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DEDICATION

The meaning of an endeavor is found in the process, more so than the final 
outcome. This book is dedicated to those who attempt to make the best out 
of everyday turbulence.

‘Yesterday is history, tomorrow is a mystery, today is a gift of God, which is why we 
call it the present.’ – Bil Keane
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FOREWORD

Turbulence can be a very beautiful thing, a dynamic cascade of scales 
that connects us to each other and our environment. Occasions to study 
turbulence are abundant; examples flow from our bodies to the heavens. 
Opportunities for true understanding are considerably less ample. Sir Horace 
Lamb himself once famously quipped that on reaching heaven he hoped for 
divine enlightenment on just two matters: quantum electrodynamics and 
turbulence. He said he was “rather optimistic of the former.” One barrier 
that has challenged more widespread understanding has been the lack of 
a true bridge to the topic. From the seminal works to most contemporary 
texts, the treatment of the subject is detailed and advanced. This is perfectly 
appropriate for select scholars of the science and sufficiently discouraging 
for the beginner, enthusiast, or cross-disciplinarian looking for application-
level understanding. Subsequently, the ranks of the well-informed remain 
somewhat exclusive.

Enter David Ting. I have had the pleasure and challenge of working with 
David for the last 11 years. While David’s turbulence publication record 
is impressive in its own right, I have always been more impressed by his 
dedication and concern for students. More than anyone I have ever known, 
he is able to simplify, rearrange, and relate complex matters to those lost 
sheep keen to join the flock of the initiated. When his conventional teaching 
toolset is not reaching the students, it is his unparalleled faith in them that 
inspires their personal development. I trust you will enjoy the bridge David 
has built with this textbook. If you will not subscribe to my endorsement, 
then please have faith; in the pursuit of turbulence enlightenment, it would 
seem a minimum requirement.

Rupp Carriveau

Dr Rupp Carriveau is the Associate Professor at the University of Windsor, Lumley 
Centre for Engineering Innovation. He is the coordinator in the Centre for Energy 
and Water Advancement and Director in the Turbulence and Energy Laboratory. 
Dr Carriveau serves on the Editorial Boards of Wind Engineering, Advances in 
Energy Research, and the International Journal of Sustainable Energy. He is the 
current President of the Underwater Energy Storage Society. He was recently 
designated as the University Scholar and has served as the Research Ambassador 
for the Council of Ontario Universities.
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PREFACE

This book is intended for keen minds interested in flowing fluids. 
Specifically, it aims at removing the “fear of water” from those who are new 
to flow turbulence. The basic background on everyday flow turbulences, 
especially those encountered in engineering applications, forms the crux of 
the book. Some undergraduate knowledge of fluid mechanics and statistics 
is needed to best appreciate the material covered.

David S-K. Ting
August 14, 2015
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CHAPTER 1

Introducing Flow Turbulence
The greatest achievements were at first and for a time dreams. The oak sleeps 
in the acorn.

– James Allen
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Chapter Objectives

•	 To introduce the concept of flow turbulence.

•	 To learn about the fundamental characteristics of turbulent flows.

•	 To create a high-level appreciation of the pioneering explorations of turbulent flow.

•	 To preview the organization of the book.

NOMENCLATURE
g	 Gravity
h	 Height, (convective) heat transfer coefficient
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L	 Characteristic length
m	 Mass
r	 Radius
Ra	 Rayleigh number, Ra = gravity/thermal diffusivity = gb∆Th3/(νa)
Re	 Reynolds number, Re = inertia force/viscous force = UL/ν
s	 Spacing, gap
T	 Temperature, time period
Ta	 Taylor number, Ta = Ω2 s3 r

inner
/ν2

u	 Fluctuating velocity
U	 Velocity
Bold	 ⇒Tensor

Greek symbols
a	 Thermal diffusivity, thermal expansion coefficient
b	 Expansion coefficient
l	 Wavelength
m	 Dynamic (absolute) viscosity
ν	 Kinematic viscosity
ρ	 Density
Ω	 Vorticity,   Ω ≡ ∇ × U

1.1  INTRODUCTION

In this introductory chapter, the importance of flow turbulence is estab-
lished. To facilitate a conceptual understanding of turbulent flows, the in-
dispensable fundamental characteristics are conveyed. This is followed by 
a brief historic account of the classical turbulence explorations to further 
the appreciation thereof. The chapter concludes with a brief outline of this 
precursory text on the marvel of flow turbulence.

Turbulent motion is the natural state of most fluids, whereas laminar flow 
is the exception and not the rule, in both nature and technology. Turbulence 
is an underlying mechanism in cloud formation and atmospheric transport 
(Weil et al., 1992; Vaillancourt and Yau, 2000; Grabowski and Wang, 2013), 
practical droplet, spray and combustion processes (Bisetti et al., 2012; Jenny 
et  al.,  2012; Pope,  2013; Shinjo and Umemura,  2013; Xia et  al.,  2013; 
Wang et  al.,  2014; Birouk and Toth, 2015; Kourmatzis and Masri, 2015), 
wind harvesting (Cao et  al.,  2011; Ahmadi-Baloutaki et  al.,  2015; Smith 
et al., 2015), and industrial particle production and transportation (Pratsinis 
and Srinivas, 1996; Fager et al., 2012; Sala and Marshall, 2013; Capecelatro 
et al., 2014), to name but a few applications, mostly sourced from a stockpile 
of recent publications. The erratic motion of fluid particles caused by 
fluctuating pressure gradients is fundamental to transport and mixing within 
a turbulent flow. But what is flow turbulence or turbulent flow? Although it 
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is challenging to answer this definitively, one of the most appealing descrip-
tions is that “turbulence is the coexistence of structures and randomness.” 
Before we go through some of the inherent characteristics associated with 
turbulent flows, the following quotations are worth appreciating.

Turbulence is the most important unsolved problem of classical physics.
– Richard P. Feynman (1918–1988), Nobelist Physicist

Figure 1.1 attempts to portray this trite but truthful statement.

It is trite to regard turbulence as the last unsolved problem in classical physics and to 
cite many books and authorities to justify the opinion. It is likewise cliché to list great 
physicists and mathematicians, such as Werner Heisenberg, Richard Feynman, and 
Andrei Kolmogorov, who “failed” to solve the problem despite much effort.

– G. Falkovich and K.R. Sreenivasan (2006)

This is not to say that there has not been any advancement. Maybe the 
beauty of flow turbulence is more to be contemplated than to be decoded.

For after all what is man in nature? A nothing in relation to infinity, all in relation 
to nothing, a central point between nothing and all and infinitely far from under-
standing either. The ends of things and their beginnings are impregnably concealed 
from him in an impenetrable secret. He is equally incapable of seeing the nothing-
ness out of which he was drawn and the infinite in which he is engulfed.

– Blaise Pascal, Pensées #72

Figure 1.1  Turbulence, unresolved, and yet fearfully encountered every day. (Created 
by S.P. Mupparapu).
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We are inclined to agree with Pascal, particularly when recalling a late 
eminent heat transfer professor who once stated that there is no end to 
research. This is definitely true in the case of engineering turbulence. The 
fact that turbulence research continues and has, in fact, increased in recent 
years indicates that our understanding of the topic has improved. Therefore, 
if we continue to make use of this existing research, we are in a position to 
provide substantial benefit to society. With this in mind, let us proceed to 
familiarize ourselves with the topic at hand.

1.1.1  Irregular or Random
First, it is important to recognize that turbulent flows are defined by their 
irregularity or randomness. Turbulent flows are unsteady and fluctuate ran-
domly throughout the domains of space and time (Hinze, 1959).1 In other 
words, turbulent flows have random velocity fluctuations with a wide range 
of length and time scales. This makes a deterministic approach to turbulence 
problems incredibly challenging. However, it welcomes the use of statisti-
cal methods to provide approximations and insights into certain problems. 
Thus, said Hinze,

Turbulent fluid motion is an irregular condition of flow in which the various quanti-
ties show a random variation with time and space coordinates, so that statistically 
distinct average values can be discerned.

– Hinze (1959)

Due to the unpredictable nature of turbulent flow, it should be noted 
that the word “discerned” should probably be replaced by “approximated.” 
Nevertheless, flow turbulence has transport properties somewhat similar to 
those of molecular motion, but it is significantly more complex. This is 
because unlike molecular mass and mean free path in molecular motion, 
most characteristics of turbulent flow are not constants.

1.1.2  Rich in Scales of Eddying Motion
Second, turbulent flows are extremely rich in scales of eddying motion. As 
mentioned, a single turbulent flow will typically consist of a wide variation 
of length and time scales. These scales are the soul or the DNA of flow 

1 �It is not sufficient to define turbulent motion as irregular in time alone. For example, an 
element of fluid within a volume, which is moving irregularly, is irregular with respect to 
time to a stationary observer, but not to an observer moving with the volume of fluid. Nor 
is turbulent motion a motion that is irregular in space alone, since a steady flow with an 
irregular flow pattern alone might then come under the definition of turbulence.



Introducing Flow Turbulence 7

turbulence and thus are thoroughly expounded upon in Chapter  4. The 
large-scale motions are strongly influenced by the geometry of the flow, that 
is, boundary conditions, and they seem to control the transport and mixing 
within the flow. The behavior of the small-scale motions, on the other hand, 
may be determined almost entirely by the rate at which they receive energy 
from the large scales, although they are also influenced by the viscosity of 
the fluid. Therefore, these small-scale motions can have a universal char-
acter, independent of the flow geometry. The assumption of local isotropy 
has been challenged by some researchers, although when the conditions 
are right (e.g., high Re), this assumption appears to be quite reasonable. 
We note that our eyes see only a small window in time (and space) and 
are therefore likely to focus most heavily on the largest time/space scales  
in front of us. In other words, turbulence can be pictured as the superposition 
of eddies of ever-smaller sizes. These various-sized eddies have a certain 
amount of kinetic energy, as determined by their vorticity (Ω ≡ ∇ × U, 
here U signifies the velocity vector) or by the intensity of the velocity fluc-
tuation (½ mu2, where m is the mass and u is the fluctuating velocity) of the 
corresponding frequency. A distribution of energy, on average, between the 
frequencies is called an energy spectrum.

1.1.3  Large Reynolds Number
The other characteristic of turbulent flows is a large Reynolds number. 
Reynolds number is defined as: Re = inertia/viscous force = UL/ν, where 
U is the velocity, L is a characteristic length, and ν is the kinematic viscosity 
(ν = m/ρ, where m is the dynamic viscosity and ρ is the density). One can 
compare the flow of honey with that of a waterfall (e.g., Niagara Falls) as 
tabulated in Table 1.1 and depicted in Fig. 1.2. Honey has a large ν and/or 
a small U and, therefore, a low inertia and a small Reynolds number. The 
large ν removes fluctuations and dissipates the kinetic energy into heat. On 
the other hand, a waterfall has a relatively small ν and/or a large U and, con-
sequently, a high inertia and a large Reynolds number. Therefore, there is a 
lot of turbulence in a large waterfall; one can even detect the inertia from a 

Table 1.1  Flow of honey versus that of a waterfall (Reynolds number illustrated)

Honey Waterfall

Large ν, small U Small ν, Large U
Small inertia Large inertia
Small Re Large Re
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distance through vibrations in the ground and noise from the falling water. 
While not all turbulent flows are so majestic, they all have Re so large that 
fluid viscosity cannot keep the turbulence from occurring.

1.1.4  Dissipative
Turbulent flows are always dissipative in the sense that they lose energy 
and decay. Note that waves such as acoustic noise are dispersive but not 
dissipative; that is, they spread out without losing energy. Viscosity removes 

Figure 1.2  Flow of honey (small Re) versus that of a waterfall (large Re). (Photos taken 
by Z. Ting and N. Ting).
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flow fluctuations (instabilities) by converting the associated kinetic energy 
into heat; this is the dissipation process. A flow remains laminar when small 
perturbations are damped out via viscosity. Viscous force becomes relatively 
small at larger Reynolds numbers, which means that this damping, derived 
from the molecular diffusion of momentum, is unable to dissipate the over-
whelming perturbations (instabilities related to the interaction of viscous 
terms and nonlinear inertia terms in the equations of motion). As such, 
turbulence often originates from the instabilities in laminar flows when the 
Reynolds number becomes large. The perturbations can also originate from 
slight thermal current, surface roughness, etc., and perhaps even from mi-
croscopic sources such as the sub-continuum molecular motions that cause 
Brownian motion (Tsuge, 1974).

1.1.5  Highly Vortical
Turbulent flow is highly vortical, meaning that it is rotational and char-
acterized by high levels of fluctuating vorticity. Note that although the 
characteristics of cyclones may be strongly influenced by the interaction 
of small-scale turbulence (generated by shear or buoyancy) with large-scale 
flow, they are not themselves turbulence. Likewise, random waves on the 
ocean’s surface are not turbulence, as they are essentially irrotational.

The velocity derivatives are dominated by the smallest scales of 
turbulence. Vorticity is defined as the curl of the velocity, Ω  ≡  ∇ × U. 
Hence, vortex dynamics is a promising approach to studying and modeling 
turbulence. We will discuss this at length in Chapter 8.

1.1.6  Three-Dimensional
Turbulence is intrinsically three-dimensional. The term “two-dimensional 
turbulence” is only used to describe the simplified case where flow is 
restricted to two dimensions. Based on this description, we can note that 
two-dimensional turbulence is not true turbulence. Vorticity fluctuations 
cannot be two-dimensional because vortex stretching, an important 
vorticity-maintenance mechanism, is not present in a two-dimensional flow.

1.1.7  Highly Diffusive
Turbulent flows are also highly diffusive, and their diffusivity is much greater 
than that of a laminar flow (molecular diffusivity). The highly diffusive 
turbulence causes rapid mixing and increased rates of momentum, heat, 
and/or mass transfer. An easy example for students in a flow turbulence 
class to remember is also a smelly one. Suppose a student in the class ate too 
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many beans or other healthy foods that promote flatulence and happened 
to release some of the by-product in the middle of the class. Most of the 
students, other than those seated next to the culprit, would probably not be 
aware of the release if the air in the classroom was largely stagnant. Under 
these conditions, the by-product could only spread via molecular diffusivity. 
In reality, thanks to turbulent air motion, everyone gets a dose of the gas 
within a minute or two. This dissipation is proof that the air in the room is 
turbulent. As such, even an apparently random flow pattern is not turbulent 
if it does not exhibit the spreading of velocity fluctuations throughout the 
surrounding fluid, as is the case with, for example, a constant diameter jet.

1.1.8  Turbulent Flows are Flows
Turbulence is not a feature of fluids but of fluid flows. Turbulence is different 
for different flows, even though all turbulent flows have many common 
characteristics. Thus, the research approach of borrowing from molecular 
diffusivity and/or gas kinetic theories and applying them to flow turbulence 
is fundamentally unfounded. Notwithstanding that, flows can be compared, 
provided they are not too dissimilar.

1.1.9  Continuum
Turbulence is a continuum phenomenon, governed by the equations of 
fluid mechanics. Even the smallest turbulent length scales are much larger 
than the molecular length. This is only a problem in abnormal molecular 
conditions, such as when dealing with very thin air or rarefied gas.

1.2  A BRIEF HISTORIC ACCOUNT

Turbulent flows are the norm in real life, while laminar flows are the oddities. 
We see turbulence in rivers, oceans, clouds, smoke, waterfalls, bloodstreams, 
etc. Such a common and yet perplexing phenomenon has infatuated many 
inquisitive minds for centuries. The following is a brief chronological ac-
count of some of the recorded attempts to decode turbulence.

1.2.1  Leonardo da Vinci (1452–1519)
It is generally agreed that Leonardo da Vinci, the renowned scientist, philos-
opher, and artist of the fifteenth century, was the first to tackle turbulence. 
Da Vinci’s exceedingly detailed turbulence sketch reveals not only the mas-
ter hand of a one-of-a-kind artist, but also the mind of a genius fascinated 
by flow turbulence.
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1.2.2  Lord Rayleigh (1878, 1880)
Rayleigh conducted a series of theoretical investigations on the stability of 
a parallel flow of an inviscid fluid. He found that a necessary and sufficient 
condition for a parallel-flow inviscid fluid to become unstable is for it to 
possess an inflection point. An inflection point signifies that some sort of 
flow deceleration is required for an inviscid flow to become unstable.

We discussed earlier that the flow of a real (viscous) fluid will only be-
come turbulent when the inertia is larger than the viscosity. In other words, 
viscosity damps out turbulence. Rayleigh’s discovery, however, suggests 
that the presence of viscosity can promote the initiation of turbulence by 
enabling the creation of inflection points. Therefore, viscosity is a double-
edged sword – it is needed to kill turbulence, but it can also simultaneously 
create it.

1.2.3  Osborne Reynolds (1842–1912)
In 1883, Osborne Reynolds built 6-ft. long glass tubes with diameters of 
2.68, 1.53, and 0.789 cm with trumpet mouths and passed water through 
them (Reynolds,  1883,  1894). He found that at a low flow rate and/or 
with a small diameter tube, an injected color streak is seen as a steady streak 
(Fig. 1.3a). In other words, the flow is laminar at low Re where small per-
turbations are damped out by viscosity. Note that a laminar flow in a smooth 
long pipe in Fig. 1.3a is named after Poiseuille.2

At a higher flow rate, the color band shown in Fig.  1.3b appears to 
expand and mix with the water. When viewing the tube by the light of an 
electric spark (Fig. 1.3c), the mass of color resolves itself into a mass of more 
or less distinct curls, in which eddies can be seen.

In the transitional realm of an intermediate flow rate, as depicted by 
Fig. 1.3d, we see the intermittent character of the flow motion caused by the 
disturbances, which appear as flashes succeeding each other inside the tube. 
In other words, we see sporadic bursts of turbulence alternating with laminar 
flow, indicating a problem with multiple solutions. Consequently, some have 
approached the origin of turbulence via the bifurcation/chaos method.

2 �Poiseuille flow is a mathematical possibility in an infinite pipe since it is an exact solution 
of the Navier–Stokes equations. Poiseuille flow is stable to infinitesimal perturbations at all 
Re. This implies that transition to turbulence is dependent on the perturbation, in addition 
to Re. This is unlike flows around a bluff body where instability can be predicted to occur 
using linearized perturbation theory with an infinitesimal amplitude. The above two points 
indicate that there is more than one way to create a turbulent flow.
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For practical pipe flows, transition typically occurs at Re ≈ 2000 in the 
form of decaying turbulent slugs passing through the pipe, and a fully turbu-
lent state generally occurs when Re > 2300. It is, however, not possible to 
be precise about these critical Reynolds numbers, as they are very sensitive to 
upstream flow conditions and the texture (smoothness or roughness) of the 
boundary. With sufficient care taken to minimize possible disturbances, lami-
nar flow in a pipe can be maintained to at least Re ≈ 105 (Pfenninger, 1961).

An idealized sketch of the laminar–turbulent transition process over a 
flat plate is depicted in Fig. 1.4. We see that the vortical structures are initial-
ly two-dimensional in nature, generated due to shear (no-slip conditions) in 
the boundary layer. These vortical structures become progressively unstable 
farther downstream, with three-dimensional interactions eventually leading 
to turbulence.

1.2.4  Henri Bénard (1900)
Consider a fluid confined between two large parallel plates. When the tem-
perature of the lower plate is marginally higher than that of the top plate, 

Figure 1.3  Osborne Reynolds’ experiment on laminar to turbulent flow in a pipe. 
(Created by H. Cen).
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heat is conducted through the stagnant (quiescent) fluid via molecular con-
duction. The upward buoyancy force is balanced by the vertical pressure 
gradient until a critical temperature difference is reached and laminar Bé-
nard cells are formed (see Fig. 1.5). It is found that the instability criterion is

g ThRa gravity/thermal diffusivity /( ) 1.70 103 3β να≡ = ∆ = ×	 (1.1)

where b is the expansion coefficient, h is the height of the gap, and a is the 
thermal diffusivity. Note that this critical Rayleigh number (Ra) coincides 
almost exactly (off by only 0.7%) with the critical Taylor number (which 
we will cover next), and the wave number of the convection cells is 3.12/h.

Further increase in Ra will eventually lead to the Bénard cells them-
selves becoming unstable. In a case of fully turbulent convection, the flow 
field consists of a time-averaged component plus a random, chaotic motion.

Ra≡gravity/thermal diffusivity=g
b∆Th3/(va)=1.70×103

Figure 1.4  Laminar–turbulent transition process on a flat plate. (Created by A.  
Vasel-Be-Hagh).
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1.2.5  Taylor (1915, 1923, 1935, 1938)
Taylor studied the flow between two concentric cylinders, with the inner 
cylinder rotating at a constant speed. At low rotation rates, the fluid within 
the gap, being dragged around by the inner cylinder, also rotates. At a certain 
critical speed, toroidal (Taylor) vortices appear due to instability of the basic 
rotary flow, superimposed on the primary circular motion (see Fig. 1.6a). 
When the cylinders are very long and the gap is very narrow, only the 
Taylor number (Ta) determines the onset of the Taylor vortices.

The formation of Taylor vortices has to do with the centrifugal force, 
which tends to drive the rotating fluid radially outward. Below the critical 
speed, this force is balanced by the pressure gradient and the viscous force. 
Above the critical speed, the prevailing centrifugal force drives the rotating 
fluid outward. Because the outer fluid is in the way, the outwardly moving 
fluid breaks up into cells as shown in Fig. 1.6a. This is known as Rayleigh 
instability.3

At higher rotational speed, the Taylor vortices themselves become unsta-
ble and wavy Taylor vortices appear (see Fig. 1.6b). Even though the structures 
are more complex, this flow is still laminar.

Modulated wavy Taylor vortices emerge with a further increase in speed. 
When the speed is sufficiently high, the flow becomes fully turbulent (see 
Fig. 1.6c). At this point, the time-averaged flow pattern resembles that of the 
steady Taylor vortices, only the cells are somewhat larger (compare Fig. 1.6c 
with Fig. 1.6a).

3 �Rayleigh identified the instability mechanism and produced a stability criterion for invis-
cid, rotating flows. Taylor later extended the theory to viscous flows.

Figure 1.5  Bénard convection cells. (Created by A. Vasel-Be-Hagh).
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The three independent dimensionless groups are Taylor number, Ta ≡ cen-
trifugal force/viscous force = Ω2 s3 r

inner
/ν 2; s/r

inner
; and L/r

inner
, where Ω is 

the rotation rate, s is the gap (spacing), r
inner

 is the radius of the inner cylinder, 
and L is the length of the apparatus. When L ≫ r

inner
 and s ≪ r

inner
, the flow 

is completely characterized by Ta alone. In this case, Ta ≈ 1.70 × 103 and the 
axial wave number of the vortices is 2π/l, where l is the wavelength.

Also, Taylor borrowed ideas from the kinetic theory of gases for treating 
homogeneous and isotropic turbulent flows, replacing the fluid viscosity 
with eddy viscosity. He used the term “turbulence spectrum” to describe 
turbulence, stating that turbulence at any point may be considered as an 
infinite sum of harmonic components, each having a unique scale (eddy 
size). Taylor also introduced velocity correlations for describing turbulent 
structure using the degree with which velocity components at neighboring 
points are correlated. The statistical approach to understanding flow turbu-
lence was also more or less initiated by Taylor.

1.2.6  Prandtl (1925)
In line with the mean free path in the kinetic theory of gases, Prandtl 
introduced the concept of a “mixing length,” wherein the mixing length 
is the average distance a fluid element would stray from the mean stream-
line. Recall that a streamline is a line that is always tangent to the velocity 
vector at a given instant. As mentioned before, turbulence is not a feature 
of fluids but one of fluid flows. Thus, the analogy between “mean free 
path” and “mixing length,” though useful in many aspects, is fundamen-
tally invalid.

Figure 1.6  Taylor vortices for flow between two concentric cylinders. (a) Taylor vortices; 
(b) wavy Taylor vortices; and (c) turbulent Taylor vortices. (Created by H. Cen).
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The above historic review is far from complete. Interested readers are 
referred to specialized documents such as Laufer (1975), Townsend (1990), 
Lumley and Yaglom (2001). The manifold contributions of Taylor and 
Prandtl will be expounded upon in later chapters.

1.3  ORGANIZATION OF THE BOOK

Chapter 2 details the basic equations of fluid in motion. This is followed 
by the promising statistical description of flow turbulence in Chapter  3. 
The crux of the book is turbulence scales, and thus, Chapter  4 is com-
prehensively devoted to this topic. Chapter 5 briefly highlights turbulence 
simulations and modeling. Wall turbulence is reviewed in Chapter 6. The 
practically simplest and cleanest grid turbulence is the subject of Chapter 7. 
Chapter 8 talks about vortex dynamics in the context of understanding and 
modeling flow turbulence. The last two chapters provide common topics 
of engineering problems involving turbulence. Chapter 9 discusses a sphere 
and a circular cylinder in cross flow, while Chapter 10 discusses premixed 
turbulent flow propagation. We hope that inquisitive scholars who journey 
on this turbulence path will fall in love with flow turbulence along the way, 
whether voluntarily or not (see Fig. 1.7).

Figure 1.7  Falling for flow turbulence. (Created by H. Wu and edited by D. Ting).
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Problems

Problem 1.1 Dimensional analysis
A turbulent flow researcher aims at studying the wake behind two identical 
spheres falling above the free surface of water. The resulting wake is thought 
to depend on the sphere diameter, the distance between the two spheres, 
the initial height from the free surface, surface tension, viscosity, distance 
or time traveled, etc. How many dimension-less parameters are required to 
characterize this? What are the parameters?

Problem 1.2 Turbulence or not?
Give a concise and clear example, with brief explanation, of a turbulent 
flow (or flow turbulence). Give another example of a flow that seems tur-
bulent but is not.

Problem 1.3 Turbulence from a waterfall
A stream of waterfalls down into a deep lake via a height of 7 m at a rate of 
25 kg/s. Have a rough estimate of the integral scale of the turbulence. Also 
estimate the size of the smallest eddies.
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CHAPTER 2

Equations of Fluid in Motion
The future belongs to those who believe in the beauty of their dreams.

– Eleanor Roosevelt
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Chapter Objectives

•	 To understand the continuum approach.

•	 To discern and differentiate the Lagrangian framework from the Eulerian frame-
work.

•	 To learn about the Eulerian-Lagrangian transformation.

•	 To derive the equations of motion for laminar flow.

•	 To understand Reynolds decomposition.

•	 To extend the equations of motion to turbulent flow via Reynolds decomposition.

NOMENCLATURE
A	 Area
CAD	 Crank angle degree
F	 Force
k	 Thermal conductivity
Kn	 Knudsen number, molecular mean free path/characteristic physical length
l	 Smallest geometric length in a flow
l
medium

	 Intermediate length scales
m	 Mass
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N	 Total number of cycles
n	 Cycle number
P	 Pressure
p	 Fluctuating pressure
STP	 Standard Temperature and Pressure (25°C and 1 atm)
T	 Temperature
T

period
	 Time period

t	 Time
U	 Velocity, or velocity in the x direction
u	 Fluctuating velocity in the x direction
V	 Velocity in the y direction, volume
v	 Fluctuating velocity in the y direction
W	 Velocity in the z direction
w	 Fluctuating velocity in the z direction
x, y, z	 Cartesian coordinates
Bold	 ⇒ Tensor
Overbar	⇒ Time-averaged or mean

Greek symbols
a	 Field variable

γ	 Angle
d	 A small amount
λ

mfp
	 Molecular mean free path

m	 Dynamic (absolute) viscosity
ν	 Kinematic viscosity
ρ	 Density
σ	 Stress
τ	 Shear; timescale

2.1  INTRODUCTION

In this chapter, we will invoke basic principles and derive the fundamental 
equations of fluid in motion. To do so we first introduce the continuum 
concept, followed by the Eulerian and Lagrangian frameworks and the 
transformation from one frame to the other via the Reynolds’ transport 
theorem. The equations corresponding to the familiar laminar case are de-
rived before applying Reynolds decomposition to deduce those for the 
turbulent case.

The conservation equations for fluid can be derived in two basic ways, 
either statistically or under the assumption of continuum mechanics. The 
statistical approach tackles the problem from a molecular point of view. 
It treats the fluid as a group of molecules where motion is governed by 
the laws of dynamics. It predicts macroscopic behavior from the laws of 
mechanics and probability theory. The transport coefficients such as the 
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(kinematic) viscosity ν and the thermal conductivity k are functions of 
molecular forces. As such, the statistical approach works well for light gases 
where the molecules are relatively sparse. It is, however, incomplete for 
polyatomic gas molecules and for liquids.

The continuum approach assumes the fluid to consist of continuous 
matter, rather than discrete particles. At each point of this continuous fluid, 
there is supposed to be a unique value of the velocity, pressure, density, and 
other field variables. The continuous matter obeys the laws of conservation. 
This leads to a set of differential equations governing the field variables, the 
solution of which defines the variation of each field variable with respect 
to space and time. At any instant in time, the variable assumes the mean 
value of the molecular magnitude at that location. For the continuum ap-
proach to be valid, the mean free path of the molecules must be very small 
relative to the smallest physical length scale. In other words, the continuum 
hypothesis is good when the Knudsen number, the ratio of the molecular 
mean free path length to the representative physical length scale, is small. 
Specifically

lKn( / ) 1
mfp

λ≡ << (2.1)

where λ
mfp

 is the molecular mean free path (for air, this is approximately 
6 × 10−8 m at STP [standard temperature and pressure]) and l is the smallest 
geometric length scale in a flow.

For a very small Kn, there exists a relatively intermediate length l
medium

  
which is large compared to λ

mfp
, but small compared to l. Under this con-

dition, the continuum fluid properties such as density and velocity can 
be thought of as the molecular properties averaged over a volume of size  
(l

medium
)3. This is utilized in the derivation of differential conservation equa-

tions, where a control volume is shrunk to infinitesimal size. In Cartesian 
coordinates, this infinitesimal volume has dimensions dx, dy, and dz, giving a 
volume of dx dy dz, which is equivalent to (l

medium
)3, as the derivation invokes 

the continuum assumption.
Beyond a certain distance away from the earth surface, say, at an eleva-

tion of 100 km, atmospheric air has a mean free path on the order of 0.1 m. 
It is therefore not surprising to see the continuum approach break down 
and the aforementioned statistical approach (the rarefied gas flow theo-
ry) become more appropriate. We shall stay with the continuum approach 
throughout this book; that is, we only deal with conditions where it is valid. 
Unless otherwise stated, we will further limit ourselves to incompressible 
Newtonian fluids only.

Kn(≡lmfp/l)<<1
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When dealing with very high levels of flow turbulence, the size of the 
eddying motion can become quite small. Even in typical high-intensity 
turbulent flows, the length scale of the smallest eddies is generally still much 
larger than typical intermolecular distances; hence, the fluid may be mod-
eled as a continuum medium. This book only considers situations where 
this holds true.

2.2  EULERIAN AND LAGRANGIAN FRAMES

The two choices of reference frameworks are the Eulerian and the Lagrang-
ian. Reynolds’ transport theorem, to be covered later, can be used to relate 
derivatives in these two frameworks. In other words, the derived equations 
can be transformed from one framework to the other via the Reynolds’ 
transport theorem (Currie, 1974).

2.2.1  Eulerian
Eulerian fields are indexed by the position vector x in an inertial frame, 
usually by fixing a control volume in space and monitoring the flow passing 
through the control volume over a period of time. As such, the independent 
variables are the spatial coordinates (x, y, z) and the time (t). In other words, 
the properties of a flow field are specified in terms of space coordinates 
and time. This approach is typically preferred for solving fluid dynamics 
problems.

2.2.2  Lagrangian
The Lagrangian approach is gaining ground in the detection of Lagrang-
ian coherent structures, which are free from the uncertainties associated 
with single trajectories (Haller, 2015). The full Lagrangian skeleton of ma-
terial surfaces, the Lagrangian coherent structures, of a general turbulent 
flow such as that in an ocean or the atmosphere can now be determined 
(Haller,  2015). This Lagrangian approach that keeps track of a particular 
mass of fluid has also been traditionally used to derive the basic equations. 
Consider the generic case where the fluid particle initially (at time t

0
) is at 

position X+(t
0
, Y) = Y, where Y is the Lagrangian or material coordinate. 

At any time t, the particle is at spatial location X+, and at that position the 
particle moves with the local fluid velocity; that is

X t Y

t
U X t Y t

,
, ,

� �
� � �∂

∂ ( )( ) ( )=
+

+ (2.2)
∂X→+t,Y→∂t=U→X→+t,Y→,t
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Note that the local fluid velocity can be deduced from the Eulerian ve-
locity field U(x, t). Hence, knowing the initial particle position and the 
Eulerian velocity field, we can trace the path of the particle under con-
sideration.

2.2.3  Eulerian-Lagrangian Transformation
Let a be any field variable (concentration, ρ, T) of the fluid. From the 
Eulerian point of view, a may be considered to be a function of the inde-
pendent variables x, y, z, and t. At any spatial position (x, y, z), the value 
of a is only a function of time t; and it is a constant under steady flow 
conditions. Alternatively speaking, at any time instant t or under steady 
flow condition, the value of a is specified explicitly by the spatial coor-
dinates (x, y, z).

On the other hand, if we follow a specific fluid element over a short 
period of time dt, its position will change by amounts dx, dy, and dz, while 
the value of a will change by an amount da. In this Lagrangian framework, 
the independent variables are x

0
, y

0
, z

0
, and t, where x

0
, y

0
, and z

0
 are the 

initial coordinates for the fluid element. As such, x, y, and z are no longer 
independent variables as in the Eulerian framework, but are functions of t 
as defined by the trajectory of the element. Over the short time period dt, 
the change in a may be deduced from the differential calculus

t x y z
t

t
x

x
y

y
z

z, , ,α ∂α
∂

δ ∂α
∂

δ ∂α
∂

δ ∂α
∂

δ( ) ⇒ + + +
	

(2.3)

Equating the above change in a to the observed change da in the La-
grangian framework, we have

t
t

x
x

y
y

z
z)

t t t
δα ∂α

∂
δ ∂α

∂
δ ∂α

∂
δ ∂α

∂
δ= + + +δ→ + (2.4)

Dividing through by dt gives

t t
x
t x

y
t y

z
t z

δα
δ

∂α
∂

δ
δ

∂α
∂

δ
δ

∂α
∂

δ
δ

∂α
∂

= + + +
	

(2.5)

The left-hand side represents the total change in a over a brief time inter-
val dt in the Lagrangian framework. In the limit where the time interval is  

at,x,y,z⇒∂a∂tdt+∂a∂xdx+∂a∂y
dy+∂a∂zdz

da)t→t+dt=∂a∂tdt+∂a∂xdx+∂
a∂ydy+∂a∂zdz

dadt=∂a∂t+dxdt∂a∂x+dydt∂a∂y+dzdt∂a∂z
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indefinitely small, the left-hand side represents the time derivative of a in 
the Lagrangian system, Da/Dt, which is called the material derivative. In 
other words, as dt approaches zero, we have

D
Dt t

U
x

V
y

W
z

α ∂α
∂

∂α
∂

∂α
∂

∂α
∂

= + + +
	

(2.6)

The first term on the right-hand side depicts the change in a with 
respect to time, and thus it is zero for the steady case. The last three terms 
on the right-hand side signify the change in a due to convection; the first 
represents the change in a when the fluid element is convected by the 
velocity in the x direction, the second is the change due to convection in 
the y direction, and the third is the change caused by convection in the z 
direction. The equation can be expressed in vector form

D
Dt t

U
�α ∂α

∂
α( )= + ⋅∇

	
(2.7)

Alternatively, we can express it using Einstein’s summation convention

D
Dt t

U
xk

k

α ∂α
∂

∂α
∂

= + (2.8)

As mentioned earlier, the entire right-hand side represents the total change 
in a expressed in Eulerian coordinates. The first term on the right-hand 
side shows that at any point in space, the fluid properties may change with 
respect to time; this is the unsteady scenario. In a time-independent, steady 
flow field, the second term illustrates that the fluid property a changes with 
respect to the location only. In the general case, a can vary with respect to 
both time and space.

It is worth emphasizing that Da/Dt, which represents the total change 
in the quantity a as seen by an observer following a fluid element, is called 
the material derivative or convective derivative. The definition is be-
lieved to have been first introduced by Stokes.

2.3  COMMON EQUATIONS IN FLUID MECHANICS

In this section, the conservation of mass, momentum, and energy are de-
rived for a flow without turbulent fluctuations. These derivations are avail-
able in standard fluid mechanics textbooks such as Fox et al. (2009). They 

DaDt=∂a∂t+U∂a∂x+V∂a∂y+W∂a∂z

DaDt=∂a∂t+U→⋅∇a

DaDt=∂a∂t+Uk∂a∂xk
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are provided here in detail to illustrate the additional terms associated with 
fluctuating turbulent flows in Section 2.5.

2.3.1  Conservation of Mass
In the absence of nuclear reactions and other extreme conditions such as 
those involving a mass traveling at the speed of light, mass can neither be 
destroyed nor created. This conservation of mass principle is also referred 
to as the continuity principle. Consider an infinitesimal control volume of 
dimensions dx dy dz, as shown in Fig. 2.1. At the center of the volume, point 
0 with coordinates (0, 0, 0), the fluid density is ρ and the velocity is

U Ui Vj Wkˆ ˆ ˆ�
= + +	

(2.9)

The pointed hats are used to denote unit vectors. Invoking Taylor series 
expansion about point 0 leads to terms such as

x
dx

x
dx

2

1

2! 2x

2

2

2

dx
2

�ρ ρ ∂ρ
∂

∂ ρ
∂

) = + + 



 ++

(2.10)

Neglecting the much smaller, higher order terms, we are left with

x
dx
2x dx

2
ρ ρ ∂ρ

∂
) = + 



+ (2.11)

U U
U
x

dx
2x dx

2

∂
∂

) = + 



+ (2.12)

where ρ, U, ∂ρ/∂x, ∂U/∂x are evaluated at point 0.

U→=Uiˆ+Vjˆ+Wkˆ
ρx+dx2=ρ+∂ρ∂xdx2+∂2ρ∂x212!dx22+...

ρx+dx2=ρ+∂ρ∂xdx2

Ux+dx2=U+∂U∂xdx2

Figure 2.1  A differential control volume in the Cartesian coordinate. (Created by Z. Yang).
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The conservation of mass for the control volume dx dy dz depicted in 
Fig. 2.1 implies that the rate of mass entering the control volume minus 
that exiting the control volume is equal to the rate of change of mass of the 
control volume (element). In other words

m m
t
m

in out element
� �

∂
∂

− =
	

(2.13)

The mass flux through each of the six surfaces of the control volume 
shown in Fig. 2.1 can be described as

U dA
CS

� �
∫ ρ ⋅

	
(2.14)

Here, subscript “CS” signifies the control surface, and A (or A with an ar-
row head) denotes the surface tensor.

For the left (−x) surface, we have

ρ ∂ρ
∂

∂
∂

ρ ∂ρ
∂

ρ ∂
∂

∂ρ
∂

∂
∂

( )

− −





 −






 = − +

+

−

x
dx
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dx
dydz U dydz U

x
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U
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x
U
x
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1

2
1

2
1

4
2

(2.15)

Dropping the much smaller, higher (4th) order term leaves us with

ρ ∂ρ
∂

∂
∂

ρ

∂ρ
∂

ρ ∂
∂

− −





 −






 = −
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 


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x
dx

U
U
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dydz U dydz

U
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U
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(2.16)

Similarly, for the right (+x) surface, we have

ρ ∂ρ
∂

∂
∂

ρ

∂ρ
∂

ρ ∂
∂

+





 +






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dx

U
U
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1
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(2.17)

m˙in−m˙out=∂∂tmelement

∫CSρU→⋅dA→

−ρ−∂ρ∂xdx2U−∂U∂xdx2dydz
=−ρUdydz+12U∂ρ∂xdxdydz+
12ρ∂U∂xdxdydz−14∂ρ∂x∂U∂x

dx2dydz

−ρ−∂ρ∂xdx2U−∂U∂x
dx2dydz=−ρUdydz+1

2U∂ρ∂x+ρ∂U∂xdxdydz

ρ+∂ρ∂xdx2U+∂U∂xd
x2dydz=ρUdydz+12U

∂ρ∂x+ρ∂U∂xdxdydz
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The expression for the bottom (−y) surface is

ρ ∂ρ
∂

∂
∂

ρ

∂ρ
∂

ρ ∂
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− −






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
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(2.18)

The flux entering the top (+y) surface can be described by

ρ ∂ρ
∂
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ρ
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(2.19)

And for the back (−z) surface

ρ ∂ρ
∂
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(2.20)

Similarly, for the front (+z) surface
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∂
∂

ρ

∂ρ
∂

ρ ∂
∂

+





 +






 =

+ +

 




z
dz

W
W
z

dz
dxdy W dxdy

W
z

W
z

dxdydz

2 2
1

2	

(2.21)

Summing all the terms associated with the six surfaces gives

U
x

V
y

W
z

dxdydz
t

dx dydz
∂ρ
∂

∂ρ
∂

∂ρ
∂

∂ρ
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− + +
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


 =

	
(2.22)

We can bring the right-hand term to the left and get

t
U
x

V
y

W
z

0
∂ρ
∂

∂ρ
∂

∂ρ
∂

∂ρ
∂

+ + + =
	

(2.23)

The first term shows that local changes to mass (per unit volume) can occur 
when there is a change in the fluid density or when the fluid is compressible. 

−ρ−∂ρ∂ydy2V−∂V∂y
dy2dxdz=−ρVdxdz+1

2V∂ρ∂y+ρ∂V∂ydxdydz

ρ+∂ρ∂ydy2V+∂V∂yd
y2dxdz=ρVdxdz+12V

∂ρ∂y+ρ∂V∂ydxdydz

−ρ−∂ρ∂zdz2W−∂W∂
zdz2dxdy=−ρWdxdy+1
2W∂ρ∂z+ρ∂W∂zdxdydz

ρ+∂ρ∂zdz2W+∂W∂zd
z2dxdy=ρWdxdy+12W

∂ρ∂z+ρ∂W∂zdxdydz

−∂ρU∂x+∂ρV∂y+∂ρW∂z dxdydz=∂
ρ∂tdxdydz

∂ρ∂t+∂ρU∂x+∂ρV∂y+∂ρW∂z=0
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The remaining three terms signify mass changes (per unit volume) resulting 
from convection.

