almost be solved numerically for the time-averaged
turbulence velocities, u, v, and w. Two items are needed at this point for closure:
(1) an expression for k must somehow be derived for the large, energy-bearing
eddies and (2) a relationship for νt, which is usually derived using dimensional
arguments as functions of k and some characteristic length or equivalent. Certainly,
most modern expressions for νt are based on dimensional arguments that usually
involve k, but not always—it all depends on the pedigree of the model. In any case,
this describes how RANS turbulent transport models were developed—the number
of unknown variables determines the number of transport and auxiliary equations
that are required for mathematical closure. This means that if there are n unknown
turbulence variables, there must be n independent equations to solve the flow; but if
the transport equations add additional m unknowns, the model must also supply
m additional auxiliary equations, and so forth, until closure is achieved using the
same number of independent equations as unknowns.

At this point, the next step is to develop a rigorous mathematical expression for R,
which will then be used to derive k.

4.3 Mathematical Derivation of R

The R tensor is derived mathematically in its exact form as follows. The first step is
to take the unoperated “laminar” Navier-Stokes momentum equation:

∂ui
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þ uk
∂ui
∂xk

¼ ν
∂2ui

∂xk∂xk
� 1
ρ
∂P
∂xi

ð4:7Þ

and apply a so-called first moment based on the fluctuating velocities u0i and u0j.
Basically, each term in the Navier-Stokes equation is multiplied by the fluctuating
velocities, and then the instantaneous ui and P variables are replaced with the
appropriate Reynolds decomposition expressions (e.g., ui ¼ ui þ u0i and
P ¼ Pþ P0). Following this, the terms are time-averaged, and the final step is to
simplify the terms.

Due to the number of mathematical steps performed during this approach, it is
easier to do the RANS equation term by term and then assemble the results. Another
advantage of solving each term individually is that it is easier to see and to
appreciate how new turbulence physics terms arise (e.g., this is where the turbulence
production, dissipation, and turbulence triple velocity correlation transport terms
first appear). The step-by-step approach is covered in what follows, with many
details shown for the momentum accumulation term, as it serves as an ideal example
for the technique that is used for all the terms.
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4.3.1 The Momentum Accumulation Term

The overall procedure begins by taking the momentum term and multiplying it by
the fluctuating velocities:
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The simplification expands the time-averaged partial differential by multiplying
the terms and applying Eq. 2.34L aþ b ¼ aþ b
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Recall from Sect. 2.5 that time-averaging the product of a fluctuating velocity and
a time-averaged velocity is zero,

u0u ¼ 0,

and
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:

Thus, the first and third terms are zero,
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The two remaining terms can be lumped into a single term by recognizing that
they are formed from the derivative of a product, namely,
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Finally, recalling the definition for the Reynolds stress R, the above expression
reduces to
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Substitute definition for Reynolds stress:
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Thus, the key result for the transient term is the transformation of u into the stress
tensor eRij:

∂uj
∂t

! �∂eRij

∂t
: ð4:8FÞ

Recall that the transformed terms will be assembled later.

4.3.2 The Convective Term

Just as was done to the transient (accumulation) term above, now take the convective
term and perform the same procedure. In particular, take uk

∂ui
∂xk

and multiply it by the

fluctuating velocities:

u0i uk
∂uj
∂xk

� �
þ u0j uk

∂ui
∂xk

� �
: ð4:9AÞ

Next, substitute the Reynolds decomposition velocity, and apply the time average
operator:

u0i uk þ u0k
� �∂ uj þ u0j

� �
∂xk

þ u0j uk þ u0k
� � ∂ ui þ u0ið Þ

∂xk

� 	
: ð4:9BÞ

At this point, it is now a matter of simplifying the expression. In this case, use the
FOIL multiplication acronym (front, outside, inside, last) to expand each of the
above two terms:
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ð4:9CÞ

Recall that uu0 ¼ 0 and u0u ¼ 0, and rearrange a little,
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∂xk
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� �264
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∂uj
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ð4:9DÞ

Now combine the derivatives in anticipation of obtaining eRij:

uk
∂ u0iu

0
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0
k

∂ui
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Re call eRij ¼ �u0iu
0
j:

� � ð4:9EÞ

The key results for the convective term transformation are

uk
∂ui
∂xk

! �uk
∂eRij

∂xk|fflfflfflfflffl{zfflfflfflfflffl}
Stress
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� eRjk
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The second term on the RHS accounts for the production of eddies. It should
come as no surprise that operators applied onto the momentum convection term
unveil a “hidden” eddy-production term, which accounts for eddies that arise from
flow instabilities in the mean flow. That is, eddy production is a consequence of the
nonlinear convective term. It is also very insightful that production is the product of
the stress and velocity gradient of the mean flow. Velocity gradients are largest near
the wall, and this is precisely where the production term is the largest, in the
approximate range of 7 < y+ < 25, and thereafter drops exponentially as y+ increases.
As a rule of thumb, this y+ behavior is applicable for Re in the range of 3000–40,000
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(Mansour et al. 1988; Wilcox 2006). Note as well that the triple velocity correlation
term originated from the convective term.

4.3.3 The Viscous Term

Now apply the same procedure onto the viscous term, ν ∂2ui
∂xk∂xk

, such that

ν u0i
∂2uj

∂xk∂xk

 !
þ u0j

∂2ui
∂xk∂xk

� �" #
¼ νu0i

∂2 uj þ u0j
� �
∂xk∂xk

þ νu0j
∂2 ui þ u0ið Þ
∂xk∂xk

: ð4:10AÞ

Recalling that both u0u and u0 ∂u∂x are equal to zero, and expanding the terms,
reduces to

ν u0i
∂2uj

∂xk∂xk
þ u0i

∂2u0j
∂xk∂xk

þ u0j
∂2ui

∂xk∂xk
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∂2u0i
∂xk∂xk

0@ 1A: ð4:10BÞ

Applying the mathematical trick that

u0i
∂2u0j

∂xk∂xk
¼

∂ u0i
∂u0j
∂xk

� �
∂xk

þ ∂u0i
∂xk

∂u0j
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ð4:10CÞ

and in an analogous manner,

u0j
∂2u0i

∂xk∂xk
¼

∂ u0j
∂u0i
∂xk

� �
∂xk

þ ∂u0j
∂xk

∂u0i
∂xk

: ð4:10DÞ

Note also that

∂u0i
∂xk

∂u0j
∂xk

¼ ∂u0j
∂xk

∂u0i
∂xk

: ð4:10EÞ

Substituting the above mathematical equivalents onto the time-averaged, Reyn-
olds-decomposed, first-moment viscous term results in the following expression:
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The first two terms in the above expression can be lumped, so Eq. 4.10F reduces
to

ν
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0
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∂xk∂xk
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8><>:
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and in anticipation of swapping the product of the two fluctuating velocities with the
Reynolds stress,

ν
∂
∂xk

∂
∂xk

u0iu
0
j

� �� �" #
� 2

∂u0i
∂xk

∂u0j
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( )
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∂2eRij

∂xk∂xk
� 2ν
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∂xk
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∂xk

: ð4:10HÞ

The key results for the viscous term transformation are therefore

ν
∂2ui

∂xk∂xk
! � ν

∂2eRij

∂xk∂xk|fflfflfflfflffl{zfflfflfflfflffl}
Viscous stress

diffusion

� 2ν
∂u0i
∂xk

∂u0j
∂xk|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Eddy dissipation

: ð4:10IÞ

The second term on the RHS accounts for eddy dissipation (decay). It comes as
no surprise that operators applied onto the momentum viscous term unveil a “hid-
den” eddy-damping term. This “new” term fosters the decay of eddies, until all their
turbulent energy reverts to the mean flow as heat, thereby causing the eddy’s
swirling motion to cease. That is, eddy decay is a consequence of the viscous
damping term, which applies the brakes onto eddies.

4.3.4 The Pressure Term

Finally, apply the same procedure to the pressure term, 1ρ
∂P
∂xi
.

Here, there are no instantaneous velocities, but there is an instantaneous pressure
that can be decomposed using Reynolds decomposition, P ¼ Pþ P0.

Other than this change, the procedure is the same as was used for the other three
momentum terms. Namely,
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u0i
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∂xj

þ u0j
∂P
∂xi

¼ u0i
∂ Pþ P0� �

∂xj
þ u0j

∂ Pþ P0� �
∂xi

: ð4:11AÞ

Now take the derivatives, and recall that because u0P is zero, then u0 ∂P∂x must also
be zero, thereby yielding

u0i
∂P
∂xj

þ u0i
∂P0

∂xj
þ u0j

∂P
∂xi

þ u0j
∂P0

∂xi
: ð4:11BÞ

Using the property that aþ b ¼ aþ b leads to the simplification of the pressure
term as

u0i
∂P0

∂xj
þ u0j

∂P0

∂xi
: ð4:11CÞ

The key result for the pressure term transformation is that

1
ρ
∂P
∂xi

! 1
ρ

u0i
∂P0

∂xj
þ u0j

∂P0

∂xi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Stress transport due to

pressure‐velocity fluctuations

: ð4:11DÞ

4.3.5 Assembly of the R Reynolds Stress PDE

At last, the above key results that were derived for each transformed momentum term
are assembled, and dividing by �1 results in the sought-after expression for the
Reynolds stress eRij PDE:

∂eRij

∂t|{z}
1
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∂eRij

∂xk|fflfflffl{zfflfflffl}
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∂xk
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∂xj
þ u0j

∂P0
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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þ ∂
∂xk

u0iu
0
ju

0
k

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

7

:

ð4:12Þ

A description of the Reynolds stress PDE terms is as follows:

Term 1 ¼ transient (accumulation) stress rate of change
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Term 2 ¼ stress rate of change associated with convection

Term 3 ¼ production terms that arise from the product of the stress eR (calculated via
the Boussinesq approximation) and the mean velocity gradients. The production
term quantifies the rate at which the mean flow imparts energy onto eddies

Term 4 ¼ stress dissipation rate. This represents the rate at which the stress-
generated eddies revert their turbulent energy back into the flow’s internal energy.
The dissipation stress tensor is defined as

εij � 2ν
∂u0i
∂xk

∂u0j
∂xk

, ð4:13Þ

Term 5 ¼ rate of viscous (molecular) stress diffusion
Term 6 ¼ turbulent stress transport rate associated with the eddy pressure and

velocity fluctuations
Term 7 ¼ diffusive stress transport rate resulting from the triple-correlation eddy

velocity fluctuations

Note that Terms 1, 2, and 5 are described exactly in a mathematical and physical
sense and thus have no need for the dreaded and infamous “drastic surgery”
described by Wilcox. Term 3 is reasonably modeled (most often) using the
Boussinesq approximation. However, if more complex flows need to be modeled,
then Boussinesq can be replaced with a more appropriate (elaborate) expression,
such as those that include rotational and higher-order terms.

On the other hand, the remaining three terms, the dissipation, the pressure-
velocity fluctuation correlation, and the eddy fluctuations associated with the triple
velocity correlation, are not known and thus require “drastic surgery.” As so fondly
described by Wilcox (2006),“In essence, Reynolds averaging is a brutal simplifica-
tion that loses much of the information contained in the Navier-Stokes equation.”

And this certainly applies to the R PDE. Note that Wilcox applied the term
“drastic surgery” to both the k and ε PDEs. However, the transformation of the
k PDE requires some drastic engineering measures, but certainly not to the degree of
the ε PDE, as will be shown later.

Recall that RSM models only use six transport PDEs because R is symmetric, so
the nine PDEs reduce to six. Further, RSM involves no k PDE because the stresses
are calculated individually. On the other hand, RANS assumes that k is the sum of
the diagonal stresses:

1
2
u0iu

0
i ¼

1
2

u02 þ v02 þ w02
� �

: ð4:14Þ

As far as the historical records show, Chou was the first to develop the R PDE, as
expressed in more modern terms (Chou 1940 (refer to his report, Eqs. 3.1 and 3.4)).
He elaborated other turbulence terms in later papers (Chou 1945; Chou and Chou
1995).

But what does k have to do with R? Everything, as will be shown next; k is a
simplified case of R!
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4.4 Development of the k PDE and a More Formal
Definition for k

Again, because the RANS closure process is rather long-winded, Fig. 4.1b shows a
“bird’s eye view” to demonstrate how R is used to derive the k PDE, which is used in
most RANS-based turbulence models. Therefore, Fig. 4.1b shows an overview of
the entire process, while Sect. 4.4 provides the details.

As formidable as the Reynolds stress tensor PDE appears, it can be vastly
simplified by taking the mathematical trace of all its terms, thereby generating a
new expression for k. This is achieved as follows. First, consider the trace for the
definition of tensor eRij:

tr eRij

� � ¼ eRii � �u0iu
0
i: ð4:15Þ

Recalling the definition for k first proposed by Prandtl in 1945,

k ¼ 1
2
u0iu

0
i ð4:16AÞ

or

u0iu
0
i ¼ 2k: ð4:16BÞ

Therefore,

eRii ¼ �u0iu
0
i ¼ �2k: ð4:17Þ

Next, take the trace of R (Eq. 4.12), thereby yielding
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: ð4:18Þ

Note that the two production terms are combined into a single term (Term 3). At
this point, eRii in Eq. 4.18 can be replaced with its equivalent (i.e., �2k from
Eq. 4.17). Hence, the exact k PDE is obtained at last:
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: ð4:19Þ

It is pointed out that the solvable k PDE originates from the exact k PDE; that is,
once the exact form undergoes some “drastic surgery” (engineering approxima-
tions), it becomes solvable and is used in most RANS turbulence models. The
transformation will be discussed shortly.

In the meantime, the exact k PDE includes the following terms:

Term 1 ¼ transient change (accumulation)
Term 2 ¼ convection

Term 3 ¼ production term that arises from the product of the Boussinesq stress eRij

and the mean velocity gradients. This is a metric for the rate at which the mean
flow imparts energy onto eddies

Term 4 ¼ dissipation rate. This represents the rate at which k is converted back into
internal energy

Term 5 ¼ viscous (molecular) diffusion of turbulence energy
Term 6 ¼ turbulent transport associated with the eddy pressure and velocity

fluctuation
Term 7 ¼ diffusive turbulent transport resulting from the eddy triple-correlation

velocity fluctuations

For the k PDE, Terms 1, 2, and 5 are described exactly in a mathematical and
physical sense, with no need for “drastic surgery” conversions. The production term
is reasonably modeled using the Boussinesq approximation or some form of
nonlocal, nonequilibrium approach (Speziale and Eringen 1981; Hamba 2005;
Schmitt 2007; Hamlington and Dahm 2009; Wilcox 2006; Spalart 2015). On the
other hand, the remaining three terms, dissipation, eddy fluctuation due to the triple
velocity correlation, and the pressure-velocity fluctuation correlation, are not known
and thus require the dreaded “drastic surgery” described by Wilcox. On the brighter
side, this situation applies to three terms in the k PDE, whereas the ε PDE requires
drastic surgery for six terms, perhaps making the k PDE 50% more palatable!

The expression for Term 4, εii¼ ε, depends on which model is used. For example,
Prandtl’s one-equation model assumes that

ε ¼ CDk
3=2

ℓ
: ð4:20Þ

On the other hand, the standard k-ε (SKE) model uses the moment approach to
derive an ε PDE, analogous to the development of the k PDE.

For Terms 6 and 7, dimensional arguments loosely based on gradient transport are
employed (refer to Chap. 2). Thus,
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: ð4:21Þ

Then, the two terms are lumped, with the following bold (and desperate!)
assertion that
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Of course, neither P0u0i nor u
0
ju

0
ju

0
i have much to do with either νt or the spatial

gradient of k (but doesn’t the expression seem respectable?). To say the least, the
analytical expression of the two terms is currently unknown, so they are reconfigured
as a wishful and fanciful expression with no physical or mathematical basis other
than having the appropriate dimensional arguments! Presumably, the constant-
valued “correction factor” σk helps the user make adjustments if experimental data
should be available. In any case, the “drastic surgery” Terms 6 and 7 are lumped as
follows:
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So yes, the lumped term has a dubious origin. On the other hand, does someone
have a better idea? What else can turbulence researchers do when presented with
such a dilemma? It is difficult to obtain accurate measurements for experimental
pressure fluctuations and triple-correlation terms. Fortunately, the above approxi-
mation may be fairly harmless under simple turbulent flows. For example, DNS at
Re ¼ 3200 shows that Term 7 is of the same magnitude as the production term for
y+ < 7 (the viscous sublayer), while production was much larger for 10 < y+ < 100.
For y+ > 100, the two approached each other asymptotically (Mansour et al. 1988).
On the other hand, the pressure gradient term (Term 6) was relatively smaller than
the production term for y+ < 50 and was of comparable magnitude for y+ > 50. It is
noted that these differences are expected to be magnified as Re increases. In
summary, the lumping of Terms 6 and 7 to form the product of the turbulent
kinematic viscosity and the spatial gradient of the turbulent kinetic energy can result
in significant issues in complex flows involving high Re and two-phase flows
(Mansour et al. 1988; Sawko 2012).

Nevertheless, it is unfortunate that the triple velocity correlation is “wished away”
with a term that does not reflect its behavior. This is especially so, because the triple
velocity correlation originates from the convective term, which is also the source for
the crucial production term. Therefore, a more rigorous methodology to estimate the
term’s turbulent behavior is highly desirable.
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Despite any derivation issues, the k PDE is at last in a form that is solvable as a
result of the aforementioned transformations, approximations, and an expression for
the turbulent kinematic viscosity, νt,
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: ð4:24Þ

Notice that if the RANS zero-, one-, and two-equation models use the above
k PDE, then they assume νt is isotropic. Once an expression for νt is known (e.g.,
Prandtl-Kolmogorov for the k-ε model, k/ω for the k-ω model, etc.), then the entire
set of equations required for closure is complete, and computational turbulence
modeling may proceed at last!

Generally (with some exceptions), the lower the number of transport equations
used, the faster the model will run for simple turbulent flows; by contrast, more
complex behaviors can be analyzed as a larger number of transport equations are
used but at the expense of longer computational time.

In any case, now that the k PDE has been derived, it is noted that its full
expression, albeit an approximation, is rather complex. A full expansion of the
k PDE shows just how complex the k behavior can be:
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• Chou’s k PDE

The development of the k PDE has a colorful history, with many insights. The
earliest version is attributed here to Chou because he derived the R PDE (see Sect.
4.6.3.5) and then proceeded to “contract the indices. . .to find the equation of ‘energy
transport’” (Chou 1940). Note that “tensor contraction” is a generalized form of the
trace. Chou’s original 1940 k PDE is as follows:
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�Rkjεkj þ 1
2

∂ uj þ u0j
� �

q2
� 	

∂xj
¼ � 1

ρ

∂ u0kP
0

� �
∂xk

þ 1
2
v∇2q2 � νgmn

∂u0k
∂xm

� ∂u0k
∂xn

, ð4:26AÞ

where, in Chou’s notation,

Rkk � q2 ¼ u0iu
0
i, ð4:26BÞ

εkj � Skj Chou chose ε as the deformation tensor, not dissipationð Þ, ð4:26CÞ

and

gmn ¼ 1: ð4:26DÞ

Upon rearrangement, multiplication by 2, and some substitution, Eq. 4.26A
becomes

�2RkjSkj þ
∂ uj þ u0j
� �

q2
� 	

∂xj
¼ � 2

ρ

∂ u0kP
0

� �
∂xk

þ v∇2k � 2ν
∂u0k
∂xm

∂u0k
∂xn

, ð4:27AÞ

where the second term on the LHS becomes

∂ uj þ u0j
� �

q2
� 	

∂xj
¼
∂ ujq2
� �
∂xj

þ
∂ u0jq2
� �
∂xj

¼ ∂ ujk
� �
∂xj

þ
∂ u0ju

0
iu

0
i

� �
∂xj

¼ uj
∂k
∂xj

þ k
∂uj
∂xj

þ
∂ u0ju

0
iu

0
i

� �
∂xj

:

ð4:27BÞ

Therefore, Chou’s PDE is

�2RkjSkj þ uj
∂k
∂xj

þ k
∂uj
∂xj

þ
∂ u0ju

0
iu

0
i

� �
∂xj

¼ � 2
ρ

∂ u0kP
0

� �
∂xk

þ v∇2k � 2ν
∂u0k
∂xm

∂u0k
∂xn

:

ð4:28Þ

At this point, it is convenient to recall the modern definition for the dissipation
symbol ε, namely,
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εdiss � 2ν
∂u0k
∂xm

∂u0k
∂xn

, ð4:29Þ

which is actually the last term in Chou’s PDE equation.
Therefore, Chou’s k PDE, in more modern terms, and somewhat more

reorganized, is as follows at this point:

uj
∂k
∂xj

þ k
∂uj
∂xj

¼ 2RkjSkj � εþ
∂ ν ∂k

∂xi

� �
∂xi

� 2
ρ

∂ u0kP
0

� �
∂xk

�
∂ u0ju

0
iu

0
i

� �
∂xj

: ð4:30Þ

Of course, now that turbulence modelers have more information, the last two
terms in Chou’s PDE formulation can be lumped using dimensional arguments
based on gradient transport (as discussed earlier in this section), whereby

� 1
ρ
u0iP

0 � 1
2
u0ju

0
ju

0
i �

νt
σk

∂k
∂xi

: ð4:31Þ

Therefore, Chou’s 1940 k PDE has the following equivalent modern expression:

uj
∂k
∂xj

þ k
∂uj
∂xj

¼ 2Rij
∂ui
∂xj

� εþ
∂ ν ∂k

∂xi

� �
∂xi

þ 2
σk

∂ νt ∂k∂xi

� �
∂xi

: ð4:32Þ

Consequently, except for the missing transient term and an extra term, Chou’s
k PDE is the same as the modern k PDE. Nevertheless, it is pointed out that the
transient term is missing in Chou’s formulation because he attempted to apply
average values “with respect to time over a period τ.” Intriguingly, Chou also

included a k transport term on the LHS k ∂uj
∂xj

� �
, which is not present in the modern

k PDE.

• Toward a More Formal Definition of k

To better understand k, consider it as a fundamental metric of the energy
contained within the swirling, dynamic, 3D, high-vorticity flow sheets that form
eddies. It is this energy that shapes the fluid so that it rolls into curls, eddies, and all
sorts of coherent structures—this is Reynolds’ eddying motion. The eddy velocity is
based on clusters of fluid that move in a coherent fashion, with fluctuating velocity
u0; it is the square of the fluctuating velocities that provides a measure of the eddy’s
turbulent kinetic energy. If a mathematical definition of a root-mean-square (RMS)
for a generalized n-space involving n velocities is considered, then

u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

u01
2 þ � � � þ u0n

2
� �r

: ð4:33AÞ
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For example, u0 can be expressed in its generalized, anisotropic form in a
Cartesian, 3D space as a fluctuating velocity RMS (Kolmogorov 1942; Spiegel
1999; SimScale 2018):

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

u02 þ v02 þ w02
� �r

: ð4:33BÞ

Because the square of the three velocities is summed and then divided by three,
the quantity inside the square root represents an average velocity in this situation.

The velocity fluctuations for an isotropic flow can be expressed as a function of
the turbulence kinetic energy, indicating that higher velocity fluctuations occur for
the more energetic eddies:

u0 ¼
ffiffiffiffiffiffi
2
3
k

r
: ð4:33CÞ

If the above two equations are set equal and solved for k, then

k ¼ 1
2

u02 þ v02 þ w02
� �

, ð4:34Þ

which is the exact expression for the turbulent kinetic energy that was first used by
Prandtl in the development of his one-equation turbulence transport model (Prandtl
1945). Note that the above expression uses 1/2 instead of 1/3 (which is what
Kolmogorov used in his 1942 turbulence model). Thus, the Prandtl formulation
does not strictly follow the mathematical definition of an RMS, though it is quite
often referred as such in the literature. That is, the magnitude of the constant that
relates the fluctuating velocities and k is 1/2, even though 1/3 is the expected RMS
quantity for the RHS of Eq. 4.34.

In any case, k can be expressed as a simplified function of the fluctuating
velocities for isotropic eddies, whereby

u02 ¼ v02 ¼ w02, ð4:35Þ

and therefore, in a rather circuitous logic, the expression for Eq. 4.33C is obtained:

k ¼ 3
2
u02: ð4:36Þ

However, the above expression for k arises more rigorously from the integral of
the energy spectral density across all the eddy wave numbers and is represented by
the Greek letter kappa (κ, not to be confused with “k”). The function is shown in
Fig. 3.1 in Chap. 3, and its integration yields the total kinetic energy k held by the
entire eddy spectrum, from the largest to the smallest eddies:
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k ¼
Z1
0

E κð Þ dκ ¼ 3
2
u02: ð4:37Þ

In this context, the wavenumber (eddy size) κ is

κ ¼ 2πeλ or
1
κ
¼ eλ

2π
, ð4:38Þ

where the 2π factor comes into play because κ is in terms of radians per unit length.
Thus, the integration across all wavelengths yields the same total kinetic energy

as the isotropic flow approximation. Stated differently, it is imperative that

k ¼ 1
2 u02 þ v02 þ w02
� �

is used if k ¼ 3
2 u

02 is to be satisfied; by the same token,

using k ¼ 1
3 u02 þ v02 þ w02
� �

will result in an inconsistency (i.e., k ¼ u02 in this

case). The modern literature uses the Prandtl notation fairly exclusively, and this is
perhaps because it is consistent with the total kinetic energy for isotropic flow. For
this reason, the Prandtl k is the preferred version in this book. For convenience,
Table 4.1 shows some expressions and approximations for k.

4.5 The Choice of Transport Variables

So, why are there various choices for transport variables and which might be best?
When viewed solely from a pure dimensionless perspective (as many turbulence
researchers have often done), the situation reduces to the following issue: How can a
mathematical expression for νt be derived such that it is formed solely from relevant
transport variables? This reasoning, of course, is diametrically opposite to the
approach whereby only turbulence principles are considered. Nevertheless, the
dimensionless approach has resulted in plenty of great numerical simulations, and
it is difficult to argue with success! Thus, as discussed previously, k is used because
its square root yields a reasonable transport eddy scale—a turbulence velocity. So,
researchers reason that if analytical expressions for νt and k are not available, then
which dimensionally correct combination of k and some other transport variable can
form νt, thereby reaching mathematical closure? In other words, closure is sought
such that

νt ¼ νt k;ω, ε, ℓ, t . . .ð Þ: ð4:39AÞ

In SI units, νt is in units of m2/s. Thus, the goal is to find a second transport
variable that is (1) compatible with k, (2) has a plausible chance of describing the
eddy behavior as transport variable “x,” and (3) conveniently combines with k to
form an expression that has units of m2/s, and thus,
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νt ¼ νt k, xð Þ: ð4:39BÞ

This is very convenient, as the introduction of the second transport variable is
required to form part of the expression for νt; by doing so, no more new variables
are introduced, so closure is easier to achieve.

Some examples of this dimensionless approach are shown in Table 4.2, which
lists reasonable pairs of variables in Column 1. Prandtl used the following expres-
sions for his one-transport model (Prandtl 1945):

νt ¼ CD
k2

ε
ð4:40Þ

and

ε ¼ CD
k3=2

ℓ
: ð4:41Þ

Certainly, this approach is not confined to one or two transport variables, and
models with three or more variables can be found in the literature (Wilcox 2006; Bna
et al. 2012).

In general, the above models can be summarized with a single equation, such that

νt ¼ αkβxγ ð4:42Þ

where

k ¼ kinetic energy (first transport variable),
x ¼ second transport variable, and
α, β, and γ are constants chosen such that νt is in units of length squared per unit time.

Values for the constants are summarized in Table 4.3 for several well-known
turbulence models.

Table 4.2 Transport variable development for turbulence kinematic viscosity relationships

Transport
variable pair

Variable
formulation Turbulence kinematic viscosity expression

{k,ω} ω � k1=2

ℓ
νt � k

ω (Kolmogorov 1942; Wilcox 2006)

{k, ε} ε � k3=2

ℓ νt � k2

ε (Chou 1945; Taylor suggested ε � k3=2

ℓ in 1935)

{k, ℓ} ℓ � k3=2

ε νt � k1/2ℓ (Rotta 1951, 1962; Taylor suggested ε � k3=2

ℓ in
1935)

{k, t} t � ℓ
k1=2

νt ¼ Cμkt (t ¼ turbulence dissipation time) (Zeierman and
Wolfshtein 1986)
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Other formulations for these relationships can be found in the literature (Rodi
1993; Andersson et al. 2012), such as

ϕ ¼ kαℓβ: ð4:43Þ

4.6 Top RANS Turbulence Models

4.6.1 Zero-Equation Models

The zero-equation models (also known as algebraic turbulence models) require no
additional transport closure equations and hence the naming convention, “zero.”

In general, zero-equation models tend to have the following advantages:

• Fastest computationally.
• Easiest to code and tend to be very robust numerically.
• Great for developing analytical solutions and theoretical insights from PDEs (e.g.,

the Prandtl mixing-length model can be readily substituted into a RANS PDE).
• Form the simplest turbulence models, while providing some physical insights.
• Because of the way the models were developed and calibrated (“fine-tuned” for

those who embrace these models and “fudged” for those who do not prefer them),

Table 4.3 Transport variables for turbulence equations based on νt ¼ αkβxγ

νt x description α β γ

νt ¼ k
ω

x ¼ ω, eddy frequency
(Kolmogorov k-ω, 2006 k-ω)

1 1 �1

νt ¼ k1=2ℓ x ¼ ℓ, eddy length scale
Prandtl one-equation model with consti-
tutive relationship for ℓ; Rotta
two-equation model (Rotta 1962)
ℓ ¼ ℓ( y) ¼ κy ¼ 0.41y

1 1/
2

1

νt ¼ Cμ
k3=2

ℓ
x ¼ ℓ, eddy length scale, two-equation
model

α ¼ Cμ ¼ 0.09 3/
2

�1

νt ¼ Cμ
k2

ε

(Prandtl-Kol-
mogorov
relationship)

x ¼ ε, dissipation rate (Taylor, Chou,
SKE, RNG, RKE)

α ¼ Cμ ¼ 0.09;
Cμ ¼ 0.09f(Re)

2 �1

νt ¼ αℓ x ¼ ℓ, eddy length scale α is a constant in units
of “average” eddy
velocity

0 1

νt ¼ Cμkt x¼ t (or τ), eddy time scale (Zeierman and
Wolfshtein 1986; Speziale et al. 1992)

α ¼ Cμ ¼ 0.09 1 1

νt ¼ C k
ω

x ¼ ω. The square of the parameter is
solved using a PDE for ω2, which is the
mean vorticity scale for the energetic
(large) eddies (Saffman 1970)

α ¼ C, where C is a
“universal” constant
with magnitude of 1.0

1 �1
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these models reasonably predict certain complex turbulent flows (e.g., Baldwin-
Lomax is reasonable for turbomachinery, aerospace, and applications that have
attached, thin boundary layers).

Some general disadvantages of the zero-equation models are as follows:

• Very limited applicability. They may be great for thin boundary layers but fall flat
outside of their intended, limited space!

• Provide no transport of turbulent scales (no velocity, length, or some other
appropriate variable).

• Successful mostly for very simple flows. (Wilcox found such models as a
“pleasant surprise despite its theoretical shortcomings.”)

Despite the complexity of turbulent flows, algebraic models serve a unique and
respectable role in turbulence modeling, and there are dozens of such models.
Provided the caveats and limitations are understood, three well-known and reason-
able models include Prandtl mixing length, Baldwin-Lomax, and Cebeci-Smith.

4.6.2 One-Equation Models

One equation models are also known as “k-algebraic” models. Generally based on
the k PDE, these models are therefore predominantly built on one turbulence scale,
namely, the velocity. Various popular models are still used in the literature, includ-
ing Prandtl (see Sect. 4.6.2.1), Baldwin-Barth, and Spalart-Allmaras. The Spalart-
Allmaras model is good for supercritical fluids, turbomachinery, and aerospace
applications (refer to Sect. 6.3). Despite a lack of buoyancy term, Spalart-Allmaras
shows surprisingly great results for heat transfer in supercritical fluids (Otero et al.
2018), and good comparisons with experimental data for certain turbulent flows
(e.g., far wakes and mixing layers), but is not as good for jets (radial, round, and
plane) (Wilcox 2006).

4.6.2.1 Prandtl’s One-Equation Model

For one-equation models, a turbulence transport variable is used; such variable is
predominantly the turbulence kinetic energy, k, in conjunction with auxiliary closure
expressions. Ludwig Prandtl developed the first one-equation full-closure turbulence
transport model, where k was his transport variable of choice (Prandtl 1945).

Note that the first two-equation model was developed by Kolmogorov 3 years
earlier, in 1942 (refer to Sect. 4.6.3.1). Kolmogorov used a k transport PDE (using
b for his naming convention) but did not include a full set of closure parameters.
Also, note that the first modern k PDE was derived independently by Chou in 1940,
5 years before Prandtl’s one-equation turbulence model (Chou 1940); refer to
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Sect. 4.4. In any case, Prandtl’s k transport formulation continues to serve as the
modern standard for the k PDE and is expressed as follows,

∂k
∂t

þ uj
∂k
∂xj

¼ Rij
∂ui
∂xj

� εþ ∂
∂xj

νþ νt
σk

� �
∂k
∂xj

� 	
, ð4:44AÞ

where

Rij ¼ νt
∂ui
∂xj

þ ∂uj
∂xi

� �
� 2
3
kδij: ð4:44BÞ

Prandtl provided closure by defining dissipation, the turbulent kinematic viscos-
ity, and the eddy length scale, respectively,

ε ¼ CDk
3=2

ℓ
, ð4:44CÞ

νt ¼ ℓk1=2, ð4:44DÞ

and

ℓ ¼ κy: ð4:44EÞ

The closure coefficients are

σk ¼ 1:0, ð4:44FÞ
κ ¼ 0:41 ¼ Kolmogorov’s constant, ð4:44GÞ

CD ¼ 0:3 for shear flowsð Þ, ð4:44HÞ

and

CD � Cμ ¼ 0:085 in generalð Þ: ð4:44IÞ

Not surprisingly, Prandtl’s model is very useful for simplified geometries, such as
flow across flat surfaces, pipe flow, and Couette flow. Best of all, it is quite easy to
program. For example, it is possible to use straightforward solution approaches, such
as forward-time, central space (FTCS) finite differences because of the relatively
non-rigid nature of the k PDE. For the interested reader, Chap. 7 includes FOR-
TRAN coding for the Prandtl turbulence model.

On the other hand, the ad hoc nature of the CD coefficient limits its applicability.
The linear expression for ℓ also limits its applicability, though more physics-
intensive relationships exist that can add modeling accuracy, such as van Driest
formulations.
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4.6.3 Two-Equation Models

As a result of the ubiquitous advent of computers in the workplace, the two-equation
turbulence models gained popularity and formed the basis for much of the turbulence
simulations over the past 40 years. As their name implicates, these models are
primarily based on finding two key variables that are self-consistent and suitable
for forming an expression having the same units as νt; these variables must also
uniquely describe the turbulence scale (eddy) behavior. For example, turbulent flow
has eddies with length scales (e.g., ℓ, λ, η) that move about chaotically at some
velocity u0. These eddies move about with a characteristic velocity v, move about
with acceleration a, decay within certain time t or frequency ω, dissipate with some
magnitude ε, and so forth.

For the two-equation model closure, k is usually chosen, as well as one additional
transport variable. Typically, the second closure equation involves one of the
following variables: ω, ε, τ (time), ζ (enstrophy), a (acceleration), and so forth.
The list can be as extensive as the researcher’s imagination, so long as dimensionless
analysis allows the combination of the two transport variables to form a mathemat-
ical expression that has units of length squared per unit time—the units for νt. Note
that since the early 1980s, the accuracy of the k PDE has compared successfully with
many experiments and DNS simulations, but the same cannot be said for many
choices for the second transport variable. Furthermore, the introduction of a second
transport variable PDE can cause numerical difficulties and yield anomalous results
if not coded and coupled correctly.

Practically all two-equation turbulence models employ the Boussinesq approxi-
mation and use the k transport variable. Though they are generally suitable for many
applications, two-equation models are notoriously inaccurate for nonequilibrium,
nonisotropic flows, and hence inclusion of nonlocal; nonequilibrium approaches are
required, instead of using the traditional Boussinesq approximation (Speziale and
Eringen 1981; Hamba 2005; Schmitt 2007; Hamlington and Dahm 2009; Wilcox
2006; Spalart 2015).

4.6.3.1 Kolmogorov 1942 k-ω

This is the first two-equation transport model ever developed and is now
approaching the century mark (Kolmogorov 1942). Kolmogorov’s original model
is discussed here for various reasons. First, it was the precursor of the modern k-ω
turbulence models. Secondly, it forms the basis for other two-equation RANS
models, and finally, it sheds light on the applicability of the k-ε models. Though
developed too early to take advantage of modern computational power,
Kolmogorov’s model contributed to modern turbulence analysis by showing that
turbulence can be modeled with momentum-like transport variables that reflect key
scales such as velocity, length, and so forth.
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Kolmogorov began his model by noting that turbulence flows consist of “turbu-
lent pulsations” (eddies) that range from large to small scales that are superimposed
onto the mean flow. The large scales are the integral eddies, which correspond to the
length scale ℓ found in modern turbulence research (Kolmogorov originally used
“L”). He also used “λ” to refer to the smallest eddy scale at which the fluid viscosity
dampens eddies; note that in modern notation, λ is used for Taylor eddies. In
Kolmogorov’s honor, the smallest eddies are called “Kolmogorov eddies,” with
modern notation using the symbol “η.”

In any case, Kolmogorov proceeded with his two-equation model development
by noting that the large eddies constantly extract energy from the mean flow, and in
turn, their energy is transferred onto smaller eddies. Finally, only the smallest eddies
(the Kolmogorov eddies) participate in a decay process whereby they transform from
tiny chaotic structures into tiny laminar regions as the dissipation of their energy is
brought forth by the viscous force of the fluid. Kolmogorov described the transport
of the turbulent kinetic energy as a “stream of energy, flowing constantly.” That is,
he envisioned that a continuous transfer of energy existed in the fluid continuum.
The process is now called “cascading.” These phenomena insights are crucial, as
dissipation primarily applies to Kolmogorov eddies, but energy transfer involves all
three scales—integral, Taylor, and Kolmogorov. In fact, Kolmogorov referred to his
second transport variable (ω) as applicable to all (three) scales, as evidenced by his
remark (Kolmogorov 1942), “A fundamental characteristic of the turbulent motion
at all scales is the quantity ω which stands for the rate of dissipation in unit volume
and time.”

Thus, if equilibrium is assumed, then the decay rate equals the production rate,
andω rightfully describes the energy dissipation rate under equilibrium conditions as
experienced throughout the cascade—from the integral to the Kolmogorov scales.
This physical description of turbulence energy flow strongly suggests which vari-
ables are appropriate and, most importantly, which form self-consistent pairs of
variables for the development of two-equation turbulence models.

Kolmogorov continued his model development by postulating that ω is a “fun-
damental” quantity that is applicable to the entire length spectrum, because the eddy
energy transfer is assumed constant—in equilibrium. Certainly, this need not always
be the case in all turbulent flows but is a reasonable approximation under many
situations—it forms a good starting point. Kolmogorov envisioned the fundamental
quantity ω as representing the dissipation rate in a flow volume per unit time or as a
“mean frequency.” Thus, ω is construed from an equilibrium point of view, appli-
cable to the entire eddy spectrum, whereby turbulent energy transfer occurs as a
“continuous stream of energy” from the mean flow, and that cascades throughout all
eddy scales. This approach is consistent with Hinze, who stated (Hinze 1987), “ε is
on the one hand practically equal to the dissipation in the highest-wavenumber range
and on the other hand practically equal to the work done by the energy-containing
eddies, which is the energy supplied to the smaller eddies.”

In addition, Saffman considered ω2 as the mean vorticity scale for the energetic
(large) eddies (Saffman 1970).
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Therefore, k and ω are self-consistent turbulence transport properties, where
k represents the large eddies that typically hold about 80% of the total turbulent
kinetic energy, while ω considers the energy dissipation of the large eddies (as well
as the smaller eddies, because Kolmogorov considered the equilibrium cascade
energy transfer as affecting all three scales). Said briefly, both k and ω are associated
with the large eddy scale size and are thus a self-consistent pair of transport
variables.

Kolmogorov defined his turbulence model using three partial differential equa-
tions, as follows. He started with the time-averaged velocity for the RANS-based
momentum equation:

Dui
Dt

¼ Fi � ∂
∂xi

p
ρ
þ b

� �
þ A

X
j

∂
∂xj

b
ω

∂ui
∂xj

þ ∂uj
∂xi

� �� 	
: ð4:45AÞ

Then, the turbulent mean frequency ω is modeled with the following transport
equation:

Dω
Dt

¼ � 7
11

ω2 þ A0X
j

∂
∂xj

b
ω

∂ω
∂xj

� 	
, ð4:45BÞ

while the averaged root-mean-square of the fluctuating velocities, b, is

Db
Dt

¼ �bωþ 1
3
A
b
ω
εþ A00X ∂

∂xj

b
ω

∂b
∂xj

� 	
: ð4:45CÞ

Note that Kolmogorov used the following notation:

D
Dt

¼ substantial derivative,

Fi ¼ external force,

ui ¼ time‐averaged velocity,

and

P ¼ time‐averaged pressure:

In Kolmogorov’s context, b is akin to k. That is, he defined the RMS fluctuation
velocity:
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b � 1
3

X
j

u02j : ð4:45DÞ

Thus, Kolmogorov’s turbulent kinetic energy is

b ¼ 1
3

u02 þ v02 þ w02
� �

� k, ð4:45D0Þ

which is an RMS quantity. As noted in Sect. 4.4 (under “Toward a more formal
definition of k”), Prandtl used a slightly different definition (Prandtl 1945; Spalding

1991), namely, k ¼ 1
2 u02 þ v02 þ w02
� �

.

