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The entrepreneur, as a creator of the new and a destroyer of the old, is
constantly in conflict with convention. He inhabits a world where belief
precedes results, and where the best possibilities are usually invisible to
others. His world is dominated by denial, rejection, difficulty, and doubt.
And although as an innovator, he is unceasingly imitated when successful,
he always remains an outsider to the ‘‘establishment.’’

Theodore Forstmann, 2003.

In science, the ‘‘entrepreneur’’ is the one who gets the unusual idea, climbs
out on a limb, jumps, and runs with it on the landscape. His fate at the feet
of the establishment is the same.
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PREFACE

An author is fortunate if his book is popular enough to merit a second edition
somewhere down the line, yet the flow of ideas that grew around this book since
the first edition (1988) has been beyond expectations. I will let others comment
on this flow. In this brief Preface, I comment on just one feature of the flow of
ideas and one bit of history.

The flow of ideas is illustrated by the changes made in this new edition. Good
ideas (in this or any other field) attract interestingminds—researchers, educators,
and authors with ideas. These minds grow the field the way that the yeast grows
the cake. While revising this edition, it was not possible to keep up with this
growth, but I tried, even though this meant abandoning some of the material
from earlier editions. The new growth is represented by the impact of the science
of discovering effective flow configurations (constructal theory and design), the
streamlining of the discipline along methods that are direct, muscular, and at
the same time lean (scale analysis, intersection of asymptotes, heatlines), the
oneness with thermodynamics through the irreversibility (entropy generation)
phenomenon, and new references and problems at the end of chapters.

Because we know where convection and thermodynamics come from, this
growth illustrates that science (education, knowledge, information) is an evolu-
tionary design [1–4], a flow system that constantly morphs and improves so that
our own movement and life are facilitated and extended on the landscape. This
is nature, the animate and the inanimate alike.

Because research is autobiographical, good research is a book of wonderful
memories. I close this preface with the story of how the first edition of this book
was born. It was an accident, literally. At age 33, I was behaving as if I was meant
to play basketball forever, and I was wrong. During a game in January 1982, one
of myAchilles’ tendons was severed, and I ended up in a wheelchair for the entire
semester. I had to teach my convection course, for which I had written notes, but
this time I was forced to write each lecture on transparencies, for the screen. My
first graduate student, Shigeo Kimura, now professor at Kanazawa University,
Japan, was my teaching assistant. He would wheel me into the classroom every
morning, and my convection book would come to life, one original drawing at

xv



xvi PREFACE

a time, one original (solved) problem after another. One such problem was the
method of intersecting the asymptotes and the back-of-the-envelope prediction
of optimal spacings (Problem 11, Chapter 4, p. 157, in the first edition).

There was so much richness during the spring of 1982 that the accident was a
blessing.

ADRIAN BEJAN
Duke University
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PREFACE TO THE
THIRD EDITION

Research is autobiographical. I often say this when I lecture, and I find it true as
I look at this new edition of Convection Heat Transfer. It is even more true as I
look at all three editions together. This book is a chronicle of the heat transfer
side of my career, the methods I developed and taught along the way, and the
great fortune I had to work with extremely gifted colleagues. The three editions
are also a story of how the field has grown and prospered. It has done so based
on new challenges and especially, new ideas.

One trend that is made visible (and useful, I hope) in this edition is the
new emphasis on design as science—the generation of flow configuration
based on principle. For many years, the field of convection was preoccu-
pied with documenting the transport characteristics of various but simple flow
configurations—relationships between temperature differences and heat transfer
rates. This information is essential in the modeling and simulations that are
necessary in design. The reality, however, is harsh: Constraints exist, and one
overriding constraint is space (size, volume, weight). Putting more and more
heat transfer into a given volume has been the objective, from the compact heat
exchangers of my MIT years to the heat transfer augmentation techniques and
the cooling of electronics packages of today. Doing more with limited resources
has been the driving force.

Miniaturization marches forward, but this is not even half of the story. The
reason is that the devices we touch must be made at our scale—they must be
macroscopic, no matter how small the smallest components. The more successful
we are in making smaller components, the greater the challenge to install larger
numbers of such components and to connect them with currents (heat, fluid,
electricity), to keep them alive. The challenge is to ‘‘construct,’’ to assemble
and design while assembling (i.e., to design complexity and to deduce the flow
configuration of the macroscopic device).
Construction must be shouted from the rooftops, especially today as the

crowd marches toward smaller scales. To construct is to proceed in the opposite

xvii



xviii PREFACE TO THE THIRD EDITION

direction, from small to large, because only in this direction can the small
scales be made useful. Only after the achievement of constructal assembly can
small-scale components deliver high densities of heat transfer.

In this new edition, the first steps toward constructs with high heat transfer
density are used as an introduction to constructal theory and design∗: the
generation of flow architecture in the pursuit of maximal global performance
subject to global constraints, when the flow architecture is free to morph. The
focus is on method, on design as science, on the generation of optimal and
complex architectures based on the constructal law. To emphasize this facet of
the third edition is appropriate not only because of its importance today, but also
because it had its start in the 1984 edition [see the optimization of spacings with
natural convection (p. 157, Problem 11, Chapter 4).

The focus on methodology is why in this new edition I chart the progress made
by three other methods that were pioneered in the 1984 edition. These methods
have become recognized and now occupy growing sections of the literature:
The intersection of asymptotes method, which delivered in amazingly direct

fashion the optimal spacing for natural convection (see above), has since
been extended to spacings for forced convection and the constructal theory
prediction of all the basic features of Bénard convection. The intersection of
asymptotes is also useful pedagogically, in the teaching of the concept of
transition (e.g., laminar–turbulent flow, natural–forced convection).
Heatlines are now being used to visualize the true paths followed by convec-

tion: the paths of energy flow, not fluid flow. They were introduced in the 1984
edition, with an example of natural convection in an enclosure. The concept has
since been extended to mass transfer and a variety of basic and applied config-
urations with natural and forced convection in fluids and fluid-saturated porous
media. This method of visualization is particularly well suited for computational
heat transfer and should be included in commercial computational packages.
Scale analysis continues to be the main method for teaching the basics of

convection in this new edition. The rules and promise of scale analysis as a
problem-solving method were first formulated in the 1984 edition. Today the
method is used widely, and this makes it even more essential in a basic course
of convection. The increased importance of scale analysis is also due to the
proliferation of computational heat transfer. If done correctly, scale analysis can
shed light on what the deluge of numerical results is trying to tell us. Even more,
to teach scale analysis is to remind the student not to give up on pencil and paper.
Not everything must be done on the computer.
Porous media were brought into a heat transfer course for the first time by the

1984 edition of this book. Since then, convection in porous media has developed
into a field of its own. In this edition we continue to emphasize the basic method
and the most basic results. A connection is also made between porous media and

∗A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press,
Cambridge, 2000.
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designed complex flow structures,∗ and this serves as one more bridge to the
constructal design method.
Interdisciplinary teaching and research is one of the missions of this course,

but with this warning: Learn your disciplines first; only then you will be strong
on the interdisciplinary frontiers. The teaching of convection in porous media
is a good example. This is presented not as a self-standing subject but as
an interaction between principles of convection in pure fluids, which we all
learn, and newly emerging technological applications that employ porous flow
structures.

In my work on this new edition I benefited from the help and ideas offered by
Professors C. Biserni, J. Bonjour, I. Dincer, M. Feidt, D. Gobin, Y. Fautrelle, S. J.
Kim, A. D. Kraus, S. Lorente, E. Lorenzini, G. Lorenzini, N. Mazet, F. Meunier,
A. F. Miguel, W. J. Minkowycz, P. Neveu, D. A. Nield, A. H. Reis, E. Sciubba,
B. Spinner, F. B. Tehrani, J. V. C. Vargas, M. E. Weber, and C. Zamfirescu. In
particular, I wish to thank my doctoral students Y. Azoumah, T. Bello-Ochende,
A. K. da Silva, L. Gosselin, J. C. Ordonez, Luiz A. O. Rocha, and W. Wechsatol.

ADRIAN BEJAN
Durham, North Carolina
April 2004

∗A. Bejan, I. Dincer, S. Lorente, A. F. Miguel, and A. H. Reis, Porous and Complex Flow Structures
in Modern Technologies, Springer-Verlag, New York, 2004.



PREFACE TO THE
SECOND EDITION

I want to thank John Wiley & Sons, Inc. and the users of my Convection
Heat Transfer for giving me this opportunity to prepare a second edition. The
changes and additions that I made are due to the suggestions received from many
colleagues and students, and to the evolution of my own research activity.

I made changes in both format and content. The format is now based on
numbered sections and equations, to make it easier for the first-time user to
use this book as a reference. I assembled all the symbols in a list that precedes
the text. The Author Index acknowledges one more time the individuals whose
work is quoted in the text. The Solutions Manual is now produced on the word
processor, and has the appearance of a companion book.

The changes in content are more significant and at more than one level.
New topics covered in the second edition are convection with change of phase
(condensation, boiling, melting), the cooling of electronic packages by forced
and natural convection, lubrication by contact melting, and several examples of
conjugate heat transfer, i.e., convection coupled with conduction or radiation.
I augmented most chapters with results, namely, formulas, tables, charts, and
appendixes that are recommended for use in engineering design work. And,
speaking of design, many of the new problems at the end of chapters refer to
basic principles of thermal design.

Relative to the first edition, the chapters dealing with laminar and, especially,
turbulent forced convection have been expanded. To make room for the new
material and still respect the prescribed space limits, I had to eliminate the
chapter on numerical methods, and to condense the treatment of convection in
porous media. Numerical methods are now covered in courses devoted entirely
to computational fluid dynamics and heat transfer. For porous media, I recently
completed with Professor D. A. Nield a separate textbook, Convection in Porous
Media (Springer, 1992; now in 4th edition, 2013).

xxi



xxii PREFACE TO THE SECOND EDITION

As in the first edition, themost important feature of this book is thatmany of the
topics and problems came frommy own research. These problems recommended
themselves as interesting and beautiful, i.e., worthy of study. They represent my
argument in favor of practicing laissez faire in engineering research, and against
the dirigiste policy advocated by others.

ADRIAN BEJAN
Durham, North Carolina
June 1994



PREFACE TO THE
FIRST EDITION

My main reason for writing a convection textbook is to place the field’s past
100 years of growth in perspective. This book is intended for the educator who
wants to present his students with more than a review of the generally accepted
‘‘classical’’ methods and conclusions. Through this book I hope to encourage the
convection student to question what is known and to think freely and creatively
about what is unknown.

There is no such thing as ‘‘unanimous agreement’’ on any topic. The
history of scientific progress shows clearly that our present knowledge and
understanding—contents of today’s textbooks—are the direct result of conflict
and controversy. By encouraging our students to question authority,we encourage
them to make discoveries on their own.We can all only benefit from the scientific
progress that results.

In writing this book, I sought to make available a textbook alternative that
offers something new on two other fronts: (1) content, or the selection of topics,
and (2) method, or the approach to solving problems in convection heat transfer.

Regarding content, this textbook reflects the relative change in the priorities
set by our technological society over the past two decades. Historically, the
field of convective heat transfer grew out of great engineering pursuits such as
energy conversion (power plant technology), the aircraft, and the exploration
of extraterrestrial space. Today, we are forced to face additional challenges,
primarily in the areas of ‘‘energy’’ and ‘‘ecology.’’ Briefly stated, engineering
education today places a strong emphasis on man’s need to coexist with the
environment. This new emphasis is reflected in the topics assembled in this book.
Important areas covered for the first time in a convection textbook are: (1) natural
convection on an equal footing with forced convection, with application to
energy conservation in buildings and to geophysical dynamics, (2) convection
through porous media saturated with fluid, with application to geothermal and
thermal insulation engineering, and (3) turbulent mixing in free-stream flow, with
application to the dispersion of pollutants in the atmosphere and the hydrosphere.

xxiii
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Regarding method, in this book I made a consistent effort to teach problem
solving (a Solutions Manual is available from the publisher or from me). This
book is a textbook to be used for teaching a course, not a handbook. Of course,
important engineering results are listed; however, the emphasis is placed on
the thinking that leads to these results. A unique feature of this book is that it
stresses the importance of correct scale analysis as an eligible and cost-effective
method of solution, and as a precondition for more refined methods of solution.
It also stresses the need for correct scaling in the graphic reporting of more
refined analytical results and of experimental and numerical data. The cost and
the ‘‘return on investment’’ associated with a possible method of solution are
issues that each student-researcher should examine critically: these issues are
stressed throughout the text.

I wrote this book during the academic year 1982–1983, in our mountain-side
house on the greenbelt of North Boulder. This project turned out to be a highly
rewarding intellectual experience for me, because it forced upon me the rare
opportunity to think about an entire field, while continuing my own research on
special topics in convection and other areas (specialization usually inhibits the
ability to enjoy a bird’s-eye-view of anything). It is a cliché in education and
research for the author of a new book to end the preface by thanking his family
for the ‘‘sacrifice’’ that allowed completion of the work. My experience with
writing Convection Heat Transfer has been totally different (i.e., much more
enjoyable!), to the point that I must thank this book for making me work at home
and for triggering so many inspiring conversations with Mary. Convection can
be entertaining.

ADRIAN BEJAN
Boulder, Colorado
July 1984
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CD drag coefficient [eq. (7.103)]
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ks sand grain size [eq. (8.16)]
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ṁ mass flow rate
ṁ′ mass transfer rate per unit length [eq. (11.52)]
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M mass
M massfunction [eqs. (11.133)–(11.134)]
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[eq. (7.86)]
q′′′ rate of internal heat generation (W/m3)
Q̇ heat transfer rate (W)
Q flow rate (m2/s) [eq. (10.69)]
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T absolute temperature
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T0 absolute temperature of the ambient
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Tm bulk temperature [eq. (3.42)]
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TIN inlet temperature
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(Fig. 4.8)
T∗∞ core temperature in the high-RaH regime
uA Oseen-linearization function
u* friction velocity [eq. (7.34)]
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(Fig. 1.1)
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U longitudinal base flow [eq. (6.19)]
U slider velocity [eq. (10.55)]
Uc centerline velocity
Umax maximum average velocity [eq. (7.111)]
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U∞ free-stream velocity
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[eq. (5.58)]
x* thermal entrance coordinate [eq. (3.84)]
x+ hydraulic entrance coordinate [eq. (3.105)]
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α thermal diffusivity
α porous medium thermal diffusivity [eq. (12.35)]
α̂ empirical constant [eq. (9.73)]
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(Fig. 9.3)
β coefficient of thermal expansion
βc concentration expansion coefficient [eq. (11.80)]
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� condensate mass flow rate [Table 6.1, eq. (10.4)]
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 discriminant [eq. (6.28)]
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(Fig. 4.2)
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δT thermal boundary layer thickness
δT, f thermal boundary layer thickness at the end of its development

[eq. (5.14)]
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boundary layer (Fig. 4.2)
δv velocity boundary layer thickness [eq. (5.17)]
δ* displacement thickness [eq. (2.86)]
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ε turbulence dissipation function [eq. (8.57)]
εH thermal eddy diffusivity [eq. (7.23)]
εm mass eddy diffusivity [eq. (11.103)]
εM momentum eddy diffusivity [eq. (7.23)]
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ζ similarity variable [eq. (12.58)]
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θ angle (Fig. 12.12a)
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θ dimensionless time [eqs. (8.55) and (10.103)]
θ momentum thickness [eq. (2.87)]
θ similarity temperature profile [eqs. (4.58) and (9.90)]
θ temperature difference
κ von Kármán’s constant [eq. (7.31)]
λ Lagrange multiplier [eq. (3.135)]
λ wavelength
λB buckling wavelength
λ1, 2 functions of altitude [eq. (5.31)]
µ viscosity
µf friction coefficient [eq. (10.78)]
ν kinematic viscosity
ρ density (labeled 1/v in Table 1.1, where v is the specific volume)
σ capacity ratio [eq. (12.30)]
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σ disturbance growth rate [eq. (6.21)]
σ empirical constant [eq. (9.8)]
σ normal stress
σ surface tension (Table 10.2)
σ k, σ ε constants [eq. (8.61)]
τ angle of tilt (Fig. 5.24)
τ shear stress
τ* dimensionless time [eq. (11.122)]
τ app apparent shear stress [eq. (7.24)]
τ 0, max maximum shear stress, under a direct viscous constant spot

[eq. (7.86)]
φ angle
φ fully developed temperature profile function [eq. (3.51)]
φ function [eq. (12.19)]
φ porosity [eq. (12.22)]
φ volume fraction [eq. (5.103)]
φr ratio [eq. (11.149)]
� mass fraction [eq. (11.6)]
� viscous dissipation function
χ factor [eq. (7.113)]
ψ streamfunction
ω wall parameter [eq. (4.85)]
ω wall parameter [eq. (12.106)]

Subscripts

(·)a air
(·)app apparent
(·)av average
(·)avg average
(·)b base solution
(·)b bulk
(·)c cold
(·)c constant, uniform
(·)c convection
(·)c dimensionless variables for the shallow core solution [eq. (5.47)]
(·)c properties where the wall condition is imposed on the k–ε model

[eqs. (8.64)–(8.65)]
(·)c property measured along the stream centerline
(·)cv property of the control volume
(·)CSL conduction sublayer
(·)e end
(·)e expressions for the integral analysis of the end region [eq. (5.61)]
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(·)f final
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(·)f saturated liquid
(·)FC forced convection
(·)g saturated vapor
(·)h hot
(·)HT heat transfer
(·)i component i
(·)i inner
(·)in inlet
(·)l liquid
(·)m mean
(·)max maximum
(·)min minimum
(·)MT mass transfer
(·)NC natural convection
(·)o outer
(·)opt optimal
(·)p pore
(·)rad radiation
(·)ref reference
(·)r, θ , z components of a vector in cylindrical coordinates
(·)r, φ, θ components of a vector in spherical coordinates
(·)s solid
(·)sat saturation
(·)tr transition
(·)v vapor
(·)VSL viscous sublayer
(·)w wall
(·)w water
(·)0 wall
(·)0–L quantity averaged from x = 0 to x = L
(·)* dimensionless variables for the high-RaH solution [eq. (5.23)]
(·)∞ property of reservoir fluid

Superscripts

(·) average
(·) time-averaged part
(·)′ fluctuating part
(·)+ wall coordinates and wall variables [eq. (7.35)]



1

FUNDAMENTAL
PRINCIPLES

Convective heat transfer, or simply, convection, is the study of heat transport
processes effected by the flow of fluids. The very word convection has its roots
in the Latin verbs convecto-are and convěho-věhěre [1],∗ which mean to bring
together or to carry into one place. Convective heat transfer has grown to the
status of a contemporary science because of our need to understand and predict
how a fluid flow acts as a ‘‘carrier’’ or ‘‘conveyor belt’’ for energy and matter.

Convective heat transfer is clearly a field at the interface between two older
fields: heat transfer and fluid mechanics. To study the interdisciplinary is
valuable, but it must come after one possesses the disciplines, not the other way
around. For this reason, the study of any convective heat transfer problem must
rest on a solid understanding of basic heat transfer and fluid mechanics principles.
The objective in this chapter is to review these principles in order to establish a
common language for the more specific issues addressed in later chapters.

Before reviewing the foundation of convective heat transfer methodology, it
is worth reexamining the historic relationship between fluid mechanics and heat
transfer. Especially during the past 100 years, heat transfer and fluid mechanics
have enjoyed a symbiotic relationship in their development, a relationship where
one field was stimulated by the curiosity and advance in the other field. Examples
of this symbiosis abound in the history of boundary layer theory and natural
convection. The field of convection grew out of this symbiosis, and if we are
to learn anything from history, important advances in convection will continue
to result from this symbiosis. Thus, the student and the future researcher would
be well advised to devote equal attention to fluid mechanics and heat transfer
literature.

∗Numbers in brackets indicate references at the end of each chapter.

1Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2 1 FUNDAMENTAL PRINCIPLES

1.1 MASS CONSERVATION

The first principle to review is undoubtedly the oldest: It is the conservation
of mass in a closed system or the ‘‘continuity’’ of mass through a flow (open)
system. From engineering thermodynamics, we recall the mass conservation
statement for a control volume [2]:

∂Mcv

∂t
=

∑
inlet
ports

ṁ−
∑
outlet
ports

ṁ (1.1)

where Mcv is the mass that is trapped instantaneously inside the control volume
(cv), while the ṁ’s are the mass flow rates associated with flow into and out of
the control volume. In convective heat transfer, we are usually interested in the
velocity and temperature distribution in a flow region near a solid wall; hence,
the control volume to consider is the infinitesimally small �x �y box drawn
around a fixed location (x, y) in a flow field. In Fig. 1.1, as in most of the
problems analyzed in this book, the flow field is two-dimensional (i.e., the same
in any plane parallel to the plane of Fig. 1.1). In a three-dimensional flow field,
the control volume would be the parallelepiped �x�y�z. Taking u and v as the
local velocity components at point (x, y), the mass conservation equation (1.1)
requires that

∂

∂t
(ρ �x �y) = ρu �y+ ρv �x−

[
ρu+ ∂ (ρu)

∂x
�x

]
�y

−
[
ρv + ∂ (ρv)

∂y
�y

]
�x (1.2)

or, dividing through by the constant size of the control volume (�x �y),

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (1.3)

In a three-dimensional flow, an analogous argument yields

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (1.4)

where w is the velocity component in the z direction. The local mass conserva-
tion statement (1.4) can also be written as

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0 (1.5)
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Figure 1.1 Mass conservation and systems of coordinates.

or
Dρ

Dt
+ ρ∇ · v = 0 (1.6)

In expression (1.6), v is the velocity vector (u, v, w), and D/Dt represents the
‘‘material derivative’’ operator,

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(1.7)

Of particular interest to classroom and fundamental treatment of the convec-
tion problem is the wide class of flows in which temporal and spatial variations
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in density are negligible relative to the local variations in velocity. For this class,
the mass conservation statement reads

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1.8)

The equivalent forms of eq. (1.8) in cylindrical and spherical coordinates are
(Fig. 1.1)

∂vr

∂r
+ vr

r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (1.9)

and
1

r

∂

∂r
(r2vr) + 1

sin φ

∂

∂φ
(vφ sin φ) + 1

sin φ

∂vθ

∂θ
= 0 (1.10)

It is tempting to think that eqs. (1.8)–(1.10) are valid only for incompressible
fluids; in fact, their derivation shows that they apply to flows (not fluids) where
the density and velocity gradients are such that the Dρ/Dt terms are negligible
relative to the ρ ∇ · v terms in eq. (1.6). Most of the gas flows encountered in heat
exchangers, heated enclosures, and porous media obey the simplified version of
the mass conservation principle [eqs. (1.8)–(1.10)].

1.2 FORCE BALANCES (MOMENTUM EQUATIONS)

From the dynamics of thrust or propulsion systems, we recall that the instanta-
neous force balance on a control volume requires that (see Ref. 3, p. 15)

∂

∂t
(Mvn)cv =

∑
Fn +

∑
inlet
ports

ṁvn −
∑
outlet
ports

ṁvn (1.11)

where n is the direction chosen for analysis and vn and Fn are the projections
of fluid velocity and forces in the n direction. Equation (1.11) is recognized
in the literature as the momentum principle or momentum theorem. In essence,
eq. (1.11) is the control volume formulation of Newton’s second law of motion,
where in addition to terms accounting for forces and mass × acceleration, we
now have the impact due to the flow of momentum into the control volume, plus
the reaction associated with the flow of momentum out of the control volume. In
the two-dimensional flow situation of Fig. 1.2, we can write two force balances
of type (1.11), one for the x direction and the other for the y direction.

Consider now the special form taken by eq. (1.11) when applied to the
finitesize control volume �x �y drawn around point (x, y) in Fig. 1.2. Consider
first the balance of forces in the x direction. In Fig. 1.2a, showing the �x �y
control volume, we see the sense of the impact and reaction forces associated
with the flow of momentum through the control volume. In Fig. 1.2b, we see
the more classical forces represented by the normal stress (σx), tangential stress



1.2 FORCE BALANCES (MOMENTUM EQUATIONS) 5

Figure 1.2 Force balance in the x direction on a control volume in two-dimensional flow.

(τxy), and the x-direction body force per unit volume (X). Projecting all these
forces on the x axis, we obtain

− ∂

∂t
(ρu�x�y) + ρu2 �y−

[
ρu2 + ∂

∂x

(
ρu2

)
�x

]
�y

+ ρuv �x−
[
ρuv+ ∂

∂y
(ρuv)�y

]
�x

+ σx �y−
(

σx + ∂σx

∂x
�x

)
�y− τxy �x

+
(

τxy + ∂τxy

∂y
�y

)
�x+ X �x�y = 0 (1.12)
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or, dividing by �x �y in the limit (�x, �y) → 0,

ρ
Du

Dt
+ u

[
Dρ

Dt
+ ρ

(
∂u

∂x
+ ∂v

∂y

)]
= −∂σx

∂x
+ ∂τxy

∂y
+ X (1.13)

According to the mass conservation equation (1.6), the quantity in brackets is
equal to zero; hence,

ρ
Du

Dt
= −∂σx

∂x
+ ∂τxy

∂y
+ X (1.14)

Next, we relate the stresses σx and τxy to the local flow field by recalling the
constitutive relations

σx = P− 2µ
∂u

∂x
+ 2

3
µ

(
∂u

∂x
+ ∂v

∂y

)
(1.15)

τxy = µ

(
∂u

∂y
+ ∂v

∂x

)
(1.16)

These relations are of empirical origin: They summarize the experimental
observation that a fluid packet offers no resistance to a change of shape but resists
the time rate of a change of shape. Equations (1.15) and (1.16) serve as definition
for the measurable coefficient of viscosity µ. Combining eqs. (1.14)–(1.16)
yields the Navier—Stokes equation,

ρ
Du

Dt
= − ∂P

∂x
+ ∂

∂x

[
2µ

∂u

∂x
− 2µ

3

(
∂u

∂x
+ ∂v

∂y

)]

+ ∂

∂y

[
µ

(
∂u

∂y
+ ∂v

∂x

)]
+ X (1.17)

Of particular interest is the casewhen the flowmay be treated as incompressible
and the viscosity µ may be regarded as constant. Then the x momentum equation
reduces to

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ X (1.18)

A similar equation can be derived from the force balance in the y direction. For
a three-dimensional flow in the (x, y, z), (u, v, w) Cartesian system, the three
momentum equations for (ρ, µ) ∼= constant flows are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂P

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
+ X (1.19a)
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ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂P

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
+ Y (1.19b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂P

∂z
+ µ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
+ Z (1.19c)

Alternative forms of eqs. (1.19) are:

Vectorial notation:

ρ
Dv
Dt

= −∇P+ µ ∇2v + F (1.20)

where F is the body force vector per unit volume (X, Y, Z).

Cylindrical coordinates (Fig. 1.1b):

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2θ

r
+ vz

∂vr

∂z

)

= −∂P

∂r
+ µ

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ 1

r2
∂2vr

∂θ2
− 2

r2
∂vθ

∂θ
+ ∂2vr

∂z2

)
+ Fr

(1.21a)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z

)

= −1

r

∂P

∂θ
+ µ

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2
+ 1

r2
∂2vθ

∂θ2
+ 2

r2
∂vr

∂θ
+ ∂2vθ

∂z2

)
+ Fθ

(1.21b)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= −∂P

∂z
+ µ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ 1

r2
∂2vz

∂θ2
+ ∂2vz

∂z2

)
+ Fz (1.21c)

where (vr, vθ , vz) and (Fr, Fθ , Fz) are the velocity and body force vectors.