Alternatively, we see that the net rate of mass flux through the control 
surface is

U
x

V
y

W
z

dxdydz
∂ρ
∂

∂ρ
∂

∂ρ
∂

+ +




	

(2.24)

and the rate of change of mass inside the control volume is

t
dx dydz

∂ρ
∂	

(2.25)

therefore, the net rate of change of mass is

t
dx dydz
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dxdydz 0
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+ + +

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=
	

(2.26)

Dividing both sides by the volume dx dy dz gives Eq. 2.23, which is the 
mass conservation or continuity equation with a general expression

t
U 0
�∂ρ

∂
ρ( )+ ∇ ⋅ =

	
(2.27)

In the special case of incompressible fluid or constant-density flow, the 
above continuity equation is reduced to

U· 0∇ =	 (2.28)

This expression states that the total convection of mass into the control vol-
ume minus that convected out of the control volume is zero for a constant-
density flow.

2.3.2  Momentum Equation
Applying Newton’s second law to an infinitesimal fluid element of dimensions 
dx dy dz can provide a dynamic equation describing the corresponding mo-
tion of the fluid element; see, for example, Çengel and Cimbala (2013) and Fox 
et al. (2009). According to Newton’s second law, force is equal to mass times 
acceleration, and when applied to an infinitesimal system of mass dm, we have

dF dm
dU
dt

system

�
�

=

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(2.29)

∂ρU∂x+∂ρV∂y+∂ρW∂zdxdydz

∂ρ∂tdxdydz

∂ρ∂tdxdydz+∂ρU∂x+∂ρV∂y+∂
ρW∂zdxdydz=0

∂ρ∂t+∇⋅ρU→=0

∇·U=0

dF→=dmdU→dtsystem
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This can be rewritten as

dF dm
DU
Dt
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Consider only the stresses that act in the x direction. The stresses at the 
center of the differential element are σ

xx
, τ

yx
, τ

zx
, and the stresses acting in 

the x direction on all faces of the element are as shown in Fig. 2.2.
We can sum up all the pertinent forces to get the net surface force in 

the x direction
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(2.31)

Canceling out the equivalent terms with opposing signs leaves us with

dF
x y z

dxdydz
S

xx yx zx

x

∂σ
∂

∂τ
∂

∂τ
∂

= + +





	
(2.32)

dF→=dmDU→Dt=dmU∂U→∂x+V∂
U→∂y+W∂U→∂z+∂U→∂t

dFSx=σxx+∂σxx∂xdx2dydz−σxx−∂σxx∂xdx2dydz+τ
yx+∂τyx∂ydy2dxdz−τyx−∂τyx∂ydy2dxdz+τzx+∂τzx∂z

dz2dxdy−τzx−∂τzx∂zdz2dxdy

dFSx=∂σxx∂x+∂τyx∂y+∂τzx∂zdxdydz

Figure 2.2  Laminar stresses on a control volume in the Cartesian coordinate. (Created 
by P.K. Pradip).
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With gravity force as the only body force, g
�

= body force per unit mass, the 
net force in the x direction can thus be expressed as

dF dF dF g
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x x
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(2.33)

We can apply the same procedure to derive the corresponding expres-
sions for the y and z components. The resulting expressions for the net 
forces in the y and z directions, respectively, are
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(2.35)

Substituting Eqs 2.33, 2.34, and 2.35 into Eq. 2.30, noting that dm = ρ 
dx dy dz and hence the dx dy dz product on the left-hand side cancels with 
that on the right-hand side, gives
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g
x y z

W
t

U
W
x

V
W
y

W
W
zz

xz yz zzρ
∂τ
∂

∂τ
∂

∂σ
∂

ρ ∂
∂

∂
∂

∂
∂

∂
∂

+ + + = + + +




	

(2.38)

With F
i
 as the per unit mass body forces, a continuum fluid with a ve-

locity field U
i
, density ρ, and temperature T in the Cartesian coordinate 

system is

DU

Dt
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x
i

i

ji

j

ρ ρ
∂σ
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= +

	

(2.39)

g→

dFx=dFBx+dFSx=ρgx+∂σxx∂x
+∂τyx∂y+∂τzx∂zdxdydz

dFy=dFBy+dFSy=ρgy+∂τxy∂x
+∂σyy∂y+∂τzy∂zdxdydz

dFz=dFBz+dFSz=ρgz+∂τxz∂x
+∂τyz∂y+∂σzz∂zdxdydz

ρgx+∂σxx∂x+∂τyx∂y+∂τzx∂z=ρ∂U∂t+U∂U∂x+V∂U∂y+W∂U∂z

ρgy+∂τxy∂x+∂σyy∂y+∂τzy∂z=ρ∂V∂t+U
∂V∂x+V∂V∂y+W∂V∂z

ρgz+∂τxz∂x+∂τyz∂y+∂σzz∂z=ρ∂W∂t+U
∂W∂x+V∂W∂y+W∂W∂zρDUiDt=ρFi+∂σji∂xj
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Alternatively, we can follow Davidson (2004) and apply Newton’s sec-
ond law to a lump of fluid of volume dV to get

V
DU
Dt

P dS viscous forces
S
�

�
�

∫ρδ( ) ( )= − + (2.40)

According to Gauss’s theorem, we can write

P dS P dV P V
S

V∫ ∫ δ( ) ( ) ( )− = −∇ = − ∇
δ�

�
(2.41)

and thus, we have

V
DU
Dt

P V viscous forcesρδ δ( ) ( )= − ∇ +
�

	
(2.42)

This equation states that the mass of the fluid element, ρdV, times the ac-
celeration, DU/Dt, is equal to the net pressure force acting on the fluid 
element, plus any viscous forces arising from viscous stresses.

For the infinitesimal fluid lump shown in Fig. 2.2, there are shear and 
normal stresses as depicted in the figure. Any imbalance in stress will lead 
to a net force acting on the fluid element. For example, the net force in the 
x direction is
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(2.43)

This can also be expressed as

F
x

V
x

jx

j
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(2.44)

where there is a summation over the repeated index j. Similar expressions 
can be found for F

y
 and F

z
. The general expression is

F
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(2.45)

Thus, we can write Eq. 2.42 as

DU
Dt

P
x

ji

j

ρ
∂τ
∂

= −∇ +
�

	
(2.46)

ρdVDU→Dt=∮S−PdS→+viscous forces

∮S−PdS→=∫dV−∇PdV=−∇PdV

ρdVDU→Dt=−∇PdV+viscous forces

Fx=∂σxx∂x+∂τyx∂y+∂τzx∂zdV

Fx=∂τjx∂xjdV

Fi=∂τji∂xjdV

ρDU→Dt=−∇P+∂τji∂xj
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Next, we need a constitutive law relating τ
ij
 to the rate of the deforma-

tion of the fluid element. For the fluid element in a parallel shear flow as 
depicted in Fig. 2.3a, the angular distortion rate, dg/dt, is proportional to the 
shear stress, τ

yx
, for a Newtonian fluid

d dt/
yx

γ τ∝
	

(2.47)

Introducing the absolute viscosity, m = ρν, as the proportionality constant, 
we have

v d dt/
yx

τ ρ γ=
	

(2.48)

But dγ/dt = ∂U/∂y and hence, we have

dU
dyyx

τ ρν=
�

	
(2.49)

Now we consider the more general two-dimensional case as shown in 
Fig. 2.3b. Over a small time period dt, the fluid element experiences an 
angular distortion of

U y V x t( / / )
1 2

δγ δγ δγ δ= + = ∂ ∂ + ∂ ∂	
(2.50)

It follows from Eq. 2.49 that

v U y V x( / / )
xy yx
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(2.51)

We can easily generalize this into the three-dimensional case; that is, for 
Newtonian fluids
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(2.52)

dg/dt∝tyx

τyx=ρv dg/dt

τyx=ρνdU→dy

dg=dg1+dg2=(∂U/∂y+∂V/∂x)t

τxy=τyx=ρv(∂U/∂y+∂V/∂x)

τij=m∂Ui∂xj+∂Uj∂xi=ρν∂Ui∂xj+∂Uj∂xi

Figure 2.3  Distortion of a fluid element (a) in a parallel shear flow, (b) in a two- 
dimensional shear flow. (Created by P.K. Pradip).
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Substituting this into the equation of motion, Eq. 2.46, gives us the Navier-
Stokes equation
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ρ
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+ ∇
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�
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From the material derivative equation, we can express the acceleration 
of a fluid element as
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(2.54)

With this, we can rewrite the Navier-Stokes equation as
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(2.55)

Note that for a steady flow, the first term on the right-hand side is zero. On 
the other hand, the second term is typically finite, for the velocity of the 
fluid element generally changes as it moves through the flow field.

For incompressible flow with constant viscosity, the corresponding Na-
vier-Stokes equations in the Cartesian coordinate system are
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2.4  REYNOLDS DECOMPOSITION

In this section, we are going to follow Reynolds (1895) in the decomposi-
tion of the Navier-Stokes equation with the Reynolds-averaged Navier-
Stokes equation. Strictly speaking, we are invoking the statistical theory 

DU→Dt=−∇pρ+ν∇2U→

DU→Dt=∂U→∂t+U→⋅∇U→

DU→Dt=−∇pρ+ν∇2U→=∂U→dt+U→⋅∇U→

ρgx−∂P∂x+m∂2U∂x2+∂2U∂y2+∂2U∂z2=ρ
∂U∂t+U∂U∂x+V∂U∂y+W∂U∂z

ρgy−∂P∂y+m∂2V∂x2+∂2V∂y2+∂2V∂z2=ρ
∂V∂t+U∂V∂x+V∂V∂y+W∂V∂z

ρgz−∂P∂z+m∂2W∂x2+∂2W∂y2+∂2W∂z2=ρ
∂W∂t+U∂W∂x+V∂W∂y+W∂W∂z
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for continuum turbulent flow when we talk about Reynolds averaging. In 
other words, since it is impossible for us to develop a deterministic theory of 
turbulence, we opt to develop a statistical one based on the average proper-
ties of turbulence. As soon as we talk about averages, we have to know what 
kind of average we are dealing with (Choudhuri, 1998).

For spatially homogeneous turbulence, we can take spatial averages of 
various fluctuating quantities over some region of space. For “stationary” 
turbulence in which its general (statistical) characteristics are invariant 
with respect to time, we can take time averages. Perhaps ensemble averages 
are the most general kind of average. One can think of the cyclic nature 
of the in-cylinder turbulent flow in a reciprocating engine. The repeating 
cycles are replicas of the same system having the same statistical proper-
ties of turbulence, though the actual value of quantities like velocity at 
the same spatial point at the same crank angle in the different members 
(cycles) of the ensemble may be different. By averaging the values of the 
same quantity in different members of the ensemble, we can obtain the 
ensemble average.

Then there is the vexing question of ergodicity. If there is more than one 
kind of averaging, are the different averaging procedures equivalent? Let us 
consider a fluctuating velocity U

i
 which can be decomposed into a steady 

(or a slowly varying “mean”) component, plus a fluctuating component 
as sketched in Fig. 2.4, where U

i
 = instantaneous value of the ith velocity, 

U
i = time-averaged value and, (u U U

i i i
= − ), fluctuating component.

The general time-averaged velocity is

U t
T

U t dt( )
1

( )
i i it T

t T

period
/2

/2

1 period

1 period∫=
−

+

	
(2.59)

This is applicable for “stationary” and slowly varying “mean” turbulent 
flows. In other words, the average is meaningful if the variation in the mean 
velocity is relatively slow and small within an adequately long time period 
T

period
 over which the average is deduced.

If the mean velocity Ui  is repeatable, such as that portrayed in Fig. 2.5, 
we can invoke ensemble averaging, that is

U t U
N

U t( )
1

( )
i i i n

n

N

1 , 1
1

∑= ≡
=	

(2.60)

Here, N is the total number of cycles, n is the cycle number, and subscript 
“i” signifies the crank angle degree, for example.

U¯iui=Ui−U¯i

U¯i(ti)=1Tperiod∫t
1
−Tperiod/2t

1

+Tperiod/2Ui(t)dt

U¯i

U¯i(t
1
)=Ui≡1N∑n=1NUi,n(t

1
)
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If the ensemble mean <U> is independent of time, the process is sta-
tionary. For stationary processes, it can be shown that

U U=	 (2.61)

The time mean or average is

U
T

U t dtlim
1

( )
T

T

period
0period

period∫≡
→∞	

(2.62)

Alternatively, the average can be invoked from minus to plus one half the 
time period, as per Eq. 2.59.

It is worth mentioning some of the basic rules of time averaging here. 
An averaged quantity in a stationary process is taken as a constant (with 
respect to time) in the next average. This can all be proved using an overbar, 

U¯=U

U¯≡limTperiod→∞1Tperiod∫0Tp
eriodU(t)dt

Figure 2.4  Velocity time trace of (a) stationary turbulence, (b) slowly varying mean tur-
bulence. (Created by A.R. Vasel-Be-Hagh).
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Figure 2.5  Cyclic turbulent flow motion (CAD  =  crank angle degree). Three cycles,  
(a) Run 1, (b) Run 2, (c) Run 3 are shown. (Created by A.R. Vasel-Be-Hagh).
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T
dt" "

1 T

period
0

period∫= . Let us look at a stationary velocity fluctuation, such as 

that shown in Fig. 2.6, where

U U u= +	 (2.63)

Taking the average, we get

U U u U u= + = +	 (2.64)

But U U= , and hence, u 0= .

2.5  CONSERVATION OF MASS FROM LAMINAR 
TO TURBULENT FLOW

From the general mass conservation expression such as Eq. 2.27, we have

t

U

x
0

j

j

∂ρ
∂

∂ ρ

∂
( )

+ =
	

(2.65)

Expanding the terms in the bracket, we get

t
U

x

U

x
0

j
j

j

j

∂ρ
∂

∂ρ
∂

ρ
∂
∂

+ + =
	

(2.66)

" ̄ "=1Tperiod∫0Tperioddt

U=U¯+u

U¯=U¯+u¯=U¯¯+u¯

U¯=U¯¯u¯=0

∂ρ∂t+∂ρUj∂xj=0

∂ρ∂t+Uj∂ρ∂xj+ρ∂Uj∂xj=0

Figure 2.6  A “stationary” turbulent flow. (Created by A.R. Vasel-Be-Hagh).
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For (steady) laminar flows, the instantaneous velocity is equal to the 
mean or time-averaged velocity, that is, U U

j j
= . In other words, the conti-

nuity is as simple as is expressed in the equations mentioned earlier.
For turbulent flows, on the other hand, the instantaneous velocity con-

sists of a fluctuating component in addition to a mean velocity. The mean 
velocity is a constant for “stationary” or “steady” flows. Let us decompose 
the (total) instantaneous velocity into the mean and a randomly fluctuating 
component, that is

U U u
j j j

= +	 (2.67)

To illustrate a couple of points concerning averaging of the product of 
two randomly varying parameters with otherwise steady averaged values, 
let us consider the density of the fluid to be composed of a mean and a 
randomly fluctuating value, that is

ρ ρ ρ= + �	 (2.68)

Substitute Eqs 2.67 and 2.68 into Eq. 2.65, and we have
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Take the average
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(2.70)

The averages of the terms consisting of only one randomly fluctuating pa-
rameter are all zeros, leaving us with

t

U u

x

0 0
0

j j

j

∂ρ
∂

∂ ρ ρ

∂
( )

+
+ + +

=
�

	
(2.71)

The terms with mean parameters, indicated with an overbar, are the same 
as those for the laminar flow. We see an additional term (compared to the 
laminar case), which indicates a possible “correlation” between the density 
fluctuation and the velocity fluctuation. A simple example of this averaging 
of a product of two time-varying parameters is depicted in Fig. 2.7. It is 
clear that u

j
ρ�  is not necessarily zero, and thus, cannot be assumed so.

Uj=U¯j

Uj=U¯j+uj

ρ=ρ¯+ρ~

∂ρ¯+ρ~∂t+∂ρ¯+ρ~U¯j+uj∂xj=0.

∂ρ¯+ρ~¯∂t+∂ρ¯+ρ~U¯j+uj¯∂xj=0

∂ρ¯∂t+∂ρ¯U¯j+0+0+ρ~uj¯∂xj=0

ρ~uj¯
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2.6  MOMENTUM EQUATION IN TURBULENT FLOW

In this section, we follow Reynolds decomposition and decompose the 
involved parameters into a steady (mean) and a randomly fluctuating part 
and take the average (Wilson, 1989). While the resulting final expressions 
are readily available in the open literatures, especially in the authoritative 
“bible” by Hinze (1959, 1975) and in monographs such as Wilcox (2006) 
and Garde (2010), we will walk through the derivation step by step to 
clearly show where the additional terms, as compared to the laminar case, 
come from.

Consider the x-direction momentum equation for the instantaneous 
velocity U for a constant density and constant viscosity flow, that is
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This can be expressed, alternatively as

U
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∂U∂t+U∂U∂x+V∂U∂y+
W∂U∂z=−1ρ∂P∂x+ν∂2U-

∂x2+∂2U∂y2+∂2U∂z2

∂Ui∂t+Uj∂Ui∂xj=−1ρ∂P∂xi+ν
∂2Ui∂xj∂xj

Figure 2.7  Averaging of the product of time-varying parameters. (Created by  
M. Ahmadi-Baloutaki).
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Executing Reynolds decomposition, we have

U U u= +	 (2.74)

V V v= +	 (2.75)

W W w= +	 (2.76)

P P p= +	 (2.77)

Here the small letters are used to signify the randomly fluctuating compo-
nents. For the x direction, that is, i = 1, we have
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Considering the steady flow case, where U
t

U u

t
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take the average of the aforementioned equation, that is
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(2.79)

Here, we have further simplified the considered case by assuming that 
there is no pressure fluctuation for this constant density (incompressible) 
flow.

The nonlinear acceleration terms in Eq. 2.79 can be expanded as follows
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U=U¯+u

V=V¯+v

W=W¯+w

P=P¯+p

∂(U¯+u)∂t+U¯+u∂U¯+u∂x+V¯+v∂U¯+u)∂y
+W¯+w∂U¯+u∂z=−1ρ∂P¯+p∂x+ν∂2U¯+u∂x

2+∂2U¯+u∂y2+∂2U¯+u∂z2∂U∂t=∂U¯+u∂t=0

U¯+u∂U¯+u∂x¯+V¯+v∂U¯+u∂y¯+W¯+w∂U¯+u∂z¯=−1ρ∂
P¯∂x+ν∂2U¯∂x2+∂2U¯∂y2+∂2U¯∂z2

U¯+u∂U¯+u∂x¯=U¯∂
U¯∂x+U¯∂u¯∂x+u¯∂U¯-

∂x+u∂u∂x¯=U¯∂U¯∂x+u∂u∂x¯

V¯+v∂U¯+u∂y¯=V¯∂
U¯∂y+V¯∂u¯∂y+v¯∂U¯-

∂y+v∂u∂y¯=V¯∂U¯∂y+v∂u∂y¯
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With these expanded terms we can rewrite Eq. 2.79 as
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which can be rearranged into
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Recall that the continuity equation for an incompressible flow can be 
expressed as
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where U, V, and W signify the instantaneous velocities in the three orthog-
onal directions of the Cartesian coordinates. Invoking Reynolds decompo-
sition followed by averaging
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Subtract this from the instantaneous continuity equation, that is,  
Eq. 2.85 minus Eq. 2.87, to obtain the turbulence
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W¯+w∂U¯+u∂z¯=W¯∂
U¯∂z+W¯∂u¯∂z+w¯∂U¯-

∂z+w∂u∂z¯=W¯∂U¯∂z+w∂u∂z¯

U¯∂U¯∂x+u∂u∂x¯+V¯∂U¯∂y
+v∂u∂y¯+W¯∂U¯∂z+w∂u∂z¯
=−1ρ∂P¯∂x+v∂2U¯∂x2+∂2U

¯∂y2+∂2U¯∂z2

U¯∂U¯∂x+V¯∂U¯∂y+W¯∂U¯∂
z+u∂u∂x+v∂u∂y+w∂u∂z¯=−
1ρ∂P¯∂x+ν∂2U¯∂x2+∂2U¯∂y

2+∂2U¯∂z2

∂U∂x+∂V∂y+∂W∂z=0

∂U¯+u∂x+∂V¯+v∂y+∂W¯+w∂z¯=0

∂U¯∂x+∂V¯∂y+∂W¯∂z=0

∂u∂x+∂v∂y+∂w∂z=0
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Then, multiply this by the fluctuating velocity in the x direction, u, and take 
(time) average to obtain
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(2.89)

Add this zero to the left-hand side of the momentum equation, Eq. 2.84, 
and note that
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The left-hand side of the momentum equation becomes
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Transposing these terms in the momentum equation yields
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Comparing this to the corresponding laminar counterpart, we see three 
additional terms involving the fluctuating velocities u, v, and w. These extra 
stresses, as illustrated in Fig. 2.8, are interpreted as “Reynolds stresses.”

To help us to comprehend Reynolds stresses, let us look at a one-dimen-
sional shear flow as portrayed in Fig. 2.9, where the lower, slower-moving 
fluid drags the upper, faster-moving fluid. If we define viscous shear as

dU
dy

0
vis

τ µ≡ >
�

	
(2.93)

we see that τ
vis

 > 0 (positive shear) points to the left.

u∂u∂x¯+u∂v∂y¯+u∂w∂z¯=0

u∂v∂y¯+v∂u∂y¯=∂uv¯∂y

U¯∂U¯∂x+V¯∂U¯∂y+W¯∂U¯∂z
+u∂u∂x¯+v∂u∂y¯+w∂u∂z¯+u∂u∂
x¯+u∂v∂y¯+u∂w∂z¯=U¯∂U¯∂x+
V¯∂U¯∂y+W¯∂U¯∂z+∂u2¯∂x+∂

uv¯∂y+∂uw¯∂z

ρU¯∂U¯∂x+V¯∂U¯∂y+W¯∂U¯∂z=−∂P∂x+∂∂x-
m∂U¯∂x−ρu2¯+∂∂ym∂U¯∂y−ρuv¯+∂∂zm∂U¯∂z−ρuw¯

τvis≡mdU→dy>0
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Further, let us define τ′
turb

 as an apparent fluctuating turbulent “stress” 
that causes the same effect as the momentum added by turbulence. This 
may be somewhat illustrated by Zorro dashing by on his swift horse and 
jumping onto a slower, steadily moving wagon; see Fig. 2.10. The steadi-
ly moving wagon signifies a fluid particle moving at the mean velocity, 
where the momentum is unchanging with respect to time. On the other 
hand, the dashing Zorro portrays turbulent fluctuation (momentum) of 
the otherwise steadily moving fluid particle.

Following the analogy depicted in Fig. 2.10, the force-momentum bal-
ance can be expressed as

dA vdA u( )
turb

τ ρ− ≡′
	 (2.94)

where A is area, and u and v are the fluctuating velocities in the x and y 
directions, respectively. The negative sign evolves from the fact that a +u 

−τturb' dA≡(ρvdA)u

Figure 2.8  Reynolds stresses. (Created by H. Can).

Figure 2.9  One-dimensional shear flow in a boundary layer. (Created by M. Ahmadi-
Baloutaki).
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causes a τ′
turb

 in the +x direction, which is negative τ. The above equation 
can be simplified into

uv
turb

τ ρ= −′

	
(2.95)

Taking a time average, where turb turb
τ τ≡′

, we have

uv
turb

τ ρ= −	 (2.96)

Note that the generation of apparent shear stress by turbulence requires 
u to be “correlated” with v such that uv 0≠ . Figure 2.11 shows that in 
boundary layer flows when u < 0, we tend to have v > 0 and when u > 0, 
we tend to see that v < 0; therefore,uv 0<  and τ

turb
 > 0.

In a jet flow, on the other hand, uv 0>  so τ
turb

 < 0; see Fig. 2.12. But 
in a jet flow, we also see that ∂U/∂y < 0, which suggests there may be an 
effective turbulent “eddy viscosity,” m

turb
, that is

τturb'=−ρuv

τturb,¯≡τturb

τturb=−ρuv¯

uv¯≠0

uv¯<0
uv¯>0

Figure 2.10  A dashing Zorro jumping onto a slower moving wagon as an illustration of 
fluctuating turbulent stress. (Created by M. Ahmadi-Baloutaki).

Figure 2.11  A two-dimensional correlation of fluctuating turbulent velocities in bound-
ary shear. (Created by M. Ahmadi-Baloutaki).
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uv
U
yturb turb

τ ρ µ ∂
∂

= − ≡
	

(2.97)

We can rewrite this as

uv
U
yturb

ν ∂
∂

− ≡
	

(2.98)

where ν
turb

(x
i
, U

i
, u

i
) is a turbulent momentum exchange coefficient which 

is not constant in x, y, z like ν = m/ρ is.
In short, the above simplified one-dimensional shear flow illustrations 

show that there is an additional stress caused by the fluctuating component 
of the flow. The final equation for the total shear stress on the x-y surface of 
the control volume depicted in Fig. 2.8 is

U
y

uv
xy

τ µ ∂
∂

ρ= −
	

(2.99)

Problems

Problem 2.1. Energy equation for an ideal gas
Derive the energy equation for an ideal, incompressible gas. Use standard 
notations and show all steps clearly.

Problem 2.2. Applicable equations and parameters  
in two-dimensional flows
What are the unknowns and the required equations for a two-dimensional, 
unsteady a) incompressible flow, and b) compressible flow?

Problem 2.3. Applicable equations and parameters in  
three-dimensional flows
What are the unknowns and the required equations for a three-dimension-
al, unsteady, a) incompressible flow, and b) compressible flow?

τturb=−ρuv¯≡mturb∂U∂y

−uv¯≡kturb∂U∂y

τxy=m∂U∂y−ρuv¯

Figure 2.12  A two-dimensional jet showing the correlation of the fluctuating turbulent 
velocities. (Created by M. Ahmadi-Baloutaki).
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Problem 2.4. Navier-Stokes equations for compressible turbulent 
flows of an ideal gas
Derive the Navier-Stokes equations for compressible turbulent flows of an 
ideal gas.

Problem 2.5. Reynolds stresses
A blob of dye is dropped into a pool of agitated water. Assume the blob is 
a sphere in the middle of the pool of water and that the pool of water has 
a zero mean velocity. How do the Reynolds stresses affect the dispersion of 
the blob of dye?

Problem 2.6. Sampling oscillating flow
The velocity of moving water in a water channel is controlled such that its 
magnitude oscillates between 0.5 m/s and 1 m/s periodically at 0.25 Hz. 
A hot-film is used to quantify the flow. What should the sample rate and 
sample size be? How can you verify that these settings are sufficient? Back 
up your solution using plots, etc.
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CHAPTER 3

Statistical Description 
of Flow Turbulence

You can never cross the ocean unless you have the courage to lose sight 
of the shore.

– Christopher Columbus
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Chapter Objectives

•	 To review basic statistical terms and analyses.

•	 To understand first, second, third, and fourth central moments.

•	 To appreciate flow turbulence based on these statistical premises.

•	 To comprehend correlations and covariances of the turbulent velocity.

•	 To deduce integral and Taylor micro scales from autocorrelation.

NOMENCLATURE
A	 An event
C	 A condition
D	 Diameter
F	 Cumulative distribution function
f	 Probability density function
K	 Kurtosis or flatness factor, K u /4 4σ≡
OPP	 Orificed, Perforated, Plate
p, P	 Probability
PDF	 Probability density function
r	 Spatial distance

K≡u4¯/σ4
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R	 Covariance
rms	 Root mean square
S	 Skewness factor, S u /3 3σ≡
t	 Time
U	 Instantaneous velocity in the x (streamwise) direction
u	 The fluctuating velocity component in the x (streamwise) direction
v	 The fluctuating velocity component in the y (transverse) direction
x, y, z	 Cartesian coordinates
Λ	 Integral scale
λ	 (Taylor) microscale
ρ	 Autocorrelation
τ	 Time, time scale, time interval
σ	 Root mean square, uu2 2σ = = , standard deviation
< >	 Average

3.1  INTRODUCTION

On one hand, the detailed behaviors of random flow turbulence are un-
predictable; on the other hand, several statistical characteristics of the flow 
are largely reproducible. In other words, the random character of turbulent 
flows strongly suggests that statistical methods will be useful. Taylor realized 
this in the early 1900s and contributed significantly to viewing turbulence 
from a statistical perspective (Taylor, 1935, 1936). There are, however, also 
those who are less optimistic about the statistical approach for studying 
turbulence. They suggest there is a limit which statistical approach cannot 
surpass. Even if this is the case, looking at flow turbulence through the sta-
tistical window is surely beneficial in comprehending the mystifying phe-
nomenon of flow. We will start this chapter with a brief review of the basic 
statistics used for describing a random variable. The fluctuating turbulent 
velocity is the random variable of concern, and its particular behaviors as 
described by the various statistical factors covered will be explained.

A random process is “stationary” when its statistical characteristics are 
not changing, though its instantaneous value varies randomly with respect 
to time. To stay in context, consider the instantaneous velocity of the sta-
tionary turbulent flow, shown in Fig. 3.1, as the random variable. That an 
event is called “random” implies that it is neither certain nor impossible. 
It may occur but need not occur. For illustration purposes, we assume a 
random event, Event A, to be the situation when the instantaneous veloc-
ity U is between 0.90 and 0.93 times the average (mean) velocity U . The 
instantaneous velocity

U U u= +	 (3.1)

S≡u3¯/σ3

σ=u2=u2¯

U¯

U=U¯+u
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where U  = mean velocity, and u = fluctuating velocity. Velocity U is a ran-
dom variable, as it does not have a unique value, that is, the same value every 
time the experiment is repeated under the same set of conditions, C. For the 
considered case, the instantaneous velocity does not have a unique value at 
any given time instant, t. In other words, there are always perturbations in 
reality; hence, we can never repeat the same exact initial and/or boundary 
conditions C in any two realizations. Coming back to Event A, the prob-
ability for it to occur is the sum of the length of time that the instantaneous 
velocity is between 0.90 U  and 0.93 U , divided by the total time period 
considered. This is depicted by the hatched slice on the bell-shaped prob-
ability density curve, which will be expounded shortly. The hatched area 
divided by the total area under the probability density curve is the prob-
ability for Event A to occur.

It is interesting to note that even though the equations of motion, the 
Navier-Stokes equations, which were introduced in the previous chap-
ter, are deterministic, the solutions are random. The randomness is a result  
of the unavoidable perturbations in the initial conditions, boundary condi-
tions, and material properties. Turbulent flow fields display an acute sensi-
tivity to such perturbations. In fact, at high Reynolds numbers, the flow is 

U¯

U¯U¯

Figure 3.1  A “stationary” random flow event. (Created by N. Cao).
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particularly sensitive to these small perturbations. This can be illustrated us-
ing, for example, the Lorenz equations (Moon, 1992, among others). Let us 
recap the “butterfly effect” according to chaos theory. The faint flapping of a 
butterfly near a tree next to a river in the Amazon rainforest can lead to the 
falling of a leaf. This leaf, which falls into the river can marginally alter the 
flow stream. The alteration of the flow stream can result in some change in 
the rain formation. As the effect propagates, it also escalates and eventually 
could manifest itself into a hurricane off the east coast of Canada. Turbulent 
flows are thus a very sensitive type of flow motion.

By looking at the statistical properties of an ensemble of different flow 
realizations, all obtained using the same nominal conditions, one hopes to 
extract useful quantities such as probabilities and averages, which depend 
only on parameters controlled by the experimenter. For example, the av-
erage velocity as depicted in Fig.  3.1 is well-defined, despite significant 
instantaneous fluctuations. The departure of any given realization from the 
mean can be calculated by subtracting the mean value from the total; this is 
conventionally identified as turbulence.

When studying turbulence, it is important to know a few things. First, 
we must know how fluctuations are distributed around an average value. 
This requires the use of probability density and its Fourier transform, 
as well as the characteristic function. Secondly, we also need the central 
limit theorem for making the shape of the probability density of certain 
quantities. Thirdly, we must know how adjacent fluctuations next to each 
other in time and/or space are related. For the last point, we require the 
autocorrelation and its Fourier transform, also known as the energy spec-
trum. Before we elaborate any further, let us refresh our understanding of 
probability.

3.2  PROBABILITY

The probability of a random event, Event A for example, can be written as

p P A P U( ) {4.8m/s 4.9m/s}= = ≤ <	 (3.2)

where p is a real number between 0 and 1, that is, 0 ≤ p ≤ 1. For an impos-
sible event such as the universe revolving around the earth, p = 0. On the 
other hand, for a sure event such as the sun rising from the east, p = 1.

Consider a random signal as shown in Fig. 3.2a, where the signal fluctu-
ates between −2 and 2 over a three-second time period. The cumulative dis-
tribution function denotes the probability that the random signal will be less 

p=P(A)
=P{4.8 m/s=U<4.9m/s}
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than a particular value. For example, the cumulative distribution function 
for velocity U to be less than U

a
 is

F U P U U P U U( ) { }, or, { }
a a a

≡ < −∞ ≤ <	 (3.3)

where U
a
 is the numerical value of the upper bound; see Fig. 3.2b. We also 

recognize that the probability of variable U having a value between U
a
 and 

U
b
 can be deduced from the cumulative distribution functions

F U F U P U U U( ) ( ) { }
b a a b

− = ≤ <	 (3.4)

Since it is impossible for the variable to be less than negative infinity, 
U < −∞, we have

F(Ua)≡P{U<Ua}, or, P{−∞≤U<Ua}

F(Ub)−F(Ua)=P{Ua≤U<Ub}

Figure 3.2  A random time series, cumulative distribution, and probability density 
function. (a) Turbulent wave, (b) cumulative density function, (c) probability density  
function. (Created by H. Cen).



Basics of Engineering Turbulence52

F( ) 0−∞ =	 (3.5)

When the cutoff value for U is infinity, that is for U < ∞, we have in-
cluded all possible values that U could have; hence

F( ) 1∞ =	 (3.6)

According to Fig. 3.2b, which is a plot of the cumulative density function, 
the probability that the signal is less than or equal to 0.5 is approximately 
0.7; in other words, there is a 70% chance that the amplitude of the fluc-
tuation is no more than 0.5. This 70% probability is also depicted by the 
hatched area under the probability density function (PDF) in Fig. 3.2c.

We observed from Fig. 3.2 that the PDF is defined as the derivative of 
the cumulative density function

f U
dF U

dU
( )

( )=
	

(3.7)

We note that since the PDF must be non-negative, we have

f U( ) 0≥	 (3.8)

When all possibilities are included, the probability is 100%, that is

f U dU( ) 1∫ =
−∞

∞

	
(3.9)

The probability of a random variable having a value between an interval 
is equal to the integral of the PDF over that interval. For example, the prob-
ability for U to have a value between U

a
 and U

b
 is

P U U U F U F U f U dU
a b b a U

U

a

b∫{ } ( ) ( ) ( )≤ < = − =
	

(3.10)

Hence, we learn that the PDF, f(U), is the probability per unit distance in 
the sample space. This implies that

f U P dU( ) {}/=	 (3.11)

Let us restrict the discussion to “stationary” turbulent flows, where the 
fluctuating quantities are statistically steady, as illustrated in Fig.  3.3. The 
relative amount of time that U(t) spends at various levels is the probability 
density f(U), that is

F(−∞)=0

F(∞)=1

f(U)=dF(U)dU

f(U)≥0

∫−∞∞f(U)dU=1

PUa≤U<Ub=FUb−FUa=∫UaUbfUdU

f(U)=P{}/dU
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f U U
T

t( ) lim
1

( )
T

∑∆ ≡ ∆
→∞	

(3.12)

which is the probability of finding U(t) between U and U + ∆U, or the 
proportion of time U(t) spent in that interval.

One interesting example for illustrating probability is the amount of 
time that a pendulum spends at any position between the two extremes. 
The displacement (velocity) of a pendulum is traced in Fig. 3.4, along with 
the corresponding PDF. We see that in the case of a pendulum, like many 
human beings, most of the is squandered at the extremes; that is, most 
of us spend very little time at the well-balanced equilibrium position of 
moderation.

For an arbitrary function g(U), the time average is

g
T

g U dtlim
1

( )
T

T

0∫=
→∞	

(3.13)

f(U)∆U≡limT→∞1T∑(∆t)

g¯=limT→∞1T∫0Tg(U)dt

Figure 3.3  Creation of the probability density function. (Created by F. Iakovidis).

Figure 3.4  Probability density function of a pendulum. (Created by F. Iakovidis).
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It is worth noting that this time average can be formed by adding all the 
time intervals between t = 0 and t = T over which U(t) is between U and 
U + ∆U, multiplying this by g(U), and then find their sum, that is

g g U f U dU( ) ( ) .∫=
−∞

∞

	
(3.14)

3.3  MOMENTS

In statistics, moments are the mean values of the various powers of the 
variables of question. Staying in the flow turbulence context, let us follow 
Batchelor (1953), Tennekes and Lumley (1972), Flierl and Ferrari (2007), 
and Garde (2010) and consider flow velocity as the random variable. The 
first moment is simply the mean or time-averaged velocity, and according 
to Eq. (3.14)

U Uf U dU( )∫≡
−∞

∞

	
(3.15)

where the instantaneous velocity consists of the mean plus the fluctuat-
ing velocities, that is, U U u= + . The PDF of the instantaneous velocity 
f(U) is equal to f U u( )+ . Thus, we can obtain the PDF of the fluctuating 
component f(u) simply by shifting the function over a distance U  along the 
U-axis so that the new mean is zero. This is similar to subtracting the mean 
or time-averaged velocity U  from the total velocity U, which leaves us with 
only the fluctuating velocity u; we then deduce its probability function f(u). 
Let us continue to focus on the perplexing fluctuating component u, which 
is the flow turbulence without the mean convecting velocity.

The moments formed with un and f(u) are called central moments; see 
Fig. 3.5. The nth central moment <un> is defined as

u u f u dun n∫ ( )≡
−∞

∞

	
(3.16)

We can see from Fig. 3.5 that the first central moment

u u 0< > = =	 (3.17)

for the mean value of a randomly fluctuating velocity, which is simplified 
as a simple sine wave in Fig. 3.5, is zero. In other words, when the mean 
velocity is removed, the mean of the remaining fluctuating velocity is 
zero.

g¯=∫−∞∞g(U)f(U)dU.

U¯≡∫−∞∞Uf(U)dU

U=U¯+u
f(U¯+u)

U¯

U¯

un≡∫−∞∞unfudu

<u>=u¯=0
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The second central moment is the mean-square departure from the mean 
valueU . It is called the variance and is defined as

u u f u du( )2 2∫≡
−∞

∞

	
(3.18)

The square root of the variance, u2σ = , is the familiar standard devia-
tion, or root-mean-square (rms) amplitude of the fluctuation u

rms
. This stan-

dard deviation is the most convenient measure of the width of probability 
density function f(u). We clearly see that the standard deviation of the sine 
wave portrayed in Fig. 3.5 is not zero. In fact, it is only zero when there is no 

U¯

u2¯≡∫−∞∞u2f(u)du

σ=u2¯

Figure 3.5  First, second, and third central moments. (Created by A.R. Vasel-Be-Hagh).
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fluctuation, that is, when u is equal to zero. Furthermore, it is worth noting 
that neither σ nor σ 2 is affected by any lack of symmetry in f(u).

The third central moment

u u f u du( )3 3∫≡
−∞

∞

	
(3.19)

signifies the amount of skewness in the PDF f(u). This measure of the lack 
of symmetry is commonly expressed in the normalized form called the 
skewness factor

S u /3 3σ≡	 (3.20)

The smaller the value of S, the more symmetrical the probability distri-
bution of u. A perfect, symmetrically distributed u such as the sine wave in 
Fig. 3.5 gives S = <u3> = 0. On the other hand, Fig. 3.6 portrays a posi-
tively skewed signal. The positively skewed signal in Fig. 3.6 indicates that 
the variable fluctuates much farther, though sparsely, to the extreme positive 
direction while it spends much more time mingling with mildly negative 
values. In other words, a positive skewness implies that most values are con-
centrated below the mean (which is zero for the case shown), with extreme 
values way above the mean.

The fourth central moment is defined as

u u f u du( )4 4∫≡
−∞

∞

	
(3.21)

Normalizing the fourth central moment with σ 4 gives us the kurtosis 
or flatness factor

u3¯≡∫−∞∞u3f(u)du

S≡u3¯/σ3

u4¯≡∫−∞∞u4f(u)du

Figure 3.6  A positively skewed signal. (Created by A.R. Vasel-Be-Hagh).
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K
u

u f u du
1

( )
4

4 4
4∫σ σ

≡ =
−∞

∞

	
(3.22)

Figure 3.7 shows the difference between a small kurtosis and a large 
kurtosis signal. We see that the larger the K, the flatter and wider the 
two tails (and the narrower the zero peak). For a normal (Gaussian) dis-
tribution, the flatness factor K of the Gaussian function is equal to three  
(wikipedia, 2015). One extreme is the discrete distribution with two equally 
probable outcomes, such as the tossing a coin where the outcome is ei-
ther heads or tails. The flatness factor for this discrete distribution is unity 
(Brown, 2011). At the other extreme is the Student’s t distribution, which 
has a flatness of infinity (Brown, 2011). Whatever the value may be, kurtosis 
or flatness factor connotes an important characteristic of the involved signal 
as portrayed in Fig. 3.8.

Figure 3.9 shows an actual PDF obtained from the turbulent flow gener-
ated by an orificed, perforated plate (Liu and Ting, 2007; Liu et al., 2007); 
more will be discussed in the chapter on grid turbulence. In a nutshell, the 

K≡u4¯σ4=1σ4∫−∞∞u4f(u)du

Figure 3.7  (a) A signal with a small kurtosis, (b) A signal with a large kurtosis. (Created 
by A.R. Vasel-Be-Hagh).
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wavelet decomposition is simply a technique used to separate the cascade of 
eddying turbulent motions into bins of frequencies. The larger eddies are as-
sociated with the lower frequencies, and the smaller ones have higher frequen-
cies. Figure  3.9 clearly portrays increasing flatness with decreasing wavelet  
(decomposition) level. In other words, the value of the flatness factor K associ-
ated with the large, low frequency, eddies are close to three, that is, near Gaussian, 
and it increases (the curve becomes more narrow and peaked) with increas-
ing frequencies or decreasing eddy size. The increase in the kurtosis factor as 
we move toward the smaller eddies seems to suggest that the high-intensity 

Figure 3.9  Sample probability density function and wavelet decomposition of orificed, 
perforated plate turbulence. (Created by R. Liu).

Figure 3.8  Small versus big kurtosis. (Created by S.P. Mupparapu).
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portion of the smaller eddying motion is rather intermittent. More will be said 
on this type of flow turbulence in the latter part of this book.