Finally, using Kolmogorov’s nomenclature,

ε ¼
X
i, j

∂ui
∂xj

þ ∂uj
∂xi

� �a

: ð4:45EÞ

In this context, a, A, A0, and A
00
are closure constants that have yet to be

determined experimentally. Note that Kolmogorov’s ε symbol in the third partial
differential equation (the b transport PDE, Eq. 4.45C) is defined explicitly in
Eq. 4.45E; it is not to be confused with the modern symbol for dissipation. Basically,
the first k-εmodel was developed 3 years after Kolmogorov’s k-ω turbulence model,
and hence the naming confusion did not arise from Kolmogorov. In any case, letting
a ¼ 1 shows that in his context, ε is actually twice the modern mean strain rate
tensor:

ε ¼
X
i, j

∂ui
∂xj

þ ∂uj
∂xi

� �
� 2 S

!!
: ð4:45E0Þ

For the sake of clarity, Kolmogorov’s ε (i.e., his mean strain rate) will not be used
outside of this section. Kolmogorov’s turbulent mean frequency is

ω � c
b1=2

L
� c

k1=2

ℓ
ð4:45FÞ

where

ℓ ¼ characteristic eddy length.

As noted by various researchers, Kolmogorov’s ω transport equation does not
include a production term (Spalding 1991; Bulicek and Malek 2000; Wilcox 2006;
Mielke and Naumann 2015). The literature indicates that this issue can be addressed
to diverse degrees of success by including an ω source boundary at the wall
(Spalding 1991) or a fixed nonhomogeneous Dirichlet boundary (Bulicek and
Malek 2000), as well as periodic boundaries (Mielke and Naumann 2015).
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Wilcox was the first to introduce an ω production term onto the ω transport PDE,
as noted in his 1988 k-ω model, where the production term Pω is

Pω ¼ α
ω
k
Rij

∂ui
∂xj

: ð4:46AÞ

However, it is noted that Kolmogorov did include a b production term that is a
function of ω, namely,

Pk ¼ 1
3
A
b
ω
ε ¼ 2

3
A
b
ω
S ð4:46BÞ

(recall Kolmogorov’s non-standard definition for ε, namely, ε ¼ 2S).
Because the transport equations are coupled and Pk is a function of ω, then at least

there is a connection between turbulent kinetic energy production and ω in the
Kolmogorov turbulence model.

Note that ω is in units of inverse time and is therefore a fundamental turbulence
frequency associated with the time it takes for eddies to transfer their energy. Based
on dimensionless arguments, the frequency is a function of the turbulent kinetic
energy k and the dissipation ε,

ω � ε
k
: ð4:47Þ

Wilcox expressed Kolmogorov’s ω transport model in more modern terms
(Wilcox 2006) and upgraded the model by adding an ω production term (the first
term on the RHS of the arrow in Eq. 4.48A), viz.,

� 7
11

ω2 þ A0X
j

∂
∂xj

b
ω

∂ω
∂xj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kolmogorov 1942

! γ
ω
k
Rij

∂ui
∂xj

� βω2 þ ∂
∂xj

νþ σνtð Þ∂ω
∂xj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Wilcox 2006

ð4:48AÞ

whereby

β ¼ 7
11

, ð4:48BÞ

A0 ¼ σ, ð4:48CÞ

and

νt ¼ b
ω
: ð4:48DÞ
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4.6.3.2 Wilcox 1988 k-ω

The 1988 model is included here to show the evolutionary progress of the k-ω
models. Though the 1988 k-ω can be sensitive to free stream boundary conditions
(Menter 1992; Menter et al. 2003; Wilcox 2006), it cannot be overemphasized that
this issue was fixed in the 2006 k-ω version. To be clear, the 2006 k-ω model
supersedes the 1988 and 1998 k-ω versions.

Using his prodigious turbulence modeling skills, Wilcox added his own
upgrades, and like an accomplished craft master, he carefully blended Prandtl’s
k transport turbulence PDE (Prandtl 1945), Kolmogorov’s ω transport PDE (Kol-
mogorov 1942), and upgrades from Saffman (1970), to produce the 1988 k-ω
version.

Note that Saffman computed ω2 transport, which is the mean vorticity scale for
the energetic (large) eddies; this once again confirms the notion that if k is computed
(which is clearly based on the larger eddies), then the associated second transport
parameter ought to be based on a larger scale as well, assuming consistency matters!
And clearly, ω satisfies this constraint. In the literature, ζ ¼ 1

2ω
2 ¼ enstrophy and is

used in k-ζ models. Saffman’s turbulent kinematic viscosity is νt ¼ γ k
ω, where γ is a

“universal” constant valued at 1.0.
But rather than computing ω2, Wilcox, just like Kolmogorov, considered the

transport of the eddy frequency (or specific dissipation rate), ω; the 1988 Wilcox k-ω
turbulence model is discussed next (Wilcox 1988a, 1993a, b).

The k PDE is

∂k
∂t

þ ui
∂k
∂xi

¼ Rij
∂ui
∂xj

� β�kωþ ∂
∂xi

νþ σ�νtð Þ ∂k
∂xi

� 	
, ð4:49AÞ

while the turbulent frequency ω (specific dissipation rate) is

∂ω
∂t

þ ui
∂ω
∂xi

¼ γ
ω
k
Rij

∂ui
∂xj

� βω2 þ ∂
∂xi

νþ σνtð Þ∂ω
∂xi

� 	
: ð4:49BÞ

The model has the following five closure coefficients (Wilcox 1988a, 1988b,
1993a, b; Bredberg 2000):

β ¼ 3
40

, ð4:49CÞ

β� ¼ 9
100

, ð4:49DÞ

γ ¼ 5
9
, ð4:49EÞ

σ ¼ 1
2
, ð4:49FÞ

and
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σ� ¼ 1
2
: ð4:49GÞ

The closure relationship is

νt ¼ k
ω
: ð4:49HÞ

A similar turbulence model, but with no alignment between the Reynolds stress
tensor and the mean strain rate, was developed the same year (Wilcox 1988b).
Wilcox also developed a 1988 k-ω variant that is suitable for laminar to turbulent
transition (Wilcox 1994). Not surprisingly, the literature indicates that there are
many other k-ω hybrid models (Wilcox 1993a, b, 2006; Bredberg 2000; Gorji
et al. 2014; NASA1 2018), so the specific version should always be noted by the
analyst.

The 1988 model is elegant because it captures the major elements of transport for
both k and ω, while having neither limiters nor blending functions, and requires only
a minimal number of closure coefficients. The model is very useful for low Re and
near-wall boundary layers. But again, given the choice, the 2006 k-ω is vastly
preferable over the 1988 k-ω.

4.6.3.3 Wilcox 1998 k-ω

A decade later, Wilcox overhauled his 1988 k-ω model to generate the 1998 k-ω
model (Wilcox 2004). On the one hand, the 1998 version resulted in significant
advances for k-ω models, as Wilcox experimented with various recent turbulence
modeling advances. For example, this was the first time whereby he added a cross-
diffusion term, albeit it had a strong ω function (to the third power). By comparison,
note that the 2006 model has a functionality to the first power (see Sect. 4.6.3.4); it is
very likely that the lower power dependency significantly decreased k-ω numerical
stiffness for the 2006 model. Other 1998 model advancements included a vorticity
tensor, which is certainly ideal for modeling rotating coherent structures.

To say the least, these ideas fostered Wilcox’s attempt to improve the 1988 k-ω,
and many of these concepts would later prove very beneficial in his future k-ω
models, especially the 2006 k-ω. But, on the other hand, the 1998 k-ωmodel resulted
in undesirable de-evolution in k-ω development, mainly because the 1998 model
included a disconcertingly large number of closure coefficients and blending func-
tions. And yes, this direction went against Wilcox’s fundamental belief that “an ideal
model should introduce the minimum amount of complexity while capturing the
essence of the relevant physics.” For these reasons, and because the 2006 k-ω model
replaces the 1998 model, a description of the 1998 version is not included here.
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4.6.3.4 Wilcox 2006 k-ω

Fortunately, a little less than a decade after his 1998 model, in a stroke of genius,
Wilcox not only reduced the number of blending functions in half but also improved
its modeling characteristics in a significant manner (Wilcox 2006, 2007a, b). For
example, Wilcox added a revised cross-diffusion term to vastly reduce boundary-
condition sensitivity to the free stream. In addition, the new cross-diffusion model
had a weaker ω dependency (first- vs. third-power dependency compared to the 1998
version). Then, Wilcox went further by adding a stress limiter to better simulate flow
detachment, incompressible flows, as well as transonic flows; neither the 1988 nor
1998 versions include the limiter. Finally, the 2006 model only requires six closure
coefficients (not including the limiter).

The 2006 transport k and ω models are, respectively,

∂k
∂t

þ ui
∂k
∂xi

¼ Rij
∂ui
∂xj

� β�kωþ ∂
∂xi

νþ σ� k
ω

� �
∂k
∂xi

� 	
ð4:50AÞ

and

∂ω
∂t

þ ui
∂ω
∂xi

¼ α
ω
k
Rij

∂ui
∂xj

� βω2 þ ∂
∂xi

νþ σ
k
ω

� �
∂ω
∂xi

� 	
þ σd

1
ω
∂k
∂xi

∂ω
∂xi

:

ð4:50BÞ

The Reynolds stresses (R) are obtained from the Boussinesq approximation.
The 2006 model has the following closure relationships. Starting with the turbu-

lent kinematic viscosity,

νt ¼ keω : ð4:50CÞ

The specific dissipation rate (i.e., the frequency) has the following stress limiter
for improving separated flows and incompressible flows up to transonic Ma:

eω ¼ max ω,Clim

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij
β�

r� �
: ð4:50DÞ

The stress limiter only becomes active for large mean strain rate (Sij) magnitudes,
such as occur for strongly separated flows and high Ma flows.

The blending function fβ is defined as

f β ¼
1þ 85χω
1þ 100χω

: ð4:50EÞ
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The blending function ranges from a minimum of 0.85 as χ approaches large
values for free shear up to a peak value of 1.0 as χ approaches 0 near the wall, as
shown in Fig. 4.2.

In this context, χ is the so-called non-dimensional vortex stretching and is defined
as

χω � ΩijΩjkSki

β�ωð Þ3
�����

�����: ð4:50FÞ

Notice the introduction of the vorticity tensor Ω, which is an ideal function for
quantifying rotational fluid mechanics. Because turbulent coherent structures
involve 3D sheets that fold with spiral-like curvature, involving the mean rotational
tensor is highly intuitive. The mean rotational and mean strain rate tensors, respec-
tively, are defined as

Ωij ¼ 1
2

∂ui
∂xj

� ∂uj
∂xi

� �
ð4:50GÞ

and

Sij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
: ð4:50HÞ

The inclusion of χω is an attempt to quantify vortex stretching as the energy
cascade proceeds from the larger to the smaller eddies; rightly so, χω ¼ 0 for 2D
flows. However, the vortex stretching phenomenon is much more complex than

Fig. 4.2 The 2006 k-ω blending function
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anticipated. For example, recent investigations for homogeneous isotropic flows
show that the larger eddies tend to be perpendicular to the fastest-stretching eddies,
while the orientation of the larger eddies, compared with the stretching direction
associated with the smaller vortices, is about 45� (Hirota et al. 2017).

The last term of the ω PDE model is the cross-diffusion term, which was included
to minimize sensitivity to boundary conditions. In particular, the near-wall and free
shear effects are conveniently addressed via the product of the k and ω spatial
gradients. More specifically, the leading coefficient is zero near the wall, so cross-
diffusion is suppressed. The cross-diffusion term is of higher consequence for free
shear flows, so ω production is increased (i.e., the term is nonzero). The cross-
diffusion term is defined as follows:

σd ¼
0, if

∂k
∂xi

∂ω
∂xi

	 0 near the wallð Þ

σdo, if
∂k
∂xi

∂ω
∂xi

> 0 free shearð Þ
:

8>><>>: ð4:50IÞ

Finally, the model has the following closure coefficients:

α ¼ 13
25

, ð4:50JÞ
β ¼ β0f β, ð4:50KÞ

β0 ¼ 0:0708, ð4:50LÞ

β� ¼ 9
100

¼ Cμ, ð4:50MÞ

σ ¼ 1
2
, ð4:50NÞ

σdo ¼ 1
8
, ð4:50OÞ

and

σ� ¼ 3
5
: ð4:50PÞ

The stress limiter coefficient is

Clim ¼ 7
8
: ð4:50QÞ

Based on the above definitions and dimensional arguments, the following quan-
tities can be obtained, if so desired:
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ℓ ¼ k1=2

ω
, ð4:50RÞ

t ¼ 1
ω
, ð4:50SÞ

and

ε ¼ β�ωk: ð4:50TÞ

Wilcox proudly tested his 2006 model on approximately 100 relevant test cases,
including:

• Attached boundary layers
• Free shear flows (far wake, mixing layer; plane, round, and radial jets)
• Backward-facing steps
• Shock-separated flows
• Low to high Re
• Ma ranging from incompressible to hypersonic flows
• Fluids undergoing heat transfer

Therefore, the model is highly recommended for free shear flows, including far
wakes, mixing layers, strongly separated flows, as well as plane, round, and radial
jets (Wilcox 2006). It is also suitable for flows with a high degree of swirl
(Rodriguez 2011). Comparisons with experimental data are typically very good,
and 1988 k-ω issues involving free shear flows, strongly separated flows, and high
Ma flows have been substantially resolved. Therefore, the 2006 k-ω is a good,
all-around model for both near-wall and free stream turbulence and is therefore a
great contender vs. Menter’s SST model. But in the final balance, it must be pointed
out that the 2006 k-ω model does not have the SKE issues discussed in Sects. 4.7
through 4.7.3 that rightfully apply onto the SKE portion of the SST. Therefore, this
thrusts the 2006 k-ω as the best two-equation RANS model. For more guidelines
regarding this assertion, refer to Eq. 2.48 and the associated paragraph immediately
below.

Finally, note that the 2006 k-ω clearly supersedes the 1988 and 1998 k-ω models
because it eliminates issues regarding sensitivity to boundary conditions and ver-
satility (Wilcox 2006). Indeed, unlike its 1988 and 1998 predecessors, the 2006 k-ω
is suitable for both free shear and near-wall flows and subsonic, supersonic, and
hypersonic flows. Therefore, modern analysts and researchers should not use the
earlier versions if the 2006 k-ω is available. To do otherwise is done at the expense
of finding “issues” that were corrected long ago by Wilcox. This is pointed out here
explicitly, as there are many papers in the 2006–2019 time frame that still use the
1988 k-ω model and whose work is therefore not cited here as a courtesy.

158 4 RANS Turbulence Modeling

https://doi.org/10.1007/978-3-030-28691-0_2#Equ98


4.6.3.5 Standard k-ε (SKE) Model

The two-equation transport model, now known as the standard k-ε (SKE) turbulence
model, traces its origins to Pei Yuan Chou’s eddy decay research, whose ideas were
later adapted and extended by many researchers. Chou developed the notion that k
can be associated with vorticity (ω) decay.Note that what is referred in more modern
times as the dissipation ε term based on the derivatives of the fluctuating velocities
was derived independently by Chou. Furthermore, Chou associated ε decay with the
Taylor length scale, λ (Chou 1940, 1945). Ironically, Chou proceeded to develop a
vorticity transport dissipation model based on ω for Taylor eddies (not Kolmogorov
eddies); the present author considers this as highly ironic because the origin of the k-
εmodel is based on the k-ω turbulence model! In Chou’s words (Chou 1945), “Since
Taylor’s scale of micro-turbulence λ plays a very important role in the decay of
turbulence, it is necessary to find the equation which governs the behaviour of this
fundamental length. This equation is provided by the decay of the vorticity.”

Note that Chou referred “dissipation” as “decay.” His original ω PDE transport
model is found in Eq. 1.4 of his original paper (Chou 1945) and is reproduced here
for convenience, to trace how Chou’s original concept for ω transport evolved
(or de-evolved) into the ε transport model. Note that Chou uses wi and Ui to denote
the velocity fluctuations and mean velocities, respectively, and that τ represents his
Reynolds stress. For convenience, τ is replaced with R. Chou’s ω transport is
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ð4:51AÞ

In this context, Ω is the mean vorticity expressed as

Ωik ¼ ∂Ui

∂xk
� ∂Uk

∂xi
, ð4:51BÞ

while the ω vorticity fluctuation is defined as

ωik ¼ ∂wi

∂xk
� ∂wk

∂xi
: ð4:51CÞ

Chou also developed the first transport version of the Reynolds stress (R PDE) in
1940, whereby he introduced eddy decay (dissipation) (Chou 1940 (refer to Eqs. 3.1
and 3.4 in the cited reference)):
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Years later, he elaborated and expanded various terms in the R PDE (Chou 1945;
Chou and Chou 1995). With a desire to focus on the issue of dissipation, Chou’s
decay term is
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It is noted that this is the modern dissipation εik term, with the metric tensor
gmn ¼ 1. Chou proceeded by deriving a relationship for eddy decay associated with
the Taylor length scale, λ,

εik � 2νgmn
∂w0

i

∂xm

∂w0
k

∂xn
¼ � 2ν

3λ2
k � 5ð Þq2gik þ 2νk
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k , ð4:54AÞ

where

q2 ¼ w0
jw

0
j: ð4:54BÞ

Note that Chou developed transport PDEs for k (refer to Sect. 4.4 under “Chou’s
k PDE”), ω (Eqs. 4.51A through 4.51C), τ (i.e., R; Eq. 4.52), and an expression for
ε ¼ ε (k,λ,w0

iw
0
k) (Eqs. 4.54A and 4.54B). However, he did not develop a transport

PDE for ε (Chou 1940). This was most likely because he clearly understood that ε
was associated with λ, and eddy decay with ω, and thus there was no need for an
ε PDE.

Continuing on, researchers developed triple velocity correlations in the hope that
those equations could be used to achieve closure. Instead, the correlations generated
fourth-order velocity correlations, and so forth, each time generating terms at the
next higher order, in a process that can go on indefinitely (Chou 1940). As stated by
Chou, “. . .and hence leads to nowhere.” At this point, Chou chose to end the endless
cycle by asserting that
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His justification is based on either assuming that the fluctuating velocities can be
represented as sinusoidal functions of time or as “an independent hypothesis.”
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In 1941, Millionshtchikov developed a more generalized and rigorous expansion
for the fourth-order velocity correlation based on homogeneous isotropic theory
(Millionshtchikov 1941). Remarkably, its expression is nearly the same as Chou’s
approximation:
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The next progression in the k-εmodel surfaced when the first ε transport PDE was
finally completed by B. I. Davydov in 1961 (Davydov 1961):
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Note that a systematic, term-by-term comparison shows that Davydov’s 1961
exact ε PDE has the same nine terms as the Hanjalic 1970 exact ε PDE (Hanjalic
1970). (For convenience, Hanjalic’s exact ε PDE is discussed later in this section.) In
any case, after some surgery on his ε PDE, Davydov reduced the exact PDE onto the
following simplified expression:
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where some of Davydov’s notations are expressed here in more modern
terminology:

εDavydov � Q � ν
∂u0i
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� �2

, ð4:58BÞ
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Rij ¼ u0iu
0
j, ð4:58DÞ

R � Rii � k 
 1
t
, ð4:58EÞ

and
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γ ¼ 4: ð4:58FÞ

Davydov chooses N to represent the turbulent kinematic viscosity:

N � νt � �Rik
∂ui
∂xk

∂ul
∂xm

� ��2

: ð4:58GÞ

Again, a systematic, term-by-term comparison shows that except for one term,
Davydov’s 1961 simplified, modified (“drastic surgery”) ε PDE is nearly the same
expression as the 1970 Hanjalic simplified ε PDE (Hanjalic 1970). The only
difference between the Davydov and Hanjalic PDEs is that Davydov considered
the transport of dissipation through velocity fluctuations (gradient transport):

∂ u0jε
� �
∂xj

, ð4:59Þ

whereas Hanjalic considered diffusion associated with turbulent dissipation:

∂
∂xj

νt
σε

∂ε
∂xj

� �
: ð4:60Þ

Of course, by using dimensional arguments based on gradient transport (refer to
Chap. 2), Davydov’s term becomes the same as Hanjalic’s, except for the σε
coefficient. Namely, Davydov’s dissipation term becomes

� ∂
∂xj

u0jϕ
0

� �
Davydov

¼ � ∂
∂xj

u0jε
� �

Davydov
¼ ∂

∂xj
νt

∂ε
∂xj

� �
Davydov

: ð4:61Þ

In this context, the comparison of both simplified ε PDEs shows that

αDavydov ! C1,Hanjalic ð4:62Þ

and

λDavydov ! C2,Hanjalic: ð4:63Þ

Nevertheless, unlike Hanjalic, Davydov solved
∂ u0iεð Þ
∂xi

via an additional transport

equation.
Hanjalic noted the similarities between Davydov’s exact and simplified ε PDEs

and those included in his research (Hanjalic 1970), but not to the extent discussed
here, as will be shown later.
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Just as with Kolmogorov’s k-ω model, little progress was made toward
Davydov’s k-ε modeling approach until nearly a decade after its initial development
(Harlow and Nakayama 1967, 1968); this was primarily due to the lack of compu-
tational power at the time. These researchers undertook a somewhat distinct
approach from Davydov that was more analogous to Chou’s vorticity decay trans-
port. The formulation of this alternative ε transport PDE is as follows (Harlow and
Nakayama1967, 1968):

∂ε
∂t

þ uk
∂ε
∂xk

¼ aΔνt
s2

∂uj
∂xk

∂uj
∂xk

� 2νΔ0ε
s2

þ a2Δ
s2

∂
∂xk

νt
∂k
∂xk

� �
þ ∂
∂xk

νþ a3νtð Þ ∂ε
∂xk

� 	
þ a4

∂
∂xk

Δνt
2

∂φ
∂xk

� �
,

ð4:64AÞ

where ε is in s�2 (vs. m2/s3). The auxiliary constants and expressions are

a � 2, ð4:64BÞ
a2 � a3 � a4 � 1, ð4:64CÞ

β ¼ 5, ð4:64DÞ
β0 ¼ 2β, ð4:64EÞ
δ ¼ 0:01, ð4:64FÞ

Δ ¼ β 1þ δξð Þ, ð4:64GÞ
Δ0 ¼ β0 1þ δξð Þ, ð4:64HÞ

ξ ¼ νt
ν
, ð4:64IÞ

s ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δξ

p
, ð4:64JÞ

φ ¼ p0

ρ
, ð4:64KÞ

and λ ¼ Taylor length scale.
Finally, as shown next, Hanjalic extended the modified Davydov ε PDE by

incorporating:

• A new approach for calculating dimensional arguments involving velocity and
length scales for νt

• A term to compute turbulent diffusion of dissipation based on dimensional
arguments in gradient transport (as discussed earlier in this section)

• A polynomial function based on the distance from the wall (Hanjalic 1970)

Similar to Chou’s efforts (Chou 1940; Chou and Chou 1995), Hanjalic obtained a
fluctuating velocity PDE whereby, as stated by him, “the time averaged parts are
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subtracted from the time dependent general Navier-Stokes equation (2.2)” (Hanjalic
1970). For convenience, the fluctuating velocity PDE is included here:

∂u0i
∂t

þ uk
∂u0i
∂xk

¼ �u0k
∂ ui þ u0i
� �
∂xk

þ ∂ u0iu
0
k

� �
∂xk

�
∂ ν

∂u0i
∂xk

� �
∂xk

� 1
ρ
∂P
∂xi

: ð4:65Þ

Hanjalic then made the assertion that if the fluctuating velocity PDE is (Hanjalic
1970)

“differentiated with respect to xℓ, then multiplied by 2ν ∂u0i
∂xℓ

and time averaged, it

transforms into the exact transport equation for the variable ν
∂u0i
∂xℓ

∂u0i
∂xℓ

� ε. . . which

represents the dissipation of turbulent kinetic energy.”
Like the earlier work presented by Davydov (1961), Hanjalic noted that ε could

be modeled with a turbulence transport PDE. Hanjalic also postulated that the length
scale for ε could be approximated with dissipating eddies smaller than those
considered by Rotta (1951), to achieve a relationship whereby

νt ¼ k1=2ℓ ¼ νt k, εð Þ: ð4:66Þ

Namely, Hanjalic stated (Hanjalic 1970), “One could, perhaps, argue that the
integral scale, employed in Rotta’s equation, is weighted much with the lowest wave
numbers and is therefore not representative of the scale of the energy containing
eddies which are mostly responsible for both the energy dissipation and diffusion
processes.”

Herein is the issue with most post-1961 k-ε versions: Hanjalic proposed that ε
could be associated with a smaller length scale than the Taylor scale originally
proposed for dissipation by Chou (1940, 1945). In particular, Hanjalic associated ε
with a small-scale Lε, whereby

ε � ν
∂u0i
∂xl

∂u0i
∂xl

¼ cε
k3=2

Lε
: ð4:67Þ

Solving for the length scale,

Lε ¼ cε
k3=2

ε
, ð4:68Þ

and thus,

νt ¼ k1=2ℓ ¼ k1=2 cε
k3=2

ε

� �
¼ cε

k2

ε
¼ νt k, εð Þ: ð4:69Þ
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In this context, cε is the modern Cμ. Therefore, the above relationship collapses
onto the Prandtl-Kolmogorov relationship, which applies to the larger eddies, and
most certainly not onto the smaller eddies.

Next, Hanjalic developed a third-order polynomial for calculating a new,
geometry-dependent length scale, La. In Hanjalic’s vernacular, this length scale
was intended to “represent both L and Lε” (Hanjalic 1970). Moreover, La was built
around a polynomial function expressed as the distance from the wall. To be clear, L
represents the length of the energy carrying eddies in Hanjalic’s model, whereas
experimental data confirms that Lε � η (i.e., most of the dissipation occurs near the
smallest scales), and hence it is not appropriate to have a single scale represent both
L and Lε. Of course, eddy size depends heavily on fluid velocity, physical properties,
and system size. Nevertheless, LIKE algorithm calculations for air and water
systems for Re in the range of 3000 to 700,000 show that η ~ 7 � 10�5 to
1 � 10�4 m, λ ~ 1 � 10�3 to 1 � 10�2 m, and ℓ ~ 2 � 10�3 to 5 � 10�2

m. Thus, Hanjalic’s assertion that L� Lε is clearly incorrect, as it is more appropriate
to say η � λ � ℓ or, alternatively, that Lε � L.

At this point, the derivation of the modern “exact” ε PDE would be warranted, so
it may shed additional light on the k-ε model. However, its derivation takes several
dozen pages, assuming that one is careful and lucky enough not to make mathemat-
ical errors! Therefore, based on Hanjalic’s version, and modernized somewhat, its
entire expression is (Hanjalic 1970)

∂ε
∂t|{z}
1

þ uj
∂ε
∂xj|fflffl{zfflffl}
2

¼ �2ν
∂ui
∂xj

∂u0i
∂xk

∂u0j
∂xk

þ ∂u0k
∂xi

∂u0k
∂xj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

� 2ν
∂2ui
∂xk∂xj

u0k
∂u0i
∂xj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

4

� 2ν
∂u0i
∂xk

∂u0i
∂xm

∂u0k
∂xm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

5

�2ν2
∂2u0i

∂xk∂xm

∂2u0i
∂xk∂xm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

6

þ ν

∂
∂ε
∂xj

� �
∂xj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
7

� ν

∂ u0j
∂u0i
∂xm

∂u0i
∂xm

 !
∂xj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
8

� 2
ν
ρ

∂
∂p0

∂xm

∂u0j
∂xm

 !
∂xj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
9

ð4:70Þ

where

Term 1 ¼ transient change of dissipation (accumulation term).
Term 2 ¼ mean flow convection dissipation.
Term 3¼ dissipation production term that arises from the product of the gradients of

the fluctuating and mean velocities.
Term 4 ¼ dissipation production term that generates additional dissipation based on

the fluctuating and mean velocities.
Term 5 ¼ the so-called “destruction” rate for dissipation, which is associated with

eddy velocity fluctuation gradients.
Term 6 ¼ another “destruction” term for dissipation, which arises from eddy

velocity fluctuation diffusion.
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Term 7¼ term to account for the viscous diffusion associated with dissipation. Note
that this is the only positive term on the RHS.

Term 8 ¼ diffusive turbulent transport resulting from the eddy velocity fluctuations.
Term 9 ¼ dissipation of turbulent transport arising from eddy pressure and fluctu-

ation velocity gradients.

The above comprise the nine exact dissipation terms associated with the ε
transport PDE. However, besides the two terms that form the substantial derivative
(Terms 1 and 2) and the viscous diffusion of dissipation (Term 7), the remaining six
terms are completely unknown, to a point whereby the PDE requires Wilcox’s
infamous “drastic surgery” to transform it into a vastly different equation that can
be modeled (solved) numerically (Wilcox 2006). Some employ the phrase “surgi-
cally modified beyond recognition” (Schobeiri and Abdelfattah 2013). While others
would agree with such description, they would perhaps use slightly less colorful
assertions (Myong and Kasagi 1990; Rodi 1993; Andersson et al. 2012). In any case,
because these terms are unknown, “drastic surgery” is exactly what Hanjalic was
forced to perform on the exact ε PDE when he used analytical substitutions for the
six PDE terms. Some of these surgery terms are still in use today.

In the aftermath of his model completion, Hanjalic applied it to a plane smooth
channel, the boundary layer on a flat plate, a plane wall jet, a plane free jet, and a
plane with a mixing layer. Except for the plane wall jet, whose predicted value was
within 20 to 30% of the experimental value, the other four cases showed results that
compared quite well with experimental data, usually to within 10% or less. However,
only one predicted value was compared with the experimental data for each of the
five cases (refer to Hanjalic’s Table 4.4, page 189, Hanjalic 1970); when more
detailed comparisons were made later in the Hanjalic reference, the plane mixing
layer simulation vs. experimental data was not as good.

Moving forward a few years later, the k-ε model was revamped onto its more
modern format in the early 1970s. This was a time period when various theoretical
and computational efforts by Jones, Launder, and Sharma showed excellent
potential vs. experimental data (Jones and Launder 1972, 1973; Launder et al.
1973; Launder and Sharma 1974). During this crucial 3-year period, the k-ε model
evolved toward the following formulation, which is now commonly called the
standard k-ε (SKE) model. The k PDE is written as

∂k
∂t

þ uj
∂k
∂xj

¼ Rij
∂ui
∂xj

� εþ ∂
∂xj

νþ νt
σk

� �
∂k
∂xj

� 	
, ð4:71AÞ

while the ε PDE is transformed through the magic of “drastic surgery” onto the
following:
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∂ε
∂t|{z}
1

transient

þ uj
∂ε
∂xj|fflffl{zfflffl}
2

convection

¼ C1
ε
k
Rij

∂ui
∂xj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

3 and 4

production

� C2
ε2

k|ffl{zffl}
5 and 6

decay

þ ∂
∂xj

νþ νt
σε

� �
∂ε
∂xj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

7� 9

diffusion

: ð4:71BÞ

As written in their original 1974 paper, the model includes an expanded Prandtl-
Kolmogorov closure formulation,

νt ¼ Cμ
k2

ε
, ð4:71CÞ

that incorporates a damping function fit with ReT as a turbulent Reynolds number
(Launder and Sharma 1974):

Cμ � 0:09e� 3:4= 1þReT=50ð Þ2½ �: ð4:71DÞ

The turbulent Reynolds number is defined as

ReT ¼ ρk2

με
: ð4:71EÞ

Note that ReT is based on the large eddies and that Launder and Sharma did not
include Cμ in their 1974 ReT expression. Therefore, the implied ReT-based SKE large
eddy length scale is ℓSKE ¼ k3=2

ε , while the SKE Prandtl-Kolmogorov closure rela-

tionship implies ℓPrandtl‐Kolmogorov ¼ Cμ
k3=2

ε ; this inconsistency is addressed in Sect.
4.7.2.

The final closure coefficients underwent “reoptimization” for high Re applica-
tions (Launder et al. 1973; Launder and Sharma 1974; Wilcox 2006), such that

C1 ¼ Cε1 ¼ 1:44, ð4:71FÞ

C2 ¼ Cε2 ¼ 1:92 1:0� 0:3e�Re 2
T

� �
, ð4:71GÞ

σε ¼ 1:3, ð4:71HÞ

and
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σk ¼ 1:0: ð4:71IÞ

The above formulation for the ε PDE shows that the nine terms for the “exact”
PDE were collapsed into just five terms. Note that in the “transformed” ε PDE, only
Terms 1, 2, and 7 survived in an intact manner—the remaining terms bear little, if
any, resemblance to the exact equation! In other words, a comparison of the previous
two ε PDE equations shows an utter lack of similitude once the transformative
“drastic surgery” occurs, namely,

�2ν
∂u0i
∂xk

∂u0j
∂xk

þ ∂u0k
∂xi

∂u0k
∂xj

 !
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3

� 2ν
∂2ui
∂xk∂xj
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∂u0i
∂xj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

4

! Cε1
ε
k
Rij

∂ui
∂xj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

3 and 4
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: ð4:72Þ

Ditto,

�2ν
∂u0i
∂xk

∂u0i
∂xm

∂u0k
∂xm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

5

� 2ν2
∂2u0i

∂xk∂xm

∂2u0i
∂xk∂xm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

6

! � Cε2
ε2

k|fflffl{zfflffl}
5 and 6

decay

: ð4:73Þ

And ditto,

ν
∂ ∂ε

∂xj
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∂xj|fflfflfflffl{zfflfflfflffl}
7

� ν
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∂xm
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� �
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8
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∂ ∂p0
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∂xj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
9

! ∂
∂xj

νþ νt
σε

� �
∂ε
∂xj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

7� 9

diffusion

: ð4:74Þ

Certainly, some of this monkey business also goes on with k-ω models as well,
but not to the degree whereby only three terms out of nine are modeled directly, and
the remaining terms involve astonishing transformations that bear absolutely no
resemblance to the “exact” terms.

Note that despite the claim that the dissipation eddies are small, and the less-than-
rigorous transformation onto a form that can be modeled, the k-ε model remains
popular and still enjoys substantial usage in the turbulence community. To be fair,
the model has enjoyed many spectacular successes since its modern upgrades
(Hanjalic 1970; Jones and Launder 1972, 1973; Launder et al. 1973; Launder and
Sharma 1974; Rodi 1993; Gorji et al. 2014; Diaz and Hinz 2015). For example, the
SKE has successfully modeled the following:
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• High Re pipe flow (Jones and Launder 1972, 1973)
• Pipe flow with Pr in the range of 0.5–2000 and Re ~ 10,000 (Jones and Launder

1972, 1973)
• High Re spinning disk under heat transfer (Re ~ 1 � 105 to 1.5 � 106) (Launder

and Sharma 1974)
• Free shear layer flow (e.g., high Re, isotropic, far away from walls) (Rodi 1993)
• Flows with nonexistent to small pressure gradients (Wilcox 2006)
• Simplified case of boundary layer flow over a flat plate (constant pressure, far

away from the wall, no adverse pressure gradient, high Re) (Hanjalic 1970)
• Channel flow for Re in the range of 6000 to 150,000 (and higher, of course,

because the SKE fares best at high Re) (Hanjalic 1970; Jones and Launder 1972,
1973; Gorgi et al. 2014)

• Plane wall and free jet (Hanjalic 1970)

However, the SKE is not suitable for:

• Adverse pressure gradients (Wilcox 1988a, 1993a, b, 2006; Fluent 2012;
Argyropoulos and Markatos 2015)

• Separated flow (Wilcox 2006; Argyropoulos and Markatos 2015)
• High curvature (Argyropoulos and Markatos 2015; Fraczek and Wroblewski

2016)
• Large rotation/swirl flows (Fluent 2012; Andersson et al. 2012; Diaz and Hinz

2015)
• Round jet (Pope 1978; Wilcox 2006; Fluent 2012)
• Shock mixing (Dong et al. 2010)
• Asymmetric diffusers (El-Behery and Hamed 2009)
• Near-wall treatment: viscous sublayer; variable-pressure boundary wall

(30 	 y+ 	 700) (Wilcox 2006, 2012)
• Fluids at supercritical pressure (He et al. 2008; Bae et al. 2017)
• Large strain rate (regions with large velocity gradients, stagnation points) (Fluent

2012; Argyropoulos and Markatos 2015)
• Laminar to turbulent transition for heated flow (Abdollahzadeh et al. 2017)
• Situations where overdamping adversely impacts parameters that rely on wall-

based quantities (e.g., wall heat transfer, wall friction) (Zhao et al. 2017)

Note that when a turbulence code under predicts νt, it said to be “overdamping,”
and this is certainly an issued associated with the SKE, which has a tendency to
overdamp near the wall (Zhao et al. 2017).

The SKE’s usage trend has seen decreased levels since the 1990s, when the k-ω
models increased in maturity (Wilcox 2006) and other methods, such as large eddy
simulation (LES) and direct numerical simulation (DNS), came into more usage.
Another reason for the SKE’s reduced usage may stem from a lackluster
performance vs. the 2006 k-ω and SST models, when undergoing simulation of
more complex turbulence systems (Menter 1992; Wilcox 1993a, b, 2006; Menter
et al. 2003). In addition, the interested reader is encouraged to review Sections 4.7
through 4.7.3 for serious concerns regarding the SKE.
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Certainly, dozens of upgrades have been proposed to improve the SKE. Notable
improvements include the realizable k-εmodel and the renormalization group-theory
(RNG) k-ε models, with many successes, albeit with a nagging continuation of
issues, all likely due to fundamental reasons that stem from the attempt to couple
small (ε) and large (k) eddy scales into a single model. Hence, many k-ε improve-
ments tend to gravitate toward functions that can blend the diametrically opposed
scale behaviors. For example, instead of letting ReT be based on a damping function
as Hanjalic, Launder, and Sharma proposed, various authors now recommend a y+

damping function and have noted better agreement with experimental data for heat
transfer experiments involving supercritical fluids (Rodi and Mansour 1993; He
et al. 2008; Bae et al. 2017).

Nevertheless, a fundamental issue for k-εmodeling remains: its association of the
large turbulent kinetic energy scales with the small dissipative scales. It is very likely
that, so long as the model relies on the two different scales (despite numerous
blending attempts), issues will continue to crop up.

More recently, attempts to modify the k-εmodel to include Taylor eddy behavior,
as Chou originally proposed decades earlier, appear to bear much promise (Bae
2016; Bae et al. 2016, 2017). For these reasons, the Myong-Kasagi model is
explored next.

4.6.3.6 Myong-Kasagi k-ε Model

The Myong-Kasagi (MK) k-ε model was developed from the SKE but with some
fundamental paradigm changes associated with the ε PDE (Myong and Kasagi 1988;
Myong et al. 1989; Myong and Kasagi 1990). The k PDE is the same, except for a
single change in the diffusive term:

σk ¼ 1:4 vs:1:0 in the SKEð Þ: ð4:75AÞ

On the other hand, the MK ε PDE has key upgrades in the production and decay
terms, as follows:
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∂xj|fflffl{zfflffl}
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∂xj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
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� Cε2f 2
ε2

k|fflfflfflffl{zfflfflfflffl}
decay

þ ∂
∂xj

νþ νt
σε

� �
∂ε
∂xj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

: ð4:75BÞ

The PDE includes the following blending function modifications:

Cε2 ¼ 1:8 MKð Þ vs: 1:92 1:0� 0:3e�Re 2
T

� �
SKEð Þ ð4:75CÞ

and
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f μ ¼ 1þ 3:45

Re 1=2
T

 !

� 1‐e�yþ=70
� �

MKð Þ vs: 0:09e� 3:4= 1þRe T=50ð Þ2½ � SKEð Þ: ð4:75DÞ

Other researchers proposed a slightly modified blending function that more
rapidly approaches the asymptotic value (Speziale et al. 1992):

f μ ¼ 1þ 3:45

Re 1=2
T

 !
tanh

yþ

70

� �
: ð4:75EÞ

The MK fμ function was derived by adding the implied Prandtl-Kolmogorov
length scale for the large and Taylor eddies,

LD ¼ Lℓ þ Lλ ¼ CD
k3=2

ε
þ C1

ffiffiffiffiffi
νk
ε

r
, ð4:75FÞ

and thereafter multiplying the lengths with a Van-Driest-like damping function. The
Taylor length was obtained using dimensional arguments, whereby

ε � νk

λ2
: ð4:75GÞ

Note that Taylor’s theoretical research indicates that C1 ¼
ffiffiffiffiffi
10

p
for isotropic

flows. The MK model includes the following new parameters:

f 1 ¼ 1:0 ð4:75HÞ

and

f 2 ¼ 1� 2
9
e Re T=6ð Þ2

h i
1� e�yþ=5
� �2

: ð4:75IÞ

The Cε1 term was modified slightly:

Cε1 ¼ 1:4 MKð Þ vs:1:44 SKEð Þ: ð4:75JÞ

Finally, the Taylor length scale is

λ � νk
ε

� �1=2

¼ C1
νk
ε

� �1=2

¼ 10
νk
ε

� �1=2

: ð4:76Þ
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Ironically, this effort returns the k-ε back to Chou’s earlier k-ω research premise,
namely, k-ε ought to include the larger Taylor eddy length, thereby incorporating the
behavior of eddies larger than Kolmogorov.

Even though it was developed in 1990, the inclusion of the Taylor eddy length
scale continues to make this k-εmodel worthy of recent investigation (Speziale et al.
1992; Bae 2016; Bae et al. 2016, 2017). Not surprisingly, modeling of the Taylor
eddies increases turbulent production near the viscous sublayer and the buffer layer
(Bae et al. 2017). Recent comparisons with experimental data show much promise
(Speziale et al. 1992; Hrenya et al. 1995; Bae 2016; Bae et al. 2016, 2017), though
there continue to be concerns due to overdamping (Zhao et al. 2017). The MK
model was found as having the best overall performance of 10 k-ε RANS models
(including SKE) during fully developed pipe flow in the range of
7000 	 Re 	 500,000, despite an ε maldistribution (Hrenya et al. 1995). The MK
velocity distribution vs. SST and Spalart-Allmaras was not as good for sCO2
modeling under heat transfer, though MK beat the two models for wall temperature
distribution vs. distance (Otero et al. 2018).