Spherical coordinates (Fig. 1.1c):

ρ

(
Dvr

Dt
− v2φ + v2θ

r

)

= −∂P

∂r
+ µ

(
∇2vr − 2vr

r2
− 2

r2
∂vφ

∂φ
− 2vφ cot φ

r2
− 2

r2 sin φ

∂vθ

∂θ

)
+ Fr

(1.22a)
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ρ

(
Dvφ

Dt
+ vrvφ

r
− v2θ cot φ

r

)

= −1

r

∂P

∂φ
+ µ

(
∇2vφ + 2

r2
∂vr

∂φ
− vφ

r2 sin2 φ
− 2 cos φ

r2 sin2 φ

∂vθ

∂θ

)
+ Fφ

(1.22b)

ρ

(
Dvθ

Dt
+ vθvr

r
+ vφ vθ cot φ

r

)

= − 1

r sin φ

∂P

∂θ
+ µ

(
∇2vθ − vθ

r2 sin2 φ
+ 2

r2 sin φ

∂vr

∂θ

+ 2 cos φ

r2 sin2 φ

∂vφ

∂θ

)
+ Fθ (1.22c)

where (vr, vφ , vθ ) and (Fr, Fφ , Fθ ) are the velocity and body force vectors, and

D

Dt
= ∂

∂t
+ vr

∂

∂r
+ vφ

r

∂

∂φ
+ vθ

r sin φ

∂

∂θ
(1.23)

∇2 = 1

r2
∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
+ 1

r2 sin2 φ

∂2

∂θ2
(1.24)

are the material derivative and Laplacian operators in spherical coordinates.

1.3 FIRST LAW OF THERMODYNAMICS

The preceding two principles—mass conservation and force balances—are in
many cases sufficient for solving the flow part of the convective heat trans-
fer problem. Note at this juncture the availability of four equations (mass
conservation plus three force balances) for determining four unknowns (three
velocity components plus pressure). The exception to this statement is the sub-
ject of Chapter 4, where the natural flow is driven by the heat administered
to the flowing fluid. In all cases, however, the heat transfer part of the con-
vection problem requires a solution for the temperature distribution through
the flow, especially in the close vicinity of the solid walls bathed by the
heat-carrying fluid stream (Chapter 2). The additional equation for accomplish-
ing this ultimate objective is the first law of thermodynamics or the energy
equation.

For the control volume of finite size �x �y in Fig. 1.3, the first law of
thermodynamics requires that (see Ref. 2, p. 22)
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rate of energy
accumulation in the
control volume




1

=
(
net transfer of
energy by fluid flow

)
2
+

(
net heat transfer
by conduction

)
3

+




rate of internal
heat generation (e.g.,
electrical power
dissipation)




4

−



net work transfer
from the control
volume to its
environment




5

(1.25)

Figure 1.3 First law of thermodynamics applied to a control volume in two-dimensional flow
(for work transfer, see Fig. 1.2).
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According to the energy flows sketched in Fig. 1.3, the groups of terms above
are

{·}1 = �x�y
∂

∂t
(ρe)

{·}2 = −(�x�y)

[
∂

∂x
(ρue) + ∂

∂y
(ρve)

]

{·}3 = −(�x�y)

(
∂q′′

x

∂x
+ ∂q′′

y

∂y

)
{·}4 = (�x�y)q′′′

{·}5 = (�x�y)

(
σx

∂u

∂x
− τxy

∂u

∂y
+ σy

∂v

∂y
− τyx

∂v

∂x

)

+ (�x�y)

(
u
∂σx

∂x
− u

∂τxy

∂y
+ v

∂σy

∂y
− v

∂τyx

∂x

)
∗

(1.25′)

where e, q′′
x , q

′′
y , and q′′′ are the specific internal energy, heat flux in the x

direction, heat flux in the y direction, and dissipation rate or rate of internal heat
generation.

The origin of the dissipation rate term {·}5 lies in the work transfer effected
by the normal and tangential stresses sketched in Fig. 1.2b. For example, the
work done per unit time by the normal stresses σx on the left side of the �x �y
element is negative and equal to the force acting on the boundary (σx �y) times
the boundary displacement per unit time (u), which yields −uσx �y. Similarly,
the work transfer rate associated with normal stresses acting on the right side of
the element is positive and equal to [σx + (∂σx/∂x) �x][u+ (∂u/∂x) �x] �y. The
net work transfer rate due to these two contributions is [σx(∂u/∂x) + u(∂σx/∂x)]
(�x �y), as shown in the {·}5 term of eq. (1.25′).

Three more work transfer rates can be calculated in the same manner by
examining the effect of the remaining three stresses, τxy in the x direction and
σy and τyx in the y direction. In the {·}5 expression above, the eight terms have
been separated into two groups. It can be shown that the group denoted as (·)*
reduces to −ρ(D/Dt)(u2 + v2)/2, which represents the change in kinetic energy
of the fluid packet; in the present treatment, this change is considered negligible
relative to the internal energy change ∂(ρe)/∂t appearing in {·}1.

Assembling expressions (1.25′) into the energy conservation statement that
preceded them, and using constitutive relations (1.15) and (1.16), we obtain

ρ
De

Dt
+ e

(
Dρ

Dt
+ ρ ∇ · v

)
= −∇ · q′′ + q′′′ − P ∇ · v + µ� (1.26)

where q′′ is the heat flux vector (q′′
x , q

′′
y ) and� is the viscous dissipation function,

shown later in eq. (1.45a). The quantity between parentheses on the left-hand
side of eq. (1.26) is equal to zero [cf. eq. (1.6)]. In the special case where the flow
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can be modeled as incompressible and two-dimensional, the viscous dissipation
function reduces to

� = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
(

∂u

∂y
+ ∂v

∂x

)2

(1.27)

To express eq. (1.26) in terms of enthalpy, we use the thermodynamics
definition h = e + (1/ρ)P; hence,

Dh

Dt
= De

Dt
+ 1

ρ

DP

Dt
− P

ρ2

Dρ

Dt
(1.28)

In addition, we can express the directional heat fluxes q′′
x and q

′′
y in terms of the

local temperature gradients, by invoking the Fourier law of heat conduction,

q′′ = −k ∇T (1.29)

Then, combining eqs. (1.26), (1.28), and (1.29) we obtain

ρ
Dh

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ µ� − P

ρ

(
Dρ

Dt
+ ρ ∇ · v

)
(1.30)

Finally, the mass conservation equation (1.6) shows that the last terms in
parentheses in eq. (1.30) add up to zero, and the first law of thermodynamics
reduces to

ρ
Dh

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ µ� (1.31)

In order to express the energy equation (1.31) in terms of temperature, it is
tempting to replace the specific enthalpy on the left-hand side by the product
of specific heat × temperature. This move is correct only in cases where the
fluid behaves like an ideal gas (see the ideal gas model, Table 1.1). In general,
the change in specific enthalpy for a single-phase substance is expressed by the
canonical relation for enthalpy [2],

dh = T ds+ 1

ρ
dP (1.32)

where T is the absolute temperature and ds the specific entropy change,

ds =
(

∂s

∂T

)
P
dT +

(
∂s

∂P

)
T
dP (1.33)

From the last of Maxwell’s relations (see Ref. 2, p. 172), we have(
∂s

∂P

)
T

= −
[
∂ (1/ρ)

∂T

]
P

= 1

ρ2

(
∂ρ

∂T

)
P

= −β

ρ
(1.34)
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Table 1.1 Summary of thermodynamic relationsaand models

Internal Energy
du = T ds − P dv

Enthalpy
dh = T ds + v dP

Entropy

ds = 1

T
du+ P

T
dv

Pure substance du = cv dT dh = cp dT ds = cp
T
dT −

(
∂v

∂T

)
P
dP

+
[
T

(
∂P

∂T

)
v

− P

]
dv +

[
−T

(
∂v

∂T

)
p
+ v

]
dP = cv

T
dT +

(
∂P

∂T

)
v

dv

Ideal gas du = cv dT dh = cP dT ds = cp
dT

T
− R

dP

P

= cv
dT

T
+ R

dv

v

= cv
dP

P
+ cP

dv

v

Incompressible
liquid

du = c dT dh = c dT + v dP ds = c
dT

T

Source: Ref. 2.
aAccording to the classical thermodynamics notation, v is the specific volume, v = 1/ρ, and u is
the internal energy (e in the text).

where β is the coefficient of thermal expansion,

β = − 1

ρ

(
∂ρ

∂T

)
P

(1.35)

Table 1.1 also shows that (
∂s

∂T

)
P

= cP
T

(1.36)

Together, eqs. (1.32)–(1.36) state that

dh = cP dT + 1

ρ
(1 − βT) dP (1.37)

in other words, the left-hand side of the energy equation (1.31) is

ρ
Dh

Dt
= ρcP

DT

Dt
+ (1 − βT)

DP

Dt
(1.38)

The ‘‘temperature’’ formulation of the first law of thermodynamics is therefore

ρcP
DT

Dt
= ∇ · (k ∇T) + q′′′ + βT

DP

Dt
+ µ� (1.39)
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with the following special forms:

Ideal gas (β = 1/T):

ρcP
DT

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ µ� (1.40)

Incompressible liquid (β = 0):

ρc
DT

Dt
= ∇ · (k ∇T) + q′′′ + µ� (1.41)

Most of the convection problems addressed in this book obey an even simpler
model: namely, constant fluid conductivity k, zero internal heat generation q′′′,
negligible viscous dissipation µ�, and negligible compressibility effect βT
DP/Dt. The energy equation for this model is

ρcP
DT

Dt
= k ∇2T (1.42)

or, in terms of specific coordinate systems (Fig. 1.1):

Cartesian (x, y, z):

ρcP

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(1.43a)

Cylindrical (r, θ , z):

ρcP

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vz

∂T

∂z

)

= k

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2
∂2T

∂θ2
+ ∂2T

∂z2

]
(1.43b)

Spherical (r, φ, θ):

ρcP

(
∂T

∂t
+ vr

∂T

∂r
+ vφ

r

∂T

∂φ
+ vθ

r sin φ

∂T

∂θ

)

= k

[
1

r2
∂

∂r

(
r2

∂T

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂T

∂φ

)
+ 1

r2 sin2φ

∂2T

∂θ2

]
(1.43c)

If the fluid can be modeled as an incompressible liquid, then, as in eq. (1.41), the
specific heat at constant pressure cP is replaced by the lone specific heat of the
incompressible liquid, c (Table 1.1).
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When dealing with extremely viscous flows of the type encountered in
lubrication problems or the piping of crude oil, the model above is improved by
taking into account the internal heating due to viscous dissipation,

ρcP
DT

Dt
= k ∇2T + µ� (1.44)

In three dimensions, the viscous dissipation function is expressed as follows:

Cartesian (x, y, z):

� = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

+
[(

∂u

∂y
+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2
]

− 2

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2

(1.45a)

Cylindrical (r, θ , z):

� = 2

[(
∂vr

∂r

)2

+
(
1

r

∂vθ

∂θ
+ vr

r

)2

+
(

∂vz

∂z

)2

+ 1

2

(
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

)2

+ 1

2

(
1

r

∂vz

∂θ
+ ∂vθ

∂z

)2

+1

2

(
∂vr

∂z
+ ∂vz

∂r

)2

− 1

3
(∇ · v)2

]
(1.45b)

Spherical (r, φ, θ):

� = 2

{[(
∂vr

∂r

)2

+
(
1

r

∂vφ

∂φ
+ vr

r

)2

+
(

1

r sin φ

∂vθ

∂θ
+ vr

r
+ vφ cot φ

r

)2
]

+ 1

2

[
r

∂

∂r

(vφ

r

)
+ 1

r

∂vr

∂φ

]2

+ 1

2

[
sin φ

r

∂

∂φ

(
vθ

r sin φ

)
+ 1

r sin φ

∂vθ

∂θ

]2

+1

2

[
1

r sin φ

∂vr

∂θ
+ r

∂

∂r

(vθ

r

)]2
}

− 2

3
(∇ · v)2 (1.45c)

If the density does not vary significantly through the flow field,∇·v= 0 [eq. (1.6)]
and the last term in each of expressions (1.45) vanishes.
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It is worth reviewing the constant-ρ approximation that led to eq. (1.8) and rec-
ognizing that it differs conceptually from the ‘‘incompressible substance model’’
of thermodynamics. The latter is considerably more restrictive than the ‘‘nearly
constant’’ density model, eq. (1.8). For example, a compressible substance such
as air can flow in such a way that eq. (1.8) is a very good approximation of
eq. (1.6).

For the restrictive class of fluids that are ‘‘incompressible’’ from the thermo-
dynamic point of view, the specific heat at constant pressure cP can be replaced
by the lone specific heat of the fluid, c, on the left side of eq. (1.39). Water,
liquid mercury, and engine oil are examples of fluids for which this substitution
is justified. There are even convection problems in which the moving materials
are actually solid (e.g., a roller and its substrate, in the zone of elastic contact).
In such cases the cP = c substitution is permissible also.

Note that the specific heat at constant volume cν does not belong on the left
side of eq. (1.39). This observation is important because Fourier [4, 5], and later
Poisson [6], who were the first to derive the energy equation for a convective
flow, wrote c on the left side of eq. (1.39). They made this choice because their
analyses were aimed specifically at incompressible fluids (liquids), for which c
happens to have nearly the same value as cP. Because of this choice, they did not
have to account for the P dV type of work done by the fluid packet as it expands
or contracts in the flow field. In the modern era, however, the use of cν instead
of cP is an error.

The prethermodynamics (caloric conservation) origins of the science of
convection are also responsible for the ‘‘thermal energy equation’’ label that
some prefer to attach to eq. (1.39) without the βT DP/Dt term. This terminology
is sometimes used to stress (incorrectly) the conservation of ‘‘thermal’’ energy
as something distinct from ‘‘mechanical and thermal’’ energy. In classical
thermodynamics, however, this distinction disappeared when the first law of
thermodynamics was enunciated, that is, when the thermodynamic property
‘‘energy’’ was defined, which happened in the years 1850–1851 (see Ref. 2,
pp. 28–29).

Equation (1.39) represents the first law of thermodynamics. This law pro-
claims the conservation of the sum of energy change (the property) and energy
interactions (heat transfer and work transfer). The suggestion that mechanical
effects (e.g., work transfer) are absent from eq. (1.39) when the βT DP/Dt term
is absent is wrong. The presence of cP on the left side of the equation is the sign
that each fluid packet expands or contracts (i.e., it does P dV-type work) as it
rides on the flow. The terms q′′′ and µ� are work transfer rate terms also.

1.4 SECOND LAW OF THERMODYNAMICS

Any discussion of the basic principles of convective heat transfer must include
the second law of thermodynamics, not because the second law is necessary
for determining the flow and temperature field (it is not, because it is not an
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equation), but because the second law is the basis for much of the engineering
motive (objective, purpose) for formulating and solving convection problems.
For example, in the development of knowhow for the heat exchanger industry,
we strive for improved thermal contact (enhanced heat transfer) and reduced
pump power loss in order to improve the thermodynamic efficiency of the
heat exchanger. Good heat exchanger design means, ultimately, efficient ther-
modynamic performance, that is, minimum generation of entropy or minimum
destruction of exergy in the power/refrigeration system incorporating the heat
exchanger [7, 8].

The second law of thermodynamics states that all real-life processes are
irreversible: In the case of a control volume, as in Fig. 1.1, this statement is

∂Scv
∂t

≥
∑ qi

Ti
+

∑
inlet
ports

ṁs−
∑
outlet
ports

ṁs (1.46)

where Scv is the instantaneous entropy inventory of the control volume, ṁs
represents the entropy flows (streams) into and out of the control volume, and Ti
is the absolute temperature of the boundary crossed by the heat transfer qi.

∗ The
irreversibility of the process is measured by the strength of the inequality sign in
eq. (1.46), or by the entropy generation rate Sgen, defined as

Sgen = ∂Scv
∂t

−
∑ qi

Ti
−

∑
inlet
ports

ṁs+
∑
outlet
ports

ṁs ≥ 0 (1.47)

One can show that the rate of destruction of useful work in an engineering
system, Wlost, is directly proportional to the rate of entropy generation [2, 3, 7],

Wlost = T0Sgen (1.48)

where T0 is the absolute temperature of the ambient temperature reservoir
(T0 = constant). Equation (1.48) stresses the engineering importance of esti-
mating the irreversibility or entropy generation rate of convective heat transfer
processes: If not used wisely, these processes contribute to the waste of precious
fuel resources.

Based on an analysis similar to the analyses presented for mass conservation,
force balances, and the first law of thermodynamics, the second law (1.47) may
be applied to a finite-size control volume �x �y �z at an arbitrary point (x, y, z)
in a flow field. Thus, the rate of entropy generation per unit time and per unit
volume S′′′

gen is [2, 3, 7]

S′′′
gen = k

T2
(∇T)2︸ ︷︷ ︸
≥0

+ µ

T
�︸︷︷︸

≥0

≥ 0 (1.49)

∗Defined as positive into the control volume.
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where k and µ are assumed constant. In a two-dimensional convection situation
such as in Figs. 1.1–1.3, the local entropy generation rate (1.49) yields

S′′′
gen = k

T2

[(
∂T

∂x

)2

+
(

∂T

∂y

)2
]

+ µ

T

{
2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
(

∂u

∂y
+ ∂v

∂x

)2
}

≥ 0 (1.50)

In the last two equations, T represents the absolute temperature of the point
where S′′′

gen is being evaluated. The two-dimensional expression (1.50) illustrates
the competition between viscous dissipation and imperfect thermal contact
(finite-temperature gradients) in the generation of entropy via convective heat
transfer.

Equations (1.48) and (1.50) constitute the bridge between two research
activities: fundamental convection heat transfer and thermodynamics (entropy
generation minimization). Beginning with Chapter 2, we focus on the funda-
mental problems of determining the flow and temperature fields in a given
convection heat transfer configuration. However, through eq. (1.50), we are
invited to keep in mind that these fields contribute hand-in-hand to downgrading
the thermodynamic merit of the engineering device that ultimately employs the
convection process under consideration. The science of adjusting the convection
process so that it destroys the least exergy (subject to various system constraints)
is the focus of entropy generation minimization; this activity has been reviewed
in Refs. 2, 3, and 7. The generation of flow configuration (geometry, archi-
tecture) for maximal performance under constraints is constructal theory and
design [2, 9–14].

1.5 RULES OF SCALE ANALYSIS

This section is designed to introduce the student to the problem-solving method
of scale analysis or scaling. This is necessary because scale analysis is used
extensively throughout the book; in fact, scale analysis is recommended as the
premier method for obtaining the most information per unit of intellectual effort.
This section is also necessary because scale analysis is not discussed in the heat
transfer and fluid mechanics textbooks of our time, despite the fact that it is a
precondition for good analysis in dimensionless form. Scale analysis is often
confused with dimensional analysis or the often arbitrary nondimensionalization
of the governing equations before performing a perturbation analysis or a
numerical simulation on the computer.

The object of scale analysis is to use the basic principles of convective heat
transfer to produce order-of-magnitude estimates for the quantities of interest.
This means that if one of the quantities of interest is the thickness of the boundary
layer in forced convection, the object of scale analysis is to determine whether
the boundary layer thickness is measured in millimeters or meters. Note that scale
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analysis goes beyond dimensional analysis (whose objective is to determine the
dimension of boundary layer thickness, namely, length). When done properly,
scale analysis anticipates within a factor of order one (or within percentage
points) the expensive results produced by ‘‘exact’’ analyses. The value of scale
analysis is remarkable, particularly when we realize that the notion of ‘‘exact
analysis’’ is as false and ephemeral as the notion of ‘‘experimental fact.’’

As the first example of scale analysis, consider a problem from the field of
conduction heat transfer [15]. In Fig. 1.4 we see a plate plunged at t = 0 into
a highly conducting fluid, such that the surfaces of the plate instantaneously
assume the fluid temperature T∞ = T0 + �T. Suppose that we are interested in
estimating the time needed by the thermal front to penetrate the plate, that is, the
time until the center plane of the plate ‘‘feels’’ the heating imposed on the outer
surfaces.

To answer the question above, we focus on a half-plate of thickness D/2 and
the energy equation for pure conduction in one direction:

ρcP
∂T

∂t
= k

∂2T

∂x2
(1.51)

Next, we estimate the order of magnitude of each of the terms appearing in
eq. (1.51). On the left-hand side we have

ρcP
∂T

∂t
∼ ρcP

�T

t
(1.52)

Figure 1.4 Transient heat conduction in a slab with sudden temperature change on the
boundaries.
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In other words, the scale of the temperature change (in the chosen space and in a
time of order t) is �T. On the right-hand side we obtain

k
∂2T

∂x2
= k

∂

∂x

(
∂T

∂x

)
∼ k

D/2

�T

D/2
= k�T

(D/2)2
(1.53)

Equating the two orders of magnitude (1.52) and (1.53), as required by the energy
equation (1.51), we find the answer

t ∼ (D/2)2

α
(1.54)

where α is the thermal diffusivity of the medium, k/ρcP. The penetration time
(1.54) compares well with any order-of-magnitude interpretation of the exact
solution to this classical problem [15]. However, the time and effort associated
with deriving eq. (1.54) do not compare with the labor required by Fourier
analysis and the graphical presentation of Fourier series.

Based on this introductory example, the following rules of scale analysis are
worth teaching:

• Rule 1. Always define the spatial extent of the region in which you perform
the scale analysis. In the example of Fig. 1.4, the size of the region of
interest is D/2. In other problems, such as boundary layer flow, the size of
the region of interest is unknown; as shown in Chapter 2, the scale analysis
begins by selecting the region and by labeling the unknown thickness of this
region δ. Any scale analysis of a flow or a flow region that is not uniquely
defined is nonsense.

• Rule 2. One equation constitutes an equivalence between the scales of
two dominant terms appearing in the equation. In the transient conduction
example of Fig. 1.4, the left-hand side of eq. (1.51) could only be of the
same order of magnitude as the right-hand side. The two terms appearing in
eq. (1.51) are the dominant terms (considering that the discussion referred
to pure conduction); in general, the energy equation can contain many more
terms [eq. (1.39)], not all of them important. The reasoning for selecting
the dominant scales from many scales is condensed in rules 3–5.

• Rule 3. If in the sum of two terms,

c = a+ b (1.55)

the order of magnitude of one term is greater than the order of magnitude
of the other term,

O(a) > O(b) (1.56)

then the order of magnitude of the sum is dictated by the dominant term:

O(c) = O(a) (1.57)
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The same conclusion holds if instead of eq. (1.55), we have the difference
c = a − b or c = − a + b.

• Rule 4. If in the sum of two terms, eq. (1.55), the two terms are of the same
order of magnitude,

O(a) = O(b) (1.58)

then the sum is also of the same order of magnitude:

O(c) ∼ O(a) ∼ O(b) (1.59)

• Rule 5. In any product
p = ab (1.60)

the order of magnitude of the product is equal to the product of the orders
of magnitude of the two factors

O(p) = O(a)O(b) (1.61)

If, instead of eq. (1.60), we have the ratio

r = a

b
(1.62)

then

O(r) = O(a)

O(b)
(1.63)

In addition to having its own set of rules, scale analysis requires special care
with regard to notation. In rules 1–5, we used the following symbols:

∼ is of the same order of magnitude as

O(a) the order of magnitude of a

> greater than, in an order-of-magnitude sense

For brevity, the scale analyses included in this book employ the language of
expressions (1.56), (1.57), (1.61), and (1.63) without the repetitive potentially
confusing notation O(·) for ‘‘order of magnitude.’’

Scale analysis is now employed widely in heat transfer, and the fundamental
scaling results that have been developed go beyond the first steps presented in
this book. For example, Bhattacharjee and Grosshandler [16] have reported the
scale analysis of a pressure-driven wall jet. Li and Djilali [17] have used scale
analysis to describe the behavior of separating flows behind backward-facing
steps (separation bubbles). Li [18] has reported the scaling results for jet diffusion
flames. Dowell [19] applied the method of scale analysis to the study of linear
and nonlinear dynamics and aerodynamics.
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1.6 HEATLINES FOR VISUALIZING CONVECTION

The opportunity to actually ‘‘see’’ the solution to a problem is essential to a
problem solver’s ability to learn from experience and in this way to improve his
or her technique. In convection problems it is important to visualize the flow of
fluid and, riding on this, the flow of energy. For example, in the two-dimensional
Cartesian configuration of Fig. 1.1, it has been common practice to define a
streamfunction ψ(x, y) as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(1.64)

such that the mass continuity equation for incompressible flow,

∂u

∂x
+ ∂v

∂y
= 0 (1.65)

is satisfied identically. It is easy to verify that the actual flow is locally parallel to
the ψ = constant line passing through the point of interest. Therefore, although
there are no substitutes for u and v as bearers of information regarding the local
flow, the family of ψ = constant streamlines provides a bird’s-eye view of the
entire flow field and its main characteristics.

In convection, the transport of energy through the flow field is a combination
of both thermal diffusion and enthalpy flow [cf. eq. (1.42)]. For any such
field, Kimura and Bejan [20] and the 1984 edition of this book defined a new
function H(x, y) such that the net flow of energy (thermal diffusion and enthalpy
flow) is zero across each H = constant line. The mathematical definition of the
heatfunction H follows in the steps of eqs. (1.64) with the aim of satisfying
the energy equation. For steady-state two-dimensional convection through a
constant-property homogeneous fluid, eq. (1.42) becomes

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(1.66)

or
∂

∂x

(
ρcPuT − k

∂T

∂x

)
+ ∂

∂y

(
ρcPvT − k

∂T

∂y

)
= 0 (1.67)

The heatfunction is defined as follows:

Net energy flow in the x direction:

∂H

∂y
= ρcPu(T − Tref) − k

∂T

∂x
(1.68)

Net energy flow in the y direction:

−∂H

∂x
= ρcPv(T − Tref) − k

∂T

∂y
(1.69)
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so that the heatfunction H(x, y) satisfies eq. (1.66) identically. Note that the
definition above also applies to convection through a fluid-saturated porous
medium, where eq. (1.66) accounts for energy conservation (Chapter 12).

The reference temperature Tref is, in principle, an arbitrary constant that
can be selected based on convention. Patterns of H = constant heatlines are
instructive when Tref is the lowest temperature that occurs in the heat transfer
configuration. For example, if the wall shown in Fig. 2.1 is warmer than the
free stream, T0 > T∞, the choice of reference temperature is Tref = T∞. For a
meaningful comparison of the heatlines of one flow with the heatlines of another
flow, I proposed that Tref always be set equal to the lowest temperature of
the flow field.

If the fluid flow subsides (u = v = 0), the heatlines become identical to
the heat flux lines employed frequently in the study of conduction phenomena.
Therefore, as a heat transfer visualization technique, the use of heatlines is the
convection counterpart or generalization of a standard technique (heat flux lines)
used in conduction. Note that the contemporary use of T = constant lines is not
a proper way to visualize heat transfer in the field of convection; isotherms are
a proper heat transfer visualization tool only in the field of conduction (where,
in fact, they have been invented) because only there are they locally orthogonal
to the true direction of energy flow. The use of T = constant lines to visualize
convection heat transfer makes as much sense as using P = constant lines to
visualize fluid flow.

The heatline method for the visualization of convective heat transfer was
proposed in the first edition of this book (1984), along with a first application
to natural convection in an enclosure heated from the side [20]. The method has
since been adopted and extended in many ways in the post-1984 heat transfer
literature [21–55].
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11. H. Poirier, Une théorie explique l’intelligence de la nature, Science & Vie, No. 1034,
November 2003, pp. 44–63.

12. A. Bejan and S. Lorente, Constructal theory of generation of configuration in nature
and engineering, J. Appl. Phys., Vol. 100, 2006, 041301.

13. A. Bejan and S. Lorente, The constructal law of design and evolution in nature, Phil.
Trans. R. Soc. B, Vol. 365, 2010, pp. 1335–1347.