3.4  JOINT STATISTICS AND CORRELATION FUNCTIONS

In this section, we expand the discussion on statistical flow turbulence to 
consider both the x and y components simultaneously. As the eddying mo-
tions in turbulence involve finite volumes of the continuum fluid, we ex-
pect some correlation between the two components of velocity. In reality, 
the three orthogonal components are related; nevertheless, we will limit  
it to two components while noting that the discussion and analysis can be ex-
tended to all three dimensions. Let us denote the fluctuating velocity in the 
x direction as u(t) and that in the y direction as v(t). A sample time trace of 
each of these fluctuating velocities with zero mean is sketched in Fig. 3.10. 
The joint PDF f(u,v) is proportional to the fraction of time that the two 

Figure 3.10  The joint probability function. (Created by N. Cao).
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fluctuating components spend in a small window defined by u and u + ∆u 
and v and v + ∆v. The time fraction cannot be negative, and the time spent 
at all locations must equal the total time, that is

f u v f u v dudv( , ) 0, ( , ) 1∫∫≥ =
−∞

∞

−∞

∞

	
(3.23)

We note that summing all of the values of u at a given value of v gives us 
the probability density function of u(t) at that v value. In other words, cut-
ting a slice at v = v

1
 yields the corresponding PDF f(u at v = v

1
). Similarly, if 

all of the values of v at a given value of u are combined, we should get the 
PDF of v(t). In short

f u v dv f u f u v du f v( , ) ( ), ( , ) ( )
u v∫∫ = =

−∞

∞

−∞

∞

	
(3.24)

In flow turbulence, the most important joint moment is

uv uvf u v dudv( , )∫∫≡
−∞

∞

−∞

∞

	
(3.25)

This is called the covariance or correlation between u and v. Figure 3.11a 
depicts a pair of negatively correlated random variables, while Fig. 3.11b 
corresponds to a positively correlated pair. If uv 0= , u(t) and v(t) are said 
to be uncorrelated. Uncorrelated variables such as that shown in Fig. 3.11b, 
however, are not necessarily independent of each other (Tenneskes and 
Lumley, 1972). Two variables such as the x and y components of the tur-
bulence fluctuations, as shown in Fig. 3.11d, are statistically independent if 
f(u,v) = f

u
(u) f

v
(v); in which case, the probability density of one variable is not 

affected by the other variable, and vice versa. The joint characteristic func-
tion is the two-dimensional Fourier transform of the joint density, f(u, v).

A sample plot of the covariance uv  of turbulence created with an 
orificed, perforated plate (Liu and Ting, 2007; Liu et al., 2007) is plotted 
in Fig. 3.12. It is clear that for the “simple” turbulence generated by the 
orificed, perforated plate, u(t) and v(t) are uncorrelated, that is, uv 0= . 
Furthermore, the shape is very close to that of Fig. 3.11d; thus, it appears 
that the turbulence generated by our orificed, perforated plate is very clean 
and the probability density of u is not affected by that of v, and vice versa.

The correlations discussed earlier deal with different components of the 
fluctuating velocity, which are synchronized or time-stamped. We now ex-
tend the statistical correlations to the case that deals with temporal variation, 

f(u,v)≥0,   ∫−∞∞∫−∞∞f(u,v)
dudv=1

∫−∞∞f(u,v)dv=fu(u),   ∫−∞∞f(
u,v)du=fv(v)

uv¯≡∫−∞∞∫−∞∞uvf(u,v)dudv

uv¯=0

uv¯

uv¯=0
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called joint moments and covariance. Let us consider two distinct times, 
t and t´, and form the ensemble average of the product u(t) u(t´) for each 
realization. The corresponding joint moment, the covariance R

uu

R t t u t u t( , ) ( ) ( )
uu ′ = ′	 (3.26)

Note the later time t´ = t + τ, where t is the reference time and τ is the  
delay. Since this deals with the same velocity component and x-fluctuating 
component u has been used as a generic case, the correlation u t u t( ) ( )′  is also 
called the autocorrelation; that is, correlating with itself, as the time differ-
ence between them varies. For “stationary” flow turbulence, the fluctuat-
ing velocity proceeds in time with homogeneity and hence, its statistical 
properties do not change with respect to time. In other words, the joint  

Ruu(t, t')=u(t) u(t')

u(t)u(t')¯

Figure 3.11  Negatively correlated, uncorrelated, positively correlated, and indepen-
dent variables. (Created by R. Liu).
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moments of stationary turbulence, such as the covariance defined in  
Eq. (3.26), are independent of the choice of time origin.

It is worth noting that the covariance R
uu
(τ ) typically decreases rapidly 

with increasing time difference. Furthermore, the autocovariance R
uu
(τ) is 

an even function since

R u t u t u t u t R( ) ( ) ( ) ( ) ( ) ( )
uu uu

τ τ τ τ= + = ′ − ′ = −	 (3.27)

In other words, because u t u t u t u t( ) ( ) ( ) ( )′ = ′ , the autocorrelation is a sym-
metric function of τ.

Schwartz’s inequality states that

u t u t u t u t( ) ( ) ( ) ( )2 2
1/2

′ ≤ ⋅ ′ 	 (3.28)

For stationary variable u(t ) associated with stationary flow turbulence, we 
have u t u t( ) ( )2 2= ′ , which is a constant. Therefore, we can define an autocor-
relation coefficient ρ(τ ) as

u t u t
u

( ) ( )
( ) ( )

2
ρ τ ρ τ′ ≡ = −

	
(3.29)

Ruu(τ)=u(t) u(t+τ)=u(t'−τ) u(t')
=Ruu(−τ)u(t)u(t')¯=u(t')u(t)¯

u(t)u(t')¯≤u2(t)¯⋅u2(t')¯1/2

u2(t)¯=u2(t')¯

u(t)u(t')¯u2¯≡ρ(τ)=ρ(−τ)

Figure 3.12  Sample covariance uv  of orificed, perforated plate turbulence. (Created  
by R. Liu).

uv¯
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We can see that

1 (0)ρ ρ≤ =	 (3.30)

The integral time scale τ
Λ
 is defined by

d( ) .
0∫τ ρ τ τ≡Λ

∞

	
(3.31)

This, along with the Taylor microscale τλ, is depicted in Fig. 3.13a. The 
value of τ

Λ
 is a measure of the temporal interval over which u(t) is correlat-

ed with itself. Typical plots of the streamwise autocorrelation function, f(r), 
where r is the spatial distance, at 20 diameters downstream of our orificed, 
perforated plate at 5.8, 7.8, and 10.8 m/s wind are shown in Fig. 3.13b.

The Taylor microscale τλ is defined by the curvature of the autocorrela-
tion coefficient at the origin (Taylor, 1935, 1936); that is

d
d

22

2
0

2

ρ
τ τ

≡ −
τ λ=	

(3.32)

Expanding the autocorrelation coefficient ρ in a Taylor series about the 
origin, we can write, for small τ

( ) 1 /2 2ρ τ τ τλ≈ −	 (3.33)

ρ≤1=ρ(0)

τΛ≡∫0∞ρ(τ)dτ.

d2ρdτ2τ=0≡−2τl2

ρ(τ)≈1−τ2/τl2

Figure 3.13  (a) Integral and Taylor micro time scales, (b) plots of autocorrelation func-
tion at 60D downstream of an orificed, perforated plate. (Created by F. Iakovidis and 
R. Liu).
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That is, the microscale is the intercept of the parabola that matches ρ(τ ) 
at the origin. Because u(t) is stationary, we can write

d
dt

u
d
dt

u
du
dt

du
dt

du
dt

u
d u
dt

du
dt

u
d u
dt

0 2 2 2 2
2

2
2

2

2

2 2

2( )= = 



 = +





= 



 +

	
(3.34)

From Eq. (3.34), we obtain

du
dt

u22 2

2τ




 =

λ	

(3.35)

Another correlation is that associated with the variable and its time de-
rivative. The cross-covariance of u(t) and its time derivative du(t + τ)/dt is

R u t
du t

dt
u t u t R( ) ( ) ( ) ( ) ( )

u
du
dt

uu
τ τ ∂

∂τ
τ ∂

∂τ
τ( )= + = + =

	
(3.36)

We see that this autocorrelation of du/dt can be related to the autocorrela-
tion coefficient ρ as

du t
dt

du t
dt

u
d

dtdt
t t u

d
d

( ) ( )
( )2

2
2

2

2
ρ ρ

τ
′ =

′
′ − = −

	
(3.37)

Moreover, for a stationary process such as stationary turbulence, the joint 
covariance function between the x component and the y component is

R u t v t( ) ( ) ( )
uv

τ τ= +	 (3.38)

In general

R R( ) ( )
uv vu

τ τ= −	 (3.39)

3.5  ADDITIONAL CONSIDERATIONS

At this point, it is appropriate to make a couple of comments concerning 
statistical analyses that have been covered in this chapter. The first is regard-
ing the convergence of averages. In practice, we can only integrate over a 
finite time interval, that is

U
T

U t dt
1

( )
T t

t T

∫=
+

	
(3.40)

0=d2dt2u2¯=ddt2u¯du¯dt=2du¯dtdu¯
dt+u¯d2u¯dt2=2dudt2¯+2ud2udt2¯

dudt2¯=2u2¯τl2

Rududt(τ)=u(t)dut+τdt=∂∂τu(t)u
(t+τ)=∂∂τRuu(τ)

du(t)dtdu(t')dt¯=u2¯d2dtdt'ρ(t'−t)=
−u2¯d2ρdτ2

Ruv(τ)=u(t) v(t+τ)

Ruv(τ)=Rvu(−τ)

UT¯=1T∫ttt+TU(t)dt
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The difference between this and the true mean is

U U
T

U t U dt
T

u t dt
1

( )
1

( )
T

T T

0 0∫ ∫− = −  =
	

(3.41)

Here we took t = 0 for the sake of convenience. We note that the error 
tends to become smaller as the integration time increases and that the mean 
value found this way should stabilize to a constant value. Ergodicity is the 
requirement that a time average should converge to a mean value.

An ergodic variable is found when averages of all possible quantities 
formed from it converge. We note that a random variable becomes uncor-
related with itself at large time differences; the time difference τ approaches 
infinity, and it also becomes statistically independent of itself. For example, 
the integral time scale t

Λ
 of u(t) is not only a measure of time over which 

u(t) is correlated with itself, but also a measure of the time over which it is 
dependent on itself. When dealing with digital data, sampling once every 
two integral time scales is adequate to satisfy the Nyquist theorem; that is, 
the rate of data acquisition or sampling should be at least twice the maxi-
mum frequency of interest.

3.5.1  Fourier Series and Coefficients
Let us briefly recap Fourier series. The signal such as the fluctuating velocity 
in the streamwise direction

u t A A nt B ntcos sin
n n

n
0

1
∑( )( ) = + +

=

∞

	
(3.42)

is a periodic function with a period T = 2π. The Fourier coefficients are 
shown as

A u t dt
1

20 ∫π
( )=

π

π

−	
(3.43)

A u t nt dt
1

cos
n ∫π

( ) ( )=
π

π

−	
(3.44)

B u t nt dt
1

sin
n ∫π

( ) ( )=
π

π

−	
(3.45)

The trigonometric series corresponding to u(t) is called the Fourier se-
ries for u(t). Note that the Fourier series, Eq. (3.42), can also be expressed as

UT¯−U¯=1T∫0TU(t)−U¯dt=1
T∫0Tu(t)dt

ut=Ao+∑n=1∞Ancosnt+Bnsinnt

Ao=12π∫−ππutdt

An=1π∫−ππutcosntdt

Bn=1π∫−ππutsinntdt
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u t A C n tcos
n

n
n0

1
∑ ω ϕ( )( ) = + −

=

∞

	
(3.46)

or

u t A C n tsin
n

n
n0

1

*∑ ω ϕ( )( ) = + +
=

∞

	
(3.47)

where

C A B
n n n

2 2= +	 (3.48)

B Atan /
n n n

ϕ =	 (3.49)

A Btan /
n n n
*ϕ =	 (3.50)

For any nondeterministic waveform such as a real turbulent velocity, we can 
approximate the signal as

u t A A n tsin
n

n
n0

1

*∑ ω ϕ( )( ) ≈ + +
=

∞

	
(3.51)

3.5.2  Fourier Transforms and Characteristic Functions
When the probability density undergoes Fourier transformation, we get 
the characteristic function. One of the applications of the characteris-
tic function is to test whether the distribution of a random variable is 
Gaussian.

If we choose the PDF f(u) and the corresponding characteristic function 
ψ(k) as an example, a Fourier-transform pair can be defined as

k e f u du f u e k dk( ) ( ) , ( )
1

2
( )iku ikuˆ ˆ∫∫ψ

π
ψ≡ ≡ −

−∞

∞

−∞

∞

	
(3.52)

This gives

k iku t( ) exp[ˆ ( )]ψ =	 (3.53)

In other words, ψ(k) can be measured by averaging the output of a func-
tion generator that converts u(t) into sin[u(t)] and cos[u(t)]. Note that the 

ut=Ao+∑n=1∞Cncosnwt−n

ut=Ao+∑n=1∞Cnsinnwt+n*

Cn=An2+Bn2

tann=Bn/An

tann*=An/Bn

ut≈Ao+∑n=1∞Ansinnwt+n*

ψ(k)≡∫−∞∞eiˆkuf(u)du,   f(u)≡1
2π∫−∞∞e−iˆkuψ(k)dk

ψ(k)=exp[iˆku(t)]¯
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convergence of ψ(k) is much better than that of f(u), because one must wait 
a long time to obtain a stable average.

Also note that averaging a function is equivalent to selecting the value 
of its Fourier transform at the origin. If the physical variable is time, the 
transform variable is frequency; the origin in transform space corresponds 
to zero frequency. For example, when we average a random variable, the 
only thing left is the component at zero frequency; all other components 
become zero.

Readers wishing to move further along this topic are recommended 
to consult Tennekes and Lumley (1972). And for those more mathemati-
cally and statistically versed, the two classic volumes by Monin and Yaglom 
(1971) may also be of interest.

Problems

Problem 3.1 Covariance
As far as the covariance uv  is concerned, Fig. 3.11 shows negatively cor-
related, uncorrelated, positively correlated, and independent variables. Show, 
and if possible prove, using existing or artificially generated signals that for a 
case with uv 0=  where u(t) and v(t) are dependent on each other. Gener-
ate another case where the two velocity components are independent of 
each other.

Problem 3.2 Correlation function and spectra
A cosine wave with an amplitude of unity and a frequency of 10 Hz has 
been recorded at a high sample rate (say, 20 kHz) over a moderately long 
time (say, 60  s). Estimate the integral and (Taylor) microscales from the 
autocorrelation.

Problem 3.3 Statistical analysis of partial grid turbulence
The velocity downstream of a partial grid installed in the middle of a 
wind tunnel test section as shown in Fig. 3.14 is measured using a 1-d hot 
wire probe. Data file P3-3 consists of 5000 velocity data points sampled at 
80 kHz at x/D = 10, y/D = 2, and z = 0.

Part I. Plot the fluctuating velocity time trace.
Part II. Deduce the average velocity and comment on the effect of 

sample size on the value, if any.
Part III. Plot the probability density function and comment on the 

distribution.
Part IV. Calculate the second, third, and fourth central moments. Discuss 

the results.

uv¯

uv¯=0
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CHAPTER 4

Turbulence Scales
Genius is one percent inspiration and ninety-nine percent perspiration.

– Thomas A. Edison
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Chapter Objectives

•	 To apply dimensional analysis to deduce key scales associated with laminar and 
turbulent flows.

•	 To discern and differentiate turbulent diffusivity from molecular diffusivity.

•	 To learn about Kolmogorov dissipative scales.

•	 To relate the Kolmogorov dissipative scales with the large inviscid eddies which 
supply the turbulent kinetic energy.

•	 To complete the key scales along the turbulent energy cascade, from energy-
supplying large scales to energy-dissipating micro-scales.

•	 To introduce the turbulent kinetic energy spectrum.

NOMENCLATURE
a	 Acceleration
C	 Constant
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c
p
	 Heat capacity at constant pressure

D	 Diameter
E	 Energy
f	 Frequency
F	 Force
k	 Thermal conductivity
K	 Eddy diffusivity, exchange coefficient
ke	 Kinetic energy per unit mass
l, L	 A characteristic length, a length scale
m	 Mass
P	 Pressure
P

turb
	 Turbulence production rate (per unit mass of fluid)

q	 Total turbulence fluctuation from all directions
Re	 Reynolds number, inertia force/viscous force, Re = UD/ν
t	 A characteristic time period, a timescale
u	 Fluctuating velocity (in the x direction)
U	 Velocity
U 	 Time-averaged (mean) velocity
v	 Fluctuating velocity in the y direction
x	 Distance along the x (streamwise) coordinate
y	 Distance along the y (vertically up) coordinate
z	 Distance along the z coordinate

Greek Symbols
a	 Thermal expansion coefficient
d	 Boundary layer thickness
η	 Kolmogorov scale
u	 Temperature (difference)
k

t
	 Thermal diffusivity, κ

t
 = k/ρc

p

k
w
	 Wavenumber (cycles/m)

Λ	 Large length scale; integral length
λ	 Dissipative length; Taylor microscale
λ

w
	 Wavelength (m/cycle)

m	 Dynamic (absolute) viscosity
ν	 Kinematic viscosity
ξ	 Small displacement
ρ	 Density
τ	 Shear; time scale
ε	 Dissipation rate
∀	 Volume

4.1  INTRODUCTION

... big whirls have little whirls that feed on their velocity, and little whirls have lesser 
whirls and so on to viscosity.

– Richardson, 1922

U¯
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Richardson’s legendary vision in 1922, as portrayed poetically above, 
is a profound breakthrough in our perception of flow turbulence. It sug-
gests that the arcanum of flow turbulence is hidden in the ever-perplexing 
whirling motions that we call eddies. If this is true, then our scrutinizing 
eyes need to be focused on the presumably continuous cascade of eddying 
motions.

We limit the scope, unless otherwise explicitly stated, to fully devel-
oped turbulent flows where the energy cascade introduced by Richardson 
is well-defined. It is true that most turbulent flows in engineering applica-
tions are of significantly smaller Reynolds numbers than those encountered 
in the atmospheric flows which prompted Richardson’s vision; nonetheless, 
the eddying cascade in many engineering applications is relatively well-
defined. For these fully developed turbulent flows, the largest eddies, which 
are created by instabilities in the mean flow, are themselves subject to iner-
tia instabilities, and thus rapidly break up and/or evolve into progressively 
smaller vortices. Dissipation is particularly pronounced in regions where 
the instantaneous gradient in velocity, and hence the shear stress, is large. 
Therefore, the dissipation of mechanical energy within a turbulent flow 
is concentrated in the smallest eddies. One may ask if the reverse process 
of smaller eddying motions converging into larger ones occurs. As can be 
inferred from Lim (1989) and Lim and Nickels (1992), this is definitely 
possible, although improbable. According to the second law of thermody-
namics, all processes proceed from order to disorder. Therefore, even though 
there may be some eddies converging into more organized, larger ones, the 
overall trend is large eddies breaking down into smaller ones.

In this chapter, we will follow Wilson (1989) by first invoking the gen-
eral scaling analysis on laminar and turbulent boundary layers in order to 
have a rudimentary knowledge of the possible players, that is, the scales in-
volved. The crudely estimated turbulent diffusion is then cast in comparison 
to the molecular one associated with the fluid at the particular state; this 
shows the significant diffusion enhancement provided by flow turbulence. 
At that point, the dimensionally rigorously derived Kolmogorov scales are 
introduced, and thus we encounter the dustbin where all the turbulent ki-
netic energy is converted into heat. With the well-defined (at least in theory, 
irrespective of if there is truly such a physical scale) Kolmogorov scale, the 
mostly inviscid large eddies which supply the kinetic energy are estimated. 
With the two ends of the turbulence cascade prescribed, the key elements 
along the cascade are introduced and subsequently refined. The chapter 
ends with a brief introduction of the turbulent kinetic energy spectrum.
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4.2  VELOCITY AND KEY LENGTH SCALES IN LAMINAR  
AND TURBULENT BOUNDARY LAYERS

In this section, a rudimentary dimensional approach is invoked to reveal the 
most apparent length, velocity, and time scales in the laminar and turbulent 
boundary layers. For the turbulence case, a large and a small length scale 
are introduced to crudely represent Richardson’s turbulent energy cascade. 
Before we embark on this, let us express the Reynolds number in terms of 
diffusion time and advection time.

Figure 4.1 shows that the viscous diffusion from A to B separated by a 
distance L has a characteristic viscous diffusion time, tν. This viscous diffu-
sion time may be viewed as the time it takes B to feel the passing of A via 
fluid viscosity. We note that the viscous diffusion time is:
1.	 proportional to the distance; that is, the farther apart they are, the longer 

time it takes for B to feel the passing (effect) of A

t L~ν	 (4.1)

2.	 inversely proportional to the fluid viscosity; that is, the larger the viscos-
ity, the shorter the time it takes for B to feel A (and vice versa)

t ~ 1/νν	 (4.2)

Hence, dimensionally, this characteristic viscous diffusion time which is re-
quired for momentum to diffuse a distance L due to viscosity is

t L / ,[m /(m /s)] [s]2 2 2ν= =ν	 (4.3)

where ν is the kinematic viscosity and square brackets [] enclose the units. 
Here we recall that the kinematic viscosity, ν = m/ρ have units [N⋅s/m2]/
[kg/m3] = [m2/s], where m is the dynamic (absolute) viscosity, and that for a 
Newtonian fluid, the shear stress, τ = m dU/dy, that is, m = τ/(dU/dy).

tν∼L

tν∼1/ν

tν=L2/ν, [m2/(m2/s)]=[s]

Figure 4.1  Diffusion time. (Created by B. Motameni).
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Another common time scale is the advection time. For a body of length 
L in a flow field with a mean velocity U, a characteristic (overall) advection 
time scale t

a
 signifies the duration over which the fluid element is of signifi-

cance to the body and vice versa. The advection time

t L U/
a

=	 (4.4)

is the time it takes a fluid element to pass a body of length L. It can be 
regarded as the time required for momentum to advect across a distance L.

The foremost important nondimensional parameter in fluid mechanics 
is the Reynolds number. It signifies the strength of the inertia force with 
respect to the underlying viscous force of a moving fluid

t tRe inertia force/viscous force advective/viscouseffect (1/ )/(1/ )
a

= = = ν	 (4.5)

We note that the shorter the time the fluid (element) takes to pass (advect) 
a distance L, the larger the inertia force. In other words, the faster the advection 
of a fluid particle is, the larger its inertia, and thus, the larger the corresponding 
Reynolds number. We can recast the Reynolds number expression as

t t L L U U LRe / ( / ) / ( / ) /
a

2 ν ν= = =ν	 (4.6)

where at room temperature and pressure, the kinematic viscosity  
ν ≈ 1.5 × 10−5 m2/s for air, and for water, ν ≈ 1.1 × 10−6 m2/s. This expres-
sion can also be derived from Newton’s second law1. We sense that when 
the Reynolds number is small, there is enough viscous force to take care 
of the agitative inertia force and hence, turbulence is under control. With 
an increasing Reynolds number, the inertia force increases until the viscous 
force becomes incapable of keeping the fluctuations under control and the 
flow becomes turbulent. This is analogous to having a flow turbulence class 
with a large group of sugar-buzzed students. The professor does not have 
enough viscosity to calm the class down. Filling up the rowdy classroom 
with a high-viscosity fluid such as cold honey would presumably solve the 
challenge at hand. With this appreciation of viscosity diffusion, advection 
and inertia, along with Reynolds number, let us press on and explore some 
key scales involved in the ever-important boundary layer.

ta=L/U

Re=inertia force/viscous fo
rce=advective/visco

us effect=(1/ta)/(1/tν)

Re=tν/ta=(L2/ν)/(L/U)=U L/ν

1 �According to Newton’s second law, F = ma = m(UdU/dx), dividing by volume ∀, we have 
F/∀ = ma/∀ = (ρ∀ )(U2/L)/∀ = ρU2/L. Substituting this (inertia) force per unit volume 
into Re, we get Re = (ρ U2/L) / (m U/L2) where the denominator is viscous force per unit 
volume. This can be simplified into Re = ρ U L/m = U L/ν.
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4.2.1  Laminar Boundary Layer
As detailed in Chapter  2, the Navier-Stokes equations for steady  
(laminar) flow of an incompressible fluid with constant viscosity can be 
expressed as

U
U

x
P
x

U

x x
1

j
i

j i

i

j j

2

ρ
ν

∂
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= ∂
∂

+
∂
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(4.7)

Let us consider the simple case of an initially uniform velocity flow over 
a flat plate as depicted in Fig. 4.2. For the laminar boundary layer flow, 
we may estimate the inertia terms on the left of Eq. (4.7) as U2/L and the 
viscous terms signified by the last term as νU/L2. The ratio of these terms 
is the Reynolds number, Re = UL/ν. We see that viscous terms should be-
come negligible, and thus may be dropped, at large Re. However, boundary 
conditions or initial conditions may make it impossible to neglect viscous 
terms everywhere in the flow field. For example, the viscous terms cannot 
be neglected in the velocity boundary layer, first introduced by Prandtl, as 
per brief historic account in the forthcoming paragraph and as portrayed 
in Fig. 4.2. This is particularly true in the inner portion of the boundary 
layer.

For many years, as jested by the British chemist and Nobel laureate Sir 
Cyril Norman Hinshelwood (1897–1967), fluid dynamists were divided 
into groups. On one end, there were those practical and applied hydraulic 
engineers who observed things that could not be explained. At the other 
end, there were those theoretical and pure mathematicians who explained 
things that could not be observed. This dilemma continued until the Ger-
man engineer Ludwig Prandtl gave an epoch-making presentation to the 
Third International Congress of Mathematics held at Heidelberg; see, for 
example, Gad-el-Hak (1998). Prandtl (Prandtl, 1904; Anderson, 2005) in-
troduced the concept of a fluid boundary layer adjacent to the surface of a 
moving body where viscous forces are important and outside of which the 
flow is more or less inviscid.

When considering length scales, we tend to associate viscous effects 
with small length scales. In other words, the viscous terms can survive at 
high Re only by choosing a length scale d, which represents the thickness 
of the boundary layer as shown in Fig. 4.2, such that the viscous terms are 
of the same order of magnitude as the inertia terms; that is, from Eq. (4.7), 
we have

U L U/ ~ /2 2ν δ	 (4.8)

Uj∂Ui∂xj=1ρ∂P∂xi+ν∂2Ui∂xi∂xj

U2/L∼ν U/d2
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The viscous length d is thus related to the scale L of the flow field as

L UL/ [ / ( )] Re1
2

1
2δ ν = −∼	 (4.9)

We note that in shear flows, a “diffusive” length scale is associated with the 
diffusion across the flow, while a “convective” length scale is associated with 
the convection along the flow.

We can apply the asymptotic approximation to see what happens when 
d/L approaches zero. At this limit, the shear flow becomes independent of 
most of its environment, except for the boundary conditions imposed by 
the overall flow. In other words, for large Reynolds number flows, viscosity 
is largely nonexistent except at the very thin layer next to a solid surface.

4.2.2  Turbulent Boundary Layer
Let us reconsider the boundary-layer flow for the case where the bound-
ary layer is turbulent; see Fig. 4.3. The considerable inertia associated with 
large Re produces a lot of eddying motions. These turbulent eddies transfer 
momentum deficit away from the solid surface, making the cross-stream 
diffusion turbulent. The boundary-layer thickness d presumably increases 
roughly as dd/dt ∼ u, or dd/dx ∼ u. In other words, the higher the turbu-
lence level, the faster the boundary layer increases with respect to time or 
distance downstream. The time interval that has elapsed for a fluid particle 
moving from x = 0 to L (distance downstream as shown in Fig. 4.3) is on 
the order L/U, which is the convective time scale. Hence, we have

ut u L U~ ~ ( / )δ	 (4.10)

In effect, we are equating the turbulent diffusion time scale d/ u to the 
convective time scale L/U. We can rewrite the relation as d/L ∼ u/U or 
d/u ∼ L/U.

d/L∼[ν/(UL)]12=Re−12

d∼ut∼u(L/U)

Figure 4.2  Laminar boundary layer. (Created by B. Motameni).
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The above analysis implies that with an imposed external flow the 
turbulence must have a time scale commensurate with the time scale of 
the flow. In other words, the flow turbulence is a function of the mean 
flow, entailing that turbulence is part of the flow and not part of the 
fluid as molecular diffusivity and viscosity are. Not all of the turbulence, 
however, has such a large time scale. The small eddies in turbulence have 
short time scales, which tend to make them statistically independent of 
the mean flow; that is, the smaller turbulent eddies may not depend di-
rectly on the mean flow. Therefore, more than one eddy size is needed 
to describe a turbulent flow. At a minimum, we need to introduce both a 
large length scale (as done earlier) and a small length scale to approximate 
flow turbulence.

It is known that for turbulent flows, the fluid motion creates a multitude 
of eddies that are responsible for transport properties. The molecular effects 
in turbulent flows act mainly to provide a sink for dissipation of small-scale 
eddying motion and to transport heat, mass, and momentum over distances 
less than that of the smallest turbulent eddies. In other words, a wide range 
of length scales exists in a turbulent flow, bounded by dimensions of the 
flow field and/or the body generating the flow disturbance and the diffu-
sion action of molecular viscosity (molecular mean free path). Hopefully, 
there are some relations between the various scales of the mean motion 
and those of the turbulent eddies. These scale relationships will allow us to 
develop general predictions of the changes that occur in turbulence struc-
ture when the mean field is altered. Because eddies come in a wide range of 
sizes, a minimum of two length scales are needed to characterize the large 
and small eddies. Following the typical convention, the scale “Λ” is used to 
signify the large eddies and “λ” for the small eddies, which act as a sink for 
molecular motions to dissipate turbulence, channeling the turbulent kinetic 
energy via viscosity into heat; see Fig. 4.4.

Figure 4.3  Turbulent boundary layer. (Created by B. Motameni).
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Recall that for a laminar flow, we have U as the velocity scale, and d and 
L as the cross-stream and streamwise length scales, respectively. For a turbu-
lent (boundary-layer) flow, we have U , d, and L signifying the mean (time-
averaged) velocity and length scales; the corresponding fluctuating turbulence 
scales are u, Λ, and λ (see Fig. 4.4). The time scales for the mean flow and for 
the large scales turbulence are hence L U/  and Λ/u, respectively.

4.3  MOLECULAR VERSUS TURBULENT DIFFUSION

Consider a stagnant fluid sandwiched between two solid boundaries as por-
trayed in Fig. 4.5. Suppose the floor is heated, but the fluid remains macro-
scopically stagnant. As such, the thermal energy is distributed via molecular 
diffusion, that is

t x xt
i i

2θ κ θ∂
∂

= ∂
∂ ∂

	
(4.11)

where u is the temperature and the thermal diffusivity k
t
 as a first approxi-

mation can be assumed to be constant. Dimensionally, this may be inter-
preted as

t L
~

t
mol

2

θ κ θ∆ ∆

	
(4.12)

where t
mol

 is the molecular diffusion time and ∆u is a characteristic tempera-
ture difference. This can be rewritten as

t L~ /
tmol

2 κ	 (4.13)

U¯

L/U¯

∂u∂t=kt∂2 u∂xi ∂xi

∆utmol∼kt∆uL2

tmol∼L2/kt

Figure 4.4  Large and small eddies in a turbulent boundary layer. (Created by N. Cao).
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If the ceiling is 2 m from the floor and the fluid is air which has a ther-
mal diffusivity k

t
  =  0.20  cm2/s at room temperature and pressure, then,  

t
mol

 ∼ 106 s. In other words, in the absence of fluid motion, it will take days 
for the temperature to even out!

In reality when the fluid in the vicinity of the hot floor is heated, buoy-
ancy-driven instabilities will emerge. If we assume that the resulting turbu-
lent motion has a length scale on the order L and a velocity scale on the 
order u, then, the characteristic time is

t L u~ /
turb	 (4.14)

Let us further assume that the characteristic turbulence velocity u is 
on the order of cm/s. The resulting turbulence characteristic time for the 
thermal energy to be distributed throughout the compartment is then on 
the order of minutes. In other words, turbulence enhances the diffusivity 
by orders of magnitude, as compared to that involving molecular diffusiv-
ity alone.

We see from the above example that flow turbulence can boost the dif-
fusivity by orders of magnitude. The seriously boosted diffusivity may be 
viewed as an effective diffusivity. By considering it in this way, we tend to 
treat turbulence as a property of a fluid rather than a property of a flow. This 
is somewhat dangerous conceptually, but it eases the analysis significantly 
and, by and large, it makes practical approximations versatile for many en-
gineering applications.

Proceeding along the above assumption, we can express the diffusion of 
heat by turbulent motions as

t
K

x x
i i

2θ θ∂
∂

= ∂
∂ ∂	

(4.15)

tturb∼L/u

∂u∂t=K∂2u∂xi ∂xi

Figure 4.5  Molecular versus turbulent diffusion. (Created by D. Ting).
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where K is the “eddy diffusivity” or “exchange coefficient” for heat (ther-
mal energy). The time scale according to this equation is t ∼ L2/K, but we 
also have t

turb
 ∼ L/u from before while relating turbulence with mean flow, 

and hence

t L K L u~ / ~ /2	 (4.16)

In other words, eddy diffusivity K is on the order of the product of 
turbulence fluctuating velocity and the characteristic length associated with 
the mean floor or physical dimension of the confinement, uL. This eddy 
diffusivity or viscosity K may be compared with the kinematic viscosity ν 
and the thermal diffusivity k

t

K K uL
~ Re

t
κ ν ν

≅ =
	

(4.17)

This expression conveys the Reynolds number Re as the apparent or 
turbulent viscosity/molecular viscosity ratio. It is worth mentioning that 
the eddy diffusivity K is an artifice, which may not represent the effects  
of turbulence faithfully. With this caution in mind, this analogy between 
eddy diffusivity and the molecular diffusivity can resolve, though only as a 
first approximation, many practical problems.

4.4  KOLMOGOROV MICROSCALES OF DISSIPATION

We have so far discussed only the large scales Λ, along with a brief mention 
of some small scales λ. Let us press on to introduce the renowned Kol-
mogorov microscales of dissipation to “close the lid at the smallest eddies 
end”. We note that large eddies do most of the transportation of momen-
tum and contaminants and are generally the relevant length scales in the 
analysis of the interaction of turbulence with mean flow. The generation of 
small-scale fluctuations from the larger ones is due to the nonlinear terms in 
the equations of motion; that is, the viscous terms prevent the generation of 
infinitely small scales of motion by dissipating small-scale energy into heat.

One might expect that at large Re, the relative magnitude of viscosity is 
so small that the viscous effects in a flow tend to become vanishingly small. 
The nonlinear terms in the Navier-Stokes equation, however, counteract 
this threat by generating motion at scales small enough to be affected by 
viscosity. In other words, the smallest scale of motion automatically adjusts 
itself to the value of the viscosity.

t∼L2/K∼L/u

Kkt≅Kν∼uLν=Re
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Since small-scale motions tend to have small time scales, one may as-
sume that these fast (high frequency) motions are statistically independent 
of the relatively slow large-scale turbulence and the mean flow. Alterna-
tively, we can argue that the offspring of nonlinear interactions after passing 
down via generations of nonlinear interactions from the originally large and 
deterministic motions tend to forget their origins. This is somewhat analo-
gous to the result of many generations of inter-racial mixing, that is, off-
spring with no distinctive ethnical origins. As byproducts of many nonlinear 
interactions, the small-scale motions may be perceived as a passive outcome2 
of the rate of energy supply via the large-scale motion. In addition, they are 
also directly affected by the kinematic viscosity of the fluid that they are in. 
Thus, small-scale motion is a sole function of the rate of energy supply by 
the large-scale motion and the fluid kinematic viscosity.

With the aforementioned view, the small eddies are formed due to the 
handing down of energy from the large eddies; the rate of energy supply 
(from the mean flow into the large eddies) is thus approximately equal to 
the rate of dissipation, ε. This is particularly true for “stationary” turbulence, 
which does not alter with time. For typically large Reynolds number tur-
bulent flows, the rate of dissipation adjusts itself to the amount of energy 
funneling down the energy cascade; therefore, this quasi-equilibrium as-
sumption is likely valid, provided the change is not too rapid. In other  
words, provided the net rate of change is significantly less than the rate of 
energy dissipation, we may assume Kolmogorov’s universal equilibrium the-
ory (Kolmogorov, 1941). One important outcome of the Kolmogorov’s uni-
versal equilibrium theory is that the dissipation rate per unit mass ε (m2/s3)  
and the kinematic viscosity ν (m2/s) govern the small-scale motion.

In other words, Kolmogorov (1941) developed a set of dissipation ve-
locity and length scales that are independent of any large eddy turbulence 
properties. His two observations were:
1.	 Because the smallest eddies are dissipated by viscosity, the size of scale η 

necessary to carry out a fixed rate of dissipation should be a function of 
only viscosity ν;

2 �As mentioned earlier, this general trend of large to small eddying motions is consistent with 
the second law of thermodynamics. In other words, the original large eddies formed by 
mean flow are more or less organized and deterministic. In accordance with the second law 
of thermodynamics, they break down into progressively more disorganized and random 
smaller eddies. Note that this does not exclude some smaller eddies coming together and 
form larger ones, but the overall process is, by and large, from more organized larger eddies 
breaking into smaller ones.
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2.	 Because the rate of dissipation is related to the size η of eddies for a fixed 
viscosity, this size η should be a function of only the dissipation rate ε.

Combining these ideas, Kolmogorov proposed that the length, veloc-
ity and time scales, η, uη, and tη of dissipation should be a function only 
of dissipation rate and viscosity. Note that this hypothesis can only be 
correct if the dissipation eddies are much smaller than those that par-
ticipate in production. If this is not the case, eddies may be simultane-
ously involved in both production and dissipation and will have their 
length scales influenced by mean shear, in addition to dissipation rate and  
viscosity. As mentioned earlier, we limit the bulk of this book to fully  
developed turbulence where there is a well-defined cascade of tur-
bulent eddies, from large energy-supplying eddies to small dissipative 
microscales. Under such a condition, the Kolmogorov hypothesis is ex-
pected to be viable.

Recall that the dimensions of dissipation and viscosity are m2/s3 and 
m2/s, respectively, and hence, via dimensional analysis

~ a bη ε ν	 (4.18)

we find a = −1/4 and b = 3/4. The resulting length, velocity, and time scales 
are, respectively

( / )3 1/4η ν ε=	 (4.19)

u ( )1/4ε=η ν
	

(4.20)

t ( / )1/2ν ε=η

	

(4.21)

Liepmann (1979) gave a physical argument for the Kolmogorov scales. 
Knowing that turbulence can only exist at large Reynolds numbers, based 
on local eddy size and velocity, there must be an eddy scale η with its cor-
responding velocity uη at which turbulence ceases. This occurs for a local 
Reynolds number of about unity, that is

uRe / 1η ν= ≈η η	 (4.22)

The Reynolds number, ηuη/ν ≈ 1 illustrates that the small-scale motion 
is quite viscous and that the viscous dissipation adjusts itself to the energy 
supply by adjusting the corresponding length scales. Specifically, the smallest 
eddy that survives long enough to be identified as an eddy is the one for 

η∼εa νb

η=ν3/ε)1/4

uη=(εν)1/4

tη=(ν/ε)1/2

Reη=uηη/ν≈1
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which the viscous diffusion time ν/uη
2 is approximately equal to the eddy 

advection time, η/uη. We may view this approximate equality as an eddying 
fluid motion that dissipates completely, transforming all its kinetic energy 
via viscosity into heat within one rotation. Thus, the energy dissipation of 
these elements is purely viscous, and if all the energy produced from the 
mean flow is dissipated by these small scales, the overall dissipation rate ε is 
equal to the small scale rate and we can define

u /2 2ε ν η= η	 (4.23)

Solving Eqs (4.22 and  4.23) simultaneously yields the Kolmogorov 
scales η and uη as expressed earlier. We see that an increase in viscosity can 
enhance the dissipation, as expected. Increasing the velocity augments the 
shear and thus also the rate of dissipation. On the other hand, enlarging  
the eddy size leads to a reduced velocity gradient, and hence, a decrease  
in the dissipation rate.

Let us follow Tennekes and Lumley (1972) and consider a mixing process 
in which the mixture involved is a liquid having a viscosity ν = 10−3 m2/s 
and a density of approximately 1000 kg/m3; see Fig. 4.6. Suppose a 20 W 
electric mixer is used to mix a 1 L mixture. At equilibrium conditions the 
power input is equal to the dissipating power, that is, ε = 20 W/kg. The 
corresponding Kolmogorov length scale η = (ν3/ε)1/4 = 2.7 mm. We also 
note that halving of the Kolmogorov eddy size would require a power 

ε=νuη2/η2

Figure 4.6  Kolmogorov and larger scales in a mixing process. (Created by N. Cao).
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increase by a factor of 16. This is due to the ¼ exponent involved in the 
equation. Hence, there is a lot of room to dissipate an enormous amount 
of energy (power) input before the smallest dissipative turbulent eddies ap-
proach the molecular mean free path, at which point the continuum as-
sumption becomes invalid.

4.5  AN INVISCID ESTIMATE FOR DISSIPATION RATE

If we can relate the dissipation rate ε with the length and velocity scales of 
the large-scale turbulence, we can form a good impression of the differ-
ences between the large-scale and small-scale aspects of turbulence. Let us 
invoke the assumption that the rate at which large eddies supply energy to 
small eddies is inversely proportional to the time scale of the large eddies. 
This may be interpreted as a large eddy passing all of its kinetic energy 
unto smaller eddies within its life span. And, if we follow along Richard-
son’s energy cascade proposition, these smaller eddies subsequently pass all 
their energy unto even smaller eddies when making their revolution. This is 
quite similar to some well-off parents who pass all their fortune onto their 
children, who in turn hand it down to their offspring, and so on. To make 
the analogy more applicable, the amount of inheritance remains largely 
the same, and the number of offspring drastically multiplies down (or up if  
we consider an upright tree) the family tree. Let us start from the beginning 
(roots) of the ancestry where the large eddies are formed via shear in the 
mean flow, that is, by taking away some significant amount of energy from 
the main flow (they make a fortune from nothing but hard work). These ed-
dies subsequently pass all that they have down to their immediate, multiple 
offspring as they pass away; in reality, they themselves break down into many 
smaller and faster-spinning eddies. With no net change in the total assets 
(kinetic energy), the amount per living member decreases drastically from 
one generation to the next because of the manifold procreation. Other than 
the increase in number and the corresponding decrease in size, the spending 
habit also escalates down the lineage, that is, unto the progressively faster 
whirling smaller eddies. The passing down of the said inheritance continues 
until the generation of eddies are so small and so hastily twirling (squander-
ing) that they dissipate all their energy via viscosity into heat within their 
short life span, leaving neither energy nor offspring.