4.6.3.7 Menter 2003 SST Model

With the wide usage of the SKE and the development of the 1988 k-ω version, it was
soon evident in the late 1980s and early 1990s that each model has its pros and cons
and that these are mutually exclusive in the sense of domain applicability. At the
time, there was a need for a reliable model suitable for turbulence aeronautics flows
that was specifically able to handle flow separation involving large, adverse pressure
gradients. Menter shrewdly realized that the SKE resulted in reasonable flow
simulations at high Re and away from the wall (free stream) but had shortcomings
near the wall. On the other hand, the 1988 k-ω was very useful for low Re and near
the wall boundary layer but was more sensitive than the SKE for free stream
boundary conditions. Further, the 1988 k-ω model did not work well with
pressure-induced separation (Menter 1992, 1993; Menter et al. 2003). Thus, in a
very fortunate situation, the shortcomings of one model were already compensated
by the other and vice versa. And as an extra bonus, there would be no need for
additional damping functions near the wall.

So, Menter wondered, why not combine both models in such a way that each is
used in the region where it excels and, in between, use some sort of weighted average
or blending? Hence the 1992 shear stress transport (SST) model was born (Menter
1992, 1993, 1994). The model is also known as the SST k-ω and as Menter’s SST
model but is not to be confused with the similarly named “stress transport” models.

More specifically, each of the two RANS models is applied onto a region where it
excels over the other, as follows:

• The boundary layer is computed by the 1988 k-ω.
• SKE is used for the free stream.
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• A blending function F1 computes the asymptotic turbulent behavior between the
two distinct regions.

• The blending and stress limiter functions are based on the hyperbolic tangent
(tanh) for rapid transition.

• To further improve the model, a function was used as a stress limiter to consider
the impact of the mean strain rate on turbulent kinematic viscosity (analogous to
the 2006 k-ω stress limiter; in fact, this was the 2006 k-ω stress limiter precursor).

The model dynamics are shown conceptually in Figs. 4.3 and 4.4.
Certainly, there are various SST hybrids. The model listed here is based on

Menter’s 2003 modifications, which debuted a little over a decade after the 1992
SST model (Menter et al. 2003). The primary differences between the original 1992
Menter model and the 2003 formulation are the replacement of vorticity with S and
the replacement of 20 with 10 in the production limiter.

In the 2003 version, Menter used the following k and ω transport equations,
respectively:

∂k
∂t

þ uj
∂k
∂xj

¼ ePk � β�kωþ ∂
∂xj

νþ σkνtð Þ ∂k
∂xj

� 	
, ð4:77AÞ

where the production term is

Pk ¼ νt 2Sij � 2
3
∂uk
∂xk

δij

� �
� 2
3
kδij

� 	
∂ui
∂xj

ð4:77BÞ

with

Sij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
: ð4:77CÞ

The model is subject to a k turbulence production limiter that rightly so sup-
presses turbulence in regions where stagnated flow occurs, namely,

Fig. 4.3 Application domains for the SST model
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ePk ¼ min Pk, 10β
�kωð Þ: ð4:77DÞ

The ω PDE is as follows:

∂ω
∂t

þ uj
∂ω
∂xj

¼α
ePω

νt
� βω2 þ ∂

∂xj
νþ σωνtð Þ∂ω

∂xj

� 	
þ 2σω2 1� F1ð Þ 1

ω
∂k
∂xj

∂ω
∂xj

:

ð4:77EÞ

Note: this ω PDE version includes a correction made by NASA (NASA2 2018;
Goldberg and Batten 2015); thus, the ω production term is not

Pω ¼ αS2 incorrectð Þ ð4:77FÞ

but is instead

Pω ¼ Rij
∂ui
∂xj

correctð Þ: ð4:77F0Þ

Production in the ω transport equation is also subject to a turbulence production
limiter that suppresses turbulence in regions where stagnated flow occurs, namely,

ePω ¼ min Pω, 10β
�kωð Þ: ð4:77GÞ

The turbulent kinematic viscosity is

νt ¼ keω ð4:77HÞ

where

Fig. 4.4 Blending function application range for SST
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eω ¼ max ω,
F2S
a1

� �
: ð4:77IÞ

Therefore,

νt ¼ a1k
max a1ω,F2Sð Þ , ð4:77JÞ

whereby

S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
: ð4:77KÞ

The blending function F1 is defined as

F1 ¼ tanh min max

ffiffiffi
k

p
β�ωy

,
500ν
ωy2

� �
,
4ρσω2k
CDkωy2

� 	� �4
 !

, ð4:77LÞ

where y is the distance to the closest surface. The scalar CDkω is defined as

CDkω ¼ max 2ρσω2
1
ω

∂k
∂xj

∂ω
∂xj

, 10�10

� �
: ð4:77MÞ

The stress limiter function F2 is

F2 ¼ tanh max
2
ffiffiffi
k

p
β�ωy

,
500ν
ωy2

� �� 	2( )
: ð4:77NÞ

Finally, due to blending, the closure coefficients for the SST are computed using
the following weighted function:

ϕ ¼ ϕ1F1 þ ϕ2 1� F1ð Þ, ð4:77OÞ

where ϕ represents any of the Menter closure coefficients that have subscripts 1 and
2 (e.g., α1, α2, β1, β2, σk1, and σk2). In this context, “1” represents the 1988 k-ωmodel
and “2” represents the SKE model.

The 2003 SST model closure coefficients are as follows:

a1 ¼ 0:31, ð4:77PÞ

α1 ¼ 5
9
, ð4:77QÞ
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α2 ¼ 0:44, ð4:77RÞ
β� ¼ 0:09, ð4:77SÞ

β1 ¼ 3
40

, ð4:77TÞ

β2 ¼ 0:0828, ð4:77UÞ
σk1 ¼ 0:85, ð4:77VÞ
σk2 ¼ 1:0, ð4:77WÞ
σω ¼ 0:5, ð4:77XÞ

and

σω2 ¼ 0:856: ð4:77YÞ

Though originally conceived for turbulent aeronautics flows, the SST is com-
monly employed in many industries, with various modifications that extend the
usefulness of the model, including rough surfaces (Hellsten and Laine 1997; Knopp
et al. 2009), rotation (Hellsten 1997), and a version with no wall dependence
(Goldberg and Batten 2015).

The 2003 SST model is ideal for:

• Adverse pressure gradients
• Separated flows
• Turbulent heat transfer
• Mixed low and high Re problems
• Of course, aerospace applications

Moving forward, past the 1992 and 2003 models, it is noted the 2006 k-ω model
does not have the free stream boundary condition sensitivity of its 1988 predecessor,
which was a key reason, if not the major reason, as to why the SST was developed.
Thus, to be blunt, had the 2006 k-ω been developed two decades earlier, the need for
the SST’s blending of the SKE and the 1988 k-ω would not have existed. Never-
theless, the turbulence community is fortunate to have both the 2003 SST and the
2006 k-ω models. To say the least, both models are very good, all-around models
suitable for both near-wall and free stream turbulence.

But, if a choice exists, the 2006 k-ω is recommended over the 2003 k-ω SST
model, especially regarding higher Ma flows (supersonic through hypersonic flows)
(Wilcox 2006). An exception to this recommendation is that the 1992 SST (which is
very similar to the 2003 SST), generally outperforms the 2006 k-ω in the transonic
regime (Wilcox 2006); as noted by Wilcox, the SST was fine-tuned for transonic
Ma. Furthermore, the SST relies on the k-ε, which has two transport variables that
are not exactly self-consistent in terms of their length scales (refer to Sections 4.7
through 4.7.3). Finally, there is the issue of the much higher number of closure
formulations and constants used in the SST vs. the 2006 k-ω.
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Note that the improvements in the 2006 k-ω model are attributable to the cross-
diffusion term and the incorporation of blending. In this sense, the 2006 k-ω is very
much SST-like. As will be shown in Sect. 4.8, the 2006 k-ω and the 2003 Menter
SST are uncannily similar, after all!

Example 4.1 Consider a rectangular duct with H¼ 0.005 m,W¼ 0.025 m, average
water velocity ¼ 0.247 m/s, and Re ¼ 11,000. It is desired to use various RANS
models, so k, ε, ω, and νt must be pre-calculated for usage as input values. Apply the
LIKE algorithm to estimate the values of the four variables.

Solution

Dh ¼ 4FA
WP

¼ 4HW
2H þ 2W

¼ 2HW
H þW

¼ 2 � 0:005 � 0:025
0:005þ 0:025

¼ 0:00833 m

ℓ ¼ 0:07Dh ¼ 0:07 � 0:00833 ¼ 0:000583 m

I ¼ 0:16Re �1=8
h ¼ 0:16 11, 000ð Þ�1=8 ¼ 0:05

Now it is straightforward to calculate the input values:

k ¼ 3
2

uIð Þ2 ¼ 3
2

0:247 � 0:05ð Þ2 ¼ 2:29� 10�4 m2=s2

Recall Cμ ¼ 0.09. Therefore,

ε ¼ Cμ
k3=2

ℓ
¼ 0:09

2:29� 10�4
� �3=2

0:000583
¼ 5:35� 10�4 m2=s3

ω ¼ k1=2

ℓ
¼ 2:29� 10�4
� �1=2

0:000583
¼ 26:0 1=s

νt � μt
ρ
¼ Cμk

2

ε
Prandtl‐Kolmogorovð Þ ¼ 0:09 2:29� 10�4

� �2
5:35� 10�4

¼ 8:82� 10�6 m2=s:

As a “sanity check,”

ν � μ
ρ
¼ 2:32x10�4

942
¼ 2:46� 10�7 m2=s,

while

νt
ν
¼ 8:82� 10�6

2:46� 10�7 ¼ 35:9:
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Example 4.2 Find σk for the SST model.

Solution
ϕ1 ¼ σk1 ¼ 0:85

ϕ2 ¼ σk2 ¼ 1:0

From ϕ ¼ ϕ1F1 + ϕ2(1 � F1),

σk ¼ σk1F1 þ σk2 1� F1ð Þ ¼ 0:85F1 þ 1:0 1� F1ð Þ ¼ 1:0� 0:15F1

If F1 ¼ 1 ) σk ¼ 0.85 (SKE).
If F1 ¼ 0 ) σk ¼ 1.0 (1988 k‐ω).

4.7 Avoid the SKE Model?

That some researchers have noted the superiority of k-ω models over k-ε is not new
(Wilcox 2006; Fluent 2012). A quote from the Fluent code developers points out that
k-ω models have (Fluent 2012) “much better performance than k-ε models for
boundary layer flows. For separation, transition, low Re effects, and impingement,
k-ω models are more accurate than k-ε models.”

As a pragmatic matter, the choice of turbulence model is oftentimes analogous to
the choice of political party or religion. The author recognizes the psychological
human factor associated with turbulence model selection and respects the user’s
desire to make choices based on numerous factors and circumstances.

However, as engineers, physicists, mathematicians, and technology enthusiasts, it
is always important to reflect why any given transport variable is selected in
turbulence models, such as k, ℓ, ω, ε, etc. Why should there be any “sacred cow”
variables or combinations thereof? Throughout turbulence history, the easiest and
most defensible choice is k for isotropic flows because it quantifies the eddy
turbulent energy, so its square root provides a great metric for the fluctuating
velocity. However, the choice for the second transport variable is neither as straight-
forward nor as easy to justify.

As noted in Sect. 4.6.3.5, the SKE has performed very well for certain flows but
has had spectacular failures in others, especially for the more complex flows. At this
point, three fundamental reasons for avoiding the usage of the SKE are elaborated in
the sections that follow.

4.7.1 Inconsistent SKE Transport and Eddy Scales

To proceed, note that the total kinetic energy is held by the sum of all the eddies
within the turbulent flow, which forms a continuous length spectrum for the integral,
Taylor, and Kolmogorov eddies:
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ktot ¼
Xn
~i¼1

kℓ,~i þ
Xm
~j¼1

kλ,~j þ
Xo
~k¼1

kη,~k: ð4:78Þ

The Loitsianskii eddies (Hinze 1987) could be included as a separate class in the
turbulent kinetic energy tally but are instead lumped as part of the large eddy group.
Recall that the vast majority of the turbulent kinetic energy is held by the integral
eddies, which is about 80%. The Taylor eddies take the larger fraction of the
remaining turbulent kinetic energy, with the Kolmogorov eddies having a progres-
sively smaller fraction, as shown by the curve in Fig. 3.1 of Chap. 3. Therefore, as a
group ensemble,

kℓ  kλ  kη: ð4:79Þ

Thus, k is most certainly a function of an eddy characteristic length, with that
length being essentially a function of ℓ, with practically nothing having to do with η.
It is therefore safe to express this mathematically and more succinctly as

k ¼ k ℓ, λð Þ ð4:80Þ

and, conversely,

k 6¼ k ηð Þ: ð4:81Þ

So, attempting to hone in on a crucial point, but at the risk of being redundant,
note that the transport variable k is based on the larger eddy scales, and not on the
smaller scales. And of course, this makes physical sense; the larger eddies have the
highest velocities and hence the highest kinetic energy.

On the opposite extreme of the highly energetic eddies is decay, whereby eddies
are so small that they dissipate completely out of existence. This is where the eddy
approach the tiny Kolmogorov scale, thereby surrendering their meager energy back
to the main flow as the viscous force dampens them back to laminarity. As noted in
Chap. 2, it is this dissipation ε (the change of turbulent kinetic energy per unit time)
that defines the decay of the small scales:

ε � ν
∂u0i
∂xl

∂u0i
∂xl

¼ �∂k
∂t

: ð4:82Þ

Recall that Kolmogorov’s definition for the smallest eddies (Sect. 3.3) shows that
eddy size is purely a function of ν and ε:

η ¼ ν3

ε

� �1=4

: ð4:83Þ

Stated differently, Kolmogorov’s formulation indicates that
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ε ¼ ε η, νð Þ, ð4:84Þ

thereby confirming that dissipation is purely a function of the smallest eddy scales
and the kinematic viscosity.

Thus, it is clear that for SKE, k is based on ℓ, while ε is based on η, and failure to
use consistent length scales will result in flawed turbulence models. In particular, the
two transported SKE variables for the k-ε turbulence model are k, which applies
strictly to the larger eddies, and ε, which applies to the smallest eddies. That is, eddy
dissipation occurs at the smallest scales, as the flow approaches more isotropic
conditions. Thus, dissipation usually occurs under conditions such as high Re, in
free shear flows, the core, and away from the wall (Sondak 1992). By contrast, larger
eddies tend to form in the buffer layer because of its large stresses and large velocity
gradients (despite the lower Re in that region). How, then, can turbulence be
calculated consistently when one transport variable calculates the effect of the
larger eddies, while being mathematically coupled onto a transport variable that
calculates the impact of the small eddies?Not only are the dominant regions distinct,
where the larger and the smallest eddies reside, but their timescales are significantly
different as well, with tℓ  tη.

Finally, though Lε was defined as a “dissipation length scale” for the ε PDE,
Hanjalic recognized that the following three scales are different: ℓ (integral length,
i.e., Hanjalic’s "L"), Chou’s λ, and Lε (i.e., Hanjalic’s Kolmogorov eddies). Indeed,
Hanjalic asserted that (Hanjalic 1970) “Although these scales are not the same in
general, it is reasonable to expect them to vary in a similar fashion. Thus, considering
the degree of approximation implied by the method so far, it may be assumed that
L � Lε. It remains to specify a unique length scale which will represent both L and
Lε.”

Thus, the development of the ε PDE assumes that L � Lε, which means that a
single length is supposed to “represent” the larger energy bearing eddies and the
smaller dissipative eddies. This implies that the larger eddies � smallest eddies, i.e.,
ℓ � η; but in the real world, ℓ  η.

4.7.2 Inconsistent SKE Closure

Consider the SKE formulation for calculating the turbulent kinematic viscosity, νt.
Based on dimensional arguments, Taylor postulated in 1935 that

ε ¼ C
k3=2

ℓ
: ð4:85AÞ

Based on experimental data, Wilcox recommends that C ¼ Cμ (Wilcox 2006):

180 4 RANS Turbulence Modeling



ε ¼ Cμ
k3=2

ℓ
: ð4:85BÞ

Solving for ℓ yields the integral eddy length scale in question:

ℓ ¼ Cμ
k3=2

ε
: ð4:85CÞ

To compute νt based on two-equation models, two variables are sought such that

νt ¼ νt k, xð Þ, ð4:86AÞ

where k and x are the desired transport variables. For the SKE, x ¼ ℓ, so using
dimensional arguments,

νt ¼ k1=2ℓ: ð4:86BÞ

Substituting Taylor’s ℓ relationship (Eq. 4.85C) into the above expression yields

νt ¼ k1=2ℓ ¼ k1=2 Cμ
k3=2

ε

� �
¼ Cμ

k2

ε
, ð4:86CÞ

which is the well-known Prandtl-Kolmogorov relationship. Therefore, the SKE νt is
a function not only of k but also of ε. That is, ε is based on a relationship involving
the larger eddies ℓ via ε ¼ Cμ

k3=2

ℓ , and thus,

νt ¼ νt k, εð Þ ¼ νt k, ℓð Þ ¼ Cμ
k2

ε
¼ k1=2ℓ: ð4:86DÞ

By contrast, the 2006 k-ω does not require an eddy length scale:

νt ¼ νt k, eωð Þ ¼ keω , ð4:86EÞ

where

eω ¼ max ω,Clim

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij
β�

r� �
: ð4:86FÞ

In any case, the SKE relies on the larger energetic eddy scale ℓ to calculate the
impact of the smaller dissipating eddies to achieve closure via νt, which puts the
SKE in a rather tenuous situation, to say the least! For this reason, the SKE
(as expressed in Launder and Sharma’s classic 1974 paper) uses a modified
Prandtl-Kolmogorov relationship for closure (Launder and Sharma 1974). This is
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an attempt to skew the impact of the larger eddies with a damping function that
decreases in magnitude as ReT decreases. In particular, the SKE Prandtl-
Kolmogorov relationship is based on a function for ReT (i.e.,

Cμ � 0:09e� 3:4= 1þReT=50ð Þ2½ �), which in turn is based on the larger eddies, with the
explicit goal of dampening turbulence in regions near the wall, and thereby attempts
to reflect the behavior of the smallest eddies. This Prandtl-Kolmogorov relationship
issue has been noted previously, where it was reaffirmed that the relationship
(Myong and Kasagi 1990) “. . .is approximately valid only at high turbulent Reyn-
olds number flows remote from the wall.”

The turbulent Reynolds number as used by the SKE is as follows (Jones and
Launder 1972, 1973; Launder and Sharma 1974):

Re T � ρk2

με

� �
Jones�Launder

¼
k3=2

ε

� �
k1=2
� �

ρ

μ
¼ ℓSKEð Þ uSKEð Þρ

μ
: ð4:87Þ

Therefore, the implied SKE ReT-based definition for the large eddy length is

ℓSKE ¼ k3=2

ε
: ð4:88AÞ

Note that the SKE uses the Prandtl-Kolmogorov relationship for closure, such
that

νt ¼ k1=2ℓ ¼ Cμ
k2

ε
, ð4:89AÞ

which implies that

ℓPrandtl‐Kolmogorov ¼ Cμ
k3=2

ε
: ð4:88BÞ

A comparison between Eqs. 4.88A and 4.88B shows that the large-scale length is
inconsistent by a factor of Cμ. Furthermore, this inconsistency is reflected in the two
damping SKE functions fμ and C2, because both use ReT.

Note that Launder and Sharma use the following expression:

Cμ,SKE ¼ Cμf μ ¼ 0:09 e� 3:4= 1þRe T=50ð Þ2½ �n o
: ð4:90Þ

Because the Prandtl-Kolmogorov relationship is based on the larger eddies, the
SKE modifies the relationship in the following manner:
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νt,SKE ¼ Cμ,SKE
k2

ε
¼ 0:09e� 3:4= 1þRe T=50ð Þ2½ �n o k2

ε
: ð4:89BÞ

To show its impact, the Cμ function is plotted in Fig. 4.5, where it is noted that Cμ

remains constant at 0.09 for ReT > 1200 (this refers to the turbulent Reynolds
number, not the hydraulic Reynolds number). As ReT approaches 0, Cμ approaches
0.003, or 3.3% of the peak value, and hence the large degree of overdamping near the
wall (Zhao et al. 2017). Of course, the direct consequence of a smaller Cμ is that νt,
SKE will be much smaller near the wall (which is generally good, but not so if the
damping is excessive, as the SKE is notoriously known to do near the wall—recall
that the smaller νt is, the lower the degree of turbulence in the local region; see
Example 4.1 under “A note about turbulent viscosity vs. kinematic viscosity”).
Furthermore, the relationship is based on ReT, but not on y+. In particular, what
happens in a situation where ReT < 1200 (but is turbulent), in the region where
7 	 y+ 	 30? Then, Cμ ! 0.003 in the very region where turbulence is supposed to
be the highest! And therefore, νt will be very small in such region per Eq. 4.89B.

The same issue applies to C2 ¼ Cε2 ¼ 1:92 1:0� 0:3e�Re 2
T

� �
, though at a

grander scale. The C2 coefficient applies to the ε PDE term that represents the
“destruction” rate for dissipation associated with eddy velocity fluctuation gradients
and velocity fluctuation diffusion. The coefficient function is shown in Fig. 4.6. Note
that the peak value is 1.92 for ReT > 2.5 and rapidly decays to a minimum of 1.34 as
ReT approaches 0. Thus, its damping effect only occurs at very small ReT,
irrespective of the y+ magnitude! That is, the damping function regime can apply
to regions that may have significant turbulent eddy motion. Because part of the
function domain can be outside of the viscous sublayer, its attempt to dampen eddies
will adversely impact the velocity field. By the same token, to foment eddy behavior

Fig. 4.5 Cμ as a function of ReT
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in regions that have no eddies will also generate issues. Not surprisingly, recent
comparisons with data attribute overdamping of turbulence near the wall, thereby
generating “unrealistic results” both in velocity distribution and heat transfer (Zhao
et al. 2017).

Example 4.3 Consider internal flow in a pipe with D ¼ 0.0254 m, wall rough-
ness ¼ 2 � 10�7 m, and u ¼ 12.5 m/s. The fluid, water in this case, is at 500 K and
7.5 � 106 Pa. Will using the SKE turbulence model result in simulation issues?

Solution For this situation, ρ ¼ 835.8 kg/m3 and μ ¼ 1.19 � 10�4 Pa-s. From the
LIKE algorithm, Re ¼ 2.23 � 106, so the flow is highly turbulent and rather
isotropic, which is where SKE should perform its best. For this case, the Kolmogo-
rov and Taylor eddies are easily obtained from the LIKE algorithm as η¼ 5.53� 10�6

m and λ ¼ 2.67 � 10�4 m, respectively, while the viscous sublayer thickness is
δ(y+ ¼ 7) ¼ 2.24 � 10�6 m and δ(y+ ¼ 1) ¼ 3.20 � 10�7 m. The LIKE algorithm
also calculates ε at 3.10 m2/s3 and k at 0.155 m2/s2, so the SKE ReT is easily
calculated as

Re T ,SKE ¼ ρk2

με
¼ 835:8 � 0:155ð Þ2

1:19x10�4 � 3:10 ¼ 54, 432:

From Figs. 4.5 and 4.6, it is clear that C2 ¼ Cε2 and Cμ are not damped because
ReT, SKE is too large; this comes as no surprise, as the SKE was built for high Re.
However, the viscous sublayer is 2.5 and 118 times smaller than the Kolmogorov
and Taylor eddies, respectively. Safely assuming that there are no Kolmogorov
eddies within the viscous sublayer (refer to Sect. 3.7), then the first layer of
Kolmogorov eddies would be at a distance yη ¼ viscous sublayer thickness + Kol-
mogorov eddy length ¼ δ(y+ ¼ 7) + η ¼ 2.24 � 10�6 m + 5.53 � 10�6

m ¼ 7.77 � 10�6 m. That is, this simplified analysis assumes that the viscous
sublayer thickness and the typical Kolmogorov eddy length are added. This implies a
dimensionless distance yη/[δ(y

+ ¼ 1)] ¼ (7.77 � 10�6 m)/(3.20 � 10�7 m) ¼ 24 for
the first layer of Kolmogorov eddies. By the same token, the first layer of Taylor
eddies would be at a distance yλ ¼ δ(y+ ¼ 7) + λ ¼ 2.24 � 10�6 m +

Fig. 4.6 C2 ¼ Cε2 vs. ReT
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2.67 � 10�4 m ¼ 2.69 � 10�4 m. This implies a dimensionless distance yλ/
[δ(y+ ¼ 1)] ¼ (2.69 � 10�4 m)/(3.20 � 10�7 m) ¼ 831 for the first layer of Taylor
eddies. As a check, note that at y ¼ D/2, y+ ¼ 39,666 (u� ¼ 0.45 m/s from the LIKE
algorithm). This further demonstrates that the damping functions are well outside of
the region where eddies would first be expected near the wall—a grievous discon-
nect to say the least. In other words, the damping effect of both C2 ¼ C2(ReT) and
Cμ ¼ Cμ(ReT) is nullified because ReT is out of their applicability range. This is
shown conceptually in Fig. 4.7, which compares the relative location (y and y+) and
size of the viscous sublayer vs. the Kolmogorov and Taylor eddies; note that the
ordinate axis is based on the log of length, because of the large number of decades
typically involved in turbulence.

Example 4.4 Consider Example 4.3, but modify u such that Reh ¼ 3000 (the
hydraulic Reynolds number). Will there be any issues if the SKE is used?

Solution Backtracking u from Re, u ¼ 0.0168 m/s. From the LIKE algorithm,

u� ¼ 1.24 � 10�3 m/s,
y at y+ ¼ 1 ¼ 1.15 � 10�4 m,
y at y+ ¼ 7 ¼ 8.02 � 10�4 m,
η ¼ 4.23 � 10�4 m,
λ ¼ 4.82 � 10�3 m,
k ¼ 1.47 � 10�6 m2/s2, and
ε ¼ 9.04 � 10�8 m2/s3.

Fig. 4.7 Relative size of the viscous sublayer vs. the Kolmogorov, Taylor, and integral eddies
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Calculation of the turbulence Reynolds number shows

Re T,SKE ¼ ρk2

με
¼ 835:8 � 1:47� 10�6

� �2
1:19� 10�4 � 9:04� 10�8 ¼ 168,

which now has a significantly lower turbulence Reynolds number compared with the
previous example. The SKE net damping behavior can be estimated from Fig. 4.5 or
using

Cμ,SKE ¼ 0:09 e� 3:4= 1þRe T=50ð Þ2½ �n o
¼ 0:09 e� 3:4= 1þ168=50ð Þ2½ �n o

¼ 0:075:

Hence, the damping factor does little to reduce Cμ, SKE, despite the flow occurring
at a low Re! Furthermore, from Fig. 4.6, it is clear that C2 ¼ Cε2 does not come into
play because ReT, SKE is still too large despite Reh being marginally turbulent. This
certainly comes as an unpleasant surprise!

Example 4.5 Consider Example 4.3, with all parameters being the same, except that
the velocity is unknown. Find u such that ReT,SKE ¼ 2.2 (recall that C2 ¼ Cε2 is
damped if ReT,SKE < 2.2). What is the maximum y distance where C2 ¼ Cε2 no
longer provides damping?

Solution This problem can be solved in various ways. A not-so-elegant manner is
to take the LIKE algorithm and supply it an estimated value for u, which is then used
to output k and ε so that ReT, SKE can be evaluated, and the iteration proceeds until
ReT, SKE ¼ 2.2. Another approach is to find the number of n unknowns and seek the
relevant n independent equations; this more elegant approach is left as an exercise in
Sect. 4.9 (Problem 4.11). In any case, following the iterative method, it is found that
u¼ 0.0012 m/s when ReT, SKE¼ 2.2. This shockingly low value ought not to come as
a surprise, as ReT,SKE ¼ 2.2 translates onto a very, very small hydraulic Re, Reh. In
fact, Reh ¼ 21.4, which is actually very much in the laminar regime for a pipe!
Again, because Re is so low, u� is a paltry 1.91x10�5 m/s. But, of course, u� is
actually 0, as this flow is laminar (this is a pipe flow with Reh � 2200). Said
differently, it was not until the flow was laminar that the SKE damping function
finally started “working”!

But, for the sake of running this problem to its logical end, to consider the
implications of this “turbulent” laminar SKE application, the analysis will proceed.
Thus, if the viscous sublayer extends to y+ ¼ 7, then y is calculated as

y ¼ yþν
u�

¼
7 � 1:19�10�4Pa�s

835:8 kg=m3

� �
1:91� 10�5m=s

¼ 0:052 m:

That the pipe has D ¼ 0.0254 m indicates that the entire pipe flow domain is
impacted, and not for the better. In brief, it is ironic that the SKE’s C2¼ Cε2 damping

186 4 RANS Turbulence Modeling



function should become active only if the pipe flow were laminar; that is not a
desirable turbulence model feature!

4.7.3 “Ironic” SKE Behavior Near the Wall

As pointed out by Wilcox (2006), it is indeed “ironic” that the SKE does not perform
well near walls. The irony stems from the notion that the SKE calculates ε, which is
associated with the decay of the small eddies. And yet, slightly away from the
viscous sublayer, say y+ < 10, it would be reasonable to expect that the SKE should
perform its best in this region because this is exactly where larger eddies do not exist
(refer to Fig. 3.10 in Chap. 3 or Fig. 4.7). Therefore, based on the decay of the
smallest eddies, should not the SKE perform its calculational best for y+ < 10? Quite
the contrary, it is well-known that the SKE actually requires a wall function to
improve its calculational behavior near walls.

Again, regarding the notion that the SKE has issues near the wall, consider
experimental data for damping and production; in particular, the viscous sublayer
decreases as Re increases, and the same trend applies for the region associated with
y+ < 10. Thus, as Re increases, the near-wall region decreases, so theoretically, the
SKE should perform better and better near the wall. And yet, this region is exactly
where poor SKE behavior is consistently found in the literature (Myong and Kasagi
1990; Speziale et al. 1992; Wilcox 2006; Bae 2016; Bae et al. 2016, 2017).

Finally, it is well-known that the SKE’s 1974 damping function, fμ, approaches a

near-zero value (0.033); that is, e� 3:4= 1þ0=50ð Þ2½ � ¼ 0:033
n o

as y+ approaches

0, which rapidly decreases k and ε near the wall (Myong and Kasagi 1990; Wilcox
2006). A more consistent formulation would be (Myong and Kasagi 1990)

f μ ! 1
y

as yþ ! 0: ð4:91Þ

The Myong-Kasagi model enables fμ to increase near the wall, which is consistent
with experimental data. Other researchers derive fμ such that νt behaves as y

4 near the
wall, with y being the distance normal to the wall (Lam and Bremhorst 1981). Others
have employed similar near-wall functions with reasonable success (Shih and Hsu
1992). By contrast, the SKE tends to under predict k and ε for y+ < 10 to 15 (Bernard
1986; Myong and Kasagi 1990). Curiously, the SKE over predicts νt by >50% near
the pipe centerline at high Re (Myong and Kasagi 1990), despite this being the
region where the flow tends to be more isotropic—the SKE’s ideal domain. Again,
this is another unexpected SKE behavior.

To reduce wall inconsistencies, the k PDE can be used to derive a boundary
condition by considering the following at the wall: steady state, no convection, no
production, and no turbulent viscous dissipation, respectively,

4.7 Avoid the SKE Model? 187



∂k
∂t

���� þ uj
∂k
∂xj

¼ Rij
∂ui
∂xj

� εþ ∂
∂xj

νþ νt
σk

����� �
∂k
∂xj

� 	
, ð4:92AÞ

where xj ¼ y (distance from the wall).
The PDE simplifies into the following second-order derivative boundary condi-

tion (Speziale et al. 1992; Grunloh 2016):

ν
∂2k
∂y2

¼ ε: ð4:92BÞ

Unfortunately, the boundary condition introduces numerical stiffness. Ways to
reduce the stiffness have been proposed but are generally not satisfactory (Speziale
et al. 1992).

4.8 The 2003 SST Compared with the 2006 k-ω

The 2003 SST is produced by blending the SKE and 1988 k-ω models. In 2006,
David Wilcox developed what would be his final k-ω model (unfortunately, he died
on February 24, 2016; he truly led “An Improbable Life” (Wilcox 2007a, b)). In any
case, much to Wilcox’s delight, his 2006 model overcame the key weak points of his
1988 model. Had his 2006 model been developed in 1988, the motivating drive for
the 2003 SST would not have existed. Nevertheless, a term-by-term comparison of
the 2003 SST and 2006 k-ω models shows that both are much more similar than
would be expected, as will be shown next.

First, compare the k PDE for both models. Beginning with the 2003 Menter SST,

∂k
∂t

þ uj
∂k
∂xj

¼ ePk � β�kωþ ∂
∂xj

νþ σkνtð Þ ∂k
∂xj

� 	
, ð4:93AÞ

where

Pk ¼ Rij
∂ui
∂xj

, ð4:93BÞ

and the turbulence kinetic energy production limiter is

ePk ¼ min Pk, 10β
�kωð Þ: ð4:93CÞ

Now compare the above with the 2006 k-ω:
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∂k
∂t

þ uj
∂k
∂xj

¼ Rij
∂ui
∂xj

� β�kωþ ∂
∂xj

νþ σ�νtð Þ ∂k
∂xj

� 	
: ð4:94Þ

The two k PDEs are fairly identical, with a couple of differences:

1. The k production terms are nearly the same, except that the 2003 SST uses a
production limiter, whereas the 2006 k-ω does not.

2. The multiplier for the SST is 0.85 	 σk 	 1.0, while the k-ω is fixed at σ� ¼ 3/5.
This indicates that the SST model has a higher degree of turbulent diffusion.

Next, the ω PDEs are compared. Starting again with the 2003 Menter SST,

∂ω
∂t

þ uj
∂ω
∂xj

¼α
ePω

νt
� βω2 þ ∂

∂xj
νþ σωνtð Þ∂ω

∂xj

� 	
þ2σω2 1� F1ð Þ 1

ω
∂k
∂xj

∂ω
∂xj

ð4:95AÞ

where

α
ePω

νt
¼ α

νt
Rij

∂ui
∂xj

¼ α
ω
k
Rij

∂ui
∂xj

ð4:95BÞ

and the turbulence frequency production limiter is

ePω ¼ min Pω, 10β
�kωð Þ: ð4:95CÞ

Now compare the above formulation with the 2006 k-ω:

∂ω
∂t

þ uj
∂ω
∂xj

¼ α
ω
k
Rij

∂ui
∂xj

� βω2 þ ∂
∂xj

νþ σ
k
ω

� �
∂ω
∂xj

� 	
þ σd

ω
∂k
∂xj

∂ω
∂xj

: ð4:96Þ

Again, the similarities are striking, though there are two major differences:

1. The ω production terms are nearly the same, except that the 2003 SST uses a
production limiter, whereas the 2006 k-ω does not. In addition, the SST α ranges
from 0.44 to 5/9, whereas the k-ω has a fixed α at 13/25. Despite this, the α values
for both models are within 15% or less, and depending on the value for F1, the α
magnitudes can be identical.

2. The SST uses a blending function in the cross-diffusion term that makes
2σω2(1 � F1) range from 0 to 1.71 vs. the k-ω constant value of σd ¼ 0.0 near
the wall and σd ¼ 1/8 for free shear flow. So, except for large F1 in the boundary
layer, the SST employs much more cross-diffusion away from the surface. This is
perhaps one of the biggest differences, albeit that both models have essentially the
same cross-diffusion derivatives and are multiplied by 1/ω.
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Note that the SST uses σω in the viscous term, while the k-ω uses σ. Nevertheless,
σω ¼ σ, so the terms are equal.

Next, it is noted that both models use stress limiters for ω. For the 2003 SST,

eω ¼ max ω,
F2S
a1

� �
¼ max ω,

F2
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
a1

 !
ð4:97Þ

with

νt ¼ keω ¼ k

max ω,
F2

ffiffiffiffiffiffiffiffiffi
2SijSij

p
a1

� � : ð4:98Þ

It is noteworthy that the 2006 k-ω uses the following similar formulation:

eω ¼ max ω,Clim

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij
β�

r� �
ð4:99Þ

with

νt ¼ keω ¼ k

max ω,Clim

ffiffiffiffiffiffiffiffiffi
2SijSij
β�

q� � : ð4:100Þ

Note that the stress limiters for the SST and k-ω, respectively, are nearly identical:

1
a1

¼ 3:23 ð4:101Þ

and

Clim

ffiffiffiffiffi
1
β�

r
¼ 7

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9=100ð Þ
r

¼ 2:92: ð4:102Þ

Finally, the 2006 k-ω uses the fb blending function to distinguish between free
shear and near-wall flows, while the 2003 SST uses the F1 “inter-model” blending
function to calculate the free shear and near-wall flows (refer to Fig. 4.4). And as
alluded earlier, the 2003 SST uses the Pk and Pω production stress limiters, while the
2006 k-ω does not. All said, the 2003 SST and 2006 k-ω are much more alike than
different, with most terms being the same, a few having slightly different coeffi-
cients, while a couple of terms are clearly different. Therefore, not surprisingly, a
review of the literature shows that both models tend to generate similar results
(Wilcox 2006; Fraczek and Wroblewski 2016). For example, researchers computing
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drag coefficients in labyrinth seals noted that the results for “the SST and k-omega
turbulence model are almost the same” (Fraczek and Wroblewski 2016).

Finally, Wilcox noted that the 2006 k-ω “predicts reasonably close” when
compared with experimental data and 1992 SST simulations for incompressible,
transonic, supersonic, and hypersonic flows. To investigate this further, he increased
Clim to 1.0, so that Clim

ffiffiffiffiffiffiffiffiffiffi
1=β�

p ¼ 3:33 (which is much closer to the SST value of
1/a1 ¼ 3.23). This change increased the k-ω model’s agreement with experimental
data in the transonic range but at a penalty for reduced accuracy in sonic and
hypersonic flows. Wilcox therefore recommends his original value for Clim ¼ 7/
8 (Wilcox 2006). Thus, the 1992 SST (which is very similar to the 2003 SST) can
outperform the 2006 k-ω in the transonic regime (Wilcox 2006), though it appears
that the SST coefficients were fine-tuned for this particular regime.

4.9 Problems

4.1 Figure 4.6 indicates that C2 remains fixed for ReT > 2.2. Assume a cylindrical
pipe with D ¼ 0.25 m and ν ¼ 4.5 � 10�6 m2/s. What is the equivalent Reh?
Discuss and justify the assumptions if simulations are of interest in the regime
for ReT > 2.2. (Hint: use the LIKE algorithm equations to estimate the missing
quantities.)

4.2 Review (Menter 1992) and derive the 1992 SST model by combining the SKE
and the 1988 k-ω models.

4.3 Show that ReT ¼ ρk2/με (which is used in the SKE) is not consistent with the
implied eddy length ℓ derived from the Prandtl-Kolmogorov relationship,

νt ¼ Cμ
k2

ε . (Hint: recall that the Prandtl-Kolmogorov relationship is
νt ¼ ucharxchar ¼ k1/2ℓ, whereby it is shown that ℓ is a function of ε. Use that
ℓ relationship to derive ReT¼ xcharucharρ/μ and compare with the SKE version.)

4.4 Transform the SKE model into an analogous formulation for the 1988 k-ω
model by using a relationship that associates ε with ω (e.g., ε ¼ Cμωk), where
Cμ ¼ β�.

4.5 Take the 2003 SST and modify its coefficients to be equivalent to the 2006 k-ω

model. For example, let 1=a1 ¼ Clim

ffiffiffiffiffiffiffiffiffiffi
1=β�

p ¼ 3:33 and so forth. Use the
newly derived model to simulate a system that consists of a smooth flat plate
under isothermal boundary layer flow, is 0.1 m long and 0.05 m wide, and has
air at 300 K and 1 atmosphere (ν¼ 1.58� 10�5 m2/s andUs¼ 347.3 m/s). The
air flows from left to right along the 0.1 m plate at a constant velocityU1 based
on a specified Ma. Conduct simulations with the revised SST model, and
compare the results vs. the 2006 k-ω simulation using the same geometry,
mesh, and initial and boundary conditions. How do the velocity solutions
compare for Ma ¼ 0.25, 0.5, 1.0, 5.0, and 10? Is the flow always turbulent?

4.6 Repeat Exercise 4.5, except that now the 2006 k-ω model is modified so that it

more closely approaches the 2003 SST. For example, let Clim

ffiffiffiffiffiffiffiffiffiffi
1=β�

p ¼
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1=a1 ¼ 2:92 and so forth. How do the velocity solutions compare for
Ma ¼ 0.25, 0.5, 1.0, 5.0, and 10? Is the flow always turbulent?

4.7 Build a two-equation turbulence model by choosing k and a (the eddy accel-
eration). Apply dimensional arguments to develop the transport PDEs (e.g., the
Buckingham Pi theorem or similar arguments). What is the relevant expression
for νt?

4.8 What is the thickness of the viscous sublayer at the point where Cμ in the SKE
drops precipitously at ReT < 1200? What is the size of the integral, Taylor, and
Kolmogorov eddies at that point? Are there any potential issues?

4.9 What is the thickness of the viscous sublayer when C2 in the SKE drops
precipitously at ReT < 2.5? What is the size of the integral, Taylor, and
Kolmogorov eddies? Are there any potential issues?

4.10 Consider the MK k-εmodel, where its authors added the Taylor length onto the
integral length, ℓ. Starting with their length expression, derive a new MK
formulation if the Kolmogorov length scale is added as well.

4.11 Consider Example 4.5. Find an analytical expression for the distance y from the
wall such that the SKE C2 ¼ Cε2 is no longer dampening. This point can be
assumed as ReT,SKE ¼ 2.2. Hint: the equations for y+ and ReT,SKE will be
needed, and some of the unknowns include k, ε, u�, ℓ, and IT.

4.12 Consider a cylindrical pipe. Convert ReT onto the hydraulic Reynolds number,
Reh.

4.13 Would it be appropriate to replace ν with νt in order to define a new turbulence
Re as ReT ¼ kℓ/νt? Why or why not?
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Chapter 5
LES and DNS Turbulence Modeling

Given the erratic track record of most turbulence models, new
ideas are always welcome.

— David Wilcox 2006

Abstract This chapter is divided into two parts, LES and DNS. In the first part, the
LES turbulence model is derived from first principles, and its terms are described in
detail. The usage of LES filters is described, along with various recommendations.
The LIKE algorithm is applied to show how to model large eddies properly by
applying the appropriate node-to-node computational distances. LES-specific
boundary and initial conditions are described, and dozens of practical recommenda-
tions are provided. In the second part, analogous discussions and recommendations
for DNS are included as well.