14. A. Bejan and S. Lorente, Design with Constructal Theory, Wiley, Hoboken, 2008.

15. A. Bejan, Heat Transfer, Wiley, New York, 1993, Chapter 4.

16. S. Bhattacharjee and W. L. Grosshandler, The formation of a wall jet near a high
temperature wall under microgravity environment, ASME HTD, Vol. 96, 1988,
pp. 711–716.

17. X. Li and N. Djilali, On the scaling of separation bubbles, JSME Int. J., Ser. B,
Vol. 38, No. 4, 1995, pp. 541–548.

18. X. Li, On the scaling of the visible lengths of jet diffusion flames, J. Energy Resour.
Technol., Vol. 118, 1996, pp. 128–133.

19. E. H. Dowell, Transonic unsteady potential flow: Scaling analysis of linear and
nonlinear dynamics, AIAA J., Vol. 48, 2010, pp. 1017–1019.

20. S. Kimura and A. Bejan, The ‘‘heatline’’ visualization of convective heat transfer,
J. Heat Transfer, Vol. 105, 1983, pp. 916–919.

21. D. Littlefield and P. Desai, Buoyant laminar convection in a vertical cylindrical
annulus, J. Heat Transfer, Vol. 108, 1986, pp. 814–821.

22. O. V. Trevisan and A. Bejan, Combined heat and mass transfer by natural convection
in a vertical enclosure, J. Heat Transfer, Vol. 109, 1987, pp. 104–109.

23. F. L. Bello-Ochende, Analysis of heat transfer by free convection in tilted rectangular
cavities using the energy analogue of the stream function, Int. J. Mech. Eng. Ed.,
Vol. 15, 1987, pp. 91–98.

24. F. L. Bello-Ochende, A heat function formulation for thermal convection in a square
cavity, Int. Comm. Heat Mass Transfer, Vol. 15, 1988, pp. 193–202.

25. A. M. Morega, The heat function approach to the thermo-magnetic convection of
electroconductive melts, Rev. Roum. Sci. Tech. Ser. Electrotech. Energ., Vol. 33,
1988, pp. 33–39.

26. S. K. Aggarwal and A. Manhapra, Use of heatlines for unsteady buoyancy-driven
flow in a cylindrical enclosure, J. Heat Transfer, Vol. 111, 1989, pp. 576–578.

27. S. K. Aggarwal and A. Manhapra, Transient natural convection in a cylindrical
enclosure nonuniformly heated at the top wall, Numer. Heat Transfer, Part A,
Vol. 15, 1989, pp. 341–356.

28. C. J. Ho, Y. H. Lin, and T. C. Chen, A numerical study of natural convection
in concentric and eccentric horizontal cylindrical annuli with mixed boundary
conditions, Int. J. Heat Fluid Flow, Vol. 10, 1989, pp. 40–47.



24 1 FUNDAMENTAL PRINCIPLES

29. C. J. Ho and Y. H. Lin, Thermal convection heat transfer of air/water layers enclosed
in horizontal annuli with mixed boundary conditions,Wärme Stoffübertrag., Vol. 24,
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PROBLEMS

1.1. Consider the unsteady mass conservation equation (1.5) as it might
describe the flow accelerating through a duct with a variable cross section.
If the largest velocity gradient measured locally is du/dx and the largest
density gradient is dρ/dx, what order-of-magnitude relationship must
exist between du/dx and dρ/dx for the simplified equation (1.8) to be
applicable?

1.2. Derive themass conservation equation in cylindrical coordinates [eq. (1.9)]
by applying the general principle (1.1) to an elementary control volume of
size �r(r �θ) �z in Fig. 1.1b (assume that ρ = constant).
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1.3. Derive the mass conservation statement for spherical coordinates [eq.
(1.10)] by writing eq. (1.1) for the elementary control volume (�r)(r sin φ

�θ)(r �φ) around point (r, θ , φ) in Fig. 1.1c (assume that ρ = constant).

1.4. Consider a flow in which ρ and µ may be regarded as constant. Show that
the x momentum equation (1.18) follows from eq. (1.17) through proper
use of the mass conservation principle.

1.5. Imagine a flow described by eqs. (1.9) and (1.21) in cylindrical coordinates.
If the flow is situated on one side of and infinitely far from the r = 0
origin of the coordinate system, the local three-directional increments �r,
r �θ , �z become analogous to three Cartesian increments �x, �y, �z
measured away from the local point (r, θ , z) in the flow field. Show that in
the limit r → ∞, the transformation �r → �x, r �θ → �y, �z → �z
leads to the collapse of eqs. (1.9) and (1.21) into their (x, y, z) Cartesian
equivalents [eqs. (1.8) and (1.19)].

1.6. Consider the conservation of mass and the three force balances in spherical
coordinates [eqs. (1.10) and (1.22)]. If the flowdescribed by these equations
is situated infinitely far from the r = 0 origin of the spherical system, the
following transformation is applicable (Fig. 1.1): �r → �x, r sin φ �θ

→ �y, r �φ → �z. Show that through this transformation, in the limit
r → ∞, eqs. (1.10) and (1.22) become the same as eqs. (1.8) and (1.19).

1.7. Implicit in the derivation of the energy equation (1.39) is the assumption
that changes in kinetic energy V2/2 are negligible relative to changes in
internal energy e [see expressions (1.25), where e should, in general, be
replaced by e + V2/2]. Retrace the path leading to eq. (1.39) by taking
into account changes in kinetic energy; show that the result of this more
rigorous analysis is identical to eq. (1.39).

1.8. Demonstrate that lost work is always proportional to entropy generation
[eq. (1.48)], where Wlost = Wmaximum − Wactual, and where Wmaximum
corresponds to the reversible limit (Sgen = 0). Write the first law of
thermodynamics for a control volume, first for the actual (real) process
and then for the reversible process. Then use the definition of Wlost and
Sgen to prove eq. (1.48).

1.9. Derive the formula for the local rate of entropy generation [eq. (1.49)].
Begin with translating the general statement (1.47) into the language
of the two-dimensional control volume �x �y. Combine the resulting
expression with the first law of thermodynamics as given by eq. (1.26),
plus the canonical relation for internal energy (Table 1.1).

1.10. Consider the Couette flow between two parallel plates separated by a
gap of width D and moving relative to one another with a speed U. The
temperature difference�T is imposed between the two plates. Estimate the
rate of entropy generation per unit volume in this flow. What relationship
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must exist between D, U, �T and the fluid properties µ and k for S′′′
gen to

be dominated by the irreversibility due to fluid friction?

1.11. According to the one-dimensional (longitudinal) conduction model of a
fin, the temperature distribution along the fin, T(x), obeys the energy
equation [15]

kA
d2T

dx2︸ ︷︷ ︸
Longitudinal
conduction

− hP(T − T0)︸ ︷︷ ︸
Lateral

convection

+ q′′′A︸︷︷︸
Internal
heat

generation

= 0

where A, h, P, and q′′′ are the fin cross-sectional area, fin-fluid heat transfer
coefficient, perimeter of the fin cross section (called the wetted perimeter),
and volumetric rate of heat generation. Consider the semi-infinite fin that,
as shown in Fig. P1.11, is bathed by a fluid of temperature T0 and is
attached to a solid wall of temperature T0. The heat generated by the fin is
absorbed by either the fluid or the solid wall.

Figure P1.11

(a) As a system for scale analysis, select the fin section of length x,
where x is measured away from the wall. Let T∞ be the fin temper-
ature sufficiently far from the wall. Show that if x is large enough,
the longitudinal conduction term becomes negligible in the energy
equation.

(b) Invoking the balance between lateral convection and internal heat
generation, determine the fin temperature sufficiently far from the
wall, T∞.
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(c) Determine the fin section of length δ near the wall where the heat
transfer is ruled by the balance between longitudinal conduction and
internal heat generation.

(d) Determine the heat transfer rate into the wall through the base of
the fin.

1.12. Consider the laminar flow near a flat, solid wall, as illustrated in Fig. 2.1.
The momentum equation for this flow involves the competition among
three effects: inertia, pressure gradient, and friction [see eq. (2.26)]. For
the purpose of scale analysis, consider a flow region of length L and
thickness L. Show that in this region, the ratio of inertia to friction is
of order ReL, where ReL is the Reynolds number based on wall length.
Note that the region selected for analysis is not the boundary layer region
discussed in Chapter 2. In a certain flow, the value of ReL is 103. What
force balance rules the L× L region: inertia ∼ pressure, inertia ∼ friction,
or pressure ∼ friction?

1.13. The hot components of a power plant must be fitted with thermal insulation
so that they do not leak heat excessively to the ambient (T0). The thermal
conductivity of the insulation is known (k). The total volume of the
insulation (V) is fixed.

A simple model of the hot components is the two-chamber model shown
in Fig. P1.13. The hottest is the furnace, which is enclosed by a surface of
area AH and high temperature TH. The thickness of the insulation mounted
on AH is tH. This thickness is sufficiently small so that the volume of the
insulation on AH is AHtH.

AH, TH
AL, TL

tH

tL

qH

qL

T0

Figure P1.13

The rest of the hot components (pipes, feed water heaters, turbines)
are not as hot as the furnace. They are inside an enclosure with area AL,
temperature TL, insulation thickness tL, and insulation volume ALtL.

The heat leaks qH and qL are by pure conduction and are driven by the
temperature differences�TH = TH − T0 and�TL = TL − T0, respectively.
These temperature differences are known. The problem is to determine
tH/tL, that is, how to distribute the available insulation on AH and AL.
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1. Minimize the total heat leak from AH and AL to the ambient, namely
qH + qL, and determine the optimal ratio tH/tL as a function of other
parameters of the two-chamber model. Does tH/tL depend on AH/AL?

2. Explain why 1 W of heat leak from TH is not the same as 1 W of heat
leak from TL. Which do you think is more damaging to the performance
of the power plant?

3. Imagine that qH can be intercepted outside AH and used to run a Carnot
engine between TH and T0. The power producible in this way (WH)
is lost because qH is dumped straight into the ambient. Imagine the
equivalent scenario for qL, and derive a formula for the Carnot power
WL that is lost because of this second heat leak.

4. Minimize the total loss of power (WH +WL) and determine the optimal
ratio tH/tL.

5. Compare the tH/tL results obtained at sections 1 and 4. Which ratio is
larger? Which is more relevant for actual implementation?
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LAMINAR BOUNDARY
LAYER FLOW

To begin a course in convective heat transfer with a chapter on boundary layers
is to recognize the origins of the field. In this chapter we take a close look at the
meaning of boundary layer theory and at the revolution that this theory triggered,
not only in convective heat transfer but especially in fluid mechanics. What today
is a universally accepted viewpoint and language was, at the beginning of the
twentieth century, simply one man’s revolutionary idea.

Boundary layer theory was proposed by Prandtl shortly after the completion
of his doctoral dissertation in 1904 [1]. This idea was not accepted immediately
by his contemporaries. To appreciate Prandtl’s enormous accomplishment in
converting the establishment, the reader has only to examine the 1932 edition of
Lamb’s Hydrodynamics [2]. This treatise of 385 articles devotes only one article
to boundary layer theory and its pre-1932 results. It took three or four decades of
persistent exposition by Prandtl for his theory to become the common language
we speak today.

It would be inaccurate to present boundary layer theory as dogma to be
applied unreflectively to solve a very long list of fluid mechanics and heat
transfer problems. A theory is never perfect [3], and there is little that is ‘‘exact’’
about the similarity solutions to Prandtl’s approximate boundary layer equations.
As students and researchers, we can learn important lessons from the history of
boundary layer theory. For example:

1. No theory is perfect and forever, not even boundary layer theory.
2. It is legal and, indeed, desirable to question any accepted theory.
3. Any theory is better than no theory at all.
4. It is legal to propose a new theory or a new idea in place of any accepted

theory.
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5. Lack of immediate acceptance of a new theory does not mean that the new
theory is not better.

6. It is crucial to persevere to prove the worth of a new theory.

The history of scientific progress is a string of episodes of the type exemplified
by Prandtl’s boundary layer theory [4]. Knowledge of history is good for the
intellectual happiness of the researcher. Theory is also good, and it should not be
forgotten under the growing deluge of empiricism. On the rightful place of theory
in engineering science, I draw attention to the preface to my second constructal
theory book [3].

2.1 FUNDAMENTAL PROBLEM IN CONVECTIVE HEAT TRANSFER

Consider the fundamental questions that arise in connection with heat transfer
from a solid object to a fluid stream in external flow. Think, for example, of a
flat plate of temperature T0 suspended in a uniform stream of velocity U∞ and
temperature T∞, as shown in Fig. 2.1. If this flat plate is the plate fin protruding
from a heat exchanger surface into the stream that bathes it, we want to know:

1. The net force exerted by the stream on the plate
2. The resistance to the transfer of heat from the plate to the stream

We must answer question 1 in order to predict the total drag force exerted by the
stream on the heat exchanger surface. From a simple force balance around the
duct through which the stream flows (Chapter 3), we learn that the drag force felt
by the solid surface translates into the pressure drop—hence, the pumping power
or exergy payment [5] required to keep the stream flowing. Question 2 must

Figure 2.1 Velocity and temperature boundary layers near a plate parallel to a uniform flow.
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be answered in order to predict the heat transfer rate between solid and fluid.
Question 2 is the fundamental question in the field of heat transfer, while question
1 is the key question in fluid mechanics as it applies to heat transfer science.

Referring to Fig. 2.1, we are interested in calculating the total force

F =
∫ L

0
τW dx (2.1)

and the total heat transfer rate

q =
∫ L

0
q′′W dx (2.2)

Symbols τ , q′′, and W stand for skin friction (shear stress experienced by the
wall)

τ = µ

(
∂u

∂y

)
y=0

(2.3)

wall heat flux
q′′ = h(T0 − T∞) (2.4)

and the width of the flat plate in the direction perpendicular to the plane of
Fig. 2.1, respectively. Equations (2.3) and (2.4) serve as definitions for the
concepts of viscosity µ and heat transfer coefficient h.

Historically, eq. (2.4) was first written by Fourier [6], who in this way
introduced the concept of heat transfer coefficient (external conductivity in his
terminology), to which he gave the symbol h. Fourier also emphasized the
fundamental difference between h and the ‘‘proper’’ thermal conductivity k.
More than 100 years earlier, Newton [7] had published an essay in which
he reported temperature measurements showing that the rate of temperature
decrease (dT/dt) of a body immersed in a fluid is at all times proportional
to the body—fluid temperature difference (T − T∞). This is why beginning
with Fourier’s contemporaries (e.g., Péclet [8]), eq. (2.4) acquired the incorrect
name ‘‘Newton’s law of cooling.’’ Newton wrote no such thing. Fourier wrote
eq. (2.4). In today’s terminology, Newton’s observation can be written [9] as
dT/dt = b(T − T∞), in which the b coefficient (assumed constant) accounts for
the ratio h/c, that is, the heat transfer coefficient divided by the specific heat
of the immersed body. The concepts of heat transfer coefficient and specific
heat were unknown in Newton’s time. Convection currents in liquids were first
discovered experimentally by Count Rumford [10, 11], who also visualized the
flow by suspending neutrally buoyant particles in the liquid. The heat transfer
effect of such currents was named convection by Prout in 1834 [12].

In sum, convection was born at the same time as conduction. The creator of
both was Fourier, who also wrote the first energy equation for a convective flow
(see Section 1.3).
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In this treatment, we accept empirically (i.e., as a matter of repeated physical
observation) that the fluid layer situated at y = 0+ is, in fact, stuck to the solid
wall. This is the no-slip hypothesis, on which the bulk of convective heat transfer
research is based; it acknowledges the observation that from heat exchangers to
the honey in a jar, a fluid wets the solid surface with which it makes contact. The
no-slip condition implies that since the 0 < y < 0+ fluid layer is motionless, the
transfer of heat from the wall to the fluid is first by pure conduction. Therefore,
in place of eq. (2.4), we can write the statement for pure conduction through the
fluid layer immediately adjacent to the wall,

q′′ = −k
(

∂T

∂y

)
y=0

(2.5)

Note the sign convention defined in Fig. 2.1: The heat flux q′′ is positive when
the wall releases energy into the stream. Combining eqs. (2.4) and (2.5), we
calculate the heat transfer coefficient when the temperature distribution in the
fluid near the wall is known:

h = −k(∂T/∂y)y=0

T0 − T∞
(2.6)

To summarize, the two key questions in the field of convective heat transfer,
the questions of friction and thermal resistance, boil down to carrying out the
calculations dictated by eqs. (2.1) and (2.2). However, eqs. (2.3) and (2.5)
demonstrate that to be able to calculate F and q, we must first determine the flow
and temperature fields in the vicinity of the solid wall. Thus, it is the demand for
F and q that leads to the mathematical problem of solving for the flow (u,v) and
temperature (T) in the fluid space outlined in Fig. 2.1.

Modeling the flow as incompressible and of constant property (Chapter 1),
the complete mathematical statement of this problem consists of the following.
Solve four equations:

∂u

∂x
+ ∂v

∂y
= 0 (2.7)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
(2.8)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
(2.9)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(2.10)
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for four unknowns (u, v, P, T), subject to the following boundary conditions:

(i) No slip u = 0
(ii) Impermeability v = 0
(iii) Wall temperature T = T0


 at the solid wall

(iv) Uniform flow u = U∞
(v) Uniform flow v = 0
(vi) Uniform temperature T = T∞


 infinitely far from the solid,

in both the y and x directions

(2.11)

In eqs. (2.7)–(2.10), we recognize, in order, statements accounting for the
steady-state conservation of mass, momentum, and energy at every point in
the two-dimensional flow field. Conditions (i) and (ii) apply to the horizontal
surfaces in Fig. 2.1. Along the short leading and trailing surfaces of the flat plate
(x= 0, L), the no-slip condition reads u= 0 and the impermeable wall condition
reads v = 0.

2.2 CONCEPT OF BOUNDARY LAYER

The nonlinear partial differential problem stated as eqs. (2.7)–(2.11) has served
as one of the central stimuli in the development of the field of appliedmathematics
during the past 200 years. The most remarkable feature of this problem is that
despite all this time and effort, it has not been solved. It is this feature that makes
the boundary layer idea so special: It is a clever way to think and a way to solve
many historically unsolvable problems. As with any great theory, it is a way to
see simplicity.

Referring to Fig. 2.1 and the complete problem statement (2.7)–(2.11), we
have the freedom to think that the velocity change from u = 0 to u = U∞
and the temperature change from T = T0 to T = T∞ occur in a space situated
relatively close to the solid wall. How close is ‘‘close’’ is the object of the scale
analysis presented later in this section. The important thing to understand at this
stage is the revolutionary step taken by Prandtl in thinking of the region close to
the wall (the boundary layer) as a region distinct from the immense domain in
which the unsolvable mathematical problem (2.7)–(2.11) was formulated by his
contemporaries.

Prandtl’s decision is equivalent to carving out of the entire flow field only
that region that is truly relevant to answering the questions formulated in the
preceding section. Outside the boundary layer, he imagines a free stream, that
is, a flow region not affected by the obstruction and heating effect introduced by
the solid object. The free stream is characterized by

u = U∞, v = 0, P = P∞, T = T∞ (2.12)
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Let δ be the order of magnitude of the distance in which u changes from 0
at the wall to roughly U∞ in the free stream. Thus, in the space of height δ and
length L in Fig. 2.1, we identify the following scales for changes in x, y, and u:

x ∼ L, y ∼ δ, u ∼ U∞ (2.13)

In the δ × L region, then, the longitudinal momentum equation (2.8) accounts
for the competition between three types of forces:

Inertia Pressure Friction

U∞
U∞
L

, v
U∞
δ

P
ρL

ν
U∞
L2

, ν
U∞
δ2

(2.14)

In (2.14) each term represents the scale of each of the five terms appearing in
eq. (2.8). Since the mass continuity equation (2.7) requires that

U∞
L

∼ v

δ
(2.15)

we learn that the inertia terms in eq. (2.14) are both of order U2∞/L; hence,
neither can be neglected at the expense of the other. Next, if the boundary layer
region δ × L is slender, such that

δ � L (2.16)

then the last scale in eq. (2.14) is the scale most representative of the friction
force in that region. Thus, neglecting the ∂2u/∂x2 term at the expense of the
∂2u/∂y2 term in the x momentum equation (2.8) yields

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(2.17)

Invoking the same scaling argument—the slenderness of the boundary layer
region—the y momentum equation reduces to

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂y
+ ν

∂2v

∂y2
(2.18)

Equation (2.18) is not usually discussed in connection with the boundary layer
analysis of specific laminar flow problems. However, it is the basis for another
important result: the replacement of ∂P/∂x by a known quantity (dP∞/dx) in
eq. (2.17). To show how this is done, consider answering the following question:
In a slender region δ × L, is the pressure variation in the y direction negligible
compared with the pressure variation in the x direction? Intuitively, we suspect
that the answer must be ‘‘yes’’ because the region of interest (δ × L) is by
definition slender.
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In general, the pressure at any point in the fluid of Fig. 2.1 is a function of
both x and y; hence, the total derivative

dP = ∂P

∂x
dx+ ∂P

∂y
dy (2.19)

Dividing by dx, the question formulated in the preceding paragraph amounts to
whether the last term is negligible in the expression

dP

dx
= ∂P

∂x
+ ∂P

∂y

dy

dx
(2.20)

The orders of magnitude of the two pressure gradients can be deduced from
eqs. (2.17) and (2.18) by recognizing a balance between pressure forces and either
friction or inertia [eq. (2.14)]. For the present argument, it is not crucial which
balance we invoke as long as the same balance is invoked in both eqs. (2.17) and
(2.18). For instance, the pressure ∼ friction balance in eq. (2.17) suggests that

∂P

∂x
∼ µU∞

δ2
(2.21)

whereas the same balance in eq. (2.18) yields

∂P

∂y
∼ µv

δ2
(2.22)

Now, turning our attention to the right-hand side of eq. (2.20), the ratio of the
second term divided by the first term is of order

(∂P/∂y)(dy/dx)

∂P/∂x
∼ vδ

U∞L
∼
(

δ

L

)2
� 1 (2.23)

Note that to complete this last statement, we had to use the mass continuity
scaling [eq. (2.15)] and the slenderness postulate [eq. (2.16)]. In conclusion, the
last term in eq. (2.20) is less significant as the δ × L region becomes more
slender,

dP

dx
= ∂P

∂x
(2.24)

This means that inside the boundary layer, the pressure varies chiefly in the
longitudinal direction; in other words, at any x, the pressure inside the boundary
layer region is practically the same as the pressure immediately outside it,

∂P

∂x
= dP∞

dx
(2.25)
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Making this last substitution in the x momentum equation (2.17), we finally
obtain

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

dP∞
dx

+ ν
∂2u

∂y2
(2.26)

This is the boundary layer equation for momentum, and keeping in mind how
it was derived, it is a statement of momentum conservation in both the x and y
directions.

The boundary layer equation for energy follows from eq. (2.10), where we
neglect the term accounting for thermal diffusion in the x direction,

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(2.27)

With this statement, we finish rewriting the original flow and heat transfer
problem [eqs. (2.7)–(2.11)] in the language of boundary layer theory. We now
have only three equations to solve [eqs. (2.7), (2.26), and (2.27)] for three
unknowns (u,v,T). Compare this with the ‘‘four equations and four unknowns’’
problem contemplated originally. In addition, the disappearance of the ∂2/∂x2

diffusion terms from the momentum and energy equations makes this new
problem solvable in a variety of ways. In the next section we begin with the most
cost-effective method of solution: scale analysis.

2.3 SCALE ANALYSIS

The boundary layer equations (2.26) and (2.27) are based on the thought that the
significant variations in velocity and temperature occur in a slender region near
the solid wall. This does not mean that u and T reach their free-stream values
within the same distance δ. Indeed, we have the freedom to think not of one but
of an infinity of slender flow regions adjacent to the wall. Let δ be the thickness
of the region in which u varies from 0 at the wall to U∞ in the free stream. Let
δT be the thickness of another slender region super imposed on the first in which
T varies from T0 at the wall to T∞ in the free stream. Keeping up with tradition,
we refer to δ and δT as the velocity boundary layer thickness and the thermal
boundary layer thickness, respectively. These scales are shown schematically in
Fig. 2.1; in general, δ �= δT.

In scaling terms, the flow friction question (2.3) becomes

τ ∼ µ
U∞
δ

(2.28)

Thus, to estimate the wall frictional shear stress, we must evaluate the extent δ of
this imaginary slender wall region. Consider the simplest free stream possible, a
free stream with uniform pressure P∞. (This is a very good approximation for
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the flow around a plate fin in a heat exchanger passage because the pressure drop
in the direction of flow is not significant over the longitudinal length L dictated
by the plate fin.) With dP∞/dx = 0 in eq. (2.26), the boundary layer momentum
equation implies that

inertia ∼ friction

U2∞
L

,
vU∞

δ
∼ ν

U∞
δ2

(2.29)

Referring once again to the mass continuity scaling (2.15), we conclude that
the two inertia terms are of the same order of magnitude. Therefore, eq. (2.29)
requires that

δ ∼
(

νL

U∞

)1/2
(2.30)

In other words,
δ

L
∼ Re−1/2

L (2.31)

where ReL is the Reynolds number based on the longitudinal dimension of the
boundary layer region, ReL = U∞L/ν.

The boundary layer thickness δ is the transversal distance to which viscous
diffusion spreads while the flow sweeps the wall longitudinally. The time of
transversal viscous diffusion is tδ ∼ δ2/ν. The time of longitudinal convection
is tL ∼ L/U∞. Recognizing that at the trailing end of the wall these two times are
in fact the same time scale, tδ ∼ tL, we arrive at the δ scale shown in eqs. (2.30)
and (2.31).

Equation (2.31) is an important result: It states that the slenderness postulate
on which the boundary layer theory is based (δ � L) is valid provided that
Re1/2L � 1. Thus, eq. (2.31) is a test of whether a given external flow situation
lends itself to boundary layer analysis, as ReL can easily be calculated before-
hand. Furthermore, even when Re1/2L � 1, eq. (2.31) can be used to assess the
limitations of the boundary layer analysis: For example, the boundary layer
solution will fail in the tip region of length l, short enough so that Re1/2l is not
considerably greater than unity.

Returning to the friction question [eq. (2.28)], the wall shear stress scales as

τ ∼ µ
U∞
L

Re1/2L ∼ ρU2
∞Re−1/2

L (2.32)

Therefore, the dimensionless skin friction coefficient Cf = τ/
( 1
2ρU

2∞
)
depends

on the Reynolds number,
Cf ∼ Re−1/2

L (2.33)

At this point, the question of wall friction has been answered in an order-of-
magnitude sense. The scaling analysis on which eq. (2.32) is based assures us
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that the real (measured or calculated) value of τ will differ from ρU2∞ Re−1/2
L

by only a factor of order unity. This prediction is amply verified by more exact
analyses, as is shown later in this chapter.

The heat transfer question [eq. (2.6)] is answered by focusing on the thermal
boundary layer of thickness δT,

h ∼ k(�T/δT)

�T
∼ k

δT
(2.34)

where �T = T0 − T∞ is the temperature variation in the region δT × L. The
boundary layer energy equation (2.27) states that there is always a balance
between conduction from the wall into the stream and convection (enthalpy
flow) parallel to the wall:

convection ∼ conduction

u
�T

L
, v

�T

δT
∼ α

�T

δ2T
(2.35)

The δT scale needed for estimating h ∼ k/δT can be determined analytically in
the following two limits:

1. Thick thermal boundary layer, δT � δ. In this limit, the δT layer is thick
relative to the velocity boundary layer thickness measured at the same L. The
u scale outside the velocity boundary layer (and inside the δT layer) is U∞.
According to eq. (2.15), the v scale in the same region is v ∼U∞δ/L. This means
that the second term on the left side of eq. (2.35) is of order

v
�T

δT
∼ U∞

�T

L

δ

δT
(2.36)

in which δ/δT � 1. The second term, (v �T)/δT, is therefore δ/δT times smaller
than the first, (u �T)/L, and the entire left side of eq. (2.35) is dominated by the
scale U∞ �T/L.