Returning back to the large, energy-containing eddies, the kinetic 
energy per unit mass is proportional to u2; for ½mu2/m ≈ u2 (order of 
magnitude-ly speaking, we drop the “½”), where m is the mass. The rate of 
energy transfer is proportional to u/Λ (where Λ represents the size of the 
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large eddies); that is, the energy transfer rate varies inversely with the time 
scale associated with the large eddies. Accordingly, we see that the energy 
supply rate is related to u2 × u/Λ, which is equal to the dissipating rate un-
der quasi-equilibrium condition. Hence, following Taylor (1935) we have

u~ /3ε Λ	 (4.24)

which states that viscous dissipation can be estimated from the large-scale 
dynamics, which do not involve viscosity. In other words, dissipation is a 
passive process; that is, it proceeds at the rate dictated by the inviscid inertial 
behavior of the large eddies. Note that some recent studies have suggested 
that a significant nonequilibrium region can exist in some turbulent flows in 
which this expression may not hold true (Vassilicos, 2015). It is worth stress-
ing that we are primarily concerned with equilibrium or quasi-equilibrium 
conditions where this order of magnitude equation is applicable.

The energy cascade described above is one of the cornerstone assump-
tions of turbulence theory, claiming that large eddies lose a significant frac-
tion of their kinetic energy (per unit mass) ½ u2 within one “turnover” time 
Λ/u. The nonlinear mechanism that produces small eddies out of larger 
ones is as “dissipative” as its characteristic time permits; that is, they “dis-
sipate” (or break down) into progressively smaller eddies. Thus, turbulence 
is a strongly damped nonlinear stochastic system.

For large Re, large eddies lose a negligible fraction of their energy 
to viscous dissipation effects directly; indirectly, they lose a whole lot to 
smaller eddies. The time scale of their decay is relatively large at Λ2/ν. We 
see that the larger the eddy is, the longer it lasts, and that the more viscous 
the fluid is, the shorter it lives. We further note that viscous energy loss 
(for eddies of u and Λ) proceeds at a rate νu2/Λ2, which is small compared 
to u3/Λ for large Re (uΛ/ν). In the energy cascade, kinetic energy is 
transferred to successively smaller and smaller eddies, until the Reynolds 
number of the eddy is sufficiently small that the eddy motion is stable and 
molecular viscosity is effective in dissipating the kinetic energy.

Based on the materials conveyed up to this point, we may relate the 
relatively well-defined Kolmogorov scales with the more approximately es-
timated scales associated with the large eddies. We see that:

1.	 η/Λ = (ν3/ε)1/4/Λ ∼ (ν3/u3/Λ3)1/4 = (uΛ/ν)−3/4, or

u/ ~ ( / ) Re3/4 3/4η νΛ Λ =− −

	
(4.25)

ε∼u3/Λ

η/Λ∼(uΛ/ν)−3/4=Re−3/4
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2.	 tη/tΛ = (ν/ε)½/tΛ ∼ (ν/ε)½/(Λ/u) ∼ (ν/u3/Λ)½ /
(Λ/u) = (ν/uΛ)½ = (uΛ/ν)−½, or

t t u/ ~ ( / ) Re 1/21
2νΛ =η Λ

− −

	

(4.26)

3.	 uη/uΛ = (νε)1/4/uΛ ∼ (νu3/Λ)1/4/u = (ν/uΛ)1/4 = (uΛ/ν)−1/4, or

u u u/ ~ ( / ) Re1/4 1/4νΛ =η Λ
− −

	

(4.27)

These equations imply that the smallest eddies are significantly smaller than 
the largest ones, especially at larger Reynolds numbers. Second, the smallest 
time scales are much briefer than the largest time scales, and this difference 
increases with Re1/2. Third, the smallest velocity scales are lower than the 
largest velocity scales, and this ratio varies with Re1/4. Table 4.1 illustrates 
how these small-large length scale ratios vary with respect to the Reynolds 
number. It is clear that the separation in scales widens as Re increases, lead-
ing to progressively more evident small-scale structures. As the largest scales 
are predominantly set by the physical confinement or bluff body involved, 
they do not tend to noticeably alter with Reynolds number in the absence 
of changes to the physical dimensions. Under such (physical invariant) con-
ditions, essentially only the passive, smaller-length scales are adjusted by 
variations in Reynolds number; that is, the smallest length drastically (to the 
power ¾ as per Eq. (4.25)) decreases, its time scale is significantly reduced 
(to ½ power according to Eq. (4.26)), and its velocity is lowered (to the 
power of ¼ as expressed by Eq. (4.27)), with increasing Re. For the example 
illustrated in Table 4.1, doubling the Reynolds number resulted in an ap-
proximately 40% decrease in η/Λ, 30% reduction in tη/tΛ, and near 20% 
attenuation in the corresponding velocity ratio uη/uΛ.

At this point, it is worth taking a look at the vorticity, which has the 
dimension of frequency [s−1], associated with these large and small scales. 
The small-large scales vorticity ratio is

f f t t u/ ~ / ~ ( / ) Re
1
2 1/2ν Λ =η ηΛ Λ	 (4.28)

tη/tΛ∼(uΛ/ν)−½=Re−1/2

uη/uΛ∼(uΛ/ν)−1/4=Re−1/4

fη/fΛ∼tΛ/tη∼(ν/uΛ)½=Re1/2

Table 4.1  Variations of small/large scales with Re

Re   5,000 10,000
η/Λ 0.0017 0.001
tη/tΛ   0.014 0.01
uη/uΛ     0.12 0.1
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This clearly depicts that the vorticity of the small-scale eddies is much 
greater than that associated with the large-scale eddies. Hence, it is not sur-
prising to see the use of the small, rather than the large, scale in modeling 
turbulence via vortex dynamics. As importantly, the scrutinizing eyes should 
focus on the small scales in a situation where the underlying vorticity may 
play a vital role in the problem at hand.

On the other hand, if we look at the corresponding distribution in 
the turbulent kinetic energy, we see that the mass of a Kolmogorov eddy  
mη ≈ ρη3, which is puny compared to that associated with a large eddy  
mΛ ≈ ρΛ3. In other words, the kinetic energy of the smaller eddies is sub-
stantially less than that of the large eddies; that is, ½ mη uη

2 << ½ mΛ uΛ
2. 

In summary, most of the fluctuating energy is associated with large-scale 
motions, while most of the vorticity is associated with small-scale motions. 
In engineering practice one should understand the problem at hand, that 
is, whether the kinetic energy or the vorticity plays a more important role. 
Then again, there are pieces of music where every instrument of the orches-
tra is necessary. In other words, we may not be able to dismiss the large or 
small scales in some situations; in fact, even the in-between scales are needed 
to accurately comprehend and “solve” many flow turbulence problems.

4.6  THE ENERGY CASCADE – SCALES FROM PRODUCTION-
DISSIPATION ENERGY BALANCE

Thus far we have gathered some understanding of the energy cascade where 
kinetic energy is harvested from the mean flow by the large scales through 
velocity gradient or shear and is transferred down to successively smaller 
eddies until viscosity. Let us move forward and introduce another dissi-
pative length construed by Taylor (1935) and develop some approximate 
expressions concerning the energy budget. We will take for granted the 
fundamental assumption that the turbulence is in equilibrium, with pro-
duction from the Reynolds stress-mean shear interaction balanced by the 
continuous destruction of turbulence by viscous dissipation. The key point 
is that the eddies that produce most of the dissipation are much smaller 
than the eddies which contain Reynolds shear stresses uv  that cause turbu-
lence production3. This requires a reasonably large Reynolds number and/ 
or fairly well-developed turbulence, a condition of primary interest of this 

uv¯

3 �In other words, large-scale turbulence fluctuations are generated by the mean flow via the 
Reynolds stresses.
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book. Figure 4.7 shows an overall view of the energy cascade, from produc-
tion to dissipation.

4.6.1  Production, Dissipation, and Local Equilibrium
Though limited to a one-dimensional impression, Fig. 4.7 depicts some sort 
of energy cascade where the large eddies take energy from the mean flow 
via the Reynolds stresses and feed it down a cascade of progressively smaller 
eddies; at the end of the cascade, the smallest eddies dissipate the kinetic 
energy into thermal energy. The local equilibrium assumption implies that 
the production of turbulence is equal to dissipation locally. This requires 
that the other turbulence transport terms balance each other.

The total turbulence fluctuation from the three orthogonal contribu-
tions in a Cartesian coordinate system, = + +q u v w2 2 2 2 , where u, v, and w 
are the fluctuating velocities in the x, y, and z directions, respectively. The 
total change in this turbulence kinetic energy per unit mass of fluid is

D
Dt

q
pressure and turbulence diffusion viscouswork

production viscousdissipation

2

2

( ) ( )

( ) ( )







= +

+ −	

(4.29)

In the absence of pressure and turbulence diffusion and viscous work, 
we are left with the production and viscous dissipation terms. These pro-
duction P

turb
 and dissipation ε rate per unit mass are, respectively

P u u
U

xi j
i

j
turb

= −
∂
∂

	
(4.30)

s
u

x
2

ij
i

j

ε ν=
∂
∂

	

(4.31)

q2¯=u2¯+v2¯+w2¯

DDtq2¯2=pressure and turbulence diffusion+vis-
cous work+production−viscous dissipation

Pturb=−ui uj¯∂Ui¯∂xj

ε=2 νsij∂ui∂xj¯

Figure 4.7  The turbulence energy cascade. (Created by D. Ting).
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Substituting for the fluctuating stress tensor from Chapter 2, we get

u

x

u

x

u

x
2

1

2
i

j

j

i

i

j

ε ν=
∂
∂

+
∂
∂























∂
∂	 (4.32)

Note that P
turb

 and ε have the units (velocity)3/length = [m2/s3]. Using 
Newton’s second law, which states that force is equal to mass times accel-
eration, this can be written as m2/s3 = N·m/s·kg = W/kg, by relating force, 
mass and length through Newton = kg·m/s2. In a boundary layer with a 
prevailing flow in the horizontal (x) direction (see Fig.  4.4), the vertical 
velocity gradient is dominant and the production term, Eq. (4.31), becomes

P uv
U
yturb

≈ − ∂
∂	

(4.33)

Taylor (1935) showed that for isotropic turbulence, the complicated dis-
sipation expression, Eq. (4.32), could be reduced to

u
x

15
2

ε ν= ∂
∂





	

(4.34)

Recall that dissipation is a passive process, which is dominated by small scale 
motions. These small scales evolve from generations of intermixing and thus 
have more or less lost their memory of their origin, that is, the original 
mean flow orientation. In short, small-scale motions are roughly isotropic 
for well-developed turbulent flows. Therefore, Eq. (4.34) is also applicable 
for non-isotropic turbulence, provided the energy cascade is well established 
such that any anisotropy is lost by the time we reach the dissipative eddies.

4.6.2  Approximate Scaling of Production and Dissipation
Using the mean velocity and length scales of U and d (see Fig. 4.4) and the 
turbulence scales of u, Λ, and λ, the terms in production and dissipation may 
be estimated as

uv u~ 2−	 (4.35)

U
y

U
~

δ
∂
∂

	 (4.36)

u
x

u
~

2 2

2λ
∂
∂





	

(4.37)

ε=2 ν12∂ui∂xj+∂uj∂xi∂ui∂xj¯

Pturb≈−uv¯∂U¯∂y

ε=15 ν∂u∂x2¯

U¯

−uv¯∼u2

∂U¯∂y∼U¯d

∂u∂x2¯∼u2l2
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Substituting Eqs (4.35 and 4.36) into Eq. (4.33), we have

P u
U

~
turb

2

δ	
(4.38)

The order of magnitude expression

u
~

2

2
ε ν

λ	
(4.39)

is obtained by substituting Eq. (4.37) into Eq. (4.34). For “local equilib-
rium” where P

turb
 = ε, the order of magnitude estimates yield

u
U u

~2
2

2δ
ν

λ	
(4.40)

or

U
~

1/2
δ
λ

δ
ν







	

(4.41)

Note that λ, like η, becomes smaller as Re, the term in brackets on 
the right-hand side of Eq. (4.41), increases. This attests that a portion of 
the smallest scales of turbulence is truncated in scaled-down laboratory 
experiments and models. This could become a real challenge in situa-
tions where the small eddies play a nontrivial role in the problem under 
investigation.

Equation (4.41) is an order of magnitude expression relating dissipative 
scale λ with boundary-layer thickness d in terms of a Reynolds number 
defined by the boundary-layer thickness. As such, it is not useful for flow 
turbulence other than boundary-layer flow over a smooth plate. We thus 
proceed to obtain an expression relating the flow turbulence parameters, 
including λ, only.

4.6.3  Relating Production and Dissipation Scales
Recall that one important characteristic of turbulence is that the smallest 
scales of motion that govern dissipation, ε∼νu2/λ2, always adjust themselves 
in size to accommodate changes in dissipation. Let us revisit the electric 
mixer example, but this time we assume that dissipation is chiefly associ-
ated with dissipating eddy size λ. If we increase the speed of the impeller by  

Pturb∼u2U¯d

ε∼νu2l2

u2U¯d∼νu2l2

dl∼U¯dν1/2
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boosting the power input, the dissipation will also increase proportionally, 
that is

P u~ ~ /
turb

2 2ε ν λ	 (4.42)

In other words, augmenting P
turb

 results in an increase in u and/or a de-
crease in λ. Let the average size of the energy containing eddies be denoted 
by Λ. If the decay time of these energy containing eddies is 1.5 Λ/u, (the 
eddy travels roughly ½ π Λ distance, half a revolution, as it passes its energy 
down the cascade), then the energy transfer rate

u u~ kinetic energy per unit mass/decay time ~ 3 /2/1.5 /2ε Λ	 (4.43)

or
u~ /3ε Λ	 (4.44)

From the two estimates for dissipation, Eqs (4.42 and 4.44), we have

u u~ / ~ /2 2 3ε ν λ Λ	 (4.45)

This can be written as

u/ ~ ( / )
1
2λ νΛ Λ

	
(4.46)

or

/ ~ Re
1
2λΛ Λ	 (4.47)

We see that the difference between Λ and λ is less than that between Λ 
and η as described by Eq. (4.25). This indicates that λ is somewhat larger 
than η in the energy cascade. With increasing Reynolds number, λ decreases 
and even more so for η, resulting in reduction in η/Λ, λ/Λ, and η/λ. Re-
calling that Λ is more or less set by the physical dimensions involved, this 
implies that the energy cascade extends at the high-frequency, small scales 
end, especially right around the limit.

4.7  REFINED ESTIMATES FOR TURBULENCE DISSIPATION 
AND INTEGRAL SCALES

In the preceding sections, we have limited ourselves to “order of magni-
tude” estimates for the relationships between the different scales involved in 
a turbulent flow. Let us forge ahead to improve these approximations from 
“order of magnitude” to within “a factor or so.”

Pturb∼ε∼ν u2/l2

ε∼kinetic ener-
gy per unit mass/decay time∼3u2/2/1.5Λ/u

ε∼u3/Λ

ε∼ν u2/l2∼u3/Λ

Λ/l∼(uΛ/ν)½

Λ/l∼ReΛ½
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4.7.1  Dissipation Microscales in Isotropic Turbulence
Improved estimates require a more precise definition of the turbulence dis-
sipation scale λ, which so far has been used to approximate some typical 
scale that represents the range of eddy sizes that participate strongly in dis-
sipation, while the Kolmogorov scale has been prescribed to signify the 
smallest eddy size. A more rigorous definition of the dissipative eddy size is 
the Taylor microscale formulated by Taylor (1935). Taylor defined a cross-
stream scale λ

g
 and an along-stream scale λ

f

u

u
y

2
g
2

2

2
λ ≡

∂
∂





	

(4.48)

and
u

u
x

2
f
2

2

2
λ ≡

∂
∂





	

(4.49)

For isotropic turbulence with no preferential direction, Taylor related the x 
and y velocity derivatives through continuity to show that

/ 2
g f

λ λ=
	 (4.50)

With the rigorously defined Taylor microscale, the dissipation expres-
sion for isotropic turbulence can be expressed as

u
x

u u
15 15

2
30

f f

2 2

2

2

2
ε ν ν

λ
ν

λ
= ∂

∂




 = =

	
(4.51)

This can be expressed in term of the cross-stream Taylor microscale,

u
15

g

2

2
ε ν

λ
=

	
(4.52)

The standard practice is to adopt the cross-stream scale λ
g
 as the typical 

microscale. It is interesting to compare this result with our earlier order of 
magnitude scale estimate which produced ε ∼ ν u2 /λ2. For isotropic tur-
bulence =u u2 2 , and hence, we see that

15
g

λ λ=
	

(4.53)

lg2≡2u2¯∂u∂y2¯

lf2≡2u2¯∂u∂x2¯

lg=lf/2

ε=15 ν∂u
∂x2¯=15 ν2u2¯lf2=30 νu2¯lf2

ε=15νu2¯lg2

u2=u2¯

lg=15 l
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Note that neither λ nor λ
g
 are true dissipation scales because they are 

both derived by assuming that the velocity scale of the dissipating eddies are 
the same as that of the large eddies, that is, both are equal to u. In a more 
general form, the dissipation scale relation may be expressed as

u /
d d
2 2ε ν λ=

	 (4.54)

where u
d
 and λ

d
 are activity scales specific to the range of dissipating eddies. 

It can be shown via spectral analysis of dissipation that the typical size of the 
most active dissipating eddies is normally (Hinze, 1975)

~ 0.3
d g

λ λ	 (4.55)

Combining the above two dissipation expressions using this result 
gives

u u1.2
d

2≈	 (4.56)

This shows that u
d
 = u is a fairly good assumption. In other words, while the 

size of the dissipative eddies are typically more than a couple of orders of 
magnitude smaller than the energy-containing eddies, their corresponding 
velocity scales are rather similar in magnitude. We recall from the example 
conveyed in Table  4.1 that this is also more or less true concerning the 
characteristic velocity associated with the Kolmogorov scale, where uη is 
within an order of magnitude of uΛ, even though η is about three orders of 
magnitude smaller than Λ.

Let us relax the dissipation expression to include non-isotropic turbu-
lence, that is

q
5

g

2

2
ε ν

λ
≈

	
(4.57)

where the total velocity variance

q u v w2 2 2 2= + +	 (4.58)

Note that the approximate equality arises because we have invoked 
the isotropic dissipation assumption for non-isotropic turbulent flows. 
As such, Eq. (4.57) is, in a sense, exact for isotropic turbulence where 
q u32 2= .

ε=ν ud2/ld2

ld∼0.3 lg

ud≈1.2u2¯

ε≈5 νq2¯lg2

q2¯=u2¯+v2¯+w2¯

q2¯=3u2¯
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4.7.2  Integral Scales
Up to this point, Λ has been used to denote the size of some typical large 
eddy. We now proceed to refine the definition of the larger eddies in the 
energy cascade. We can follow Taylor (1935) and define the large length 
scales in terms of the cross-stream and along-stream space correlations. The 
along-stream correlation function is

f
u x y u x y

u
( , ) ( , )

2
ξ ξ( ) = +

	 (4.59)

and in the cross-stream direction

g
u x y u x y

u
( , ) ( , )

2
ξ ξ( ) = +

	 (4.60)

Here, u is the fluctuating velocity in the x direction, and ξ denotes 
a small displacement. These correlations are illustrated in Fig. 4.8. When 
ξ is equal to zero, the two streamwise fluctuations on the numerator 
are perfectly correlated, giving a correlation of unity. With increasing ξ, 
the correlation quickly decays and approaches zero. Figure 4.8 shows that 
the cross-stream correlation tends to oscillate around zero before it assumes 
zero with increasing separation ξ; the negative correlation occurs when 
two eddies revolve in opposing directions. This negative correlation is usu-
ally not observed in the streamwise correlation, presumably due to the 
prevailing convection of the mean velocity, which overshadows any small  

fξ=u(x, y)u(x+ξ, y)u2¯¯

gξ=u(x, y)u(x, y+ξ)u2¯¯

Figure 4.8  Along-stream and cross-stream auto-correlations. (Created by B. Motameni).
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negative correlation. The integral scales are defined in terms of area under 
the correlations

f d( )
f 0

ξ ξΛ ≡ ∫
∞

	 (4.61)

and

g d( )
g 0

ξ ξΛ ≡ ∫
∞

	 (4.62)

Note that for any correlation function f and g that behave like exp(−ξ) as 
ξ→∞, it can be shown that there is a factor of 2, not √2, difference in scales 
defined by the two correlations; that is

/ 2
g f

Λ = Λ
	 (4.63)

in homogeneous isotropic turbulence.
With the well-defined integral length, we can tighten the meaning and 

definition of the somewhat loosely defined large eddy scale Λ. As the in-
tegral scale denotes the size of the energy-containing correlation length, it 
belongs to the lower-frequency, energy-producing end of the energy cas-
cade; and so does Λ. Therefore, these two length scales are expected to be 
linearly related, that is

C
g

Λ = Λ
	 (4.64)

where C is a constant. According to Hinze (1975)

2.66 1.33
g f

Λ = Λ = Λ
	 (4.65)

We may interpret this as: Λ signifies the largest eddies, Λ
g
 the integral length, 

and both are engaged with turbulent kinetic energy production, supplying 
energy down the smaller scales along the energy cascade.

With the key scales more rigorously defined, the notion of the turbu-
lence energy cascade can be improved as shown in Fig. 4.9. We note that the 
energy cascade is bounded by the largest eddies approximately 2.66 times 
the cross-stream integral length at the low-frequency end, and the smallest 
Kolmogorov scale at the high-frequency limit. Even though the smallest 
Kolmogorov scale may be most effective in dissipating kinetic energy into 
heat, most dissipation actually takes place via λ

d
, which is roughly five times 

η, or about one-third λ
g
.

Λf≡∫0∞f(ξ)dξ

Λg≡∫0∞g(ξ)dξ

Λg=Λf/2

Λ=C Λg

Λ=2.66 Λg=1.33 Λf
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4.8  TURBULENT KINETIC ENERGY SPECTRUM

The turbulent kinetic energy associated with the cascade of the large-to-
small spectrum of eddies can be viewed in terms of the spectral distribution 
of energy. The Fourier decomposition can be expressed in terms of number 
of cycles per unit length, i.e., wavenumber, k

w
, or its inverse, wavelength, 

λ
w
. Note that the wavelength is akin to length scale, that is, the size of 

the eddy, and the wavenumber is similar to the frequency. The large scales 
have longer wavelengths and lower frequencies, while the small scales have 
shorter wavelengths and higher frequencies. The turbulence kinetic energy 
per unit mass is thus

ke E d
w w0

κ κ( )= ∫
∞

	 (4.66)

where E(k
w
)dk

w
 is the amount of kinetic energy possessed by the eddies 

with wavenumbers between k
w
 and k

w
 + dk

w
. The energy spectral den-

sity or energy spectrum function E(k
w
) is a function of the energy-

containing large eddies Λ and the mean strain rate which transfers the en-
ergy from the mean flow to the large eddies. The amount of energy E(k

w
) is 

also dependent on the rate of dissipation, that is, ε and ν. For well-developed 
turbulence where Λ is much larger than η, we have

ke~ /3/2ε Λ	 (4.67)

as conjured by dimensional analysis, and confirmed by measurements  
(Taylor, 1935). In other words

ke ~ ( )2/3εΛ
 
(4.68)

According to the energy cascade (Fig. 4.10), for well-developed turbu-
lence, there is a range of wavenumbers over which neither production nor 

ke=∫0∞ Ekwd kw

ε∼ke3/2/Λ

ke∼(εΛ)2/3

Figure 4.9  Refined turbulence energy cascade from production to dissipation. (Created 
by D. Ting).
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dissipation is dominant; that is, the inertial transfer of kinetic energy is the 
prominent player. Over this inertial sub-range, E(k

w
) depends only on  

ε and k
w
. Based on dimensional analysis, Kolmogorov came to the conclu-

sion that

E C( )
w w

2/3 5/3κ ε κ= κ
−

	 (4.69)

where 1/Λ << k
w
 << 1/η, and Ck is the Kolmogorov constant.

Figure 4.10 shows some typical streamwise turbulence velocity spec-
tra downstream of an orificed, perforated plate turbulence generator at 
10.8 m/s wind (Liu et al., 2007); we will expound on this unique, passive 
turbulence generation in the ensuing chapter on grid turbulence. Accord-
ingly, more will be said about the energy spectrum in general. Briefly, k is 
the frequency, which is inversely proportional to the size of the eddying mo-
tion. It is clear that most of the energy is associated with the low-frequency,  

E(kw)=Ck ε2/3 kw−5/3

Figure 4.10  Orificed, perforated plate-generated streamwise turbulence velocity spec-
tra at U = 10.8 m/s. (Created by R. Liu).
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large eddies, and the amount of energy drops sharply with increasing k. 
Most interestingly, we see the separation of the highest-frequency, dissipat-
ing, viscous range from the lowest-frequency production range by the in-
ertial sub-range with a −5/3 slope in Fig. 4.10. We will discuss this further 
when looking at grid turbulence.

Problems

Problem 4.1 Turbulence from volcanic eruption
A turbulent plume is generated via a volcanic eruption where the integral 
scale Λ∼20 m and a typical turbulent velocity is 30 m/s. If the viscosity of 
the volcanic gas is 10−5 m2/s, estimate λ and η. How do these small scales 
compare to the mean free path length?

Problem 4.2 Molecular versus turbulent diffusion
A laboratory is roughly 4 m × 4 m × 4 m. Near the center of a wall is a 
floor heater. Assume that the air just above the heater is 20°C above the 
room temperature.
1.	 How long does it take to heat up the laboratory if we assume the air 

inside the lab is stagnant?
2.	 From the convection of the heated air plumes, estimate the turbulent 

viscosity. How long does it take to heat up the lab when we include the 
turbulent effect?

Problem 4.3 Isotropic turbulence in a spherical container
A 10 cm radius sphere containing water at standard temperature and pres-
sure is being stirred at a rate where the power input into the volume of 
water is 500 W. At equilibrium, roughly isotropic turbulence (outside of the 
boundary layer) is maintained.
1.	 What would happen to the turbulence intensity u

rms
 and the sizes of the 

large and small eddies if the stirring intensity is doubled, i.e., doubling 
the kinetic energy input rate?

2.	 What would happen to the turbulence intensity and the sizes of the large 
and small eddies if the size (radius) of the sphere is doubled while keep-
ing the same stirring intensity?

3.	 What would happen to the turbulence intensity and the sizes of the large 
and small eddies if the fluid viscosity is doubled (for the same sphere size 
and stirring intensity)?

4.	 Describe how the turbulence intensity and the sizes of the large and 
small eddies vary if the stirring is suddenly stopped (from equilibrium).

5.	 Describe how the turbulence intensity and the sizes of the large and 
small eddies vary when the stirring is initiated from an initially stagnant 
volume of water.
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Problem 4.4 Turbulent spreading
A certain amount of hot fluid is released in a turbulent flow with charac-
teristic velocity U and characteristic length l. The temperature of the patch 
is somewhat (∼10°C) higher than the ambient temperature, but the density 
difference and the effect of buoyancy may be neglected. Estimate the rate 
of spreading of the patch and the rate at which the maximum temperature 
difference decreases. Assume that the size of the patch at the time of release 
is much smaller than l and much larger than Kolmogorov microscale η. 
The use of eddy diffusivity is appropriate, but be careful when choosing the 
velocity and length scales that are needed to form an eddy diffusivity, in par-
ticular, as long as the size of the patch remains smaller than the length scale l.
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CHAPTER 5

Turbulence Simulations 
and Modeling

It is far better to foresee even without certainty than not to foresee at all.
– Henri Poincaré
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Chapter Objectives

•	 To understand what turbulence modeling is and why it is needed.

•	 To discern and differentiate the two extremes of turbulence modeling, from 
directly solving the Navier-Stokes equations to modeling all scales of turbulence.

•	 To learn about the “closure problems” in turbulent flows.

•	 To have a conceptual understanding of the zero-order closure, one-equation, and 
two-equation models.

•	 To appreciate the notions of large eddy simulation and direct numerical simulation.

NOMENCLATURE
C 	  Constant, coefficient
d	 Dimensional
DES	 Detached eddy simulation
DNS	 Direct numerical simulation
F	 Force
h	 Numerical resolution
k	 Turbulence kinetic energy per unit mass of fluid specific turbulence kinetic energy
l	 Length, large turbulence length scale
l
mfp

	 Mean free path
l
mix

	 Mixing length
LES	 Large eddy simulation



Basics of Engineering Turbulence100

mix	 Mixing
p	 The fluctuating component of the pressure
P	 Time-averaged pressure
RANS	 Reynolds-averaged Navier-Stokes
Re	 Reynolds number
RNG	 Re-normalized group
rms	 Root mean square
S	 Stress (tensor)
t	 Time
turb	 Turbulent
u	 The fluctuating component of the velocity (in the x direction)
U	 Time-averaged velocity (in the x direction)
v	 The fluctuating component of the velocity in the y direction
v

mix
	 Mixing velocity

v
th
	 Thermal (average molecular) velocity

V	 Time-averaged velocity in the y direction
w	 The fluctuating component of the velocity in the z direction
W	 Time-averaged velocity in the z direction
x	 Distance in the x (streamwise) coordinate
y	 Distance in the y (cross-stream, vertically up) coordinate
z	 Distance in the z (cross-stream, out of the page) coordinate

Greek Symbols
a	 Eddy acceleration
∆

LES
	 Filter length for LES

d
ij
	 Kronecker delta, d

ij
 = 1 if i = j, d

ij
 = 0, if i≠j

η	 Kolmogorov length scale
k	 Von Karman constant
kη	 Kolmogorov wavenumber
λ	 Taylor microscale
m	 Dynamic viscosity
m

turb
	 Turbulence dynamic viscosity

ν	 Kinematic viscosity, ν = m/ρ
ν

turb
	 Turbulence kinematic viscosity

ρ	 Density
τ	 Shear
w	 Specific dissipation rate
ε	 Dissipate rate

5.1  INTRODUCTION

The renowned Navier-Stokes equations can describe both laminar and tur-
bulent flows. It is, however, neither practical nor feasible, at present and 
possibly also into the future, to solve the nonlinear equations of motion 
for instantaneous velocities of engineering turbulence problems. We need 
approximate and semi-empirical methods to predict the effect of flow 
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turbulence in engineering applications. Also noteworthy is that in practice, 
the details associated with an exact solution are usually unnecessary. In other 
words, an approximate solution, which captures the essence of the problem 
is often all that is needed.

Generally speaking, turbulence modeling is simply a means of de-
scribing the phenomenon of turbulent flow somewhat quantitatively 
over a range of conditions. This implies that turbulence modeling is a 
procedure that can deduce preponderant and palpable turbulent vari-
ables without directly solving the time-dependent Navier-Stokes equa-
tions. Specifically, functional relationships between the Reynolds stresses 
and the mean-flow characteristics are hypothesized, and “standard ex-
periments” are conducted to provide values for the constants associated  
with these functional relationships. A good model is typically one which 
introduces the minimum amount of complexity while capturing the es-
sential underlying physics.

There are two extremes when it comes to turbulence modeling. The 
familiar models based on the Reynolds-averaged Navier-Stokes (RANS) 
equations address all scales of eddies, from the largest to the smallest; that 
is, none of the eddies are deduced directly from the Navier-Stokes equa-
tions. At the other extreme is direct numerical simulation (DNS), where 
all turbulent eddies are explicitly resolved; that is, the flow characteristics 
manifested by all eddies are calculated directly via the equations of motion. 
As such, strictly speaking, DNS is not considered modeling in the context 
of the resolving of Reynolds stresses. With increasing Reynolds numbers, 
the resolving of a growing number of progressively smaller momentaneous 
eddies forbids the practicality of DNS. For this reason, large eddy simulation 
(LES) and its counterparts which resolve eddies (but only the large ones) 
emerge as a versatile compromise.

Only a brief overview of the classical and standard models is included 
here for the sake of completeness. Monographs, which have specialized in 
turbulence modeling, include Wilcox (1993), Chen and Jaw (1997), Pope 
(2000), and Wilcox (1998, 2006). The purpose of this chapter is to provide 
nonexperts with the stepping stool from which they can easily step up into 
these specialized treatises.

Recall from Chapter 2 that for incompressible, isothermal, laminar flows, 
the momentum equation can be expressed as

DU

Dt
F

P
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x x
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i
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2

ρ ρ ∂
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µ
∂

∂ ∂
= − +

	

(5.1)

ρDUiDt=ρFi−∂P∂xi+m∂2Ui∂xj∂xj
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or simply

DU

Dt
F
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ρ ρ
∂τ
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(5.2)

The Newtonian stress-rate of strain relationship is
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(5.3)

where m is viscosity and S
ij
 is the mean rate of strain tensor
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(5.4)

d
ij
 is the Kronecker delta; that is, d

ij
 = 1 if i = j and d

ij
 = 0 otherwise.

For fluctuating turbulent flows, the stream-wise, x component of the 
momentum equations for the incompressible and isothermal case can be 
expressed as

U
t

U U
x

V U
y

W U
z

P

x
U
x

U
y

U
z

1/ 2

2

2

2

2

2

� � � � � � � � � � �ρ
ν( )∂

∂
+ ∂

∂
+ ∂

∂
+ ∂

∂
= −

∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂





	

(5.5)

where U U u� = + , V V v� = + , �W W w= + , and P P p� = + . Recalling that 
the instantaneous velocity, �U  =  time-averaged or mean velocity U + the 
fluctuating component u; that is, �u U U= − . As detailed in Chapter 2, we 
can apply Reynolds decomposition and time averaging to Eq. (5.5). After 
some manipulations, we get, for the x component
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(5.6)

where the second term on the right-hand side is the normal stress, the third 
term is the shear on the x-z plane, and the last term is the shear on the x-y 
plane. In short, for the ith component
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(5.7)

ρDUiDt=ρFi+∂τji∂xj

τij=−Pdij+2mSij−13dij∂Uk∂xk

Sij=12∂Ui∂xj+∂Uj∂xi

∂U~/∂t+U~   ∂U~/∂x+V~   ∂U~
/∂y+W~   ∂U~/∂z=−(1/ρ)   ∂P~
/∂x+ν(∂2U~/∂x2+∂2U~/∂y2+∂2

U~/∂z2)

U~=U+uV~=V+vW~=W+wP~=P+p
U~

u=U~−U

ρU∂U∂x+V∂U∂y+W∂U
∂z=−∂P∂x+∂∂xm∂U∂x−-

ρu2¯+∂∂ym∂U∂y−ρuv¯+∂∂zm∂U∂z−ρuw¯

Uj∂Ui∂xj=−1ρ∂P∂xi+ν∂2Ui∂xj
∂xj−∂uiuj¯∂xj
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or
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(5.8)

We note that the term 
x

u u
j

i j

∂
∂ ( ) is the mean transport of fluctuating 

momentum by the turbulent velocity fluctuations. It exchanges momentum 
between the turbulence and the mean flow, even though the mean mo-
mentum u

i
ρ  of the turbulent fluctuations is zero. Physically we may visu-

alize turbulent transport as follows: The diagonal terms u v w, , and2 2 2ρ ρ ρ  
represent fluctuating normal stresses, and their contribution to the mean 
momentum transport are typically secondary in comparison to the cross-
correlations. The cross-correlations, such as uv vw, , signify the turbulent 
shear stresses, and they can drastically enhance the transport phenomenon. 
As discussed in Chapter 2, these shear stresses may be pictured as Zorro 
moving at a different speed than a moving wagon, or as a stone being 
thrown into a moving wagon (see Fig. 5.1). In other words, the forward 
or backward jerk of an otherwise steady wagon caused by a piece of stone 
represents the shear stress induced by turbulence on the otherwise smooth 
laminar flow.

5.2  THE CLOSURE PROBLEM IN TURBULENT FLOWS

In the Cartesian coordinate system, the basic system of four equations are: 
(1) continuity, (2) x momentum, (3) y momentum, and (4) z momentum. 
The four variables which need to be solved for in laminar flow are P, U, V, 
and W, where P is pressure, U is streamwise velocity, V is the velocity in the 

Uj∂Ui∂xj=−1ρ∂P∂xi+1ρ∂∂xjm∂Ui∂xj−ρuiuj¯

∂∂xjuiuj¯

ρui¯
ρu2¯,   ρv2,¯   and   ρw2¯

uv¯,   vw¯

Figure 5.1  Reynolds shear stresses – transport of a moving stone into a smoothly mov-
ing wagon. (Created by N. Cao).
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y direction, and W is the velocity in the z direction. The turbulent momen-
tum equations contain the terms of the Reynolds stress tensor

u uv uw

vu v vw

wu wv w

2

2

2

�τ ρ= −






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






	

(5.9)

As uv vu= , uw wu=  and vw wv= , there are only six independent 
variables. In short, we have ten variables (three velocity components, one 
pressure, and six Reynolds stress terms), but only four equations (one con-
tinuity and three momentum); that is, we need six additional equations 
to solve the six new unknowns. We can try to generate extra equations 
by taking moments of the Navier-Stokes equations, but this will lead to 
extra variables. The so-called “closure problem” is the challenge associ-
ated with finding supplementary relationships for the unknown correla-
tions. These relationships can be algebraic expressions (for zero-order clo-
sures) or additional differential equations. We define the “order of closure”  
(n-equation model) as the number of differential transport equations re-
quired in addition to those expressing conservation of mass, momentum, 
and energy.

5.2.1  Zero-Order Closures (Algebraic Models)
The simplest of all turbulence closures are strictly algebraic. As such, they 
apply only to the “simplest” of turbulent flows. The following is an abbrevi-
ated historic account of this.

Boussinesq (1877, 1897): In 1877, Boussinesq introduced the eddy-
viscosity approximation, thereby allowing one to approximate the tur-
bulent flow by assigning a quantitative value to the eddy (dynamic) vis-
cosity. He modeled the turbulent stresses responsible for significantly 
augmenting the molecular counterpart within this eddy viscosity. In the 
rudimentary form, this eddy viscosity is assigned a fixed value estimated 
from limited experiments. Hence, we have a uniform eddy viscosity 
throughout the flow field under consideration; nonetheless, we could di-
vide a flow field into regions of various uniform eddy viscosities, as seen 
in wall-bounded flows. As simple as it is, Boussinesq’s eddy-viscosity 
model has been shown to work well in a limited sense for some “cali-
brated” free-shear flows such as axisymmetric jets, 2D jets, and mixing 
layers.

τ→→=−ρu2¯uv¯uw¯vu¯v2¯vw¯w
u¯wv¯w2¯uv¯=vu¯uw¯=wu¯vw¯=wv¯
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Specifically, Boussinesq suggested that a turbulent flow could be re-
garded as having an enhanced dynamic viscosity, also called a turbulent or 
eddy viscosity m

turb
. The turbulent shear stress

uv
U
yxy turb

τ ρ µ ∂
∂

= − =
	

(5.10)

Recall that the shear associated with the laminar counterpart is simply

dU
dyxy

τ µ=
	

(5.11)

As highlighted by Garde (2010), m
turb

 is generally much larger than the 
fluid dynamic viscosity m. Note that while m is a constant for a given fluid 
at a specified state, m

turb
 is a function of both flow condition and fluid den-

sity. In other words, the fluid viscosity is a property of the fluid, which is 
specified by the thermodynamic state that the fluid is in, whereas the eddy 
viscosity depends also on the specific flow conditions involved. Hence, stan-
dard flow experiments need to be carried out to quantify m

turb
 before we 

can apply it to problems with similar conditions.
The Boussinesq hypothesis can be somewhat generalized by using the 

kinematic viscosity as opposed to the dynamic viscosity. The resulting gen-
eral expression is

U

x

U

x
1

3ij kk ij
i

j

j

i
turb

τ τ δ ρν
∂
∂

∂
∂

− = +










	
(5.12)

Boussinesq assumed that the turbulent or eddy kinematic ν
turb

, the only 
empirical parameter, is a constant. For simple free-shear flows, the eddy 
viscosity ν

turb
 has been found to be roughly constant at one to two orders of 

magnitude above the laminar value. For wall-bounded flows, on the other 
hand, ν

turb
 varies significantly depending on its position, starting with zero 

at the wall, as expected.
Prandtl (1925) furthered Boussinesq’s eddy-viscosity concept to include 

the mixing-length notion, along with the concept of a boundary layer. In 
his attempt to express eddy viscosity in terms of flow conditions, Prandtl 
introduced mixing length. This mixing length is analogous to the mean free 
path of a gas as deduced via the kinetic theory. According to this theory, 
the molecular viscosity of the fluid at a given state m is equal to ½ ρ v

th
 l

mfp
, 

where v
th
 is the thermal velocity (average molecular velocity) and l

mfp
 is the 

τxy=−ρuv¯=mturb∂U∂y

τxy=mdUdy

τij−13τkkdij=ρνturb∂Ui∂xj+∂Uj∂xi



Basics of Engineering Turbulence106

mean free path. Note that the actual value of viscosity is m = 0.499 ρ v
th
 l

mfp
 

(Jeans, 1962). Hence, for laminar flows, we have

v l
dU
dyxy

1
2 th mfp

τ ρ=
	

(5.13)

The corresponding expression for turbulent flows is thus

v l
dU
dy

1

2xy mix mix
τ ρ=

	
(5.14)

where v
mix

 is the mixing velocity and l
mix

 is the mixing length. As a first ap-
proximation, the mixing velocity can simply be equated to the fluctuating 
turbulent velocity. As such, this mixing-length model is an algebraic model 
or a zero-equation model, where no additional equation is required. It is in 
contrast to n-equation model, which is a model that requires solution of n 
additional differential transport equations other than those expressing con-
servation of mass, momentum, and energy.