5.1 LES Modeling (and Comparison with RANS and DNS)

The larger the eddy, the higher its nonisotropic nature and the more complex its
behavior. The larger eddies obtain their kinetic energy from the bulk fluid energy,
contain most of the turbulent kinetic energy (~80%), transfer kinetic energy to the
smaller eddies by stretching and breaking them up (“cascading”), and are responsi-
ble for the majority of the diffusive processes involving mass, momentum, and
energy. For these reasons, the simulation of large eddies is highly desirable. On
the other hand, the smaller eddies take the kinetic energy from the larger eddies and
transfer their energy back to the fluid through viscous shear. For high Re, the small-
scale turbulent eddies are statistically isotropic. Therefore, they are “more universal”
and more independent of the boundary conditions and the mean flow velocity than
the larger eddies. Thus, simulation of the smaller eddies is also desirable.

So, why not simulate (resolve) the larger eddies and approximate (model) the
behavior of the smaller eddies? Based on this premise, large eddy simulation (LES)
models have been developed for several decades to capture these important eddy
features (Smagorinsky 1963; Leonard 1974; Germano et al. 1991; Kim and Menon
1995; Nicoud and Ducros 1999; You and Moin 2007; Zhiyin 2015). Figure 5.1

© Springer Nature Switzerland AG 2019
S. Rodriguez, Applied Computational Fluid Dynamics and Turbulence Modeling,
https://doi.org/10.1007/978-3-030-28691-0_5

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28691-0_5&domain=pdf


conceptually shows that LES resolves integral and Taylor eddies up to a user- or
mesh-defined minimum eddy size Δ, while direct numerical simulation (DNS)
resolves the integral, Taylor, and Kolmogorov eddies (i.e., DNS calculates all
scales). In this context, the scale Δ determines the minimum size for which eddies
will be resolved, thereby acting as a filter for the subgrid scale (SGS), whereby
eddies smaller than Δ are modeled. And this is crucial, as the SGS model enables the
decay of the turbulent kinetic energy at the appropriate spatial locations within the
turbulent flow (Clark et al. 1979).

Starting in 1963 via a single publication, the LES approach has seen an exponential
increase in publications over the past three decades (Bouffanais 2010; Zhiyin 2015).

Figure 5.2 shows the instantaneous velocity based on resolved LES and DNS
calculations. Note that LES will capture a significant number of velocity fluctuations

Fig. 5.1 LES (top) and
DNS (bottom) eddy
modeling

Fig. 5.2 LES (top) and
DNS (bottom) instantaneous
velocities
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associated with the larger eddies, while DNS will capture all the LES fluctuations, as
well as the Taylor eddies that were cut off from LES (in the interest of a faster
calculation), and all the Kolmogorov eddy fluctuations. In other words, DNS
resolves the entire eddy spectrum: integral, Taylor, and Kolmogorov eddies.
Hence, the DNS instantaneous velocity is more “jagged” and, of course, synony-
mous with the fluctuations seen in experimental data. Note that Reynolds-averaged
Navier-Stokes (RANS) will not calculate the dynamic eddy behavior but is instead a
representative behavior of non-dynamic, time-averaged eddy behavior. As such, the
RANS instantaneous velocity as a function of time and space can never have the
chaotic velocity wiggles that are resolved significantly by LES and more so by DNS,
as shown in Fig. 5.3.

As an example of the different approaches, Fig. 5.4 compares the velocity
distribution for a jet at Re ¼ 3220 that was simulated using RANS, LES, and

Fig. 5.3 A comparison of
RANS, LES, and DNS
instantaneous velocities

Fig. 5.4 Velocity distribution for a turbulent jet using RANS (LHS), LES (middle), and DNS
(RHS)
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DNS. A close inspection shows significant differences and similarities in velocity
distribution. The main idea is that although all three provide useful details of the
velocity field, RANS is faster than LES, which is faster than DNS; conversely, DNS
is more detailed than LES, which is more detailed than RANS. It is also worthy of
mention that theoretically speaking, DNS will calculate all turbulent systems and
cases, while LES can do so for most situations, whereas RANS is much more limited
in applicability. The choice of turbulence model is ultimately based on financial
resources, time constraints, computational resources, and the necessary level of
output required of the simulation. Said more pragmatically, use the fastest model
that gets reasonable accuracy and details for the system of interest.

For the reasons discussed above, LES can be considered as an intermediate
methodology between RANS and DNS, as a balance between output and computa-
tional effort. In general, LES is about an order or two of magnitude more time-
intensive than RANS but is two to three (or more) orders cheaper than DNS. The
reason for LES’s computational cost is primarily due to the number of elements used
(i.e., a simulation may require refinement up to the smaller eddies within the Taylor
scale). On the other hand, RANS elements are much larger because they do not
resolve eddy scales. Like RANS, the LES models typically employ the Boussinesq
approximation, or a similar expression, for the smaller eddies in the subgrid scale.

LES is great for adverse pressure gradients, complex surfaces, and swirl but can
be expensive in the boundary layer (Afgan 2007; Rodriguez 2011) and hence the use
of the detached eddy simulation (DES). Due to its success in theoretical and,
increasingly, in engineering calculations, there are dozens of LES models in the
literature. The interested reader is encouraged to pursue this subject matter further
(Kleissl and Parlange 2004; Vreman 2004; Lesieur et al. 2005; Bouffanais 2010;
Nicoud et al. 2011; Yeon 2014; Zhiyin 2015). A partial list of such models includes:

• Standard Smagorinsky model (Smagorinsky 1963)
• Algebraic dynamic model (AKA “dynamic subgrid-scale model” or “dynamic

Smagorinsky”) (Germano et al. 1991; Lilly 1992; Kleissl and Parlange 2004)
• Localized dynamic model (Kim and Menon 1995)
• Wall-adapting local eddy-viscosity (WALE) model (Nicoud and Ducros 1999)
• Dynamic global-coefficient model (You and Moin 2007)
• RNG-LES model (CFD-Online 2018)
• Kinetic energy subgrid-scale model (KSGS) (Fuego 2016a, b)
• σ-SGS model (Nicoud et al. 2011)

5.1.1 How LES Works: A Brief Overview

As expected, the LES methodology divides the simulation into two areas. One
portion calculates the velocity field of the larger eddies, thereby resolving their
behavior explicitly, while the subgrid portion represents the smaller eddies, which
are modeled (approximated). This is shown conceptually in Fig. 5.5.
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The computational approach is made by choosing a filtering length scale, Δ. In
particular, if the eddy size is �Δ, such eddy is resolved, but if the eddy is <Δ, it is
modeled. That is, the larger eddies are simulated (calculated, resolved), while the
smaller eddies are “modeled” as a lumped, homogeneous-like group via an SGS
model. Typically, the filtering strategy employs a filter function G that involves the
parameter Δ. Then, as a general and well-proven LES approach, the large eddy
filtered velocity is obtained by employing a “convolution filter” as follows (Leonard
1974; Shaanan et al. 1975; Clark et al. 1979):

ui x
!
, t

� �
¼
ZZZ

G x
!
, x
!0� �

ui x
!
, t

� �
d3 x

!
: ð5:1Þ

Some authors use the following notation to more explicitly indicate the existence
of a mapping transformation based on parameter Δ across a distance x � x0,

G x, x0ð Þ � G x
! � x

!0
;Δ

� �
: ð5:2Þ

Note that a convolution takes two functions and mathematically changes (maps)
them onto a new relationship that is related to one of the original functions. In this
case, a convolution takes the instantaneous velocity ui and filters it as a function of
eddy dimension Δ, to produce the filtered large eddy velocity ui (i.e., this represents
a “local,” spatially averaged velocity region). Thus, the direct consequence of the
filtering operation is to eliminate the small fluctuations from ui. As an example,
consider the most straightforward (and very popular) filter function G based on
assuming a cubic volume with length dimension Δ. That is, consider the volume-

Fig. 5.5 Size filtering of
LES model eddies
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averaged box filter (described later in this section). WLOG, the cube is taken in
Cartesian coordinates centered about Δ/2 for each of the three directions. Then,

ui x
!, t

� �
¼
ZZZ

G x
!, x!

0� �
ui x

!, t
� �

d3 x
!

¼
Zz¼z1þΔ=2

z¼z1�Δ=2

Zy¼ y1þΔ=2

y¼ y1�Δ=2

Zx¼x1þΔ=2

x¼x1�Δ=2

1
Δ3 ui x1 � x01, y1 � y01, z1 � z01, t

� �
dx01d y

0
1dz

0
1

ð5:3AÞ

where

Δ ¼ ΔxΔ yΔzð Þ1=3: ð5:3BÞ

As explained later, G ¼ 0 outside the cubic volume (ΔxΔyΔz) for the box filter;
thus, any eddies smaller thanΔ are filtered out; they are not included in ui. Thus, only
eddies within the integral volume are resolved, and anything lying outside of the
integral volume is modeled.

The small eddy velocity ui
0 is related to the instantaneous velocity as follows,

ui x
!, t

� �
¼ ui x

!, t
� �

þ ui
0 x

!, t
� �

, ð5:4Þ

where ui is the resolved velocity field for the larger eddies and ui
0 is the subgrid

velocity for the smaller, modeled eddies, as shown in Fig. 5.6. Note that although the

Fig. 5.6 Resolvable vs. filtered eddies
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velocity-field superposition notation looks identical to the Reynolds decomposition
for RANS, it has a different meaning. In particular, the LES velocity field is
averaged in space (vs. RANS, which is averaged in time). Therefore, the entire
LES velocity field is

ui ¼
X

resolvedþ subgridð Þ ¼
X

larger eddiesþ smaller eddiesð Þ
¼ ui þ ui

0: ð5:5Þ

The filtering function G requires that (1) its volume integral is normalizable to
1.0, (2) the operator is linear (analogous to RANS Eq. 2.34L, Sect. 2.5), and (3) its
derivative follows commutation (analogous to RANS Eq. 2.34E, Sect. 2.5). Note
that the convolution filter allows the analyst to employ grid convergence index (GCI)
and Richardson extrapolation, if so desired. If done correctly, the velocity solution
should show filter length independence (convergence).

Many types of filters are used in the literature, and a general consensus is not yet
fully formulated, primarily because the filters have properties that are not generically
applicable (Deardorff 1970; Shaanan et al. 1975; Ferziger 1977; Galperin and
Orszag 1993; Stefano and Vasilyev 2002; Lesieur et al. 2005). Said more ominously,
the choice of filter will impact the solution, which is unfortunate; therefore, care must
be taken (Stefano and Vasilyev 2002). For example, the SGS model output depends
on whether the filter has a smooth, semi-sharp, or sharp cutoff. As a case in point,
smooth filters permit the filtered region to be fuzzier, in the sense that the cutoff is
not sharply defined between the larger eddies that are resolved and the smaller eddies
that are modeled. By contrast, a sharp filter behaves more like a binary switch, being
either “on” or “off” and thereby providing a well-defined separation cutoff in space
(Stefano and Vasilyev 2002). Because turbulence is not smooth and fuzzy but is
instead sharp and chaotic, the sharp filter resonates well (Stefano and Vasilyev
2002). More specifically, the sharp filter does a better job of capturing the energy
cascade from the larger to smaller eddies; smooth filters are known to miscalculate
the �5/3 slope in the inertial range. Smooth filters are known to dissipate significant
fractions of the turbulent kinetic energy away from the larger scales and onto the
smaller scales. Indeed, these issues can aggravate aliasing error (Stefano and
Vasilyev 2002), which refers to the calculational error associated with the nonlinear
convective term as represented by the node-based mesh. Some common filters are
discussed next. Note that the filters listed below are in 3D; many references list the
filters in 1D (Garnier et al. 2009).

The most straightforward filter is known as the volume-averaged box filter (AKA
“running mean filter”) (Deardorff 1970; Shaanan et al. 1975; Ferziger 1977; Clark
et al. 1979; Fuego 2016b). The filter includes the element volume Δ3 in its filtering
criteria for cutoff. Because the eddy in question is either inside or outside of the
volume, this filter is of the sharp type and is popular in CFD tools. The filter is
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G x
! � x

!0
;Δ

� �
¼

1
Δ3 , x� x0j j < Δx

2
, y� y0j j < Δ y

2
, z� z0j j < Δz

2
0, otherwise

8<
: : ð5:6Þ

The simplicity of the box filter has a cautionary issue, namely, that it is considered
an “implicit filter,” whereby the ratio of the test filter vs. the grid filter is a constant.
Thus, issues can arise as to its ability to converge (and if the Δ becomes too small,
then LES approaches DNS) (Zhiyin 2015).

A fairly sharp (but not as sharp as the volume-averaged box filter), is called the
spectral filter (or sharp cutoff filter). The filter employs a sine function to filter out the
smaller eddies (Ferziger 1977; Garnier et al. 2009),

G x
! � x

!0
;Δ

� �
¼

sin x�x0ð Þ
Δ

h i
x� x0ð Þ

sin y� y0ð Þ
Δ

h i
y� y0ð Þ

sin z�z0ð Þ
Δ

h i
z� z0ð Þ : ð5:7Þ

A Gaussian filter was developed to account for eddies based on a bell-shaped
distribution (Leonard 1974; Shaanan et al. 1975; Ferziger 1977; Deardorff 1970;
Mansour et al. 1977). The Gaussian filter is of the smooth type (Stefano and Vasilyev
2002),

G x
! � x

!0
;Δ

� �
¼ 6

πΔ2

� �3=2

exp � 6
Δ2 x� x0j j2

� 	
exp � 6

Δ2 y� y0j j2
� 	

exp � 6
Δ2 z� z0j j2

� 	
: ð5:8Þ

5.1.2 LES Mass and Momentum Conservation

So, now that ui x
!
, t

� �
is known from Sect. 5.1.1, how is it applied to obtain the

momentum terms? As was done with the derivation of RANS, assume an incom-
pressible, Newtonian flow. Use SS mass conservation and the transient “laminar”
(i.e., unmodified, unfiltered) NS equation. WLOG, simplify further by letting

μ 6¼ μ x
!� �

:Then, the unfiltered conservation of mass PDE is

∂ui
∂xi

¼ 0: ð5:9Þ

The unfiltered momentum conservation PDE is as follows:
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Note that in its full form,

τij,lam ¼�μ
∂ui
∂x j

þ ∂u j

∂xi

� �
, ð5:11AÞ

which is not the same as

τij,lam ¼�μ
∂ui
∂x j

: ð5:11BÞ

Now, perform the LES space-filtering (bar or overbar) operation for the unfiltered
NS equation to derive the LES momentum equation; do not apply ui ¼ ui þ ui0 yet.
Then,

∂ui
∂t

þ ∂ uiu j

� �
∂x j

¼ μ
ρ

∂
∂x j

∂ui
∂x j

þ ∂u j

∂xi

� �
� 1
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∂P
∂xi

: ð5:12Þ

Note that the convective uiu j term is unknown, so some mathematics and physics
are required. With this goal in mind, substitute ui ¼ ui þ ui0 into the convective term,
and perform FOIL multiplication,

uiu j ¼ ui þ ui0ð Þ u j þ u j
0� � ¼ uiu j þ uiu j

0 þ ui0u j þ ui0u j
0� �

¼uiu j þuiu j
0 þui0u j þui0u j

0: ð5:13Þ

At this point, more succinct and universal notation can be used to represent the
tensors that were derived from the convective term, namely,

uiu j ¼uiu j þuiu j
0 þui0u j þui0u j

0 ¼ uiu j þ Cij þ Lij þ Rij ð5:14AÞ

where

Cij ¼uiu j
0 þui0u j ¼ cross‐term stress Clark et al:1979ð Þ, ð5:14BÞ

Lij ¼uiu j � uiu j

¼ Leonard stress Leonard 1974; Stefano and Vasilyev 2002ð Þ, ð5:14CÞ

and
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Rij ¼ui0u j
0 ¼ SGS Reynolds stress Clark et al:1979ð Þ: ð5:14DÞ

Thus, the LES space-filtered NS reduces to
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: ð5:15Þ

Now simplify the expression to obtain the sought-after space-averaged exact, but
unsolvable, LES PDE,
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Finally, in shrewd anticipation of using various inexact closure approximations,
the previous space-filtered NS form is conveniently reformulated as follows,

∂ui
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þ u j
∂ui
∂x j

¼ μ
ρ
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∂x j

∂ui
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6664
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7775� 1

ρ
∂P
∂xi

, ð5.17 AÞ

where

τij �uiu j � uiu j � Cij þ Lij þ Rij � SGS model: ð5.17 BÞ

Thus, once a complete expression for τij is assumed, the LES PDE offers solvable,
though approximate, solutions.

Note that unlike Reynolds averaging, ui 6¼ ui for the LES space-filtering (bar)
operation; that is, the space filtering of a space-filtered velocity yields an entirely
different velocity. By contrast, RANS time filtering of a time-filtered quantity yields
the same quantity. Furthermore (Clark et al. 1979),

• uiu j 6¼ uiu j.
• uiu j

0 þui0u j � 0 is a poor approximation.
• uiu j � uiu j is not a good approximation.

And how in the world would one obtain ui0u j
0? So, some methodology has to be

employed to approximate these terms.
The Cij cross-term cannot be computed directly; it must be approximated. It is

worthwhile noting that the Cij cross-term decreases as Re increases (Clark et al.
1979), so higher-Re simulations might get away with ignoring the term. The cross-
term can be modeled (approximated) quite reasonably as (Clark et al. 1979)
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Cij � αΔ2 ui∇2u j þ u j∇2ui
� � ð5:18Þ

where α is a constant.
The Lij Leonard stress can be solved directly by performing a second space

averaging (Mansour et al. 1977), or it can be “approximated” as being on the
order of the truncation error associated with second-order finite differences (Shaanan
et al. 1975; Wilcox 2006) and is therefore ignored by some (Wilcox 2006). Further-
more, Lij is at most a weak function of Re (Clark et al. 1979). On the other hand, it is
best to not discount the Lij term so readily, as it has a significant role associated with
the transfer of eddy turbulent kinetic energy during cascading (Shaanan et al. 1975).
For low- to intermediate-Re applications (Re � 18,200) (Clark et al. 1979), Lij was
approximated as (Leonard 1974),

Lij � γL
2
∇2 uiu j

� �
, ð5:19AÞ

where γL is calculated as the second moment of the filter function,

γL ¼
Z1
�1

x2dx

Z1
�1

G x, y, zð Þdydz: ð5:19BÞ

Finally, the Reynolds stress Rij needs to be approximated, as no solvable expres-
sion is known for ui0u j

0. There are dozens of Rij closure models in the literature. Of
the turbulent kinematic viscosity models (i.e., eddy viscosity models), the simplest
assume a constant eddy viscosity, while others are more complex, such as those that
involve vorticity, turbulent kinetic energy, or mean strain rate (e.g., the standard
Smagorinsky model). The first LES model originated over half a century ago and is
called the standard Smagorinsky, after its originator, Joseph Smagorinsky
(Smagorinsky 1963; Wilcox 2006; Zhiyin 2015). Not only does the Smagorinsky
model provide sufficient dissipation for the modeled eddies, but its mechanism is
backed by theory and comparisons with DNS (Deardorff 1971; Clark et al. 1979).
For example, the magnitude of the Smagorinsky constant compares well with theory,
the model is analogous to the Newtonian shear model, and comparisons with DNS
are generally good. The model is expressed as follows:

Rij � 2νtSij ¼ CSΔð Þ2
ffiffiffiffiffiffiffiffiffi
SijSij

q
: ð5:20Þ

The resolved strain rate is

Sij ¼ 1
2

∂ui
∂x j

þ ∂u j

∂xi

� �
, ð5:21Þ

while the Smagorinsky eddy kinematic viscosity is
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νt ¼ μt
ρ
� CSΔð Þ2

ffiffiffiffiffiffiffiffiffi
SijSij

q
: ð5:22AÞ

In this context,

Δ ¼ ΔxΔ yΔzð Þ1=3 ð5:22BÞ

and

Cs ¼ the Smagorinsky constant.

Some authors use 0.1 � Cs � 0.3 (Tutar and Holdo 2001), while others use
0.1 � Cs � 0.24 (Fuego 2016a). Additional guidelines regarding Cs are as follows,

• CS shows some independence on Re and the energy/wavelength spectrum,
especially in isotropic turbulence (Clark et al. 1979).

• CS has a strong dependency on surface curvature and strain rate magnitude—
unfortunately, there is no universal value that is valid for all scenarios.

• Some reasonable guidelines and values for CS for various specific cases include:

– CS ¼ 0.1 for internal flow in ducts (Rogallo and Moin 1984).
– CS ¼ 0.1 for flows near the wall (Zhiyin 2015).
– CS ¼ 0.13 in flows where the large-eddy velocity shear dominates the cascade

energy transfer (Deardorff 1971).
– CS ¼ 0.15 for flow around a sphere (Tutar and Holdo 2001).
– The Fuego CFD code has CS¼ 0.17 as a default value, which is the average of

its minimum and maximum range (Fuego 2016a), in an attempt toward having
a good, all around value. The value of 0.17 also corresponds to the estimated
magnitude of Lilly (Lilly 1966; Leonard 1974).

– CS ¼ 0.18 for isotropic turbulence (Zhiyin 2015).
– CS ¼ 0.21 for flows where buoyancy dominates (Deardorff 1971; Rogallo and

Moin 1984).
– CS ¼ 0.21 for flows with low mean shear (Deardorff 1971; Rogallo and Moin

1984).
– CS should be decreased for situations where the mean strain rate increases.
– If CS is too large, eddies will undergo excessive damping.
– Ensure that Cs is independent of Δ.

• The dynamic Smagorinsky model automatically calculates CS in both space and

time as the calculation proceeds, whereby CS ¼ CS x
!
, t

� �
.

The standard Smagorinsky model is reasonable for large Re and isotropic flows
but is not as good for low Re flows (it is too dissipative near the laminar to turbulent
transition (Zhiyin 2015)). Flows with large deviations from isotropy (anisotropic) are
not well-resolved, either.

Unfortunately, the standard Smagorinsky calculates a nonzero value for νt at the
wall, so some LES models use a damping function such as van Driest. Nevertheless,
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this issue can be overcome by using sufficiently discretized resolution near the wall,
without having to use damping functions (but at a higher computational cost) (Rodi
et al. 1997; Tutar and Holdo 2001; Zhiyin 2015).

Given the choice between the 1963 Smagorinsky model and the dynamic
Smagorinsky model, the latter is preferred because of its ability to calculate Cs as
a function of space and time based on turbulence dynamics (Germano et al. 1991;
Lilly 1992), and there is no need to specify Cs a priori based on flow type; a
“constant” CS can never fully represent a dynamic situation involving spatial and
temporal changes.

Newer models with reduced dissipation near the wall and during transition have
been developed recently (Vreman 2004), with excellent comparison with DNS for
friction coefficients in channel flow. In addition, the σ-SGS model captures the cubic
y dependence near the wall (Nicoud et al. 2011). Certainly, more validation is
desirable.

5.1.3 Miscellaneous LES Modeling Recommendations

• Choose Δ and the average grid length h such that Δ/h < 3.3 to reduce filtering and
numerical issues (e.g., aliasing) (Stefano and Vasilyev 2002; Yeon 2014).

• The sharper the filter, the better the large-scale to small-scale energy dynamics
(Stefano and Vasilyev 2002).

• Computer processing unit (CPU) time is strongly dependent on the minimum
element size, Δ (and number of elements, of course).

– The smaller Δ is, the longer it will take to run the simulation.
– On the other hand, the analyst must demonstrate that the simulation is suffi-

ciently discretized to capture the desired larger eddy behavior.

• For very large simulations, RANS can be submitted first to get faster, preliminary
results.

– Then, the LES calculations ought to be submitted as soon as possible, as they
can take 10 to 100 times more computational time than RANS.

• A good point for an LES simulation is to let Δ�λ (i.e., simulate down to the
Taylor eddies):

– The logic behind this approach is that LES resolves the larger eddies, which
carry about 80% of the total turbulent kinetic energy. Therefore, setting Δ�λ
means that sufficient computational nodes are included in the region occupied
by the integral eddies, as well as a significant fraction of the Taylor eddies that
carry an important fraction of k (recall that the Taylor eddies span a wide
spatial range).

• The integral and Taylor eddy dimensions can be easily estimated using the LIKE
algorithm (refer to Sect. 3.4).
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• The usage of higher-order elements such as hexahedrals is highly recommended
(conversely, avoid lower-order tetrahedrals) (Tyacke et al. 2014).

• The addition of wall and damping functions tends to induce a counterintuitive and
unpalatable flavor in LES purists. Namely, LES theory adheres to the notion that
flow ought to be adequately calculated using a reasonable Δ that includes
sufficient quantities of the larger and intermediate-sized eddies (i.e., a good
fraction of the Taylor eddies) plus the behavioral contributions of the lumped,
smallest eddies. So why “fudge” the simulation with extraneous functions?
Particularly, any numerical accuracy that damping and wall functions may add
to the simulation can doubtlessly be obtained using sufficient spatial resolution,
higher-order elements, and good mesh metrics, especially near the wall.

• Awall function can be detrimental for LES simulations with separated flow (Rodi
et al. 1997).

• As for what is sufficiently discretized for LES, the limit can be based on purely
theoretical arguments: the first computational node ought to be the minimum of
either the smallest eddies being resolved (say the Taylor eddies) or the size
determined by the physics in question (e.g., the viscous layer extends to y+ ¼ 5,
so one or two computational nodes in this region would be advisable).

• Large Re simulations should include a mechanism for calculating the Leonard
stress (Shaanan et al. 1975).

Example 5.1 Helium at 400 K and 6 MPa is flowing inside a smooth cylindrical
pipe with D ¼ 0.125 m and L¼ 5.0 m. The system has an average velocity of 1.4 m/
s. Suppose an analyst would like to use the LES model to simulate up to the Taylor
eddy scale. What should the minimum node-to-node distance be? What is the value
of y at y+ ¼ 1.0?

Solution At this temperature and pressure, the density is 7.08 kg/m3, and the
dynamic viscosity is 24.4E�6 Pa-s; thus, ν ¼ μ/ρ ¼ 3.45E�6 m2/s. The character-
istic length is the pipe diameter, D. Therefore, the fluid is turbulent:

Re ¼ 0:125ð Þ 1:4ð Þ 7:08ð Þ
24:4E � 6

¼ 50, 779:

By running the LIKE MATLAB script, ε¼ 3.65E�3 m2/s3 and k¼ 5.02E�3 m2/s2.
Alternatively, the necessary equations are:

• Characteristic length of the integral eddies (e.g., Eq. 3.17, ℓ � 0.07Dh)

• Turbulence intensity (e.g., Eq. 3.26C, I ¼ 0:16Re �1=8
h )

• k [e.g., Eq. 3.27, k ¼ 3
2 uIð Þ2]

• ε (e.g., Eq. 3.28, ε ¼ Cμ
k3=2

ℓ )

Then, the Taylor eddy length scale is readily calculated as
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λ ¼ 10kν
ε

� �1=2

¼ 10 5:02E � 3ð Þ 3:45E � 6ð Þ
3:65E � 3

� 	1=2
¼ 0:00687 m:

But how does this scale compare with y+? In this case, the LIKE algorithm
calculates u� ¼ 0.0706 m/s and τw ¼ 0.0353 kg/m-s2 (in anticipation of comparison
with Example 5.2). Then, from yþ ¼ yu�

ν , this implies that y ¼ ν yþ
u�
. For y+ ¼ 1.0,

then y ¼ ν�1:0
u�

���
yþ¼1:0

¼ 3:45E�6�1:0
0:0706 ¼ 4:89E � 5 m.

Example 5.2 Redo Example 5.1, except that now the pipe is a bit rusty, having a
surface roughness of 1.0E�4 m. Will this affect either the Taylor eddy size or the
value of y at y+ ¼ 1.0?

Solution An inspection of the relevant equations shows that the Taylor eddy
remains the same, as the equations in this book show no roughness dependency. It
is possible that such dependency exists somewhere else in the literature, for clearly,
very large roughness will generate its own significant Taylor eddy scale fluctuations,
whereas small surface roughness will not affect the Taylor scale. In any case, the
wall friction factor is larger (0.0059 vs 0.0051 from Example 5.1), so the wall shear

τw is now larger by 15.7%. This means that u� is larger as well, because u� ¼
ffiffiffiffi
τw
ρ

q
.

For this situation, u� ¼ 0.0761 m/s and τw ¼ 0.041 kg/m-s2.

Therefore, y yþ¼1:0 ¼ ν�1:0
u�

���
yþ¼1:0

¼ 3:45E�6�1:0
0:0761 ¼ 4:53E � 5 m. In this case, the

roughness generated extra shear at the wall, requiring a computational node that is
much closer to the wall vs. the smooth surface.

5.2 DNS Modeling Recommendations

RANS calculates time-averaged turbulence effects, but no dynamics based on
individual eddy behavior. By contrast, DNS is a turbulence approach that solves
the unsteady Navier-Stokes equations such that all turbulence scales are resolved,
and unlike LES, no subgrid model is employed (Wilcox 2006; Afgan 2007). As a
result, DNS oftentimes requires multiple tens of millions to billions of computational
nodes (Day et al. 2009). DNS is therefore used sparingly, especially in large systems
at high Re; the higher the Re, the higher the required node count because eddies
become smaller. Nevertheless, time favors this turbulence method, especially as
computers and algorithms become faster. As of 2019, DNS is generally at least two
to three orders of magnitude more expensive than LES.

DNS is unique among the turbulence models because it does not employ aver-
aging (no u, no u0); Boussinesq approximation (or nonlocal, nonequilibrium
approaches); k, ε, ω, or νt; wall functions; curve fits; ad hoc models; and so forth
and so on. DNS is purely Navier-Stokes calculated for all time and spatial scales.
DNS uniquely solves Navier-Stokes to calculate all instantaneous, primitive-variable
fluctuations.
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Fortunately, as of 2019, DNS is no longer limited to low to moderate Re flows for
reasonably sized domains. Still out of reach as of 2019 are very large systems, such
as an entire nuclear plant, cruise ships, jet liners, very large geophysical systems, etc.
Starting around the late 1990s and especially around 2005 or so, DNS became more
commonplace for higher Re calculations of small- to mid-sized industrial applica-
tions (Huser and Biringen 1993; Dong and Karniadakis 2005; Kaneda and Ishihara
2006; Terentiev 2006; Stein 2009; Leonardi and Castro 2010; Kaneda and Ishihara
2006; Yeung et al. 2010; Naqavi et al. 2018; Elghobashi 2019; Chu et al. 2019).

For example, excellent results were obtained for swirling jets at Re ¼ 5000 and
swirl number S ¼ 0.79 (Freitag and Klein 2005). A higher Re in the range of
12,000 � Re � 33,500 and S � 0.5 was achieved for swirling jets a year later
(Facciolo 2006). A plane wall jet at Re ¼ 7500 compared favorably with theory and
experimental data (Naqavi et al. 2018). Channel flow involving cubes as wall
roughness was simulated up to Re ¼ 7000 (Leonardi and Castro 2010). DNS has
also been conducted on oscillating and stationary cylinders at Re ¼ 10,000 (Dong
and Karniadakis 2005). Recent DNS simulations confirm its ability to model bub-
bles, droplets, and porous media (Chu et al. 2019). Using spectral methods, a total of
40963 (6.87 � 1010 grid points) were used to explore isotropic turbulence in
atmospheric flows at Reλ ¼ 1000 (Kaneda and Ishihara 2006; Yeung et al. 2010).
Certainly, numerous examples can be cited that corroborate a favorable trend
toward DNS.

Moreover, many recent studies can be cited in the literature whereby DNS
calculations compare favorably with experimental data, to the point that many
authors go as far as considering the output as good as experimental data (Moet
et al. 2004; Freitag and Klein 2005; Duraisamy and Lele 2006; Afgan 2007; Bonaldo
2007; Busch et al. 2007; Walther et al. 2007; Taub et al. 2010). In any case, if done
properly, DNS is extremely accurate—as good, if not better, than experimental data.
For example, DNS can be better than experimental data because it can tract param-
eters that are difficult, and perhaps even impossible, to measure experimentally (e.g.,
P0). Furthermore, DNS provides much more detailed data than any experiment could
ever achieve, e.g., its ability to employ millions to billions to trillions of computa-
tional nodes that behave as probes (Clark et al. 1979).

For the interested reader, many useful guidelines, too many to be cited here, can
be found in the literature. A small sample includes (Moin and Mahesh 1998; Modi
1999; Wilcox 2006; Coleman and Sandberg 2010; Alfonsi 2011; Joslin 2012;
Tryggvason and Buongiorno 2013; Argyropoulos and Markatos 2015; Wu 2017;
Naqavi et al. 2018; Joshi and Nayak 2019).

The case for DNS is further strengthened in light of faster computational systems,
such as multi-core and many core processors for increased computing performance
(Alfonsi 2011), as well as nano- and quantum computers (Rudinger 2017). Figure 5.7
shows a quantum computer segment developed and manufactured recently at Sandia
National Laboratories (Sandia 2011). Notice that despite its small length scale,
which is on the order of 1500 nm total, the device has all the components necessary
for a functional dual quantum dot structure. Such novel hardware, combined with
quantum algorithms, will surely continue the DNS computational growth trend for

212 5 LES and DNS Turbulence Modeling



many decades to come, if not centuries. In any case, as computational power
increases, DNS will not only be used for turbulence research and small systems
but for larger engineering designs as well; this trend is inevitable and was predicted
long ago (Kim et al. 1987). This optimistic premise is supported by the strong
potential from recent advances in quantum computers, topological quantum mate-
rials, and quantum algorithms (Lee et al. 2019; Singer 2019). As noted in Chap. 1,
quantum algorithms already solve linear systems of equations (Singer 2019), which
are essential for CFD solvers. Furthermore, it is expected that quantum algorithms
will result in an exponential decrease of the time required to solve systems of linear
equations (Singer 2019). Indeed, the literature as of 2019 indicates the potential for
computational speed increases of at least a factor of 1000! And of course, the
detailed DNS calculations will uncover fluid functionality that can be leveraged
onto vastly improved engineered system behavior and performance.

But the ultimate grail is a quantum computer using symbolic computation and
artificial intelligence algorithms to obtain analytical solutions for the Navier-Stokes
PDE—to actually find unique mathematical solutions (expressions) for the PDE
based on the particular BCs and ICs for any/all of the PDE terms.

5.2.1 DNS Numerical Methods

DNS usually requires higher-order numerical methods for spatial discretization (e.g.,
fourth, fifth, and sixth order), basically with the goal of reducing numerical errors
such as truncation, diffusion, aliasing, and instabilities (Rai and Moin 1991; Huser
and Biringen 1993; Drikakis and Geurts 2002; Sengupta and Bhaumik 2019). But
there is another, more compelling reason: the small velocity fluctuations at the lower
end of the Taylor scale and especially the Kolmogorov fluctuations can easily
approach the magnitude of the numerical error and can thus be lost to the numerical
“noise.”

Generally, fourth-order methods are used in DNS, especially during its earlier
years (Coleman and Sandberg 2010). More recently, this trend has seen some
changes, including the usage of both second-order and optimized hybrid fourth-

Fig. 5.7 A quantum computer segment. (Courtesy, Sandia National Laboratories, 2011)
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order methods that can be used successfully if error mitigation precautions are
undertaken (Verstappen and Veldman 1997; Wilcox 2006). This is interesting,
especially because most commercial CFD tools are second order in space. Certainly,
higher-order methods have higher numerical accuracy than lower-order methods
(Orszag and Israeli, 1974), and whether a method’s order is even or odd has
ramifications as well. On the other hand, higher-order methods are more prone to
instabilities because they have less numerical dissipation and require more complex
boundaries.

Many DNS solvers are explicit due to large memory constraints required by this
approach. But, more recently, implicit solvers have become more common (Clark
et al. 1979; Rodriguez 2000; Wilcox 2006; Coleman and Sandberg 2010; Alfonsi
2011).

5.2.2 DNS Spatial Domain

LES calculates the integral eddies and larger eddies up to some user-defined or
mesh-defined minimum scale, such as the Taylor scale. On the other hand, DNS not
only resolves all the LES eddies and the smaller Taylor eddies that were filtered out
by LES, but it also resolves the Kolmogorov eddies. Said more concisely, DNS must
calculate all eddy scales. Because DNS includes the Kolmogorov eddies, it is not
uncommon for the first computational node to be at a small fraction of y+, with y+ < <
1.0. For example, a channel flow at Re¼ 3300 included the first computational node
at y+ ¼ 0.05, while its maximum spacing was set to y+ ¼ 4 (Kim et al. 1987). Of
course, Kolmogorov eddy size is dependent on Re, and the larger Re is, the smaller
y+ will be. These are good guidelines, but to ensure more problem-specific node
spacing, the user is encouraged to use the LIKE algorithm to determine node
spacing; refer to Sects. 3.4 and 3.5. In particular, η is a precarious function of y+,
so care must be taken to make the mesh consistent with the Kolmogorov eddies and
not with a variable associated with the wall friction, u�. Stated differently, what
assurance is there that some fraction of y+ is equal or smaller or in any way
proportional to η? And if there is no proportionality, what assurance is there that
the Kolmogorov eddy scale is modeled correctly using y+ instead of η?

The Kolmogorov eddy is the smallest eddy scale that is sustainable by the flow
and is calculated as follows:

η ¼ ν3

ε

� �1=4

: ð5:23Þ

Therefore, the distance between the computational nodes must not exceed η.
However, to fully capture the eddy’s interior dynamics, a more rigorous restriction is
imposed for the distance between the computational nodes, such that
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Δx � η
3
to

η
2
: ð5:24Þ

As for the largest eddies, it is not appropriate to assume that the hydraulic
diameter (or equivalent) is the limiting length scale. For example, because the larger
integral eddies can stretch significantly (say at 45	 from the main flow direction), the
maximum bound is conservatively placed at

Λ ¼ 2Dh: ð5:25Þ

This size restriction guides the minimum size that a mesh domain ought to be and
still has enough space to capture all eddies. As a check that the DNS computational
mesh is sufficiently large, the eddy fluctuations must be uncorrelated up to half the
distance of the domain for the largest eddies.

5.2.3 DNS Time, Stability Criteria, and Computational Nodes

If the time step is limited by the Courant limit, then

u0Δt
Δx ¼ u0ΔtCourant

η
< 1:0: ð5:26Þ

On the other hand, the Kolmogorov eddy lifetime before collapsing into a tiny
laminar sheet fragment is calculated as

τ ¼ ν
ε

� �1=2
: ð5:27Þ

Therefore, the smallest time step is the minimum of the following two:

ΔtDNS ¼ min τ,ΔtCourantð Þ: ð5:28Þ

If an explicit DNS simulation shows signs of numerical instability, the time step
can be reduced further using a more restrictive criterion, one that is based on the wall
friction velocity u� and the channel characteristic length xchar (Kim et al. 1987;
Wilcox 2006). Namely,

Δt � 0:003ffiffiffiffiffiffiffiffiffi
Re τ

p xchar
uτ

, ð5:29AÞ

where
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Re τ ¼ u�xchar
ν

: ð5:29BÞ

A stability criterion that combines the 1D diffusive and convective limits, respec-
tively, is as follows (Coleman and Sandberg 2010):

1� 4
νΔt
Δx2

� �2

þ uΔt
Δx

� �2

� 1: ð5:30Þ

As discussed in Sect. 3.5, the number of nodes required in 1D DNS calculations is
estimated as

N1D � Re 3=4
T , ð5:31AÞ

where

Re T ¼ η
ffiffiffi
k

p
ν

: ð5:31BÞ

For 3D DNS calculations, the number is significantly larger (Afgan 2007; Sodja
2007; Stein 2009; Taub et al. 2010):

N3D � Re 9=4
T to Re 11=4

T : ð5:32Þ

A more precise relationship is as follows (Wilcox 2006; Sodja 2007):

N3D ¼ 110Re Tð Þ9=4: ð5:33Þ

As might be fully expected by now, the impressive 3D DNS calculations come at
a high computational cost: the CPU needed to solve these problems is a strong
function of the turbulent Re, so the required computational power increases strato-
spherically to the third power:

CPU / Re 3
T : ð5:34Þ

Example 5.3 Redo Example 5.1, except that it is now desired to run a DNS
calculation. What are the minimum length and time scales based on the Kolmogorov
eddies? What should the minimum computational domain length scale be (e.g., the
minimum total mesh size)?

Solution Using the LIKE algorithm, the output is

Kolmogorov eddy size (η) ¼ 3.26E�4 m
Kolmogorov eddy time ¼ 3.07E�2 s
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Of course, Δx � η
3 to η

2. As for the minimum domain that must be modeled,

Λ ¼ 2Dh ¼ 2 � 0:125 ¼ 0:25 m:

5.3 Special LES and DNS BCs and ICs

Descriptions of generic BCs and ICs suitable for ODEs, PDEs, and RANS turbu-
lence models are discussed in Sects. 6.2, 6.2.1, 6.2.2, 6.2.3 and 6.2.4. However, LES
and DNS methods require special treatment, as they must not generate spurious
instabilities or introduce numerical errors that overshadow the eddy dynamics,
especially those of the smaller eddies that are associated with very small velocity
and length magnitudes. Therefore, LES- and DNS-specific BC and IC issues are
discussed in what follows.

• Inflow BCs

Inflow BCs pose issues because it is not possible to implement a priori inflow
distribution. For example, the BC can take the output from the computational
domain, modify the results to reflect the inlet conditions, and then use the rescaled
data for the next time step. An alternative approach is to let the flow reach a
reasonable degree of turbulence, but such approach can extend the time domain to
a prohibitive size. An elegant approach is to use a synthetic method, which supplies
functions that randomly perturb the LES flow (Jarrin et al. 2006; Finn and Dogan
2019); such approach can be applied for DNS as well (Wu 2017). The synthetic
method has become very rich in the literature, such that an entire book can easily be
devoted to it; a great survey is provided by Wu (2017). Finally, a brute force
approach is to take a relatively coarser “DNS” calculation that can be used as
input for a finer DNS calculation, or perhaps a fine-scale LES simulation can be
used as a starting point for the DNS input, and the process is iterated until conver-
gence is reached.