In conclusion, the convection ∼ conduction balance expressed by the energy
equation (2.35) is simply (U∞ �T)/L ∼ (α �T)/δT

2, which yields

δT

L
∼ Pe−1/2

L ∼ Pr−1/2 Re−1/2
L (2.37)

where PeL = U∞L/α is the Péclet number. Comparing eq. (2.37) with eq. (2.31),
we find the interesting result that the relative size of δT and δ depends on the
Prandtl number Pr = ν/α,

δT

δ
∼ Pr−1/2 � 1 (2.38)
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The first assumption, δT � δ, is therefore valid in the limit Pr1/2 � 1, which
represents the range occupied by liquid metals. The heat transfer coefficient
corresponding to the low-Prandtl number limit is

h ∼ k

L
Pr1/2 Re1/2L (Pr � 1) (2.39)

or, expressed as a Nusselt number Nu = hL/k,

Nu ∼ Pr1/2 Re1/2L (2.40)

2. Thin thermal boundary layer, δT � δ. Of considerably greater interest is
the class of fluids with Prandtl numbers of order 1 (e.g., air) or greater than 1
(e.g., water or oils). As shown in Fig. 2.2b, the thermal thickness is assumed
smaller than the velocity thickness. Geometrically, it is clear that the scale of u
in the δT layer is not U∞ but

u ∼ U∞
δT

δ
(2.41)

~10

~1

~0.1
0.01 1

Pr

(c)

1
2

3
1

100

Nu

ReL
½

Figure 2.2 Prandtl number effect on the relative thickness of the velocity and temperature
boundary layers and on heat transfer.
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Next, in eq. (2.35) we note that u/L∼ v/δT because of mass conservation, and
therefore u/L ∼ α/δ2T . Combining this scale relation with eq. (2.41), after using
eq. (2.31) we obtain

δT

L
∼ Pr−1/3 Re−1/2

L (2.42)

which means that
δT

δ
∼ Pr−1/3 � 1 (2.43)

Thus, the assumption δT � δ is valid in the case of Pr1/3 � 1 fluids. The heat
transfer coefficient and Nusselt number vary as

h ∼ k

L
Pr1/3 Re1/2L (Pr � 1) (2.44)

Nu ∼ Pr1/3 Re1/2L (Pr � 1) (2.45)

where Nu = hL/k. These scaling results agree within a factor of order unity with
the classical analytical results discussed next.

The thermal boundary layer thickness δT is the transversal distance to which
thermal diffusion spreads, which happens during the time tδT ∼ δ 2

T /α. When
Pr < 1, the longitudinal speed inside the δT layer is U∞, and the time of
longitudinal sweep is tL ∼ L/U∞. From the observation that tδT and tL represent
the same time scale follows the δT scale derived in eq. (2.37). When Pr > 1, the
scale of the longitudinal speed inside the δT layer is (δT/δ)U∞ (cf. Fig. 2.2b),
and the time of longitudinal sweep is L/[(δT/δ)U∞]. Setting this time scale equal
to the transversal diffusion time δ 2

T /α and using eq. (2.30), we arrive at eq.
(2.43). In summary, the boundary layer thickness is the thickness of the slender
space covered by transversal diffusion while the moving material sweeps the
wall longitudinally.
The meaning of Reynolds number. An important observation concerns

eq. (2.31), which is the first place we encounter the Reynolds number in exter-
nal flow, ReL = U∞L/ν. In most treatments of fluid mechanics, the Reynolds
number is described as the order of magnitude of the inertia/friction ratio in a
particular flow (see Problem 1.12). This interpretation is not correct because in
the boundary layer region examined above, there is always a balance between
inertia and friction, whereas ReL can reach as high as 105 before the transition
to turbulent flow (Table 6.1). The only physical interpretation of the Reynolds
number in boundary layer flow is geometric

Re1/2L = wall length

boundary layer thickness

In other words, it is not ReL, but the square root of ReL, that means something:
Re1/2L is a geometric parameter of the flow region—the slenderness ratio.
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It is also worth noting that according to eq. (2.30), δ must be proportional
to L1/2. More refined analyses described later in this chapter confirm that along
the wall (0 < x < L), the boundary layer thickness increases as x1/2. Now, one
particular property of the x1/2 function is that its slope is infinite at x = 0, as
shown in Fig. 2.8. This geometric feature of the boundary layer is inexplicably
absent from the graphics employed by most texts that teach boundary layer
theory. Most texts show sketches of boundary layers with sharp tips (finite slope
at the tip), which are incorrect from the point of view of boundary layer theory.

Scale analysis was formulated and recommended as a problem-solvingmethod
in the first edition of this book [13] and elsewhere during that period [14, 15].
The method has been used widely in the intervening years in both research
and education. One example is Bhattacharjee and Grosshandler’s [16] original
analysis of the pressure-driven jet near a hot wall. Costa [17] formulated
a unified treatment of convection by identifying first the time scales of the
respective growth processes. Weyburne [18] developed a new mathematical
formulation of the fluid boundary layer.

2.4 INTEGRAL SOLUTIONS

The next step toward refining the answers to the friction and heat transfer
questions (2.3) and (2.6) amounts to determining the numerical factors missing
from the scaling laws (2.32), (2.39), and (2.44). So far, the scaling laws tell us
the manner in which various flow and geometric parameters affect τ and h. For
example, we now know that both τ and h are proportional to L−1/2, meaning that
the skin friction and heat flux are more intense near the leading edge of the flat
plate. In scale analysis, we made no distinction between the local values of τ

and h (the values right at x = L) and the average values τ 0–L and h0–L, defined
as (these average values are also abbreviated as τ and h)

τ0−L = 1

L

∫ L

0
τ dx, h0−L = 1

L

∫ L

0
hdx (2.46)

The reason for such treatment is that average quantities (τ ,h)0–L have the same
scale as the τ and h evaluated at x = L; this scaling conclusion is easily drawn
from eqs. (2.46) and the specific (more exact) results developed in the remainder
of this chapter.

The integral approach to solving the boundary layer equations is an important
piece of analysis developed by Prandtl’s disciples Pohlhausen (doctoral student)
and von Kármán (postdoc) in the first decades of this century. The philosophy
on which this approach is based is the same philosophy that allowed Prandtl
to separate from an immense and complicated flow field only the region most
relevant to answering the practical question at hand.

In the integral method, we look at the definitions of τ and h [eqs. (2.3) and
(2.6)] and recognize that what we need is not a complete solution for the velocity
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Figure 2.3 Derivation of the integral boundary layer equations: force balance on a control
volume of height Y and thickness dx.

u(x,y) and temperature T(x,y) near the wall, but only the gradients ∂(u,T)/∂y
evaluated at y= 0. Because the y> 0 variation of u and T is not the most relevant
to evaluating τ and h, we have the opportunity to simplify the boundary layer
equations (2.26) and (2.27) by eliminating y as a variable. As shown in Fig. 2.3,
this is accomplished by integrating each equation term by term from y = 0 to
y = Y, where Y > max(δ,δT) is situated in the free stream.

Before integrating, it is useful to rewrite eqs. (2.26) and (2.27) as

∂

∂x
(u2) + ∂

∂y
(uv) = − 1

ρ

dP∞
dx

+ ν
∂2u

∂y2
(2.47)

∂

∂x
(uT) + ∂

∂y
(vT) = α

∂2T

∂y2
(2.48)

Form (2.47) is obtained bymultiplying the left-hand side of themass conservation
equation (2.7) by u and adding it to the left-hand side of eq. (2.26); form (2.48) is
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obtained in a similar fashion, bymultiplying eq. (2.7) by T. Integrating eqs. (2.47)
and (2.48) from y = 0 to y = Y and using Leibnitz’s integral formula yields

d

dx

∫ Y

0
u2 dy+ uYvY − u0v0 = − 1

ρ
Y
dP∞
dx

+ ν

(
∂u

∂y

)
Y

− ν

(
∂u

∂y

)
0

(2.49)

d

dx

∫ Y

0
uT dy+ vYTY − v0T0 = α

(
∂T

∂y

)
Y

− α

(
∂T

∂y

)
0

(2.50)

in which the indexes Y and 0 indicate the level y where the respective quantities
are to be evaluated. Because the free stream is uniform, we note that (∂/∂y)Y = 0,
uY = U∞, and TY = T∞. Also, since the wall is impermeable, v0 = 0, and we
evaluate vY by performing the same integral on the continuity equation (2.7),

d

dx

∫ Y

0
u dy+ vY − v0 = 0 (2.51)

Substituting vY into eqs. (2.49) and (2.50), assuming that T∞ is, in general, a
function of x, and rearranging the resulting expression, we obtain, finally,

d

dx

∫ Y

0
u(U∞ − u) dy = 1

ρ
Y
dP∞
dx

+ dU∞
dx

∫ Y

0
u dy+ ν

(
∂u

∂y

)
0

(2.52)

d

dx

∫ Y

0
u(T∞ − T) dy = dT∞

dx

∫ Y

0
u dy+ α

(
∂T

∂y

)
0

(2.53)

These are the integral boundary layer equations for momentum and energy.
They account for the conservation of momentum and energy not at every point
(x,y) as eqs. (2.26) and (2.27), but in every slice of thickness dx and height Y (see
Fig. 2.3b). Note that eqs. (2.52) and (2.53) can also be derived by invoking the
x momentum theorem and the first law of thermodynamics (Chapter 1) for the
control volume of size Y × dx shown in Fig. 2.3b. For example, the momentum
equation (2.52) represents the following force balance:

1. Forces acting from left to right on the control volume (Fig. 2.3b):

Mx =
∫ Y

0
ρu2 dy Impulse due to the flow of a stream into

the control volume

MY = U∞ dṁ Impulse due to the flow of fast fluid (U∞) into
the control volume, at a rate dṁ,

where ṁ =
∫ Y

0
ρu dy is the mass flow rate

through the slice of height Y
P∞Y Force due to pressure
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2. Forces acting from right to left on the control volume (Fig. 2.3b):

Mx+dx = Mx + (dMx/dx) dx Reaction force due to flow of a stream

out of the control volume

τ dx Tangential force due to friction

Y[P∞ + (dP∞/dx) dx] Force due to pressure

Setting the resultant of all these forces equal to zero, we arrive at eq. (2.52).
The integral energy equation (2.53) can be obtained similarly by summing up all
the heat transfer and enthalpy flow rates around the control surface.

Consider next the simplest laminar boundary layer problem—the uniform
flow (U∞, P∞ = constants) analyzed in the preceding section. To solve for
the wall shear stress now appearing explicitly in eq. (2.52), we must make an
assumption as a substitute for the information we gave up when we integrated
the original boundary layer equation (2.26): the y variation of the flow. Let us
assume that the shape of the longitudinal velocity profile is described by

u =

U∞m (n) ,

U∞,

0 ≤ n ≤ 1

1 ≤ n
(2.54)

where m is an unspecified shape function that varies from 0 to 1, and where
n= y/δ (see Fig. 2.4). Substituting this assumption into eq. (2.52) and noting that
dP∞/dx = 0 and dU∞/dx = 0 yields a first-order ordinary differential equation
for the velocity boundary layer thickness δ(x),

δ
dδ

dx

[∫ 1

0
m (1 − m) dn

]
= ν

U∞

(
dm

dn

)
n=0

(2.55)

The resulting expressions for local boundary layer thickness and skin friction
coefficient are

δ

x
= a1 Re

−1/2
x (2.56)

Cf ,x = τ
1
2ρU

2∞
= a2 Re

−1/2
x (2.57)

with the following notation:

a1 =


 2(dm/dn)n=0∫ 1

0
m(1 − m)dn




1/2

(2.56′)

a2 =
[
2

(
dm

dn

)
n=0

∫ 1

0
m(1 − m)dn

]1/2
(2.57′)
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Figure 2.4 Selection of (a) velocity profile and (b) temperature profile for integral boundary
layer analysis.

Results (2.56) and (2.57) agree in an order-of-magnitude sense with the earlier
conclusions [eqs. (2.31) and (2.33)]. The numerical coefficients a1 and a2 are of
order 1 and depend on the assumption made for the profile shape function m:
Table 2.1 shows that as long as this shape is reasonable,∗ the choice of m(n) does
not influence the skin friction result appreciably.

Heat transfer coefficient information is extracted in a similar fashion from
eq. (2.53) with dT∞/dx = 0. Thus, we assume the temperature profile shapes

T0 − T = (T0 − T∞)m(p), 0 ≤ p ≤ 1

T = T∞, 1 ≤ p (2.58)

with p = y/δT. Educated by the scale analysis discussed earlier [see eqs. (2.38)
and (2.43)], we assume that

δT

δ
= � (2.59)

∗A function that increases from n = 0 to n = 1 monotonically and smoothly and that has a finite
slope at n = 0.
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Table 2.1 Impact of the assumed profile shape on the integral solution to the laminar
boundary layer friction and heat transfer problem

Nu Re−1/2
x Pr−1/3

Profile Shape
m(n) or m(p)
(Fig. 2.4)

δ

x
Re1/2x Cf,x Re

1/2
x

Uniform
Temperature
(Pr > 1)

Uniform
Heat Flux
(Pr > 1)

m = n 3.46 0.577 0.289 0.364
m = (n/2) (3 − n2) 4.64 0.646 0.331 0.417
m = sin (πn/2) 4.8 0.654 0.337 0.424
Similarity solution 4.92a 0.664 0.332 0.453

Source: After Ref. 19.
aThickness defined as the y value corresponding to u/U∞ = 0.99.

where � is a function of Prandtl number only and δ is given by eq. (2.56). Based
on these assumptions and δT < δ (high-Pr fluids), the integral energy equation
(2.53) reduces to

Pr = 2(dm/dp)p=0

(a1�)2

[∫ 1

0
m (p�) [1 − m(p)]dp

]−1

(2.60)

This result is an implicit expression for thickness ratio �(Pr), thus confirming
the validity of the scaling arguments on which eq. (2.59) was based.

Assuming the simplest temperature profile,m= p, expression (2.60) becomes

� = Pr−1/3 (2.61)

which is numerically identical to the scaling law for Pr� 1 fluids [eq. (2.43)]. As
shown byTable 2.1, other choices of profile shapem(p) change the proportionality
factor in eq. (2.61) by only percentage points. The results usually listed in the
literature correspond to the cubic profile m = (p/2)(3 − p2):

� = δT

δ
= 0.976Pr−1/3 (2.62)

h = 0.331
k

x
Pr1/3 Re1/2x (2.63)

Nu = hx

k

= 0.331Pr1/3 Re1/2x (2.64)

Again, the local heat transfer results listed above are anticipated correctly by the
scale analysis [eqs. (2.44) and (2.45)].
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In the case of liquid metals (� � 1), instead of eq. (2.60), we obtain

Pr = 2(dm/dp)p=0

(a1�)2

[∫ 1/�

0
m (p�) [1 − m(p)]dp+

∫ 1

1/�
[1 − m(p)]dp

]−1

(2.65)
The sum of two integrals stems from the fact that when δT � δ, immediately
next to the wall (0 < y < δ), the velocity is described by the assumed shape
U∞m, whereas for δ < y < δT, the velocity is uniform, u = U∞ [eq. (2.54)].
Since � is much greater than unity, the second integral dominates in eq. (2.65).
Taking the simplest profile m = p, we obtain

� = δT

δ
= (3Pr)−1/2 (Pr � 1) (2.66)

In other words,
δT

x
= 2Pr−1/2 Re−1/2

x (Pr � 1) (2.67)

From eq. (2.6), we derive the local heat transfer coefficient

h = k

δT
= 1

2

k

x
Pr1/2 Re1/2x (Pr � 1) (2.68)

or the local Nusselt number

Nu = hx

k
= 1

2
Pr1/2 Re1/2x (Pr � 1) (2.69)

These results compare favorably with the scaling laws [eqs. (2.37)–(2.40)].
As shown in Section 2.5, they also compare favorably with more exact (and
expensive) solutions.

2.5 SIMILARITY SOLUTIONS

2.5.1 Method

In this section we review the exact solutions to the boundary layer problem of
Fig. 2.1, solutions due to two of Prandtl’s doctoral students: Blasius [20] for
the flow problem and Pohlhausen [21] for the heat transfer problem. Relative to
the integral solutions presented in Section 2.4, the Blasius–Pohlhausen solutions
have the added benefit that they describe the y variation of the flow and
temperature fields in the boundary layer regions.

The basic idea in the construction of these solutions is the observation that
from one location x to another, the u and T profiles look similar (hence, the name
similarity solutions). Geometry, similarity, pattern and design (drawing) are at



2.5 SIMILARITY SOLUTIONS 49

Figure 2.5 Construction of similar profiles in the analysis of velocity boundary layers.

the core of science [3]. Figure 2.5 shows that although more and more fluid slows
down near the wall as x increases, the longitudinal velocity is always u = 0 at
the wall and u = U∞ sufficiently far from the wall.

Imagine that the two profiles u1(y) and u2(y) were drawn by an artist who used
the master profile shown in Fig. 2.5; like the elastic metal band of a wristwatch,
this master profile can be stretched appropriately at x1 and x2 so as to fit the actual
velocity profiles. Mathematically, the stretching of a master profile amounts to
writing

u

U∞
= function(η) (2.70)

where the similarity variable η is proportional to y and the proportionality factor
depends on x. Based on the scaling laws we already know, it is fairly obvious
that η must be proportional to y/δ(x), with δ ∼ xRe−1/2

x . We assume, therefore,
that u

U∞
= f ′(η), η = y

x
Re1/2x (2.71)

Function f ′ = df/dη is presently unknown and accounts for the shape of the
master profile; this function is the object of the following analysis. The flow
problem can be restated as the conservation of mass and momentum at every
point in a P∞ = constant boundary layer:

∂u

∂x
+ ∂v

∂y
= 0 (2.72)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(2.73)
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subject only to three boundary conditions

u = v = 0 at y = 0 (2.74)

u → U∞ as y → ∞ (2.75)

A useful bit of shorthand is the streamfunction ψ(x,y), defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(2.76)

so that the continuity equation (2.72) is satisfied identically (see Section 1.6). In
terms of the streamfunction, the problem (2.72)–(2.75) consists of solving

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
(2.77)

subject to
∂ψ

∂y
= 0, ψ = 0 at y = 0 (2.78)

∂ψ

∂y
→ U∞ as y → ∞ (2.79)

This problem is finally placed in the language of the similarity transformation
(2.70) and (2.71) by evaluating ψ and its derivatives. For example, from the first
of eqs. (2.76), we obtain

ψ = (U∞νx)1/2 f (η) (2.80)

and from the second of eqs. (2.76),

v = 1

2

(
νU∞
x

)1/2
(η f ′ − f ) (2.81)

Expressions for the partial derivatives of ψ appearing in eq. (2.77) are obtained
by keeping in mind that according to eq. (2.80), ψ depends on x directly and via
η(x,y). The similarity statement of the problem (2.77)–(2.79) reduces to

2f ′′′ + f f ′′ = 0 (2.82)

with the following boundary conditions:

f ′ = f = 0 at η = 0 (2.83)

f ′ → 1 as η → ∞ (2.84)
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2.5.2 Flow Solution

Equation (2.82) is nonlinear; Blasius solved it approximately by the method of
matched asymptotic expansions (see Problem 2.2). Blasius’s method as well as
a number of more recent solutions are reviewed in Schlichting and Gersten [22].
The numerical shooting method, in which shooting is required only once, is
described in Problem 2.3.

The resulting velocity profile f ′ is shown in Fig. 2.6: u reaches U∞ asymptoti-
cally as η tends to infinity. Unlike in the integral solution based on linear profiles,
there is no clear knee in the u/U∞ curve to mark the boundary layer thickness
δ. For this reason, in the Blasius profile, δ is defined based on convention.
Numerically, it is found that u = 0.99U∞ at η = 4.92; the boundary layer
thickness is taken as equal to the value of y corresponding to 99 percent of U∞:

δ

x
= 4.92Re−1/2

x (2.85)

Figure 2.6 Similarity velocity profile for laminar boundary layer flow on a plate aligned with a
free stream.
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To get around the need for convention in defining δ, two other thicknesses
have been in use in the field of boundary layer theory:

Displacement thickness:

δ∗ =
∫ ∞

0

(
1 − u

U∞

)
dy (2.86)

Momentum thickness:

θ =
∫ ∞

0

u

U∞

(
1 − u

U∞

)
dy (2.87)

As shown in Fig. 2.7, the displacement thickness is a measure of the fraction of
the original free stream slowed down viscously by the wall

δ∗U∞ =
∫ ∞

0
U∞ dy−

∫ ∞

0
u dy (2.88)

The dotted line in Fig. 2.7 shows that at any x, the free stream appears to be
displaced away from the wall so that it can avoid and flow past the fluid viscously
stuck to the wall.

The momentum thickness θ is based on a similar argument: It is a measure
of the longitudinal momentum missing at any x relative to the original (x = 0)
amount

θU2
∞ =
∫ ∞

0
U2

∞ dy︸ ︷︷ ︸
x momentum

at x = 0

−
∫ ∞

0
U2 dy︸ ︷︷ ︸

x momentum
at any x

− U∞

∫ ∞

0
(U∞ − u) dy︸ ︷︷ ︸

x momentum of the
fluid displaced out of the
boundary layer region

(2.89)

Figure 2.7 Displacement thickness δ* and its physical interpretation.
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Note that expression (2.87) is a restatement of the left-hand side of the integral
momentum equation (2.52). The displacement and momentum thicknesses for
the Blasius similarity solution (Fig. 2.6) are

δ∗

x
= 1.73Re−1/2

x ,
θ

x
= 0.664Re−1/2

x (2.90)

Finally, the local skin friction coefficient predicted from the similarity solution
is

Cf ,x = µ(∂u/∂y)0
1
2ρU

2∞
= 2(f ′′)η=0 Re

−1/2
x (2.91)

Numerically, it is found that (f ′′)y = 0 = 0.332 [23]; hence,

Cf ,x = 0.664Re−1/2
x (2.92)

This result is not far from any of the considerably less laborious predictions
based on the integral method (Table 2.1). The average skin friction coefficient
that corresponds to the local result (2.92) is

Cf ,0−x = τ0−x
1
2ρU

2∞
= 1.328Re−1/2

x (2.92′)

In other words, the value averaged from x = 0 to any x is twice as large as the
local value calculated at x. The laminar skin friction results (2.92) and (2.92′) are
valid when Rex � 5 × 105 (see Table 6.1).

2.5.3 Heat Transfer Solution

The heat transfer part of the problem was solved along similar lines [21].
Introducing the dimensionless similarity temperature profile

θ(η) = T − T0
T∞ − T0

(2.93)

the boundary layer energy equation (2.27) assumes the form

θ ′′ + Pr

2
f θ ′ = 0 (2.94)

This equation must be solved subject to the known wall and free-stream
temperature conditions:

θ = 0 at η = 0 (2.95)

θ → 1 as η → ∞ (2.96)
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Note that if Pr = 1 and θ = f ′, the heat transfer problem (2.94)–(2.96)
becomes identical to the flow problem (2.82)–(2.84). This means that for Pr = 1
fluids, the similarity temperature profile is already known and plotted in Fig. 2.6.
In general (for any Pr), eq. (2.94) can be integrated, keeping in mind that f(η) is
a known function available in tabular form [23]. Via separation of variables, we
integrate eq. (2.94) and obtain

θ ′(η) = θ ′(0) exp
[
−Pr

2

∫ η

0
f (β) dβ

]
(2.97)

Integrating again from 0 to η and using the wall condition (2.95) yields

θ(η) = θ ′(0)
∫ η

0
exp

[
−Pr

2

∫ γ

0
f (β) dβ

]
dγ (2.98)

where β and γ are two dummy variables. The solution for θ(η) above depends
on an unknown constant of integration, θ ′(0), because the free-stream condition
(2.96) has not been used yet; using it, we find that

θ ′(0) =
{∫ ∞

0
exp

[
−Pr

2

∫ γ

0
f (β) dβ

]
dγ

}−1

(2.99)

The solution is now complete. The value of θ ′(0) is all important in calculating
the heat transfer coefficient: From eq. (2.6), we learn that

h = k

x
Re1/2x θ ′(0) (2.100)

Hence,

Nu = hx

k
= θ ′(0)Re1/2x (2.101)

As shown by eq. (2.99), θ ′(0) is a function of the Prandtl number that accounts
for the relationship between Nu and Pr predicted on scaling grounds early in this
chapter. Pohlhausen [21] calculated several θ ′(0) values that for Pr > 0.5 are
correlated accurately by

θ ′(0) = 0.332Pr1/3 (2.102)

The theoretical basis for this correlation is contained in the discussion leading
to eq. (2.45). The similarity solution for the local heat transfer coefficient (local
Nusselt number) is therefore

Nu = 0.332Pr1/3 Re1/2x (Pr > 0.5) (2.103)

Another correlation must be used below Pr < 0.5, or if the Prandtl number
of a particular liquid metal is given, eq. (2.99) should be solved once for that
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particular Pr. It is even better to develop an analytical replacement for the
Nu formula (2.103) in the limit Pr → 0. According to Fig. 2.2a, in highly
conductive fluids the velocity boundary layer is much thinner than the thermal
layer. Therefore, in this limit it is permissible to set f ′ = 1 in the region occupied
by the thermal boundary layer θ(η). Differentiating eq. (2.94) once, we obtain

d

dη

(
θ ′′

θ ′

)
= −Pr

2
f ′ (2.104)

This equation leads to an explicit solution for θ(η) in the limit Pr → 0. The
ensuing analysis is proposed as an exercise; its chief results are

θ(η) = erf
(η
2
Pr1/2
)

(2.105)

θ ′(0) =
(
Pr

π

)1/2
(2.106)

Nu = hx

k
= 0.564Pr1/2 Re1/2x (Pr → 0) (2.107)

This limiting heat transfer result actually holds for Pr < 0.5 and compares
favorably with the scaling law (2.40).

The total heat transfer rate between the x-long wall and the adjacent flow, per
unit length in the direction normal to the plane of Fig. 2.1, is∫ x

0
q′′ dx = xq′′

0−x (2.108)

Equation (2.108) is the definition of the x-averaged wall heat flux q′′
0−x; this

can be calculated by substituting eqs. (2.103) and (2.107) into Nu = hx/k,
with h = q′′/(T0 − T∞). The average heat flux obtained in this manner can be
non-dimensionalized as the overall Nusselt number:

Nu0−x = q′′
0−x

T0 − T∞

x

k
= h0−xx

k
(2.109)

where h0–x is the average heat transfer coefficient. The overall Nusselt number
formulas that correspond∗ to the local Nusselt number asymptotes (2.103) and
(2.107) are

Nu0−x =
{
0.664Pr1/3 Re1/2x

1.128Pr1/2 Re1/2x

(Pr > 0.5)
(Pr < 0.5)

(2.110)
(2.111)

∗The average heat transfer coefficient that corresponds to a local heat transfer coefficient expression
can be estimated rapidly by invoking the following theorem. If the local quantity h has a power law
dependence on x,

h = Cxn (a)

where C is a constant, the quantity averaged from x = 0 to x is simply

h0−x = h

1 + n
(b)
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in which—it is worth noting—the numerical coefficients are twice as large as the
coefficients of eqs. (2.103) and (2.107). An overall Nusselt number expression
that covers the entire Prandtl number range was recommended by Churchill and
Ozoe [24]:

Nu0−x = 0.928Pr1/3 Re1/2x

[1 + (0.0207/Pr)2/3]1/4
(2.112)

It is valid when the Péclet number Pex = U∞x/α = Rex Pr is greater than
approximately 100. The laminar heat transfer results developed in this section
are valid when Rex � 5 × 105 (see Table 6.1).