In short, Prandtl (1925) accounted for the variability of turbulent mix-
ing with only one empirical constant: the mixing length. This mixing 
length intends to represent a distance within which fluid particles coalesce 
into lumps that cling together and move as a unit; that is, the length scale 
encloses a lump of fluid swirling around in some cohesive manner. For 
typical boundary layer flows, the mixing length is the lateral (perpen-
dicular to the boundary) length. In other words, a fluid element displaced 
vertically from its original position y in the boundary layer would retain 
more or less its original streamwise velocity, U(y), at that level y. The ap-
parent perturbation velocity for an element displaced vertically at a small 
distance l

mix
 is

l lu U y U y
U
y

( ) ( )
mix mix

∂
∂

= − + −
	

(5.15)

One major physical assumption behind this is that streamwise pres-
sure forces and viscous stresses are unimportant. This is relatively valid for 
three-dimensional eddies that are “flat,” that is, have horizontal dimen-
sions much larger than the vertical ones (Russel and Landahl, 1984). We 
can thus relate the mixing velocity with the mixing length and the veloc-
ity gradient

v l dU dyconstant | / |
mix mix

= ⋅ ⋅	 (5.16)

τxy=12ρvthlmfpdUdy

τxy=12ρvmixlmixdUdy

u=U(y)−U(y+lmix)−lmix∂U∂y

vmix=constant   A   lmix   A   |dU/
dy|
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It should be noted that this implies that the mixing velocity is locally 
resolved from the mean velocity gradient (Pope, 2000). In particular, it pre-
dicts a zero-mixing velocity when the gradient is zero when, in fact, there 
are many situations in which this is not true. Nonetheless, with Eq. (5.16), 
we can rewrite the turbulent shear as

cl
dU
dy

dU
dy

1

2xy mix
2τ ρ=

	
(5.17)

We see that the eddy viscosity can thus be expressed as

l
dU
dyturb mix

2µ ρ=
	

(5.18)

The corresponding kinematic eddy viscosity is

l
dU
dyturb mix

2ν =
	

(5.19)

Thus, we have expressed the Reynolds shear stress in terms of the mixing 
length

uv l
dU
dymix

2

− =
	

(5.20)

In turbulent shear flows, uv u v0.4
rms rms

− ≈  (Townsend, 1976), where 0.4 
is the von Karman constant. For a boundary layer, we may assume l

mix
 ∝ y,  

the distance from the wall; that is, in wall-bounded flows, the van Driest 
(1956) model assumes
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where A 26
0

=+ , y+ = y u*/ν, u* = √(τ
w
/ρ), τ

w
 is the wall shear stress (Smith 

and Cebeci, 1967; Baldwin and Lomax, 1978).
We note that the major drawback of Prandtl’s mixing-length theory 

is that the mixing length l
mix

, which must be known in order to solve the 
problem, is different for each flow. In spite of its theoretical shortcomings, 
the mixing-length model does an excellent job of reproducing measure-
ments. Consequently, eddy-viscosity models based on mixing-length theory 

τxy=12ρclmix2dUdydUdy

mturb=ρlmix2dUdy

νturb=lmix2dUdy

−uv¯=lmixdUdy2

−uv¯≈0.4urmsvrms

lmix=ky1−expy+Ao+

Ao+=26
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have been fine-tuned for many flows; see Cebeci and Smith (1974), among 
many others. The mixing-length computation has been found to be quite 
accurate for “predicting” equilibrium turbulent flows, in which the turbu-
lent properties vary very slowly. For more recent (post-1950) advancement 
of zero-equation models, see van Driest (1956), Cebeci and Smith (1974), 
Baldwin and Lomax (1978), among others. For example, Smagorinsky 
(1963) proposed

x y
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for numerical models. Most interestingly, this elementary zero-equation ap-
proach still finds its use in some applications today; see Ng et al. (2011), 
Bazargan and Mohseni (2012), Li et al. (2012), and Alammar (2014).

5.2.2  One-Equation Models
Both Kolmogorov (1942) and Prandtl (1945) recognized that the weakness 
of the mixing-length model was its need to choose the velocity scale via 
l
mix

 ∂U/∂y, which requires both empirical deduction of l
mix

 and the fore-
knowledge of the ∂U/∂y involved. Twenty years after his original mixing-
length model, Prandtl introduced the eddy-viscosity model in 1945; that is, 
he expressed the eddy viscosity as a function of the turbulent kinetic energy 
per unit mass, k, directly. Specifically, Prandtl (1945) postulated that instead 
of setting v

mix
 ≈ l

mix
 |dU/dy|, we can compute v

mix
 “directly.” Hence, the 

birth of the very first one-equation model, where a single transport equa-
tion for turbulent viscosity is solved. The actual development is rather in-
volved and of varied methods. We will simply highlight the concept behind 
the one-equation approach below.

In the Cartesian coordinate system, we have contribution to turbulent 
kinetic energy from the x, y, and z directions. The turbulent kinetic energy 
per unit mass, the specific turbulence kinetic energy

k u v w( )1
2

2 2 2= + +	 (5.23)

Hence, we see that k is related to the trace of the Reynolds-stress  
tensor as

k u
i ii

1
2

2 1
2 τ= =	 (5.24)

νturb=∆x∆y∂U∂x2+∂V∂y2+12∂U∂y+∂V∂x2

k=½(u2¯+v2¯+w2¯)

k=12ui2¯=12τii
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Via dimensional analysis (Wilcox, 2006), we can relate this to the kinematic 
eddy viscosity by

k lconstant
turb

1/2ν =	 (5.25)

where the characteristic length l signifies a turbulence length scale similar 
to the mixing length. Note that we may follow Pope (2000) and simply 
take the mixing length as the turbulent length scale, that is, use l and l

mix
 

interchangeably.
First, Kolmogorov (1942), and subsequently but independently, Prandtl 

(1945), proposed a model transport equation for the specific turbulent ki-
netic energy k, from which k may be deduced. This is hence the first one-
equation model, as it is used to resolve just one turbulence quantity, that is, 
the specific turbulent kinetic energy k. Following Pope (2000), the model 
transport equation for k is
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(5.26)

We note that the first term on the right-hand side is the turbulence produc-
tion term. This and the total change in the specific turbulent kinetic energy 
are in “closed form,” that is, they are explicitly expressed in terms of known 
variables. The other terms, however, are “open” in the sense that they need 
“closure approximations” that relate the unknowns in terms of known vari-
ables. Consequently, the following are the essential components associated 
with the one-equation model (Pope, 2000):

1.	 The mixing length, l
mix

, which needs to be specified;
2.	 The specific turbulent kinetic energy, k, deduced from the equation, that 

is, Eq. (5.26);
3.	 The turbulent or eddy viscosity, ν

turb
 = constant k½ l

mix
;

4.	 The Reynolds stresses
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(5.27)

5.	 The velocity and pressure fields determined from the Reynolds equa-
tions.

νturb=constant   k½   l

DkDt+∇⋅12uiujuj¯
+uip~¯ρ−2νuj12∂ui-

∂xj+∂uj∂xi¯=−uiuj¯∂Ui∂xj−ε

uiuj¯=23kdij−νturb∂Ui∂xj+∂Uj∂xi
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Other than a few noted exceptions, one-equation models have proven 
to be relatively unsuccessful as they are incomplete in the sense that only k 
is described mathematically. Notwithstanding this drawback, they provide a 
step to more successful, higher-order models.

5.2.3  Two-Equation Models
The basis of two-equation modeling is to find or derive a transport equa-
tion for the length scale l or another appropriate quantity. In addition to 
the (transport) equation describing the turbulence kinetic energy per unit 
mass, k (and hence, u), an equation expressing the characteristic turbulent 
length scale l, or another appropriate quantity, is also introduced. Therefore, 
two-equation models are “complete” in the sense that they can be used to 
“predict” turbulent properties of a flow without prior knowledge of the 
turbulence structure. The two acclaimed two-equation models are the k-w 
and the k-ε models. A brief description of each is provided here.

5.2.3.1  The k-ω model
According to Boussinesq (1877)

S k2
2

3ij ij ijturb
τ ν δ= −

	
(5.28)

This is referred to as the Boussinesq hypothesis, the Boussinesq eddy-vis-
cosity assumption, or simply the Boussinesq approximation. According to 
this equation, ν

turb
 is plausibly proportional to k (Wilcox, 2006). Further-

more, from dimensional analyses, we have

k~ /
turb

ν ω	 (5.29)

l k~ /1/2 ω	 (5.30)

k~ε ω	 (5.31)

We note that 1/w is a turbulence time scale, and, as per Eq. (5.31), it 
is the time scale associated with turbulent kinetic energy dissipation. The 
turbulent length scale, which is analogous to the mixing length is expressed 
by √k/w. Therefore, w may be an appropriate quantity which can be used to 
substitute the mixing length. Consequently, the two equations are the spe-
cific turbulent kinetic energy equation, which can be expressed in the form

τij=2νturbSij−23kdij

νturb∼k/w

l∼k½/w

ε∼w   k
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and an equation for w, which could be
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(5.33)

as noted by Kolmogorov (1942) and Wilcox (2006). Keep in mind that C
k
, 

Cw2
 and Cw are closure coefficients which need to be deduced from stan-

dard experiments.
The earlier versions of this first “complete” model of turbulence appeared 

to have many challenges. Wilcox (2006) seems to have overcome some of 
these earlier hurdles, significantly improving the performance of k-w model.

5.2.3.2  The k-ε model
In 1945, Chou proposed modeling the exact equation for the specific tur-
bulent dissipation rate ε, which led to

k~ /
turb

2ν ε	 (5.34)

l k~ /3/2 ε	 (5.35)

It is clear that the two equations from this approach are the k equation 
and the ε equation, and hence, the k-ε model. After Chou (1945), fur-
ther advancement along this line was made by Davydov (1961), as well 
as Harlow and Nakayama (1968), in particular. Noteworthily, Jones and 
Launder (1972) and Launder and Sharma (1974), among others, led to the 
popularity of this k-ε model.

Briefly, beginning with Eqs (5.28 and 5.32), the idea is to derive the 
exact equation for ε. This can be done by taking the following moment of 
the Navier-Stokes equation

u
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(5.36)

where the term in the bracket is called the “Navier-Stokes operator.” After 
some amount of manipulations, we get

∂k∂t+Uj∂k∂xj=τij∂Ui∂xj−ε+∂∂xjν+νturbCk∂k∂xj

∂w∂t+Uj∂w∂xj=−Cw2w2+∂∂xj
Cwνturb∂w∂xj

νturb∼k2/ε

l∼k3/2/ε

2ν∂u∂xj∂∂xjρ∂U~i∂t+ρU~k∂U~i∂xk+∂
P~∂xi−m∂2U~i∂xk∂xk¯=0
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where the terms in square brackets [ ] signify rate of production of dissipa-
tion, rate of destruction of dissipation, the sum of molecular diffusion of 
dissipation, and turbulent transport of dissipation.

There are a colossal number of publications on k-w and k-ε models.  
In addition to these two popular models, there are also many other 
two-equation models, as well as other multi-equation models; see Table 6.2 
of Garde (2010), which is compiled from Launder and Spalding (1972). 
Interested readers are referred to the specialized monographs on turbulent 
modeling prior to diving into the ocean of journal publications.

It is worth stressing that the major assumption embodied in the closures 
so far is that of the Prandtl-Kolmogorov-Bousinesq assumption, which 
begins with the gradient diffusion hypothesis applied to the stress term 

u u
i j

−  in the time-averaged momentum equation. This assumption can be 
removed if we seek a transport equation for the Reynolds stresses directly. 
An example is the second closure (moment) model. As early as 1951, Rotta 
(1951) devised a plausible model for the differential equation governing 
evolution of the tensor that represents turbulent stresses, that is, the Reyn-
olds stress tensor. In essence, the non-local and history effects are some-
what incorporated. Additionally, the model accommodates complicating 
effects such as streamline curvature, rigid-body rotation, and body forces. 
For a three-dimensional flow, a second-order closer model introduces seven 
equations: one for the turbulence scale and six for the components of the 
Reynolds-stress tensor. Thus, a major drawback is that it involves a large 
number of equations and complexity.

5.2.3.3  Hybrid methods
The LES and RNG (Re-normalized Group [Yakhot et  al.,  1992]) theo-
retical approaches compute the large-scale features (the vortical fluid) from 
dynamical equations, but time-average the small scales (rapid time, therefore 
“space filling” and quasi-normal Gaussian), i.e, the dissipation scales. There 

∂ε∂t+Uj∂ε∂xj=−2ν∂ui∂xk∂uj∂xk¯+
∂uk∂xi∂uk∂xj¯∂Ui∂xj−2νuk∂ui∂xj¯∂

2Ui∂xk∂xj−2ν∂ui∂xk∂ui∂xm∂uk∂xm¯+2ν2∂2ui∂xk∂xm∂2ui
∂xk∂xm¯+∂∂xjν∂ε∂xj−νuj∂ui∂xm∂ui∂xm¯−2νρ∂p∂xm∂u

j∂xm¯

−uiuj¯



Turbulence Simulations and Modeling 113

are challenges to determining how the energy is transferred between the 
two regimes.

5.3  LARGE EDDY SIMULATION

The large-scale features in turbulent flow are significantly or more directly 
affected by the flow conditions; recall the turbulent energy cascade discussed 
in Chapter 4. This, and the fact that they are relatively large in size and fewer 
in number, suggests that it is relatively less challenging to calculate them. 
With this knowledge, Smagorinsky (1963), Lilly (1967), Deardorff (1974), 
and Schumann (1975), among others, pioneered the large-eddy simulation 
(LES) endeavor.

To divide the large-scale features, which are explicitly resolved via 
the time-dependent Navier-Stokes equations from the smaller ones, a fil-
ter length ∆

LES
 is introduced. This is illustrated in Fig. 5.2, where LES is a 

Figure 5.2  Turbulent energy cascade modeling – DNS versus LES versus RANS. (Created 
by A.R. Vasel-Be-Hagh).
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balance between DNS where every single eddy is calculated and RANS 
(such as k-omega and k-epsilon models described in Section 5.2.3) where 
even the largest eddy is modeled. The word “filter” signifies the removal of 
scales smaller than the filter length and excludes the direct deduction of 
them from the Navier-Stokes equations. These smaller and more isotropic 
eddies, referred to as “subgrid-scale” eddies are modeled. One of the most 
famous subgrid-scale models is the model proposed by Smagorinsky (1963); 
Meldi et  al. (2011) demonstrated that a filter length of 1/55th the large 
turbulent scale is the limit for the correct application of the Smagorinsky 
subgrid scale model.

The whole velocity field, from the largest down to the smallest eddy, 
described by tensor U(x, t), is required. On the other hand, only the velocity 
field described by tensor W(x, t), which characterizes scales larger than the 
filter length, or turbulence-resolved length, is resolved from LES. As such, 
W(x, t) is not the spatially filtered value of U(x, t). Specifically, W(x, t) is the 
solution to the LES equations, not as the spatially filtered value of U(x, t), 
which we denote as x t( , )UU . The question then is whether it is possible to 
have a perfect LES model such that x U xt t( , ) ( , )WW = . The answer is no, 
for U x t( , ) is a random field whose future evolution is not determined by 
its current state. In short, the relationship between U and W can only be 
statistical.

A turbulence model is “complete” if its constituent equations are free 
from flow-dependent specifications; that is, one flow is distinguished from 
another solely by the specification of material properties, as well as initial 
and boundary conditions. The general practice is to generate a computa-
tional grid with spacing characterized by the numerical resolution. With 
this defined, the filter length is specified as proportional to the mesh size. 
In other words, the turbulence resolution length scale is specified in a 
flow-dependent, subjective manner. As such, LES is incomplete. LES can 
be significantly improved, or made “complete,” through the use of solu-
tion-adaptive meshing. In adaptive LES, the same turbulence-resolution 
tolerance is met throughout the flow field; for example, 80% of the kinetic 
energy by adjusting the grid fineness. Piomelli et al. (2015) is one recent 
example where the filter length is disassociated from the computational 
grid; it is a dynamic length, which reflects the local, instantaneous turbu-
lence activity.

There remain some fundamental questions about the conceptual foun-
dations of LES, as well as the methodologies and protocols used in its appli-
cation (Pope, 2004). Nonetheless, there have been serious advances over the 

U¯(x,t)
W(x,   t)=U¯(x,t)

U¯(x,t)
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years. The fundamental quantity considered in LES is a three-dimensional 
unsteady velocity field, referred to as the “resolve velocity field,” which is 
intended to represent the larger-scale motions. This resolved velocity field is 
indeed a three-dimensional, time-dependent random flow field. Nonethe-
less, as already mentioned, it depends on artificial parameter filter length, 
mesh spacing, and the numerical method used.

For high-Re, free-shear flows, the transport processes of interest are 
driven by the resolved, large-scale motions; and there (probably) is a cascade 
of energy, predominantly from the resolved large scales to the statistically 
isotropic and universal small scales. As the quantities of interest and the 
rate-controlling processes are determined by the resolved large scales, LES 
is likely to work well.

In large-Re, near-wall flows, the shear stress arises from momentum 
transfer from the outer flow through the boundary layer to the wall. In 
the viscous near-wall region, the momentum transfer is dominated by the 
near-wall structures, defining the characteristic length, which scales with 
the small viscous length scale. Thus, there can be a very large separation 
between the size of those eddies outside and inside the boundary layer. 
Consequently, such a flow field may not be properly resolved in high-
Re LES, but must instead be modeled (Chapman, 1979). In the pursuit of 
overcoming this challenge, the detached eddy simulation (DES) emerged 
(Spallart et al., 1997). In DES, the large eddies are deduced via LES, while 
the relatively much smaller eddies in the boundary layers or thin shear layers 
are modeled via RANS (Wilcox, 2006).

5.4  DIRECT NUMERICAL SIMULATION

In direct numerical simulation (DNS), a complete time-dependent, three-
dimensional solution of the Navier-Stokes and continuity equations is 
calculated (Wilcox, 2006). In principle, DNS gives the exact, error-free so-
lution; in practice, however, there are typically some numerical and other 
forms of errors. As all length scales from the largest to the smallest are ex-
plicitly resolved, DNS requires a grid size smaller than the Kolmogorov 
scale. This, along with the required fine computational time step, makes it 
a forbidden task for large geometries and/or high Reynolds number prob-
lems. It is thus clear that we will continue to depend on good turbulence 
models to capture the essence of the problem and provide reasonably ac-
curate quantitative values. Whether one is into numerical simulations or 
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not, some amount of turbulence modeling is essential for every turbulence 
investigator; see Fig. 5.3.

Problems

Problem 5.1. A k-u’/λ turbulence model
Evaluate and see if we can create a two-equation turbulence model based 
on (1) turbulence kinetic energy per unit mass, k, and (2) straining rate, u/λ. 
Check for the relationships between large length scale l, dissipation rate per 
unit mass ε, and eddy viscosity ν with k and u/λ.

Problem 5.2. A two-equation turbulence model
Create a two-equation turbulence model that is neither k-w nor k-ε. In-
clude dimensional analysis and physical arguments to justify your choice of 
turbulent quantities.

Problem 5.3. A statistical turbulence model
The fluctuations of a simple turbulence can perhaps be described by a 
Gaussian distribution. Any deviation from this ideal case may be character-
ized with the help of the third (skewness) and fourth (flatness) moments. 
Propose such a statistical model.

Problem 5.4. Multiequation turbulence models
Search the literature and evaluate a couple of attempted or existing multi-
equation models. Propose a new one based on sound reasoning.

Figure 5.3  Turbulent modeling fever. (Created by S.P. Mapparapu).
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CHAPTER 6

Wall Turbulence
It’s the little details that are vital. Little things make big things happen.

– John Wooden

Everyone is trying to accomplish something big, not realizing that life is made 
up of little things.

– Frank A. Clark
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Chapter Objectives

•	 To recap the boundary-layer concept.

•	 To discern and differentiate laminar boundary layer from turbulent boundary 
layer over a flat plate.

•	 To apply dimensional analysis and deduce the appropriate parameters for differ-
ent zones within the turbulent boundary layer.

•	 To differentiate the viscous sublayer from the log region where the law of the wall 
applies.

•	 To introduce the defect velocity law region along with the outer layer zone called 
the wake region.

NOMENCLATURE
BL	 Boundary layer
C	 Constant, coefficient
C

f
	 Friction coefficient

CFD	 Computational fluid dynamics
f	 A particular function
g	 A particular function
h	 Height
L	 Length
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l
mix

	 Mixing length
P	 Time-averaged pressure
Re	 Reynolds number
u	 The fluctuating component of the velocity (in the x direction)
u

*
	 Shear or friction velocity, u

*
 = √(τ

w
/ρ)

U	 (Time-averaged) local velocity (in the x direction)
U
∞
	 (Time-averaged) free-stream velocity in the x direction

V	 (Time-averaged) local velocity in the y direction
v	 The fluctuating component of the velocity in the y direction
W	 (Time-averaged) local velocity in the z direction
w	 The fluctuating component of the velocity in the z direction
x	 Distance in the x (streamwise) coordinate
y	 Distance in the y (vertical) coordinate
z	 Distance in the z coordinate

Greek Symbols
d	 (Boundary-layer) thickness
d

d
	 Displacement boundary-layer thickness

d
m
	 Momentum boundary-layer thickness

dν	 Viscous sublayer thickness
k	 Von Kármán constant
m	 Dynamic viscosity
ν	 Kinematic viscosity, ν = m/ρ
ξ	 Normalized distance from the wall, ξ  ≡ y/d
ρ	 Density
τ	 Shear
τ

w
	 Wall shear

6.1  INTRODUCTION

In the presence of a solid wall, the flow and thus, the turbulence, is directly 
influenced. This wall turbulence may be divided into two groups. The first 
involves flows around a rigid body, and the second deals with flows in a 
space confined by rigid walls. Prior to delving into wall turbulence, a brief 
overview of boundary layer is due. We limit our discussion to the simplest 
classical case of wall turbulence, that is, the two-dimensional boundary-layer 
flow along a flat plate with negligible pressure gradient.

It was Ludwig Prandtl who closed the outstanding gap between theoreti-
cal hydrodynamics, which evolved from Euler’s 1755 (Euler, 1755) equation 
of motion for a non-viscous (inviscid) fluid, and hydraulics, an empirical art 
developed by practical engineers in 1904 (Prandtl, 1904). At that time, the 
few idealized inviscid problems solved elegantly in an exact manner were of 
little use in practice. At the applied end, there was next to no generalization 
in hydraulics; only cumbersome experiments were conducted for each and 
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every practical undertaking. Prandtl’s breakthrough built on the fact that 
viscosity is only significant within the very thin layer called the boundary 
or frictional layer, outside of which the flow is essentially inviscid. Thence, 
it was the very first time the boundary layer was invoked to smoothly wed 
the inviscid flow to the no-slip condition at the wall via viscosity.

Following White (2011), Fig. 6.1 depicts the development of the bound-
ary layer from a uniform incoming free stream onto a very thin plate. At 
very low Reynolds numbers (Fig. 6.1a), the viscous effect is especially dom-
inant and hence, the resulting boundary-layer buildup is early and thick, 
and the gradient of the velocity profile is gradual throughout the entire 
boundary layer. At high velocities or Reynolds numbers (Fig.  6.1b), the 
overwhelming inertia pushes the fluid faster and closer to the solid bound-
ary, producing a much thinner boundary layer with a large velocity gradient 
next to the wall. In other words, the boundary-layer thickness d is much  
smaller than L, the streamwise distance from the leading edge. The “gradi-
ent” of the velocity is the key parameter in a boundary layer, as it signifies 

Figure 6.1  Boundary layer over a thin plate at (a) very low Re, and (b) very high Re.  
(Created by H. Cen).
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“flow shear.” Also worth noting is that the value of the pertinent Reynolds 
number, for which the relevant characteristic length is the distance from 
the leading edge, starts from zero. It follows that, as can be seen particularly 
in Fig. 6.1b, the first-formed boundary layer is laminar, and this hurriedly 
transforms into a turbulent one when the incoming velocity is high. In 
typical engineering practice, the critical Reynolds number at which the 
boundary layer undergoes transition from laminar to turbulent is customar-
ily taken as 5 × 105. More importantly, this value largely depends on factors 
such as pressure gradient, surface roughness, free-stream disturbances, and 
the workmanship of the leading edge.

6.2  COMMON TYPES OF BOUNDARY-LAYER THICKNESS

The most common boundary-layer thickness d is the distance from the 
wall where the local velocity U reaches 99% the free-stream value. This 
boundary-layer thickness, sketched in Fig. 6.2 for flow over a flat surface, is 
also referred to as the disturbance thickness (Pritchard and Mitchell, 2015). The 
momentum thickness d

m
 is a measure of the drag imposed on a solid bound-

ary. It can be obtained by performing the momentum integral across the 
plane where the flow exits. As such, it portrays the notion that the boundary 
layer retards the fluid so that the momentum flux is less than it would be if 
the fluid were inviscid; see Fig. 6.2. The third length scale for quantifying 
the boundary layer is the displacement thickness d

d
. As illustrated in Figs 6.2 

and 6.3, this displacement thickness is simply the amount of outward (up-
ward in the y direction) shift in the streamlines outside the boundary layer 
(White,  2011). In other words, for the two-dimensional case considered, 
the displacement boundary-layer thickness d

d
 signifies the height portrayed 

in Fig. 6.2, which makes the two-hatched areas equal. Mathematically, to 
satisfy the conservation of mass in the flow direction

Figure 6.2  Boundary-layer thicknesses – disturbance thickness, momentum thickness, 
displacement thickness. (Created by A. Ahmed).
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U z dy Uz dy
hh

unit unit00

d∫∫ ρ ρ=
δ

∞

+

	 (6.1)

where h is an arbitrary height above the boundary layer as shown in Fig. 6.3, 
U
∞
 is the free-stream velocity, U is the local velocity, and z

unit
 is the unit 

width in the z direction.

6.3  FLAT-PLATE BOUNDARY LAYER

Consider the ideal case where an incompressible fluid with uniform veloc-
ity flows steadily over a smooth, flat plate as shown in Fig. 6.4. Commenc-
ing from the leading edge (unless the Reynolds number is very low, in 
which case the boundary layer starts ahead of the leading edge as depicted in 
Fig. 6.1a), a relatively thick (with respect to the streamwise distance from the 
leading edge) laminar boundary layer grows rapidly. This growth in laminar 
boundary layer continues until the transition point, where instabilities begin 

∫0h ρU∞zunitdy=∫0h+dd ρUzunitdy

Figure 6.3  Boundary-layer displacement thickness d
d
; the velocity deficit causes the 

upward shift of height h; the total area below y = h + d
d
 covered by the velocity of the 

actual and equivalent uniform velocity profile is the same. (Created by A. Ahmed).

Figure 6.4  The growth of boundary layer along a flat plate. (Created by H. Cen).
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to be amplified instead of being attenuated by fluid viscosity. These instabili-
ties continue to amplify until the boundary layer becomes fully turbulent,  
beyond which the boundary layer grows comparatively slower. While the 
whole laminar boundary layer is affected by viscosity, this is not so for the 
slower-growing turbulent boundary layer. The turbulent boundary layer 
may be roughly divided into three sublayers (Wilson, 1989; Schlichting and 
Gersten, 2000). Farthest away from the wall is the outer boundary layer, where 
the velocity profile is relatively uniform; see Fig. 6.4. The flow in this sublay-
er is characterized by random fluctuating motion and not the fluid viscosity. 
Next to the wall is the viscous sublayer, also referred to as viscous wall layer, 
where fluid viscosity plays a dictating role. The buffer zone is the matchmaker 
that merges these two relatively distinct sublayers together. We shall only 
highlight the famed development in the following paragraphs while refer-
ring the readers to standard and specialized fluid mechanics monographs 
such as Schetz (1993), Schlichting and Gersten (2000), White (2005, 2011), 
and Wilcox (2007) for more detailed coverage.

Let us continue with the steady, two-dimensional, incompressible flow 
over a flat plate in the absence of gravity and other forces as depicted in 
Fig. 6.4. The continuity equation can be expressed as

∂
∂

+ ∂
∂

=U
x

V
y

0
	

(6.2)

where U is the velocity in the streamwise or x direction, and V is the veloc-
ity in the direction normal to the solid wall, i.e., the y direction. The cor-
responding x momentum and y momentum relations are

ρ µ∂
∂

+ ∂
∂







= − ∂
∂

+ ∂
∂

+ ∂
∂





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U
U
x

V
U
y

P
x

U
x

U
y

2

2

2
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(6.3)
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∂
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∂
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
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= − ∂
∂

+ ∂
∂

+ ∂
∂


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


U
V
x

V
V
y

P
y

V
x

V
y

2

2

2

2
	

(6.4)

With the given no-slip solid boundary, inlet, and outlet conditions, 
these relations can be solved via today’s computational fluid dynamics 
(CFD) solvers. In Prandtl’s days, however, this was not an option. As men-
tioned before, there were but a few limited, idealized, and relatively non-
practical situations within which they could be solved exactly. Even with 
today’s computational power, it is often uneconomical and impractical to 

∂U∂x+∂V∂y=0

ρU∂U∂x+V∂U∂y=−∂P∂x+m∂2

U∂x2+∂2U∂y2

ρU∂V∂x+V∂V∂y=−∂P∂y+m∂2

V∂x2+∂2V∂y2
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completely resort to heavy-duty CFD for many engineering problems. In 
other words, simplified approaches which depict the underlying physics are 
timelessly important.

Following Prandtl, at high Re, the shear layer is very thin; hence, the fol-
lowing approximations can be applied (Wilson, 1989; White, 2011).
1.	 The cross-stream velocity is much smaller than the streamwise counterpart

<<V U	 (6.5)

2.	 The rate of change in velocity in the streamwise direction is significantly 
less than that in the cross-stream direction

∂
∂

<< ∂
∂

U
x

U
y	

(6.6)

∂
∂

<< ∂
∂

V
x

V
y	

(6.7)

3.	 Since Re ≫ 1, we have

Ux
Re 1

x ν
= >>

	
(6.8)

Applying these approximations to Eq. (6.4), we see from the order of 
magnitude perspective that

+ = − ∂ ∂ + +P ysmall small / very small small	 (6.9)

or

∂ ∂ ≈P y/ 0	 (6.10)

that is, P ≈ P(x) only. Furthermore, applying Bernoulli’s equation to the 
outer inviscid flow, we get

ρ∂ ∂ = = − ∞ ∞P x dP dx U dU dx/ / /	 (6.11)

where U
∞
 is the free-stream velocity, as compared to the local velocity U.

It is thus clear that the three equations of motion may be simplified into 
Prandtl’s two boundary layer equations. Specifically, for two-dimensional, 
incompressible, steady flow, the flow continuity can described by Eq. (6.2). 
The corresponding momentum along the wall

V<<U

∂U∂x<<∂U∂y

∂V∂x<<∂V∂y

Rex=Uxν>>1

small+small=−∂P/∂y+very sma
ll+small

∂P/∂y≈0

∂P/∂x=dP/dx=− 
ρU∞ dU∞/dx
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ρ
τ∂

∂
+ ∂

∂
≈ + ∂

∂∞
∞U

U
x

V
V
y

U
dU

dx y
1

	
(6.12)

where, from Chapter 2, for laminar flow

τ µ= ∂
∂
U
y	

(6.13)

and for turbulent flow

τ µ ρ= ∂
∂

−U
y

uv
	

(6.14)

The no-slip boundary condition at the wall implies that at y = 0, both 
U and V are zero. At the boundary layer and beyond, U = U

∞
. With these 

boundary conditions, the above four equations, Eqs (6.2) and (6.12–6.14) 
can be used to solve for the velocity field, U(x, y) and V(x, y).

It is noteworthy that boundary layers are self-similar in the sense that 
they can be collapsed in a general, non-dimensional manner. We shall pro-
ceed along this line of thought as we look at the various formulations of 
universal similarities between velocity profiles.

6.3.1  Laminar Boundary Layer
The general growth of the laminar boundary layer with respect to the stream-
wise distance from the leading edge for the constant U

∞
 (dU

∞
/dx = 0) case was 

first elegantly solved by Prandtl’s student Blasius (1908). The approximation

δ ≈
x

5.0

Re
x
1/2

	
(6.15)

is valid for 103 < Re
x
 < 106. The corresponding skin friction coefficient

τ
ρ

= =
∞

C
U

2 0.664

Ref
x

w

2 1/2

	
(6.16)

where τ
w
 is the wall shear.

6.3.2  Transition to Turbulent
Depending on factors such as surface roughness, workmanship of the leading 
edge, and free-stream turbulence level, transition into a turbulent boundary  
layer over a smooth surface occurs at Re

x
 of approximately 5 × 105. The in-

crease in boundary thickness is hastened when the flow becomes turbulent; 

U∂U∂x+V∂V∂y≈U∞dU∞dx+1ρ∂τ∂y

τ=m∂U∂y

τ=m∂U∂y−ρuv¯

dx≈5.0Rex1/2

Cf=2 τwρU∞2=0.664Rex1/2
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see Fig. 6.4. Schubauer and Skramstad (1943) studied the effect of free-stream 
turbulence level on the laminar-to-turbulent transition over a flat plate in a 
wind tunnel. They found that the effect of free-stream turbulence diminishes 
when its intensity falls below 0.1%, and it has to be greater than 0.2% to cause 
a notable influence on the critical Reynolds number. The value of the criti-
cal Reynolds number Re

c
 decreases from 3 × 106 to roughly 106 when the 

relative turbulence intensity is increased to 0.5%, and, according to Dryden 
(1947), it further reduces to around 105 at a relative turbulence intensity of 3%.

6.3.3  Turbulent Boundary Layer
We have been acquainted with the fact that the turbulent boundary can 
roughly be divided into three sublayers at the onset of Section  6.3 with 
the help of Fig. 6.4. These three sublayers have different velocity distribu-
tions and hence, require three equations to describe them, as opposed to 
only one needed for the laminar boundary layer. Let us follow the gentle 
approach taken by Elger et al. (2013) as we delve into these sublayers and 
refine the divisions or categorizations. Before we proceed with that, it is 
worth presenting a similar but somewhat different approximate division of 
the turbulent boundary layer as illustrated in Fig. 6.5 (Wilson, 1989). There 
is a general consensus regarding the next-to-the-wall, viscosity-dominating, 
viscous sublayer. The layer farther out is referred to as the inner inertial layer, 
which is a transition or buffer region separating the viscous sublayer from 
the outer inertial layer. This inner inertial layer overlaps slightly with the 
outer inertial layer. In this buffer region, the effects of viscosity and turbu-
lence inertia are of the same order of magnitude in the inner inertial layer. 
As such, viscosity comes into play indirectly via the shear velocity (to be 
defined in the next paragraph). This shear velocity signifies the intensity of 
turbulence and it scales with the local velocity U, whereas the appropriate 
length scale is the viscous length ν/u

*
 (also explained in the next para-

graph). The outermost layer where the free-stream velocity starts to feel the 

Figure 6.5  Rough divisions of plane-turbulent boundary layer. (Created by H. Cen).
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effect of the wall and slows down is called the outer inertial layer. It is obvious 
that the boundary-layer thickness is the appropriate choice for normalizing 
the distance from the wall, and that the shear velocity is related to the free-
stream velocity, as the local velocity is very close to it. Moreover, the overall 
dynamics in this inertial layer are independent of fluid viscosity, just as the 
large-scale spectral dynamic of turbulence is. In other words, an inertial 
sublayer in wall-bounded shear flows bears resemblance to the inertial sub-
range in the turbulence energy spectrum.

Recall that fluid viscosity dominates in the small region right next to 
the wall, and hence, the flow is essentially laminar. Accordingly, the viscous 
sublayer has also been called the laminar sublayer. We note, however, that the 
latter designation may not be most appropriate, as the flow in the viscous 
sublayer is not strictly laminar. Nonetheless, the thin viscous sublayer does 
behave like Couette flow; where the laminar viscous fluid flow is between 
two parallel plates, one of which is moving. For Couette flow, the velocity 
gradient is a constant, and therefore, the shear. By analogy, in the viscous 
sublayer, the shear stress τ is basically constant and is equal to τ

w
, the shear 

stress at the wall. Thus

τ µ=dU dy/ /
w	 (6.17)

where m is the dynamic viscosity of the fluid. Upon integration, we have

τ µ=U y/
w	 (6.18)

Multiplying the right hand side by ρ/ρ gives

τ ρ
µ ρ

=U y
/

/
w

	
(6.19)

This can be rewritten as

τ ρ
τ ρ
ν

=U
y

/

/

w

w

	
(6.20)

We note that √(τ
w
/ρ) has the dimension of velocity and therefore is 

dubbed shear velocity or friction velocity, u
*
. With this shear velocity, we can 

express Eq. (6.20) in the well-known nondimensional form

ν
=U

u
y
u/

* *	
(6.21)

dU/dy=τw/m

U=τwy/m

U=τw/ρm/ρy

Uτw/ρ=τw/ρνy

Uu*=yν/u*
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which is the standard form used to describe the velocity distribution in the 
viscous sublayer. The denominator on the right hand side ν/u

*
 is the viscous 

length; that is, it is a characteristic length dictated by the fluid viscosity. Also 
worth highlighting is that the shear velocity u

*
 signifies a characteristic level 

of turbulence in the boundary layer.
At this point, we take a break from dimensional analysis and more or 

less emulate Cowen (2015) and Elger et al. (2013) by looking at the prob-
lem at hand. We have an incompressible uniform flow over a smooth, flat 
plate at some high Reynolds number. The well-developed boundary layer 
grows very slowly in the streamwise direction and thus, as per Eqs  (6.5) 
and (6.6), ∂/∂x ≪ ∂/∂y. The boundary conditions are the no-slip condi-
tion, U(y = 0) = 0, and the wall shear as per discussion on viscous sublayer; 
the wall shear τ

xy
(y = 0) = τ

yx
(y = 0) = τ

w
. From Eq. (6.14), we have

τ µ ρ= ∂
∂

−U
y

uv
w

	
(6.22)

Therefore, this wall shear is what we wish to solve, keeping in mind that 
the yet-to-be-utilized boundary condition is U(y = 0) = 0. Let us examine 
the broader boundary-layer region where viscosity is not as overwhelming 
as it is in the viscous sublayer in overshadowing fluid inertia, keeping all 
instabilities or turbulent fluctuations in check. A faster-moving fluid ele-
ment farther out in the boundary layer (when tossed, due to random tur-
bulent fluctuations, into the lower velocity region closer to the wall) tends 
to accelerate the sluggish fluid, and vice versa. This turbulence-induced and 
significantly enhanced momentum transport phenomenon, as discussed in 
Chapters  2 and 5, can be regarded as the outcome of applying effective 
Reynolds stresses to the otherwise languorous fluid. The faster-moving fluid 
particle may be viewed as a flying stone as shown in Fig. 6.6, which jerks the 
unhurried wagon forward as it plunges inside.

τw=m∂U∂y−ρuv¯

Figure 6.6  Turbulent momentum transport enhanced by Reynolds stresses. (Created 
by A. Goyal).
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Here is what we have gathered so far concerning the broader 
boundary-layer region, which is outside of the viscous sublayer. As the 
surface is smooth, the surface roughness height, h

r
, is not a factor and 

hence, U = U(y, ρ, ν, τ
w
, d, U

∞
). Therefore, nondimensionally we have

=+u U y u( )/
*	 (6.23)

where the friction velocity u
*
 = √(τ

w
/ρ). The (normal) distance from the 

wall y can be normalized using the viscous length ν/u
*
 to give the famous 

y+, that is

ν=+y u y/
*	 (6.24)

In addition, we can normalize the larger distance from the wall by the 
boundary layer thickness

ξ δ= y/	 (6.25)

The broader boundary-layer region is outside of the viscous sublayer 
so that the flow structure is affected by ν only through its influence on u

*
. 

Yet, we are close enough to the wall such that y+, not the boundary layer 
thickness d or ξ, is the relevant length variable. This assumption allows us to 
avoid the difficulty of having to simultaneously deal with two length scales, 
d and ν/u

*
.

To move further with the analysis of the broader boundary layer region, 
we can conjure the eddy viscosity model covered in Chapter 5 and Eq. (6.22),  
and obtain

ρ ν− = ∂
∂

uv
U
yturb

	
(6.26)

Realizing that the eddy size probably varies with distance from the wall in 
the boundary layer, Prandtl (1925) conjectured that l

mix
 adjusts itself in pro-

portion to the distance y; subsequent development led to

κ=l y
mix	 (6.27)

where the von Kármán constant, k = 0.41. This, along with the original 
mixing length concept

≈u l dU dy/
mix	 (6.28)

we have

u+=U(y)/u%

y+=u% y/ν

ξ=y/d

−ρuv¯=νturb∂U∂y

lmix=ky

u≈lmix dU/dy
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τ ρκ=






y
dU
dyw

2 2

2

	
(6.29)

After taking the square root, this can be rearranged into

τ ρ κ=dU dy y[ ( / )/ ] /
w	 (6.30)

Substituting for u
*
, we have

κ=dU u dy y/ (1/ ) /
*	 (6.31)

Integrating we get

κ= +U u y C/ (1/ ) ln
* ln	 (6.32)

where C
ln
 is the log region constant. Accordingly, there is a range of bound-

ary layer, which we may be able to describe using this logarithmic expres-
sion. This region is called the log region, with a generally accepted C

ln
 value 

of 5.5 for a smooth wall. Henceforth we can redefine the layers within the 
boundary layer as depicted in Fig. 6.7 (based on Elger et al., 2013).

The term, law of the wall, has been adopted to describe the logarithmic 
velocity distribution region, which was first discovered by von Kármán 
(1930). Following Elger et  al. (2013), the logarithmic line has been ex-
tended into the viscous sublayer as shown in Fig. 6.8. It is obvious that the 

τw=ρk2 y2dUdy2

dU=[(τw/ρ)/k] dy/y

dU/u%=(1/k) dy/y

U/u%=(1/k) ln y+Cln

Figure 6.7  Velocity profile in flat-plate turbulent boundary layer. (Created by A. Goyal).
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viscous sublayer does not follow the law of the wall, which was derived 
under the assumption that viscosity does not directly come into play except 
via the friction velocity. Just as importantly, we notice in Fig. 6.8, and also in 
Fig. 6.7, that the logarithmic region does not extend outward to the outer 
edge of the boundary layer. This outer edge region is called the velocity defect 
law because there is some unmistakable velocity deficit with respect to the 
free-stream velocity.

Figure 6.9 is a schematic detailing various velocity distribution regions 
(modified after Cowen, 2015). We note that as the velocity defect zone is 
near the outer edge of the boundary layer, the appropriate length is the 
boundary-layer thickness d or nondimensionally, ξ. In this velocity defect 
law zone the (time-averaged) local velocity U approaches the free-stream 
value U

∞
 as y approaches d. Also noteworthy is that the law of the wall, 

expressed by Eq. (6.32), has a logarithmic portion for y+ ≥ 30. The extent 
of the logarithmic region, or the “logarithmic sublayer,” depends on the 
overall flow parameters such as Re

d
 ≡ Ud/ν and the pressure gradient. 

Typically, the log region occupies about one-tenth of the boundary layer 
thickness.

Let us analyze the area spanned by the logarithmic velocity distribution 
region to the outer extent of the velocity defect region by invoking the 
following assumptions:

Figure 6.8  Logarithmic velocity profile in a turbulent boundary layer over a flat plate. 
(Created by A. Goyal).
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1.	 The velocity defect law applies in a zone close enough to the wall that 
the velocity defect ∆U is directly proportional to the friction velocity u

*
; 

that is, not U
∞
.