• Outflow BCs

Well-posed outflow BCs permit eddies to exit the boundary seamlessly, without
producing numerical errors, instabilities, or reflective waves. For this reason,
researchers have developed non-reflecting, damping BCs that have a demonstrated
ability to suppress spurious waves (Thompson 1987; Spalart 1990; Nordstrom et al.
1999).

• Periodic BCs

Periodic BCs are extremely useful for LES and DNS calculations. For example,
recall that fully developed flow (FD) is relatively homogeneous along the perpen-
dicular (spanwise) direction of the primary flow (Kim et al. 1987; Moin and Mahesh
1998; Leonardi and Castro 2010; Finn and Dogan 2019). This situation allows for
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significant reductions in geometry if a periodic BC is used to replace the repetitive
flow pattern. (Refer to Sect. 2.6.2 for estimating the entrance length of turbulent
flows.) Periodic BCs are also ideally suited when geometry is repetitive, such as
turbomachinery components (e.g., blades) or nuclear reactor fuel lattices. This is an
important point, as having to model the entire system can mean the addition of tens
of millions to billions more computational cells.

• No slip wall BCs

Wall BCs with no slip (provided Kn is in the appropriate range) are considered
fairly safe for LES and DNS applications (Coleman and Sandberg 2010; Leonardi
and Castro 2010; Finn and Dogan 2019).

• Initial Conditions (ICs)

Regarding ICs, these can be obtained from coarser meshes and then
superimposed on the LES or DNS grid (Coleman and Sandberg 2010; Finn and
Dogan 2019). Then, the initial input is flushed out by allowing the calculation to run
for several time periods, typically three or more flow throughs (Dong and
Karniadakis 2005). Alternatively, ICs can be chosen such that they start the simu-
lation using reasonable values, such as having the initial velocity equal to zero
throughout the domain. Then, the simulation proceeds until it reaches its stationary
limit (Day et al. 2009). At this point, the calculated turbulence data should be
independent of the ICs. Another approach is to use Gaussian statistics with white
noise (“artificial random force”) to obtain a homogeneous initial velocity distribution
(Jeng 1969; Stefano and Vasilyev 2002).

5.4 Problems

5.1 Under what circumstances would it be preferable to use LES instead of RANS?
How might the results differ between the two models?

5.2 Under what circumstances would it be preferable to use DNS instead of LES or
RANS? What fundamental differences would be expected between the LES
and DNS output?

5.3 What would happen if a RANS model used node spacing down to the Kolmo-
gorov scale? Would such results be defensible?

5.4 Does the LES model calculate k? Why or why not?
5.5 Water at 400 K and 6 MPa is flowing inside a smooth cylindrical pipe with

D¼ 0.1 m and L¼ 1.0 m. The system has a mass flow rate of 50 kg/s. Suppose
the analyst would like to use the LES model to simulate up to the Taylor eddy
scale. What should the maximum node-to-node distance be? If the Taylor eddy
is assumed as a spherical agglomeration, how many Taylor eddies would fit
inside the pipe?
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5.6 Redo Problem 5.5, except now suppose the analysist would like to use the DNS
model to simulate up to the Kolmogorov eddy scale. What should the maxi-
mum node-to-node distance be? If the Kolmogorov eddy is assumed as a
spherical agglomeration, how many Kolmogorov eddies would fit inside the
pipe?

5.7 Water at room temperature and pressure flows at U1 ¼ 1500 m/s around a pin
withD¼ 0.5 mm. Howmany Kolmogorov eddies could fit at the tip of the pin?

5.8 Repeat Problem 5.7 using air. Any issues?
5.9 Consider a 3D smooth rectangular duct with S ¼ 0.05 m and L ¼ 0.2 m. The

fluid is lead at 1000 K (ρ ¼ 10,161 kg/m3 and μ ¼ 0.0013 kg/m-s), with an
average velocity of 2.5 m/s. Use your favorite LES model to simulate the
system. What issues are present if uniform node-to-node spacing is set to 0.3ℓ?
Does a swirl motion appear at the corners under sufficient spatial
discretization?

5.10 Repeat Problem 5.9, but with uniform node spacing set to λ. Does a swirl
motion appear at the corners? How does λ compare with y+ ¼ 1? Will node
biasing help? (Consider an expansion ratio � 1.5.)

5.11 Repeat Problem 5.9 but with node spacing set to η. Does a swirl motion appear
at the corners? What issues are present under this spatial discretization? (i.e.,
issues other than a much longer computational time). What happens to the
solution if the uniform node-to-node spacing is set to η/4?

5.12 Water is flowing in a smooth, cylindrical pipe with D¼ 0.125 m, at an average
velocity of 7.5 m/s. The water is at 350 K and 8.0 � 105 Pa. Suppose that you
want to use an LES model. What distance between the computational nodes
will be sufficient to resolve the Taylor eddies? At what location should the first
computational node be placed, and why?

5.13 Consider Problem 5.12. Suppose that you want to use DNS. What integral,
Taylor, and Kolmogorov length, velocity, and time scales must be considered
and resolved? Discuss various time step constraints. Suppose the initial fluid
velocity is increased by a factor of 20, 40, and so on, until reaching a factor of
100. Plot the eddy length, velocity, and time scales for all three eddy types as a
function of Re.

5.14 Consider a smooth flat plate under isothermal boundary layer flow. The smooth
plate is 0.5 m long and 0.05 m wide, with air flowing parallel to the plate at
300 K and 1 atmosphere (ν ¼ 1.58 � 10�5 m2/s and Us ¼ 347.3 m/s). The air
flows from left to right along the 0.5 m plate at a constant velocity U1¼ 25 m/
s. Apply your CFD tool of choice to simulate this system using an LES model.
Compare the flow distribution with your preferred RANS model. How are the
velocity fields different?
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Chapter 6
Best Practices of the CFD Trade

“The result was very happy.” Osborne Reynolds upon the
initial formulation and validation of his dimensionless
number, 1883.

Abstract A strong attempt is made to provide practical guidelines for CFD meshes.
Dozens of mesh metrics are described in detail, and a mathematically-driven,
physics-based set of “golden” mesh metrics is recommended. General CFD bound-
ary and initial conditions are described, including boundary compatibility. Time
step, stability, domain, and calculation speed-up guidelines are provided. Detailed
guidelines for modeling laminar and turbulent natural circulation are discussed. The
chapter concludes with dozens of data visualization recommendations for generating
figures, movies, and other presentation media, with the goal of more effectively
conveying the CFD results.

It was said in the 1970s with regard to finances that when “E. F. Hutton talks, people
listen.” Said in an overtly enthusiastic fashion, “If CFD calculations are done
correctly, then nature listens!” The correct fluid dynamics and auxiliary equations,
coded and applied correctly, will certainly mimic nature, and experimental data will
inevitably follow pretest calculations. And under such careful modeling approach,
on the uncommon instance when computational and experimental output do not
match, there is a strong probability that the error source is experimental, such as
faulty pressure gauges, incorrect experimental procedures, and so forth.

The sections that follow endeavor to provide guidelines that increase the likeli-
hood that computational output will accurately reflect system behavior and experi-
mental data. But the converse is also true and too common: when CFD is done
incorrectly, without checks and balances, the GIGO acronym becomes valid—
garbage in, garbage out. CFD is not to be treated as a black box. In this chapter,
numerous guidelines and rules of thumb are provided, with the goal of increasing the
computational accuracy of simulations.
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6.1 Toward Bullet-Proof Meshes

WLOG consider a 3D system. The mesh represents the system geometry that was
parsed (divided) into computational elements or nodes, each reflecting the system
behavior of the primitive variables and a numerous set of derived computational
quantities. Each finite element or finite volume represents (reflects, maps) a small
region of space for the system in question. Each element is in turn comprised of
discrete computational points, or nodes, that have no volume. Or, if finite differences
are used instead, then the system is directly represented with discrete computational
nodes. In any case, the nodal agglomeration represents somewhat abstractly the
physical behavior, whereby mathematical computational nodes are used to calculate
mass, momentum, and energy to determine the overall system behavior. In the
cumulative sense, the entire set of discrete, volumeless computational nodes repre-
sent the entire contiguous volume. In this virtual world, each computational node
simultaneously behaves as if it were a thermocouple for recording temperature, as a
pressure transducer for recording pressure, as a flow meter to obtain mass flow rate,
and so forth.

Without doubt, anyone can develop a mesh. But how is a qualitymesh developed,
and how can its “quality” pedigree be defined and measured? Moreover, what is
“mesh quality,” and is it not subjective? Fortunately, there are many guidelines that
have well-served CFD modelers over the past few decades. In the words of P. M.
Knupp (2007):

Mesh quality concerns the characteristics of a mesh that permit a particular numerical PDE
simulation to be efficiently performed, with fidelity to the underlying physics, and with the
accuracy required for the problem.

Many mesh metrics are available to quantify and control the quality of a computa-
tional mesh. These are summarized in Table 6.1, where over two dozen mesh metrics
for hexahedral elements are listed, including their definition and acceptable range. A
metric’s “acceptable range” is considered as a reasonable “rule of thumb” that
generally ensures that a mesh will provide defensible output (or at least, minimizes
additional, unacceptable errors!).

To begin with, it is emphasized that a single mesh metric is akin to a rule of thumb
and cannot ever, in of itself, guarantee that a mesh will be “bullet proof.” Indeed,
there might not even exist a unique set of mesh metrics that will always guarantee
bullet proof meshes. Nevertheless, that is the grail being sought here (and a proposed
such set will be presented later, along with some guidelines).

Indeed, the shrewd analysis will demonstrate that the mesh in question satisfies a
set of reasonably independent, complimentary mesh metrics, and not just a single
metric. That is, multiple mesh aspects must be tested and improved as necessary. For
example, having a good aspect ratio says nothing about element angle and vice
versa. Thus, it is possible for a mesh to simultaneously have a great aspect ratio and a
poor skew angle and so forth. In fact, as mentioned by Knupp, skew is “insensitive to
length or aspect ratios,” having sole dependence on the element’s angles that are
formed by the element faces (Knupp 2003). Thus, no single (unweighted) mesh
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Table 6.1 Mesh metric definition and acceptable range for hexahedral elements

Metric Definition Acceptable range (units) References

Angle
(minimum)

The smallest element angle
formed by the intersecting
planes (dihedral angle). Too
small of an angle increases
numerical stiffness

45–90 (degrees) Stimpson et al.
(2007), Brewer and
Marcum (2008),
Zigh and Solis
(2013)

Angle
(maximum)

The largest element angle
formed by the intersecting
planes (dihedral angle). Too
large of an angle increases
numerical error

90–135 (degrees) Stimpson et al.
(2007), Brewer and
Marcum (2008),
Zigh and Solis
(2013)

Aspect ratio The ratio of
maximum vs. minimum
edge length. The aspect
ratio seeks to ensure that
quantities such as momen-
tum and heat are transferred
appropriately throughout
the system

�5 (unitless), can reach up
to 10 if gradient is small
(e.g., longer length parallel
to flow direction, and
smaller length perpendicu-
lar to the wall). The closer
to 1.0, the better

Robinson (1987),
Andersson et al.
(2012), Cubit (2017)

Condition
number

Jacobian matrix condition
number based on the maxi-
mum value of the four ele-
ment corners

1–4 (unitless) Knupp (2000),
Stimpson et al.
(2007), Cubit (2017)

Distortion The minimum of the Jaco-
bian determinant times the
ratio of the local
(transformed) and global
(actual) areas. This repre-
sents the element surface’s
deviation from a square

0.4–1.0 (length squared) SDRC (1988),
Lawry (2000),
Stimpson et al.
(2007), Cubit (2017)

Element
area

Jacobian determinant based
on the element’s center

None (length squared) Robinson (1987),
Cubit (2017)

Element
volume

Scaled to the Jacobian
determinant magnitude at
the element’s center; mini-
mum pointwise volume

None (length cubed) Cubit (2017)

Expansion
ratio

Element growth rate
between adjacent elements

�1.5 (unitless)
The closer to 1.0, the better

Fluent (2012), Zigh
and Solis (2013)

Jacobian The Jacobian matrix relates
how the computational var-
iables map linearly onto
their spatial location, e.g.,
the computational nodes.
The matrix has geometrical
information such as vol-
ume, shape, and orientation
(Knupp 2001). The Jaco-
bian determinant is calcu-
lated to gauge the relative
stretching of the local

None (length squared) Knupp (2000),
Stimpson et al.
(2007), Cubit (2017)

(continued)
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Table 6.1 (continued)

Metric Definition Acceptable range (units) References

spacing in an element. It is
also a measure of the orien-
tation of the surface nor-
mals relative to each other.
To obtain a relative, mea-
surable metric, it is
scaled vs. a perfect element;
refer to “Scaled Jacobian”
in this table

Oddy Oddy represents the largest
metric tensor variation in
the four corners of an
element

0.0–0.5 (none) Stimpson et al.
(2007)

Orthogonal
quality

The normalized dot product
minimum of the element
area vector and the centroid
vector based on either the
element’s face or that of the
adjacent element

0.15–1.0 (unitless). A value
approaching 0 is
unacceptable

Fluent (2018)

Quality
index

A code-defined approach to
factor the relative impact of
a number of mesh metrics
into a single metric (e.g.,
HyperMesh uses 12 differ-
ent mesh metrics with user-
defined weight factors)

The acceptable range is
classified as “ideal” and
“good,” depending on the
user-defined weight factors.
Suspicious elements are
flagged as “warn,” while
bad elements are tagged as
“fail” and “worst”

HyperMesh (2018)

Relative
size

J is the weighted Jacobian
matrix determinant. Then,
the relative size is the mini-
mum of J and its inverse,
J�1

0.3–1.0 (unitless) Knupp (2003), Cubit
(2017)

Scaled
Jacobian

The scaled Jacobian is
obtained by taking the min-
imum Jacobian and then
scaling it by dividing by the
length of two element-edge
vectors. Scaled Jacobians
are used in many CFD
codes when inverting sys-
tem matrices. If the scaled
Jacobian is less than 0.5, the
calculation may abort; 1.0
refers to a cube (and hence
is considered excellent). A
value approaching zero
implies a highly distorted
(and undesirable element).
Negative Jacobians refer to

�0.5 (unitless)
The closer to 1.0, the better

Knupp (2000),
Stimpson et al.
(2007), Cubit (2017)

(continued)
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Table 6.1 (continued)

Metric Definition Acceptable range (units) References

inverted, concave, or bowed
elements and should be
avoided at all cost. Refer to
“Jacobian” in this table

Shape 2 divided by the magnitude
of the condition number of
the weighted Jacobian
matrix

0.3–1.0 (unitless) Knupp (2003),
Stimpson et al.
(2007), Cubit (2017)

Shape and
size

The product of the shape
and the relative size

0.2–1.0 (unitless) Knupp (2003),
Stimpson et al.
(2007), Cubit (2017)

Shear 2 divided by the magnitude
of the condition number of
the Jacobian skew matrix

0.3–1.0 (unitless) Knupp (2003);
Stimpson et al.
(2007), Cubit (2017)

Shear and
size

The product of the shear
and the relative size

0.2–1.0 (unitless) Knupp (2003),
Stimpson et al.
(2007), Cubit (2017)

Skew The maximum of |cos α|,
where α represents the
angle between the edges at
the element’s center. For
example, a perfect element
with 90� angles has cos
(90�) ¼ 0, while an element
with 60� has a value of 0.5.
Thus, the smaller the skew,
the better

�0.5 (unitless)
The closer to 0.0, the better

Robinson (1987),
Knupp (2003),
Stimpson et al.
(2007), Cubit (2017)

Skewness Skewness compares the
shape difference between a
given element and that of a
perfect hexahedral of the
same volume. The larger
skewness is, the larger the
numerical error and the
potential for instabilities

<0.9 (unitless); average
mesh value should
approach <1/3

Fluent (2009, 2012),
Andersson et al.
(2012)

Squish
index

Calculates how much the
faces of an element diverge
from an ideal, orthogonal
face

<0.9 (unitless) Fluent (2009)

Stretch
ffiffiffi
2

p
times the ratio of the

element’s minimum edge
length and the maximum
diagonal length

0.25–1.0 (unitless) FIDAP (1999),
Stimpson et al.
(2007), Cubit (2017)

Taper Maximum ratio of element
lengths based on opposite
sides

0.0–0.7 (unitless) Robinson (1987),
Stimpson et al.
(2007), Cubit (2017)

Warp Cosine of the smallest
dihedral angle. That is, this

0.9–1.0 (unitless) Cubit (2017)

(continued)
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metric can capture all the geometric issues associated with elements, because
element geometry involves several exclusive parameters such as length, angle, etc.
This point is showcased in Fig. 6.1, which zooms into an airfoil region, showing both
skew and aspect ratio. In this situation, though the mesh quality is reasonable, the
point is that regions with good aspect ratios have skew magnitudes that are
approaching the high limit, and regions with higher skew and higher aspect ratio
are not always at the same location. Figure 6.2 shows a zoomed region of the airfoils
colored by aspect ratio, with the highest magnitudes occurring where the geometry

Table 6.1 (continued)

Metric Definition Acceptable range (units) References

represents the angle formed
by the element planes that
intersect diagonally

Warpage 1 minus the cosine of the
smallest dihedral angle.
That is, the angle formed by
the element planes that
intersect diagonally

0.0–0.7 (unitless) Stimpson et al.
(2007)

Fig. 6.1 Skew vs. aspect
ratio over the same region
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has the sharpest changes. This situation is typical, as regions with the sharpest
geometrical edges tend to have the worst mesh metrics. Therefore, those regions
merit special attention, in addition to regions where mesh styles and boundaries
intersect.

The first modern CFD meshes were boldly generated, without much regard for
mesh metrics; who knew at the time that there would be mesh issues? Anyway, it
was quickly discovered that mesh guidelines were required to generate defensible
output. The first attempts involved a single metric, and in particular, the aspect ratio
(Robinson 1987). By the mid-1980s, some researchers recommended aspect ratio,
skew, and taper. As of 2019, no unanimous consensus exists as to what qualifies as a
sufficient set of mesh metrics (though the literature does express some ideas). To
make matters worse, it is also clear that many mesh metrics are not independent of
each other (i.e., some are redundant).

Other metrics may include distortion, which is the minimum of the Jacobian
determinant times the ratio of the local (transformed) and global (actual) areas. Said
in simpler, more geometric terms, this represents the element surface’s deviation
from a square. Some software packages offer a combination of quality metrics that
are weighted and factored into a single metric, such as HyperMesh’s “quality index.”
This software uses a combination of 12 different mesh metrics, including aspect
ratio, skew, Jacobian, warpage, and angle (HyperMesh 2018). On the other hand,
Fluent recommends skewness, aspect ratio, and squish (a measure for how much the
faces diverge from an ideal, orthogonal face) (Fluent 2009). From the point of view
of synthesis, this brief mesh metrics overview shows a commonality for certain mesh
metrics, such as aspect ratio and skew, as well as a commonality in geometric
parameters that should be qualified. In effect, by the start of the twenty-first century,
the general notion was, and continues to be, that mesh metrics need to show that
elements are not unduly deformed geometrically (Fluent 2009, 2012).

Therefore, excellent, general mesh guidelines should include the following
considerations:

• Stretching (length issues)
• Distortion (angle issues)
• Transitioning (distance and propagation issues between adjacent elements)
• Adequate computational variable mapping onto node distribution

Fig. 6.2 Overlay of mesh colored with aspect ratio
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Consequently, a complete set of mesh metrics ought to consider length ratios,
element angles, distance between adjacent nodes (i.e., a growth ratio), and an
approach that gauges the computational variable’s mapping onto the node distri-
bution. For these reasons, ideal mesh metric sets (or equivalently similar criterion)
ought to include such metrics and justification. One such set, and highly
recommended, is the following “grail” mesh metric group:

• Aspect ratio �5 (the closer to 1.0, the better; considers length ratios)
• Skew �0.5 (the closer to 0.0, the better; factors in element angles)
• Expansion ratio �1.5 (the closer to 1.0, the better; gauges node-to-node distance

growth between adjacent nodes/elements)
• Scaled Jacobian�0.5 (the closer to 1.0, the better; a measure of the computational

variable mapping onto the node distribution)

As shown in Table 6.1, there is a bewildering number of mesh metrics, whose
intent is to provide guidelines for the generation of quality meshes. Thus, Table 6.1
is not meant to intimidate users but is instead intended to offer many options,
especially because CFD tools tend to be associated with diverse metrics, and the
user is encouraged to experiment with different guidelines. For illustration purposes,
Table 6.2 shows various mesh metric output for a compact heat exchanger with
airfoil surfaces. Notice that a more concise mathematical expression for mesh
metrics can be pinpointed if the average, minimum, maximum, and standard

Table 6.2 Cubit meshing tool output showing mesh metrics for a compact heat exchanger with
airfoil surfaces

Mesh metric Average
Standard
deviation

Minimum/element
number

Maximum/element
number

Aspect ratio 1.093E+00 9.885E�02 1.000E+00 (95714) 2.405E+00 (51721)

Skew 5.867E�02 5.856E�02 4.058E�07 (553135) 4.335E�01 (368)

Taper 4.620E�02 6.404E�02 3.399E�06 (497420) 4.025E�01 (22026)

Element
volume

2.081E�13 3.856E�14 5.344E�14 (107610) 5.336E�13 (10085)

Stretch 9.228E�01 6.818E�02 3.568E�01 (55611) 9.973E�01 (66323)

Diagonal ratio 9.626E�01 3.645E�02 6.949E�01 (56257) 1.000E+00 (664913)

Dimension 3.394E�05 2.307E�06 1.892E�05 (163499) 4.389E�05 (10085)

Condition
number

1.024E+00 5.678E�02 1.000E+00 (513435) 1.765E+00 (502167)

Jacobian 1.965E�13 4.031E�14 3.543E�14 (107610) 5.141E�13 (10085)

Scaled
Jacobian

9.837E�01 3.562E�02 6.910E�01 (742) 1.000E+00 (384691)

Shear 9.837E�01 3.562E�02 6.910E�01 (742) 1.000E+00 (384691)

Shape 9.793E�01 4.231E�02 6.212E�01 (107610) 1.000E+00 (513435)

Relative size 8.062E�01 1.898E�01 6.596E�02 (107610) 1.000E+00 (92062)

Shear and size 7.974E�01 1.976E�01 5.785E�02 (107476) 9.999E�01 (92062)

Shape and size 7.957E�01 2.004E�01 4.097E�02 (107610) 9.998E�01 (45726)

Distortion 9.392E�01 8.792E�02 4.862E�01 (75966) 1.000E+00 (50308)
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deviations are calculated by the meshing package. Though 16 metrics are shown in
the table, just 4 are needed per the mesh set recommended above, 3 are highlighted in
the table, and the fourth was applied when the mesh was generated, namely, that the
expansion ratio �1.5. For convenience, Table 6.3 lists key mesh and flow metrics
that ought to be calculated prior to beginning the CFD analysis; it is intended as a
general guide.

While no mesh metric could ever be “perfect” or “universal,” mesh metric
guidelines should be viewed as more than “rules of thumb” that are intended to
save the analyst much grief. The metrics generally have a strong mathematical basis
that is strongly founded upon computational principles (Knupp 2003), and as such,
are intended to increase fidelity in the computational output. Certainly, some meshes
will produce reasonable results even when metrics are ignored, but more often than
not, ignoring the guidelines will result in poor output. Some of the most curious
results that have been pinned down as a direct consequence of poor meshes include
stainless steel that ignited at 400 K, flows exceeding the speed of light, regions with
no flow that suddenly accelerate out of nowhere, levitating flows that only Houdini
could explain, temperatures below absolute zero, negative densities, and countless
other nonsense. If this discussion has not yet generated a healthy dose of caution

Table 6.3 Tabulation of key mesh metrics for laminar and turbulent flows (this table is intended as
an aide, to be filled by analyst prior to submitting CFD simulations)

Parameter
Coarse
(0.5�)

Medium
(�)

Fine
(2�)

Very fine
(4�)

Number of computational nodes

Average aspect ratio
(desired range: 1.0–5.0)

Maximum aspect ratio
(desired range: 1.0–5.0)

Average skew
(desired range: 0.0–0.5)

Maximum skew
(desired range: 0.0–0.5)

Minimum scaled Jacobian
(desired range: > 0.5)

Average node spacing growth rate

Re¼ (If turbulent, the desired node-to–node distance
is ~λ for LES and ~η for DNS)

Kolmogorov eddy size ¼
Taylor eddy size ¼
Integral eddy size ¼
At y+ ¼ 1, y ¼
At y+ ¼ 7, y ¼
At y+ ¼ 30, y ¼
First computational node for calculation is at y ¼
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when developing meshes, then consider Fig. 6.3, which shows how drastically
solutions can diverge if mesh metric guidelines are not followed. In this situation,
flow around a cylinder is considered, whereby the cylinder hasD¼ 0.1016 m,U1¼
2.44 m/s, and ν ¼ 4.95 � 10�4 m2/s. The fluid flows from left to right, at Re ¼ 500.
Two calculations were run, with everything being the same, except that the mesh on
the RHS was developed with good mesh metrics (e.g., aspect ratio �5, skew �0.5,
an expansion ratio �1.5, and scaled Jacobian >0.5), while the mesh on the LHS was
purposely developed with poor mesh metrics (e.g., aspect ratio �50, skew �5,
expansion ratio �15, and scaled Jacobian approaching 0). Of course, the image on
the RHS is consistent with experimental data.

6.1.1 Additional Mesh Guidelines

• Highly distorted elements will inevitably produce highly distorted output (for
hexahedral elements, such elements tend to deviate from a cubical geometry).

• Regions with large gradients should have a higher element density (e.g., the
boundary layer near the wall, free surfaces).

• The element face should be as close to perpendicular to the wall. That is, this is
one of the worst regions to have skewed elements. For this reason, tetrahedral
elements are not recommended at the wall.

• Similarly to the criterion above, the element faces should be close to perpendic-
ular to the main flow direction.

• The longer side of an element should be oriented in the direction of the flow, with
the smaller side perpendicular to the large velocity gradient (e.g., a boundary
layer, etc.).

• Numerical error is only compounded when elements have multiple, independent
poor mesh metrics (e.g., an element having both large aspect ratio and
large skew).

Fig. 6.3 Divergent solutions using noncompliant mesh metrics (LHS) vs. compliant (RHS)
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• Always ensure that the grid is refined spatially (coarse, medium, and fine
meshes).

• The usage of grid convergence index (GCI) and/or Richardson extrapolation
greatly increases confidence in the simulation output.

6.1.2 Computational Node Spacing for RANS Models

The spatial distribution of computational nodes in Reynolds-averaged Navier-Stokes
(RANS) models is crucial for generating defensible solutions. This is especially so
for phenomena-rich calculations involving complex flows, such as strong wall shear,
swirl, rotational surfaces, backflows, turbomachinery, drag, and lift.

If no wall function is used, then it is important that RANS CFD meshes have the
first computational node at y+ ¼ 1 (Fluent 2012). Generally speaking, this is the case
for most RANS models, but there are exceptions. For example, Wilcox
recommended that the first computational node be placed at y+ ¼ 5 if using his
2006 k-ω turbulence model (Wilcox 2006). For turbulent, low-Re flows, the first
node can be as far as y+ ¼ 4 (Andersson et al. 2012). Mesh biasing can be used to
reduce the number of computational nodes, as shown in Fig. 6.4. If biasing is used, it
is crucial that the growth rate between nodes not exceed 1.5 (this is the expansion
ratio metric; refer to Table 6.1). But, just how large should the node spacing be,
especially near the wall? Certainly, RANS is not concerned with individual eddy
behavior (though there are a few exceptions, such as the Myong-Kasagi RANS in
relationship to Taylor eddies). Therefore, it is not necessary that RANS node spacing
be less than or equal to the size of the Taylor and Kolmogorov eddies; in fact, doing
so will be detrimental for various reasons. On the other hand, including an additional
computational node or two at y+ � 30 will help capture the complex turbulence
motions occurring in the buffer layer, as explained in Sect. 3.6. In fact, conservative
researchers recommend as many as five to ten computational nodes in the region

Fig. 6.4 Biased node
distribution based on y+

location
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bounded by y+ < 20 (Andersson et al. 2012). And this is certainly consistent with the
use of node biasing when the growth factor does not exceed 1.5.

So, the above guidelines specify a minimum spacing limit for RANS. But, what
should the maximum spacing limit be? The maximum nodal distance should be
decreed by the node spacing needed to achieve sufficient spatial discretization. For
example, if cutting the node distance in half only reduces the computational error by
less than some reasonable metric acceptable to the analyst (say <1–2%), then the
current maximum node spacing is satisfactory.

As noted in Sect. 3.6, the viscous sublayer and the buffer layer flow-physics forge
crucial velocity gradients in these narrow regions. For instance, drag and lift are
significant at and near the wall. Therefore, being able to model the viscous sublayer
in the range of 0 � y+ � 5 (to as high as 8) is of outmost importance to capture wall
effects, and so is the region in the range of 5 � y+ � 30, where most of the
nonisotropic effects occur, where eddy production and decay predominate, and
where sizable eddy fluctuations occur.

Therefore, it is not surprising that calculations that fail to include at least one or
two computational nodes in the viscous sublayer and at least two in the buffer layer
generally fail to deliver, especially if complex flows are involved. Certainly, fol-
lowing these guidelines will result in a large mesh that will require much computa-
tional time. There ought to be some give and take in a balance between accuracy and
deadlines. Therefore, the analyst in encouraged to run coarser meshes to at least get
some preliminary results and then submit the finer meshes as early as possible, to pin
down the impact of the mesh discretizations.

6.1.3 Wall Functions

Wall functions are used to more accurately calculate certain behaviors at the wall,
such as shear stress, wall friction, wall heat flux, wall temperature, and so forth. And
for some turbulence models, they serve as the only way of ensuring that the velocity
near the wall is calculated adequately (e.g., SKE); this practice is common, espe-
cially when the SKE is used in low-Re flows. In addition, wall functions can serve as
a means to decrease the number of computational nodes in RANS models, as well as
large eddy simulation (LES) and detached eddy simulation (DES) models. In
addition, wall functions have been shown to improve calculations for low-Pr fluids
such as liquid metals (Bna et al. 2012).

Ultimately, though, it is up to the turbulence model developer to demonstrate that
as y+ approaches the viscous sublayer, the turbulence model performance
approaches u+ ¼ y+ without the need to enforce (fudge) the behavior. And such is
the case for certain turbulence models, including the 2006 k-ω; indeed, the usage of
the 2006 k-ω with a wall function would corrupt the output, as the 2006 k-ω
inherently has such asymptotic behavior. Furthermore, wall function usage is coun-
ter to the LES modeling philosophy and can have unintended consequences for
separated flows (Rodi et al. 1997). Other concerns are listed in Sect. 5.1.3. Of course,
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wall functions will not work if the flow is detached (separated), because the wall
function assumes a linear or log velocity distribution. In such cases, SKE should be
avoided, and the 2003 SST, 2006 k-ω, LES, or direct numerical simulation (DNS)
ought to be used.

If despite these cautionary notes, a user still decides that a linear wall function
must be used, then the first computational node can be at y+ < 5, to as low as 1. If a
log wall function is used, then the first computational node can be at 30 < y+ < 500,
where the lower limit applies for low Re calculations and the higher limit is for
higher Re (Zigh and Solis 2013); however, this guideline can be nonconservative, as
y+ in the vicinity of 30 can have large velocity gradients and fluctuations.

6.1.4 Computational Domain Size

Another critical aspect of simulations is to determine the computational space that is
sufficiently large; if the computational domain is too small, important phenomena
will be missed, but if the domain is too large, the calculation will be needlessly slow.
For example, it is important in CFD calculations that the mesh is sufficiently large to
capture the domain of the primary flow (clearly), but also keep in mind recirculation,
entrainment, any secondary flows, and so forth. For illustration purposes, the top of
Fig. 6.5 shows a computational region for an expansion where the recirculation
pattern is truncated, while the bottom section shows a domain that is sufficiently
large, such that it captures the recirculation pattern. Figure 6.6 shows a similar
situation for a jet model. In particular, the LHS conceptually shows what happens
if the mesh domain is not large enough to capture the primary jet-flow pattern as it
spreads, while the RHS shows a more satisfactory computational domain that is
sufficiently large to include entrainment.

Fig. 6.5 Good and bad mesh domains for a flow expansion
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Generally, a visualization tool will rather quickly and intuitively show whether a
mesh has an adequate domain or not. Fortunately, there are explicit guidelines that
can serve as general guiding principles, without having to submit the calculation
first. For example, some rules of thumb for flow around a body with hydraulic
diameter Dh are as follows (Tutar and Holdo 2001):

• Distance between the inflow boundary and the body centerline ¼ 7Dh

• Distance between the body centerline and the perpendicular side
boundaries ¼ 7Dh

• Distance between the body centerline and the flow exit boundary ¼ 15Dh

Similar guidelines can be found elsewhere for other systems (Leonardi and Castro
2010), implying some sort of domain-size universality.

Finally, the P and u gradients normal to the BC should be relatively small. If not,
then it will be necessary to further extend the mesh.

6.2 Boundary and Initial Condition Recommendations

A key to successful CFD modeling includes the proper selection of boundary
conditions (BCs) and initial conditions (ICs). For instance, though a simulation
with an incorrect BC may run to completion, it will nevertheless yield an incorrect
solution. Recall that BCs can generate an infinite family of solution curves, but only
the appropriate BCs will provide the correct solution for a given, uniquely specified
system. In other words, BCs determine unique solutions for the ordinary and partial
differential equations (ODEs and PDEs) found in conservation equations, such as
mass, momentum, and energy. Under ideal conditions, a bad BC will immediately
cause a code abort and thereby raise red flags that something is wrong. But, under
many situations (Murphy’s law), the code will be happy to proceed toward the

Fig. 6.6 Good and bad mesh domains for a jet
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generation of useless data. Besides generating bad output, incompatible BCs will
result in other unintended consequences, including solution instabilities and signif-
icantly longer computational times. Thus, extra caution is desirable when
selecting BCs.

For mature CFD codes, one of the most significant sources of boundary errors
arises from the user, via poor meshes and/or BC selection. For these reasons and
others, it is incumbent that analysts spend a reasonable amount of time reflecting on
BC selection as the input model is developed and tested. Thereafter, the analyst
ought to consider running additional simulations with alternative BCs, to explore the
system behavior.

BCs are covered in Sects. 6.2.1, 6.2.2 and 6.2.3, while Sect. 6.2.4 discusses IC
recommendations.

6.2.1 General BCs

BCs enable unique solutions to be obtained from ODEs and PDEs. BCs can also be
viewed as solution drivers because they force the calculation into a unique solution.
The number of required BCs for ODEs and PDEs is based on the largest order for
each spatial coordinate being solved. For example, a second order ODE in 3D space
will require two BCs for each of the three spatial coordinates, for a total of six. Note
that BCs are associated with the system behavior at the spatial boundaries, that is, at
the system edges, while ICs are specified for the entire domain at a given time point.

Example 6.1 Consider the following ODE, d2T
dx2

þ cos 3πxð Þ dTdx � 10T ¼ 0, where
T ¼ T(x) and 0 � x � L. How many BCs are needed?

Solution Two BCs are needed to appropriately solve this system because the
highest spatial derivative is of order two and only one space coordinate is considered
(x-direction). As an example of such system, one possibility is that it has fixed-
temperature conditions, e.g., T(x¼ 0)¼ 450 K on the LHS and T(x¼ L )¼ 600 K on
the RHS.

Example 6.2 Consider a system in 3D Cartesian space, whereby T ¼ T(x,y,z), 0 �
x � L, 0 � y �M, and 0 � z � N. The PDE is ∂2T

∂x2 þ ∂2T
∂y2 þ ∂2T

∂z2 ¼ 0. How many BCs

are needed?

Solution This system is second order for each of the three space derivatives, and
there are three directions. Therefore, six BCs are needed: two in the x-direction, two
in the y-direction, and another two to take care of the z-direction.

More formally, BC types for a given spatial domain of length [a,b] are classified
as follows:

• Dirichlet (first type). This BC type associates the primitive variables (e.g., u, v,
w, T, P, ρ, etc.) with a fixed value or scalar field. For example, w(a) ¼ 5.5 m/s.
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• Neumann (second type). This BC type associates a derivative with zero, meaning
that the spatial gradient is zero. For example, if no heat transfer occurs, then
dT
∂x ¼ 0, so the system is adiabatic, which means that Twall ¼ Tnode adjacent to wall. In
theory, it is impossible to have a perfectly adiabatic boundary, but for engineering
purposes, this is a great approximation if the system is reasonably insulated at the
boundary.

• Robin (third type). This BC is a superposition (generalization in this case) for the
terms associated with a Dirichlet and Neumann BC. For instance, a convective/
conductive BC can be represented as k dT

dx þ hT ¼ C1.

6.2.2 BC Types in CFD Codes

There are many types of BCs used in commercial CFD codes. However, it is up to
the analyst to justify the usage of all input model BCs and to perform sensitivity
studies to quantify their impact on the solution. This is the case because BC input is
one of the top sources of modeling errors. Furthermore, boundaries are one of the
worst places to have poor mesh metrics. For this reason, it is highly recommended
that analysts use aspect ratios near 1.0 for elements normal to boundaries. Likewise,
having skew less than 0.5 is highly recommended and more so if skew approaches
0. A selection of major BC types is discussed next. Special LES and DNS BCs, as
well as ICs, are found in Sect. 5.3.

• Symmetry BC

A symmetry boundary is ideal for use when the flow field has geometric sym-
metry and the flow is symmetric. (Asymmetric flow can occur in situations with
symmetric geometry. For example, boundaries can have different BCs and thus
result in asymmetric flow). Where appropriate, use symmetry to reduce the element
count. Symmetry BCs are ideal for DNS analysis and are also suitable in the
spanwise direction of boundary layer flows, far away from the wall. For example,
a free-stream boundary allows the user to model fluid conditions far away from the
wall and its boundary layer.

• Periodic BC

Periodic boundaries are ideal for repetitive geometry, such as occurs in the
periodic flow lattice of a nuclear reactor core and turbines (Rodriguez and Turner
2012; Finn and Dogan 2019; Joshi and Nayak 2019), and are ideal in Fourier space
applications (Orszag and Israeli 1974).

• Inflow and Outflow BC

An inflow (or outflow) BC allows the user to impose velocity or mass flow rate at
the inlet (or outlet). The quantity can be fixed or variable and can be rather complex,
involving functions, subroutines, tables, and so forth. More often than not, inflows
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and outflows should be normal to the BC surface and its elements, but there are
exceptions, such as a swirl BC (Rodriguez 2011).

• Circular Swirl BC

Some CFD tools already have swirl boundaries, so their application is convenient
and straightforward. Otherwise, a circular surface boundary with swirl can be
approximated as follows (Rodriguez and El-Genk 2010; Rodriguez 2011) and can
be included into the CFD code as a user defined function or subroutine. Only the
average swirl velocity Vave and swirl angle θ (in degrees) are needed to calculate the
uo, vo, and wo velocity magnitudes; the desired average swirl velocity can be easily
obtained if the mass flow rate, fluid density, and jet diameter are known. Basically,
the total velocity field (RHS of Fig. 6.7) is the superposition of the azimuthal rotation
in the x-y plane (u and v; refer to the LHS of Fig. 6.7) plus the axial motion in the z-
direction (e.g., the w velocity component). In particular,

V
!

x, y, zð Þ ¼ u x, y, zð Þ i! þ v x, y, zð Þ j! þ w x, y, zð Þk!: ð6:1Þ

Then, the geometric swirl number S can be approximated as

S � 2
3
tan θð Þ: ð6:2Þ

At this point, the uo, vo, and wo velocity magnitudes can be calculated as follows:

u0 ¼ V aveffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9S2

q , ð6:3AÞ

Fig. 6.7 LHS: azimuthal swirl velocity. RHS: total swirl velocity
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v0 ¼ � Vaveffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9S2

q , ð6:3BÞ

and

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
ave � 2u20

q
: ð6:3CÞ

Knowing the velocity magnitudes, then the velocity distributions as a function of
x, y, and z can be expressed as follows:

u yð Þ ¼ u0 sin 2π
y� ymin

ymax � ymin

� �� �
, ð6:4AÞ

v xð Þ ¼ v0 sin 2π
x� xmin

xmax � xmin

� �� �
, ð6:4BÞ

and

w ¼ w0: ð6:4CÞ

xmin, xmax, ymin, and ymax correspond to the minimum and maximum location where
the circular swirl boundary occurs. The sine functions distribute the flow at the
desired swirl angle and with the correct velocity magnitudes in all three directions.

In this situation, the azimuthal (rotational) velocity is

Vθ ¼
ffiffiffi
2

p
u0: ð6:5Þ

Finally, the average swirl velocity can be back-calculated using

Vave ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ v20 þ w2

0

q
: ð6:6Þ

• Open BC

An open boundary allows the fluid to enter or exit the domain, without impacting
the interior solution (hopefully!). In theory, such is the case, whereby the momentum
distribution within the system is not impacted. In practice, these boundaries can
generate spurious reflective waves. Therefore, careful inspection should be under-
taken to ensure a defensible solution. The reader is encouraged to consult the
literature in this specialized research topic, which includes many areas regarding
reflectiveless BCs and wave-mitigation techniques (Thompson 1987; Spalart 1990;
Nordstrom, Nordin, and Henningson 1999).
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• Wall BC with No Slip

Wall BCs are used to define mathematically how the flow is shaped by surfaces.
This includes characteristics such as wall roughness, with the “smooth wall” being
the general CFD code default. Wall BCs are generally “no slip,” meaning that the
fluid is attached to the wall (Orszag and Israeli 1974). Therefore, the fluid velocity at
the wall matches the wall velocity, which is normally 0; the same situation applies to
temperature T.

• Wall BC with Slip

Slip is present in situations with small Knudsen number (Kn), 0.01 � Kn � 0.3,
which is usually in the realm of micro and nanoflows. In such cases, ufluid 6¼ uwall and
Tfluid 6¼ Twall. Rather, the fluid velocity at the wall is greater than zero when slip
occurs! It is thought that slip is present as a result of thin, trapped gas sheets that
behave as a lubricant between a liquid and the wall surface roughness (Tabeling
2009; Bolaños and Vernescu 2017). If slip is present, a reasonable wall BC for liquid
flow is (Tabeling 2009)

u ¼ LN
∂u
∂z

ð6:7AÞ

where

LN � ν
utherm

� ν
us

¼ Navier length: ð6:7BÞ

In this context,

ν ¼ kinematic viscosity of the gas trapped between the liquid and the wall

and

utherm ~ us (sound velocity).