In concluding this section, it is worth noting the imperfect character of
boundary layer theory and the approximation built into the exact similarity
solution. Examination of the Blasius solution for the velocity normal to the wall
shows that v tends to a finite value, 0.86U∞ Re−1/2

x , as η tends to infinity. This
feature distinguishes the boundary layer problem from the complete problem
stated in eqs. (2.7)–(2.11), where v must vanish sufficiently far from the wall
[condition (v), eq. (2.11)]. Because in boundary layer theory v/U∞ ∼ Re−1/2

x

as η → ∞, this theory becomes ‘‘better’’ as Re1/2x increases, that is, as the
boundary layer region becomes more slender. Other limitations of the theory
were discussed earlier in connection with the breakdown of the slenderness
feature in the region near the tip [see the discussion following eq. (2.31)].

2.6 OTHER WALL HEATING CONDITIONS

What we have seen so far is the competition between three methodologies
(scaling, integral, similarity) in the search for answers to the basic questions
of convective heat transfer. The laminar boundary layer near an isothermal flat
plate was the simplest and, historically, oldest setting in which to witness this
competition. Despite what the pure scientists among us may want us to believe,
there can be no official winner in such a competition. The individual researcher
with personal mathematics background and, most important, personal supply of
curiosity and time can and should judiciously evaluate the worthiness of any of
these methodologies relative to his ability and taste. And he or she is free to
choose.

The problems we encounter in practice are diverse and, quite often, demand
models that differ from the isothermal flat plate problem of Fig. 2.1. Although
in each case the model and answers (Cf, Nu) are different, the conceptual basis
is the same, as defined by Prandtl’s boundary layer theory. Numerous advances
have been made along the lines of this theory, and the most important of these
are reviewed in the most recent handbook [25]. In this section we review only a
few examples.
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Figure 2.8 Boundary layer with unheated starting length.

2.6.1 Unheated Starting Length

In cases such as the forced convection cooling of an electric circuit board, the
heating effect is distributed discretely along the flat plate. The simplest question
is sketched in Fig. 2.8: What is the heat transfer rate from the wall to the fluid
stream if the leading segment 0 < x < x0 is unheated (T = T∞)? An answer is
possible based on the integral method. Assuming the temperature profile shape
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m = (p/2)(3 − p2) and the velocity cubic profile shape m = (n/2)(3 − n2), the
integral energy equation (2.53) yields

�3 + 4�2x
d�

dx
= 0.929

Pr
(2.113)

with the general solution

�3 = 0.929

Pr
+ Cx−3/4 (2.114)

Constant C follows from the condition that heating (that is, a thermal boundary
layer,) starts at x = x0; hence,

� = 0.976Pr−1/3
[
1 −
(x0
x

)3/4]1/3
(2.115)

which is the same as eq. (2.62) if x0 = 0. The local Nusselt number is

Nu = hx

k
= 0.332Pr1/3 Re1/2x

[
1 −
(x0
x

)3/4]−1/3

(2.116)

As is shown in Fig. 2.8b, the effect of the unheated length x0 on the local Nusselt
number drops below 20 percent if x is beyond 3x0 from the leading edge of the
flat plate.

2.6.2 Arbitrary Wall Temperature

The integral solution for heat transfer with an unheated starting length is the
building block for the construction of heat transfer results for more complicated
situations. Consider, for example, heat transfer from the heated spot x1 < x
< x2, shown in Fig. 2.9c: The wall temperature upstream and downstream
from the heated spot is equal to the constant free-stream value, T∞, while
the spot temperature is T0. Since the integral energy equation (2.53) is linear
in temperature, the thermal boundary layer generated by the T0 spot can be
reconstructed as the superposition of two thermal boundary layers of type
(2.116). The first thermal boundary layer, δT,1 (Fig. 2.9a), is the fingerprint of
wall heating (T∞ + �T) downstream from x= x1. The second thermal boundary
layer (Fig. 2.9b) is the result of wall cooling (T∞ − �T) downstream from
x = x2. The superposition of the two thermal layers (Fig. 2.9c) constitutes the
thermal boundary layer due to spot heating. Of interest is the heat flux q′′ from
the wall to the fluid. To calculate q′′, we identify three distinct wall regions:

1. 0 < x < x1, the unheated started length, where q′′ = 0 because the wall is
in thermal equilibrium with the free stream
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Figure 2.9 Principle of superposition in the construction of integral solutions for boundary
layers with finite heated length.

2. x1 < x < x2, the heated spot, where eq. (2.116) applies unchanged:

q′′ = 0.332
k

x
Pr1/3 Re1/2x




�T[
1 − (x1/x)3/4]1/3


 (2.117)

3. x > x2, the trailing section, where q′′ is the superposition of two effects of
type (2.117):

q′′ = 0.332
k

x
Pr1/3 Re1/2x




�T[
1 − (x1/x)3/4]1/3 + −�T

[1 − (x2/x)3/4]1/3




(2.118)

Note that since x2 > x1, the heat flux q
′′ in region 3 is negative. This means

that in the trailing section, the wall reabsorbs part of the heat released earlier in
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region 2. Result (2.118) can be generalized (e.g., Ref. 26). The heat flux from
the wall to the fluid, downstream from N step changes �Ti in wall temperature,
is given by

q′′ = 0.332
k

x
Pr1/3 Re1/2x

N∑
i=1

�Ti
[1 − (xi/x)3/4]1/3

(2.119)

where xi is the longitudinal position of each temperature step change �Ti. If
the wall temperature varies smoothly, T0(x), formula (2.119) is replaced by its
integral limit (the limit of infinitesimally small steps):

q′′ = 0.332
k

x
Pr1/3 Re1/2x

∫ x

0

(dT0/dξ)dξ

[1 − (ξ/x)3/4]1/3
(2.120)

The heat flux q′′ in eqs. (2.117)–(2.120) is the local value (i.e., the heat flux at
the position x along the wall). The factor 0.332, which appears on the right-hand
side of eqs. (2.116)–(2.120), was borrowed from the similarity solution (2.103).
The actual factor generated by the integral solution with cubic profile described
in eqs. (2.113)–(2.115) is 0.331 (see Table 2.1).

2.6.3 Uniform Heat Flux

In many problems, particularly those involving the cooling of electrical and
nuclear systems, the wall heat flux q′′ is known. In such problems, overheating,
burnout, and meltdown are very important issues; therefore, the object of heat
transfer analysis is the prediction of the wall temperature variation T0(x). The
design objective is to control this temperature and to keep it under an allowable
limit. The heat transfer problem continues to be the calculation of heat transfer
coefficient h = q′′/[T0(x) − T∞] when the heat flux q′′ is known.

The integral method and profile shapes used to generate eqs. (2.62)–(2.64)
can be applied to the calculation of T0(x) − T∞ when q′′ = constant is specified.
One such result is (see Table 2.1)

Nu = q′′

T0(x) − T∞

x

k
= 0.453Pr1/3 Re1/2x (0.5 < Pr < 10) (2.121)

The similarity solution is reported in Problems 2.7 and 2.27 and in Ref. 27. The
more general result corresponding to the case of nonuniform wall heat flux q′′(x)
is [28]

T0 (x) − T∞ = 0.623

k
Pr−1/3 Re−1/2

x

∫ x

ξ=0

[
1 −
(

ξ

x

)3/4]−2/3

q′′(ξ)dξ

(Pr > 0.5) (2.122)

Equations (2.116)–(2.122) are valid for fluids with Prandtl numbers of the order
of 1 or greater than 1. The flow regime must be laminar, Rex � 5 × 105.
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2.6.4 Film Temperature

The wall friction and heat transfer results developed so far are based on the
constant-property model, Chapter 1. In real situations, fluid properties such as k,
ν, µ, and α are not constant, as they depend primarily on the local temperature in
the flow field. It turns out that the constant-property formulas describe sufficiently
accurately the actual convective flows encountered in applications, provided that
the maximum temperature variation experienced by the fluid (T0 − T∞) is small
relative to the absolute temperature level of the fluid (T0 or T∞, expressed
in kelvin). In such cases, the properties needed for calculating the various
dimensionless groups (Re, Pe, Pr, Cf, Nu) can be evaluated at the average
temperature of the fluid in the thermal boundary layer,

T = 1
2 (T0 + T∞) (2.123)

This average is commonly recognized as the film temperature of the fluid and
is generally recommended for use in formulas of the constant-property type.
Worth keeping in mind is that there are special correlations in which the effect
of temperature-dependent properties is taken into account by means of explicit
correction factors.

2.7 LONGITUDINAL PRESSURE GRADIENT: FLOW PAST A WEDGE
AND STAGNATION FLOW

The preceding results are based on the assumption that the pressure gradient term
is negligible relative to inertia and friction in the boundary layer momentum
equation (2.26). This assumption applies to the case of a flat wall parallel to a
uniform stream. If, as shown in the sketch at the bottom of Fig. 2.10, the wall
makes a positive angle β/2 with the free stream, the free stream is accelerated in
the x direction along the wall (x is measured away from the tip of the wedge).
Graphically, the acceleration of the flow is indicated by the gradual increase in
the density of streamlines.

Neglecting the laminar boundary layer in which viscosity balances inertia,
the flow engulfing the wedge of total angle β may be treated as inviscid and
may be determined analytically based on potential flow theory. The inviscid
flow residing outside the laminar boundary layer is governed by the balance
between inertia and pressure gradients. The potential flow solution for the
velocity variation along the wedge-shaped wall (i.e., along the boundary layer
that coats the wall) is

U∞ (x) = Cxm (2.124)

where C is a constant and m is related to the β angle of Fig. 2.10,

m = β

2π − β
(2.125)
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Figure 2.10 Local heat transfer and friction results for laminar boundary layer flow over an
isothermal wedge-shaped body.

Invoking the Bernoulli equation along the streamline that coincides with the
wall,

1

ρ

dP∞
dx

= −U∞
dU∞
dx

(2.126)

and using formula (2.124), the boundary layer equation for momentum becomes

u
∂u

∂x
+ v

∂u

∂y
= m

x
U2

∞ + ν
∂2u

∂y2
(2.127)

Falkner and Skan [29] showed that eq. (2.127) admits a similarity solutionwith
m as an additional parameter (note that the Blasius solution is the special case
m = 0). The development of the similarity equation is proposed in Problem 2.8:

2f ′′′ + (m+ 1)f f ′′ + 2m[1 − (f ′)2] = 0 (2.128)

In this equation, (·)′ is shorthand for d(·)/dη, where η = y(U∞/vx)1/2 and
U∞ = Cxm. The longitudinal velocity is u = U∞f ′. The function f(η) can be
obtained numerically by solving eq. (2.128) subject to f(0) = 0, f ′(0) = 0, and
f ′(∞) = 1. The resulting expression for the local skin friction coefficient is the
same as in eq. (2.91),

Cf ,x = 2f ′′(0)Re−1/2
x (2.129)
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Table 2.2 The local skin friction coefficient for laminar boundary layer flow over a wedge

β m f ′′(0) = 1
2Cf ,xRe

1 / 2
x

2π = 6.28 ∞ ∞
π = 3.14 1 1.233 (two-dimensional stagnation)

π/2 = 1.57 1
3 0.757

π/5 = 0.627 1
9 0.512

0 0 0.332

−0.14 −0.0654 0.164

−0.199 −0.0904 0 (separation)

Source: Ref. 30.

except that now Rex = U∞x/ν = Cxm+1/ν. Representative values of the f ′′(0)
constant are shown in Table 2.2, while Fig. 2.10 provides a bird’s-eye view of
the effect of the wedge angle. Relative to the case of the plate parallel to the flow
(β = 0), the acceleration of the free stream brings about a substantial increase in
the numerical coefficient appearing in the Cf,x ∼ Re−1/2

x scaling law.
The heat transfer similarity solution can be developed in the same way as

Pohlhausen’s solution, this time by substituting the Falkner–Skan similarity flow
into the boundary layer energy equation (2.27). The wedge surface is isothermal
at T0, while the free-stream temperature is T∞. The resulting equation for the
similarity temperature profile θ(η) = (T − T0)/(T∞ − T0) is

θ ′′ + 1
2 Pr(m+ 1)f θ ′ = 0 (2.130)

which can be comparedwith eq. (2.94) to see that Pr is now replaced by Pr(m+ 1).
Eckert [31] integrated eq. (2.130) subject to θ(0) = 0 and θ(∞) = 1; some of his
results for the local Nusselt number Nu = hx/k are shown in Table 2.3.

Table 2.3 Local Nusselt number Nu/Re1/2
x for laminar boundary layer flow over a wedge

Pr

β m 0.7 0.8 1 5 10

−0.512 −0.0753 0.242 0.253 0.272 0.457 0.570

0 0 0.292 0.307 0.332 0.585 0.730

π/5 1
9 0.331 0.348 0.378 0.669 0.851

π/2 1
3 0.384 0.403 0.440 0.792 1.013

π 1 0.496 0.523 0.570 1.043 1.344

8π/5 4 0.813 0.858 0.938 1.736 2.236

Source: Ref. 31.
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The solid curves in Fig. 2.10 show that when the proper heat transfer scaling
law (2.45) is used, the group Nu/Pr1/3 Re1/2x depends mainly on the wedge angle
β. The local heat transfer coefficient h varies as x–1 Re1/2x as x increases away
from the tip. In view of eq. (2.124), this means that h varies as x(m–1)/2. The
relation between the local heat transfer coefficient at x and the heat transfer
coefficient averaged from x = 0 to x is

h0−x = h

1 + (m− 1)/2
= 2

1 + m
h (2.131)

A special case of the general wedge geometry is the two-dimensional stag-
nation flow β = π (or m = 1) sketched in Fig. 2.10. In this case, U∞ increases
as Cx away from the stagnation point, and since h varies generally as x(m–1)/2,
the local heat transfer coefficient delivered by Table 2.3 is a constant. The
two-dimensional stagnation flow is a good approximation for the flow near the
stagnation line on a cylinder of diameter D suspended in a cross flow with
far-field velocity V. The free-stream velocity in the immediate vicinity (x � D)
of the stagnation line is U∞ = (4V/D)x, where x is measured along the circular
perimeter away from the stagnation point. This description also holds for a
two-dimensional blunt body whose cross section has a nose with the radius of
curvature D/2.

The similarity solution for the three-dimensional stagnation flow against the
nose of an axisymmetric body can be derived through the Mangler coordinate
transformation [32] from a two-dimensional flow past a wedge. For fluids with
constant properties and Prandtl numbers in the range covered by Table 2.3, the
local heat transfer coefficient near the axisymmetric stagnation point is correlated
by [33]

Nu = 0.77Pr0.4 Re1/2x (2.132)

If the velocity of the far-field fluid is V and the radius of curvature of the
axisymmetric nose isD/2, the free-stream velocity in the vicinity of the stagnation
point (x � D) is U∞ = (3V/D)x. Substituting Rex = U∞x/ν and Nu = hx/k in
eq. (2.132), we find that x drops out and h is a constant. This result also applies
to the near-stagnation region on a sphere of diameter D. Additional results for
boundary layers with longitudinal pressure gradient are summarized by Pletcher
[34]. This class of results is pivotal in the fast-developing field of electronics
cooling by impinging jets (see, e.g., Ref. 35).

2.8 FLOW THROUGH THE WALL: BLOWING AND SUCTION

If the fluid can flow into or out of the wall surface, the skin friction and heat
transfer coefficients can differ substantially from the results presented so far.
Recall that until now the wall surface was assumed impermeable, as done in the
development of the Blasius similarity solution [see eq. (2.74)]. In this section we



2.8 FLOW THROUGH THE WALL: BLOWING AND SUCTION 65

relax this assumption and consider the general case where the boundary layer
fluid crosses the wall surface with the normal velocity v0(x), which may vary
with the distance x from the leading edge of the wall. Positive v0 values indicate
blowing, that is, the injection of fluid (the same fluid type as in the free stream)
from the wall into the boundary layer. Negative v0 values represent suction, the
removal of some of the boundary layer fluid by forcing it to flow through the
porous surface of the wall.

To see this effect on Cf,x and Nux, consider again the free stream U∞ = Cxm

that flows outside the boundary layer that coats the wedge of angle β (see
Fig. 2.10). The surface is isothermal (T0), and the fluid that crosses this surface
with normal velocity v0 has temperature T0. Let y be the direction perpendicular
to the wall. Similarity solutions for the boundary layer velocity and temperature
fields can be developed only if v0 varies as x

(m–1)/2 along the wall. The reason is
that if we combine v = − ∂ψ /∂ξ with ψ = (U∞νx)1/2f(η), η = y(U∞/νx)1/2, and
U∞ = Cxm, we obtain

ψ = (Cνxm+1)1/2f [y(C/ν)1/2x(m−1)/2] (2.133)

and

v = −∂ψ

∂x
= −m+ 1

2
x(m−1)/2(Cν)1/2f (η)

− (Cνxm+1)1/2
df

dη
y(C/ν)1/2

m− 1

2
x(m−3)/2 (2.134)

At the wall, the normal velocity v0 = v(y = 0) reduces to

v0 = −m+ 1

2
x(m−1)/2(Cν)1/2f (0) (2.135)

This expression shows that if f(0) = constant is to be used [next to f ′(0) = 0
and f ′(∞) = 1] as a boundary condition to solve eq. (2.128), v0 must vary
as x(m–1)/2 so that x drops from both sides of eq. (2.135). For example, if the
free stream is parallel to the flat wall (m = 0), v0 must decrease as x–1/2. In
two-dimensional stagnation flow (m = 1), the blowing velocity that leads to a
similarity solution is uniform (x-independent). The constant f(0) that accounts
for the v = v0 boundary condition at y = 0 can be rewritten [cf. eq. (2.135)] as

f (0) = − 2

m+ 1

v0

U∞
Re1/2x (constant) (2.136)

in which Rex = U∞x/ν. The dimensionless constant represented by the group
(v0/U∞) Re1/2x is the blowing parameter and accounts for the effect of a
finite v0 in the flow similarity solution. The temperature profile θ(η) is obtained
subsequently by substituting f(η) in eq. (2.130) and using the boundary conditions
θ(0) = 0 and θ(∞) = 1.
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Table 2.4 Effect of flow through the wall: local skin friction coefficient and Nusselt
number for laminar boundary layer flow over a permeable isothermal wall parallel to the
stream

Nu/Re1/2x

v0

U∞
Re1/2x f ′′(0) = 1

2Cf ,x Re1/2x Pr = 0.7 Pr = 0.8 Pr = 0.9

−2.5 2.59 1.85 2.097 2.59
−0.75 0.945 0.722 0.797 0.945 Suction
−0.25 0.523 0.429 0.461 0.523
0 0.332 0.292 0.307 0.332 Impermeable wall
+0.25 0.165 0.166 0.166 0.165
+0.375 0.094 0.107 0.103 0.0937 Blowing
+0.5 0.036 0.0517 0.0458 0.0356
+0.619 0 0 0 0 Separation






Source: Ref. 28.

Table 2.4 shows the effect of the blowing parameter (v0/U∞) Re1/2x on the
local skin friction coefficient and the local Nusselt number when the wall is
parallel to the free stream (m = 0). The table is based on two compilations of
data made by Kays and Crawford [28]. The middle line of the table serves as
reference and corresponds to the impermeable wall, which is covered by the
Blasius and Pohlhausen solutions of Section 2.5. Worth noting is that in the
range covered by Table 2.4, the blowing parameter is on the order of 1. This
means that the blowing or suction velocity is of order U∞Re−1/2

x [i.e., of the
same order as the scale of the transversal velocity v inside the boundary layer,
eq. (2.81)]. Indeed, if the scale of v0 is small relative to the natural scale v of
the boundary layer fluid, the effect of v0 on Cf,x and Nu is insignificant: In such
cases, the flow through the porous wall is too weak to influence the thickness of
the boundary layer.

The local skin friction coefficient Cf,x is related to f ′′(0) through eq. (2.129).
The tabulated values show that one effect of suction (v0 < 0) is to increase Cf,x
above the impermeable-wall limit of eq. (2.92). This effect is due to the fact
that as some of the fluid is drawn across the wall surface, the boundary layer
becomes thinner. The opposite effect—a lowerCf,x caused by a thicker boundary
layer—occurs in a boundary layer with blowing (v0 > 0). Similarity results of
this type expire when f ′′(0), or the velocity gradient (∂u/∂y)y = 0, becomes zero
(i.e., when the boundary layer separates from the wall).

The local Nusselt number Nu = hx/k exhibits similar behavior: higher
values for thinner boundary layers on walls with suction, and lower values for
thicker boundary layers on walls with blowing. In the range covered by the
blowing parameter in Table 2.4, the Prandtl number effect cannot be correlated
by using the factor Pr1/3, that is, by seeking a formula of the type Nu/Pr1/3

Re1/2x = function[(v0/U∞) Re1/2x ]. The reason is that for suction, Nu increases
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Table 2.5 Local Nusselt number Nu/Re1/2
x for laminar boundary layer flow over an

isothermal wedge with blowing (Pr = 0.7)

m

v0

U∞
Re1/2x

−0.0418 −0.0036 0 0.0257 0.0811 0.333 0.500 1

(β/π = −0.08) (−0.0072) (0) (0.05) (0.15) (1/2) (2/3) (1)

0 0.292 0.384 0.496
0.0239 0.103
0.25 0.166
0.333 0.242
0.375 0.107 0.259
0.5 0.0251 0.0517 0.293
0.518 0.087
0.558 0.109
0.667 0.131
1 0.146

Source: Ref. 28.

with Pr, while in the case of blowing Nu decreases as Pr increases. Since the
wall is parallel to the free stream (m = 0), the heat transfer coefficient averaged
from x = 0 to x is twice the local heat transfer coefficient at x; in other words,
h0–x = 2h.

The effect of the wedge angle on the local Nusselt number is documented in
Table 2.5, which is a compilation based on data from the literature. The relation
between m and the wedge angle β (Fig. 2.10) is given in eq. (2.125), while
U∞ = Cxm and Rex = U∞x/ν. The Nu data show once again the β effect seen in
Fig. 2.10 and Table 2.3 and the blowing parameter effect revealed by Table 2.4.
The average heat transfer coefficient h0–x can be calculated with eq. (2.131).

Similarity results for the stagnation flow against an axisymmetric body have
been obtained [36] by using the Mangler coordinate transformation [22, 32].
Table 2.6 shows the effect of the blowing parameter when v0 is positive.
Once again, the local heat transfer coefficient decreases as the blowing veloc-
ity increases. While using the data of Table 2.6, it is worth recalling that
U∞ = (3V/D)x in the vicinity (x � D) of the stagnation point, where V is the
approach velocity of the far-field fluid and D/2 is the radius of curvature of

Table 2.6 Effect of blowing on the local Nusselt
number in laminar stagnation flow on an isothermal
axisymmetric body (Pr = 0.7)

v0

U∞
Re1/2x 0 0.567 1.154

Nu/Re1/2x 0.664 0.419 0.227

Source: Ref. 36.
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the nose of the axisymmetric body (e.g., sphere). The approaching fluid flows
parallel to the axis of symmetry of the blunt body.

2.9 CONDUCTION ACROSS A SOLID COATING DEPOSITED
ON A WALL

The Pohlhausen solution (2.101)–(2.107) for heat transfer across the laminar
boundary layer on a flat impermeable wall is based on a model in which the wall
surface is assumed isothermal at T0. Consider now the more general situation
[37] sketched in Fig. 2.11, in which an isothermal wall T0 is coated with a
layer of solid material of thermal conductivity kw. The layer thickness may be
nonuniform, t(x); however, it is sufficiently smaller than the wall length L so that
the effect of longitudinal conduction through this layer can be neglected.

The thickness t(x) has been exaggerated in Fig. 2.11 for clarity. The heat
transfer between the wall T0 and the free stream T∞ is impeded by two thermal
resistances in series, conduction across the t(x) layer and convection across the
laminar boundary layer. The heat transfer process is one of conjugate conduction
and convection, in which the surface touched by the flow acquires a non-uniform
temperature that floats to a steady position situated between T0 and T∞.

The relation between the temperature difference (T∞ − T0) and the total heat
transfer rate into the wall (q′ = Lq′′

0−L) can be obtained by integrating the energy
equation (2.94) with the Blasius solution for f(η), subject to the free-stream
condition (2.96) and the new surface condition

k
∂T

∂y
= kw

T − T0
t

(y = 0) (2.137)

This equation states that the heat flux that enters the wall surface from the fluid
side continues as a pure conduction heat flux across the coating of thickness t.

Figure 2.11 Laminar boundary layer flow over an isothermal wall coated with a solid of variable
thickness. (From Ref. 37.)
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The nondimensional version of eq. (2.137), which replaces eq. (2.95) of the
original Pohlhausen problem, is

J
∂θ

∂η
= θ (η = 0) (2.138)

where θ = (T − T0)/(T∞ − T0), η = y(U∞/νx)1/2, and

J = k

kw

(
U∞t2

νx

)1/2
(2.139)

The dimensionless number J is generally a function of x. The limiting value
J= 0 corresponds to the Pohlhausen problem: an isothermal wall without coating
or a wall coated with a sufficiently thin and thermally conductive solid layer. A
similarity solution θ(η,Pr,J) can be found for cases in which J is a constant [i.e.,
when t(x) varies as x1/2] (see Problem 2.6).

Lim et al. [37] solved the problem for the more realistic situation in which the
coating thickness is uniform or varies linearly along a wall,

t(x) = t

[
1 + b

(
1

2
− x

L

)]
(2.140)

In this expression, t is the coating thickness averaged from x = 0 to x = L,
and b is a dimensionless taper parameter. Note that the coating thickness varies
linearly from (1 + b/2) at the leading edge to (1 − b/2) at the trailing edge. The
J parameter that corresponds to the thickness function (2.140) is

J = J
( x
L

)−1/2
[
1 + b

(
1

2
− x

L

)]
(2.141)

in which J is the J value based on the L-averaged thickness t,

J = k

kw

t

L
Re1/2L (2.142)

Since a single similarity solution for θ does not exist in this case, Lim et al.
[37] integrated eq. (2.94) for a given x/L and obtained numerically the θ ′(0)
coefficient of eq. (2.101) as a function of x/L, J, and Pr. The total heat transfer
rate that emerges from this calculation is

q′ =
∫ L

0
k

(
∂T

∂y

)
y= 0

dx

= k(T∞ − T0)Re
1/2
L

∫ 1

0
θ ′(0)
( x
L

)−1/2
d
( x
L

)
(2.143)
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J

Figure 2.12 Total heat transfer rate when the wall of Fig. 12.11 is coated with a layer of uniform
thickness (b = 0). (From Ref. 37.)

Figure 2.12 shows the effect of the coating on the total heat transfer rate when
the coating has uniform thickness, q′

c = q′(b = 0). The J constant differentiates
between situations in which the overall thermal resistance is dominated by
the coating (J � 1) and by situations where the boundary layer poses the
greater resistance (J � 1). On the ordinate, q′

c was nondimensionalized by
using as the denominator the conduction heat transfer rate in the J � 1 limit in
which the coating is an effective insulator, kwL(T∞ − T0)/t. It can be verified
numerically that in the J � 1 limit, the group q′

c/[kwL(T∞ − T0)/t] approaches
the Pohlhausen solution, which for Pr � 1 is 0.664Pr1/3 J.