2.	 There is at least a small zone of overlap where both law of the wall and 
velocity defect law apply.
Our form is

δ− ≡∞U U u g y( )/ ( / )
*	 (6.33)

Take 
∂
∂y

x

 using ξ ≡ y/d so that 
ξ

ξ∂
∂

= ∂
∂

∂
∂

g
y

g
y

x x x

, we have

δ ξ
− ∂

∂
=

u
U
y

dg
d

1 1

x*	
(6.34)

From Eq. (6.31) we can express the law of the wall as

κ
∂
∂

=U
y

u

y
*

	
(6.35)

In the overlap zone, both law of the wall and velocity defect law apply; hence, 
we substitute Eq. (6.35) into Eq. (6.34) to get

(U∞-U)/u%≡g(y/d)

∂∂yx∂g∂yx=∂g∂ξx∂ξ∂yx

−1u*∂U∂yx=1ddgdξ

∂U∂y=u*ky

Figure 6.9  The multifarious flat-plate turbulent boundary layer. (Created by A. Goyal).
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κ δ ξ
−





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=
u

u

y
dg
d

1 1

*

*

	
(6.36)

Rearranging and recalling that ξ = y/d, we get

ξ κξ
= −dg

d
1

	
(6.37)

This can be integrated to give

κ
ξ= − +g C

1
ln

VD
	

(6.38)

where C
VD

 is the velocity defect constant. Therefore

κ δ
−

= − 



 +∞U U

u
y

C
1

ln
*

VD

	
(6.39)

We note that von Kármán’s constant appears in both law of the wall and 
velocity defect law. The velocity defect law holds over most of the bound-
ary layer except the viscous sublayer, which generally is a very thin region, 
y+≈30, corresponding typically to about 1% of d at high Re.

By noting that both the law of the wall and the velocity defect law apply 
in the overlapping region, we can relate the two coefficients C

ln
 and C

VD
. In 

the region of overlap we can write

κ ν κ δ
− 



 +





= − 



 +∞U

u

yu
C

y
C

1
ln

1
ln

*

*
ln VD

	
(6.40)

But

ν δ
δ
ν δ

δ
ν





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

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= 



 + 



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yu y u y u
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(6.41)

Therefore

κ δ κ
δ
ν κ δ

− 



 − 





− = − 



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y u
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1
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1

ln
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ln VD

	
(6.42)

−1u*u*ky=1ddgdξ

dgdξ=−1kξ

g=−1kln ξ+CVD

U∞−Uu*=−1kln yd+CVD

U∞u*−1kln yu*ν+Cln=−1kln yd+CVD

ln yu*ν=
ln yddu*ν=ln yd+ln du*ν

U∞u*−1kln yd−1k
ln du*ν−Cln=−1kln yd+CVD
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Defining

C
U

C u

U

U

2
,

2
, Re

f

fw

2

*
τ

ρ δ
δ

ν
≡ ≡ ≡

δ
δ

∞

	

(6.43)

we get

κ
= −









 −δC

C

C
C

2 1
ln

2
Re

f

f

VD ln

	
(6.44)

Beyond the outer extent of the law of the wall, the flow behaves like a 
wake; hence, it is called the wake region (Coles, 1956) or the outer layer. This 
is portrayed in Figs 6.8 and 6.9, which show that the logarithmic veloc-
ity distribution region does not meet with the boundary layer; that is, it is 
buffered from the free stream by the outer layer or wake region. Like wake 
flows, shear stress acts to produce a velocity deficit in this outer region. For 
the negligible pressure gradient flat plate case considered

δ
−

= −





∞U U

u
y

9.6 1
*

2

	
(6.45)

for y/d > 0.15 (Hama, 1954). According to White (1974), Clauser (1956) 
suggested that the correct scaling parameter is

δ∆ ≡ ∫
−

=∞ ∞U U

u
dy

C
2

f
0

*
d

	
(6.46)

where the displacement thickness.

δ ≡ ∫ −





δ

U
U

dy1
d

Problems
Problem 6.1. Boundary-layer thicknesses
Clearly and concisely deduce the momentum, displacement, and 
boundary-layer thicknesses for a uniform flow over a smooth, flat plate at 
Re

x
 = 3 × 102, 3 × 105, and 3 × 106. Include good illustrations.

Cf≡τwρU2d2, Cf2≡u*Ud, Red≡U∞dν

CVD=2Cf−1kln Cf2Red−Cln

U∞−Uu*=9.61−yd2

∆≡∫0∞U∞−Uu*dy=dd2Cf

dd≡∫1−U¯Ud¯dy
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Problem 6.2. Boundary-layer profile
Figure 6.10 shows the logarithmic velocity profiles of the turbulent bound-
ary layer over a flat plate at different streamwise locations, x = 20, 30, and 
40 cm; where x is the streamwise distance from the leading edge of the plate 
(Fouladi et al., 2015).
1.	 Which profile corresponds to which streamwise distance? Explain.
2.	 How do you expect an enhanced free-stream turbulence to affect these 

profiles? Explain.

Problem 6.3. Energy dissipation for transition to turbulence
One criterion for determining the point of laminar-turbulent transition 
is that transition occurs when turbulent flow has a higher rate of entropy 
production than laminar flow. This will occur when the dissipation rate in 
the turbulent flow exceeds that of laminar flow.
1.	 For fully developed flow in a smooth, round pipe, derive expressions 

for the dimension-less dissipation rate εD4/ν3 for laminar and turbulent 
flow. The dissipation ε is the average over the flow cross-section and can 
be estimated by a mechanical energy balance using the entire pipe of 
length L as a control volume. For turbulent flow, you can use the Blasius 
(1910) resistance law friction factor

=f 0.316 / Re1/4
� (6.47)

for smooth pipe where Re = UD/ν.
	 What is the value of Re at laminar-turbulent transition?
2.	 The Blasius equation is for fully developed turbulent flow. In the 

laminar-turbulent transition region, a better equation may be the 
Churchill’s (1977) equation, which for smooth pipes is

f=0.316/Re1/4

Figure 6.10  Logarithmic profiles of the flat-plate boundary layer. Crosses, triangles, 
circles signify, respectively, 20, 30, 40 cm from the leading edge. (Created by F. Fouladi).
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Re
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�
(6.48)

At high Re, this smooth pipe equation reduces to

=−f(8 ) 2.21ln(Re/7)0.5
� (6.49)

Show that for fixed transition Reynolds number, the dissipation equality 
simply reduces to f

laminar
 = f

turbulent
 at Re

transition
. Find the laminar-transitional 

and transitional fully turbulent flow Reynolds numbers using Eq. (6.48). A 
graphical plot is helpful.

Problem 6.4. Values of coefficients C
ln

 and C
VD

Deduce the values of coefficients C
ln
 and C

VD
 for pipe flows, and compare 

these values with turbulent flow over a flat plate.
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CHAPTER 7

Grid Turbulence
I look upon experimental truths as matters of great concernment to 
mankind.

– Robert Boyle
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Chapter Objectives

•	 To explain homogeneity and isotropy in the context of turbulent flow.

•	 To investigate flow turbulence downstream of a grid.

•	 To recognize the different grid-generated turbulence regions.

•	 To assess the power-law decay region in detail.

•	 To quantify the key turbulence parameters in terms of distance downstream of 
the grid.

NOMENCLATURE
a	 Exponent
A	 Constant coefficient
b	 Exponent
B	 Proportionality constant
C	 (Turbulence decay) coefficient
D	 Diameter (of the hole of the perforated plate)
E	 Spectral density
F	 Flatness factor
k	 Turbulence kinetic energy per unit mass, or wave-number
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k
1
	 Streamwise wave-number

l	 Large length scale
M	 Mesh or grid size
n	 Exponent, frequency
OPP	 Orificed, perforated plate
p	 The fluctuating component of pressure
r	 Space, spatial dimension
P	 Time-averaged pressure
q	 Two times the square root of kinetic energy per unit mass
Re	 Reynolds number
S	 Skewness factor
SHPP	 Straight-hole perforated plate
t	 Time
Tu	 Percentage turbulence intensity
u	 The fluctuating component of the velocity (in the x-direction)
uη	 Kolmogorov velocity scale
U	 Velocity (in the x-direction)
v	 The fluctuating component of velocity in the y-direction
V	 Time-averaged velocity in the y-direction
w	 The fluctuating component of velocity in the z-direction
W	 Time-averaged velocity in the z-direction
x, y, z	 Cartesian coordinates (x is the streamwise direction)
η	 Kolmogorov length
Λ	 Integral length
λ	 Taylor microscale
ν	 Viscosity
ε	 Dissipation rate
∀	 Volume

7.1  INTRODUCTION

Turbulence generated by a grid has a special place in the heart of turbulent 
flow. Without elaborating too much, the idea of empirical flow turbulence 
was initiated via rigorous, systematic grid turbulence experimentations at a 
time when the concept of turbulent flow was still being formulated. These 
groundbreaking pursuits include Simmons and Salter (1934), Taylor (1935), 
Synge and Lin (1943), Lin (1948), and von Kármán and Lin (1949). The ex-
tended series of grid turbulence studies conducted by turbulence giants and 
forefathers Batchelor and Townsend (1947, 1948a, 1948b) are particularly 
worth mentioning here. In this chapter, we first briefly review the ideal (i.e., 
impossible) states of isotropic and homogeneous turbulence. As presum-
ably the cleanest and simplest flow turbulence that we can generate, grid 
turbulence typifies isotropic turbulence. A recent study by Djenidi et  al. 
(2013) showed that the temporal and spatial averages merge at about 20 
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hole diameters downstream of the grid. With the temporally stationary and 
spatially homogeneous turbulence in the cross-stream directions, this equal-
ity supports the ergodic hypothesis in grid turbulence. As such, this verifies 
that grid turbulence is indeed homogeneous and isotropic. The rest of this 
chapter is devoted to grid turbulence.

7.2  HOMOGENEOUS AND ISOTROPIC TURBULENCE

The simplest form of turbulence is the quintessential isotropic turbulence, 
in which all of its properties are invariant with respect to direction; that is, 
it is exactly the same in every direction. Among other criteria, the joint 
probability distribution of the velocities at any arbitrarily chosen n points in 
space is invariant under arbitrary rotations of the configuration in isotropic 
turbulence (Batchelor, 1953)

= =uv vw uw	 (7.1)

Accordingly, a minimum number of quantities and correlations are needed 
to describe the structure and behavior of isotropic turbulence (Hinze, 1975).

Homogeneity in flow turbulence typically implies that the associated 
flow properties do not vary spatially; specifically, the turbulence is the same 
everywhere in the flow field. We can note that isotropy exists only when the 
turbulence is already homogeneous, as a nonhomogenous turbulence would 
show a preference for certain directions. In other words, a change in tur-
bulence with spatial variation requires a certain degree of anisotropy. More 
interestingly, Hinze (1975) pointed out that a spatially homogeneous turbu-
lence cannot be stationary; therefore, a homogeneous turbulent flow field 
must be a decaying turbulent field. This is quite hunky-dory as far as grid 
turbulence is concerned, for the turbulence downstream of the development 
region is indeed decaying. As such, homogeneity is only true in the cross-
stream direction. However, because this decay usually happens slowly, the 
assumption of the homogeneity of the turbulence is valid for most purposes.

Another outcome or condition of isotropic turbulence is that the prob-
ability density function of the fluctuating velocity follows the Gaussian dis-
tribution. As discussed in Chapter 3, the corresponding skewness and flat-
ness factors are zero and three, respectively; that is

= =S
u

u
0

3

2 3/2

	
(7.2)

uv¯=vw¯=uw¯

S=u3¯u2¯3/2=0
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= =F
u

u
3

4

2 2
	 (7.3)

Tresso and Munoz (2000) commented that the covariances (cross correla-
tions of u, v, and w) may be the preferred method for experimentally identi-
fying the homogeneous, isotropic flow region, as the skewness is remarkably 
sensitive to small flow perturbations.

It must be emphasized that there is no real life situation in which turbulence 
is perfectly isotropic. Local isotropy, on the other hand, can often be assumed 
to enable the characterization and understanding of turbulence. In the case 
of fully developed flow turbulence with a well-defined cascade of eddies, the 
higher-frequency, smaller eddies are quite isotropic, as elucidated in Chapter 4.

7.3  CHARACTERISTICS OF GRID TURBULENCE

Turbulence may be defined as a spatially complex distribution of vorticity, 
which advects itself in a chaotic manner. The velocity field is determined at 
any given moment by the fluid’s vorticity distribution, in accordance with 
the Biot-Savart law. Thus, creation of turbulence requires the generation 
of vorticity; a grid is commonly and successfully used to accomplish this 
purpose.

We may divide the flow downstream of a grid into four regions:
1.	 The initial “developing” region
2.	 The “simple” or “power-law” decay region
3.	 The “dominating large-scale” region
4.	 The “final period of decay” region

The eddying motion, along with the corresponding fluctuating velocity, is 
sketched in Fig. 7.1.

Taking the lead from the innovative work that preceded them, Liu et al 
devised a unique orificed, perforated plate (OPP), as shown in Fig.  7.2, to 
generate extremely clean wind tunnel turbulence (Liu et al., 2004, 2007; Liu 
and Ting, 2007). The acquired data are decomposed into mean and fluctuating 
velocities, as plotted in Fig. 7.3. The measurements were taken right along the 
center line of the plate, which is also the center line of the middle hole. We see 
that the mean or time-averaged velocity maxes out immediately after the OPP, 
while the fluctuating velocities peak between three and four OPP hole diam-
eters downstream. Accordingly, the initial turbulence-developing or generating 
region for this OPP ends within approximately five hole diameters down-
stream. This is significantly shorter than conventional and finite thickness grids.

F=u4¯u2¯2=3
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Figure 7.1  Turbulent flow regimes downstream of a grid. (Created by A. Goyal).

Figure 7.2  The orificed, perforated plate (a) close-up photo, (b) cross-sectional view. 
(Taken/created by R. Liu).
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To be thorough, a sample time-averaged local velocity deviation from 
the center line value of the OPP’s turbulent flow is presented in Fig. 7.4. We 
see that the largest deviation of the local velocity from the center line value 
is less than 4%; that is, all values are within 97% and 104% of the center 
value. To that end, the time-averaged velocity over the considered cross sec-
tion is clearly homogeneous.

Figure 7.4  Percentage of local time-averaged velocity of the center line value of 
10.8 m/s at (a) 20D, (b) 60D, (c) 100D downstream of the OPP. (Created by R. Liu).

Figure 7.3  Mean and fluctuating velocities downstream of an orificed, perforated plate. 
(Created by R. Liu).
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The corresponding streamwise turbulence fluctuating velocity of the 
OPP turbulent flow is depicted in Fig. 7.5. The OPP-generated turbulence 
limns a uniform profile at all three studied cross sections with a maxi-
mum departure from the average of no more than 5%, even at just 20D 
downstream. This is remarkable considering the fact that conventional 
grid-generated turbulent flow typically does not become homogeneous 

Figure 7.4 (cont.)
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Figure 7.5  Percentage of streamwise root-mean-square fluctuating velocity of that at 
the center line value at (a) 20D with a center line value of 0.64 m/s, (b) 60D with a center 
line value of 0.33 m/s, (c) 100D with a center line value of 0.26 m/s, downstream of the 
OPP. (Created by R. Liu).
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until 30–40 diameters downstream (Stewart and Townsend, 1951; Portfors 
and Keffer,  1969). This implies that we may better and more easily ap-
proach isotropic turbulence using an OPP, presumably because it promotes 
three-dimensional flow immediately behind the orifice (Mi et al., 2001). 
Also worth noting is the rapid decay of the turbulence, as indicated by the 
fluctuating velocity that rapidly decreases over distance.

Figure 7.6 shows the corresponding covariance or correlation between 
u and v of the OPP turbulence. We see that the uv is literally zero and shows 
clean and isotropic turbulence. In other words, according to Fig. 3.11 and 
the associated discussion in Chapter 3, u and v behave as independent vari-
ables. Recall that independent variables are not necessarily uncorrelated 
(Tennekes and Lumley, 1972).

7.3.1  Initial Turbulence Developing Region
Jets are created immediately behind the holes in the grid. These jets are in-
tersected by wakes generated behind the solid portion of the grid, resulting 
in a highly dynamic, anisotropic, and inhomogeneous flow. These jet-wake 
interactions produce a significant amount of shear, and it is this shear which 
spawns large turbulent eddies. In this turbulence-producing and developing 
region, much of the energy is centered around a wavelength on the order 
of the grid or mesh size (i.e., solid distance between adjacent holes and/or 

uv¯

Figure 7.5 (cont.)
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hole size), which roughly corresponds to the size of the coherent turbulent 
eddies shed from the solid of the grid. The nonlinear terms in the Navier-
Stokes equation then start to redistribute this energy over a broader range 
of eddy sizes. Depending on certain factors, including the dimensions as-
sociated with the grid, this turbulence development region typical lasts until 
approximately 20 times the characteristic mesh size M associated with the 
grid.

7.3.2  Power-Law Decay Region
The “fully developed” stage is reached when the kinetic energy is distrib-
uted over a wide range of vortical structures (eddies); that is, from the larg-
est scale, which is typically approximated as the energy-containing integral 
length, down to the smallest dissipative, Kolmogorov microscale. We see 
that in fully developed high Reynolds number turbulence, the bulk of both 
the energy and the enstrophy (vorticity) are literally held in two mutually 
exclusive groups of eddies. The vorticity, which underpins the large eddies 
via the Biot-Savart law, is weak and dispersed, making little contribution 
to the net enstrophy. On the other hand, the small eddies are composed of 
intense patches of vorticity, and so they dominate the enstrophy. Neverthe-
less, these small eddies make little contribution to the net kinetic energy 
because they are so small.

Figure 7.6  Covariance of orificed, perforated plate turbulence. (Created by R. Liu).
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This “Power-Law Decay” stage, where the turbulence becomes ap-
proximately homogeneous, generally occurs beyond 20 grid or mesh sizes 
downstream of a typical grid. Figure 7.7 depicts the power-law decay of 
the fluctuating turbulence downstream of an orificed perforated plate ver-
sus that downstream of a straight-hole perforated plate (SHPP) (Liu and 
Ting, 2007). It is interesting to note the invariant of the decay with respect 
to the Reynolds number when changing the free-stream velocity from 5.8 
to 10.8 m/s. Moreover, the OPP produced roughly 25% higher turbulence 
intensity than the SHPP.

Davidson (2004) called the turbulence after it reaches the “fully devel-
oped” or “asymptotic” stage “freely evolving” or “freely decaying” turbu-
lence. At this stage, there is virtually no interaction between the mean flow, 
which is more or less uniform, and the turbulence itself. The only function 
of the mean flow is to carry the turbulence through the tunnel.

In this “decay of fully developed turbulence” phase, unlike the “initial 
developing” phase, there is significant energy dissipation. This dissipation 
is mostly carried out via the smallest eddies because their turn-over time, 
which also turns out to be their break-up time, is much smaller than that of 
the large eddies. Recall from Chapter 4 that η/uη ≪ Λ/u. The dissipation 
rate per unit mass may be interpreted as

Figure 7.7  Turbulence intensity downstream of an orificed, perforated plate versus that 
downstream of a straight-hole perforated plate. (Created by R. Liu).
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d dt u u/ /( / )
(energyof largeeddies)/(turnover timeof largeeddies)

u
2 2∼ ∼− Λ

−	
(7.4)

Incidentally, the time scale of turbulent kinetic energy decay is equal 
to the characteristic time of the energy-containing eddies (Λ/u). In other 
words, kinetic energy decay is the process of the destruction of large eddies. 
Note that viscosity does not appear here, as the rate of dissipation depends 
on the amount of energy being dissipated, whereas viscosity sets the size of 
the dissipating eddies by keeping uη/η on the order of unity; that is, smaller 
eddies would be nullified by viscosity, while larger ones would be unaf-
fected by it.

In statistically steady (or quasi-steady) turbulence, the rate of kinetic en-
ergy destruction at small scales is equal to the energy transfer rate through 
Richardson’s energy cascade, which is controlled by the “break-up” of large 
eddies. Hence, we have

ε ν ν η= ∼ ≈ Π ∼ Λ = ΛηS S u u u u{ 2 / } [ /( / ) / ]
ij ij

2 2 2 3

	
(7.5)

from which we can relate the small and large scales via

ν η ∼ Ληu u/ /2 2 3

	 (7.6)

Recall that the energy cascade process is driven by inertia. Viscosity plays 
a role only when the eddy size reaches the dissipation scale. In other words, 
viscosity provides a dustbin for energy at the end of the cascade but does 
not influence the cascade itself.

Accordingly, most of the information associated with the initial condi-
tions is lost in the process of creating the turbulence. This well-accepted 
supposition is nevertheless somewhat of a leap of faith. No wonder Batch-
elor (1953) made the following statement:

“We put our faith in the tendency for dynamical systems with a large number of 
degrees of freedom, and with coupling between those degrees of freedom, to ap-
proach a statistical state which is independent (partially, or wholly) of the initial 
conditions.”

Accepting the premise that turbulence is indeed forgetful, different types 
of grid may be used to generate turbulence in which the statistical proper-
ties of the fully developed turbulence are roughly the same for the corre-
sponding u and Λ. In reality, the turbulence never becomes truly isotropic. 
Somewhat like elephants, turbulence seems to retain a long-term memory 
of certain things. This robust information is associated with the dynamical 

du2/dt∼−u2/(Λ/u)∼−(energ
y of large eddies)/(turnover tim

e of large eddies)

ε{=2 ν Sij Sij∼ν uη2/η2}≈Π[∼u2

/(Λ/u)=u3/Λ]

νuη2/η2∼u3/Λ
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invariants of the flow; that is, it is retained by the turbulence as a direct result 
of the laws of conservation of linear and angular momentum. For conven-
tional grids, it is found that

= ≈v w u0.752 2 2	 (7.7)

This seems to show the remarkable memory of turbulent flows for their 
initial conditions.

To avoid flow instabilities which cause a non-uniform mean velocity 
profile, the open area must be approximately 60% or greater. A smaller open 
area can lead to prevailing non-uniformity in the flow. On the other hand, 
larger openings are less effective in producing turbulence.

Undeniably, the decay region is the most studied grid turbulence regime. 
It is thus not surprising to see the increasingly reinvigorated interest in re-
cent years; see Babuin et al., 2014; Isaza et al., 2014; Kitamura et al., 2014; 
Meldi et al., 2014; Sinhuber et al., 2015; Torrano et al., 2015, and Vassili-
cos, 2015, among many others. As an introductory textbook, we restrict the 
coverage to only the basics of well-established, canonical research on decay-
ing grid turbulence. Before we scrutinize this decaying regime further, let us 
complete the introduction of the two remaining grid turbulence regimes.

7.3.3  Dominating Large-Scale Region
The dominating large-scale region is typically not considered unto itself, 
as it is simply the area between the power-law decay region and the final 
decay region. Nevertheless, it is worth noting that some researchers have 
proposed different ways of sorting out flow regions; for example, Skrbek 
et al. (2000) identified four regimes of decaying grid turbulence with the 
help of helium II.

7.3.4  Final Decay Region
Further downstream, the faster decaying smaller eddies are gone, leaving the 
slower decaying large scales. Because they decay slowly, there is a notable lack 
of interaction between the large eddies. It is obvious that the corresponding 
Reynolds number is sufficiently small as the flow enters this region. Problem 
7.4 suggests a Reynolds number on the order of 10 as a possible threshold.

7.4  DECAY OF HOMOGENEOUS ISOTROPIC TURBULENCE

Assume that we can approximate grid turbulence by the isotropic assump-
tion. For isotropic turbulence, two times total kinetic energy per unit mass is

v2¯=w2¯≈0.75u2¯
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= + + =q u v w u32 2 2 2 2
	 (7.8)

We should underscore the fact that rigorously speaking, real grid turbulence 
is neither isotropic nor homogeneous (Ertunç et al., 2010). For typical grids, 
the actual measured grid turbulence is

= + + =q u v w u2.52 2 2 2 2
	 (7.9)

A properly designed OPP with 43% solidity produces a signifi-
cantly more isotropic turbulence with ≈u v1.12 2  or ≈q u2.82 2  (Liu 
et al., 2007).

We will proceed to derive expressions of the variations of key turbulence 
characteristics with respect to distance downstream of a grid. Invoking the 
ergodic hypothesis as verified by Djenidi et al. (2013), these expressions are 
also applicable when considered with respect to time. The general layout in 
Wilson (1989) is emulated. First, the decrease in turbulence intensity with 
streamwise distance is derived. This is followed by the Taylor microscale, 
dissipation rate, and integral length in the next section. The streamwise al-
terations of the relative magnitude among the three primary length scales 
(integral length, Taylor microscale, and Kolmogorov scale) are formulated in 
the subsequent section.

For turbulence that is homogeneous in the y- and z-directions and var-
ies slowly in the x-direction, we may assume locally homogeneous turbu-
lence. Then all transport terms vanish in the kinetic energy equation, and 
we are left with

ε= −dq
dt

P
1

2

2

turb
	

(7.10)

Because the mean flow is homogeneous

= =V W 0	 (7.11)

and

∂ ∂ =U x/ 0
i	 (7.12)

therefore

=P 0
turb	 (7.13)

that is, there is no turbulence production, except close to the grid.

q2¯=u2¯+v2¯+w2¯=3u2¯

q2¯=u2¯+v2¯+w2¯=2.5u2¯

u2¯≈1.1v2¯q2¯≈2.8u2¯

12dq2¯dt=Pturb−ε

V¯=W¯=0

∂U¯/∂xi=0

Pturb=0



Grid Turbulence 153

Assuming isotropic dissipation, Taylor (1935) showed that

ε ν= ∂
∂







u
x

15
2

	
(7.14)

from which the microscale λ
g
 = λ

f
/2 and from the definition of λ

f

λ
∂
∂





 ≡u

x
u

2 2

g
2

	

(7.15)

so that

ε ν
λ

= u
15

2

g
2

	
(7.16)

Substituting Eqs (7.8 and 7.16) into the energy balance equation, Eq. (7.10) 
gives

ν
λ

= −d u
dt

u3

2
15

2 2

g
2

	
(7.17)

Assume a power law function for the decay of u2 , with a constant C
1
 

and an exponent n

= −





u

U
C

x
M

x

M

n2

2 1
0

	
(7.18)

or, since =x Ut  according to Taylor’s frozen hypothesis, we have

( )=






−u

U
C

U
M

t t
n

n2

2 1 0

	
(7.19)

where x
0
 is the distance from the grid required to generate the turbulence in 

the far wake. Depending largely on the grid, x
0
/M can be up to 30–40. For 

x/M < x
0
/M, the turbulent flow is inhomogeneous, anisotropic and P

turb
 > 0.

Then, substitute Eq. (7.19) into Eq. (7.17) to get

ν
λ( ) ( )







 − = −









 −

+
−

+

n
C U

M
t t

C U

M
t t10

n

n

n
n

n

n1

2

0

1

g
2

1

2

0

	
(7.20)

ε=15ν∂u∂x2¯

∂u∂x2¯≡u2¯lg2

ε=15νu2lg2¯

32d u2¯dt−15νu2¯lg2

u2¯

u2¯U¯2=C
1
xM−xoMn

x=U¯t

u2¯U¯2=C
1
U¯Mnt−ton

nC
1
U¯2+nMnt−ton−1=−10νlg2C

1
U¯2

+nMnt−ton
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This can be reduced into

λ ν ( )= − −
n

t t10
g
2

0
	

(7.21)

We see that λ
g
 is proportional to √t and that as time goes on, or as we move 

farther downstream, Taylor microscale increases in size. Eventually, larger 
eddies are forced to provide the dissipation ε as the supply of small eddies 
is used up.

If we insert λ
g
2 from Eq. (7.21) and u2  from Eq. (7.19) into Eq. (7.16) 

for dissipation, we get

ε ν ν

( )

( )
( )=
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 −

− −
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(7.22)

or

ε = −






−



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−nC U
M

x
M

x

M

3

2

n

1

3

0
1

	
(7.23)

This shows clearly that a change in viscosity ν will only affect the scale of 
dissipation λ

g
 and not the dissipation ε itself. The dissipation is controlled 

only by the large-scale motion U M/
3

, which is independent of viscosity.

7.5  ESTIMATING THE INTEGRAL SCALE VARIATION

As expounded upon in Chapter 4, dissipation is a passive process, which 
depends on the amount of energy being passed down through the energy 
cascade from the large eddies; in other words, dissipation is controlled di-
rectly by large eddy motions. As such, we can deduce the large scale once 
we know the rate of turbulent kinetic dissipation, that is, the decay rate in 
the absence of production as per Eq. (7.10). Specifically

B
u

l
t

0

3

ε ≈
	

(7.24)

where the equivalent three-dimensional fluctuating velocity

= = + +
u

q u v w
3 3t

2
2 2 2 2

	
(7.25)

lg2=−10νnt−to

lg2u2¯

ε=15νC
1
U¯2+nMnt−ton−10νnt−to=−-

3n2C
1
U¯2+nMnt−ton−1

ε=−3nC
1
2U¯3MxM−xoMn−1

U¯3/M

ε≈Bout2l

ut2=q2¯3=u2¯+v2¯+w2¯3
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It is obvious that =u u
t
2 2  in isotropic turbulence. Hinze (1975) stated 

Eq. (7.24) and then used the analysis of frequency spectra to show that

= Λl /0.75
f	 (7.26)

Using the isotropic relation

Λ = Λ2
f g	

(7.27)

where Λ
f
 is the streamwise correlation scale and Λ

g
 is the cross-stream cor-

relation scale, we find that

= Λl 2.66
g	

(7.28)

Also, Hinze (1975) used experimental frequency spectra to obtain the 
proportionality constant

≈B 0.8
0	 (7.29)

Using an orificed perforated plate, on the other hand, Liu and Ting (2007) 
obtained a value of 1.08 for B

0
, which is much closer to unity. With B

0
 ≈ 0.8 

and l = 2.66 Λ
g
, we can thus rewrite Eq. (7.24) as

ε
( )

≈
Λ

u
0.30

2
3/2

g	
(7.30)

All three parameters involved are fairly well-defined, as we have already 
seen in Chapter  4. Using Eq. (7.19) for u2  and equating Eqs (7.30 and 
7.23), we have

( ) ( )Λ
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(7.31)

This can be manipulated to give the integral length as a function of time or 
distance downstream of the grid

( )Λ = 



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−
+ +

n

C U

M
t t
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(7.32)

Dividing this by the mesh width M and using the relation =x Ut , we have 
the variation of the integral length with respect to grid mesh size and dis-
tance downstream of the grid

ut2=u2¯

l=Λf/0.75

Λf=2Λg

l=2.66 Λg

Bo≈0.8

ε≈0.30u2¯3/2Λg

u2¯

0.30ΛgC
1
U2+nMn3/2t−to3n/2=−3n2C

1

U2+nMnt−ton−1

Λg=0.63nC
1
U2+nMn1/2t−to2+n2

x=U¯t
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Λ
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(7.33)

The Λ ∝ C
g 1

1/2 relation, that is, the size of integral scale, is proportional to 
the square root of the turbulence decay coefficient, as has been verified 
experimentally by Liu and Ting (2007).

Early estimates by investigators such as Batchelor and Townsend (1948a) 
suggested that n  = −1.0. Notwithstanding this, Hinze (1975) presented 
an analysis using correlation invariants that showed n as equal to −6/5 for 
Saffman’s invariant or −10/7 for Loitsiansky’s “invariant.” However, Synge 
and Lin’s (1943) experimental data appear to indicate that the Loitsian-
sky invariant does not exist; see Pullin and Saffman (1998), for example. 
Comte-Bellot and Corrsin (1966) used a contraction to eliminate grid tur-
bulence, forcing it to be more isotropic. They found n = −1.28, which is 
in fairly good agreement with Hinze’s analysis using Saffman’s invariant. 
Liu and Ting (2007) found n = −1.15 for both orificed, perforated plates 
and straight-hole (finite thickness) perforated plates. With many veridical 
experiments emanating values of n in the vicinity of Saffman’s invariant, it 
is not surprising that experts have wondered if grid turbulence is indeed 
Saffman turbulence (Krogstad and Davidson, 2010).

7.6  KOLMOGOROV SCALE IN DECAYING GRID TURBULENCE

As the dissipation rate ε changes with distance from the grid, so will the 
Kolmogorov length η because the Kolmogorov length is defined as

η ν
ε

≡ 





3 1/4

	
(7.34)

This can be recast as

ε ν
η

=
3

4
	

(7.35)

Equating this to isotropic dissipation, Eq. (7.14), we have

λ
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(7.36)

ΛgM=−0.2C11/2nxM−xoMn+22

Λg∝C11/2

η≡ν3ε1/4

ε=ν3η4

lgη=2.0u2¯lg2ν21/4
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From Eq. (7.18), we see
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Since =U x t/  and hence, =t x U/ , we can re-express Eq. (7.21) as

λ ν= − −
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Substituting Eqs (7.37 and 7.38) into Eq. (7.36), we get
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This can be simplified, using the Reynolds number based on the mesh, 
ν≡ UMRe /

M , into

λ
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(7.40)

We see that this Taylor microscale-Kolmogorov scale ratio varies relatively 
slowly as the turbulence decays downstream of the grid. Notably, if we in-
voke Saffman’s invariant, n = −1.2, we have

λ
η

∝ −
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−
x
M

x

M
g 0
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(7.41)

This is discernibly smaller compared to the “swelling” in integral scale, as 
the turbulence and the smaller eddies decay, Eq. (7.33)
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(7.42)

The slower change in λ
g
/η is no surprise, as both Taylor microscales and 

Kolmogorov scales portray the small, dissipating eddies. The decay in the 
fluctuating intensity from Eq. (7.18)
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is relatively faster.

u2¯=C
1
U¯2xM−xoMn

U¯=x/tt=x/U¯

lg2=−10νnMxMU¯−xoMU¯

lgη=2.0C
1
U¯2ν2xM−xoMn−10νMnU¯xM

−xoM1/4

ReM≡U¯M/ν

lgη=150C
1
−n1/4 Rem1/4xM−xoMn+14

lgη∝xM−xoM−0.05
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u2¯U¯∝xM−xoM−0.6
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To obtain the relative variation of the Taylor microscale with respect to 
integral length of distance downstream of the grid, we combine Eqs (7.21 
and 7.33) (or simply Eqs (7.38 and 7.42) to get

λ
Λ

∝ −
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g

g

0
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(7.44)

We see that the change in this small-large scale ratio is significantly faster 
than the smallest small-scale ratio described by Eq. (7.41). As the turbu-
lence decays downstream, the energy cascade is progressively shortened at 
the more dissipative, faster decaying, small-scale end. Consequently, the re-
spective small and large scales of the remaining energy cascade have to 
be continuously reassigned. This leads to quickly increasing Kolmogorov 
scale followed immediately by Taylor microscale, while the integral length 
changes relatively slower.

Furthermore, the following relationships can be seen from the conven-
tional grid turbulence plots in Hinze (1975)

λ λ∝ ⇒ ∝x t
g g
2

	
(7.45)

In other words, Taylor microscale increases with the square root of time or 
distance downstream of the grid. This has been inferred from Eq. (7.21). On 
the other hand, the turbulence intensity decreases much faster

( ) ( )∝ −
−

u x x2
2

0

1.2

	
(7.46)

Some data support a power of −1.0 instead of −1.2. Most conventional 
grids lead to quite anisotropic turbulence when cross-stream intensities are 
only 65% of the streamwise value; that is

= ≈v w u0.652 2 2	 (7.47)

7.7  SPECTRAL SPACE

There are some advantages to recasting the equations of turbulence from 
real space (defined as space r and time t) into Fourier space (defined as 
wave-number space k and time t). Fourier transform acts like a filter, 
sorting out or differentiating the different scales present within a fluctu-
ating signal.

lgΛg∝xM−xoM0.1

lg2∝x⇒lg∝t

u2¯2∝x+xo−1.2

v2¯=w2¯≈0.65u2¯
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Turbulence measurements are typically for Eulerian spectra, where fluc-
tuations of randomly oriented eddies are quantified as they are swept by a 
probe at a velocity U. Consequently, only a one-dimensional slice of the 
three-dimensional spectrum is measured. The spectral density with frequen-
cy n is E

1
(n) for the velocity component u. The fraction of u2 between n and 

n + dn is E
1
(n)dn and

∫ ( )=
∞

u E n dn2
10	

(7.48)

One problem that arises with expressing spectra in terms of frequency 
is the false increase in frequency when the mean velocity U is increased. 
In other words, Fourier transforming a higher velocity gives a higher fre-
quency, but there may or may not be a corresponding increase in the turbu-
lent fluctuation frequencies. As we are interested in frequencies which are 
directly related to the eddy sizes and not the artifact of changing frequen-
cies associated with variations in sweeping velocity, it is better to express 
frequency in terms of the wave-number k

1
, where

π π≡ =k n U2 / 2 /wavelength
1	 (7.49)

where subscript “1” is used to distinguish the one-dimensional wave-
number from the three-dimensional wave-number k.

We see that

=E k dk E n dn( ) ( )
1 1 1 1	 (7.50)

But dk
1
 = 2πdn/U, and hence

π=E k E n U( ) ( ) / (2 )
1 1 1	 (7.51)

Therefore

∫ ( )=
∞

u E k dk2
1 1 10	

(7.52)

Figure 7.8 is a schematic of a spectral space. The dashed line indicates the 
effects of Reynolds number on the frozen turbulence assumption; whereas 
for the smallest eddies, some amount of dissipation is expected, especially 
at higher Re.

As discussed in Chapter 4, at sufficiently high Reynolds number, there 
exists an inertial sub-range in the turbulence spectrum, which can be rep-
resented by a simple power function of the form

u2¯

v2¯=∫0∞ E
1
ndn

k
1
≡2πn/U=2π/wavelength

E
1
(k

1
) dk

1
=E

1
(n) dn

E
1
(k

1
)=E

1
(n) U/(2π)

u2¯=∫∞ E
1
k

1
dk

1
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ε=E k A k( ) a b
1 1 1 1	 (7.53)

where exponents “a” and “b” can be found via dimensional analysis. Note 
that k

1
 ≡ 2πn/U has units of m−1 and from Eq. (7.51), the spectral density

∼E k( ) [m /s ]
1 1

3 2
	 (7.54)

With ε ∼ [s2/m3], we have for Eq. (7.53)

=[m /s ] [m /s ] [1/m]a b3 2 2 3
	 (7.55)

which yields a = 2/3 and b = −5/3, or

ε= −E k A k( )
1 1 1

2/3
1

5/3
	 (7.56)

Hinze (1975) found that for isotropic turbulence, A
1
 ≈ 0.56 for the x com-

ponent of the turbulence velocity.
Note that the spectrum of the cross-stream components are not the 

same as E
1
(k

1
) of the streamwise component, even in isotropic turbulence. 

The differences are caused by “aliasing” of the three-dimensional spectrum 
E(k) of q /22 by the one-dimensional slice taken by a sensor that sees the 
wave field swept at speed U. According to Hinze (1975), for isotropic tur-
bulence

= = − ∂ ∂E k E k E k k E k k( ) ( ) [ ( ) ( ) / )]
2 1 3 1

1
2 1 1 2 1 1 1	 (7.57)
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1
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3
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Figure 7.8  The effect of Re in spectral space. (Created by A. Vasel-Be-Hagh).
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In the inertial sub-range, we have

ε= = −E k E k A k( ) ( ) 4 /3
2 1 3 1 1

2/3
1

5/3
	 (7.58)

for isotropic turbulence.
Figure 7.9 is a spectra plot of the OPP turbulence at 10.8 m/s free-

stream velocity. We see that the three spectra corresponding to 20, 60, and 
100 hole diameters downstream of the OPP collapse nicely unto each oth-
er, which is not the case for the SHPP turbulence (see Liu and Ting [2007]). 
For k

1
Λ of less than unity, which corresponds to the largest structures, a 

slight departure from the self-preservation state is noted. This is somewhat 
expected, as the largest structures are expected to carry some “genetic bi-
ases” from the jetwake interactions immediately behind the OPP. Some 
very high frequency noise is also noted.

E
2
(k

1
)=E

3
(k

1
)=4 A

1
 ε2/3 k

1
−5/
3/3

Figure 7.9  Normalized streamwise turbulence velocity spectrum E
1
/(2kΛ/3) at U  =  

10.8 m/s downstream of the OPP. (Created by R. Liu).
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Problems

Problem 7.1. The decay of turbulence
The decay of turbulent kinetic energy is typically expressed in the power 
law form,

kE/mass = A (t − t
0
)−n.

1.	 Prove that the smallest value of n is unity, i.e., n ≥ 1.
2.	 How does n change as the turbulence enters into the “final” period of 

decay?

Problem 7.2. The anisotropy of grid turbulence
Carry out a refined analysis of grid turbulence that accounts for the noniso-
tropic nature of the turbulence. Assume that = ≈v w u0.752 2 2  and derive 
the power-law decay functions for the Taylor microscale λ

g
 and the integral 

Λ
g
. Express the equations in terms of u2  rather than q2 . Discuss differences 

between this and isotropic results.

Problem 7.3. Integral-Taylor scale ratio in isotropic grid turbulence
Using the usual isotropic results, derive a relationship for the ratio of macro to 
microscale Λ

g
 /λ

g
 as a function of distance x/M. How is the ratio affected by 

Re = UM/ν; where M is the mesh size? Compare this to general scaling results.

Problem 7.4. Initial versus final turbulence decay
A cubical box of volume L3 filled with fluid is shaken to generate a suffi-
cient amount of turbulence and then the turbulence is left to decay.
1.	 Derive an expression for the decay of the kinetic energy 3u2/2 as a func-

tion of time.
2.	 When the turbulence decays to Re (= uL/ν) of less than 10, the in-

viscid estimate ε = u3/L may be replaced by an estimate of the type 
ε =  cνu2/L2, because the weak eddies remaining at low Re lose their 
energy directly to viscous dissipation. Compute c by requiring that the 
dissipation rate is continuous at uL/ν = 10.

3.	 Derive an expression for the decay of the kinetic energy during the final 
decay period when uL/ν < 10.

4.	 If L = 1 m, ν = 1.5 × 10−7 m2/s and u = 1 m/s at time t = 0, how long 
does it take before the turbulence enters the final period of decay?
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CHAPTER 8

Vortex Dynamics
The scientist does not study nature because it is useful; he studies it because 
he delights in it, and he delights in it because it is beautiful. If nature were not 
beautiful, it would not be worth knowing, and if nature were not worth know-
ing, life would not be worth living.

–Henri Poincaré
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Chapter Objectives

•	 To comprehend the basics of vortex dynamics.

•	 To appreciate the importance of vortex dynamics in flow turbulence.

•	 To describe flow turbulence in terms of simple vortices.

•	 To model rapid changes in turbulence using rapid distortion theory.