Kn is defined as

Kn ¼ λ
ℓchar

ð6:8Þ

where

λ ¼ mean free path, which is the average distance traveled by particles between
collisions and ℓchar ¼ characteristic length of the flow channel.

For liquids, λ is approximately of the magnitude of the liquid’s molecular size.
For water, λ ~ 0.02 nm (Wang et al. 2014; Bolaños and Vernescu 2017). Recently,
researchers have considered the impact of surface roughness on slip (Bolaños and
Vernescu 2017).
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Example 6.3 Find the Navier length for water at 30 �C and 1 atmosphere in a tree
root that can be approximated as a cylinder. How small can the hydraulic diameter be
such that slip occurs?

Solution Water has the following physical properties: Us ¼ 1507 m/s and ν ¼
0.801 � 10�6 m2/s. Hence, LN � ν

us
¼ 0:801�10�6 m2=s

1507 m=s ¼ 5:32� 10�10 m. Solving for

the smallest hydraulic diameter implies that Kn < 0.3. Therefore,

ℓchar ¼ λ
Kn � 0:2�10�9 m

0:3 ¼ 6:67� 10�10 m, which is clearly in the nanoregion.

6.2.3 Compatible Versus Incompatible BCs

When various BCs are used, the following Western classic comes to mind, “The
Good, the Bad, and the Ugly.” In particular, certain BC combinations for inlets and
outlets are generally defensible and reliable, while others are notoriously
untrustworthy. This is summarized in Table 6.4.

For convenience, the total static pressure is defined as

Ptotal ¼ Pstatic þ ρu2

2
: ð6:9Þ

Finally, a set of BC conditions must be self-consistent, and along with the PDEs/
ODEs being solved, the system must not form an ill-posed problem (Rempfer 2006).
This can occur when the BC fails to provide additional independent information,
such as when n + 1 unknowns are solved with n equations. Additionally, BC

Table 6.4 Inlet and outlet BC combinations

The good. . . The bad. . . And the ugly

The specification of u at the
inlet and static P at the outlet
yields reasonable results. These
BCs are highly compatible

Usage of total P at the inlet
and static P at the outlet can
result in numerical
instabilities

The specification of both inlet
and outlet u will result in
incorrect velocity distribu-
tions. In any case, what is
driving the momentum here?

Because mass flow rate is pro-
portional to u, the specification
of mass flow rate and static P at
the outlet yields reasonable
results for incompressible
situations

– The usage of total P at the
inlet, while using an outflow
BC at the outlet can result in
flow instabilities and incorrect
momentum calculation

P can be specified at the inlet,
so long as the code calculates
the exit conditions

– Usage of mass flow rate at the
inlet and an outflow BC at the
outlet is not recommended.
This is particularly so when ρ
is not constant, i.e., when the
flow is compressible
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intersections, such as the interphase where curves and surfaces meet, can be prone to
numerical issues if the intersecting BCs are not compatible. The output from these
regions should always be checked with a visualization software.

6.2.4 Initial Conditions

Initial conditions (ICs) are needed to solve initial value problems that march in time
as the solution progresses. Analogous to BCs, the number of required ICs for ODEs
and PDEs is based on the maximum order of the time derivative. For example,
consider a chunk of ice. The IC could state how much ice there is at time zero, so that
its mass as a function of time can be determined. Of course, other factors are
important, such as how much heat the ice is absorbing; this could be modeled
using a BC such as a heat flux or a more detailed Robin BC.

The mathematical utility of an IC is that it specifies the initial quantity (value) of a
given parameter, usually at time 0. For example, T(t ¼ 0) ¼ 310 K specifies the
temperature distribution at time zero for the domain in question.

Often, it is better to set the initial velocities to 0 and just let the code calculate
consistent values based on the BCs. Otherwise, there may be inconsistencies
between the pressure and velocity field as specified by the ICs and BCs, and these
can cause the code to run longer before converging and may even result in solution
divergence! In other words, failure to include ICs that are consistent with the values
represented by the BCs may cause numerical issues.

Example 6.4 Consider the following PDE:

∂u
∂t þ u ∂u

∂x þ v ∂u
∂x þ w ∂u

∂x ¼ μ
ρ

∂2u
∂x2 þ ∂2u

∂y2 þ ∂2u
∂z2

� �
� 1

ρ
∂P
∂x. How many ICs are required?

Solution This is the Navier-Stokes equation, which has a first-order partial deriv-
ative for time. Therefore, only one IC is needed.

Example 6.5 Consider the following Navier-Stokes PDE:

u ∂u
∂x þ v ∂u

∂x þ w ∂u
∂x ¼ μ

ρ
∂2u
∂x2 þ ∂2u

∂y2 þ ∂2u
∂z2

� �
� 1

ρ
∂P
∂x. How many ICs are required?

Solution This equation is the steady-state (SS) version of Navier-Stokes, so the
time partial derivative is zero, and therefore no ICs are needed.

Example 6.6 Consider the following PDE:

∂2u
∂t2 ¼ c2 ∂2u

∂x2 þ ∂2u
∂y2 þ ∂2u

∂z2

� �
. How many ICs are required?

Solution This is the wave equation with a second order time derivative. Therefore,
two ICs are needed.

While not needed for LES or DNS, RANS methods require IC input for various
turbulence quantities, depending on the model being used:
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• k for the k PDE (e.g., Prandtl k, k-ε, v2-f, SST, and k-ω models)
• ε for the ε PDE (e.g., SKE, realizable k-ε, RNG k-ε, SST, and Myong-Kasagi k-ε

models)
• ω for the ω PDE (e.g., SST, Kolmogorov k-ω, 1988 k-ω, 1998 k-ω, and 2006 k-ω

models)
• νt for Prandtl-Kolmogorov closure models (e.g., SKE) or similar closure models

(see Tables 4.2 and 4.3)

These input parameters have a significant impact near open BCs, but not as much
far away from inlets and outlets. The best approach is to obtain k, ε, ω, and νt from
experimental data. But such data is usually not available. The next best approach is
to estimate input values using the LIKE algorithm and associated equations; refer to
Sects. 3.4 and 3.5. The approach of last resort is to use the CFD code default values.
But such values are generalized and are therefore not likely to be suitable for the
specific situation of interest.

6.3 RANS Modeling Recommendations

Provided the caveats and limitations are understood, algebraic (zero-equation)
models can be used when very fast simulations are desirable. Of these, the Prandtl
mixing length, Baldwin-Lomax, and Cebeci-Smith are worthwhile investigating as
well (Wilcox 2006).

For one-equation RANS models, the Spalart-Allmaras is highly recommended.
Regarding two-equation RANS, if there is a choice between the 1988, 1998, and

2006 k-ω models, the latter is much superior and is therefore the preferred version.
Unfortunately, the coefficients for the Kolmogorov k-ω model are not well
documented, and the production term is missing. Therefore, the original Kolmogo-
rov k-ω is not recommended, though some acceptable fixes have been documented
in the literature; refer to Sect. 4.6.3.1.

If only k-ε models are available, the Myong-Kasagi is a fairly recent, promising
contender with much potential, but does not (yet) have as much usage as the SKE.
Yet, because of its promising characteristics (see Sect. 4.6.3.6), it is highly
recommended. On the one hand, the realizable and RNG k-ε models resolve various
issues associated with the SKE. Unfortunately, issues associated with the ε PDE
regarding eddy scales do impact, to various degrees, all k-ε models, as discussed in
Sect. 4.7 and its subsections; this includes ε maldistribution for Myong-Kasagi and
similar models. However, for the reasons stated in Sects. 4.7, 4.7.1, 4.7.2 and 4.7.3,
the SKE is unequivocally not recommended.

In summary, for great, all-around RANS models, Prandtl mixing length,
Baldwin-Lomax, Cebeci-Smith, Spalart-Allmaras, 2006 k-ω, 2003 SST, and
Myong-Kasagi k-ε are recommended, while the SKE is not; refer to Chap. 4 for
additional details and reasoning behind such choices. The v2-f model is quite useful
but encounters stability issues. Table 6.5 summarizes some of the pros and cons of
various turbulence models.
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Table 6.5 Guidelines toward turbulence model selection

Turbulence model Pros Cons

Zero-equation (alge-
braic models; mixing
length hypothesis)

Fastest models, great for getting
analytical solutions from PDEs
(e.g., Prandtl mixing-length
model). Because this is the simplest
form of turbulence model, it is the
easiest to implement and very
robust numerically. The Baldwin-
Lomax is good for turbomachinery
and aerospace applications, as well
as attached, thin, boundary layers

Very limited applicability and
successful mostly for very simple
flows or specific domains. No
transport of turbulent scales (e.g.,
v or ℓ). Do not use near solid
boundaries, unless using a
damping function (Van Driest)

One-equation (k-
algebraic model)

Fast. Computes one turbulent
length scale. Spalart-Allmaras is
good for turbomachinery and aero-
space applications. The Prandtl
k PDE is useful for fast calcula-
tions, test cases, and research.
Shows surprisingly great results for
heat transfer in supercritical fluids
(Otero et al. 2018)

Has no transport of the length
scale. More limited in terms of
physics compared to two-equation
models (e.g., k-ε, k-ω)

Two-equation
models

Compute the velocity turbulence
scale and some other key scale,
such as length, time, frequency, etc.
Generally provide good results for
many flows, with varying degrees
of success. Reasonably fast

Shear stress diffusion and
nonhomogeneity are not calcu-
lated. Cannot compute eddy
dynamics

Reynolds stress
model (RSM)

Zero-, one-, and two-equation
RANS models assume isotropic
viscosity via the Boussinesq
approximation. RSM is anisotropic
and Boussinesq-less. Great for
strong swirl, adverse pressure gra-
dients, and anisotropic turbulence

RSM uses six PDEs to solve each
of the six independent components
in the stress tensor. Its theoretical
basis is great, but successes are
limited, as the model has many
coefficients that require justifica-
tion. Computationally costly and
may experience instability issues

Standard k-ε
(SKE)

The most widely used model prior
to ~2005. Good for isotropic (high
Re) flows, simple flows, plane and
radial jets (but NOT round jets),
and plumes

Poor results for round jets (round
jet anomaly), far wakes, strongly
curved surfaces, intermediate to
high swirl, flow separation, sud-
den acceleration, and low-Re. Too
dissipative. Has serious eddy scale
issues and closure inconsistencies

Renormalization
group (RNG) k-ε

Improves the standard k-ε by
including a term that reduces dissi-
pation. This improves low Re, sep-
aration and swirling flows

Not good for round jets and
plumes. Not as stable as the stan-
dard k-ε. Has serious eddy scale
issues and closure inconsistencies

Realizable k-ε
(RKE)

The realizability constraints only
yield positive normal stresses,
which is an improvement over the
SKE. This upgrade improves sepa-
rated and swirling flows, boundary

Not as stable as the SKE. Has
serious eddy scale issues and clo-
sure inconsistencies

(continued)
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6.4 Miscellaneous Do’s and Don’ts of the Trade

6.4.1 Well-Posed Solutions

Certain criteria must be met to solve fluid dynamics PDEs. This includes the
mathematical notion that the problem is “well-posed,” meaning that the following
three conditions are satisfied: (1) the solution exists (which sounds obvious, but not
all problems have solutions, as will be shown later!), (2) the solution is unique, and
(3) the solution depends continuously on its boundary and initial conditions. For
tough engineering problems that seem to exhibit more than their fair share as “code
breakers,” it is advisable to question if the problem at hand is well-posed. Are the
boundaries consistent? Does a solution exist?

Example 6.7 A well-funded university wishes to perform wind tunnel experiments
on a 3D-printed dimpled airfoil at a wide Ma range, from subsonic (Ma < 1) to
supersonic (Ma � 1.0). It is desired to run posttest CFD analysis thereafter. Does a
numerical solution exist at Ma ¼ 1? Determine if this problem is well-posed.

Solution To simplify the analysis, assume that the flow is modeled as SS, inviscid,
irrotational, and compressible. In addition, simplify the problem further by

Table 6.5 (continued)

Turbulence model Pros Cons

flows, strong streamline curvature,
and round jets. The model is better
than RNG for separated flows and
secondary flows. RKE also solves
the round jet anomaly

v2-f Has the same k-ε PDEs as SKE, but
dissipation is different. Models the
wall region without using wall or
damping functions. Good for
strong swirl

Some misses at low swirl. Notori-
ously unstable (tends to abort
more often than its peers). Has
serious eddy scale issues and clo-
sure inconsistencies

2006 k-ω Great for adverse pressure gradi-
ents, separated flows, low to high
swirl, turbulent heat transfer,
low-Re, and aerospace applica-
tions. Solves the round jet anomaly.
Uses no wall functions. Wilcox
recommends that the first node be
at y+ < 5 (vs. 1 for SKE). Best
all-around RANS model

Requires a fine mesh near the wall,
as it does not use wall functions
(which is actually a pro)

2003 SST Great for adverse pressure gradi-
ents, separated flows, low to high
swirl, turbulent heat transfer,
low-Re, and aerospace applica-
tions. Great all-around RANS
model

Because of its reliance on the SKE
for high Re, the SST inherited the
SKE’s eddy scale issues and clo-
sure inconsistencies
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considering a 2D Cartesian geometry, with no external heat sources. Because the
flow is SS and inviscid, the transient and viscous terms drop, but the convective term
remains. For this highly simplified situation, the momentum and energy conserva-
tion equations reduce to 1�Ma2

	 

∂u
∂x þ ∂v

∂y ¼ 0 after several pages of elegant

mathematical procedures involving the Prandtl-Glauert rule for linearizing com-
pressible, isentropic flow (Hanson 2012; Pritamashutosh 2014).

Note that many terms in the conservation equations are zero for this idealized
situation. In particular, because the flow is SS,

∂
∂t

¼ 0:

Because the flow is inviscid,

∇2V ¼ 0:

But most importantly, the flow is compressible (Ma > 0.3; refer to Sect. 2.2), and
therefore,

∇
! 	 V! 6¼ 0:

And because there are no spatial density gradients for this isentropic, SS system,
the conservation of mass PDE is reduced to

∂ρ
∂t

���� ¼ �ρ
∂u
∂x

þ ∂v
∂y

þ∂w
∂z

����
� �

� u
∂ρ
∂x

���� þ v
∂ρ
∂y

���� þw
∂ρ
∂z

����
� �

:

That is,

∂u
∂x

þ ∂v
∂y

¼ 0:

However, the above simplified PDE will not be used further in this analysis
because the momentum-energy PDE already provides a useful Ma dependency,
1�Ma2
	 


∂u
∂x þ ∂v

∂y ¼ 0, that can be exploited to solve this problem, as will be

shown later. Therefore, another expression is needed to reach the same number of
unknowns as equations.

Now, because the flow is irrotational, the cross product of the velocity is zero.
Namely, from the definition of an irrotational flow,
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∇
! � V

! 
 0
! ¼

i
!

j
!

k
!

∂
∂x

∂
∂y

∂
∂z

u v w

��������

��������
¼

i
!

j
!

k
!

∂
∂x

∂
∂y

0

u v 0

���������

���������
¼ ∂v

∂x
k
! � ∂u

∂y
k
!
:

Next, use the dot product to multiply the above expression by k
!

(because

k
! 	 k! ¼ 1), thereby reducing the PDE to

∂v
∂x

� ∂u
∂y

¼ 0:

By this point, the momentum-energy and irrotational PDEs are sufficient to solve
this problem, especially once the elegant eigenvalue method is applied. This closure
allows the investigation of any unruly behavior for this seemingly straightforward
system of PDE equations. In particular, the two PDEs conform to the following PDE
generic classification (DuChateau and Zachmann 2011):

a1
∂u
∂x

þ b1
∂u
∂y

þ c1
∂v
∂x

þ d1
∂v
∂y

¼ e1

a2
∂u
∂x

þ b2
∂u
∂y

þ c2
∂v
∂x

þ d2
∂v
∂y

¼ e2

8>><
>>:

:

Therefore, the two PDEs can be put into matrix form, in anticipation of calculat-
ing their eigenvalues, which will allow one to determine if the flow is hyperbolic,
parabolic, elliptic, or mixed. If there are two real and distinct eigenvalues, then the
solution is hyperbolic. If there is only a single real eigenvalue, the solution is
parabolic. Finally, if the eigenvalues are imaginary, then the solution is elliptic.

The two PDEs can be expressed in general matrix-vector format as

M
∂Ψ
∂x

þ N
∂Ψ
∂y

¼ E,

such that the M and N matrices are associated with the x and y partial derivatives,
respectively,

M ¼ a1 c1
a2 c2

� �

and

N ¼ b1 d1
b2 d2

� �
:
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In this context, the two vectors are

Ψ ¼ u

v

� 

and

E ¼ e1
e2

� 
:

Therefore, the equations can be expressed as follows:

M
∂Ψ
∂x

þ N
∂Ψ
∂y

¼ a1 c1
a2 c2

� � ∂u
∂x
∂v
∂x

8><
>:

9>=
>;þ b1 d1

b2 d2

� � ∂u
∂y
∂v
∂y

8>><
>>:

9>>=
>>;

¼ e1
e2

� 
:

By comparing the PDE generic classification formula with the energy-momentum
and irrotational PDEs, the coefficients for theM and Nmatrices are readily shown as

M ¼ 1�Ma2 0

0 1

� �

and

N ¼ 0 1

�1 0

� �
:

Therefore, the desired system of equations is

1�Ma2 0

0 1

� � ∂u
∂x
∂v
∂x

8><
>:

9>=
>;þ 0 1

�1 0

� � ∂u
∂y
∂v
∂y

8>><
>>:

9>>=
>>;

¼ 0

0

� 
:

Fortunately, M is just a 2 � 2 matrix, so obtaining its inverse is straightforward
(Kreyzig 1979); the inversion is performed in preparation for obtaining the system
eigenvalues:

M�1 ¼
1

1�Ma2
0

0 1

2
4

3
5:
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For convenience, let

Φ 
 M�1N:

Then,

Φ ¼
1

1�Ma2
0

0 1

2
4

3
5 0 1

�1 0

� �
¼ 0

1
1�Ma2

�1 0

2
4

3
5:

Finally, the λ eigenvalues are found by solving the following determinant
(Kreyzig 1979),

|Φ � λI| ¼ 0, where I is the identity matrix.
That is,

0
1

1�Ma2

�1 0

2
4

3
5� λ

1 0

0 1

� �������
������ ¼

�λ
1

1�Ma2

�1 �λ

������
������ ¼ 0 ¼ λ2 þ 1

1�Ma2
:

It is evident that the eigenvalues are solely a function of Ma (which is why the
coupled momentum-energy PDE was selected in the first place!). The resultant
quadratic equation can now be solved for λ:

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Ma2 � 1

r
:

So, how does this system of equations behave? SupposeMa < 1. Then, λ has two
imaginary eigenvalues, so the behavior is elliptic. Now supposeMa > 1. Then, λ has
two real and distinct eigenvalues, so the behavior is hyperbolic. Thus, there are no
issues at this point. But can this system ever be parabolic? No, because the solution
expression demands two distinct roots (one positive and one negative for real
solutions or the complex conjugate for imaginary solutions). So, the only way to
have a single root in this case is for the square root expression to be equal to 0, which
immediately results in a mathematical contradiction. In any case, because of its
hyperbolic and elliptic behavior, this problem has mixed behavior. But, what
happens when the hapless CFD engineer is asked to solve the problem for
Ma ¼ 1? Will a solution exist? Will such CFD calculation cease to abort if the
time step is reduced, or more elements are added, or even if another CFD tool is
used?
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6.4.2 Time Steps, Stability, and CFL

Most modern commercial CFD tools are fully implicit. This means that their
numerical methods are unconditionally stable. That is, the method should be stable
for all time steps. However, this does not mean that very large time steps are
encouraged. In fact, too large a time step in an implicit algorithm will increase the
numerical error as a result of truncation. By contrast, explicit and semi-explicit
methods are easier to program, but should never use a time step larger than the
Courant limit; failure to do so will result in numerical instability, large parameter
oscillations per time step, nonsensical output, a severe cut in the time step whenever
the code automatically attempts to adjust the time step, and inevitable code aborts.
Thus, whether a numerical method is implicit or explicit, it is always a good idea to
calculate the Courant number, either as a guide to limit truncation error or to avoid
instabilities, respectively. The Courant number is also referred as the CFL number,
based on the last-name initials of its developers (Courant et al. 1967).

To determine the CFL limit for a 1D PDE, consider the following equation:

∂ϕ
∂t

þ c
∂ϕ
∂x

¼ 0, ð6:10Þ

where:

ϕ ¼ a scalar (e.g., ρ, T, u, v, w, etc.)
c ¼ parameter for the given PDE (e.g., u, etc.)

Suppose c ¼ u, meaning that the PDE is a 1D laminar, inviscid flow momentum
equation. In this case, the 1D CFL limit can be expressed as

CFL ¼ c
Δt
Δx ¼ u

Δt
Δx � Cmax, ð6:11Þ

where:

Δt ¼ time step
Δx ¼ distance between computational nodes in the x direction
Cmax is the maximum size of the CFL number, depending on the computational

situation, as will be explained shortly

In 2D, the laminar CFL is expanded as follows:

CFL ¼ uΔt
Δx þ vΔt

Δy � Cmax, ð6:12Þ

while in 3D, the laminar CFL is
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CFL ¼ uΔt
Δx þ vΔt

Δy þ wΔt
Δz � Cmax: ð6:13Þ

CFL values greater than 1, and up to 5 or so, are acceptable for implicit solvers
(Andersson et al. 2012). Some code developers push the envelope even further,
using CFL as large as 10, usually as a quick turnaround for testing new code.
(Though this approach will likely generate very large truncation errors.) Neverthe-
less, used with caution, CFL values greater than 1 for implicit codes are desirable,
especially for those seeking faster numerical solutions. However, it is up to the
analyst to show that temporal discretization is satisfied; that is, the solution con-
verges as Δt is reduced. This can be shown as follows: once the solution converges
spatially using a given time step Δt1, a second simulation is run using the same
mesh, but with a time step of Δt1/2. If the solution does not change appreciably (say
<1%), temporal discretization has been reached, at least reasonably so. For the truly
obsessed (or diligent!), yet a third simulation can be performed, with the spatial
distance being cut once more in half (Δxconverged/2), and the time step is cut in half
from the previous simulation (i.e., the time step is now at Δt1/4). This can be plotted
to show temporal convergence vs. a desired variable, e.g., u, P, etc.

In contrast with implicit solvers, a CFL value of 1.0 or less is necessary for
explicit solvers, lest the solution becomes unstable. For an explicit application for the
laminar, compressible, inviscid Navier-Stokes in a 2D Cartesian system (Anderson
et al. 1984), the maximum recommended time step is

Δtmax � 1
uj j
Δx þ vj j

Δy þ us
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δxð Þ2 þ 1
Δyð Þ2

q ð6:14Þ

where

us ¼ sound speed.

For convenience, the above expression will be referred as “ATP,” in honor of the
referenced authors. The ATP expression can be extended onto a laminar 3D format
as

Δtmax � 1
uj j
Δx þ vj j

Δy þ wj j
Δz þ us

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δxð Þ2 þ 1
Δyð Þ2 þ 1

Δzð Þ2
q , ð6:15Þ

as well as simplified onto the laminar 1D expression,

Δtmax � 1
uj j
Δx þ us

ffiffiffiffiffiffiffiffi
1

Δxð Þ2
q : ð6:16Þ

Note that the ATP expressions are for explicit numerics (not implicit), so CFL �
1.0. Note as well that such expressions do not depend on viscosity, as Δtmax is
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limited in the above expressions to situations where the viscous effects are negligible
compared with the inertial term. As a further note of caution, stability analysis not
only depends on the PDE in question but also on the type of numerical discretization
used (Courant et al. 1967). Thus, stability analysis tends to be rather ad hoc for
specific applications and not necessarily generalizable. Fortunately, there are excep-
tions, because the physical PDEs tend to follow similar expressions (see Problems
6.11 and 6.12); this is the focus of much research (Courant et al. 1967; Anderson
et al. 1984). Nevertheless, the ATP expressions can serve as guidelines, especially
when no other obvious Δt stability criterion/guidance exists. But, there is one final
cautionary note: the above expressions are not suitable for turbulent flows! This
situation will be treated though simple approximations that are discussed later in this
section.

Continuing on, a close inspection of the CFL criterion and the ATP expressions
shows that these limits are specific to convection. So, what happens if stability is
dependent on the viscous dissipation, meaning that only so much viscous momen-
tum can be transferred per unit time to guarantee stability? Consider a system where
Navier-Stokes has the following form:

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ μ

∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
� ∂P

∂x
þ ρg: ð6:17AÞ

Suppose that the viscous (i.e., molecular diffusion) term is larger in magnitude
than the convective term and that the pressure and body forces are small. Then, for a
1D laminar system,

∂u
∂t

¼ ν
∂2u
∂x2

: ð6:17BÞ

The above equation can be approximated using forward in time, centered in space
(FTCS) finite differences that are second order in space and first order in time. Then,
the von Neumann stability analysis method (or some such method) can be applied to
determine stability limits. In this case, the numerical error E in both space and time
can be modeled as a Fourier series,

E x, tð Þ ¼
XM
n¼1

eαteikx: ð6:18Þ

And, after about one page of elegant algebra, a stable time step is obtained if the
following condition is satisfied:

Δtmax � 1
2
Δx2
ν

: ð6:19Þ
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Again, note that the above stability expression applies for laminar flows, not
turbulent flows.

Finally, to ensure stability for explicit methods, the minimum time step based on
the convective (CFL or ATP) and diffusive bounds should be used, where diffusive
refers to molecular diffusion based on viscous effects:

Δtmin � min Δtconvective,Δtdiffusiveð Þ: ð6:20Þ

In preparation for obtaining stability criterion for turbulent flows, note that the
diffusion stability expression that was derived using von Neumann analysis can also
be derived by using scaling analysis. Thus, the transient viscous PDE is transformed
according to its key parameters and variables. Namely, the PDE scales (transforms)
approximately (to within an order of magnitude) as follows:

∂u
∂t

¼ ν
∂2u
∂x2

$ u
t
� ν

u
x2

: ð6:21Þ

Note that scaling is generally easily palatable for engineers but is known to give
mathematicians extreme heartburn! In any case, for small time steps and small
changes in space, then t ~ Δt and x ~ Δx, respectively; it is assumed that the error
in these approximations is small because the changes are linear, i.e., taken near a
well-known point and are not deviated much from it. Therefore, substituting the
approximations, scaling allows the following approximation:

Δtmax ,scale � Δx2
ν

: ð6:22Þ

Then, because diffusing more than half of the available mass per unit time step
will lead to instabilities, the maximum allowable time step is cut in half and is
therefore imposed as a limiting bound, yielding

Δtmax ,scale � 1
2
Δx2
ν

: ð6:23Þ

Thus, the same bounding equation is derived for laminar flows, whether scaling
arguments are used, or a more rigorous method is applied (i.e., von Neumann
stability analysis). In any case, the solution lends some corroborating credibility to
the scaling method, and it is therefore now extended onto turbulent flows. That is,
how can the maximum time step be estimated for a turbulent flow? Lacking much
guidance from the literature, the analysis begins by noting that for turbulent flows,
νt � ν , so the viscous term can be ignored (at least as a first-order approximation).
Now, assume a situation where the convective term is sufficiently smaller than the
turbulence diffusion term, and considering only the x-direction:
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∂u
∂t

¼ 2
∂ νt ∂u∂x
	 

∂x

: ð6:24Þ

Using scaling analysis, the PDE is transformed into:

u
t
� 2νt

u
x2

: ð6:25Þ

Finally, in analogy with the laminar convective scaling completed earlier, the
limiting bound for turbulent diffusion ought to permit at most half of the available
mass to transfer per unit time step. Further, the approximation will consider only
small time steps and spatial changes, so that the scaling assumptions are reasonably
physical. Hence,

Δtturbulent � Δx2
νt

: ð6:26Þ

6.4.3 A Few More Tips

• Computational time reduction:

– Calculational time is substantially cut if the problem can be reduced from 3D
to 2D, or even 1D. This is perhaps one of the greatest computational time-
reducing tricks.

– Certainly, turbulence is a 3D phenomenon, but it can still be simulated in a 2D
domain when the flow tends to be symmetric about the primary flow direction.
Furthermore, the largest turbulent fluctuations tend to occur along the primary
flow direction.

– Where appropriate, use symmetry to reduce the element count.
– Consider removing any system geometry that clearly is not needed (e.g., why

include a 2-cm bolt in a 1000 m3 tank when only CFD is required?). Recall that
the finest structures will likely have the smallest node-to-node spacing, and
this will drive the computational time step.

– Reduce the system size, especially in regions that are not as important. For
example, regions of interest may already be FD, so modeling the flow as it
becomes FD is not necessary. In such cases, an FD flow BC will significantly
reduce the computational domain.

– For implicit calculations, let CFL > 1, to perhaps 2, and as high as 5. This is
highly practical for exploratory calculations; but for the final calculation,
reduce the CFL to 1 or so, so that truncation error is minimized.

– Use node biasing to increase the distance between nodes in regions with small
velocity gradients. But ensure that the expansion ratio is less than 1.5.
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– The proper orthogonal decomposition (POD) method (or similar methodol-
ogy) (Ly and Tran 2001; Willcox and Peraire 2002) is ideal for situations
involving multiple simulations that require slight input variations (e.g., uncer-
tainty quantification, sensitivity studies, minor design changes). In such cases,
the first CFD simulation involves no computational time savings, but thereaf-
ter, adequate approximations for simulations that took days to weeks to
complete would only require a few minutes to complete (Grunloh 2019).

– Adaptive time stepping can reduce the computational time by a factor of about
seven for transients involving sharp, fast pulses (e.g., water hammer)
(Flownex 2019).

• In general, higher-order numerical methods provide higher accuracy and there-
fore require fewer computational nodes (Orszag and Israeli 1974). However,
higher-order methods tend to be more unstable because they have less numerical
dissipation. Furthermore, the boundary conditions become more complex. For
example, fourth-order spatial methods can require so-called ghost boundaries.

• Use iterative solvers (e.g., Gauss-Siedel, Jacobi, and successive over-relaxation)
for very large matrices (e.g., systems with a large number of computational nodes,
say in the millions to billions, with some systems approaching trillions as
of 2019).

• Use preconditioners to transform an unruly matrix so that it is more manageable,
thereby making it more amenable toward numerical iteration.

• Preconditioners can be useful under the following circumstances:

– Unstructured meshes (meshes with irregular patterns)
– Ill-posed matrices, matrices with large Jacobians, or systems with large con-

dition numbers
– Multiphase flows
– Flows with widely varying Ma
– Meshes with large span (range) with regard to aspect ratio

6.5 Natural Circulation Modeling

Many systems undergo natural convection, which is also known as free convection
and natural circulation. This phenomenon typically occurs as a result of temperature
gradients that induce density changes in fluids, thereby causing the fluid to flow.
Other natural circulation-inducing phenomena include magnetic circulation and
species concentration, such as changes in salinity, and so forth. The key point is
that under natural circulation, there is no forced circulation, such as occurs from
pumps (whether positive displacement or centrifugal), injectors, mechanical devices,
and the like.
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Natural circulation systems include passive cooling of nuclear reactors under
normal and accident conditions (Fernandez-Cosials et al. 2017), bodies of water
(ponds, lakes, oceans), weather patterns (thunderstorms, wind, tornadoes, hurri-
canes), storage tanks, heat exchangers, micro devices, heat pipes, heat sinks, build-
ings (internal and external circulation flow patterns), etc. Natural circulation flows
can be laminar, transitional, or turbulent. And to add more complexity, these flows
can be purely natural or involve a degree of extraneous forced flow, in which case the
flow is considered as “mixed” circulation. Because natural circulation flows tend to
have lower velocities than forced flows and require coupled physics (e.g., energy,
magneto hydrodynamics, etc.), they exhibit special numerical challenges.

6.5.1 Natural Circulation Approximation

Consider a Cartesian system under natural circulation, subject to conservation of
mass, momentum, and energy, as shown in Fig. 6.8. If the system is 2D (which is a
reasonable approximation due to symmetry), then conservation of momentum under
laminar natural circulation is

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

� �
¼ μ

∂2u
∂y2

� ∂P
∂x

þ ρg ð6:27Þ

where:

u ¼ fluid velocity in the x-direction
v ¼ fluid velocity in the y-direction

Fig. 6.8 Thermal boundary
layer generated by a heated
wall on the RHS
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ρ ¼ fluid density
μ ¼ fluid dynamic viscosity
g ¼ gravitational constant in the x-direction

Note that the viscous term in the x-direction is negligible because the u velocity
gradient WRT to x is a relatively smaller quantity.

The conservation of energy equation is

∂T
∂t

þ V
! 	∇!T ¼

_Q
000

0

ρCp
þ α∇2T , ð6:28Þ

where:

T ¼ fluid temperature

V
! ¼ velocity vector
_Q
000

0 ¼ volumetric heat source
t ¼ time

The fluid thermal diffusivity is defined as

α ¼ k
ρCp

, ð6:29Þ

where:

k ¼ fluid thermal conductivity
ρ ¼ fluid density
Cp ¼ fluid heat capacity at constant pressure

The energy equation simplifies under the assumption of a 2D system with no heat
source:

∂T
∂t

þ u
∂T
∂x

þ v
∂T
∂y

¼ k
ρCp

∂2T
∂y2

: ð6:30Þ

At this point, the dimensionless Grashof (Gr) number can be defined, which is
analogous to Re. In particular, Re represents the degree of laminarity or turbulence
under forced circulation, while Gr times the Prandtl number (Pr) is a measure of the
degree of laminarity or turbulence under natural circulation (GrPr ¼ Raleigh num-
ber ¼ Ra). For example, for a vertical plate, GrPr < 109 implies laminar natural
circulation, while GrPr > 109 implies turbulent natural circulation (Holman 1990).
In this context, Gr and Pr are defined as

Gr ¼ βgh3ΔT
ν2

ð6:31Þ
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and

Pr ¼ Cpμ
k

, ð6:32Þ

where h is the wall height.
Here, the volume expansion coefficient (AKA volume expansivity) in units of the

inverse of the absolute temperature is defined as

β 
 � 1
ρ

∂ρ
∂T

� �
P

� � 1
ρ

ρ� ρ1ð Þ
T � T1ð Þ ¼

1
ρ

ρ1 � ρð Þ
T � T1ð Þ : ð6:33Þ

Solving for an expression that will later be substituted onto the pressure term in
the momentum equation:

ρ1 � ρ ¼ ρβ T � T1ð Þ: ð6:34Þ

The remainder of the parameters is

ΔT ¼ Tw � T1ð Þ, ð6:35Þ

Tw ¼ temperature of the wall in contact with the fluid (heats-up the fluid),
T1 ¼ fluid temperature far away from the wall,

and

ν ¼ μ
ρ
¼ fluid kinematic viscosity:

Note that it is best to find the physical properties at the bulk temperature (AKA
mixing cup temperature or flow average temperature), instead of T1. The bulk
temperature in a given fluid region could be measured if such fluid were thoroughly
mixed, resulting in a single, “average” temperature, and hence its utility in calculat-
ing physical properties. For example, for a cylindrical tube,

Tb ¼

Rr0
0

ρuCPTð Þrdr
Rr0
0

ρuCPð Þrdr
: ð6:36Þ

The integrals can be obtained with a CFD tool once the simulation has been
conducted. Approximations are available in the literature for cylindrical tubes with a
uniform heat flux (Lin et al. 2012), though, as a first cut “quick and dirty” approx-
imation, let
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Tb � Tw þ T1
2

¼ T film: ð6:37Þ

In any case, whether a rough approximation or a more precise bulk temperature is
calculated, the physical properties are determined using the bulk temperature:

ν ¼ ν Tbð Þ; β ¼ β Tbð Þ, etc: ð6:38Þ

Continuing on, there is a pressure gradient caused by the fluid’s weight per unit
length of the fluid:

∂P
∂x

¼ �ρ1g: ð6:39Þ

At this point, it is convenient to substitute the two expressions for pressure and
density into the momentum equation (White 1991), as follows:

ρ
∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

� �
¼ μ

∂2u
∂y2

þ g ρ1 � ρð Þ ¼ μ
∂2u
∂y2

þ ρg β T � T1ð Þ½ : ð6:40Þ

Furthermore, the transient term can be dropped if SS is assumed, and dividing by
ρ,

u
∂u
∂x

þ v
∂u
∂y

¼ ν
∂2u
∂y2

þ g ρ1 � ρð Þ
ρ

¼ ν
∂2u
∂y2

þ g β T � T1ð Þ½ : ð6:41Þ

But the above PDE cannot be solved exactly. Fortunately, there are many ways to
obtain approximate solutions for this intractable PDE, such as back-of-the-envelope
energy balances (White 1991), numerical methods (Ostrach 1953), and extended
numerical solutions resulting in a curve-fit solution (Rodriguez and Ames 2015).

A very simplified method for estimating the natural circulation velocity begins by
assuming that there is a macroscopic (lumped) balance between the potential and
kinetic energy (PE and KE, respectively) of the fluid (White 1991):

PE ¼ 1
2
ghΔρ ð6:42Þ

and

KE ¼ 1
2
ρV2

NC, ð6:43Þ

where VNC is the average natural convection velocity. If PE is approximately
balanced by KE, then
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1
2
ghΔρ � 1

2
ρV2

NC: ð6:44AÞ

Solving for the characteristic fluid velocity,

VNC � gh
Δρ
ρ

� �1=2

� ghβΔTð Þ1=2, ð6:44BÞ

where it is assumed that

Δρ
ρ

� βΔT : ð6:44CÞ

Various researchers have employed more sophisticated techniques, including
polynomial velocity distributions to approximate the PDE solution (Blasius 1908;
Holman 1990; Haberman 2004). For example, Holman assumed a cubic polynomial
velocity distribution as a function of y and four unknown constants (Holman 1990):

u yð Þ ¼ u y;c1, c2, c3, c4ð Þ ¼ u c1 þ c2yþ c3y
2 þ c4y

3
	 


: ð6:45Þ

It is then possible to solve the unknowns subject to the problem’s specific BCs. In
this case, the laminar velocity distribution u is assumed to be solely a function of y,
with no x dependency. This is not a bad approximation, as most of the velocity
changes occur in y, as shown in Fig. 6.8. Then, upon applying the BCs, and after a
few pages of algebra, the desired velocity distribution is obtained for a laminar,
natural circulation flow with Pr � 1 (Holman 1990):

u yð Þ ¼ βδ2g Tw � T1ð Þ
4ν

y
δ

1� y
δ

� �2
: ð6:46Þ

The laminar velocity solution can be further exploited by taking the derivative of
uWRT y and setting it to 0. That is, the peak laminar u in the thermal boundary layer
at a given location y can be obtained as follows:

du
dy

¼ 0 ¼ βδ2g Tw � T1ð Þ
4ν

� �
1
δ
� 4

y

δ2
þ 3

y2

δ3

� �
: ð6:47Þ

After about one page of algebra, the desired location for the peak NC velocity is

y ¼ δ
3
: ð6:48Þ

In other words, for any location x, there is a maximum peak laminar velocity u,
which is always located at y ¼ δ/3. This is a direct consequence of the velocity
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distribution being parabolic; refer to Fig. 6.8. Therefore, the maximum velocity u(x)
for laminar flows with Pr � 1 is now derived as

umax y ¼ δ
3

� �
¼ βδ2g Tw � T1ð Þ

4ν
4
27

� �
¼ βδ2g Tw � T1ð Þ

27ν
: ð6:49Þ

A more general laminar velocity expression, valid for 0.001 � Pr � 1000
(Rodriguez and Ames 2015), is cited here as follows:

umax xð Þ ¼ 2 0:5Pr�0:11 � 0:24
	 
 ν1

x

ffiffiffiffiffiffiffiffi
Grx

p
: ð6:50Þ

The above expression is based on an extension of Ostrach’s ground-breaking
work for natural circulation (Ostrach 1953).

An expression for the thermal boundary layer thickness for laminar natural
circulation is shown as a function of fluid properties and distance along the plate
(Holman 1990):

δ ¼ δ xð Þ ¼ Cx1=4, ð6:51AÞ

where Holman’s constant is primarily a function of the fluid physical properties α, β,
and ν, while the term in brackets is similar to Gr:

C ¼ 3:93
20
21 þ ν

α

	 
1=4 α
ν

	 
1=2
βg Tw�T1ð Þ

ν2

h i1=4 : ð6:51BÞ

The Gr-like term is the buoyancy parameter times the temperature difference
(White 1991) and is very useful for comparing the relative potential of fluids to
undergo natural circulation (White 1991).

The laminar boundary layer thickness for forced flow parallel to a wall was
derived by Blasius over a century ago and compares well with experimental data
(Blasius 1908):

δ ¼ δ xð Þ ¼ 5xffiffiffiffiffiffiffiffiffi
Re x

p : ð6:52Þ

6.5.2 Additional Natural Circulation Modeling Guidelines

• Knowing the peak velocity allows the analyst to estimate a reasonable time step.
For example, for laminar flows, the CFL limit can be estimated by using the peak
velocity discussed in Sect. 6.4.2.
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• In general, a reasonable time step for natural circulation flows is typically on the
order of tens to hundreds of times larger than forced convection, because natural
circulation flows tend to be that much slower.

• Pr has a significant impact on the modeling of natural circulation flows (Ostrach
1953; Holman 1990; Yokomine et al. 2007; Rodriguez and Ames 2015); some
guidelines are as follows:

– Low Pr materials (e.g., liquid metals) cannot be adequately modeled using a
fixed turbulent Pr, as the results can diverge from Nusselt number (Nu)
experimental data by as much as 50%, and this divergence trend only increases
further as Re increases. Nevertheless, this situation can be fixed by using wall
functions suitable for low-Pr fluids, along with low-Pr turbulence models such
as the k-ω-kt-εt (Bna et al. 2012). Note that Prt is generally a function of Re and
Pr for low-Pr fluids (Jischa and Rieke 1979; Chen et al. 2013):

Prt ¼ 0:9þ 182:4
PrRe0:888

: ð6:53Þ

– For large Pr materials (e.g., oils), the turbulent Prt is generally a function of
both Re and Pr as well (Hasan 2007; Yokomine et al. 2007):

Prt ¼ 6:374Re � 0:238Pr � 0:161: ð6:54Þ

• For codes that allow the user to use different (separate) solvers for mass, momen-
tum, and energy (e.g., Fuego (2016)), it is preferable to choose the same solver for
all three PDEs and to use the same convergence criteria. Failure to do so may
result in inconsistent solutions and code aborts.