We should not be surprised that J ∼ 1 marks the transition between an overall
resistance dominated by the boundary layer and one dominated by the solid
coating. If, for the sake of the argument, in eq. (2.142) we assume that the fluid
and the coating have similar thermal conductivities, J emerges as the ratio of
two thicknesses: the coating thickness t divided by the thickness of the thermal
boundary layer when Pr ∼ 1, namely, L Re−1/2

L .
The effect of the taper parameter b is shown in Fig. 2.13, which was drawn

only for Pr = 1 and J = 1. Plotted on the ordinate is the ratio between the
total heat transfer when the coating has uniform thickness (q′

c; b = 0) and the
heat transfer when the coating is tapered (q′; b �= 0), but has the same average
thickness. The abscissa shows the taper parameter b. Although the quantitative
effect of b is small, we note that when the coating is tapered as in Fig. 2.11
(b > 0), it provides more of an insulation effect than when it is spread uniformly
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Figure 2.13 Effect of taper (b) on the total heat transfer rate through the wall of Fig. 2.11 when
Pr = 1 and J = 1. (From Ref. 37.)

over the isothermal wall, q′
c > q′. The effect of changing the coating thickness J

in addition to b is documented in Ref. 37.
The constructal design aspects of distributing a solid coating on a wall form

an active subfield in the current literature [3, 38, 39].

2.10 ENTROPY GENERATION MINIMIZATION IN LAMINAR
BOUNDARY LAYER FLOW

Once we have understood the mechanism of friction and heat transfer of a
certain convective flow, we are equipped to ask the thermodynamic design
question—of how much useful work (exergy) is being destroyed by convection
and how the geometry should bemodified tominimize this destruction.∗ Consider
this question in the context of forced convection in laminar boundary layer
flow. Figure 2.14 shows the simplest two-dimensional geometry: The plate is
sufficiently thin, the heat flux q′′ is assumed uniform on both sides, and the free
stream is parallel to the plate.

Calculating the rate of destruction of useful energy in the convective arrange-
ment of Fig. 2.14 is analogous to calculating the rate of entropy generation in

∗This method is known as entropy generation minimization, renamed more recently as finite-time
thermodynamics, first recognized in book form in 1982 [40].



72 2 LAMINAR BOUNDARY LAYER FLOW

Ux, Tx

T0(x)

q”

0 x x = L

W

Figure 2.14 Laminar boundary layer flow on a plate with uniform heat flux on both sides. (From
Ref. 40.)

the surrounding flow [cf. eq. (1.48)]. A fundamental result in thermodynamics is
that the total rate of entropy generation due to heat transfer between a body and
a flow (U∞,T∞) that surrounds the body is [5, 40–42]

Sgen = 1

T2∞

∫
A
q′′(T0 − T∞)dA+ FDU∞

T∞
(2.144)

In this expression, A is the body surface area, T0 is the surface temperature, and
FD is the drag force experienced by the body. It is assumed that the temperature
difference T0 − T∞ is small relative to the absolute temperature T∞. Note that
in Fig. 2.14, the heat flux was drawn such that it points toward the fluid (i.e., as
if T0 > T∞). The product q′′(T0 − T∞) is always positive, regardless of whether
the body is warmer or colder than the surrounding fluid.

The entropy generation formula (2.144) has two terms because it is the integral
of the volumetric rate of eq. (1.49) over the space occupied by the fluid. The first
term accounts for the irreversibility of heat transfer, and the second represents
the irreversibility of fluid flow. These two contributions are coupled through the
geometry of the body, as we demonstrate next.

We evaluate the two terms of eq. (2.144) by using the heat transfer and
skin friction results developed in Section 2.5. We replace the integral with
q′′(T0 − T∞)(2LW), in which T0 − T∞ is the wall–fluid temperature difference
averaged from x = 0 to x = L. This average can be obtained by using the local
temperature difference [T0(x) − T∞] furnished by eq. (2.121), which holds for
Pr > 0.5.
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The second term on the right side of eq. (2.144) is evaluated by noting that
the drag force experienced by the thin plate is FD = 2LWτ 0–L. The average wall
shear stress is furnished by eq. (2.92′), which yields τ 0–L = 0.664ρU2∞Re−1/2

L .
Substituting these estimates in eq. (2.144), we obtain

Sgen
W

= 0.736(q′)2

T2∞k Pr1/3 Re1/2L

+ 1.328
µ

T∞
U2

∞ Re1/2L (2.145)

where q′ is the total rate of heat transfer between the plate and the fluid, per unit
transversal length, q′ = 2Lq′′.

The swept length L appears as ReL = U∞L/ν in both terms on the right side
of eq. (2.145). The irreversibility due to heat transfer decreases as the plate is
made longer, while the fluid flow irreversibility increases. This behavior means
that Sgen is minimum when L has a certain value that is neither too small nor too
large. That value is obtained by solving ∂Sgen/∂ReL = 0,

ReL,opt = 0.554B2 (2.146)

where ReL,opt = U∞Lopt/ν. The number B is the dimensionless version of the
ratio of the heat transfer rate divided by the flow speed,

B = q′/U∞
(kµT∞ Pr1/3)1/2

(2.147)

The B number identified above governs the entropy generation characteristics
of forced convection by laminar boundary layer flow. If the flow and the plate are
such that ReL � B2, the entropy generation rate is due mainly to heat transfer and
is considerably greater than when the swept length is optimal [eq. (2.146)]. In the
other extreme, ReL � B2, the plate is so long that most of its work destruction is
due to fluid friction.

In conclusion, if a plate (e.g., fin) is to transfer heat at a given rate (q′) to a
stream with specified velocity (U∞), its swept length for minimum irreversibility
is

Lopt = 0.554
(q′)2

kT∞ρU3∞ Pr1/3
(2.148)

The corresponding minimum rate of exergy destruction is T∞Sgen,min, where

Sgen,min = 1.98
qU∞

(k/µ)1/2T3/2
∞ Pr1/6

(2.149)

The minimization of entropy generation in other fundamental configurations of
external and internal convective heat transfer is presented in Refs. 40–42.
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2.11 HEATLINES IN LAMINAR BOUNDARY LAYER FLOW

The heatfunction H(x, y) for two-dimensional flow in Cartesian coordinates was
defined in eqs. (1.68)–(1.69) for the more general case in which the longitudinal
thermal diffusion term k ∂2T/∂x2 is not negligible in the energy equation. The
special feature of the boundary layer simplified equation (2.27) is that the
k ∂2T/∂x2 term is missing. This feature demands a special definition for the
heat-function H(x, y) that is valid inside the boundary layer region [27]:

∂H

∂y
= ρcPu(T − Tref) (2.150)

−∂H

∂x
= ρcPv(T − Tref) − k

∂T

∂y
(2.151)

Assume that the wall is isothermal at T0. We begin with the case where the free
stream is warm and the wall is cold, T∞ > T0, which means that Tref = T0. Later,
we consider the reverse situation in which the wall is warmer than the stream.

It is easy to verify that the functionH(x, y) defined by eqs. (2.150)–(2.151) sat-
isfies the energy equation (2.27) identically. The challenge is to find this function
by using eqs. (2.150)–(2.151). The boundary layer flow field is described by the
Blasius solution, eqs. (2.71) and (2.81). The boundary layer temperature field is
furnished by the Pohlhausen solution, eq. (2.98). Next, we state the heatfunction
problem in terms of the scale analysis-based dimensionless variables:

x̃ = x

L
, ỹ = y

LRe−1/2
L

= ηx̃1/2 (2.152)

θ = T − T0
T∞ − T0

, H̃ = H

ρcPU∞(T∞ − T0)LRe
−1/2
L

(2.153)

in which ReL = U∞L/ν. By using these definitions, we can rewrite the heatfunc-
tion gradients (2.150)–(2.151) as

∂H̃

∂ ỹ
= f ′ θ (2.154)

−∂H̃

∂ x̃
= 1

2
x̃−1/2(ηf ′ − f )θ − 1

Pr

∂θ

∂ ỹ
(2.155)

Like the temperature field of the Pohlhausen solution, the heatfunction field
depends on the Prandtl number. The derivation of the analytical form of the
dimensionless heatfunction H̃(x̃, ỹ) begins by assuming that [27]

H̃(x̃, ỹ) = x̃1/2g[η(x̃, ỹ)] (2.156)
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and rewriting eqs. (2.154)–(2.155) in terms of the unknown function g(η):

g′ = f ′ θ (2.157)

ηg′ − g = (ηf ′ − f )θ − 2

Pr
θ ′ (2.158)

where g′ = dg/dη. By eliminating g′ between eqs. (2.157) and (2.158), we
obtain g(η) = fθ + (2/Pr)θ ′. In conclusion, the analytical form of the boundary
layer–approximated heatfunction for a cold isothermal wall is

H̃(x̃, ỹ) = x̃1/2
[
f (η) θ(η) + 2

Pr
θ ′ (η)

]
(2.159)

The similarity heatfunction g(η) accounts simultaneously for the two heat
transfer mechanisms that are present in the boundary layer, convection ( f θ) and
transversal conduction (2θ ′/Pr). The g(η) function is the similarity H profile of
the boundary layer: g is as basic a feature of the similarity boundary layer as are
f and θ .

Equation (2.159) shows that H̃ increases as x̃1/2 along the wall because f(0)= 0
and θ ′(0) is only a function of Pr [eq. (2.99)]. The wall heatfunction is zero at
the tip. At the downstream end of the wall (x̃ = 1), the heatfunction reaches
its highest value, which is 2θ ′(0)/Pr. This value is proportional to the total heat
transfer rate absorbed by the wall. Note the factor of 2 in front of θ ′(0) and the
limiting values H̃(1, 0) = 0.664Pr−2/3 for Pr > 0.5, and H̃(1, 0) = 1.128Pr−1/2

for Pr � 0.5. The factors 0.664 and 1.128 are the same as in the expressions for
the overall Nusselt number Nu0−L = q′′

0−LL/k(T∞ − T0), which can be obtained
based on eqs. (2.103) and (2.107). Over the entire Pr range, the relationship
between Nu0–L and the H̃ value at the trailing edge is Nu0−L = H̃(1, 0)PrRe1/2L ,
which is equivalent to

H(x = L, y = 0) = q′′
0−LL (2.160)

In conclusion, the physical (dimensional) value of the trailing-edge heatfunction
is equal to the total heat transfer rate through the wall.

Figure 2.15 shows the pattern of heatlines in the laminar boundary layer of
a Pr = 0.72 fluid such as air. The heatlines are plotted only in the boundary
layer region, which corresponds to ỹ values where η < 5. The η = 5 curve (or
ỹ = 5x̃1/2) is shown by the dotted line. The heatlines show the actual path of
the energy absorbed by the wall. They are perpendicular to the wall because at
ỹ = 0+ the heat transfer is by pure conduction (remember: u = 0 at y = 0).
The heatlines that cross the wall (0 < H̃ Pr2/3 < 0.664) originate from the flow
region situated immediately upstream of the tip.

The heatlines that cross the wall are more crowded near the tip than farther
downstream. This feature of the heatline pattern makes visible the nonuniform
distribution of the heat flux over the isothermal wall, namely, a heat flux q′′ that
is proportional to x–1/2.
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Figure 2.15 Heatlines in the boundary layer of a wall that is colder than the free stream. (From
Ref. 27.)

Consider now the reverse situation in which T0 is greater than T∞, and
the wall heats the stream. The temperature field (the pattern of isotherms) is
insensitive to this change; however, the pattern of heatlines is markedly different.
The analytical construction of the H̃ function begins with setting Tref = T∞ in
eqs. (2.150)–(2.151) and follows the steps that led to eq. (2.159). The expression
for the dimensionless heatfunction is [27]

H

ρcPU∞(T0 − T∞)LRe−1/2
L

= H̃(x̃, ỹ) = −x̃1/2
{
f (η) [θ(η) − 1] + 2

Pr
θ ′(η)

}
(2.161)

Figure 2.16 shows the pattern of heatlines near the hot wall when the Prandtl
number is 0.72. This figure can be compared with Fig. 2.15 to see the difference
between a wall that releases heat and one that absorbs heat. The heatlines point
in the ỹ direction as they emerge from the wall; later, they are swept downstream
by the flow. Their higher density near the tip indicates higher heat fluxes. They
occupy the same region as the velocity boundary layer (the dotted line), and in
this way they visualize the meaning of a Prandtl number that is on the order of 1.

The effect of the Prandtl number on the heatline pattern is illustrated further in
Ref. 27. The same study reports in closed form the heatfunction for the boundary
layer on a wall with uniform heat flux. The growing literature on the use of
heatlines and masslines is reviewed at the end of Chapter 1.
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Figure 2.16 Heatlines in the boundary layer of a wall that is warmer than the free stream.
(From Ref. 27.)

2.12 DISTRIBUTION OF HEAT SOURCES ON A WALL COOLED
BY FORCED CONVECTION

Consider a horizontal plate of length L which is in contact with a free stream
of velocity U∞ and temperature T∞. The plate is heated by line heat sources of
fixed strength q′(W/m). The heat sources appear as points on the plate sketched
in Fig. 2.17. Each line heat source extends in the direction perpendicular to the
figure. The flow is two-dimensional and in the laminar boundary layer regime.
The number of heat sources per unit of plate length (N′) is unknown.

In accordance with the method of constructal design, if Tmax is the maximal
temperature that must not be exceeded at the hot spots that occur on the plate,
then the entire plate should operate at Tmax. The problem is to determine the

Figure 2.17 The multiple length scales of the distribution of finite-size heat sources on a wall
[43].
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distribution of heat sources on the plate, N(y), such that the wall temperature is
near the allowed limit Tw(x) = Tmax, constant. First, we assume that the density
of line sources is sufficiently high so that we may express the distribution of
discrete q′ sources as a nearly continuous distribution of heat flux:

q′′(x) = q′N ′ (2.162)

The heat flux distribution that corresponds to eq. (2.162) and Pr � 1 is given by
eq. (2.103), Nu = 0.332Pr1/3 Re1/2x , or

q′′x
k (Tmax − T∞)

= 0.332Pr1/3
(
U∞ x

ν

)1/2
(2.163)

By eliminating q′ between eqs. (2.162) and (2.163) we obtain the required
distribution of heat sources,

N ′(x) = 0.332
k

q′ (Tmax − T∞) Pr1/3
(
U∞
ν

)1/2
x−1/2 (2.164)

The function N′(x) represents the optimal configuration of heat sources. It
shows that the sources must be positioned closer when they are near the start of
the boundary layer. The total number of heat sources is

N =
∫ L

0
N ′ dx = 0.664

k

q′ (Tmax − T∞) Pr1/3 Re1/2 (2.165)

where Re = U∞ L/ν. The rate of heat transfer from all the heat sources to the
T∞ fluid is

Q′
max = q′N = 0.664k(Tmax − T∞) Pr1/3 Re1/2 (2.166)

ThisQ′
max expression is the same as the total heat transfer rate from an isothermal

wall at Tmax. Equation (2.166) represents the maximized global performance of
the wall with discretely distributed heat transfer.

The physical implementation of the optimal distribution is limited by an impor-
tant manufacturing constraint: There exists a smallest scale in the design—the
D0 thickness of the line heat source. Features smaller than D0 cannot be made.
This constraint endows the design with structure, graininess (coarseness), and
visibility.

The local spacing between two adjacent heatlines is S(x). This spacing varies
with x in accordance with the optimal N′ distribution function, eq. (2.164). The
plate length interval that corresponds to a single line heat source q′ is D0 + S(x).
This means that the local number of heat sources per unit of wall height is

N ′(x) = 1

D0 + S (x)
(2.167)



2.13 THE FLOW OF STRESSES 79

The strength of one source (q′) is spread uniformly over the finite thickness of
the source (q′′

0 = q′/D0). The heat flux q
′′
0 is a known constant, unlike the function

q′(x) of eq. (2.163), which is the result of design. By eliminating N′(x) between
eqs. (2.164) and (2.167), we obtain the rule for how the wall heating design
should be constructed:

S (x)

L
∼= 3q′ Pr−1/3 Re−1/2

k (Tmax − T∞)

( x
L

)1/2 − D0

L
(2.168)

The spacing S increases as x increases. Near the start of the boundary layer,
the S(x) function of eq. (2.168) has negative values. This means that the above
description breaks down in a region (0 ≤ x ≤ x0) near the start of the boundary
layer. Because D0 is the smallest length scale of the structure, the spacings S
cannot be smaller than D0. We define x0 as the longitudinal scale where S is as
small as D0 in an order-of-magnitude sense,

S ∼ D0 when x ∼ x0 (2.169)

By substituting this into eq. (2.168), we determine the starting length scale over
which eq. (2.168) is not valid,(x0

L

)1/2 ∼ 0.664
D0

L

k

q′ (Tmax − T0)Pr
1/3 Re1/2 (2.170)

In summary, the wall structure has two distinct sections. Downstream of
x ∼ x0, the wall is heated on discrete patches of length D0 which are spaced
according to eq. (2.168). Upstream of x ∼ x0, the heat sources are mounted flush
against each other. We model this starting section as one with uniform heat flux
in such a way that at the end of this section (at x ∼ x0) the wall temperature
reaches the same maximum level (Tmax) that the optimized spacings (2.168) are
designed to maintain downstream of x∼ x0. The wall temperature is T0 at x= 0.
It reaches Tmax at the transition distance x0 and continues undulating at Tmax (and
slightly under) from x0 until L.

These basic features of the optimal design are illustrated in Fig. 2.17. The
design has multiple length scales: L, D0, x0, and S(x). The first two length scales
are constraints. The last two are results of global maximization of performance in
a morphing architecture subjected to the constraints. Taken together, the lengths
represent multiscale constructal design—the flow architecture that brings the
entire wall to the highest performance level possible. The performance of this
constructal design is described further in Ref. 43.

2.13 THE FLOW OF STRESSES

As a good-bye to boundary layer theory, I draw attention to its most recent
extension to the shaping of thin structures for the flow of stresses without
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strangulations [44]. To look at stresses as flow is quite unusual but it is effective
when the objective is to discover the best configuration of the stressed volume.
In Ref. 44 we illustrated the ‘‘flow-of-stresses’’ concept by using the simplest
possible examples that have analogs to fluid flow and convective heat transfer:
single ducts, bifurcated ducts, fins with heat tubes, and single and conjugate
boundary layers.

High density is the design value of the flow of stresses image, and it is
analogous to the maximum heat transfer density that packages of electronics and
compact heat exchangers achieve when their internal pathways for heat and fluid
flow are configured such that strangulations are minimized. To facilitate the flow
of stresses, fluid, and heat is to generate the configuration of the flow system.
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PROBLEMS

2.1. Derive eq. (2.53) by invoking the first law of thermodynamics in the open
system defined by the control volume in Fig. 2.3b.

2.2. Develop a power series expression for the Blasius profile (Fig. 2.6) as a
solution of eq. (2.82) subject to conditions (2.83) and (2.84). Assume that
f =∑∞

i=0 aiη
i. Show that for small η, the expression

f = αη2

2!
− α2η5

(2)(5!)
+ 11α3η8

(4)(8!)
− 375α4η11

(8)(11!)
+ · · ·
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satisfies the Blasius equation and the boundary conditions at η = 0.
The curvature at the wall, α = f ′′(0), is unknown and would have to be
determined from the condition (2.84) at η = ∞, where the series expression
above does not hold. To complete the solution, develop an asymptotic
expansion valid for large values of η,

f = f1 + f2 + · · ·

where the higher-order approximations must be small compared with the
lower-order approximations (e.g., f2 � f1). Using Ref. 22 as a guide, show
that for large values of η,

f = η − β + γ

∫ η

∞
dη
∫ η

∞
exp
[− 1

4 (η − β)2
]
dη + · · ·

where β and γ are two additional unknown constants. The three unknowns
(α, β, γ ) can be determined by matching the two expansions, that is, by
making f, f ′, and f ′′ equal at some η = η1 = O(1). This is how Blasius
found that α = 0.332, which is extremely close to the correct numerical
result [23].

2.3. Determine the Blasius profile (Fig. 2.6) by solving eq. (2.82) numerically
using a shooting scheme. First, divide the η domain into small intervals
�η of size 0.01 or smaller. Write finite-difference approximations for
the derivatives f ′′ and f ′′′ [e.g., f ′′i = (fi + 1 + fi–1 − 2fi)/(�η)2, where i
indicates the position of the ith node, defined as ηi = i�η], and substitute
these expressions into eq. (2.82). The result of this operation is a formula
for calculating the value of f at any node, based on the f values at the three
preceding nodes. The numerical integration starts from the wall, by first
calculating f3 based on f0 = f1 = 0 [eq. (2.83)] and a guess for the value of
f2. The calculation is repeated for f4, f5, . . . , until η becomes large, O(10):
in this range, the third boundary condition [eq. (2.84)] must be used as the
test for how good the initial f2 guess was. If eq. (2.84) is not satisfied, the
integration sequence is repeated using an updated guess for the value of f2
[synonymous with guessing f ′′(0)].

The need for performing the integration more than once is eliminated
based on the observation that the Blasius equation (2.82) and the initial
conditions (2.83) are invariant under the transformation [45]

f → bf , η → η

b

If eq. (2.82) is integrated to η ∼ 10 using a certain initial curvature, say,
f ′′(0) = 1, the numerically calculated outer slope a= f ′(10) and eq. (2.84)
imply that the correct guess for initial curvature f ′′(0) must be a–3/2.
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2.4. Derive the expression for the local Nusselt number along a flat wall with
uniform heat flux using the integral method. Assume one of the temperature
profiles listed in Table 2.1 and you will take advantage of the fact that
the flow part of the problem has already been solved [i.e., δ(x) is known].
Keep in mind that in this problem T0(x) is an additional unknown; the
necessary additional equation is the definition of q′′ (known) [eq. (2.5)].

2.5. Consider the laminar boundary layer flow of an isothermal fluid (U∞,T∞)
over a flat isothermal wall (T0). At a certain distance x from the leading
edge, the local skin friction coefficient is Cf,x = 0.0066. What is the value
of the local Nusselt number at the same location if the Prandtl number is
Pr = 7?

2.6. Assume that the solid layer that coats the isothermal wall shown in
Fig. 2.11 has the thickness t = Cx1/2, in which C is a constant. Show that
a similarity solution exists for the temperature profile across the thermal
boundary layer. Let q′(J) be the total heat transfer rate through the coated
wall of length L, and q′(0) be the heat transfer when the coating is absent.
Show that when Pr > 0.5, the relative effect of the coating is described by

q′(J)
q′(0)

= (1 + 0.332Pr1/3J)−1

2.7. It has been claimed that a similarity solution does not exist for the laminar
thermal boundary layer over a flat plate with uniform heat flux [28, p. 151].
Develop this similarity solution for the geometry of Fig. 2.1, in which
q′′ = constant (see Ref. 27). As a similarity temperature variable, choose
θ(η,Pr), where

θ = T(x, y) − T∞
(q′′/k)(νx/U∞)1/2

Show that the energy equation in the boundary layer reduces to [46]

θ ′′ + Pr

2
(f θ ′ − f ′ θ) = 0

Solve this equation numerically for several Pr values subject to appropriate
boundary conditions. Report your conclusions in the style of eqs. (2.103)
and (2.107), that is, as asymptotic formulas for the local Nusselt number
Nu = q′′x/k[T0(x) − T∞].

2.8. Consider the laminar boundary layer formed by the flow of 10◦Cwater over
a 10◦C flat wall of length L. Show that the total shear force experienced by
the wall and the mechanical power P spent on dragging the wall through
the fluid is proportional to ν1/2.
(a) The dissipated drag power described above refers to the case in which

the wall is as cold as the free-stream water. Show that if the wall is
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heated isothermally so that its temperature rises to 90◦C, the dissipated
power decreases by 35 percent. In other words, show thatPh/Pc = 0.65,
where h and c refer to the hot- and cold-wall conditions.

(b) Compare the power savings due to heating the wall (Pc − Ph) with the
electrical power needed to heat the wall to 90◦C. How fast must the
water flow be so that the savings in fluid-friction power dissipation
become greater than the electrical power invested in heating the wall?
How short must the swept length L be so that the boundary layer
remains laminar while the power savings Pc − Ph exceed the heat
input to the wall?

2.9. The wind blows at 0.5m/s parallel to the short side of a flat roof with
rectangular area 10m × 20m. The roof temperature is 40◦C, and the
temperature of the air free stream is 20◦C. Calculate the total force
experienced by the roof. Estimate also the total heat transfer rate by
laminar forced convection from the roof to the atmosphere.

2.10. Make a qualitative sketch of how the local heat flux q′′
x varies along an

isothermal wall bathed by a laminar boundary layer of total length L. Use
q′′
x on the ordinate and x on the abscissa. On the same sketch, draw a
horizontal line at the level that would correspond to the heat flux averaged
over the entire length of the plate, q′′

L. Determine analytically (a) the
position x where the local heat flux matches the value of the L-averaged
heat flux, and (b) the relationship between the midpoint local flux and the
L-averaged value, that is, the ratio q′′

L/2/q
′′
L.

2.11. Consider the sharp-edged entrance to a round duct of diameter D
(Fig. P2.11). The laminar boundary layer that forms over the duct length
L is much thinner than the duct diameter. The temperature difference
between the duct wall (isothermal) and the inflowing stream is �T. The
longitudinal inlet velocity of the stream is U∞. Derive expressions for the
total force F experienced by the duct section of length L and the total heat
transfer rate from the duct wall to the stream, q. In the end, show that q
and F are proportional:

q

F
= Pr−2/3 cP �T

U∞
(Pr � 0.5)

Figure P2.11
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2.12. A stream of 20◦C water enters a duct, the wall temperature of which is
uniform and equal to 50◦C. The inlet velocity is 5 cm/s. The duct cross
section is a 20 cm × 20 cm square. Assume that the thickness of the
boundary layer that lines the inner surface of the duct is much smaller
than 20 cm, and calculate (a) the local heat transfer coefficient at x = 1m
downstream from the mouth, (b) the total heat transfer rate between the
duct section of length x = 1m and the water stream, and (c) the velocity
boundary layer thickness (δ) at x = 1m. Verify in this way the validity of
the assumption that δ is much smaller than the duct width.

Figure P2.12

2.13. The plane wall shown in Fig. P2.13 is swept by the laminar boundary
layer flow of an isothermal fluid (T∞,U∞) with Prandtl number greater
than 0.5. Deposited on the surface of this wall is a narrow strip of metallic
film that runs parallel to the leading edge of the wall, that is, in the
direction normal to the plane of the figure. As part of an electrical circuit,
the strip generates Joule heating at the rate q′

w (W/m), or as the heat flux
q′′
w = q′

w/�x = constant. The width of the strip is much smaller than the
distance to the leading edge, �x � x1.

Determine analytically the wall temperature distribution over the
unheated downstream portion x > x1. In other words, determine the
‘‘thermal wake’’ effect of the strip conductor. Assume that the entire Joule
heating effect q′

w can only escape through the fluid side of the metallic
strip. In other words, assume that the wall side of the strip is adiabatic.

Figure P2.13
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2.14. (a)A plane wall of length L is cooled by the laminar boundary layer flow of
a fluid with Pr � 0.5. The wall is heated electrically so that it releases the
uniform heat flux q′′ over the front half of its swept length, 0< x< L/2. The
trailing half L/2 < x < L is without heat transfer. Determine analytically
the wall–fluid temperature difference at the trailing edge, Tw(L) − T∞.
(b) A simpler (approximate) approach would be to assume that the total
heat transfer rate described above (q′′L/2) is distributed uniformly over
the entire length L. Determine the trailing-edge temperature difference,
compare it with the estimate of part (a), and comment on the accuracy of
this approximate approach.

2.15. An isothermal flat strip is swept by a parallel stream of water with a
temperature of 20◦C and a free-stream velocity of 0.5m/s. The width of
the strip, L = 1 cm, is parallel to the flow. The temperature difference
between the strip and the free stream is �T = 1◦C. Calculate the L-
averaged shear stress τ and the L-averaged heat flux q′′ between the strip
and the water flow.