NOMENCLATURE
A	 Area
I	 Moment of inertia
L	 Length
m	 Mass
P	 Pressure
r	 Radius
s	 Path, distance
T	 Temperature
u	 The fluctuating component of the velocity (in the x direction)
U	 Time-averaged velocity (in the x direction)
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v	 The fluctuating component of the velocity in the y direction
V	 Time-averaged velocity in the y direction
V

n
	 Normal velocity

V
t
	 Tangential velocity

w	 The fluctuating component of the velocity in the z direction
W	 Time-averaged velocity in the z direction
x, y, z	 Cartesian coordinates

Greek Symbols
a	 Angle
b	 Angle
Γ	 Circulation
g	 Specific heat ratio
u	 Angle
m	 Dynamic (absolute) viscosity
ν	 Kinematic viscosity
ρ	 Density
	 A scalar
Ω	 Angular speed
w	 Vorticity

8.1  INTRODUCTION

One salient characteristic of flow turbulence is that it is highly vortical. For 
well-developed turbulence, there also exists an “energy ladder” for convey-
ing the turbulent kinetic energy down a cascade of eddying motions, which 
are decreasing size, but increasing in number. By its very nature, most of the 
kinetic energy is associated with the large eddies, while the smallest eddies 
contain most of the vorticity. We learned from Chapter 4 that the highly 
vortical, small eddies are directly related to the large, energy containing 
eddies, with intermediate-sized eddies acting as a passive energy transfer 
passage. As such, a sound comprehension of the flow turbulence requires 
a good understanding of the vortical structures. In other words, the study 
of vortex dynamics appears to be an appropriate means for understanding 
and describing turbulence; see Pullin and Saffman (1998), Bernard (2013). 
Some basic definitions, equations, and theories will first be introduced be-
fore applying three orthogonal vortices to interpret some elements of flow 
turbulence.

A vortex is simply the rotating motion of a multitude of material par-
ticles around a common center. The paths of the individual particles do 
not have to be circular; that is, they may be asymmetrical, as portrayed 
in Fig. 8.1. Furthermore, a vortex can be two-dimensional such as those  
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illustrated in Fig. 8.1, or it can be three-dimensional as depicted in Fig. 8.2. 
Recall that an important feature of flow turbulence is three-dimensionality. 
As such, flow turbulence can be perceived as a myriad of interacting three-
dimensional vortices.

8.2  VORTICITY

The angular velocity of matter at a point in continuum space is called vor-
ticity. While there is no vortex without vorticity, a vorticity field does not 
have to represent a vortex. Vorticity can be defined as (Saffman, 1992)
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In terms of x, y, z, U, V, and W, we have
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(8.2)

This can be expanded to give

w→=curlV→=∇×V→=eijkeˆi∂Vk∂xj
=eˆ
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w→=iˆjˆkˆ∂∂x∂∂y∂∂zUVW

Figure 8.1  Two-dimensional vortices: (a) concentric circular vortex, (b) asymmetrical 
vortex. (Created by B. Cheung).
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(8.3)

Consider two infinitesimal fluid lines AB and BC, as shown in Fig. 8.3. 
From time t to t  +  dt, where dt is an infinitesimal time step, these two 
lines undergo both translation and rotation. The rotation is caused by the  

w→=∂W∂y−∂V∂ziˆ+∂U∂z−∂W∂xjˆ+∂V∂x−∂U∂ykˆ

Figure 8.2  Three-dimensional vortices: (a) cylindrical vortex, (b) spiral vortex. (Created 
by N. Cao).
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corresponding velocity gradients in the two directions, and it contributes to 
the vorticity. We can define the angular speed in the z direction, Ω

z
 as the 

average rotation rate of the two lines (Currie, 1974; White, 2006; Pritchard 
and Mitchell, 2015); that is

∂α
∂

∂β
∂
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
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t t
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2	
(8.4)

For an infinitely small time step
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becomes
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This can be recast into

α ∂
∂

=d
dt

V
x	

(8.7)

12∂a∂t−∂b∂t

da=limdt→0tan−1∂V∂xdxdtdx+
∂U∂xdxdt

da≈limdt→0tan−1∂V∂xdt=∂V∂xdt

dadt=∂V∂x

Figure 8.3  Two infinitesimal fluid lines in rotational flow. (Created by B. Cheung).
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Similarly
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From which we can obtain

β ∂
∂

=d
dt

U
y	

(8.9)

Substituting Eqs 8.7 and 8.9 into Eq. 8.4, we get

∂α
∂

∂β
∂

∂
∂

∂
∂

ωΩ = −



 = −







=
t t

V
x

U
y

1

2

1

2

1

2z z

	
(8.10)

We see that the rotational speed in the z direction is equal to one-half 
the corresponding vorticity. The above procedure can be repeated for the x 
and y components to acquire similar expressions for Ω

x
 and Ω

y
. In short, the 

vorticity is two times the angular velocity

ω = ∇ × = ΩV 2
� � �

	 (8.11)

The difference between a rotational flow and an irrotational flow can 
be straightforwardly depicted by Fig. 8.4. The fluid in Fig. 8.4a acts like a 
solid body in a container on a rotating turntable. The changing orientation 
of label L plainly exhibits that the flow is rotational, specifically, vorticity 
is everywhere in the tank. When draining the water in a bathtub or a sink, 
the flow is largely irrotational. This is demonstrated in Fig. 8.4b with zero 
vorticity everywhere except at the center, which is the point of singularity. 
In other words, label L does not rotate when placed anywhere except right 
at the center. As such the corresponding angular velocity U

u
 is literally zero 

everywhere and goes to infinity as we approach the singularity point. Cir-
culation Γ will be explained in the next section.

8.3  KELVIN’S CIRCULATION THEOREM

Among his many admirable contributions, Lord Kelvin (Sir William 
Thomson) published a series of spearheading treatises on vortex (Kelvin,  
1867a, b, 1880). These advancements sprouted from the vortex groundwork  

db=limdt→0tan−1∂U∂
ydydtdy+∂V∂ydydt≈limd-

t→0tan−1∂U∂ydt=∂U∂ydt

dbdt=∂U∂y

Ωz=12∂a∂t−∂b∂t=12∂V∂x−∂U∂y=12wz

w→=∇×V→=2Ω→
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established by Hermann von Helmholtz (1858). There are also some 
variations of Helmholtz’s theorems regarding a vortex in an inviscid fluid 
(Prandtl and Tietjens, 1934; Tokaty, 1971; Saffman, 1992; Kundu et al., 2015;  
Wikipedia, 2015). Let us introduce the concept of vortex lines and vortex 
tubes before moving further. A vortex line is a line that is everywhere tan-
gent to the vorticity vector, while a tube made of vortex lines is a vortex 
tube (Wilcox, 2007). Helmholtz’s theorems may be expressed in the fol-
lowing three statements: (1) The strength of a vortex tube (its circulation) 
is constant along its length and with respect to time; (2) A vortex tube can-
not end within the fluid, as it must extend to the boundaries of the fluid 
or form a closed path; (3) Vortex lines move with the fluid. In real fluids, 
viscosity is finite and hence, vortices decay.

Circulation is defined as the integral of scalar (dot) product of vector 
velocity times vector displacement around a closed curve at some instant, 
that is

V d s V ds
t��

� � ∫∫Γ ≡ ⋅ =
	

(8.12)
Γ≡∮V→⋅ds→=∮Vtds

Figure 8.4  (a) Rotational flow versus (b) irrotational flow. (Created by B. Cheung).
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where s is the closed path and V
t
 is the tangential component of velocity 

vector V
�

. This is illustrated in Fig. 8.5, where V
n
 is the normal component 

of velocity vector V
�

.
According to Kelvin (1868), the circulation Γ around any loop in an 

inviscid fluid remains constant for material lines moving with the fluid. 
Kelvin’s theorem is usually stated for an incompressible fluid, but Batchelor 
(1967) pointed out that it may be applied to a barotropic compressible flow, 
which has density that is solely a function of pressure, that is, ρ = ρ(P), 
rather than ρ = ρ(P, T). All polytropic processes (P ρg = constant) of an 
ideal gas satisfy the requirement of barotropic flow, noting that isentropic 
(constant entropy) and isothermal processes are barotropic.

Moreover, Batchelor (1967) noted that Kelvin’s circulation theorem may 
be used to prove Helmholtz (1858) theorem that vortex tubes move with 
the fluid by putting a closed loop on the surface of the vortex tube; that is

φ πΓ = = Ω =V ds r r2 ( ) constant
A t	 (8.13)

See Fig. 8.6 for more on Eq. (8.13). The only way for Γ
A
 to always be con-

stant is if none of the vortex lines that make up the surface of the tube poke 
through the loop. So “A” must stay attached to the vortex tube, and since 
“A” is a material surface, the tube must be a material surface too.

V→
V→

ΓA=φVt ds=2πr (r Ω)=constant

Figure 8.6  Kelvin’s circulation theorem and Helmholtz’s theorem on a vortex tube.  
(Created by B. Cheung).

Figure 8.5  Circulation. (Created by B. Cheung).
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Another important invariant is the angular momentum. For a circular 
vortex tube such as that shown in Fig. 8.7,

= ΩIangular momentum	 (8.14)

where the moment of inertia of the tube, I = mr2/2, and the mass of the 
tube, m = ρπr2L. We can rewrite the angular momentum as

= Ωmrangular momentum /22
	 (8.15)

or from Eq. 8.13

π= Γmangular momentum /(4 )	 (8.16)

Since circulation is conserved and so is mass m for a material tube, the an-
gular momentum is also a constant in the absence of external forces such 
as friction.

At this point, we can examine the changes that occur when a vortex 
tube undergoes distortion. Consider an axially stretched two-dimensional 
vortex tube as depicted in Fig. 8.8. In a barotropic flow, the vortex tube is a 
material surface, so the mass in the tube remains constant; that is

ρπ= =m r L constant2
	 (8.17)

This can be rewritten as

ρπ=r Lconstant/2
	 (8.18)

angular momentum=IΩ

angular momentum=mr2Ω/2

angular momentum=mΓ/(4π)

m=ρπr2L=constant

r2=constant/ρπL

Figure 8.7  A vortex tube. (Created by B. Cheung).
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The most important invariant is probably the circulation, which can be 
expressed as

πΓ = Ω =r2 constant2	 (8.19)

Substituting for r2 gives

π πρΓ = Ω =L2 (constant/ ) constant	 (8.20)

or

ρΩ =L/ constant	 (8.21)

Batchelor (1967) expressed this more elegantly in terms of vorticity, 
w = 2Ω. The tangential velocity is related to the vorticity and the angular 
velocity via

ω= Ω =V r r /2
t	 (8.22)

Thus

πρΩ = =V r V L/ /(constant/ )
t t

1/2
	 (8.23)

Substitute this into Ω/ρL = constant, and we have

ρ πρ =V L/ (constant/ ) constant
Lt

1/2
	 (8.24)

Γ=2πr2Ω=constant

Γ=2π (constant/π
ρL) Ω=constant

Ω/ρL=constant

Vt=rΩ=rw/2

Ω=Vt/r=Vt/(constant/πρL)1/2
Vt/ρL(constant/πρL)1/2=constant

Figure 8.8  Invariant for vortex tube distortion. (Created by B. Cheung).
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Moving the constant on the left-hand side to the right, we have

ρ =V L/( ) constant
t

1/2
	 (8.25)

or

ρ =V L/ constant
t
2

	 (8.26)

This expression lucidly delineates that stretching (increasing) L leads to in-
creasing tangential velocity V

t
, and squashing (decreasing) L results in de-

creasing V
t
. In other words, a vortex loses its vigor when being squashed 

and intensifies when being stretched.

8.4  EVOLUTION OF VORTICITY

A rigorously derived vorticity equation is due. We will follow Currie’s 
(1974) detailed approach here. From the momentum equation for ρ = con-
stant, we have

∂
∂ ρ

ν φ+ ⋅∇ = − ∇ + ∇ + ∇U
t

U U P U
1 2

�
� � �

	
(8.27)

We can expand the second term on the left-hand side via tensor identity

( ) ( )( )⋅∇ = ∇ ⋅ − × ∇ ×a a a a a a1
2

� � � � � �
	 (8.28)

to get

∂
∂ ρ

ν φ( )+ ∇ ⋅



 − × ∇ × = − ∇ + ∇ + ∇U

t
U U U U P U

1

2

1 2

�
� � � � �

	
(8.29)

Taking curl (∇ ×), we get, for ν = constant

∂ω
∂

ω
ρ

ν φ( ) ( )+ ∇ × ∇ ⋅



 − ∇ × × = − ∇ × ∇ + ∇ × ∇ + ∇ × ∇

t
U U U

P
U

1

2
2

� � � � � �

	
(8.30)

But ∇ × ∇ = 0 for any scalar , and thus we are left with

∂ω
∂

ω ν( ) ( )− ∇ × × = ∇ × ∇
t

U U2
� � � �

	 (8.31)

We note that the pressure term disappears, significantly easing the problem 
at hand. Therefore, the vorticity equation can be expressed as

Vt/(ρL)1/2=constant

Vt2/ρL=constant

∂U→∂t+U→⋅∇U→=−1ρ∇P+ν∇2U→+∇φ

a→⋅∇a→=12∇a→⋅a→−a→×∇×a→

∂U→∂t+∇12U→⋅U→−U→×∇×U→=−
1ρ∇P+ν∇2U→+∇φ

∂w→∂t+∇×∇12U→⋅U→−∇×U→×w→
=−∇×∇Pρ+∇×ν∇2U→+∇×∇φ

∂w→∂t−∇×U→×w→=∇×ν∇2U→
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∂ω
∂

ω ν ω( )− ∇ × × = ∇
t

U 2

� � � �

	
(8.32)

for ρ = constant and ν = constant. Using vector identity, the second term 
can be expanded into

ω ω ω ω ω( ) ( ) ( )( ) ( )∇ × × = ∇ ⋅ − ∇ ⋅ − ⋅∇ + ⋅∇U U U U U
� � � � � � � � � �

	
(8.33)

We note that the divergence of the curl of a vector is zero, that is, ω∇ ⋅ = 0
�

.  
In addition, the conservation of mass for the incompressible case leads to 
∇ ⋅ =U 0
�

. Therefore, the vorticity equation is

ω ∂ω
∂

ω ω ν ω( ) ( )= + ⋅∇ = ⋅∇ + ∇D
Dt t

U U 2

� � � � � � �

	
(8.34)

where the partial derivative term is the storage and the subsequent one is 
the convective term. This expression can be expanded into

ω ω ν ω ρ
ρ

ω ( )( )= ⋅∇ + ∇ + ∇ × ∇ − ∇ ⋅D
Dt

U
P

U2
2

�
� � � � �

	
(8.35)

plus additional terms if ν ≠ constant.
For varying density flow where ρ ≠ constant, we see that

1.	 

ρ ρ ρ
ρ( )∇ × − ∇







= − ∇ × ∇ + ∇ × ∇P P P
1 1 1

2
	

(8.36)

where the first term on the right-hand side is zero since the curl of a gradi-
ent of a scalar is zero;
2.	 

ω ( )− ∇ ⋅ ≠U 0	 (8.37)

where the term in the brackets is greater than zero for volume expansion; 
that is, volume expansion decreases the magnitude of vorticity;
3.	 

U2 2ν ω( )∇ × ∇ = ∇ +�	 (8.38)

where the three dots on the right-hand side signify additional terms when 
m or ν is not a constant.

∂w→∂t−∇×U→×w→=ν∇2w→

∇×U→×w→=U→∇⋅w→−w→∇⋅U→−U→⋅∇w→+w→⋅∇U→

∇⋅w→=0

∇⋅U→=0

Dw→Dt=∂w→∂t+U→⋅∇w→=w→⋅∇U→+ν∇2w→

Dw→Dt=w→⋅∇U→+ν∇2w→+∇ρ×∇Pρ2−w→∇⋅U→

∇×−1ρ∇P=−1ρ∇×∇P+1ρ2∇ρ×∇P

−w¯∇⋅U¯≠0

∇×ν∇2U¯=∇2w¯+...
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It is worth stressing that for constant density and viscosity flows, 
pressure does not appear explicitly. As such, the vorticity and velocity 
vectors may be obtained with no knowledge of pressure. In this case, the 
pressure acts through the center of gravity of each element, producing 
no vorticity.

Let us look at the tilting/stretching term. Knowing that

ω ω ∂
∂

ω ∂
∂

ω ∂
∂

⋅∇ = + +
x y zx y z

�

	
(8.39)

we have
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For example, Fig. 8.9a depicts the effect induced by tilting terms such as
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(8.41)

Stretching of a vortex tube is illustrated in Fig. 8.9b. This axial stretching 
can be caused by

ω ∂
∂

ω ∂
∂

ω ∂
∂

u
x

v
y

w
z

, ,
x y z

	
(8.42)

The combined tilting and stretching can lead to the transition of the bound-
ary layer as portrayed in Fig. 8.9c as a side view and in Fig. 8.9d as a plane 
view.

8.5  INTERPRETING TANGENTIAL VELOCITY 
AS TURBULENCE

We may model flow turbulence in terms of the three orthogonal vorti-
cal structures as shown in Fig.  8.10 (Wilson,  1989). The vortex tube ly-
ing with its axis along the x direction has a tangential velocity that will 
produce turbulence velocities v and w. Consider this vortex tube L

x
, from 

V
t
2/ρL = constant, we have

w→⋅∇=wx∂∂x+wy∂∂y+wz∂∂z

w→⋅∇U→=wx∂u∂x+wy∂u∂y+wz∂u∂ziˆ+wx∂v∂x+wy∂v∂y+w
z∂v∂zjˆ+wx∂w∂x+wy∂w∂y+wz∂w∂zkˆ

wy∂u∂y,wz∂u∂z,wx∂v∂x,wz∂v∂
z,wx∂w∂x,wy∂w∂y

wx∂u∂x,wy∂v∂y,wz∂w∂z
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ρ
ρ

= =
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0	
(8.43)

This applies to all x-aligned vortex tubes in a barotopic flow with 
ρ = ρ(P). It is clear that stretching this tube increases the fluctuating in-
tensities in the y and z directions. Similarly, the stretching of the y-aligned 
vortex tube results in the intensification of u and w. And elongating the z-
aligned vortex tube produces augmentation of u and v.

v12¯v02¯=w12¯w02¯=Lx1Lx0ρ
1
ρ

0

Figure 8.9  Tilting and stretching of vortex tubes: (a) ∂u/∂y > 0, (b) ∂u/∂x > 0, (c) side 
view of a boundary layer development, (d) plane view of a boundary layer develop-
ment. (Created by J. Smith).
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8.5.1  Stretching of Vortex Tubes by Flow Acceleration
If the flow velocity U accelerates from U

0
 to U

1
, then the vortex tube L

x
 will 

be stretched as depicted in Fig. 8.11. In time ∆t the length L will change by

∆ = + − ∆L U dU dx L U t{[ ( / ) ] }	 (8.44)

or

=dL dt L dU dx/ /	 (8.45)

∆L={[U+(dU/dx) L] − U} ∆t

dL/dt=L dU/dx

Figure 8.11  Stretching a streamwise vortex tube in the streamwise direction. (Created 
by J. Smith).

Figure 8.10  The three orthogonal vortex model. (Created by N. Cao).
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This can be rearranged into

=dL L dU dx dt/ /( / )	 (8.46)

or

=dL L dU U/ /	 (8.47)

Integrate this from L
0
 to L

1
, and we get

=L L U Uln( / ) ln( / )
1 1 00	 (8.48)

or

=L L U U/ /
1 0 1 0	 (8.49)

When a straight vortex tube is stretched axially, such as that shown in 
Fig. 8.11, the corresponding velocity components in the two orthogonal 
directions augment. This implies a corresponding enhancement in the tur-
bulence intensity. If the stretching is in the x direction, then the increases 
in V and W signify intensification of v and w. The other outcome of the 
stretching is the decrease in vortex diameter, which represents the eddy size. 
Recall from Chapter 4 that both an increase in turbulence intensity and 
a decrease in eddy size serve to escalate the rate of dissipation. This tug-
of-war can result in a higher or lower turbulence level, depending on the 
specific conditions involved. In general, the immediate outcome is elevated 
turbulence intensity, while the prolonged outcome is weakened turbulence.

8.5.2  Oblique Vortex Tubes Passing Through a Contraction
It is interesting to note that oblique vortex tubes can rotate, even in an ir-
rotational flow. Let us examine two oblique vortex tubes passing through 
a two-dimensional contraction as depicted in Fig. 8.12. For incompressible 
flow, mass conservation requires that the volume of the fluid element re-
main unchanged. As such, the area of the two boxes in the figure is the same. 
If the flow is irrotational, we require only that the net rotation of the two 
vortex tubes A–A and B–B be equal and opposite. Specifically

θ θ∂ + ∂ =x( ) / 0
A B	 (8.50)

Nevertheless, the rotation of these oblique vortex tubes causes a redistribution 
of velocity components as some U becomes V. Thereupon, the distortion of 
oblique vortex tubes redistributes turbulence energy from u2 to v2 .

Shear such as that in a boundary layer can produce similar effects as that 
just discussed. Figure 8.13 shows a vortex tube initially aligned with the 

dL/L=dU/(dx/dt)

dL/L=dU/U

ln(L
1
/L

0
)=ln(U

1
/U

0
)

L
1
/L

0
=U

1
/U

0

∂(uA+uB)/∂x=0

u2¯v2¯
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y-axis, which is distorted by the boundary layer flow. As the mean flow is 
rotational, the effect in shear flow is relatively larger. We see that some of the 
energy associated with U and W is redistributed into V.

8.5.3  Compressing a Vortex Tube
Another way to distort a vortex tube is via compression or expansion.  
Figure 8.14 shows the compression of a vortex tube. We see that both the 
vortex tube length and the vortex core radius are reduced under compres-
sion. The shape and aspect ratio of the vortex tube itself, on the other hand, 
remain unchanged.

8.5.4  Vortex Tube Distortion by an Expanding Sphere
In a spark-ignition combustion chamber, the expanding flame can seri-
ously alter the vortical structures in the chamber, and vice versa. Let us  
approximate the enlarging flame ball as a nonreacting expanding sphere in 
an open atmosphere where the pressure remains constant. In the ideal situa-
tion portrayed in Fig. 8.15, the two vortices parallel to the sphere surface are 
stretched while the one normal to the expanding sphere is squashed. The 

Figure 8.12  Oblique vortex tubes passing through a two-dimensional contraction. 
(Created by J. Smith).

Figure 8.13  Reorientation of a vortex tube by shear flow. (Created by J. Smith).
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Figure 8.14  A vortex tube undergoing compression. (Created by M. Ahmadi-Baloutaki 
based on Ting [1995]).

Figure 8.15  Three orthogonal vortex tubes in front of an expanding sphere in open 
atmosphere. (Created by Ting [1995]).
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stretching of the two parallel vortex tubes leads to an increase in turbulence 
intensity, while the squashing of the normal one reduces the associated 
intensity perpendicular to the sphere surface. This geometric distortion 
is most intense immediately ahead of the growing sphere and diminishes 
farther away. Therefore, it can enhance the sphere front turbulence signifi-
cantly, just as the sphere arrives. However, it has little effect on the overall 
turbulence decay rate in the flow field away from the sphere.

In reality, the combustion chamber is closed. As such, the expanding 
sphere in a closed vessel compresses the enclosed fluid, including the liquid 
far ahead of the sphere. This compression leads to increases in the turbu-
lence intensity ahead of the sphere. The smaller, compressed vortical struc-
tures tend to also increase the turbulence decay rate. A theoretical estimate 
of spark-ignited, 70% stoichiometric methane-air (initially at atmospheric 
pressure and temperature) turbulent combustion inside a 2 L3 combustion 
chamber with an equivalent radius of 76.6 mm (Ting, 1995) is portrayed 
in Fig. 8.16. For the purpose of this discussion, we simply treat the growing 
flame as a spherically expanding ball somewhat similar to the deployment 
of an air bag in a spherical enclosure with a radius of 76.6 mm. The (initial) 
turbulence was generated by passing a grid across the chamber; the resulting 
integral length was approximately 4 mm. The solid normal decay line il-
lustrates normal turbulence decay with respect to time, without considering  

Figure 8.16  Estimated rapid distortion effects on an expanding sphere front turbu-
lence, Λ≈4 mm, chamber equivalent radius = 76.6 mm. (Created by A. Goyal based on 
Ting [1995]).
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any effect of distortion. We note that (geometric) distortion for a freely ex-
panding sphere, as discussed in the previous paragraph, only effectively ap-
plies to the region just ahead of the sphere. The dashed, normal decay plus 
geometric distortion line accounts for the influence of sphere front distor-
tion, in addition to normal decay. Note that sphere front distortion is most 
pronounced when the expansion is greatest. This occurs when the sphere 
is smallest where the chamber pressure is lowest and thus, least resistant to  
the expansion. Considering the effect of compression, in addition to normal 
decay, leads to the dotted normal decay plus compression line. Compression 
is proportional to the chamber pressure; it is negligible initially and peaks at 
the end as the pressure maximizes out. The dash-dotted, normal decay plus 
geometric distortion plus compression line depicts the cumulative result en-
compassing normal decay, geometric or sphere front distortion, and compres-
sion. What has not been included is the presumably heightened decay rate.

It is thus clear that vortex dynamics plays a significant role in flow tur-
bulence study. Like turbulence, vorticity at times must be feared and not 
messed with; see Fig. 8.17.

Problems

Problem 8.1 Forced versus free vortex
A fluid in a circular container undergoes a rigid body rotation, that is, 
V

r
 = 0 and V

u
 = f(r), where r is the radial distance from the center. Deduce 

the rotation, vorticity, and circulation. Is it possible to choose f(r) so that the 
flow is irrotational? How?

Figure 8.17  Fearful vorticity. (Created by S.P. Mupparapu, edited by D. Ting).



Vortex Dynamics 185

Problem 8.2 Rapid distortion of turbulence
A wind tunnel for generating isotropic turbulence has a symmetric con-
traction that decreases from a 1 m by 1 m into a 0.4 m by 0.4 m cross sec-
tion. Calculate the change in the turbulence components u

rms
, v

rms
, and w

rms
 

passing through the contraction. Also estimate the change in the turbulent 
kinetic energy and the relative turbulence intensities.

Problem 8.3 Vortex ring from an underwater balloon
The underwater balloon in Vasel-Be-Hagh et al. (2015) is assumed to be a 
perfect sphere where all its potential energy is converted into a smooth vor-
tex ring propagating upward. Deduce the circulation and the upward prop-
agation speed of the vortex ring at 3 m below the water level if the sphere 
is of 1 L and initially located at 7 m below the water level. You may first 
assume that the vortex ring expansion rate is negligible. What would some 
instabilities that corrugate the vortex ring do to the propagation speed?
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CHAPTER 9

Sphere and Circular Cylinder 
in Cross Flow

The difference between something good and something great is attention 
to detail.

–Charles R. Swindoll
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NOMENCLATURE
C

D
	 Drag coefficient, = F

D
/(½ρU2D); where F

D
 = drag force

d, D	 Diameter
f	 Frequency
h	 (Convective) heat transfer coefficient
k	 Thermal conductivity
Nu	 Nusselt number, convection/conduction, = hD/k
Re	 Reynolds number, inertia force/viscous force, = UD/ν
St	 Strouhal number, = fD/U
t	 A characteristic time period, a time scale
TrBL	 Transition in the boundary layer
Tu	 Turbulence intensity
U	 Velocity

Greek Symbols
Λ	 Large length scale; integral length
ν	 Kinematic viscosity
ρ	 Density
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9.1  INTRODUCTION

A sphere or a circular cylinder in cross flow is one of the most basic sce-
narios in nature and in engineering applications. Furthermore, both spheres 
and circular cylinders furnish the simplest element of flow over a bluff body. 
No wonder these classic, more than a century old, fluid-structure beauties 
continue to attract so much attention; see Tan et al. (2005), Thompson et al. 
(2006), Almedeij (2008), Yeung (2008, 2009), Rodríguez et al. (2013), Fu-
kada et al. (2014), and Cai and Sun (2015). Some of the recent endeavors re-
main focused on the flow and/or conventional aerodynamic control (Choi 
et al., 2008), while others venture into bio-mimicry such as those involv-
ing hydrophobic surfaces (You and Moin, 2007; Muralidhar et al., 2011). 
Among other objectives, reducing drag and vibration is a common practi-
cal goal behind many of these studies (Byon et  al.,  2010; Muddada and 
Patnaik, 2010; Gruncell et  al.,  2013). We will limit our discussion to the 
effect of free-stream turbulence on a smooth, conventional sphere and on a 
smooth, circular cylinder.

9.2  FLOW OVER A SMOOTH SPHERE

Laminar free stream over a smooth sphere is a classical example of flow over 
a bluff body. It is presumably the simplest three-dimensional bluff body 
because it is axisymmetric. Table 9.1 summarizes the flow characteristics for 
a smooth sphere in “laminar” flow (Tyagi et al., 2004, 2006), where “lami-
nar” is assumed as having free-stream turbulence less than 0.5%. Strouhal 
number is defined as St = fD/U, where f is the vortex shedding frequency, 
D is the diameter of the sphere, and U is the free-stream velocity. The key 
information utilized in creating this summary table came from Achenbach 
(1972) and Taneda (1978). The critical Reynolds number is defined as the 
Reynolds number at which the drag coefficient C

D
 undergoes a sudden 

drop, after remaining roughly constant over a wide range of Re, as shown in 
Fig. 9.1. This abrupt reduction in drag is associated with a leeward shift of 
the separation location (circle). The main features associated with the flow 
around a sphere are sketched in Fig. 9.2.

It is relatively well-accepted that an increase in flow turbulence advances 
the laminar-to-turbulent boundary layer transition to a lower Reynolds 
number compared to its “smooth flow” counterpart. This transition reduces 
the adverse pressure gradient around the sphere, delaying the separation 
point farther downstream. As a result, the pressure drag is progressively low-
ered with increasing free-stream turbulence. The most noticeable outcome 
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Table 9.1  Flow characteristics of a smooth sphere in laminar free stream.

Re < 20 20 < Re < 400 400 < Re < 103

103 <  
Re < 3 × 103

3 × 103 <  
Re < 6 × 103

6 × 103 <  
Re < 3 × 105

3 × 105 <  
Re < 5 × 106

Characteristic Potential 
flow

Vortex ring Vortex loops – Lower critical Re – Higher  
critical Re

Boundary 
layer

Laminar Laminar Laminar Laminar Laminar Laminar Turbulent

Wake - Negligible  
periodic  
fluctuations

Strong  
periodic 
fluctuations

Strong  
periodic  
fluctuations

Strong  
periodic  
fluctuations

Strong  
periodic  
fluctuations

Stop  
fluctuating  
periodically

St - ∼0.2 ∼0.2 ∼0.2 ∼0.2, ∼2.0 ∼0.2, ∼2.0 -
No  

sepa-
ration

A stationary  
vortex ring  
on the  
leeward 
side

The vortex  
ring 
stretched 
into vortex 
loops

Vortex loops  
diffuse into  
the wake

St-Re  
discontinuity  
@ Re∼6 × 103

Separation 
point shifts 
leeward

C
D
-Re  
discontinuity  
@ Re∼3 × 105

Source: Based on Achenbach (1972) and Taneda (1978).
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of this is the advancement of the critical Reynolds number associated with 
this drag crisis. Among many others, Torobin and Gauvin’s (1961) experi-
mental results clearly portray the progressively lowered critical Reynolds 
number with increasing turbulence intensity. This effect also appears to be 
more obvious at higher or moderately high Re.

Furthermore, the wind tunnel experiments of Moradian et  al. 
(2009,  2011) appear to concur with studies such as that of Savkar et  al. 
(1980) that conclude turbulence with integral length scale of size equal to 
or somewhat less than the diameter of the bluff body is more effective in 
advancing the drag crisis. Figure 9.3 summarizes the effects of Reynolds 
number, turbulence intensity and integral length scale on the drag coef-
ficient of a smooth sphere, as deduced by Moradian et al. (2009, 2011). It is 
worth mentioning that the corresponding standard C

D
 value over this range 

of Re is around 0.5. The results seem to show that a higher level of turbu-
lence always leads to a lower C

D
, notwithstanding the fact that the range of 

studied condition is limited. More interestingly, for the same relative turbu-
lence intensity at a particular Re, integral length scale Λ of approximately 
the diameter (D) of the sphere leads to the lowest C

D
.

As mentioned earlier, one key role of free-stream turbulence is in ad-
vancing the laminar-to-turbulent boundary layer transition. The underlying 

Figure 9.1  Drag coefficient of a sphere as a function of Reynolds number. (Created by 
A. Goyal).
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physics associated with the integral length scale effect, however, is less obvi-
ous. There are at least two important dimensions concerning flow over a 
sphere: the thickness of the boundary layer, especially that just upstream of 
the separation point; and the size of the wake, which may be approximated 
by the diameter of the sphere. The sphere results presented in Moradian 
et al. (2009, 2011) seem to suggest that, over the range of studied conditions, 
turbulent flow with eddy sizes which fall in around the boundary-layer 
thickness and wake size is most effective in advancing the drag crisis.

Figure 9.2  Laminar flow around a sphere at: (a) Re  <  20; (b) 20  <  Re  <  400; 
(c) 400 < Re < 103; (d) 103 < Re < 3 × 103; (e) Re > 3 × 103. (Created by H. Tyagi).
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9.3  SMOOTH FLOW ACROSS A CIRCULAR CYLINDER

For a smooth circular cylinder in a smooth (non-turbulent) cross flow, the 
general flow regimes are relatively well-defined (Blevins, 1990; Zdravkov-
ich, 1997). However, the details and the subdivisions within these exten-
sively studied flow regimes are still subject to debates and are still being 
scrutinized by many researchers today. This is particularly true at Reynolds 
numbers in excess of a few hundred thousand, where our understanding 
of the complex fluid mechanics and steady and unsteady loading on the 
cylinder is far from complete (Zan, 2008). Figure 9.4 portrays the typi-
cal C

D
 versus Re plot. The general flow regimes, especially for Reynolds 

numbers less than a million, can be more or less described in the following 
manner:

Regime 1: Creeping Flow (Re ≤ 5).
For Reynolds numbers of less than approximately five, the streamlines 

firmly attach around the cylinder circumference with no visible wake on 
the leeward side. Thus, this flow regime is referred to as the regime of un-
separated flow.

Regime 2: Steady, Closed Near-Wake (5 ≤ Re ≤ 45).
When the Reynolds number is increased to larger than roughly five, a 

pair of standing vortices is formed in the near-wake. This fixed pair of vor-
tices is commonly known as Föppl vortices.

Figure 9.3  Effects of turbulence intensity and integral length scale on the C
D
-Re curve 

of a smooth sphere. (Created by N. Moradian).
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Regime 3: Laminar Vortex Street (45 ≤ Re ≤ 190).
As the near-wake elongates and becomes unstable with increasing 

Reynolds number, a sinusoidal oscillation of the shear layers is initiated at 
the confluence point. The amplitude of this trail oscillation increases with 
increasing Re, until the well-known von Kármán (1911, 1912) vortex street 
is formed. According to Zdravkovich (1997), Bénard should also be credited 
for this discovery; that is, this vortex street should be called von Kármán-
Bénard vortex street.

Regime 4: Transition in Shear Layers (190 ≤ Re ≤ 3 × 105).
The laminar vortices in the wake become irregular and distorted when 

the Reynolds number is increased beyond a value of approximately 190. 
These nonlaminar vortical structures are formed by the rolling up of transi-
tion waves. When Re reaches a large enough value, there is a sudden burst 
into turbulence in the free shear layer near the cylinder. Consequently, tur-
bulent eddies are formed near the rear of the cylinder. The pre-critical re-
gime, characterized by the intrinsically three-dimensional near-wake, comes 
into existence at Re of around 3 × 105.

Regime 5: Critical Regime (3 × 105 ≤ Re ≤ 3 × 106).
This regime may be further divided into sub-regimes, from sub-critical to 

super-critical. A single separation bubble is formed on one side of the cylin-
der; this bias is portrayed as a preferential lift. With a further increase in Re, the 
second separation bubble emerges, and the overall flow returns to symmetry. 
This regime is characterized by a serious drop in the drag coefficient. This 

Figure 9.4  Drag coefficient of a circular cylinder as a function of Reynolds number.  
(Created by A. Goyal based on data from Younis and Ting [2012]).



Basics of Engineering Turbulence196

drastic drag reduction is attributed to the transition of the laminar boundary 
layer into a turbulent one. Associated with the turbulent boundary layer is the 
narrowing of the wake and the cessation of regular vortex shedding.

Regime 6: Post-Critical Regime (Re ≥ 3 × 106).
This regime is also called the trans-critical regime. It was a surprise 

discovery by Roshko (1961), who found the reestablishment of turbulent 
vortex street when Re exceeds one million.

Note that for flows with Reynolds numbers larger than about 105 (Re-
gimes 4, 5, and 6 covered above), the flow regimes can be categorized accord-
ing to the physical state of the boundary layer. The transition in the boundary 
layer (TrBL) can start at Re of 1 × 105, with an upper bound of roughly 
5 × 106. Following this description approach, we can further sub-divide the 
TrBL regime into TrBL0, where the drag is significantly decreasing with sepa-
ration points moving leeward: TrBL1, where a laminar bubble is formed on 
one side of the cylinder; TrBL2 with two laminar bubbles behind the cylinder 
and hence, return of flow symmetry; TrBL3, where the bubbles are disrupted 
in the span-wise direction; and TrBL4, where the bubbles are eliminated.

9.4  A CIRCULAR CYLINDER IN TURBULENT CROSS FLOW

The general notion from over a century of intensive research is that the 
shape of the C

D
 versus Re curve is not significantly altered in the pres-

ence of turbulence. Free-stream turbulence affects the aerodynamics most-
ly in shifting the flow regimes downward, that is, increasing the effective 
Re (Fage and Warsap, 1929; Kiya et al., 1982; Mulcahy, 1984; Sanitjai and 
Goldstein,  2001; Ai et  al.,  2013). Ohya (2004) deduced the drag coeffi-
cient of a circular cylinder in an extremely high-turbulence atmospheric 
flow (typhoon) and found the corresponding C

D
 values roughly equal to 

those measured in smooth wind tunnel flows. Zan (2008) used two grids 
to generate 5% and 33 mm integral length, and 13% and 74 mm integral 
length wind in a pressurized wind tunnel. With circular cylinders of 38, 75, 
and 150 mm diameters, Zan managed to vary the Reynolds number from 
1 × 105 to 2 × 106 in the presence of the grid. Zan found that for the 5% 
turbulence case, the Strouhal number (St) first increases from about 2.7 to 
3.3, followed by a region without coherent shedding, and re-emergence of 
shedding with St falling to the typical 0.2 value at Re above 2 × 106, with 
increasing Re. Thus, Zan concluded that free-stream turbulence promoted 
the return of strong coherent shedding at Reynolds numbers significantly 
lower than that for smooth flow.
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It is most interesting to note that Ohya (2004) suggests that when the 
free-stream turbulence has (length) scales orders of magnitude larger than 
those associated with the cylindrical structure under consideration, the free-
stream turbulence loses its relevance. Zan (2008) unfortunately did not ex-
amine the potential role played by the integral length. This is possibly, at 
least in part, because he was limited by only two values of integral length; 
nonetheless, with the three different cylinder sizes, there were six different 
integral length-cylinder diameter ratios to play with.

Other than the well-accepted augmentation of effective Re with in-
creasing turbulence intensity, there is a lack of a consensus in the open 
literature concerning other details. These details include: (1) the possibility 
of very different effects of free-stream turbulence in different (smooth) flow 
regimes; (2) the dissimilar physics when dealing with a low, moderate, and 
high level of turbulent flow; and (3) the unique role of turbulence length 
scale. Concerning the role of turbulence length scale, many studies have 
found that its effect is inconsequential when compared to the turbulence 
intensity effect. There are, nevertheless, quite a few treasured exceptions 
amidst the copious publications.

Younis and Ting’s (2012) circular cylinder results, as plotted in Figs 9.5 
and 9.6, very much concur with Moradian et  al.  (2009, 2011) sphere in 
turbulent flow findings. Note that the corresponding value of C

D
 for the 

Figure 9.5  Drag coefficient of a circular cylinder with respect to Reynolds number un-
der the influence of free-stream turbulence. (Created by A. Goyal based on data from You-
nis and Ting [2012]).



Basics of Engineering Turbulence198

standard nonturbulent flow over a smooth circular cylinder is around 1.2. 
Over the range of conditions considered, the most effective drag-reducing 
turbulence is that which has the highest intensity and smallest eddy size at 
the highest Reynolds number. The optimum drag reduction relative inte-
gral length for the circular cylinder case seems to be smaller than that for 
the sphere; that is, the smallest Λ/d of about 0.35 tested in the cylinder case 
as compared to Λ/d of around unity in the sphere study. Another interest-
ing observation not found in Moradian et al. (2009, 2011), but showed up 
quite consistently in Younis and Ting (2012) is the relatively high “smooth 
flow” C

D
 value at moderately low relative turbulence intensity of around 

5%, and with Λ/d of around unity. This hump, which occurs just before the 
turbulence-advanced drop in C

D
 has also been observed by researchers such 

as Savkar et al. (1980).

9.5  TURBULENT FLOW OVER A HEATED CIRCULAR CYLINDER

Turbulent forced convection from a circular cylinder has been extensively 
researched. Nevertheless, the general consensus concerning the effect of 
turbulence is still only limited to the qualitative trend of increasing Nusselt 

Figure 9.6  Effects of turbulence intensity and integral length scale on the C
D
-Re curve of a 

smooth circular cylinder. (Created by A. Ahmed based on data from Younis and Ting [2012]).
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number (Nu  =  hD/k; where h is the heat transfer coefficient, D is the 
diameter of the cylinder, and k is the thermal conductivity of the fluid) 
with increasing Re. There is an appreciable measure of scatters (in excess 
of ±50%) in the data on the amount of heat transfer enhancement induced 
by the free-stream turbulence. We believe that a significant portion of this 
scatter is due to the very different turbulence generated in various studies, 
and that the level of turbulence in addition to Re alone is inadequate in 
specifying the dissimilar turbulence encountered from one study to another. 
Even for the simplest form of turbulence, the quasi-isotropic turbulence 
generated by a well-designed orificed grid (Liu and Ting, 2007), both the 
turbulence intensity and the integral length scale are required to formulate 
a minimum description for the turbulent flow. Systematic studies on the ef-
fect of eddy size on convection heat transfer are very scarce in the literature; 
on the contrary, there are many published papers which do not have a clear 
basic understanding of turbulence claiming that the role of integral length 
is non-consequential. We wish to single out van der Hegge Zijnen (1958) 
and Žukauskas et al. (1993), for they are some of the very few researchers 
who have systematically and successfully scrutinized the subtle role of tur-
bulent length scale. Both studies agree that there is some sort of optimum 
Λ/d at which Nu peaks, at a given Re and turbulence intensity. This opti-
mal Λ/d value deduced by van der Hegge Zijnen (1958) over the range of 
flow conditions considered is approximately 1.5, whereas that obtained by 
Žukauskas et al. (1993) over the conditions they explored is significantly 
smaller at around 0.1. Figure 9.7 compares the results obtained by Sak et al. 
(2007) with Žukauskas et al. (1993) study; keep in mind that the condi-
tions such as Re and turbulence intensity differ among these studies. We 
see that while the values of relative Nusselt number obtained by Sak et al. 
(Re = 2.8 × 104 and 6.7% turbulence) are lower than that of Žukauskas 
et al., their qualitative trends are quite agreeable.