• Because the flow motion depends on density differences that occur near the wall,
it is critically important that the mesh near the wall be sufficiently discretized and
has good mesh metrics. For turbulent natural circulation flows, y+ ¼ 1 is an ideal
starting point. The criteria for laminar, natural circulation flows is not as
restrictive vs. turbulent natural circulation flow and is resolvable with meshes
having 10–100 times fewer nodes across the boundary layer.

• Natural circulation flows can involve many transitions, including chaotic shifts,
oscillations, reversals, bifurcations, and unexpected turbulence behaviors. There-
fore, changes in key parameters may result in significantly divergent flows
(Gleick 1988; Strogatz 1994).

– Because of the above situation, small changes in initial conditions may result;
under the right conditions, chaotic flows and bifurcations will occur as well
(Strogatz 1994).

– In fact, the famous system of three coupled PDE equations discovered by
Lorenz that so beautifully capture the butterfly-like Lorenz attractor was
derived directly from conservation of energy and the Navier Stokes equations
(Lorenz 1963). This confirms that the seemingly deterministic energy and
momentum PDEs have lots of hidden, intrinsic chaotic structure!
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6.6 Data Visualization Tips

As discussed in Chap. 1, an extreme advantage of CFD and multiphysics over
experiments is that a very large number of computational nodes can be used to
model a system, with each node providing information as though it were a thermo-
couple, a pressure transducer, a flow meter, and so forth. This is certainly not
possible experimentally. And of course, this discussion does not yet include
CFD’s ability to compute properties that are extremely difficult to measure experi-
mentally, that cannot be measured due to physical constraints and the laws of nature,
that are too expensive to measure, or that are simply unsafe to measure. More
mundane issues include instrumentation that results in unintended parameter
changes, such as a thermocouple being an unwanted heat source or sink, or inter-
fering with the flow by blocking or diverting it, and so forth. Or, perhaps the
instrumentation was not calibrated, or failed to work properly, or was not incorpo-
rated properly. Certainly, good experimentalists will take care of these and other
issues, so they could never happen, and experimental data is always perfect, right?

And hence the potential benefits of CFD, if done properly. Needless to say, the
human eye will not respond well to reams of CFD numerical data, so what are some
ways to most effectively summarize millions or billions of computational data
points? Because data visualization is a science and an art form that is embedded
with diverse and conflicting human factors, there is no ultimate consensus as to how
to generate excellent images, figures, charts, etc. (Sanders and McCormick 1987).
But, speaking in general terms, computational output imagery should be focused,
clear, legible, self-contained, and show a compelling point or story; having eye
appeal (“eye-candy”) is a definite bonus. That said, there are general, useful tips that
blend various human factors, data display, and art forms. Some of these are
suggested, while others are highly recommended.

• More often than not, it is recommended that the system geometry (or a cut-out
section) be included in a figure, so use overlay as much as possible. Overlay refers
to the superposition of two or more images, and in this context, this is the
overlaying of key surfaces and some form of parameter color rendering. For
example, the upper image on the RHS of Fig. 6.9 shows a velocity distribution for
flow around six cylinders, but it is difficult to “see” the flow distribution. By
overlaying the six tubes with translucent coloring (e.g., “volume” rendering in
ParaView), the flow pattern comes alive and makes more intuitive sense, as
shown in the lower LHS image. The overlay of streamlines and cylinders is
shown in the lower RHS of Fig. 6.9 as an improved display. If necessary for a
clearer view of the velocity distribution, set the solid body’s opacity to 5–20%.

• Visualization can be used to show how spatial convergence is coming along and
might even point to meshing issues. This is achieved by overlaying the compu-
tational mesh onto the parameter color display (whether it is T, u, v, w, etc.). In
particular, meshes that are sufficiently discretized will show that the element
coloring by parameter is independent of the mesh grid pattern—that is, the
parameter values (by color) must not follow (hug) the computational elements.
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For example, notice that the upper LHS of Fig. 6.10 has various unusual vertical
velocity streaks; this image provides few clues as to the source of the problem.
However, once the mesh grid is overlaid onto the colored velocity distribution
(upper RHS), it is immediately evident that the velocity distribution follows
(is dependent upon) the element boundaries. Moreover, the overlay shows that
the mesh has a large aspect ratio on the RHS of the domain and a large expansion
ratio at the interface between the small and large elements (central region). Once
better mesh metrics are applied to the model, the velocity distribution is shown to
be independent of the element boundaries (see the lower RHS), where the baffling
velocity distribution vanishes.

Fig. 6.9 Velocity distribution around vertical cylinders using various overlay schemes

Fig. 6.10 Velocity distribution in a rectangular domain. Upper two images: mesh has a large aspect
ratio and large expansion ratio. Bottom: mesh with better mesh metrics
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• It is often useful to include multiple sets of parameters on a single image (e.g.,
single figure). For example, if the image is split into two screens, then T can be
shown on one side and perhaps u on the other and so forth. This juxtaposition of
computational parameters can provide many useful engineering insights and
behavior correlations.

• A significant portion of the population is color blind, so do not count on color to
provide the entire exposition of data (Sanders and McCormick 1987). To avoid
this issue, not only consider using assorted colors for the curves but also use
symbols (e.g., triangles, circles, etc.) and diverse types of curves (e.g., dashed,
dotted, etc.). The curves and symbols should be much larger than size 1 and more
likely should be on the order of 3 to 7.

• Consider using log scales (both for curves and coloring by parameter) when there
is a broad range in data parameter space.

• Use arrows and brief descriptions to identify key changes in parameters. Many
programs can do this, including MATLAB and ParaView. However, the process
can also be accomplished by copying the figure onto PowerPoint, overlaying
arrows and comments on the slide, and then generating the final image through a
screen shot, e.g., Any Capture software.

• Note that screen shot software generate images at various resolutions, such as .tif,
.png, .bmp, and so forth. Always select the highest possible resolution.

• Certainly, too many arrows, comments, and “bells and whistles” can be
distracting and even detrimental. Again, this is an art and a science. The point
is to focus on the narrative that a figure should convey. If too much information is
required, consider using several figures instead of one, employing a unified theme
per figure.

• It is wise to spend an extra 5 minutes per figure to check for errors and pesky,
ubiquitous typos, as well as legibility. To make matters worse, this is an area
where spell checkers are not typically employed, especially for binary files.
Therefore, check the units. Make sure the font is still readable in the document
(not just on the image that was created!). The same applies to the curves; are they
distinguishable? If possible, have a colleague inspect your figure(s); do they make
sense? Does your image convey the story you need to express?

• For extremely appealing, artful images, consider using opposing colors, such as
they appear on color wheels. For example, blue and orange go well together (i.e.,
when included in a figure where they are adjacent to each other), and so does
green and red; ditto cyan and light green; etc.

• In contrast to the previous point, avoid using, on a side by side basis, colors that
are adjacent on the color wheel. For example, blue and purple do not go well near
each other, ditto yellow and light orange or light blue and green, contrast is
important.

• Do not use yellow on white! Images require sharp contrast.
• Remember that the data will likely be viewed by important people with diverse

backgrounds, including engineers of many types, managers, administrators, stu-
dents, lawyers, and financiers with deep pockets. Therefore, terms that make
sense to a civil engineer may not mean much to a nuclear engineer and vice versa.
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A well-thought-out figure must cross language barriers and ought to appeal to a
wider audience.

• Avoid using acronyms in figures, and always define them in the associated
documents. (As a side note, some acronyms have diverse meanings, depending
on the field.).

• A figure should be “self-contained,” meaning that in of itself, it must contain all
the information necessary for the audience to understand its message. For exam-
ple, do not assume that a deeply buried paragraph in the report justifies the
missing information that rightfully belongs in the figure as well. This includes
well-described legends, titles, captions, etc.

• Images should have font size that is at least 20 or higher. Do not ruin a great
computational effort with legends that are unreadable (or not present, as is
sometimes the case).

• The legend should clearly label all curves and allow the reader to fully understand
the parameter range under consideration.

• Indeed, “a picture is worth a thousand words.” Make it count!

6.7 Problems

6.1 Is it ever acceptable to use only one mesh metric? Why or why not?
6.2 What is an acceptable minimum set of independent mesh metrics, and why?
6.3 Can a mesh metric replace the aspect ratio? Why or why not?
6.4 Explain the CFL number, and what are acceptable CFL values? Why is the

CFL magnitude different for explicit and implicit solvers?
6.5 For an explicit calculation, is it sufficient to only check the CFL criteria? If not,

what else should be checked? (Hint: which momentum term is associated with
CFL?)

6.6 Choose an article from the journal of your choice and compare its figures with
the guidelines listed in Sect. 6.6. What was done right and what could be
improved?

6.7 Show that for the laminar region with the following velocity

distribution,U yð Þ ¼ βδ2g Tw�T1ð Þ
4ν

y
δ 1� y

δ

	 
2
, the peak velocity is

umax ¼ βδ2g Tw�T1ð Þ
27ν . Plot the peak velocity vs. the boundary layer thickness.

The fluid is nitrous oxide at T1¼332 K and P ¼ 1 MPa. TW ¼ 500 K. Hint:
would computing Gr help?

6.8 A system in 3D Cartesian space has V ¼ V(x,y,z), and its domain is 0 � x � L,

0� y�M, and 0� z� N. The PDE is ∂2u
∂x2 þ ∂2v

∂y2 þ ∂2w
∂z2 ¼ 0. How many BCs are

needed, and what types of BCs would be needed to solve the equation?
6.9 A system in 3D Cartesian space has V ¼ V(x,y,z). The domain is bounded by

0 � x � L, 0 � y � M, and 0 � z � N. The mass conservation PDE is
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∂ρ
∂t ¼ �ρ ∂u

∂x þ ∂v
∂y þ ∂w

∂z

� �
� u ∂ρ

∂x þ v ∂ρ
∂y þ w ∂ρ

∂z

� �
. How many BCs and ICs are

needed to solve the equation?
6.10 Water at 400 K and 6 MPa is flowing inside a cylindrical duct (D ¼ 0.1 m) at a

mass flow rate of 50 kg/s. If an implicit solver is used with CFL ¼ 5 and the
first computational node is at y+ ¼ 1, what is the expected time step?

6.11 Consider the following Cartesian 3D energy equation:

∂T
∂t

þ u
∂T
∂x

þ v
∂T
∂y

þ w
∂T
∂z

¼ k
ρCp

∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �
þ

_Q
000

0

ρCp
:

Assume no heat source and SS. What is the heat convection stability
criteria? Hint: note the similarity between the energy and the u-momentum
conservation equation, with no external pressure source, no body force (e.g.,
negligible g), and the viscous term is much smaller than the convective term:

ρ
∂u
∂t

þ ρ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

� �
¼ μ

∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
� ∂P

∂x

���� þ ���ρg:

6.12 Consider the same situation for the energy equation as in Problem 6.11, except
that now, the diffusive term is much larger than the convective term. What is
the diffusive stability limit?

6.13 Which metric might be better, the condition number or the scaled Jacobian?
Discuss pros and cons. What is the mathematical/computational basis for these
parameters? For example, consider (Knupp 2003), and recall that mesh metrics
are generally based on strong mathematical/computational foundations.

6.14 Consider a lead bismuth eutectic (LBE) at 700 K and 1 atmosphere flowing at
mass flow rate of 100 kg/s. Re ¼ 5000 inside a pipe. Assume that the first
computational node is placed at y+ ¼ 1. Furthermore, assume that a node-to-
node growth rate of 1.5 is used. How many computational nodes will be
included in the viscous sublayer and the buffer layer? How does this
nodalization distance compare with λ and η?

6.15 Consider a smooth flat plate under isothermal boundary-layer flow. The plate is
0.1 m long and 0.05 m wide, with air flowing parallel to it at 300 K and
1 atmosphere (ν ¼ 1.58 � 10�5 m2/s and Us ¼ 347.3 m/s). The air flows from
left to right along the 0.1 m plate at a constant velocity U1 ¼ 15.8 m/s. Will a
turbulence model be needed? Develop a mesh with aspect ratios�50 and skew
�5. Use biasing near the wall, with an expansion ratio�15. Use your CFD tool
of choice and compare the solution with another mesh that has aspect ratio �5,
skew �0.5, and an expansion ratio �1.5. What happened here?

6.16 An engineer is tasked with designing a vertical nuclear reactor where the heat
source is based on uranium fuel enclosed within aluminum flat plates that are
2.5 m wide, resulting in a wall temperature at 850 K. The liquid bismuth
coolant enters the bottom at 600 K and 1 atmosphere and flows at a mass flow
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rate of 50 kg/s as a result of natural circulation. What is the required minimum
plate height h such that the fluid marginally enters the turbulent regime,
GrPr ¼ 1.0E9? Estimate the average velocity and the peak turbulent velocity
at that point. What are the integral, Taylor, and Kolmogorov length scales?
Which turbulence models are advisable, and what is the value of y for y+ ¼ 1
and 30?
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Chapter 7
Listing for Turbulence Programs,
Functions, and Fragments

My precious.

—Gollum; J. R. R. Tolkien, 1937

Abstract A compilation of MATLAB scripts and functions is provided to enable
the user to quickly estimate key laminar and turbulence parameters. This includes the
LIKE algorithm, as well as a function to calculate physical properties for various
molten metals. Another MATLAB script calculates the peak velocity for laminar and
turbulent flows under natural circulation. The script also calculates the convective
heat transfer coefficient, Pr, Gr, Nu, and Ra. Finally, a FORTRAN program for the
Prandtl one-equation turbulence model is provided. The program is intended as an
example to show how RANS models can be coded, as well as to provide some
practical guidelines. The program couples the momentum equation with the k PDE
to solve a 2D Couette flow. For user convenience, the program writes MATLAB
files suitable for plotting k, ε, νt, and u.

This chapter contains a compilation of MATLAB scripts, functions, and fragments
that are designed to quickly estimate key laminar and turbulence parameters.
The files are Yplus_LIKE_Eddy_Scales.m, PR_ETA_FPRIME.m, and
NaPbBiLBE_FUNC.m. The chapter also includes a FORTRAN program for the
Prandtl one-equation turbulence model. Clearly, more elegant coding is possible,
and this is perhaps graciously offset by the coding’s utility.

For coding that calls REFPROP, make sure that the necessary auxiliary scripts are
included in the directory where the files are run, such as refpropm.m, refprp64.dll,
REFPRP64_thunk_pcwin64.dll, rp_proto.m, rp_proto64.m, etc. These auxiliary
scripts act as an interface between MATLAB and REFPROP, to allow MATLAB
to retrieve physical properties that are calculated by REFPROP. The interested
reader should consult https://refprop-docs.readthedocs.io/en/latest. It appears that
more recent versions of MATLAB (circa Version 10 or so) may have integrated the
REFPROP interface auxiliary scripts, thereby eliminating the need to obtain the
auxiliary REFPROP files.

© Springer Nature Switzerland AG 2019
S. Rodriguez, Applied Computational Fluid Dynamics and Turbulence Modeling,
https://doi.org/10.1007/978-3-030-28691-0_7
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7.1 The LIKE Algorithm, y+ Calculator, and Eddy Scale
Calculator

The LIKE algorithm is ideal for estimating four key turbulence properties, and in
turn, these can be used to estimate many other useful turbulence variables.

The four variables are as follows:

L ¼ ℓ ¼ integral eddy length scale, which is approximately a large eddy length
I ¼ It ¼ turbulence intensity
K ¼ k ¼ turbulent kinetic energy
E ¼ ε ¼ turbulent dissipation

Furthermore, because of the information calculated from LIKE, the script readily
calculates the integral, Taylor, and Kolmogorov eddy velocity, length, and time
scales. Finally, the distance y from the wall for y+¼ 1, 7, and 30 is calculated as well.

• The Yplus_LIKE_Eddy_Scales.m script is listed below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                                                                            %
% Program to calculate the "LIKE" algorithm and y+.  The integral, Taylor, and Kolmogorov eddy         %
% velocity, length, and time scales are calculated as well.                                                                  %
%                                                                                                                            %
% Units are in SI, unless otherwise noted.                                               %
%                                                                                                                            %
% Assumes fully-developed internal pipe flow.                                                                                            %
% Can also do external flow over a flat plate.                                                                               %
%       %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                            %
% Programmed by Sal B. Rodriguez on April 21, 2014.  Version 1.0.                                                         %
% Revised on December 9, 2015 to correct a few bugs and add more capacity.  Version 1.5.                     %
% Modified on 02/15/2016 to improve output readability.  Version 2.0.                                                      %
%                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  REQUIRED INPUT
% - Some form of velocity or mass flow rate, e.g., U_inf, u_max, m_dot. 
% - Pressure P is required for physical properties that are pressure dependent (if using REFPROP).
% - Fluid temperature, T_fluid if using REFPROP.
% - If not using REFPROP, then the physical properties must be input manually.
% - Some form of characteristic distance, e.g., pipe diameter D, L, or x_char. 
% - See sample input below for additional input format and requirements (Case 1).
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nu = fluid kinematic viscosity
% A = flow area
% flow = 0; %%% Flow is internal
% flow = 1; %%% Flow is external
% u_bar = average turbulent velocity
% u_char = fluid characteristic velocity
% u_bar_max = maximum turbulent velocity
% Re = hydraulic Reynolds number
% I = turbulence intensity
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Case 1.  Sample input for turbulent pipe flow.  Fluid = sCO2.  04/03/2019. 
flow = 0;          %%% Flow is internal.
lambda = 0.0;  %%% lambda = surface roughness, m.

P = 29.11e6;            %%% Pa
P_refprop = P/1000.0;   %%% Divide by 1,000 because REFPROP requires kPa input.
T_fluid = 550 + 273.15; % K
%%% If uncommented, the next line calls REFPROP to compute the sCO2 properties.  
%%% Alternatively, the user can input the properties manually (which are commented immediately below
%%% the REFPROP call line).
[U_sound rho_liq mu_liq] = refpropm('ADV','T',T_fluid,'P',P_refprop,'co2');

%%% The lines below are commented if REFPROP is called to calculate the physical properties.
%%%U_sound = 472.9;
%%%mu_liq = 38.8e-6;  
%%%rho_liq = 177.2;   

x_char = 0.025;
u_char = 4.67;

nu = mu_liq/rho_liq;
Ma = u_char/U_sound; %%% Mach number calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fixed constants.
y_plus1 = 1.0;   %%% Used to obtain y at y+ = 1 for meshing purposes.
y_plus7 = 7.0;   %%% Laminar viscous sublayer; 7 is ~ max., but can be as little as 5-ish.
y_plus30 = 30.0; %%% Value for beginning of log domain.
C_mu = 0.09;
beta_star = 9./100.;  %%% Wilcox k-omega model.

%%% Begin turbulence calculations.
%%% A = pi*D*D/4;
%%% m_dot = rho_liq*u_fluid*A;
%%% u_bar = m_dot/(rho_liq*A);
u_bar = u_char;             %%% u_fluid;
u_bar_max = (5./4.)*u_bar;  %%% This line is correct iff u_bar is an average velocity.  BSL expression.
u_char_max = u_bar_max;

Re = x_char*u_char/nu;
l = 0.07*x_char;
I = 0.16*Re^(-1./8.);
k = (3./2.)*(u_char*I)^2;
epsilon = C_mu*(k^(3./2.))/l;  %%% Uses "l" based on l=C*x_char.  This is the Prandtl-Kolmogorov relationship.

% lambda = surface roughness.
% k = turbulent kinetic energy
% epsilon = turbulent dissipation
% omega = turbulent frequency
% nu_t = turbulent kinematic viscosity
% C_f = wall skin friction coefficient
% tau_wall = wall shear friction
% u_star = turbulence velocity at the wall
% l_Kol = Kolmogorov eddy size
% v_Kol = Kolmogorov eddy velocity
% t_Kol = Kolmogorov eddy time
% l_Tay = Taylor eddy size
% v_Tay = Taylor eddy velocity
% t_Tay = Taylor eddy time
% l_Int = Integral eddy size
% v_Int = Integral eddy velocity
% t_Int = Integral eddy time
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;
clc;
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if flow == 1 %%% Flow is external.
if Re <= 1.0e9

C_f_ext = (2*log10(Re) - 0.65)^(-2.3);  %%%Schlichting skin friction equation for flat plate. Good for Re < 1x10^9.
C_f = C_f_ext;

else
disp('Error: Re outside of wall friction correlation range') 

end
elseif flow == 0 %%% Flow is internal.

C_f_int = 0.0055*( 1+(2.0e4*(lambda/x_char)+ 1.0e6/Re)^(1/3)  );
C_f = C_f_int/4;  %%% Convert the Darcy value to Fanning friction factor.

else
disp('Error: Unknown flow type') 

end

tau_wall = C_f*rho_liq*u_char*u_char/2;
u_star = sqrt(tau_wall/rho_liq);   %%% friction velocity;  aka shear velocity (hence a "tau" instead of a "star").

y_at_yplus1 = y_plus1*nu/u_star;
y_at_yplus7 = y_plus7*nu/u_star;
y_at_yplus30 = y_plus30*nu/u_star;

%%% Estimation of entrance length to reach fully developed turbulent flow.
n1 = 0.25;
C1 = 1.359;
L_e = x_char*C1*Re^n1;
L_over_x_char = L_e/x_char;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Print all relevant turbulence quantities...

%%% Characteristic length and velocity.
sprintf('Characteristic length = %3.2e m', x_char)
sprintf('Characteristic velocity = %3.2e m/s', u_char)

%%% Fluid properties.
sprintf('Temperature = %3.2e K', T_fluid)
sprintf('Pressure = %3.2e Pa', P)
sprintf('Density = %3.2e kg/m3', rho_liq)
sprintf('Dynamic viscosity = %3.2e kg/m-s', mu_liq)
sprintf('Kinematic viscosity = %3.2e m2/s', nu)
sprintf('Sound speed = %3.2e m/s', U_sound)

%%% Dimensionless numbers.
sprintf('Reynolds number = %3.2e', Re)
sprintf('Mach number = %3.2e ', Ma)

omega = epsilon/(beta_star*k);
nu_t = (C_mu*k^2)/epsilon;
nu_rat = nu_t/nu;

% Kolmogorov Eddies.
l_Kol = ( (nu)^3/epsilon )^(1/4);
t_Kol = (nu/epsilon)^(1/2);
v_Kol =l_Kol/t_Kol;

% Taylor Eddies.
l_Tay = ( (10*k*nu)/epsilon )^(1/2);
t_Tay = (15*nu/epsilon)^(1/2);
v_Tay = l_Tay/t_Tay;

% Integral Eddies
l_Int = l;
t_Int = C_mu*k/epsilon;
v_Int = l_Int/t_Int;

278 7 Listing for Turbulence Programs, Functions, and Fragments



%%% Eddy size, velocity, and time scales.
sprintf('Kolmogorov eddy size = %3.2e m', l_Kol)
sprintf('Kolmogorov eddy velocity = %3.2e m/s' , v_Kol)
sprintf('Kolmogorov eddy time = %3.2e s' , t_Kol)
sprintf('Taylor eddy size = %3.2e m' , l_Tay)
sprintf('Taylor eddy velocity = %3.2e m/s' , v_Tay)
sprintf('Taylor eddy time = %3.2e s' , t_Tay)
sprintf('Integral eddy size = %3.2e m', l_Int)
sprintf('Integral eddy velocity = %3.2e m/s', v_Int)
sprintf('Integral eddy time = %3.2e s', t_Int)

%%% Fluid dynamics/turbulence frequencies.
sprintf('Eddy frequency (omega) = %3.2e 1/s' , omega)
sprintf('Kolmogorov eddy frequency = %3.2e 1/s' , 1/t_Kol)
sprintf('Taylor eddy frequency = %3.2e 1/s' , 1/t_Tay)
sprintf('Integral eddy frequency = %3.2e 1/s', 1/t_Int)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Key Fluid dynamics and turbulence parameters.
sprintf('Max. mean turbulence velocity = %3.2e m/s', u_char_max)
sprintf('Entrance length for turbulent flow = %3.2e m', L_e)
sprintf('L_e/x_char = %3.2e', L_over_x_char)
sprintf('Wall friction C_f or f = %3.2e', C_f)
sprintf('Wall friction velocity (u*) = %3.2e m/s', u_star)
sprintf('Wall shear = %3.2e kg/m-s2', tau_wall)
sprintf('y at y+=1 = %3.2e m', y_at_yplus1)
sprintf('y at y+=7 = %3.2e m', y_at_yplus7)
sprintf('y at y+=30 = %3.2e m', y_at_yplus30)
sprintf('Turbulent kinematic viscosity = %3.2e m2/s', nu_t)
sprintf('Ratio of turbulent and fluid kinematic viscosities = %3.2e', nu_rat)
sprintf('Turbulence intensity = %3.2e', I)
sprintf('Specific turbulent kinetic energy = %3.2e m2/s2', k)
sprintf('Eddy dissipation (epsilon) = %3.2e m2/s3', epsilon)

7.2 Peak Velocity Calculator for Laminar and Turbulent
Natural Circulation

The MATLAB script for calculating the peak velocity for natural circulation
(NC) laminar and turbulent flows is presented here. The script also calculates the
convective heat transfer coefficient (h), Pr, Gr, Nu, and Ra. It can calculate both
horizontal and vertical geometries, though the emphasis is on vertical flows. The
laminar regime is valid for 0.001 < Pr < 1000. The script has been validated for a
horizontal pipe with air and water and a vertical plate with air.

• The PR_ETA_FPRIME.m script is listed below:
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%                                                                                                                          %%%
%%% Program to calculate natural circulation (NC) velocity, the convective heat                              %%%
%%% transfer coefficient (h), Pr, Gr, Nu, and Ra based on computer solutions from                          %%%
%%% [Ostrach, 1953], Housam Binous MATLAB data [National Institute of Applied Sciences        %%%
%%% and Technology, Tunis, Tunisia, binoushousam@yahoo.com], and author's extensions            %%%
%%% for Pr domain [Rodriguez and Ames, 2015].                                             %%%
%%%                                                                                                                          %%%
%%% Valid for laminar NC with 0.001 < Pr < 1,000 [Rodriguez and Ames, 2015]. Includes             %%%
%%% equations for turbulent NC flow as well.                                                                                 %%%
%%%                                                                              %%%
%%% Designed primarily for vertical plate flow, though the script was validated for a                       %%%
%%% horizontal pipe with air and water, and a vertical plate with air.                                                 %%%
%%%                                                                                                                          %%%
%%% All units are in SI; P is in Pa, but if REFPROP is called, REFPROP requires kPa                     %%%
%%% pressure input.                                                                                                          %%%
%%%                                      %%%
%%% The script is initially set to CASE 1, which is a validation for water under NC,                        %%%
%%% HORIZONTAL, 2-cm tube, Delta-T=30 K. In this case, Holman cites h~890 W/m2-K            %%%
%%% [Holman, 1990, Page 13] vs. 935.7 W/m2-K for this MATLAB script.                                      %%%
%%%                                                                          %%%
%%% Programmed by Sal Rodriguez.                                                                                             %%%
%%% 05/29/2015, Version 1.0             %%%
%%% 05/11/2019, Version 1.5.  Added more physical properties options and validation.                   %%%
%%%                                            %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;
close all;
clc;

g = 9.8;  %%% Gravitational constant, m/s2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% REQUIRED user input for the particular problem being solved.
% Various examples and validation cases are listed below.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Choose value for i_fluid if using any of the molten metals: Na=1, Pb=2, Bi=3, and LBE=4. 
%%% Or, use the REFPROP call below for the material properties.  Otherwise, insert the necessary 
%%% properties manually.

i_matprop = 0;  %%% Choice of method to calculate the material properties:
%%% Default value = 0.
%%% 1 = NaPbBiLBE_FUNC function call for Na, Pb, Bi, or LBE properties.
%%% 2 = REFPROP call.
%%% 3 = User-input material properties.  

i_fluid = 0;    %%% Choice of fluid is required if calling Function NaPbBiLBE_FUNC, where Na=1, 
%%% Pb=2, Bi=3, and LBE=4.  Default value = 0, which will cause abort if  
%%% i_fluid=0 AND i_matprop=1.  Otherwise, if calling REFPROP or providing 
%%% user-input of the physical properties, then the value of i_fluid does not 
%%% matter.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 1.
%%% Example: Validation case for water NC, HORIZONTAL, 2-cm tube, Delta-T=30 K. Therefore, the 
%%% correlations are for HORIZONTAL geometry.  Holman cites h~890 W/m2-K [Holman, 1990, Page 13]
%%% vs. 935.7 W/m2-K for this MATLAB script.
T_fluid = 300;
T = T_fluid;
T_w = 330.;
T_film = (T_fluid + T_w)/2;
P = 101300.0;
P_refprop = P/1000.0;  %%%101.3 kPa = 101,300 Pa (refprop requires kPa input)

x_char = 0.02;    %%% m
q_flux = 250.;    %%% W/m2. Input required if system is heat-flux based.
%nu_t = 1.0e-003; %%% m2/s. Input required if system is turbulent (not the case for this example).

i_matprop = 2; % Flag for calling REFPROP

%%% Activate validation input lines (check for "validate" key word in this script) (e.g., 
%%% Nu_x_lam_horiz_pipe_validate, h_lam_horiz_pipe_validate, Nu_x_turb_horiz_pipe_validate, and
%%% h_lam_horiz_pipe_validate.

%%% Also activate the following input line in the "MATERIAL PROPERTIES IF-CONDITIONAL", namely:
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'water')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 2.
%%% Example: Validation case for air NC, vertical plate=0.3 m, Delta-T=30 K.
%%% Holman cites h~4.5 W/m2-K [Holman, 1990, Page 13] vs. 3.35 W/m2-K for this MATLAB script.
%T_fluid = 300;
%T = T_fluid;
%T_w = 330.;
%T_film = (T_fluid + T_w)/2;
%P = 101300.0;
%P_refprop = P/1000.0;  %%%101.3 kPa = 101,300 Pa (refprop requires kPa input)

%q_flux = 250.;   %%% W/m2. Input required if system is heat-flux based.
%nu_t = 1.0e-003; %%% m2/s. Input required if system is turbulent (not the case for this example).
%x_char = 0.3;

%i_matprop = 2; % Flag for calling REFPROP

%%% Activate the following input line in the "MATERIAL PROPERTIES IF-CONDITIONAL", namely:
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,
'nitrogen', 'oxygen','argon', [0.781,0.210,0.009])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 3.
%%% Example: Validation case for air NC, horizontal, 5-cm tube, Delta-T=30 K. Holman cites
%%% h~6.5 W/m2-K [Holman, 1990, Page 13] vs. 6.62 W/m2-K for this MATLAB script.

%T_fluid = 300;
%T = T_fluid;
%T_w = 330.;
%T_film = (T_fluid + T_w)/2;
%P = 101300.0;
%P_refprop = P/1000.0;  %%%101.3 kPa = 101,300 Pa (refprop requires kPa input)
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%q_flux = 250.;   %%% W/m2. Input required if system is heat-flux based.
%nu_t = 1.0e-003; %%% m2/s. Input required if system is turbulent (not the case for this example).
%x_char = 0.05;

%i_matprop = 2; % Flag for calling REFPROP

%%% Activate validation input lines (check for "validate" key word in this script) (e.g., 
%%% Nu_x_lam_horiz_pipe_validate, h_lam_horiz_pipe_validate, Nu_x_turb_horiz_pipe_validate, and
%%% h_lam_horiz_pipe_validate.

%%% Also activate the following input line in the "MATERIAL PROPERTIES IF -CONDITIONAL", namely:   
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'nitrogen',
'oxygen', 'argon', [0.781,0.210,0.009])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%
%%% CASE 4.
% Example Input if i_matprop=1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Example for input lines needed to call function NaPbBiLBE_FUNC (i_matprop=1) for Na=1 
%%% working fluid.
%T_fluid = 750; % K
%T = T_fluid;
%T_w = 1200.; % K
%T_film = (T_fluid + T_w)/2;

%q_flux = 150.0; %%% W/m2.
%x_char = 0.1;   %%% m
%%% User needs a problem-specific nu_t if problem is turbulent. Current value is from the "LIKE" 
%%% algorithm because it can calculate nu_t directly.
%nu_t = 6.9e-003; %%% m2/s

%i_fluid = 1;   % Calculate Na
%i_matprop = 1; % Used to call function NaPbBiLBE_FUNC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 5.
% Example Input if i_matprop=2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Example for input lines needed to call function REFPROP (i_matpr op=2) for water. Call 
%%% REFPROP from if-conditional, not from this input segment.

%P = 101300.0;
%P_refprop = P/1000.0  %%%101.3 kPa = 101,300 Pa (refprop requires kPa input)
%T_fluid = 300;
%T = T_fluid;
%T_w = 330.;
%T_film = (T_fluid + T_w)/2;

%i_matprop = 2; % Flag for calling REFPROP.

%%% Turbulent case.
%q_flux = 150.0; %%% W/m2.
%x_char = 0.1;   %%% m
%%% User needs a problem-specific nu_t if problem is turbulent. Current value is from the "LIKE" 
%%% algorithm because it can calculate nu_t directly.
%nu_t = 6.9e-003; %%% m2/s

%%% Also activate the following input line in the "MATERIAL PROPERTIES IF -CONDITIONAL", namely:
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'water')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 6.
% Example Input if i_matprop=3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Example input lines needed for manual input of the fluid physica l properties.

%T_fluid = 300;
%T_w = 330.;

%i_matprop = 3; % User-input physical properties.
%%% The user must add the following input lines in the "MATERIAL PROPERTIES IF -CONDITIONAL", namely:
%%% (rho_liq, k_liq, mu_liq, Cp_liq, beta, and U_sound).

%q_flux = 150.0; %%% W/m2.
%x_char = 0.1;   %%% m
%%% User needs a problem-specific nu_t if problem is turbulent. Current value is from the "LIKE" 
%%% algorithm because it can calculate nu_t directly.
%nu_t = 6.9e-003; %%% m2/s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 7.
%%% Example: laminar NC water heat sink. 
%%% 05/15/2019.  SI units.
%%% Fluid = water.

%P = 101300.0;
%P_refprop = P/1000.0  %%%101.3 kPa = 101,300 Pa (refprop r equires kPa input)
%T_fluid = 300;
%T = T_fluid;
%T_w = 330.;
%T_film = (T_fluid + T_w)/2;

%i_matprop = 2; % Flag for calling REFPROP.

%x_char = 0.1;
%q_flux = 150.0; %%% W/m2.  Assume constant heat flux.

%%% Also activate the following input line in the "MATERIAL PROPERTIES IF -CONDITIONAL", namely:
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'water')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CASE 8.
%%% Example: turbulent NC water heat sink. 
%%% 05/15/2019.  SI units.
%%% Fluid = water.

%P = 101300.0;
%P_refprop = P/1000.0;  %%%101.3 kPa = 101,300 Pa (refprop requires kPa input)
%T_fluid = 300;
%T = T_fluid;
%T_w = 330.;
%T_film = (T_fluid + T_w)/2;

%i_matprop = 2; % Flag for calling REFPROP.

%q_flux = 1500.0; %%% W/m2.  Assume constant heat flux.
%%% User needs a problem-specific nu_t if problem is turbulent. Current value is from the "LIKE" 
%%% algorithm because it can calculate nu_t directly.
%nu_t = 6.9e-003; %%% m2/s
%x_char = 1.0;
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%%% Also activate the following input line in the "MATERIAL PROPERTIES IF-CONDITIONAL", namely:
%%% [rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'water')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Peak f_prime and H_prime from Ostrach and Housam Binous MATLAB data.  Full credit is given
%%% here to the works of Ostrach and Binous (commented as such in vectors f_prime and H_prime; 
%%% uncommented values were extended by Rodriguez).  This extends the laminar domain to 
%%% 0.001 < Pr < 1,000 when using f_prime and H_prime.
f_prime = [
0.00001 0.691 %%%% Housam Binous; CONVERGED???
0.0001 0.677  %%%% Housam Binous; CONVERGED
0.001  0.652  %%%% Housam Binous; CONVERGED
0.005  0.605  %%%% Housam Binous; CONVERGED
0.01   0.5739
0.025  0.528   %%%%% Housam Binous; CONVERGED
0.05   0.484   %%%%% Housam Binous; CONVERGED
0.1    0.433   %%%%% Housam Binous; CONVERGED
0.2    0.378   %%%%% Housam Binous; CONVERGED
0.3    0.345   %%%%% Housam Binous; CONVERGED
0.4    0.322   %%%%% Housam Binous; CONVERGED
0.6    0.290   %%%%% Housam Binous; CONVERGED
0.72   0.2759
0.733  0.2745
1.0    0.2511
2.0    0.2024
10.0   0.1150
50.0   0.0593  %%%%% Housam Binous; CONVERGED
100.0  0.0442
200.0  0.0319  %%%%% Housam Binous; CONVERGED
500.0  0.0208  %%%%% Housam Binous; CONVERGED
1000.  0.0153
];

H_prime = [
0.0000000001    -0.000000001   %%% Estimated...
0.01   -0.0812
0.05   -0.18   %%% Ostrach Fig. 8.
0.1    -0.22   %%% Ostrach Fig. 8.
0.2    -0.3    %%% Ostrach Fig. 8.
0.5    -0.45   %%% Ostrach Fig. 8.
0.72   -0.5046
0.73   -0.5080
1.0    -0.5671
2.0    -0.7165
6.0    -1.0    %%% Ostrach Fig. 8.
10.0   -1.1694
50.0   -1.75   %%% Ostrach Fig. 8.
100.   -2.191
300.0  -2.85   %%% Ostrach Fig. 8.
700.0  -3.6    %%% Ostrach Fig. 8.
1000.  -3.966
];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get number of rows, which = number of data pairs.
nf = length(f_prime);
nH = length(H_prime);

% store col 1 in vector xcol1 and col 2 in vector xcol2
for i=1:nf

xcol1(i) = f_prime(i,1);
xcol2(i) = f_prime(i,2);

end
for i=1:nH

xcol3(i) = H_prime(i,1);
xcol4(i) = H_prime(i,2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% MATERIAL PROPERTIES IF -CONDITIONAL.  Coding for calculating the physical properties.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if i_matprop == 1

%%% Call function "NaPbBiLBE_FUNC" to obtain the flu id material properties.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% How function "NaPbBiLBE_FUNC" works:
%%% values=values(i_fluid, T_fluid) = array with fluid temperature and T_fluid.
%%% [rho, beta, Cp_liq, mu, k, Pr, nu, alph a] = output from function NaPbBiLBE_FUNC.
%%% i_fluid=values(1);    %%% Choice of fluid. Na=1, Pb=2, Bi=3, and LBE=4.
%%% T_fluid = values(2);  %%% T=T_fluid, the fluid temperature.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
values = [i_fluid, T_fluid]
[rho_liq, beta, Cp_liq, mu_liq, k_liq, Pr, nu, alpha_liq] = NaPbBiLBE_FUNC(values);

elseif i_matprop == 2

%%% Call REFPROP to obtain the physical material properties, which are evaluated at the
%%% film temperature, T_film, and passed on via function arguments.  REFPROP uses K for
%%% the temperature.

%%% In REFPROP notation:
%%% Q = Quality (vapor fraction), kg/kg; 1=all vapor; 0=all liquid.
%%% ^ = Prandtl number, unitless
%%% B = Volumetri c expansivity (i.e., beta), 1/K
%%% C = Cp (heat capacity at constant pressure)
%%% P = Pressure, kPa
%%% V = Dynamic viscosity, Pa*s=kg/m -s

%%%%%%%%%%%%%%%%%%%%%  EXAMPLES %%%%%%%%%%%%%%%%%%%%%
%%% Call REFPROP for physical proper ties.
%%% Example call for water, where T and P are specified:
[rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm( 'DLVC^BA' ,'T',T_film,'P',P_refprop,'water')
%%% Example call for water, where T and Q are specified:
%[rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'Q',0,'water')

%%% Examples for SCO2:
%[rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'Q',0,'co2') 
%[rho_liq k_liq mu_liq Cp_liq, Pr, beta, U _sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop, 'co2')

%%% Example for nitrogen: 
%[rho k_liq mu Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T,'P',P_refprop,'nitrogen')
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%%% Example for air (need to specify mass fraction s of the individual components).  
%[rho_liq k_liq mu_liq Cp_liq, Pr, beta, U_sound] = refpropm('DLVC^BA','T',T_film,'P',P_refprop,'nitrogen',
'oxygen', 'argon', [0.781,0.210,0.009])

elseif i_matprop == 3
%%% If this i_matprop choice is selected, the user ***MUST*** manually include the fluid material properties here.
rho_liq = 250.              % fluid density, kg/m3
k_liq = 1.0e-3              % fluid thermal conductivity, J/kg -K
mu_liq = 1.1e-4             % fluid dynamic viscosity, kg/m-s
Cp_liq = 1200.              % fluid heat capacity at constant pressure, J/kg-K
beta = 0.001                % fluid volumetric expansivity, 1/K
U_sound = 780.              % fluid sound speed, m/s
Pr = Cp_liq*mu_liq/k_liq    % Prandtl number, unitless

else
'Abort...no material properties are being calculated!'