2.16. It is proposed to estimate the uniform velocity U∞ of a stream of air of
temperature 20◦C by measuring the temperature of a thin metallic blade
that is heated and inserted parallel toU∞ in the airstream (Fig. P2.16). The
width of the blade (i.e., the dimension aligned with U∞) is L = 2 cm. The
blade is considerably longer in the direction normal to the figure; therefore,
the boundary layer flow that develops is two-dimensional. The blade is
heated volumetrically by an electric current so that 0.03W electrical power
is dissipated in each square centimeter of metallic blade. It is assumed that
the blade is so thin that the effect of heat conduction through the blade (in
the x direction) is negligible. A temperature sensor mounted on the trailing
edge of the blade reads Tw = 30◦C. Calculate the free-stream velocity U∞
that corresponds to this reading.

Figure P2.16

2.17. When two elastic cylinders are pressed against one another, they make
contact over a strip of width L (Fig. P2.17). This width is assumed known.
In general, it depends on the elastic properties and radii of the two cylinders
and on the force with which one cylinder is pressed against the other. The
radii of the cylinders are much larger than the contact width L.
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Two cylindrical bodies have different temperatures, T1 and T2, and roll
past one another without slip. The peripheral velocity U with which both
bodies pass through the frame of reference attached to the contact region is
known. The objective of this exercise is to show how the ‘‘fluid’’ boundary
layer method of this chapter can be used to calculate the heat transfer rate
between two solids [47].

Figure P2.17

(a) Assume that the interface temperature T0 (unknown) is uniform, that
is, independent of x. Write the expression for the local heat flux q′′

x
by noting that the ‘‘flow’’ of each solid through its respective thermal
boundary layer region (with constant U) is similar to that of a fluid
with extremely low Prandtl number.

(b) Show that the interface temperature depends on the physical properties
of the two solids in the following manner:

T0 = r

1 + r
T1 + 1

1 + r
T2 with r = (ρck)1/21

(ρck)1/22

(c) Derive the expression for the L-averaged heat flux between the two
bodies:

q′′ = 1.128

1 + r
k1(T1 − T2)

(
U

α1L

)1/2
(d) How fast must the cylinders roll for these analytical results to be valid?

2.18. Design a plate fin for maximum heat transfer rate qB subject to fixed
volume (V = bLt = constant). If the heat transfer through the fin can be
described as one-dimensional, the total heat transfer rate pulled by the fin
from the wall TB is

qB = (TB − T∞)(hpkA)1/2 tanh

[
L

(
hp

kA

)1/2]

where h, p, k, and A are the average heat transfer coefficient at location
x along the fin (away from the wall; Fig. P2.18), the wetted perimeter at
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x= constant, the thermal conductivity of the fin, and the fin cross-sectional
area at x = constant. It is assumed that L � b � t, where L, b, and t are
the dimensions of the plate fin. The fin is in contact with a uniform stream
(U∞,T∞) in laminar boundary layer flow parallel to the b dimension of the
fin; hence, the heat transfer coefficient at any location x along the fin is

hb

kf
= 0.664Pr1/3

(
U∞b

ν

)1/2

where kf, Pr, and ν are the fluid conductivity, the Prandtl number, and the
kinematic viscosity, respectively. Assuming that all other design variables
are given (including the plate thickness t), determine the optimal dimension
b formaximum qB and fixedV. Express your result in dimensionless form as

bopt
t

= function

(
V

t3
,
kf
k
, Pr,

U∞t
ν

)

Figure P2.18

2.19. Consider the plate fin discussed in Problem 2.18, and think of the limit
where the fin length L is large enough so that the base heat transfer rate
qB is no longer influenced by L. (a) If all design variables except b are
fixed, and if b increased by a factor of 2, by what factor will the total base
heat transfer rate qB increase? (b) When in contact with air, the fin shown
in Fig. P2.18 experiences the heat transfer rate qB,a. Immersed in a water
stream with the same velocity and temperature as those of the original
airstream (U∞,T∞), the same fin experiences a new heat transfer rate,
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qB,w. Calculate the ratio qB,w/qB,a, keeping in mind the following property
ratios:

kw
ka

= 23,
νw

νa
= 0.07,

Prw
Pra

= 7

0.72

where subscripts w and a indicate water and air, respectively.

2.20. Develop the similarity forms of the boundary layer momentum and energy
equations for uniform flow past an inclined wall, as shown in the bottom
sketch of Fig. 2.10. For the momentum equation, begin with eq. (2.127)
and apply the similarity transformation contained in eqs. (2.71) and (2.80).
Show that Blasius’s equation (2.82) is now replaced by

2f ′′′ + (m+ 1)f f ′′ + 2m[1 − (f ′)2] = 0

Apply the same transformation to the energy equation and show that
Pohlhausen’s equation (2.94) is replaced by the more general form

2θ ′′ + Pr(m+ 1)f θ ′ = 0

Establish whether the angle of inclination has any effect on the boundary
conditions to be used in conjunction with the equations above.

2.21. Consider the laminar boundary layer frictional heating of an adiabatic wall
parallel to a free stream (U∞,T∞; Fig. 2.1). Modeling the flow as one with
temperature-independent properties and assuming that the Blasius velocity
solution holds, use scaling arguments to show that the relevant boundary
layer energy equation for this problem is

ρcP

(
u

∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+ µ

(
∂u

∂y

)2

and that the wall temperature rise scales asU2∞/cP when Pr> 1. Determine
the wall temperature (T0 > T∞), assuming that the wall is insulated
(∂T/∂y= 0 at y= 0) and that T→ T∞ as y→ ∞. The path suggested is to
develop the similarity solution for the dimensionless temperature profile

θr(η) = T − T∞
U2∞/(2cP)

where the similarity transformation is the same as in eqs. (2.71) and (2.80).
Show that the energy equation reduces to

θ ′′
r + Pr

2
f θ ′
r + 2Pr(f ′′)2 = 0
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where f(η) is the Blasius solution. Solving this equation subject to θ ′
r

(0) = 0 and θ ′
r (∞) = 0, prove that the temperature rise in the boundary

layer is

θr(η) = 2Pr
∫ ∞

η

{∫ p

0

[
f ′′ (β)
]2
exp

(
Pr

2

∫ β

0
f (γ ) dγ

)
dβ

}

× exp

(
−Pr

2

∫ p

0
f (m) dm

)
dp

Calculate the wall temperature rise θ r(0) as a function of Prandtl number
using the formula above. Evaluate the nested integrals numerically using
an appropriate analytical approximation for the streamfunction profile f(η).
Based on scale analysis, show that θ r(0) is of order O(Pr) and O(1) in the
two limits Pr → 0 and Pr → ∞, respectively.

2.22. Consider the development of a two-dimensional laminar jet discharging in
the x direction into a fluid reservoir that contains the same fluid as the jet
(Fig. P2.22). The reservoir pressure P∞ is uniform. The jet is generated by
a narrow slit of width D0; the average fluid velocity through the slit is U0.

Figure P2.22

Let D(x) and U(x) be the jet thickness scale and the centerline velocity
scale at a sufficiently long distance x away from the nozzle (the slit).
Relying on the mass and momentum conservation equations, on boundary
layer theory (D � x), and on scale analysis in a flow region of length x
and thickness D, determine the order of magnitude of D and U in terms of
D0, U0, x, and ν:

D(x)

D0
∼
(

x/D0

U0D0/ν

)2/3
U(x)

U0
∼
(

x/D0

U0D0/ν

)−1/3
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Hint: Integrate the momentum equation over an x = constant plane
(i.e., from y = −∞ to y = +∞) and show that the integral

∫ +∞
−∞u

2 dy
is independent of x. This result is the basis for an additional scaling law
necessary for determining the D and U scales uniquely.

2.23. Consider the development of a two-dimensional thermal jet if the velocity
jet (D, U) determined in Problem 2.22 has an original temperature T0 as
it comes out through the slit (Fig. P2.23). The reservoir temperature is
uniform, T∞, and buoyancy effects are negligible.

Figure P2.23

Let DT(x) and T(x) be the thermal jet thickness scale and the centerline
temperature scale at a sufficiently long distance x away from the slit.
Again, based on boundary layer scale analysis, determine the order of
magnitude of DT and T in terms of D0, U0, x, ν, T0, and α:

DT (x)

D(x)
∼ Pr−1/2

T(x) − T∞
T0 − T∞

∼




(
U0D0/ν

x/D0

)1/3
Pr1/2 (Pr � 1)

(
U0D0/ν

x/D0

)1/3
(Pr � 1)

Hint: Integrate the energy equation over an x = constant plane and
show that the integral

∫∞
−∞ uT dy is independent of x. Consider the two

possibilities (DT < D and DT > D) separately as you interpret the scaling
law implied by the x independent longitudinal enthalpy flow integral.

2.24. Consider the laminar flow of a two-dimensional liquid film on a flat wall
inclined at an angle α relative to the horizontal direction. The film flow is
driven by the gravitational acceleration component (g sinα) acting parallel
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to the wall. Attach the Cartesian system of coordinates (x,y) and (u,v) to
the wall, such that x and u point in the flow direction. In this notation,
derive the terminal velocity distribution in the liquid film u(y); in other
words, determine the flow in the limit where the film inertia is negligible
and the x momentum equation expresses a balance between film weight
and wall friction. Let U be the undetermined free surface velocity at y= δ,
where δ is the film thickness. Note that U is undetermined because the
film flow rate can be varied at will by the person who pours liquid on the
incline.

Consider next the heat transfer from the wall to the liquid film in the
case where the film and wall temperature is T0 everywhere upstream of
x = 0 and where the wall temperature alone is raised to (T0 + �T)
downstream of x = 0. Let δT be the thermal boundary layer thickness of
the thin liquid region in which the wall heating effect is felt. Using scale
analysis, demonstrate that immediately downstream from x = 0 (where δT
is much smaller than δ), the thermal boundary layer thickness δT scales as
[(α δ x)/U]1/3.

Determine the temperature distribution in the film based on an integral
analysis, assuming the following temperature profile:

T(x, y) − T0
�T

= 1 − 2
y

δT
+
(
y

δT

)2
, 0 ≤ y ≤ δT

T(x, y) = T0, δT < y ≤ δ

Note that this integral analysis is valid as long as δT(x) ≤ δ. At what
distance x= x1 will the free surface feel the heating effect of the wall (i.e.,
at what x will δT equal δ)? Devise an integral analysis to determine the
film temperature field T(x, y) downstream from the point x = x1.

2.25. An infinitely long flat plate is initially at rest immersed in a liquid pool
with properties ν, α, and T∞. The plate is also in thermal equilibrium with
the pool. At a certain instant, t = 0, the plate starts moving at constant
velocityU along itself. Determine the time-dependent velocity distribution
in the fluid for times t > 0 in the immediate vicinity of the solid wall.

At another point in time, t = t1, the plate temperature is changed to
a new temperature T = T0. Determine the time-dependent temperature
distribution in the fluid in the immediate vicinity of the wall and for times
t > t1. Based on the expressions obtained for the velocity and temperature
fields, decide whether the solid plate is lined by boundary layer regions.
Does the temperature field depend on the velocity distribution [as in
Pohlhausen’s problem, eq. (2.98)]?

2.26. The flat plate shown in Fig. P2.26 is isothermal (Tw) and parallel to the
flow of a fluid (k,U∞,T∞) with Prandtl number greater than 0.5. The
boundary layer flow is laminar. The plate is coated with a thin layer
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of low-thermal-conductivity material (kw). The thickness of this coating,
t(x), varies in such a way that the heat flux q′′ removed by the fluid is
independent of x. The L-averaged thickness of the coating, t, is known.
Determine the coating profile t(x) as a function of x, t, L, k/kw, Pr, and
ReL. Sketch t(x) qualitatively. Derive an expression for the overall thermal
resistance (Tw − T∞)k/q′′L, and comment on why this expression has two
terms.

Figure P2.26

2.27. Assume that the laminar boundary layer of Fig. 2.1 sweeps a wall with
uniform heat flux and that Pr = 0. Note that Pr = 0 means that u = U∞
in the entire thermal boundary layer region. Show that in this case the
temperature distribution in the fluid and the local Nusselt number can be
determined analytically in closed form [27]:

T(x, y) = T∞ + q′′

k

(
αx

U∞

)1/2
τ(ζ )

Nu = π1/2

2
Pr1/2 Re1/2x

where ζ = y(U∞/αx)1/2 and

τ(ζ ) = 2

π1/2
exp

(
−ζ 2

4

)
− ζ erfc

(
ζ

2

)

2.28. Use the same statement as in Problem 2.4. Assume the linear profile, but
instead of Pr � 1, derive the local Nu solution for Pr � 1.

2.29. The nondimensionalization of wall shear stress as a skin friction coefficient
is not appropriate because the stagnation pressure rise 1

2ρU
2∞ is not present
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in the boundary layer flow field. Use eq. (2.29) and arrive at a new
nondimensionalization of τ ,

τL2

µν
= 0.664

(
U∞L

ν

)3/2
This shows that the wall shear stress increases monotonically with the
Reynolds number. Note also the similarity between the group τL2/µv and
the pressure drop number defined in eq. (3.120′), hence the notation

τL2

µν
= BeτPr

−1

where Beτ = τL2/µα. Use the Pohlhausen solution for Pr > 1 to show
that the overall Nusselt number is essentially the same as Beτ

1/3:

Nu0−L = 0.6642/3Be1/3τ



3

LAMINAR DUCT FLOW

In this chapter we study the fluid friction and heat transfer between a stream and
a solid object in internal flow, that is, when the solid surface is the duct that
guides the stream. This is a vast field [1] in which the fundamental questions are
the same as in external flow (Chapter 2):

1. What is the friction force (or pressure drop) in the flow direction?
2. What is the heat transfer coefficient, or the resistance to heat transfer in the

direction normal to the flow?

We will see that the theoretical view that makes the answers to these questions
most accessible to the analyst is the concept of fully developed flow and
temperature fields. This is a powerful concept that like Prandtl’s boundary layer
in external convective heat transfer is responsible for much of the language
and results presently known in connection with laminar duct flow and heat
transfer.

Traditionally, the concept of fully developed flow is taught as a self-
standing topic, as a useful approximation when confronted by the Navier–Stokes
equations. This traditional approach is not incorrect, provided that the theoretical
basis for the approximation is well understood. I find it more appropriate to intro-
duce the concept of fully developed flow as a direct consequence of the concept
of boundary layer encountered in external flow. Both concepts are expressions of
the view that certain finite-size regions of a flow field possess special properties.
With the concept of boundary layer, we divide a flow into two regions: a free
stream and a boundary layer. Similarly, the concept of fully developed divides a
duct flow into a developing length succeeded by a fully developed length. The
same view is used in Chapters 6–9, where the longitudinal buckling wavelength
λB is a property of a flow region of finite thickness.
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3.1 HYDRODYNAMIC ENTRANCE LENGTH

Consider the flow configuration sketched in Fig. 3.1: Two parallel plates form
a two-dimensional duct intaking the uniform stream U. We are interested in the
friction force exerted by the flow on the two walls and the dependence of the
velocity profile u(x, y) on the longitudinal position x along the duct. The integral
solution outlined below was constructed by Sparrow [2].

Based on what we learned in Chapter 2, we expect the formation of velocity
boundary layers along the two walls in the region x ‘‘close enough’’ to the mouth
of the channel, where the tip of each plate is surrounded by the U stream in the
same manner as in Fig. 2.1. Since the thickness δ of each layer grows in the x
direction, and since one layer can grow only to a thickness D/2 before merging
with the other layer, the channel flow can be thought of as the succession of
two distinct flow regions. In the first (called the entrance or developing section),
distinct boundary layers coexist with core fluid that has not yet felt viscously
the presence of the walls. In the second region, the core has disappeared and the
boundary layers are no longer distinct.

We obtain a scaling estimate of the entrance length X by writing δ(X) = D/2
in Blasius’s boundary layer thickness [eq. (2.85)],

X/D

ReD
= 0.01 (3.1)

Relative to this simple result, the integral solution to the entrance length problem
accounts for the fact that the core fluid is squeezed, hence accelerated in the x
direction. This effect is illustrated in Fig. 3.1: Since more fluid stagnates near the
walls as the boundary layers thicken, the core velocity Uc must increase so that
the mass flow rate in each cross section x is constant and equal to ρUD.

We start with the integral momentum equation (2.52), where U∞ = Uc and
Y = δ(x). The free-stream pressure gradient dP∞/dx appearing in eq. (2.52) is

Figure 3.1 Developing flow in the entrance region of a duct formed between two parallel plates.
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now the core pressure gradient dP/dx. Since the core flow is inviscid, dP/dx is
related to Uc(x) through the Bernoulli equation ρU2

c/2 + P = constant; hence,

Uc
dUc

dx
+ 1

ρ

dP

dx
= 0 (3.2)

Eliminating dP/dx between eqs. (3.2) and (2.52) yields

d

dx

[∫ δ

0

(
Uc − u

)
u dy

]
+ dUc

dx

∫ δ

0
(Uc − u) dy = ν

(
∂u

∂y

)
0

(3.3)

In addition, mass conservation in the channel of half-width (from y = 0 to y =
D/2) requires that

∫ δ

0
ρu dy +

∫ D/2

δ

ρUc dy = ρU
D

2
(3.4)

Equations (3.3) and (3.4) are solved for δ(x) and Uc(x) by first assuming a
boundary layer profile shape. Taking u/Uc = 2y/δ − (y/δ)2, we obtain

x/D

ReD
= 3

40

(
9
Uc

U
− 2 − 7

U

Uc
− 16 ln

Uc

U

)
(3.5)

δ(x)

D/2
= 3

[
1 − U

Uc (x)

]
(3.6)

At the location X where the two boundary layers merge we set δ(X) = D/2, and
eqs. (3.5) and (3.6) yield Uc (X) = 3

2U and

X/D

ReD
= 0.026 (3.7)

In conclusion, the laminar entrance length predicted by the integral solution
is of the same order of magnitude as the scaling estimate [eq. (3.1)]. The
contribution of both methods is that they show analytically the extent of the
laminar developing region: X scales with D ReD, and the proportionality factor
is a number on the order of 10−2. Schlichting [3] solved the same problem
by obtaining a series solution for the accelerated boundary layer flow in the
beginning of the entrance length and by matching this series to a second-series
solution valid near the end of the laminar entrance length. Although in his
solution the velocity profile varies smoothly as it asymptotically reaches the
fully developed shape, the entrance region has a characteristic length perceived
approximately as [3]

X/D

ReD
∼= 0.04 (3.8)
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Figure 3.2 Local skin friction coefficient in the entrance region of a duct formed between two
parallel plates.

The fundamental difference between the entrance length and the fully devel-
oped region is illustrated further by the variation of wall frictional shear stress as
x increases. Figure 3.2 shows the skin friction coefficient defined by

Cf , x = τwall(x)
1
2ρU

2
(3.9)

with τwall = µ(∂u/∂y)0. For the integral solution (3.5)–(3.7), the Cf, x formula is

Cf , x ReD = 8

3

Uc

U

(
1 − U

Uc

)−1

(3.10)

Figure 3.2 also shows the Cf, x calculation based on the Blasius result [eq.
(2.92)] with U∞ replaced by U in the definition of Cf, x and Rex. In the entrance
region, Cf, x behaves in a manner that suggests the presence of distinct boundary
layers. In the fully developed region, on the other hand, τwall and Cf, x are no
longer functions of x because the velocity profile u(x, y) has become practically
independent of x. We focus more closely on this effect in the next section.

The hydrodynamic entrance length in a round tube can be predicted along
similar lines. Figure 3.3 shows the variation of Cf, x in the entrance region.
Note that in most textbooks and handbooks, the same information appears with
ReD/(x/D) plotted on the abscissa, which is a strange way of plotting a quantity
(Cf, x) that varies along x. The dimensionless coordinate plotted on the abscissas
of Figs. 3.2 and 3.3 is (x/D)/ReD, which increases proportionally with x as the
flow travels deeper into the duct. Figure 3.3 also shows the average skin friction
coefficient, that is, the value of Cf, x averaged from x = 0 to x. An analytical
expression for (Cf)0–x is given later in eqs. (3.117)–(3.119).
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Figure 3.3 Local and average skin friction coefficients in the entrance region of a round tube.
(After Ref. 4.)

3.2 FULLY DEVELOPED FLOW

The statements for steady-state mass and momentum conservation at any point
(x, y) inside the two-dimensional channel of Fig. 3.1 are

∂u

∂x
+ ∂v

∂y
= 0 (3.11)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
(3.12)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
(3.13)

These equations can be simplified based on the following scaling argument. At
any location x ∼ L in the fully developed region, we have y ∼ D and u ∼ U.
Therefore, using eq. (3.11), the transversal velocity in the fully developed region
must scale as

v ∼ DU

L
(3.14)

We can then think of the fully developed region as being that section of the duct
flow that is situated far enough from the entrance such that the scale of v is
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negligible. Based on this definition, the mass continuity equation (3.11) requires
in the fully developed flow limit

v = 0 and
∂u

∂x
= 0 (3.15)

In most treatises of fluid mechanics, eqs. (3.15) are taken as definitions and
a starting point in the analysis of the fully developed regime. More important,
I think, are the scaling foundations of eqs. (3.15). We can think of a fully
developed region only because we can think of a flow region where the scale
of y is D (fixed). This corresponds to a velocity variation that spreads over the
entire cross section. In the entrance region, on the other hand, the scale of y is δ

(not fixed), and as a consequence, neither v nor ∂u/∂x is negligible.
Based on eqs. (3.15), the y momentum equation (3.13) reduces to

∂P

∂y
= 0 (3.16)

which indicates that P is a function of x only. This conclusion is similar to the
one reached previously in the study of the laminar boundary layer (Chapter 2):
The pressure is only a function of x in the two entrance boundary layers merging
to create the fully developed region.

Finally, the x momentum equation (3.12) leads to two equations

dP

dx
= µ

d2u

dy2
= constant (3.17)

Each term must be equal to the same constant because P is a function of x and
u is a function of y [cf. eq. (3.15)]. Solving eq. (3.17) subject to the no-slip
conditions

u = 0 at y = ±D/2 (3.18)

yields the solution for fully developed flow between parallel plates,

u = 3

2
U

[
1 −

(
y

D/2

)2
]

U = D2

12µ

(
−dP

dx

) (3.19)

where y is measured away from the centerline of the channel. The velocity profile
is parabolic and the velocity is proportional to the pressure drop per unit duct
length in the direction of flow.

In general, for a duct of arbitrary cross section, eq. (3.17) is replaced by

dP

dx
= µ∇2u = constant (3.20)
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where in the Laplacian operator ∇2, ∂2u/∂x2 = 0. For example, the fully
developed laminar flow in a round tube of radius r0 is governed by

dP

dx
= µ

(
d2u

dr2
+ 1

r

du

dr

)
(3.21)

Solving this equation subject to u = 0 on the periphery of the cross section
(r = r0) yields

u = 2U

[
1 −

(
r

r0

)2
]

U = r20
8µ

(
−dP

dx

)
(3.22)

ṁ = πr40
8ν

(
−dP

dx

)

where ṁ = ρUπr20 is the mass flow rate. This flow solution was first reported by
Hagen [5] in 1839 and Poiseuille [6] in 1840.

In eqs. (3.19) and (3.22) we see the simplest solutions available for laminar
fully developed flow in the rectilinear duct. In general, as shown in the next
section, the solution to the Poisson-type equation (3.20) is considerably more
difficult.

It is common practice to assign to a Hagen–Poiseuille flow aReynolds number
defined for a round tube as ReD = UD/ν. Fluid mechanics textbooks teach the
seemingly obvious explanation that the Reynolds number is the ratio of two
forces, the inertia divided by the friction force. This explanation is wrong.

Although there are certain flow regions inwhich one could envision aReynolds
number as the inertia/friction ratio (e.g., Problem 1.12), it is not true that the
Reynolds number means the same thing for all flows. In Chapter 2 we saw that
in laminar boundary layer flow the inertia effect always balances the friction
effect (i.e., the ratio inertia/friction is 1) and that the only physical meaning
attached to the Reynolds number is the geometric feature represented by the
boundary layer slenderness ratio squared [eq. (2.31)]. In Hagen–Poiseuille flow
through a straight duct, the inertia/friction interpretation of the Reynolds number
is nonsense. Hagen–Poiseuille flows are flows in which the fluid inertia is
zero everywhere; these flows are governed by a permanent and perfect balance
between the imposed (driving) longitudinal pressure gradient (−dP/dx) and the
opposing effect of friction exerted by the wall on the flow. So if we must define
a dimensionless group for fully developed laminar flow through a straight duct,
this group can only be the ratio

longitudinal pressure force

friction force
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According to the momentum equation for Hagen–Poiseuille flow and all subse-
quent solutions available for such flows, the order of magnitude of this ratio is
unity:

−dP/dx

µ∂2u/∂r2
∼ �P/L

µU/D2
= O(1)

This is the force balance that means Hagen–Poiseuille flow. The dimensionless
group that just appeared above is discussed later in this section (see also the
description of the group of f ReDh).

There are other signs that ReD has no meaning in fully developed laminar
duct flow. First, it is well known that the ReD calculated in such flows can reach
as high as 2300, which is a number considerably greater than unity. Such a large
number, coupled with the inertia/friction interpretation of the Reynolds number,
would suggest that inertia overwhelms friction in Hagen–Poiseuille flow—an
absurd conclusion, because inertia is zero.

Another sign is the friction factor f defined in eq. (3.24): In laminar flow,
both f and τw are very sensitive to changes in ReD, demonstrating that the
Reynolds number is an inappropriate ratio of scales and that the dynamic
pressure difference 1

2ρU
2 is an inappropriate pressure unit for Hagen–Poiseuille

flow. The group 1
2ρU

2 is inappropriate as a pressure unit here and in Chapter 2
because it is a Bernoulli equation concept, that is, a reversible flow concept
[7]. Laminar boundary layers and fully developed flows through ducts are
flows governed by friction (thermodynamic irreversibility); hence, the use of
a reversible flow concept to scale such flows is a conceptual inconsistency.
Furthermore, the dynamic pressure does not occur anywhere in the flow field;
the flow is parallel to the walls, not perpendicular.

The fact that the Reynolds number is not conceptually justified in a discussion
of fully developed laminar flow does not mean that it is not a useful dimensionless
group for convective heat transfer engineering. The Reynolds number is useful,
particularly in the presentation of duct friction data on a single plot for both the
turbulent and laminar regimes (as in theMoody chart of Fig. 8.2). For this reason,
the classical Reynolds number nomenclature is retained in the present treatment.
But at the same time, the reader should be aware of the fact that the classical
meaning of the Reynolds number is questionable. A proposal in this direction
is advanced in Chapter 6 and in constructal theory [8], where the concept of
Reynolds number is linked to the equality of two characteristic time scales that
collaborate to facilitate the transport of momentum perpendicularly to the shear
flow (the constructal law).

3.3 HYDRAULIC DIAMETER AND PRESSURE DROP

The objective of the preceding analysis is the calculation of the pressure drop
in a duct with prescribed flow rate or the calculation of the flow rate in a duct
with prescribed pressure drop. In fully developed laminar flow, ṁ and �P are
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Figure 3.4 Control volume showing the force balance expressed by eq. (3.23).

proportional to one another. In general (especially in turbulent flow), the ṁ(�P)

relationship is not as simple and is usually the object of laboratory measurements.
The historically empirical approach to determining the ṁ(�P) relationship∗ is
responsible for the terminology in use today.