In short, forced convection heat transfer around a cylinder is very 
much dictated by the flow around the bluff body. We expect turbulence 
of eddies on the order of the boundary layer and of the wake to have the 
largest impact on the rate of heat transfer. We are not aware of any study, 
which finds an attenuation of heat transfer rate with the introduction of 
turbulence. Therefore, we believe that turbulence of integral length on 
the order of boundary-layer thickness is likely most effective in augment-
ing the heat transfer. Eddies of the same size as the wake are also likely of 
significance and may alter the wake and potentially the separation point, 
as well.
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9.6  SOME COMMENTS ON FLOW OVER A BLUFF BODY

To conclude, it is clear that there remains much work to be done in scru-
tinizing the various roles of the underlying turbulence parameters in bluff 
body aerodynamics and in convection heat transfer from a simple bluff body 
such as a smooth circular cylinder. The minimum requirement for conduct-
ing this type of research is some quasi-independent manipulation of the 
key turbulence parameters, in addition to controlling the Reynolds number 
independently.

Problems

Problem 9.1. Flow across a row of square plates
Four 7 cm × 7 cm plates are placed parallel to a 1 m/s water (at 20 °C) flow. 
In one configuration, the four plates are placed one after another, forming a 
7 cm × 28 cm rectangular plate with its longer dimension (28 cm) parallel 
to the flow. In another configuration, there is a spacing of 3.5 cm between 
consecutive plates. Calculate the total drag of both configurations by as-
suming (1) laminar boundary layer flow, (2) turbulent boundary layer flow.

Problem 9.2. Dragging a sphere in water
A 1 m sphere of specific gravity of 0.5 is fully submerged in 20°C water. 
It is dragged by an underwater vehicle by a thin 2 m long wire. The wire 
makes a 45° angle with respect to the horizontal plane. What is the speed 
of the sphere?

Figure 9.7  The subtle role of turbulent integral length scale on the Nu-Re relationship 
for a smooth circular cylinder. (Created by A. Goyal based on data from Sak et al. [2007]).
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Problem 9.3. Dimple versus flow agitation
You have a choice to create dimples on a sphere or to agitate the free stream 
with eddies of equivalent size. Which way is more effective in advancing the 
drag crisis? Backup your answer as rigorously as possible.
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CHAPTER 10

Premixed Turbulent Flame 
Propagation

I consider nature a vast chemical laboratory in which all kinds of composition 
and decompositions are formed.

–Antoine Lavoisier
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NOMENCLATURE
A	 Area
Da	 Damköhler number, Da = characteristic turbulence time scale/characteristic chemi-

cal time scale
h	 Height
K

L
	 Karlovitz stretch, K

L
 = local flame residence time/laminar flame stretching time

KE	 Kinetic energy
L	 Length
Le	 Lewis number, Le = rate of energy (heat) transport/rate of mass transport
m

l
′	 Mass burning rate of a laminar flame

m
t
′	 Mass burning rate of a turbulent flame

Ma	 Markstein number, sensitivity of flame speed to stretch
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P	 Pressure
pdf	 Probability density function
r	 Radius; subscripts “i” and “o” signify inner and outer, respectively
r
m
	 Mean flame radius

r
um

	 Mean flame radius of a sphere enclosing the burned volume
R	 Radius
R

t
	 Turbulent flame propagation speed

Re	 Reynolds number
rms	 Root mean square
rpm	 Revolutions per minute
S

l
	 Laminar flame speed, laminar burning velocity

S
f
	 Flame propagation rate

S
t
	 Turbulent flame speed

SI	 Spark ignition
STP	 Standard temperature and pressure
t	 Time
T	 Temperature
T

b
	 Burned temperature

T
u
	 Unburned temperature

u′	 Turbulence intensity
V	 Velocity
V

b
	 Velocity of the burned gas

V
u
	 Velocity of the unburned gas

x	 Thickness, distance in the x direction

Greek and other symbols
∆x

b
	 Thickness of the burned mixture element

∆x
u
	 Thickness of the unburned mixture element

d
l
	 Laminar flame front thickness

η	 Kolmogorov microscale
Λ	 Large integral length
λ	 Taylor microscale
ρ	 Density; ρ

b
 is the burned mixture density, ρ

u
 is the unburned mixture density

τ
chem

	 Chemical time scale
τ

flow
	 Flow time scale

Ω	 Angular velocity
w	 Vorticity
∀	 Volume

10.1  INTRODUCTION

At this point we are quite comfortable with the general notions of laminar 
and turbulent flows. For laminar flows, the adjacent layers of fluid slide past 
one another in a smooth, orderly manner. The mixing is due to molecular 
diffusion. In turbulent flows, eddies move randomly in all directions, cross-
ing adjacent fluid layers and significantly enhancing mixing.
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The flows in most practical combustion devices are turbulent. Further-
more, turbulence is often designedly created and/or enhanced in order to 
augment the mass-burning rate. This increase in the chemical energy release 
rates in turn boost the power output. For example, as the speed (rpm) of an 
internal combustion engine is increased, the turbulence intensity increases, 
and thus the mass burning rate. For this reason, parameters such as spark 
timing do not have to be drastically altered as the engine speed changes.

What is turbulent combustion? It is somewhat difficult to provide a 
definite, rigorous answer to this. Nonetheless, in a general sense, we may 
view turbulent combustion simply as combustion characterized by turbu-
lent flow. By the same token, laminar combustion is combustion, which 
takes place in a laminar environment. We are going to focus only on pre-
mixed flames in which the fuel and the oxidizer are well-mixed prior to 
ignition. Before going further, let us brief ourselves with some of the basic 
terminologies involved. Keep in mind that the purpose of this chapter is to 
illustrate flow turbulence in applications.

10.1.1  Premixed Laminar Flame
For a premixed laminar flame, it is possible to define a flame velocity that, 
within reasonable limits, is independent of the experimental apparatus. In 
other words, the laminar flame speed or laminar burning velocity depends 
only on the fuel, oxidizer, and transport properties such as thermal conduc-
tivity, viscosity, and molecular diffusivity. We will see that to define a turbu-
lent flame velocity in such a rigorous manner is not possible.

The laminar flame speed or the laminar burning velocity

S dx dt/
l

=	 (10.1)

is well-defined, at least theoretically, as portrayed in Fig. 10.1. This laminar 
flame speed is simply the speed of the unburned mixture entering the flame 
front. We note that multiplying this laminar flame speed with the surface 
area of the flame (combustion wave) gives the volumetric burning rate. 

Sl=dx/dt

Figure 10.1  A planar, premixed, laminar flame. (Created by D. Ting).
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With the accepted reference at standard temperature and pressure (STP), 
this can easily be converted into mass burning rate, the primary parameter 
of practical concern. In other words, laminar flame speed is the parameter 
that depicts the fundamental burning rate that is defined by the chemistry 
and thermodynamic state.

Returning to Fig.  10.1, the thickened element of unburned mixture 
of thickness ∆x

u
 is consumed over an infinitely small time step dt; hence, 

S
l
  =  ∆x

u
/dt. We note that the organized one-dimensional laminar flow 

does not alter the chemistry. Accordingly, the laminar flame speed depends 
uniquely on the thermal and chemical properties of the mixture and the 
thermodynamic state defined by T and P. After the unburned mixture 
(reactants) in element ∆x

u
 combusts, the resulting products are at a much 

higher temperature. Consequently, the element expands from ∆x
u
 into ∆x

b
, 

where the thickness ratio ∆x
b
/∆x

u
 is defined by the corresponding density 

ratio ρ
u
/ρ

b
. In the ideal situation with the right end of the tube closed and 

that on the left open in Fig. 10.1, the flame can only progress to the left. 
Under this condition, the laminar flame speed can be deduced from the 
propagation speed, which is the rate at which the flame travels. Specifically

S dx dt( / ) /
l b u b

ρ ρ=	 (10.2)

Here, dx
b
/dt is the flame propagation speed.

10.1.2  Premixed Turbulent Flame
Under the influence of flow turbulence, the flame front may be distorted, 
as depicted in Fig. 10.2. We may define an equivalent flame speed, which is 
somewhat analogous to the laminar flame speed defined above. The right 
vertical dashed line in Fig. 10.2 symbolizes the mean location of the wrin-
kled turbulent combustion wave, which is portrayed by the wrinkled line 
on the right. Note that the wrinkled flame front is smooth on the unburned 
side, while it is rather pointed on the burned side. This is due to the com-
paratively faster volume or mass consumption in the valleys next to the 

Sl=(ρb/ρu) dxb/dt

Figure 10.2  A one-dimensional, premixed, turbulent flame. (Created by D. Ting).
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reacting flame front. The burning from the two sides of the valleys result in 
much steeper valleys with pointed ends toward the burned mixture. Over 
an infinitely small time dt, the volume of unburned mixture enclosed by the 
two wrinkled lines on the right is to be consumed. The vertical dashed lines 
enclose a volume (the hatched cross-sectional area for the two-dimensional 
case shown), which is equal to that bounded by the two wrinkled lines on 
the right. In other words, the hatched area defined by ∆x

turbulent
 multiplied 

by the depth of the channel encompasses the equivalent unburned vol-
ume of the mixture to be burned in an infinitesimal time step dt. As such, 
∆x

turbulent
/dt is the turbulent flame speed, which is also referred to as turbu-

lent burning velocity. In other words, the turbulent flame speed

S dx dt/
t

=	 (10.3)

where the flame front can be smooth, wrinkled, distorted, or undefined. 
Note that the smooth case is the basic well-defined laminar flame, while 
the flame front or combustion wave can become undefined at a very high 
level of turbulence and/or very low laminar flame speed where there may 
be pockets of unburned and partially burned mixture.

It is useful at this point to also define the equivalent turbulent flame 
speed for a spherical flame, which is often encountered in an internal com-
bustion engine. Let us start with the unconfined case where the pressure 
remains constant as the combustion takes place; that is, the flame is free 
to propagate and/or expand. The innermost corrugated line in Fig. 10.3 
represents the turbulent flame front at time zero. The equivalent spherical 
volume containing the same burned mixture is represented by the inner-
most circle of radius r

m
. Over an infinitely small time step dt, the unburned 

St=dx/dt

Figure 10.3  A premixed turbulent flame ball in open atmosphere. (Created by D. Ting).



Basics of Engineering Turbulence208

mixture enclosed by the most inner and the adjacent corrugated lines is 
to be burned. This volume is equal to the shell enclosed by the innermost 
circle (sphere) of r

m
 and the next one, that is, the hatched element of thick-

ness dr
um

. The turbulent flame speed

S dr dt/
t um

=	 (10.4)

For this open atmosphere flame, the flame will freely expand to the out-
most corrugated surface after the shell of unburned mixture is burned. The 
flame propagation rate is simply

R dr dt/
t m

=	 (10.5)

As the surface area of the flame diverges, care must be exercised when 
attempting to deduce the turbulent flame speed S

t
 from this flame propa-

gation rate. In other words, the changing flame surface area prohibits an 
unambiguous definition of the combustion wave (flame front over time 
period dt) and consequently, burning velocity. This challenge is particularly 
true when the flame is small.

We note that turbulence is generally a good thing, as it augments the 
mass-burning rate from

m r S A
l l′ =	 (10.6)

to

m r S A
t t nominal′ =	 (10.7)

Too much turbulence, however, can lead to partial or complete 
extinguishment of the flame, as depicted in Fig. 10.4. The slope of normal-
ized turbulent flame speed S

t
/S

l
 versus the normalized turbulence inten-

sity u′/S
l
 is a function of Lewis number (Le = rate of heat transport/rate 

of mass transport), Markstein number (Ma = sensitivity of flame speed to 

St=drum/dt

Rt=drm/dt

ml'=r Sl A

mt'=r St Anominal

Figure 10.4  Turbulent flame speed versus turbulence intensity. (Created by D. Ting).
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stretch), turbulent length scales, turbulence type, etc. Although the exact 
locations of partial and total quenching are uncertain, some studies (Bedat 
and Cheng,  1994) showed that S

t
 continues to increase roughly linearly 

with u′ for S
t
 (and u′) more than ten times S

l
. For some cases, as compiled 

in Lee et al. (2014), this linear trend holds for turbulence intensities beyond 
20 times the laminar flame speed!

10.2  RELATIVE SCALES OF FLOW AND COMBUSTION

It is generally accepted that Damköhler (1940) was the first to investigate 
the relative flow scales with respect to the chemical scales associated with a 
premixed turbulent flame. The Damköhler number

τ τ

λ δ

=
=

= ′u S

Da characteristic turbulence timescale/characteristicchemical time scale

/

/ / /

flow chem

l l	 (10.8)

The Taylor microscale λ is used as the representative length here be-
cause it is closely related to the vortical structures in turbulent flows, as  
portrayed in Fig. 10.5. We see that the larger the turbulence length λ, the 
longer it takes for the vortex to make a rotation for the same turbulence 
intensity u′. For a fixed λ, on the other hand, an increase in the intensity 
u′ shortens the rotation duration and hence, the turbulence time scale. The 
chemical time scale is characterized by the time the reacting front takes to 
progress (consume) a distance of the laminar flame front thickness d

l
. It is 

interesting to note that a faster flame has, in addition to a larger value of 
laminar flame speed S

l
, a thinner flame front d

l
.

Let us start with the simpler case where the chemistry is fast relative 
to the flow. For these large Da turbulent flames, the underlying chemis-
try, which characterizes the chemical reaction, is largely unaltered by the 
flow turbulence. As such, turbulence only influences the overall combustion 
process via the alteration of the otherwise smooth laminar flame surface. In 

Da=characteristic turbu-
lence time scale/characteristic chemi-

cal time scale =τflow/τchem =l/u'/dl/Sl

Figure 10.5  Relative flow turbulence and combustion scales. (Created by D. Ting).
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other words, flow turbulence tends to wrinkle the flame surface and thus, 
the global mass-burning rate.

Figure  10.6 illustrates an originally one dimensional, planar laminar 
flame surface approaching a two-dimensional vortex with characteristic 
velocity u′ at S

f
; the flame propagation rate. The vortex twists the flame 

front such that the portion of the flame surface meeting u′ in the negative 
x direction propagates at a speed of S

f
 – u′. On the other hand, the part of 

the flame surface encountering u′ in the positive x direction has a local 
flame propagation speed of S

f
 + u′. Therefore, the overall flame propaga-

tion rate in the x direction remains unchanged at S
f
. However, the initially 

one-dimensional flame becomes two-dimensional when interacting with 
the vortex. Most importantly, the flame surface area increases and hence, the 
total mass-burning rate increases.

We may view these large Da flames as having concave and convex sur-
faces, though the burning process will consume those surfaces, which are 
curving into the burned side. The surfaces of the individual positive and 
negative wrinkles may be assumed to be proportional to the velocity fluc-
tuations ± u′. Therefore, we sense that S

t
 ∼ u′, on average.

It is thus clear that the larger the value of u′, the more corrugated the 
flame front is and consequently, the larger the reacting surface area. The 
reacting surface, however, would tend to consume the corrugation and 
smooth out the flame front. Nonetheless, the ratio, u′/S

l
, determines the 

degree of flame front corrugation.
Returning back to the flame-vortex interaction depicted in Fig. 10.6, 

we see that the time required for the flame front to cross the vortex is 

Figure 10.6  A planar flame interacting with a vortex. (Created by D. Ting).
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roughly λ/S
f
, where λ is the diameter of the vortex. On the other hand, the 

time required for the vortex to wrap the flame front around its circumfer-
ence is roughly πλ/u′. Wrapping the reacting surface more than one revo-
lution around the vortex does not increase the immediate reacting surface 
area any further. As a result, the time period πλ/u′ is the longest time period 
required for the vortex to affect the flame to its maximum capability in 
terms of increasing the reacting surface area. Thence, the asymptote of u′/S

l
 

is approximately π for the ideal case considered. In reality, however, the up-
per limit can be larger than π, as wrapping beyond one revolution can affect 
the nearby reacting front.

In 1947, Schelkin (1947) assumed that the entire combustion wave un-
der the influence of flow turbulence is distorted into cones. Thus, Schelkin 
proposed

S S A A/ /
t l cone base

=	 (10.9)

where A
base
∼L2 and cone height ∼ u′ t, where t (=L/S

l
) is the time during 

which an element of the combustion wave is associated with an eddy of size 
L moving in the direction normal to the wave. From geometry, the cone 
area equals cone base times (1 + 4h2/L2)½, where h is the cone height and 
h = u′L/S

l
. Therefore

S S u S{1 (2 / ) }
t l l

2 1/2= + ′	 (10.10)

We see that this model, crude as it is, predicts the increase in turbulent flame 
speed somewhat in proportion to the relative turbulence intensity.

10.3  CATEGORIZATION OF PREMIXED TURBULENT 
FLAME REGIMES

Various classifications have been proposed by different authors. In essence, 
they are all based on the relative flow-combustion scales. For example, the 
common categorization is to divide premixed turbulent flame into three 
regimes:
1.	 Wrinkled laminar flames
		  We have wrinkled laminar flames when the flow, or more specifically, 

turbulence, is slow compared to the chemistry. Under such condition 
the smallest flow scale, the Kolmogorov length η, is larger than the lami-
nar flame front thickness d

l
. It is clear that this regime corresponds to 

the large Da case. The unburned and the burned mixtures separated by 

St/Sl=Acone/Abase

St=Sl {1+(2u'/Sl)2}1/2
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a thin flame front are distinctly distinguishable. Yoshida (1988) showed a 
bimodal probability density function of temperature with well-defined 
peaks at T

u
 and T

b
.

2.	 Flamelets in Eddies
		  “Flamelets in eddies” occurs when the flow turbulence is relatively 

high such that the flame is moderately affected by the flow; that is, 
Λ > d

l
 > η. The otherwise continuous laminar flame front is so severely 

wrinkled by the intense turbulence that it breaks into pieces, which are 
called flamelets. The underlying chemistry that dictates the local com-
bustion rate, however, is not significantly altered. In terms of Damköhler 
number, this is the moderate Da regime. This regime has also been re-
ferred to as “corrugated flamelet” or “multiple sheet” regime.

3.	 Distributed Reaction Zone
		  Distributed reaction transpires when the turbulence is so intense that 

it directly affects the slower chemistry. With Λ < d
l
, the original well-

defined flame front or combustion wave no longer exists. Instead, the 
reaction takes place in a thickened region, which is referred to as the 
distributed reaction zone. This has also been called “eddy entrainment - 
combustion in depth flame” (Ballal, 1979).

		  From the aforementioned discussion, we recognized that the turbu-
lent flame speed may be expressed in terms of Da and Re (Lin, 1996). 
Based on these two parameters alone, Kido and Huang (1993) formulat-
ed a general premixed turbulent flame map, as sketched in Fig. 10.7. With 
slightly more information, including the relative turbulence-combustion 

Figure 10.7  Premixed turbulent combustion regimes according to Kido and Huang 
(1993). (Created by D. Ting).
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spatial scale ratio, Gülder (1990) generated a somewhat different map as 
shown in Fig. 10.8. Note that K

L
 is the Karlovitz stretch factor defined 

as the local flame residence time over the laminar flame stretching time 
(Karlovitz et al., 1951).

10.4  TURBULENT LENGTH SCALE AND THE FLAME 
SURFACE AREA

Let us relax from the single vortex illustration to one with multiple vortex 
tubes of the same core radius and of unit length. These vortex tubes, which 
signify the turbulence eddying motions are further assumed to behave as if 
they are solid rods rotating at a fixed rotation speed. Specifically, the fluid 
within these vortex tubes undergoes solid body rotation.

Let R be the core radius and Ω the angular velocity. Then the maximum 
tangential velocity at R is ΩR, and this may be considered to be equivalent 
to the rms turbulence intensity, u′. The kinetic energy of one of these ed-
dies is

∫ρ ρ= ∀ =r d RKE ( ) /41
2

2 2 4

0

R
Ω Ω

	
(10.11)

where KE is the turbulent KE per unit depth or length.
Increasing the core radius from R to 2R while keeping the maximum 

tangential velocity at ΩR and fixing rms turbulence intensity at u′, requires 
a reduction in the angular velocity from Ω to Ω/2. For a unit depth or 
length

KE=½ ρ ∫oR(
Ωr)2 d∀=ρΩ2 R4/4

Figure 10.8  Premixed turbulent combustion regimes according to Gülder (1990). 
(Created by D. Ting).
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∫ρ ρ= ∀ =r d RKE ( /2)1
2

2 2 4

0

2R
Ω Ω

	
(10.12)

This shows that the turbulent kinetic energy of this larger scale turbulence, 
where the vortex core radius is 2R, is four times that of the smaller scale tur-
bulence, for the same u′. Therefore, in order to maintain the same turbulent 
kinetic energy in the two flows, the number of vortex tubes in the smaller-
scale turbulent mixture has to be four times the number of vortex tubes in 
the large-scale turbulent mixture!

10.4.1  A Saturated Wrinkled Flame Front
Figure 10.9 (based on Fig.  2.10 of Ting  [1995]) shows an idealized, fully 
saturated, wrinkled laminar flame fronts, puckered by small-core and large-
core vortices. We see that for the fully saturated case, the flame front area 
per unit width in both small-scale and large-scale turbulent flows is equal 
to 16πR per unit depth. In other words, if turbulent eddies are space-filling 
tubes or the flame surface is saturated as shown in the figure, the change 
in eddy size does not affect the wrinkled flame front area. Nevertheless, it 
should be noted that the local curvature and rate of strain effects are larger 
for the smaller eddy case.

KE=½ ρ ∫o2R(r Ω/2)2 d∀=ρΩ2 R4

Figure 10.9  Idealized laminar flame fronts saturated with wrinkles caused by small-
core and large-core vortices. (Created by Z. Yang based on Ting [1995]).
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10.4.2  An Unsaturated Wrinkled Flame Front
Figure 10.10 (Fig. 2.11 of Ting [1995]) depicts the idealized, unsaturated 
wrinkled laminar flame fronts in small-scale and large-scale turbulent flows. 
The total flame front surface area in the unit width shown for the case with 
eddies of radius R is equal to (16 + 8π)R per unit depth. The excess area 
created with respect to a planar flame front is (8π−16)R, since the corre-
sponding planar, laminar flame front area is 32R.

We see that doubling the radius while keeping the turbulent kinetic 
energy and the turbulent intensity constant results in four times fewer ed-
dies in the flow. Consequently, the total wrinkled laminar flame front area 
per unit width for the large-scale turbulent flow case is only (24 + 4π)R 
per unit depth. Specifically, doubling the vortex core radius leads to an 11% 
reduction in the flame surface area. Most importantly, the excess area cre-
ated by the larger eddies is only (4π−8)R, which is half of that created by 
the smaller eddies. In other words, doubling the size of the eddies leads to a 
50% reduction in the excess area created.

It should be stressed that the illustration above invokes many idealiza-
tions and/or assumptions. Nevertheless, it indicates that smaller scale turbu-
lence is presumably more effective in wrinkling the flame front and creating 

Figure 10.10  Idealized, unsaturated, wrinkled laminar flame fronts; small-core versus 
large-core vortices. (Created by Z. Yang based on Ting [1995]).
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extra flame surface area than turbulence of larger eddies, for the same tur-
bulence intensity and turbulent kinetic energy.

10.4.3  Comments on Turbulent Length Scale in Combustion
Obviously there are many other factors, which tend to vary with changes in 
the vortex core size. Here are some points worth noting. First, a turbulent 
flow always consists of eddies of different sizes; recall the turbulent energy 
cascade. Second, smaller eddies decay faster than larger ones. Also, smaller 
eddies lead to higher flame front curvature and higher rate of straining 
compared to larger eddies. Furthermore, turbulent flows always consist of 
three-dimensional vortical structures, which can be very different from the 
ideal two-dimensional case considered.

Premixed combustion studies (Hill,  1988; Hill and Kapil,  1989; Ting 
et al., 1995) have also indicated that decreasing the size of the eddies can 
lead to reduced cyclic variations in engines. One probable reason behind 
this is that the initial flame kernel is convected around by large eddies 
while wrinkled by the smaller eddies. The bulky convection by the larger 
eddies is more susceptible to cycle-to-cycle variations in flame growth 
or burning rate, flame kernel location, and the amount of heat loss to the 
spark electrodes. In a roughly homogeneously charged engine, these varia-
tions in the flame kernel caused by the flow are presumably responsible 
for the cycle-to-cycle variation of combustion (Hamamoto et  al.,  1982; 
Johansson, 1994). It has also been found that engine cyclic variations can 
be lowered when the early combustion rate is augmented (Mayo, 1975; 
Stone et al., 1993). In short, besides a more effective enhancement in the 
burning rate, smaller-scale turbulence also has the tendency to reduce cy-
clic variations.

10.5  TURBULENT FLAME ACCELERATION 
AND THE DRIVING MECHANISMS

When igniting a gaseous combustible mixture in a turbulent environment, 
the turbulent flame speed/turbulence intensity ratio increases as the flame 
grows. Depending on the chemical and physical parameters involved, this 
accelerating turbulent flame may develop into a detonation wave. Readers 
interested in recent research on relatively large scale deflagration (flame 
propagating at subsonic speed) to detonation (flame propagation at super-
sonic speed) may start with Groethe et al. (2007), Kim et al. (2013), and 
Poludnenko (2015). The acceleration tendency of certain turbulent flames 
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also gives rise to the predilection of flashback (flame recessing backward 
into the feeding passage) in a practical combustion system. To this end, tur-
bulent flame speed seems to be an indicator of the flashback propensity (Lin 
et al., 2013; Sun et al., 2015).

The following are four possible mechanisms causing the turbulent flame 
to accelerate. Let us deal with the simple case where the Lewis number is 
near unity (no preferential heat/chemical species transport), the Markstein 
number is near zero (the flame speed itself is not sensitive to stretch), and 
the reaction chemistry is fast compared to the turbulent mixing. This last 
assumption implies that the mass-burning rate depends primarily on the 
reacting surface area available.

10.5.1  Progressive Flame-Turbulence Interaction 
(Evolution Mechanism)
Batchelor (1952) showed that the area of non-reacting surfaces in homo-
geneous isotropic turbulence increases exponentially with time. Prompted 
by this, Thomas (1986) argued that the area of a flame also increases with 
increasing flame-turbulence interaction time, as schematically portrayed 
in Fig.  10.11. As expected, because a flame continuously consumes its 
reacting surface, the increase in the reacting surface area of a flame is ex-
pected to be slower than that of its nonreacting counterpart (a material 
surface).

It is important to note that the propagating, reacting flame surface 
tends to intensify the turbulence just ahead of the flame front (Galyun 
and Ivanov, 1970; Chew and Britter, 1992). Consequently, the intensified 
turbulence interacts more strongly with the flame and as a result, the 
flame propagates faster, and this amplification loop continues until the 
upper limit, if any, is reached. The flame may become so wrinkled and 
distorted that pieces of flame are detached from the original flame ball. 
These pieces of detached burned volume may then grow as flame balls 
themselves.

10.5.2  Relative Flame/Eddy Size Development
Right after ignition, the length and time scales of the small flame kernels 
are less than most of those associated with the turbulence (Abdel-Gayed 
et al., 1984). As such, only eddies which are smaller than the flame can 
influence the flame front in any significant manner; see Fig. 10.12. The 
larger eddies convect the flame ball around without affecting the flame 
front significantly. As the flame grows, the initially larger eddies become 
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progressively smaller in comparison with the flame ball. As a result, an 
increasingly larger portion of the turbulence spectrum (energy cascade) 
becomes effectively involved in corrugating the flame front. When the 
flame grows larger than the energy-containing eddies Λ, the whole tur-
bulence spectrum is expected to become involved in wrinkling the flame 
front. Therefore, based on the relative flame/eddy size, it is reasonable to 
assume that the turbulence would become fully effective in enhancing 
the flame speed when the flame is an order of magnitude larger than the 
average eddy size. This saturation asymptote is referred to as the “fully 
developed turbulent flame.” The ratio, S

t
/u′, which initially increases with 

increasing flame size, reaches a constant value when the turbulent flame 
is fully developed.

Figure 10.11  The evolution of a reacting surface with time. A planar flame exposed 
to steady turbulence after (a) a short time, and (b) some time. A flame ball exposed to 
steady turbulence after (c) a short time, and (d) some time. The cross at the center of the 
flame ball represents suction, which removes the burned gas at a rate such that the size 
of the flame remains unchanged with time. (Created by D. Ting).
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10.5.3  Volume Expansion Effect (Expanding-Pushing 
Mechanism)
As a wrinkled flame grows, volume expansion of a portion of the reacting 
surface pushes the adjacent reacting surface away from it (Ashurst, 1995). 
This “expanding-pushing” mechanism can lead to progressively larger 
degree of flame front corrugation; see Fig. 10.13. The flame surface next 
to the expanding area experiences the influence of the expansion most 
directly. The influence diminishes rapidly for the reacting surface farther 
away from the expanding area. Thus, it appears that the trend of increasing 
expanding-pushing effect of the reacting surface with the degree of flame 

Figure 10.12  Relative flame/eddy size: (a) initially the flame is small compared to turbu-
lence eddies, (b) the flame becomes larger than turbulence eddies. (Created by Z. Yang).
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front wrinkling is only to a certain extent. However, the more wrinkled the 
flame is, the larger the reacting surface area. The larger reacting surface area 
bestows more surface for reaction and expansion. The upper limit of this 
coupled self-enhancing, expanding-pushing mechanism, if it exists, may be 
reached when adjacent reacting surfaces are so close to each other that they 
consume each other.

10.5.4  Darrieus-Landau Instability
In 1938, Darrieus (1938) presented for the first time the view that the gas 
expansion from a concave flame front will result in an increase in the local 
flame speed, and that the gas expansion from a convex reacting area will 
lead to a decrease in the local flame speed. This phenomenon, portrayed 
in Fig.  10.14, gives rise to increasing flame front instabilities and hence, 
wrinkled flame acceleration. What is depicted in Fig.  10.14 is an overall 
one-dimensional case, where gas velocities at far left and right are the cor-
responding unburned gas velocity V

u
 and burned gas velocity V

b
. This hy-

drodynamic instability was theorized independently by Landau (1944) in 
1944. The pertinence of this instability in premixed flame continues to at-
tract copious attention (Steinberg et al., 2009; Creta and Matalon, 2011; Lu 
and Pantano, 2015).

10.5.5  Attenuation of Flame Front Wrinkling
The only significant attenuating mechanism for a simple flame with no ad-
ditional effects such as preferential diffusion appears to be the consumption 
of wrinkles and smoothing of the flame front by the reacting surface itself. It 

Figure 10.13  The expanding-pushing mechanism. (Created by D. Ting).
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is still debatable whether this solitary attenuating mechanism will eventually 
balance out the combined effect of the various augmenting mechanisms. 
The answer may depend on parameters such as the flame geometry (planar, 
spherical, or other types of flame) and the type of turbulence (weak, strong, 
with small or large eddies). It is clear that this asymptote, if any, is beyond the 
turbulent flame growth period encountered in combustion engines.

10.5.6  Some Progressive Turbulent Flame Growth Evidence
In most engine studies, S

t
 may level off after some time. This leveling-off is 

often misinterpreted as the flame reaching the fully developed stage, despite 
the complications due to changing volume, pressure, and temperature. In 
fact, the leveling-off of S

t
 in an engine is mostly due to a decrease in u′ (all 

turbulence decays in the absence of a continuous supply of energy to sustain 
its ever-prevailing dissipation into heat) and partial flame front quenching 
by the chamber wall. The following are some examples of progressive flame 
growth in combustion engines. The turbulent flame speed increases linearly 
with flame radius with no sign of leveling off for up to 2 cm flame radius 
in Keck et al. (1987) and up to 4 cm flame radius in Lancaster et al. (1976). 
Gatowski et al. (1984) found that the surface of the growing flame becomes 
increasingly distorted with time by the flow turbulence.

Due to the complications of simultaneous variations of numerous 
parameters involved, engine results are usually difficult to interpret. Ideal-
ized flame growth studies, such as constant pressure and/or constant vol-
ume combustion, can provide a clearer perception about specific trends by 

Figure 10.14  The hydrodynamic (Darrieus-Landau) instability. (Created by P.K. Pradip).
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keeping the other parameters fixed. Perhaps the clearest piece of evidence 
of progressive turbulent flame growth is the experimental study conducted 
by Palm-Leis and Strehlow (1969). Their spark-ignited, freely-growing, pre-
mixed flame ball downstream of a perforated plate appears to be the first 
concrete experimental evidence illuminating the development of a turbu-
lent flame ball. With integral scales between 1.4 mm to 7.6 mm, the tur-
bulent flames accelerated, with no sign of slowing down, up to 8.4 cm in 
radius, which was the largest flame size considered. This largest flame size is 
more than 50 times the integral scale!

Typical values of (S
t
−S

l
)/u′ are plotted as a function of the mean flame 

radius in Fig. 10.15. These data points are from the tests conducted in a 
125 mm cubical combustion chamber where fuel-lean premixed methane-
air mixtures were centrally spark-ignited at room temperature and pressure 
(Ting et al., 1994). Figure 10.15 shows that for the near-unity Lewis num-
ber and near-zero Markstein number methane-air flames, (S

t
−S

l
)/u′ in-

creases with increasing r
m
 with no trend of leveling off up to the maximum 

mean flame radius r
m
≈55 mm considered.

Haq (2006) extended the experimental developing turbulence evidence 
and further explained the accelerating turbulent flame in terms of an effec-
tive rms turbulence velocity. This effective turbulence velocity is deduced 
from the integral of the dimensional power spectral density function, from 

Figure 10.15  Turbulent flame speed versus flame size for 70% stoichiometric methane-
air mixture. The premixed charge was centrally spark-ignited in a 125 mm cubical com-
bustion chamber at 296 K and 101 kPa (Ting, 1995).
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the highest (Kolmogorov) frequency to the reciprocal of the elapsed time 
from ignition (Abdel-Gayed et al., 1987). Haq (2006) showed that the ef-
fective rms turbulence velocity increases, and so does the turbulent flame 
speed, with the elapsed time from ignition.

Problems

Problem 10.1. Different regimes of turbulent premixed flame
Based on their experiments, Ballal and Lefebvre (1975) concluded that 
there are three distinct regions of flame propagation:

Region 1: u′ < 2S
l
, η > d

l
.

	 In this low-turbulence and low-velocity region, S
t
 is increased due to 

wrinkling of the flame. Since all eddies are larger than the laminar flame 
front thickness d

l
, increasing these eddies increases the wrinkled area and 

hence S
t
.

Region 2: u′≈ 2S
l
, η ≈ d

l
.

	 This is the region of moderate turbulence in which fresh mixture 
contains eddies which are both larger and smaller than the laminar flame 
front thickness. There are two different mechanisms involved in this re-
gion:
1.	 wrinkling of the flame front by eddies larger than flame thickness;
2.	 increasing the area of interface by eddies entrained in the burning 

zone.
	 The first mechanism increases S

t
 as the scales increase. The second 

mechanism decreases S
t
 as the scales are increased. Therefore, these two 

mechanisms normally cancel out the effect of changing scales.
Region 3: u′ > 2S

l
, η < d

l
.

	 This is the region of high-intensity and very small eddies. The com-
bustion zone is regarded as a thick matrix of burned gases interspersed 
with eddies of unburned mixture. The total surface area of eddies is pro-
portional to the inverse of the turbulence scale. Therefore, in this region 
S

t
 increases with decreasing eddy size.

Part of the above argument seems to contradict the idea we proposed in 
this chapter (using two-dimensional, single-size eddies and a planar flame 
front). Explain.

Problem 10.2. Turbulence and cycle-to-cycle variations
Consider the cycle-to-cycle variations due to fluid motions; see SAE Paper 
962084 (Johansson, 1996), for example.
1.	 Which part (very early period when less than 5% mass is burned, main 

combustion period where most of the mass is burned, or the burn-out 
period where the portion along the wall is consumed) of the total com-
bustion period is the most important? Why?
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2.	 How does the size of the eddies affect the cycle-to-cycle variations, i.e., 
considering turbulences of the same intensity, smaller scale, or larger 
scale, which leads to lower cyclic variations? Why?

Problem 10.3. Eddy structure turbulent flame growth model
It is shown in Ashurst et al. (1994) that S

t
 is proportional to (R/λ)(u′/S

l
)½. 

The square root appears to show the slowing down in the increase of S
t
 

with increasing u′. Explain the origin of the square root in the eddy struc-
ture model.
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flame interacting with vortex, 210
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speed, 206
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wave, 206
Probability density curve, 49



Subject Index 231

Probability density function, 52, 60
creation of, 53

Probability distribution, 56, 141
Probability function, joint, 59
Production-dissipation energy  

balance, 86
Cartesian coordinate system, 87
dissipation, 87
energy cascade -scales, 86
local equilibrium, 87
production, 87
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RANS. See Reynolds-averaged Navier-
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Rarefied gas flow theory, 21
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of flow, 209
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flow regimes for, 194–196
Reynolds stresses, 42, 43, 87, 101, 109, 112, 

126, 129
turbulent momentum transport 
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Rotational flow, 169, 170
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S
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Schwartz’s inequality, 62
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Skewness factor, 56, 141, 142
Smooth sphere 
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D
-Re curve, effects of turbulence 

intensity and, 194
flow over, 190
laminar free stream, flow characteristics 
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Sphere, in cross flow, 190

aerodynamic control, conventional, 190
bio-mimicry, 190
engineering applications, 190
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hydrophobic surfaces, 190
smooth sphere, flow over, 190
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drag coefficient of sphere, 192
drag crisis, 190
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curve, 194
free-stream turbulence, 190
laminar flow around sphere, 193
laminar free stream, 190
Reynolds number 

critical, 190
effects of, 192
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Standard deviation, 55
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Strouhal number, 190
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compressing vortex tube, 181, 182
oblique vortex tubes, passing through 

contraction, 180–181
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flow, 181
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stretching of vortex tubes, by flow 
acceleration, 179–180
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Taylor series expansion, 25
Taylor’s frozen hypothesis, 153
Taylor vortices, wavy, 14, 15
Theoretical hydrodynamics, 120
Thermal energy, 77, 78, 87
Three-dimensional 

fluctuating velocity, 154
spectrum, aliasing of, 160
vortical structures, 216
wave-number, 159

Time-varying parameters, product 
averaging of, 39

Total quenching, 208
Turbulence, 48

characteristic function, 50
decay coefficient, 156
Fourier transform, 50
probability density, 50

Turbulence, deterministic theory of, 33
Turbulence dissipation and integral scales, 

estimates for, 90
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defined, 93
fluctuating velocity, 93
homogeneous isotropic turbulence, 93

refined turbulence energy cascade, 95
unity, correlation of, 93

isotropic turbulence, dissipation 
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Kolmogorov scale, 91
non-isotropic turbulence, 92
Taylor microscale, 91
turbulence dissipation scale, 91

Turbulence intensity, 152
Turbulence spectrum, 15, 159, 218
Turbulent boundary layer, 75, 127–135

eddy size, 130
eddy viscosity model, 130
frictional velocity, 128
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logarithmic velocity distribution 

region, 135
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shear velocity, 128
time scales, 72
velocity, 72
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Turbulent diffusion, 71, 75, 76
vs. molecular, 77

Turbulent flame acceleration, 217
Darrieus-Landau instability, 220
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gas expansion, 220
hydrodynamic instability, 220
hydrodynamic (Darrieus-Landau) 

instability, 221
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Eddy size development, 218
flame front wrinkling, attenuation 
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flame geometry, 220
type of turbulence, 220
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progressive, 218

evolution of reacting surface, 216
reacting flame surface, 218
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effective rms turbulence velocity, 222
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flame speed versus flame size, 222
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turbulence decays, 221

intensity ratio, 217
Lewis number, 217
Markstein number, 217
relative flame/eddy size, 218, 219

turbulence spectrum, 218
volume expansion effect, 219

expanding-pushing mechanism, 220
reacting surface area, 219
wrinkled flame, 219

Turbulent flows, 4
closure problem. See Turbulent flows, 

closure problem 
as continuum phenomenon, 10
dissipative, 8
eddying motion, rich in scales of, 6
as fluid flows, 10
highly diffusive, 9
highly vortical, 9
historic account of, 10

Henri Bénard, 12
Leonardo da Vinci, 10
Lord Rayleigh, 11
Osborne Reynolds, 11
Prandtl, 15
Taylor, 14

inherent characteristics of, 4
irregular, 6
large Reynolds number, 7
momentum equation, 39
random, 6
random velocity fluctuations, 6
three-dimensional, 9

Turbulent flows, closure problem, 103
boundary layer, 106
Boussinesq hypothesis, 105
Cartesian coordinate system, 103

continuity, 103
momentum, 103
pressure, 103
streamwise velocity, 103

turbulent momentum equations, 103
eddy-viscosity relation, 105
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mixing velocity, 106
one-equation models, 108

mixing length, 109
Reynolds stresses, 109
specific turbulent kinetic energy, 109
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velocity and pressure fields, 109

perturbation velocity, 106
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two-equation models, 110

hybrid methods, 112
k-ε model, 111
k-ω model, 110

viscosity, 105
zero-mixing velocity, 107
zero-order, 104

Turbulent kinetic dissipation, 154
Turbulent kinetic energy decay, 150
Turbulent kinetic energy spectrum, 95

energy spectral density, 95
energy spectrum function, 95
Fourier decomposition, 95
inertial sub-range, 95
turbulence kinetic energy, 95
wavelength, 95
wavenumber, 95

Turbulent length scale, 213
angular velocity, 213
length scale in combustion, 216

cyclic variations in engines, 217
eddies, larger, 216
eddies, smaller, 216
engine, cyclic variations of, 217
flame kernel, initial, 217

saturated wrinkled flame front, 214
idealized laminar flame, 214
turbulent eddies, 214

solid body rotation, 213
turbulence eddying motions, 213
unsaturated wrinkled flame front, 215

laminar flame fronts, 215
turbulent kinetic energy, 215

vortex tubes, 213
Turbulent length scale in combustion, 216
Turbulent motion, 4, 58, 78
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V
Velocity defect law, 133
Velocity fluctuation, 6, 9, 38, 210
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Viscous force, 7, 8, 14, 31, 73, 74
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Volume expansion effect, 219
von Kármán-Bénard vortex street, 195
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Vortex dynamics, 9, 165
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characteristic of, 166

Kelvin, Lord, 170
Kelvin’s circulation theorem, 165
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definition of, 167
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rotational flow, 170
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evolution of, 175–177
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momentum equation for, 175
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W
Wake size, 192
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Wavelet decomposition, 57, 58
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