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nu_liq = mu_liq/rho_liq;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% From a MATLAB curve-fit of the above f_prime and H_prime arrays, obtain f_prime_func and 
%%% H_prime_func.
f_prime_func = 0.5*Pr^(-0.11) - 0.24;  %%% [Rodriguez and Ames, 2015]
%%%f_prime_func = (1.85*Pr + 0.23)/(0.65*Pr*Pr + 6.5*Pr + 0.36) + 0.015; %%% [Rodriguez and Ames, 2015]
H_prime_func = -0.6*Pr^0.28;  %%% [Rodriguez and Ames, 2015]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Final input query before beginning calculations:
sprintf('Is the system based on a constant heat flux or Delta-T?')
sprintf('  ')
prompt = 'Input 1 if heat flux based or 2 if based on Delta-T.  '
system_type = input(prompt)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%                                     Begin the calculations...                             %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if system_type == 1
sprintf('******************** Results based on Gr_star (const. heat flux) ********************')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Calculate Gr_star for Gr based on q_flux instead of Delta-T.  q_flux is in W/m2.
%%% Based on Holman, "Heat Transfer", page 344.
Gr_star = (g*beta*q_flux*x_char^4)/(k_liq*nu_liq^2)
Ra_star = Gr_star*Pr
if Gr_star > 1e5 & Gr_star < 1e11

sprintf('Gr_star is LAMINAR...')
Nu_star_lam = 0.6*Ra_star^(1/5)
h_star_lam = k_liq*Nu_star_lam/x_char   %%% LAMINAR and q_flux=const.: 1e5 < Gr_star < 1e11
deltaT = q_flux/h_star_lam;
U_max_lam_Gr_star = f_prime_func*2*nu_liq*sqrt(Gr_star)/x_char

elseif Gr_star > 2e13 & Gr_star < 1e16
sprintf('Gr_star is TURBULENT.')
Nu_star_turb = 0.17*Ra_star^(1/4)
h_star_turb = k_liq*Nu_star_turb/x_char  %%% TURBULENT and q_flux=const.: 2e13 < Gr_star*Pr < 1e16
deltaT = q_flux/h_star_turb;
U_turb_max_Gr_star = nu_t/(2*x_char) + sqrt( (nu_t^2/(4*x_char^2)) + g*beta*x_char*q_flux/h
_star_turb) %%% based on q_flux.

else %%% Large transition region between laminar and turbulent...estimate by averaging the two.
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sprintf('Gr_star is transitional between laminar and turbulent; value estimated by averaging the two.' )
Nu_star_trans = ( 0.6*Ra_star^(1/5) + 0.17*Ra_star^(1/4) )/2
h_star_trans = k_liq*Nu_star_trans/x_char
deltaT = q_flux/h_star_trans;
U_star_trans = ( f_prime_func*2*nu_liq*sqrt(Gr_star)/x_char + nu_t/(2*x_char) + sqrt( (nu_t^2/(4*x_char^2)) + 
g*beta*x_char*q_flux/h_star_trans) )/2

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%
elseif system_type == 2
sprintf('*************************** Results based on Gr_Delta -T ***************************')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Calculate Gr_x, Ra_x, Nu_x and u_max_lam based on Delta -T.
Gr_x = (g*beta*abs(T_w - T_fluid)*x_char^3)/(nu_liq*nu_liq)  %%%Include "abs" to consider the case where the fluid heats the wall.
Ra_x = Gr_x*Pr
if Ra_x < 1e12

sprintf('Ra_x = Gr_x*Pr is laminar.' )
Nu_x_Holman_lam1 = ((Gr_x/4)^0.25)*(0.718*(Pr)^0.5)/(0.952+Pr)^0.25
Nu_x_Holman_lam2 = 0.68 + (0.670*Ra_x^(1/4))/( (1+(0.492/Pr)^(9/16))^(4/9) )
h_lam_Holman_ave = k_liq*((Nu_x_Holman_lam1+Nu_x_Holman_lam2)/2)/x_char
Nu_x_Ostrach_lam = -H_prime_func*(Gr_x/4)^0.25
h_lam_Ostrach = k_liq*Nu_x_Ostrach_lam/x_char
Nu_x_lam_horiz_pipe_validate = 0.53*(Ra_x)^(1/4)
h_lam_horiz_pipe_validate = k_liq*Nu_x_lam_horiz_pipe_validate/x_char
U_max_lam = f_prime_func*2*nu_liq*sqrt(Gr_x)/x_char
if i_matprop ~= 1

Ma = U_max_lam/U_sound %%% Mach number.  "~=" means "not equal" in MATLAB.
end

else
sprintf('Ra_x = Gr_x*Pr is turbulent.')

%%% Turbulent correlations, added on 12/27/2015.
Nu_x_turb = 0.1*Ra_x^(1/3)
h_turb = k_liq*Nu_x_turb/x_char
Nu_x_turb_horiz_pipe_validate = 0.13*(Ra_x)^(1/3)
h_lam_horiz_pipe_validate = k_liq*Nu_x_turb_horiz_pipe_validate/x_char
U_turb_max2 = nu_t/(2*x_char) + sqrt( (nu_t^2/(4*x_char^2)) + g *beta*x_char*(T_w - T_film))  %%% based on Delta_T.
if i_matprop ~= 1 

Ma = U_turb_max2/U_sound %%% Mach number.  "~=" means "not equal" in MATLAB.
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else

sprintf('Ending calculation--system type is not valid.')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7.3 Molten Metal Physical Properties Calculator

This MATLAB function is useful for calculating the physical properties for lead,
lead bismuth eutectic (LBE), bismuth, and sodium.

If it is desired to call the function from a minimum set of input lines, then the
following code fragment shows an example of a basic format:

%%% Choice of fluid: Na=1, Pb=2, Bi=3, and LBE=4.
i_fluid = 4;        %%% LBE
T_fluid = 750;   %%% T=T_fluid, the fluid temperature in K.
values = [i_fluid, T_fluid];
[rho_liq, beta, Cp_liq, mu_liq, k_liq, Pr, nu, alpha_liq] = NaPbBiLBE_FUNC(values)
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• The NaPbBiLBE_FUNC.m function is listed below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Properties: rho, beta, Cp, mu, and k; Pr, nu, and alpha.

%

% %
% Function to calculate the physical properties of molten metals. %
% Metals: Na, Pb, Bi, and LBE. %

%
% %
% I/O is SI units, T in K. %

%
% Programmed by Sal B. Rodriguez on June 9, 2016. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% MATLAB lines needed to call function.
%i_fluid = 4;        %%% Na=1, Pb=2, Bi=3, and LBE=4.
%T_fluid = 750;      %%% T=T_fluid, the fluid temperature.
%values = [i_fluid, T_fluid];
%[rho_liq, beta, Cp_liq, mu_liq, k_liq, Pr, nu, alpha_liq] = NaPbBiLBE_FUNC(values)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [rho, beta, Cp, mu, k, Pr, nu, alpha] = NaPbBiLBE_FUNC(values)

%%% rho = density, kg/m3.
%%% beta = volume expansivity, 1/K.
%%% Cp = heat capacity at constant P.
%%% mu = dynamic viscosity, kg/(m-s).
%%% k = thermal conductivity, J/(kg-K).
%%% T_solid = metal's solidification temperature, K.
%%% Pr = Prandtl number, unitless.
%%% nu = mu/rho, m2/s.
%%% alpha = k/(rho*Cp), m2/s.

% This function reads two input values: i_fluid (molten metal) and T (molten metal temperature).
%%% values=values(i_fluid, T)

'echo from function NaPbBiLBE_FUNC'
i_fluid=values(1)   %%% Choice of fluid. Na=1, Pb=2, Bi=3, and LBE=4.  %%%Add NaK in the future.
T = values(2)       %%% T=T_fluid, the fluid temperature.

%%% All T_solid values are in K.
T_solid1 = 370.9;  %%% Na
T_solid2 = 600.6;  %%% Pb
T_solid3 = 544.1;  %%% Bi
T_solid4 = 397.0;  %%% LBE

if i_fluid == 1 %%% Do Na.
if T <= T_solid1

'ABORTING... Desired temperature solidifies Na coolant.'
sprintf('Input T <= T_solid = %4.4g K',  T_solid1)
stop

end
elseif i_fluid == 2 %%% Do Pb.

if T <= T_solid2
'ABORTING... Desired temperature solidifies Pb coolant.'
sprintf('Input T <= T_solid = %4.4g K',  T_solid2)
stop

end
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elseif i_fluid == 3 %%% Do Bi.
if T <= T_solid3

'ABORTING... Desired temperature solidifies Bi coolant.'
sprintf('Input T <= T_solid = %4.4g K',  T_solid3)
stop

end
elseif i_fluid == 4 %%% Do LBE.

if T <= T_solid4
'ABORTING... Desired temperature solidifies LBE coolant.'
sprintf('Input T <= T_solid = %4.4g K',  T_solid4)
stop

end
else

'Aborting due to input error--molten salt not specified'
stop

end %%% End conditional statement for material properties.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% General equations to calculate rho, beta, Cp, mu, and k for Na=1, Pb=2, Bi=3, and LBE=4. 
%%% Source: "Database of Thermophysical Properties of Liquid Metal Coolants
%%% for GEN-IV", SCK/CEN-BLG-1069, Rev. December 2011.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Calculate the physical properties.
if i_fluid == 1 %%% Do Na.

rho = 1014 - 0.235*T;
beta = 1/(4316-T);
Cp = -3e6*T^(-2) + 1658 - 0.848*T + 4.45e-4*T^2;
mu = 4.55e-4*exp(1069/T);
k = 110 - 0.0648*T + 1.16e-5*T^2;

elseif i_fluid == 2 %%% Do Pb.
rho = 11441 - 1.28*T; 
beta = 1/(8942-T);
Cp = 176.2 - 4.92e-2*T + 1.54e-5*T^2;
mu = 4.55e-4*exp(1069/T);
k = 9.2 + 0.011*T;

elseif i_fluid == 3 %%% Do Bi.
rho = 10725 - 1.22*T;
beta = 1/(8791-T);
Cp = 118.2 + 5.93e-3*T + 7.18e6*T^(-2);
mu = 4.46e-4*exp(775.8/T);
k = 7.34 + 9.5e-3*T;

elseif i_fluid == 4 %%% Do LBE.
rho = 11065 -1.293*T;
beta = 1/(8558-T);
Cp = 164.8 - 3.94e-2*T + 1.25e-5*T^2;
mu = 4.94e-4*exp(754.1/T);
k = 3.28 + 1.62e-2*T - 2.31e-6*T^2;

else
'Abort'

end %%% End conditional statement for material properties.

Pr = Cp*mu/k;
nu = mu/rho;
alpha = k/(rho*Cp);

end %%% End material properties function.
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7.4 FORTRAN Program for the Prandtl One-Equation
Turbulence Model

This GNU FORTRAN program is useful for demonstrating how a basic RANS
model works and provides some practical guidelines. The main idea is that the
RANS momentum equation is coupled with the k PDE. For this particular applica-
tion, consider a 2D Couette flow in Cartesian coordinates. There is no z component;
v ¼ 0, w ¼ 0, and the flow is fully developed. Thus, the RANS velocity is solely a
function of y. In addition, assume no pressure gradient and a negligible
gravitational term.

As a result of the velocity simplifications, the momentum PDE has the following
negligible terms:

This reduces to

∂u
∂t

¼ ∂ � 2
3 k

� �
∂x

þ
∂ νt ∂u

∂y

� �h i
∂y

þ ν
∂2u
∂y2

The derivative chain rule is used to simplify the turbulent kinematic viscosity
term. Then, assuming fully developed flow in the x-direction, this further modifies
the PDE as follows:

Thus,

∂u
∂t

¼ νþ νtð Þ∂
2u

∂y2
þ ∂u

∂y
∂νt
∂y

A cavalier approximation could be made for the turbulent kinematic viscosity
term:
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∂ νt ∂u
∂y

� �h i
∂y

� νt
∂ ∂u

∂y

� �
∂y

¼ νt
∂2u
∂y2

For illustration purposes, the above approximation was adapted in the coding
presented in this section, namely, that the turbulent kinematic viscosity for this
particular case is not a function of position or, that at the very least, is a weak
function of position. However, such approximation is very rarely warranted and is
therefore not assumed when simplifying the Couette k-PDE, which is discussed
shortly. In any case, when the approximation is not warranted, then the following
exact expression should be used:

∂ νt ∂u
∂y

� �h i
∂y

¼ νt
∂ ∂u

∂y

� �
∂y

þ ∂νt
∂y

∂u
∂y

¼ νt
∂2u
∂y2

þ ∂νt
∂y

∂u
∂y

Continuing on, the system assumptions simplify the k-PDE as follows:

which finally reduces to:

∂k
∂t

¼ νt
∂u
∂y

� �
∂u
∂y

þ ∂
∂y

νþ νt
σk

� �
∂k
∂y

� 	
� ε ¼ νt

∂u
∂y

� �2

þ ∂
∂y

νþ νt
σk

� �
∂k
∂y

� 	
� ε

¼ νt
∂u
∂y

� �2

þ νþ νt
σk

� �∂
∂k
∂y

� �

∂y
þ ∂k

∂y

∂ νþ νt
σk

� �

∂y
� ε

¼ νt
∂u
∂y

� �2

þ νþ νt
σk

� �
∂2k
∂y2

þ 1
σk

∂k
∂y

∂νt
∂y

� ε

Then, the relatively uncomplicated forward time, centered space (FTCS) finite
differences approach is used to solve the momentum and k PDEs for the 2D Couette
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flow. This yields fast-running calculations that are on the order of seconds; WLOG,
the program can easily be extended to 3D. For user convenience, the program writes
MATLAB files suitable for plotting key variables such as k, ε, νt, and u.

The program can be run on a UNIX computer using the following commands.
To compile,

gfortran couette_turbulent__PRANDTL.f

To execute the code,

./a.out

• The FORTRAN program is listed below:

!����������������������������������������������������������������
PROGRAM couette

!����������������������������������������������������������������

!����������������������������������������������������������������
!
! 2D Couette flow solved using half symmetry.
! Based on the Prandtl turbulence model.
! Written in GNU FORTRAN.
! Input/output is in SI units.
! Written by Sal Rodriguez, March 30, 2014. Version 1.0.
! Revised by Sal Rodriguez, September 18, 2019. Version 1.1.
!
!����������������������������������������������������������������

implicit none

integer i, j, k, k1, nodesx, nodesy
integer iplt, icycle, ncycle, nprint, nocbp
real kappa, deltax, deltay, length, height
real uwall
real dtdx, dtdy, dtdx2, dtdy2
real deltat, tend, time

parameter(length¼0.1, height¼0.05)
parameter(nodesx¼60, nodesy¼6, nprint¼20)
parameter(deltat¼1.0e-4, tend¼3.5)

double precision rold(0:nodesx+1,0:nodesy+1)
double precision rnew(0:nodesx+1,0:nodesy+1)
double precision uold(0:nodesx+1,0:nodesy+1)
double precision unew(0:nodesx+1,0:nodesy+1)
double precision x(0:nodesx+1,0:nodesy+1)
double precision y(0:nodesx+1,0:nodesy+1)
double precision re(0:nodesx+1,0:nodesy+1)
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real sigmak, cd, pmax, dmax
double precision kold(0:nodesx+1,0:nodesy+1)
double precision knew(0:nodesx+1,0:nodesy+1)
double precision prodo(0:nodesx+1,0:nodesy+1)
double precision prodn(0:nodesx+1,0:nodesy+1)
double precision dissn(0:nodesx+1,0:nodesy+1)
double precision disso(0:nodesx+1,0:nodesy+1)
double precision lchar(0:nodesy+1)
double precision mutn(0:nodesx+1,0:nodesy+1)
double precision muto(0:nodesx+1,0:nodesy+1)

real dthmin, dttmin
real rini, uini
real rmin, umin
real rmax, umax
real mumax
real vismin, vismax, visc, mu
real remin, remax
real zero, tstop, tstart

!����������������������������������������������������������������
! nodesx - number of nodes in x-direction.
! nodesy - number of nodes in y-direction.
! icycle - counts the number of cycles that have elapsed
! (1-ncycle).
! ncycle - number of cycles that will be needed to run problem to
! end time.
! iplt - counts number of times plotting has occured (1-nprint).
! nprint - used to divide the time domain into 1/nprint equal
! time intervals, at which a point a plot is generated.
! nocbp - number of cycles before plot is generated ¼
! ncycle/nprint.
! kappa ¼ Kolmogorov's constant.
!����������������������������������������������������������������

! Initialize the variables, input parameters.
zero ¼ 0.0
tstart ¼ secnds(zero)

cd ¼ 0.07 ! Based on Emmons, 1954 and Glushko, 1965.
visc ¼ 2.02e-5
rini ¼ 0.16
mu ¼ visc/rini
uini ¼ zero
uwall ¼ -189.0

kappa ¼ 0.41
sigmak ¼ 1.0
pmax ¼ zero
dmax ¼ zero
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rmin ¼ rini
umin ¼ zero
vismin ¼ zero
remin ¼ zero
rmax ¼ zero
umax ¼ zero
vismax ¼ zero
mumax ¼ zero
remax ¼ zero

deltax ¼ length/(nodesx+1)
deltay ¼ height/(nodesy+1)
dtdx ¼ deltat/(2�deltax)
dtdy ¼ deltat/(2�deltay)
dtdx2 ¼ deltat/(deltax��2)
dtdy2 ¼ deltat/(deltay��2)
print �, 'deltax, deltay, deltat ¼ ', deltax, deltay, deltat
write(�,�) ' '
time ¼ zero
icycle ¼ 1
iplt ¼ 0

! By starting with k1 ¼ 100, the Matlab output files are written
! with a number greater than 6. If k1 ¼ 1, then this will result
! in file fort.6 being written as soon as k1 reaches 6 and only
! the first six time updates are shown on the screen. Curious
! FORTRAN issue as a result of pre-allocations for "write" and
! "print" of output.

k1 ¼ 100
ncycle ¼ int(tend/deltat)
nocbp ¼ int(ncycle/nprint) ! Number of cycles before plot

! Initial conditions, spacing (do for all nodes)
do 50 i¼0,nodesx+1
do 55 j¼0,nodesy+1

rold(i,j) ¼ rini
uold(i,j) ¼ uini
rnew(i,j) ¼ rini
unew(i,j) ¼ uini
re(i,j) ¼ zero
x(i,j) ¼ x(i,j) + i�deltax
y(i,j) ¼ y(i,j) + j�deltay

kold(i,j) ¼ 1.0e-4
knew(i,j) ¼ 1.0e-4
prodo(i,j) ¼ 0.0
prodn(i,j) ¼ 0.0
dissn(i,j) ¼ 1.0e-16
disso(i,j) ¼ 1.0e-16
muto(i,j) ¼ 1.0e-3
mutn(i,j) ¼ 1.0e-3
lchar(j) ¼ 1.0e-6

55 continue
50 continue
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! BEGIN TIME ADVANCEMENT.
do 1000 k¼1,ncycle

! Momentum conservation calculation.
do 300 i ¼ 1,nodesx
do 305 j ¼ 1,nodesy

unew(i,j) ¼ uold(i,j)
& + (dtdy2�(visc + muto(i,j))/rold(i,j))
& �(uold(i,j+1) - 2�uold(i,j) + uold(i,j-1))
& +( dtdy�(uold(i,j+1)-uold(i,j-1)) )
& �( dtdy�(muto(i,j+1)-muto(i,j-1)) )

! The next three lines are commented because the terms are small
! for this Couette problem.
! & - dtdx�uold(i,j)�(uold(i+1,j) - uold(i-1,j))
! & + (dtdx2�visc/rold(i,j))
! & �(uold(i+1,j) - 2�uold(i,j) + uold(i-1,j))
305 continue
300 continue

! Turbulent kinetic energy calculation, including turbulence viscosity.
do 400 i ¼ 1,nodesx
do 405 j ¼ 1,nodesy

lchar(j) ¼ kappa�deltay�j
knew(i,j) ¼ kold(i,j) + prodo(i,j) - disso(i,j)

& + (dtdy2�(visc+(muto(i,j)/sigmak))/rold(i,j))
& �(kold(i,j+1) - 2�kold(i,j) + kold(i,j-1))
& + (1/sigmak)�dtdy�( muto(i,j+1)-muto(i,j-1) )
& �dtdy�( kold(i,j+1)-kold(i,j-1) )

! The next three lines are commented because the terms are small
! for this Couette problem.
! & - dtdx�uold(i,j)�(kold(i+1,j) - kold(i-1,j))
! & + (dtdx2�(visc+(muto(i,j)/sigmak))/rold(i,j))
! & �(kold(i+1,j) - 2�kold(i,j) + kold(i-1,j))

if (knew(i,j) .lt. zero) then
print �, 'Calc. aborted. Neg. knew ¼ ', knew(i,j)
print �, 'Cycle ¼ ', ncycle
stop

end if

mutn(i,j) ¼ rnew(i,j)�lchar(j)�sqrt(knew(i,j))
dissn(i,j) ¼ cd�( (knew(i,j)��(3./2.)) )/lchar(j)
prodn(i,j) ¼ (mutn(i,j)/rnew(i,j))

& �( dtdy�(unew(i,j+1) - unew(i,j-1)) )��2

if (prodn(i,j) .lt. zero) then
print �, 'Calc. aborted. Neg. prod. ¼ ', prodn(i,j)
print �, 'Cycle ¼ ', ncycle
stop

end if

7.4 FORTRAN Program for the Prandtl One-Equation Turbulence Model 295



if(prodn(i,j) .gt. pmax) pmax ¼ prodn(i,j)
if(dissn(i,j) .gt. dmax) dmax ¼ dissn(i,j)
if(mutn(i,j) .gt. mumax) mumax ¼ mutn(i,j)

405 continue
400 continue

! Boundary conditions.
! LHS. Open BC.

do 500 j¼0,nodesy+1
rnew(0,j) ¼ rnew(1,j)
unew(0,j) ¼ unew(1,j)
knew(0,j) ¼ knew(1,j)
dissn(0,j) ¼ dissn(1,j)

! RHS. Open BC.
rnew(nodesx+1,j) ¼ rnew(nodesx,j)
unew(nodesx+1,j) ¼ unew(nodesx,j)
knew(nodesx+1,j) ¼ knew(nodesx,j)
dissn(nodesx+1,j) ¼ dissn(nodesx,j)

500 continue

do 510 i¼0,nodesx+1
! Top.

rnew(i,nodesy+1) ¼ rini
! 'Symmetry' at symmetry plane acts like wall.

unew(i,nodesy+1) ¼ zero
knew(i,nodesy+1) ¼ zero
dissn(i,nodesy+1) ¼ zero

! Bottom.
rnew(i,0) ¼ rini
unew(i,0) ¼ uwall
knew(i,0) ¼ 1.0e-4
dissn(i,0) ¼ 1.0e-8

510 continue

! Advance the primitive variables in time by swapping the new
! values into the old arrays. This is a neat trick to save on
! memory space.

do 1300 i¼0,nodesx+1
do 1305 j¼0,nodesy+1
rold(i,j) ¼ rnew(i,j)
uold(i,j) ¼ unew(i,j)
kold(i,j) ¼ knew(i,j)
muto(i,j) ¼ mutn(i,j)
disso(i,j) ¼ dissn(i,j)
prodo(i,j) ¼ prodn(i,j)

! Get min and max density; max velocity.
if(rnew(i,j) .gt. rmax) rmax ¼ rnew(i,j)
if(abs(unew(i,j)) .gt. abs(umax)) umax ¼ unew(i,j)
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if(rnew(i,j) .lt. rmin .and. i.ne.nodesx+1)
& rmin ¼ rnew(i,j)

if (kold(i,j) .lt. zero) then
print �, 'Calc aborted. Neg. kold ¼ ', kold(i,j)
stop

end if
1305 continue
1300 continue

! Calculate the Reynolds number.
do 1400 i¼0,nodesx+1
do 1405 j¼0,nodesy+1

re(i,j) ¼ unew(i,j)�deltax�visc/rnew(i,j)
if(re(i,j) .gt. remax) remax ¼ re(i,j)
if(re(i,j) .lt. remin) remin ¼ re(i,j)

1405 continue
1400 continue

c Advance time and write plot data if requested.
time ¼ time + deltat

if (mod(icycle,nocbp).eq.0 .and. icycle.gt.0) then
call matplt(nodesx,nodesy,unew,knew,prodn,dissn,mutn,time,k1)
iplt ¼ iplt + 1

end if

icycle ¼ icycle + 1

1000 continue

! Write geometric data for matlab input.
5001 format(2(f18.4,1x), f18.3, 1x, f8.5)

open(unit¼5000, file¼'geodatamax.m')
write(5000,5001) rmax, umax, remax, length
close(5000)
open(unit¼5010, file¼'geodatamin.m')
write(5010,5001) rmin, umin, remin, length
close(5010)

dthmin ¼ rnew(nodesx/2,nodesy/2)�deltax��2/visc
dttmin ¼ (deltax��2)/mumax

tstop ¼ secnds(tstart)

print �, ' '
print �, 'Total cpu time ¼ ', tstop/3600.d0, ' hours...'
print �, 'or', tstop/60.d0, ' minutes...'
print �, 'or', tstop, ' seconds.'
print �, ' '
print �, 'Minimum density ¼ ', rmin
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print �, 'Maximum density ¼ ', rmax
print �, 'Maximum velocity ¼ ', umax
print �, 'Min hydro dt ¼ ', dthmin
print �, 'Min turbulence dt ¼ ', dttmin
print �, 'Max production ¼ ', pmax
print �, 'Max dissipation ¼ ', dmax
print �, 'Max turbulent kinematic viscosity ¼ ', mumax
print �, ' '
print �, 'Simulation reached completion time of ', tend,
& 'seconds'
print �, ' '

stop
end

!����������������������������������������������������������������

!����������������������������������������������������������������
! Generate MATLAB plot files.
!
! Note the following FORTRAN vs. MATLAB matrix numbering:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! FORTRAN vs. MATLAB matrix numbering: !!
!! In FORTRAN: !!
!! T ¼ [ (3,1) (3,2) (3,3) !!
!! (2,1) (2,2) (2,3) !!
!! (1,1) (1,2) (1,3) ] !!
!! !!
!! In MATLAB: !!
!! T ¼ [ (1,1) (1,2) (1,3) !!
!! (2,1) (2,2) (2,3) !!
!! (3,1) (3,2) (3,3) ] !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!����������������������������������������������������������������

subroutine matplt(nodesx,nodesy,unew,knew,prod,diss,mutn,time,k1)

! Writes Matlab-type surf files for knew, prod, diss, unew, and mutn.

implicit none

integer i, j, nodesx, nodesy, k1
real time
DOUBLE PRECISION knew(0:nodesx+1,0:nodesy+1)
DOUBLE PRECISION prod(0:nodesx+1,0:nodesy+1)
DOUBLE PRECISION diss(0:nodesx+1,0:nodesy+1)
DOUBLE PRECISION unew(0:nodesx+1,0:nodesy+1)
DOUBLE PRECISION mutn(0:nodesx+1,0:nodesy+1)

! var(#) ¼ number of variables with size 4.
! seg size determines the total number of Matlab files that can
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! be written. �3 allows for up to 999.
CHARACTER seg�3, var(5)�4

data var/'knew', 'prod', 'diss', 'unew', 'mutn'/

!����������������������������������������������������������������

write(�,�) 'Plot-edit time ¼ ', time
k1 ¼ k1 + 1
write (seg, '(i3.3)') k1

! Generate Matlab surf file for the velocity.
OPEN(UNIT¼k1, FILE¼'unew' //seg// '.m')
DO 8330 I¼0,nodesx+1
WRITE(k1, �) ' Z(:,',i+1,')¼['
DO 8331 J¼0,nodesy+1
WRITE (k1, �) unew(I,J)

8331 CONTINUE
WRITE (k1, �) ' ];'

8330 CONTINUE
CLOSE(k1)

! Generate Matlab surf file for the turbulent kinetic energy.
OPEN(UNIT¼k1, FILE¼'knew' //seg// '.m')
DO 8430 I¼0,nodesx+1
WRITE(k1, �) ' Z(:,',i+1,')¼['
DO 8431 J¼0,nodesy+1
WRITE (k1, �) knew(I,J)

8431 CONTINUE
WRITE (k1, �) ' ];'

8430 CONTINUE
CLOSE(k1)

! Generate Matlab surf file for the turbulence production term.
OPEN(UNIT¼k1, FILE¼'prod' //seg// '.m')
DO 8440 I¼0,nodesx+1
WRITE(k1, �) ' Z(:,',i+1,')¼['
DO 8441 J¼0,nodesy+1
WRITE (k1, �) prod(I,J)

8441 CONTINUE
WRITE (k1, �) ' ];'

8440 CONTINUE
CLOSE(k1)

! Generate Matlab surf file for the turbulence dissipation term.
OPEN(UNIT¼k1, FILE¼'diss' //seg// '.m')
DO 8435 I¼0,nodesx+1
WRITE(k1, �) ' Z(:,',i+1,')¼['
DO 8436 J¼0,nodesy+1
WRITE (k1, �) diss(I,J)

8436 CONTINUE
WRITE (k1, �) ' ];'
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8435 CONTINUE
CLOSE(k1)

! Generate Matlab surf file for the turbulence kinematic viscosity.
OPEN(UNIT¼k1, FILE¼'mutn' //seg// '.m')
DO 8530 I¼0,nodesx+1
WRITE(k1, �) ' Z(:,',i+1,')¼['
DO 8531 J¼0,nodesy+1
WRITE (k1, �) mutn(I,J)

8531 CONTINUE
WRITE (k1, �) ' ];'

8530 CONTINUE
CLOSE(k1)

return
END

!����������������������������������������������������������������
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Index

A
Advanced manufacturing (AM), 6, 7
Air kinematic viscosity, 108
Azimuthal and axial velocities, 111–112

LES calculations, 113

B
Back-of-the-envelope (BOTE), 69–70
Boundary conditions (BCs)

compatible vs. incompatible, 244–245
fixed temperature conditions, 239
ODEs and PDEs, 239
types, 239–244

Boundary layer, 55, 76, 80
Boussinesq turbulence approximation, 49
Buffer layer, 96–97, 103, 172, 180
Bullet-proof meshes

computational domain size, 237–238
computational nodes, 226
mesh guidelines, 231, 234–235
metrics (see Mesh metrics)
RANS models, 235–236
system geometry, 226
wall functions, 236–237

Burgers’ Equation, 33

C
Cartesian space, 13–14, 239
Cartesian system, 58
CFD vs. experiments

advantages, 3–4
simulation economics, 5–6

Computing
performance, 212
and visualization, 1–2

Conservation of mass
atomic species, 13
Cartesian system, 13–14
cylindrical pipe, 17
geometry and fluid density, 18
inlet mass flow rate, 18
liquid flows, 13
mass flow rate and velocity, 17
SS, 14–15
WRT, 13–15

“Conservative” (Eulerian) invariant form, 13

D
Darcy friction factor, 27, 101, 102
Data visualization tips

arrows/descriptions, use of, 268
assorted colors, use of, 268
avoid acronyms, 269
check errors and pesky, 268
diverse backgrounds, 268
font size, 269
log scales, use of, 268
multiple set parameters use, 268
opposing colors, use of, 268
screen shot software, 268
“self-contained” meaning, 269
spatial convergence, 266
velocity distribution, 267

Defect layer, 93, 94, 98
Detached eddy simulation (DES), 200, 236
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Dimpling, 109–110
Direct numerical simulation (DNS), 3, 4

Boussinesq approximation, 211
computational nodes, 216
computational systems, 212
experimental data, 212
Navier-Stokes equations, 211
numerical methods, 213–214
quantum algorithms, 213
Re calculations, 212
spatial domain, 214–215
stability, 216
time step, 215

Dittus-Boelter equation, 18
Drag coefficient, 36, 54, 107, 108
Drag reduction, 109–110

air kinematic viscosity, 108
azimuthal momentum, 111
dimpling, 109–110
internal flow, 114–115
Magnus effect, 108
non-spherical geometry, 109
pimples, 111
Re and swirl angle, 113
shark skin features, 111
theory-founded methodology, 109

E
Employment trends, 7–8
Energy conservation

internal and kinetic energy, 30
PDE, 31
Rudolf Clausius sign convention, 30
stationary and mobile fluids, 29
thermal conductivity, 30
thermal diffusivity, 32

Eulerian differential approach, 11
External plate flow, 100–101

F
Fanning friction factor, 27, 101
Forward in time, centered in space (FTCS), 147,

255, 291
Fully-developed flows

laminar, 56
physical properties, 57

Future technologies, 7–8

G
“Grail” mesh metric group, 232
Grid convergence index (GCI), 203, 235

H
Hagen-Poiseuille formulation, 28
Hagen-Poiseuille internal flow, 27
Helicoid swirl device, 111

I
Inconsistent SKE closure

Cμ function, 183
eddy length scale, 181
Kolmogorov eddies, 184
laminar application, 186
LIKE algorithm, 184
turbulent kinematic viscosity, 180
velocity fluctuation, 183

Initial conditions (ICs)
LIKE algorithm, 245
mathematical utility, 245
ODEs and PDEs, 245
wave equation, 245

Integral eddies
“averaged behavior”, 72
characteristic length scale, 71
vs. Kolmogorov, 74
Reynolds number, 74
role, 72
system geometry, 73
time scale, 73
turbulent flows, 72
vortex stretching, 71

Isotropic turbulence, 57
Cartesian system, 58
“characteristic eddy”, 62
eddy characteristic scale, 63
integral and Kolmogorov eddies, 61
integral eddies, 62
kinetic energy, 59
PDE equation, 59
statistical, 57–58
Taylor eddies, 64
WRT, 60

K
Kolmogorov eddies, 61–64, 75–77, 87,

92, 95, 104, 149
Kolmogorov 1942 k-ω model

boundaries, 151
dissipation, 152
equilibrium cascade, 150
“mean frequency”, 149
PDEs, 150
purposes, 149
transport model, 152
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transport variable, 149
turbulence model, 151
“turbulent pulsations”, 149
two-equation model, 149

Kolmogorov scale, 37, 61, 71, 72, 104, 116, 149
k PDE development

“bird’s eye view”, 135
Chou’s k PDE, 138–140
“drastic surgery”, 136, 137
exact k PDE, 135
Greek letter kappa, 141
k behavior, 138
mathematical trace, 135
Reynolds’ eddying motion, 140
solvable k PDE, 136
triple velocity correlation, 137
turbulent kinematic viscosity, 138
turbulent kinetic energy, 137, 141
velocity fluctuations, 141

L
Laminar vs. turbulent entrance length, 57, 58
Laminar vs. turbulent velocity, 36
Large eddy simulation (LES), 3, 236, 237

DES, 200
integral and Taylor eddies, 198
kinetic energy, 197
mass/momentum conservation, 204–209
methodology, 200–204
recommendations, 209–211
SGS, 198
turbulence model choice, 200
velocity fluctuations, 199

LES-and DNS-specific issues
BCs, 217–218
ICs, 218

LES mass/momentum conservation
eddy viscosity models, 207
FOIL multiplication, 205
guidelines, 208
inexact closure approximations, 206
Smagorinsky model, 208, 209
space-filtering, 205, 206
unfiltered momentum PDE, 204

LES methodology
Cartesian coordinates, 202
“convolution filter”, 201, 203
Gaussian filter, 204
simulation areas, 200
velocity field, 203
volume-averaged box filter, 203

LIKE Algorithm
calculation of ε, 85

calculation of I, 80–84
calculation of k, 85
calculation of l, 78–80
DNS calculations, 88–89
eddy scale equations, 87–88
isotropic flow, 78
kinematic viscosity, 91–92
Kolmogorov eddies, 86–87
LES simulations, 89
and liquid-metal physical properties, 87
MATLAB script, 92
noncircular internal flow, 80
RANS models, 89
system characteristic length, 79
variables, 276
Yplus_LIKE_Eddy_Scales.m script,

276–279
LIKE MATLAB script, 210
Log layer, 97–98

M
Magnus effect, 108
Mathematical R derivation

convective term, 129–131
momentum accumulation term, 128–129
Navier-Stokes equation, 127
pressure term, 132–133
R Reynolds stress PDE assembly, 133–134
viscous term, 131–132

MATLAB scripts and functions
laminar and turbulence parameters, 275
LIKE algorithm, 276–279
molten metal physical properties, 287–289
NC, 279–287
Prandtl one-equation turbulence model,

290–300
REFPROP, 275

Mesh metrics
compact heat exchanger, 232
distortion, 231
geometry, 230
“grail”, 232
hexahedral elements, 226–230
HyperMesh’s “quality index”, 230
laminar and turbulent flows, 233
“rule of thumb”, 226, 233
shrewd analysis, 226
single, 230

Molten metal physical properties
LBE, 287
NaPbBiLBE_FUNC.m function, 288–289

Momentum conservation
body and surface forces, 19
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Momentum conservation (cont.)
compressibility, 23–24
DNS, 25
kinematic viscosity, 24
mass flow rate, 28–29
Newtonian/non-Newtonian shear function,

20–21
velocity vector, 22
WRT, 25–26

Moore’s law, 1–2
Multidisciplinary field, 7
Multiphysics, 12
Myong-Kasagi (MK) k-ε model

blending function, 171
k PDE, 170
Taylor eddy length scale, 172

N
Natural circulation (NC)

laminar and turbulent flows, 279
PR_ETA_FPRIME.m script, 279–287

Natural circulation approximation
absolute temperature, 259
Cartesian system, 259
Grashof (Gr) number, 260
laminar velocity distribution, 263, 264
natural circulation velocity, 262
“quick and dirty”, 261
solutions, 262
technique, 263
thermal diffusivity, 260

Natural circulation modeling
approximation, 259–264
convections, 258
guidelines, 264–265
passive cooling, 259

Navier-Stokes equation, 22, 25, 27, 33
Newtonian stress tensor, 49, 51
Numerical simulation (DNS), 25

O
Ordinary differential equations (ODEs), 239

P
Partial differential equations (PDEs), 239
Practices

BCs, 239–245
bullet-proof meshes (see Bullet-proof

meshes)
CFL, 253, 254

computational time reduction, 257–258
data visualization tips, 266–269
ICs, 245–246
natural circulation modeling, 259–266
ODEs and PDEs, 238
RANS modeling, 246
stability analysis, 255
time steps, 253
well-posed solutions, 246–252

Prandtl-Kolmogorov relationship, 79, 88
Prandtl one-equation turbulence model

cavalier approximation, 290, 291
derivative chain rule, 290
FORTRAN program, 290, 292–300
FTCS, 291
UNIX computer, 292

Prandtl’s one-equation model, 146–147
Proper orthogonal decomposition (POD), 258

Q
Quantum algorithms, 2

R
RANS turbulence models

one-equation models, 146–147
two-equation models (see Two-equation

models)
zero-equation models, 145–146

Renormalization group-theory (RNG), 170, 247
Reynolds-averaged Navier-Stokes (RANS),

44, 69
buffer layer flow-physics, 236
computational nodes, 235
Kolmogorov k-ω models, 246
k PDE development, 135–142
mathematical R derivation, 127–135
phenomena-rich calculations, 235
R tensor derivation, 122–127
SKE model, 178–188, 246
2003 SST vs. 2006 k-ω, 188–191
toward turbulence model selection, 246–248
transport variables choices, 142–145
turbulence models (see RNS turbulence

models)
v2-f model, 246

Reynolds number, 33–34
BSL, 52
diverse geometries, 53–56
kinematic viscosity, 52, 53

Reynolds stress tensor, 47–48, 50
Reynolds stress transport (RST), 122
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Right-sized dimpling (RSD), 109
Rot-meansquare (RMS), 90
R tensor derivation

“bird’s-eye view”, 122, 123
Cartesian RANS equation, 126
linear Boussinesq approximation, 125, 126
momentum equation, 124
time-averaged turbulence velocities 126, 127
vector-tensor equation, 124

Rudolf Clausius sign convention, 30

S
Schlichting formula, 100
Shear stress transport (SST), 122, 158, 169,

172, 173
Simulation economics, 5
SKE model avoidance

behavior, 187–188
inconsistent closure, 180–187
inconsistent transport/eddy scales, 178–180
turbulence model selection, 178

Skin friction, 104
Smagorinsky model, 208
Spalding log law formula, 98–99
2003 SST model

blending function, 175
closure coefficients, 175
dynamics, 173
LIKE algorithm, 177
Ma flows, 176
purposes, 176
RANS models, 172
SKE, 172
turbulence production limiter, 174
turbulent aeronautics flows, 176

Standard k-ε (SKE) model
Chou’s vorticity decay transport, 163
dissipation, 159, 166, 168
“drastic surgery”, 166, 168
LES and DNS, 169
LIKE algorithm, 165
Navier-Stokes equation, 164
Prandtl-Kolmogorov relationship, 165, 167
Reynolds stress (R PDE), 159
RNG, 170
Rotta’s equation, 164
term-by-term comparison, 161, 162
transport equation, 164
velocity correlation, 161
velocity fluctuations, 159, 160

Steady state (SS), 14–16
Structural analysis, 12
Subgrid scale (SGS), 198, 201, 203

T
Taylor eddies

velocity, 75
Theory-founded methodology, 109
Turbulence modeling

black curve, 38
fluctuations, 43
hydraulic diameter, 43
kinematic viscosity, 37
Kolmogorov eddies, 38–39
mass conservation, 45
pumping force/mechanism, 38
Reynolds decomposition, 39
time-averaged price curves, 40
time-averaged value, 42
vector-tensor format, 47
velocity distribution, 38
velocity equations, 41

Turbulence theory
behavior, 37
coherent structures, 36
eddying motion, 35
nonlinear convective term, 35
Reynolds number, 33–34
time-averaged distribution, 36
WRT, 37

Turbulent core and intermittency, 99
Turbulent energy distribution, 70–71
Turbulent kinematic viscosity, 48
Two-equation models

issues, 170
Kolmogorov 1942 k-ω

(see Kolmogorov 1942 k-ω)
MK k-ε model, 170–172
SKE Model (see Standard k-ε (SKE) model)
2003 SST model, 172–178
Wilcox 1988 k-ω, 153–154
Wilcox 1998 k-ω, 154
Wilcox 2006 k-ω, 155–158

V
Viscous sublayer, 94–96, 184, 185

vs. Kolmogorov eddy size, 104, 105

W
Wall functions, 236–237
Well-posed solutions

conditions, 249
distinct roots, 249
Ma dependency, 249
PDEs, 250, 251
Prandtl-Glauert rule, 249
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Wilcox 2006 k-ω model
blending function, 156
closure coefficients, 157
cross-diffusion model, 155
homogeneous isotropic flows, 157
mean rotational/strain rate tensors, 156
non-dimensional vortex stretching, 156
SKE, 158

test cases, 158
turbulent kinematic viscosity, 155

With respect to (WRT) time, 13–15, 20, 25, 40,
56, 59, 60, 77, 81, 83, 99, 115, 260, 263

Y
y+ calculation, 99–100, 102, 103
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