Consider the duct with arbitrary flow cross section A and length L shown in
Fig. 3.4. Treating the AL control volume as a black box, that is, without looking
inside to see the actual flow, the momentum theorem in the longitudinal direction
(Chapter 1) requires

A�P = τwpL (3.23)

where p is the perimeter of the cross section (the wetted perimeter). The unknown
wall shear stress τw is replaced by a dimensionless unknown, the friction factor,
defined as

f = τw
1
2ρU

2
(3.24)

This definition is essentially the same as eq. (3.9) for the skin friction coefficient
in the entrance region. One important difference between f and Cf, x is that the
friction factor f is x independent because it is a fully developed regime concept.

∗This approach was the trademark of hydraulics, the precursor of modern fluid mechanics.
About the hydraulics of the nineteenth century, Tietjens [9] wrote in 1934: ‘‘The hydraulics,
which tried to answer the multitudinous problems of practice, disintegrated into a collection of
unrelated problems. Each individual question was solved by assuming a formula containing some
undetermined coefficients and then determining these by experiments. Each problem was treated as
a separate case and there was lacking an underlying theory by which the various problems could be
correlated.’’ In contemporary fluid mechanics research, we like to think that the classical mechanics
embodied in the Navier–Stokes equations offers a common theoretical basis for all fluid flow
phenomena. Yet, the study of turbulence has retraced the empirical course chosen by hydraulics;
in fact, replace hydraulics with turbulence in the quotation from Tietjens and you will obtain a
fairly close description of turbulence research. Granted, the empirical constants of hydraulics have
been replaced by shady (however, equally empirical) concepts such as eddy diffusivity, numerical
models, and many ‘‘universal’’ constants. It is on this background of empiricism that the scaling
laws of Chapter 6 and constructal theory [8] show how a single idea accounts for turbulent flows as
designs in nature.
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Definition (3.24) is not unique; the heat transfer literature also uses 4f as the
friction factor since the product 4f appears explicitly in eq. (3.27). The reader
can tell which f definition is used (if the f definition is missing) by checking the f
formula for a round tube. Thus, if f = 16/ReD, the present definition [eq. (3.24)]
was used.

After these definitions, the pressure drop �P across the duct is

�P = f
pL

A

(
1

2
ρU2

)
(3.25)

Finally, note that A/p is the linear dimension of the cross section:

rh = A

p
hydraulic radius (3.26)

or

Dh = 4rh = 4A

p
hydraulic diameter (3.26′)

Table 3.1 shows a vertically aligned column of five different cross-sectional
shapes and sizes, all having the same hydraulic diameter Dh. This arrangement
shows the meaning of hydraulic diameter; it is a conventional length that
accounts for ‘‘how close’’ the wall and its resistive effect are positioned relative
to the stream. Thus, in the case of highly asymmetric cross sections such as the
gap between two infinite parallel plates, the hydraulic diameter scales with the
smallest of the two dimensions of the cross section. The Dh value of a regular
polygon is equal to the diameter of the inscribed circle.

The pressure drop formula (3.25) can be written as

�P = f
4L

Dh

(
1

2
ρU2

)
(3.27)

The calculation of�P is possible provided that we know the friction factor f. The
friction factors derived from the Hagen–Poiseuille solutions (3.19) and (3.22)
are, respectively:

f = 24

ReDh
, Dh = 2D parallel plates (D = gap thickness) (3.28)

f = 16

ReDh
, Dh = D round tube (D = tube diameter) (3.29)

These formulas hold as long as the flow is in the laminar regime (ReDh < 2000).
The literature is rich in results that are equivalent to eqs. (3.28) and (3.29)

for other duct cross sections. Most of these numbers (the numerical values of
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Table 3.1 Scale drawings of five ducts that have the same hydraulic diameter

Cross Section

Circular

Square

Equilateral triangle

Rectangular (4:1)

Infinite parallel plates

the product f ReDh) have been compiled in Ref. 10 and some are shown here
in Table 3.2. The product f ReDh is a number that depends only on the shape
of the cross section. This number has been named the Poiseuille number [11],
Po = f ReDh . Furthermore, the reader may verify that f ReDh is the same as the
dimensionless group identified in the force balance shown under eq. (3.22),

�P/L

µU/D2
h

∼ f ReDh

The fact that f ReDh is a constant (of order close to 1) expresses the balance
between the only two forces that are present, imposed pressure difference and
fluid friction.
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Table 3.2 Effect of cross-sectional shape on f and Nu in fully developed duct flow

Nu = hDh/k

Cross-sectional geometry f ReDh Uniform q′′ Uniform T0
B = πD2

h/4

Aduct

13.3 0.605 3 2.35

14.2 0.785 3.63 2.89

16 1 4.364 3.66

18.3 1.26 5.35 4.65

24 1.57 8.235 7.54

24 1.57 5.385 4.86

In general, the friction factor f is obtained by solving the Poisson equation
(3.20) in the duct cross section of interest. To illustrate this procedure beyond the
two simple examples given in Section 3.2, consider the fully developed laminar
flow through a duct of rectangular cross section (Fig. 3.5). We solve

dP

dx
= µ

(
∂2u

∂y2
+ ∂2u

∂z2

)
= constant (3.30)

in the y − z plane in which the cross-sectional dimensions are a and b,
respectively. Equation (3.30) can be solved for u(y, z) by Fourier series (see
Problem 3.4). In this section we outline a more direct, approximate approach
to the answer needed. To calculate f or τw, we need the velocity distribution
u(y, z): From the parallel-plate and round-tube solutions discussed previously,
we expect u(y, z) to be adequately represented by the expression

u(y, z) = u0

[
1 −

(
y

a/2

)2
][

1 −
(

z

b/2

)2
]

(3.31)

where u0 is the centerline (peak) velocity. The problem reduces to calculating u0
from eq. (3.30): Since u(y, z) of eq. (3.31) will not satisfy eq. (3.30) at every point
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Figure 3.5 Straight duct with rectangular cross section.

(y, z), we can select u0 such that expression (3.31) satisfies eq. (3.30) integrated
over the entire cross section:

ab
dP

dx
= µ

∫ a/2

−a/2

∫ b/2

−b/2

(
∂2u

∂y2
+ ∂2u

∂z2

)
dz dy (3.32)

The result is

ab
dP

dx
= −16

3
µu0

(
b

a
+ a

b

)
(3.33)

From the definition of average velocity U,

abU =
∫ a/2

−a/2

∫ b/2

−b/2
u dz dy (3.34)

we also obtain
u0 = 9

4U (3.35)

Substituting eqs. (3.33) and (3.35) into the pressure drop [eq. (3.27)] yields

f = a2 + b2

(a+ b)2
24

ReDh
(3.36)

where

Dh = 4ab

2(a+ b)
(3.37)

The friction factor f [eq. (3.36)] is invariant to the transformation a → b,
b → a because the cross-sectional geometry is invariant (rectangular) to the
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Figure 3.6 Friction factor for fully developed flow in a duct with rectangular cross section.

transformation y → z, z → y (Fig. 3.5). Figure 3.6 shows this relatively simple
result next to the numerical calculation of f ReDh [10]. The present f ReDh result
coincides with the numerical result in the tall and flat cross-sectional shape
limits because in those limits the profile shape assumption (3.31) is exactly the
Hagen–Poiseuille profile shape. Overall, the agreement between eq. (3.36) and
numerically derived results is better than 15 percent.

Table 3.2 shows a compilation of friction factors for laminar fully developed
flow in the most common duct geometries. Regardless of cross-sectional shape,
the value of f ReDh is consistently on the order of 20, thus stressing the use-
fulness of the hydrodynamic diameter scaling discussed immediately following
eqs. (3.26). The length scale Dh accounts for the effective distance between
the walls ‘‘squeezing’’ the flow. In equilateral triangles, Dh underestimates
this distance, whereas in parallel-plate channels, the wall-to-wall distance is
overestimated by Dh.

This mismatch between Dh and the wall-to-wall distance explains why f ReDh
increases in Table 3.2, from the equilateral triangle to the parallel-plate channel.
Indeed, as shown in Fig. 3.7, there is an approximate proportionality between
f ReDh and the degree to which Dh misjudges the wall-to-wall distance. In the
first edition of this book it was proposed to measure the mismatch between
Dh and the average wall-to-wall distance by using the geometric ratio B =
(πD2

h/4)/Aduct [in the case of extremely flat cross sections, Aduct is equal to aDh,
where a is the actual plate-to-plate distance (see Table 3.1)]. The usefulness
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Figure 3.7 Cross-sectional shape number B and fully developed friction and heat transfer in
straight ducts.

of the new dimensionless group B = (πD2
h/4)/Aduct is illustrated further in

Problem 3.6.

3.4 HEAT TRANSFER TO FULLY DEVELOPED DUCT FLOW

3.4.1 Mean Temperature

The key question about the heat transfer to duct flow is the relationship between
the wall–stream temperature difference and the wall–stream heat transfer rate
(or the longitudinal temperature variation of the stream). Without loss of
generality, consider a tube of radius r0, average axial velocity U, and mass
flow rate ṁ = ρπr20U (Fig. 3.8). From the thermodynamics of flow systems
(Chapter 1), we know that the heat transferred from the wall to the stream
(q′′2πr0 dx) equals the enthalpy gain experienced by the stream; for the control
volume of length dx in Fig. 3.8, the first law of thermodynamics requires

q′′ · 2πr0 dx = ṁ(hx+dx − hx) (3.38)
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Figure 3.8 Energy conservation in a duct segment of length dx.

Modeling the fluid as an ideal gas (dh= cPdTm) or an incompressible liquid with
negligible pressure changes (dh ∼= cdTm)

∗ eq. (3.38) yields

dTm
dx

= 2

r0

q′′

ρcPU
(3.39)

where cP is replaced by c for incompressible liquids.
The temperature Tm appearing in the first law analysis of the duct ‘‘control

volume’’ is the bulk temperature of the stream. In heat transfer—an activity
that developed in parallel with modern thermodynamics [7]—Tm is the mean
temperature of the stream. Implicit in this name is the fact that the fluid
temperature cannot be uniform over the duct cross section at x = fixed; for
example, if the stream is heated by the wall, the fluid layer or lamina situated
closer to the wall is warmer than a layer situated farther from the wall. Of course,
a relationship must exist between the temperature at every point in the cross
section T(x, r) and the mean temperature Tm(x). However, Tm is not just any
average; it is the mean temperature the definition of which is the first law for

∗This approximation is correct only if over the duct length of interest c�Tm is considerably greater
than �P/ρ (see Table 1.1).
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bulk flow [eq. (3.38)]. We write the first law for the bundle of ministreams ρu
dA piercing the tube cross section,

q′′ · 2πr0 dx = d
∫∫

A
ρucPT dA (3.40)

Combining eq. (3.40) with eq. (3.39), we obtain the formula for Tm:

Tm ρcPUA =
∫∫

A
ρcpuT dA (3.41)

For constant-property tube flow, eq. (3.41) reduces to

Tm = 1

πr20U

∫ 2π

0

∫ r0

0
uTr dr dθ (3.42)

Returning to the basic heat transfer question for duct flow, we want to know
the relationship between q′′ and the wall–fluid temperature difference. Since
the fluid temperature varies over the duct cross section, �T = T0 − Tm is
conventionally selected as the representative wall–fluid temperature difference.
The heat transfer coefficient is defined as

h = q′′

T0 − Tm
=
k(∂T/∂r)r=r0
T0 − Tm

(3.43)

where, as in Chapter 2, q′′ is defined as positive when proceeding from the wall
into the fluid [compare eq. (3.43) with eq. (2.6)].

3.4.2 Fully Developed Temperature Profile

Equation (3.43) outlines the analytical path to follow: We must first determine
the temperature field in the fluid T(x, r) by solving the energy equation subject
to appropriate wall–temperature boundary conditions. For steady, θ-symmetric
flow through a round tube, the energy equation (1.43b) reduces to

1

α

(
u
∂T

∂x
+ v

∂T

∂r

)
= ∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂x2
(3.44)

In the hydrodynamic fully developed region, we have v = 0 and u = u(r);
hence,

u(r)

α

∂T

∂x
= ∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂x2
(3.45)
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The energy equation (3.45) expresses a balance among a maximum of three
possible energy flows: axial convection, radial conduction, and axial conduction.
Their respective scales are

Convection︷ ︸︸ ︷
U

α

(
q′′

DρcPU

)
,

Conduction︷ ︸︸ ︷
radial

�T

D2
,

longitudinal

1

x

(
q′′

DρcPU

)
(3.46)

where we used eq. (3.39) to recognize that ∂T/∂x ∼ q′′/(DρcPU). Of the three
scales in (3.46), the radial conduction effect will always be present because,
without it, the heat transfer problem of this chapter vanishes. Multiplying scales
(3.46) by D2/�T and using the definition of heat transfer coefficient h = q′′/�T,
we obtain

Convection︷ ︸︸ ︷
hD

k
,

Conduction︷ ︸︸ ︷
radial

1,

longitudinal(
hD

k

)2( α

UD

)2
(3.47)

By comparing the first and third scales, we conclude that in the limit

PeD = UD

α
� 1 (3.48)

the longitudinal conduction effect is negligible. Next, from the convection–radial
conduction balance, we learn that the Nusselt number is a constant of order 1:

Nu = hD

k
∼ 1 (3.49)

This Nu scaling is confirmed by many (and much more accurate) solutions. In
the same domain (PeD � 1), the energy equation to solve for T(x, r) is therefore

u(r)

α

∂T

∂x
= ∂2T

∂r2
+ 1

r

∂T

∂r
(3.50)

It is instructive to summarize the assumptions on which the simplified energy
equation (3.50) is based. First, we assumed that the flow is hydrodynamically
fully developed; hence, the velocity profile u(r) is the same at any x along the
duct. Second, we assumed that the scale of ∂2T/∂r2 is �T/D2 [eq. (3.46)]; in
other words, the effect of thermal diffusion has had time to reach the centerline
of the stream. This last assumption is not valid in a thermal entrance region
XT near the duct entrance, where the proper scale of ∂2T/∂r2 is �T/δ2T , with δT
� D. The extent of XT and the heat transfer coefficient in the thermal entrance
region are determined later in this chapter.
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On theoretical scaling grounds, the two assumptions listed above should be
sufficient for regarding the temperature profile T(x, r) as fully developed: This is
the profile in the region situated sufficiently downstream from the two entrance
regions (X, XT) such that both u and T are developed.

The scaling feature of the thermally developed region is Nu = constant =
O(1) [eq. (3.49)]. Instead, many authors define the fully developed temperature
by writing

T0 − T

T0 − Tm
= φ

(
r

r0

)
(3.51)

where, in general, T, T0, and Tm can be functions of x. It is important to note that
this special expression for T(x, r) is purely the result of the scaling law Nu ∼ 1;
to see the relationship between eqs. (3.51) and (3.49), recall that

Nu = hD

k
= D

k

q′′

T0 − Tm
(3.52)

Hence,

Nu = D
(∂T/∂r)r=r0
T0 − Tm

∼ 1 (3.53)

Thus, the x variation of (∂T/∂r)r=r0 must be the same as that of T0(x) − Tm(x).
Since ∂T/∂r is a function of both x and r, then, according to eq. (3.53),

∂T/∂(r/r0)

T0(x) − Tm(x)
= f1

(
r

r0

)
= O(1) (3.54)

Integrating this expression with respect to r/r0 yields

T

(
x,

r

r0

)
= (T0 − Tm)f2

(
r

r0

)
+ f3(x) (3.55)

where f2 and f3 are arbitrary functions of r/r0 and x, respectively. Expression
(3.55) is the same as eq. (3.51), which is used routinely as a definition of full
thermal development.

3.4.3 Uniform Wall Heat Flux

If q′′ is not a function of x, eq. (3.50) can be solved analytically because the
gradient ∂T/∂x is a constant proportional to q′′. To see this, we rewrite the fully
developed temperature profile as

T(x, r) = T0(x) − q′′

h
φ

(
r

r0

)
(3.56)
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Hence,
∂T

∂x
= dT0

dx
(3.57)

Next, we rewrite eq. (3.49) as q′′D/k[T0(x) − Tm(x)] ∼ 1, differentiate it with
respect to x, and find that

dT0
dx

= dTm
dx

(3.58)

Finally, combining eqs. (3.57) and (3.58) and using the first law (3.39), we obtain

∂T

∂x
= 2

r0

q′′

ρcPU
= constant (3.59)

This means that the temperature everywhere in the cross section varies linearly
in x, the slope of the line being proportional to q′′. The main features of this
temperature field are summarized in Fig. 3.9.

The radial variation of T, namely, the dimensionless profile φ(r/r0), is
obtained by solving the energy equation for thermally developed flow [eq.
(3.50)]. Substituting the temperature profile (3.56) and the Hagen–Poiseuille
velocity profile (3.22) into eq. (3.50) leads to the following dimensionless
equation for φ(r*), where r* = r/r0:

−2
hD

k
(1 − r2∗) = d2φ

dr2∗
+ 1

r∗

dφ

dr∗
(3.60)

The object of this analysis, hD/k = Nu, appears explicitly in eq. (3.60).
Integrating this equation twice and invoking one boundary condition (finite φ′ at
r* = 0) yields

φ = C2 − 2Nu

(
r2∗
4

− r4∗
16

)
(3.61)

where C2 is the second, undetermined constant of integration. Combining eqs.
(3.61) and (3.56) and setting T = T0 at r* = 1 to determine C2, we obtain

T = T0 − (T0 − Tm)Nu

(
3

8
− r2∗

2
+ r4∗

8

)
(3.62)

The mean temperature difference T0 − Tm follows from the definition of bulk
(mean) temperature [eq. (3.42)],

T0 − Tm = 1

πr20U

∫ 2π

0

∫ r0

0
(T0 − T)ur dr dθ

= 4
∫ 1

0
(T0 − T)(1 − r2∗)r∗ dr∗ (3.63)
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Figure 3.9 Fully developed temperature profile in a round tube with uniform heat flux.

Using expression (3.62) for T0 − T under the integral sign, the mean temperature
difference drops out from both sides of the equal sign, leaving an equation for Nu:

1 = 4Nu
∫ 1

0

(
3

8
− r2∗

2
+ r4∗

8

)
(1 − r2∗)r∗ dr∗ = 11

48
Nu (3.64)

The Nusselt number for thermally fully developed Hagen–Poiseuille flow
with uniform heat flux is therefore

Nu = 48

11
= 4.36 (3.65)

which agrees in an order-of-magnitude sense with the scaling law (3.49). The Nu
values corresponding to other duct cross-sectional shapes are listed in Table 3.2.
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For noncircular cross sections, the Nusselt number is based on the hydraulic
diameter

Nu = hDh

k
(3.66)

and for this reason, the Nu values of Table 3.2 vary in the same manner as the
area ratio B = (πD2

h/4)/Aduct (see Section 3.3 and Problem 3.6).
For noncircular cross sections, the problem is solved numerically, starting

with the equation
u

α

∂T

∂x
= ∇2T (3.67)

and replacing ∂T/∂x by a first law balance of type (3.39), namely,

dTm
dx

= q′

ρcPAU
= constant (3.68)

Here, q′ is the heat transfer rate per unit duct length, regarded as independent
of x. The wall temperature T0 at a given x is usually assumed uniform around
the noncircular periphery of the duct; consequently, the local heat flux around the
periphery is nonuniform, varying from a maximum in wall regions close to the
stream to a minimum in wall regions close to other wall regions (q′′ drops to zero
in the sharp corners of the cross section). Thus, q′ is the perimeter (line) integral
of q′′. Also, since q′′ varies along the perimeter, the heat transfer coefficient
varies, too; the Nusselt numbers listed in Table 3.2 refer to the heat transfer
coefficient averaged over the duct perimeter.

3.4.4 Uniform Wall Temperature

In a round tube with wall temperature T0 independent of x, we expect a
temperature field of the type sketched in Fig. 3.10. Suppose that the stream
bulk temperature is T1 at some place x = x1 in the fully developed region.
Given the temperature difference T0 − T1, heat will be transferred from the wall
to the stream and, as a result, the stream temperature will rise monotonically
in the direction of flow. This also means that T0 − Tm (and q′′) will decrease
monotonically in the x direction.

This discussion can easily be translated into analysis by combining the first
law of thermodynamics [eq. (3.39)] with the only other thing we know at this
point (T0 = constant); thus,

q′′(x) = h[T0 − Tm(x)] (3.69)

where, on scaling grounds, h is also a constant [see eq. (3.49)]. Eliminating q′′(x)
between eqs. (3.69) and (3.39) and integrating the result from Tm = T1 at x = x1
yields

T0 − Tm(x) = (T0 − T1) exp

[
−α Nu

r20U

(
x− x1

)]
(3.70)



118 3 LAMINAR DUCT FLOW

Figure 3.10 Exponential longitudinal variation of the mean temperature and wall heat flux in
thermally fully developed flow through a tube with isothermal wall.

The mean temperature difference decreases exponentially in the flow direction
and so does the heat flux [eq. (3.69)]. See Fig. 3.10.

The Nusselt number appearing in eq. (3.70) can be calculated by again solving
the energy equation (3.50). This time, ∂T/∂x is replaced by

∂T

∂x
= ∂

∂x
[T0 − φ(T0 − Tm)] = φ

dTm
dx

(3.71)

Substituting this expression, the Hagen–Poiseuille profile, and T= T0 − φ(T0 −
Tm) into the energy equation (3.50) yields the following dimensionless equation
for the unknown φ(r*):

−2Nu(1 − r2∗)φ = d2φ

dr2∗
+ 1

r∗

dφ

dr∗
(3.72)

This equation is similar to eq. (3.60) for uniform heat flux, except that the
unknown φ(r*) is present on the left-hand side. Furthermore, we now have two
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boundary conditions to impose on φ:

dφ/dr∗ = 0 at r∗ = 0 radial symmetry

φ = 0 at r∗ = 1 isothermal wall (3.73)

In principle, eq. (3.72) and conditions (3.73) are sufficient for determining
the unknown function φ. However, in view of the makeup of eq. (3.72), the
radial profile φ will be a function of both r* and Nu, where Nu is the unknown
in this problem. The additional condition for determining Nu uniquely is the
definition of the heat transfer coefficient (i.e., Nu) [eq. (3.43)]; this condition can
be written as

Nu = −2

(
dφ

dr∗

)
r∗=1

(3.74)

The problem statement is now complete: The value of Nu must be such
that the φ(r*, Nu) solution of eqs. (3.72) and (3.73) satisfies the Nu definition
(3.74). The actual solution may be pursued in a number of ways, for example,
by successively approximating (guessing) and improving the φ solution (see
Problem 3.7). Today, it is more convenient to solve the problem numerically:
the differential equation (3.72) is first approximated by finite differences and
integrated from r* = 1 to r* = 0. To perform the integration at all, we must first
guess the value of Nu, which also gives us a guess for the initial slope of the
ensuing φ(r*) curve [see eq. (3.74)]. The success of the Nu guess is judged by
means of the first of conditions (3.73); the refined result is ultimately

Nu = 3.66 (3.75)

which, again, agrees with the scaling law (3.49).
Table 3.2 lists other Nu values for noncircular cross sections. The slight

variation in these values mimics that of B = (πD2
h/4)/Aduct, implying that it is

caused by hydraulic diameter nondimensionalization, that is, by the mismatch
between hydraulic diameter and effective wall–stream distance (Fig. 3.7).
This behavior again stresses the importance of the new dimensionless group
B = (πD2

h/4)/Aduct.
Table 3.3 shows the fully developed values of the friction factor and the

Nusselt number in a duct with regular polygonal cross section. Some of the
cases covered by this table are also covered by Table 3.2. The less than 1
percent discrepancies that exist between the data covered by both tables (e.g.,
the square cross section) are representative of the discrepancies found between
results reported by different investigators. Note again that in noncircular cases
with uniform heat flux, the wall temperature changes along the perimeter. In
these cases, the heat transfer coefficient is based on the perimeter averaged wall
temperature.
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Table 3.3 Friction factors and Nusselt numbers for heat transfer to laminar flow through
ducts with regular polygonal cross sections

Nu = hDh/k

f ReDh Uniform Heat Flux Isothermal Wall

Cross Section Fully
Developed

Flow

Fully
Developed

Flow
Slug
Flow

Fully
Developed

Flow
Slug
Flow

Square 14.167 3.614 7.083 2.980 4.926
Hexagon 15.065 4.021 7.533 3.353 5.380
Octagon 15.381 4.207 7.690 3.467 5.526
Circle 16 4.364 7.962 3.66 5.769

Source: Data from Ref. 12.

Table 3.3 shows that the thermally developed Nu value is considerably smaller
in fully developed flow than in slug flow. The latter refers to the flow of a solid
material (slug, rod), or a fluid with an extremely small Prandtl number (Pr → 0),
where the viscosity is so much smaller than the thermal diffusivity that the
longitudinal velocity profile remains uniform over the cross section, u = U, like
the velocity distribution of a solid slug.

The presentation so far has been based on the assumption of large Péclet num-
bers, eq. (3.48), which led to Nusselt numbers that are constant (x independent)
when the flow is thermally and hydrodynamically fully developed. The existence
of a fully developed temperature profile does not require the assumption of a
large Péclet number (i.e., negligible longitudinal conduction). This has been
demonstrated by Nield and Lage [13] for slug flow.

3.5 HEAT TRANSFER TO DEVELOPING FLOW

The heat transfer results listed in Table 3.2 apply to laminar duct flow regions
where both the velocity and temperature profiles are fully developed. Measuring
x from the actual entrance of the duct (Fig. 3.11), these results are valid in the
downstream section delineated by

x > max(X,XT) (3.76)

where X and XT are the hydrodynamic and thermal entrance lengths, respectively.
We know from the discussion of hydrodynamic entrance length earlier in this
chapter that the extent of XT is determined by the point where the entrance
thermal boundary layer thickness δT becomes of the same order as the hydraulic
diameter of the duct.
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Figure 3.11 Prandtl number effect on the size of the hydrodynamic entrance length X relative
to the size of the thermal entrance length XT.

3.5.1 Scale Analysis

Figure 3.11 shows qualitatively the δT(XT)∼Dh scaling, namely, the relative size
of X and XT as influenced by the Prandtl number. Since, according to Chapter 2,
the ratio δ/δT increases monotonically with Pr, the ratio X/XT must decrease
monotonically as Pr increases. To determine the XT scale, hence the ratio X/XT,
first consider the limit of low–Prandtl number fluids.

Pr � 1. According to eq. (2.37), δT develops faster than δ,

δT(x) ∼ x Pr−1/2 Re−1/2
x (3.77)

Because at the end of thermal development x ∼ XT and δT ∼ Dh, we have

XT Pr−1/2 Re−1/2
XT

∼ Dh (3.78)

or (
XT/Dh

ReDh Pr

)1/2

∼ 1 (3.79)

This is a well-known XT result listed in other publications as

XT/Dh

ReDh Pr
∼ 0.1 (3.80)

Note that eq. (3.80) is of the same type as eq. (3.1) where the constant is also less
than unity. In view of the apparent discrepancy between eqs. (3.79) and (3.80),
the reader should keep in mind that eq. (3.79) is the correct way of writing
δT ∼ Dh. Squaring any proportionality in which the coefficient is O(1) but less
than 1 leads to a proportionality of type (3.80) where the coefficient is no longer
O(1); this coefficient later assumes the role of transition constant, adding to the
long list of empirical constants the handbooks ask us to memorize.
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In conclusion, the correct scaling for the transition from the developing to
the thermally developed temperature profile is δT ∼ Dh, which means that the
proper dimensionless group governing this transition is [(XT/Dh)/(ReDh Pr)]

1/2

[cf. eq. (3.79)]. Similarly, the proper dimensionless group governing the transition
from the developing to the fully developed velocity profile is(

X/Dh

ReDh

)1/2

∼ 1 (3.81)

The reason these groups govern transition phenomena is that they become of
order 1 during transition. They become of order 1 because they represent the
competition between the correct scales, which, after all, make the concept of
transition meaningful. This point is discussed further in Chapter 6.

Pr � 1. In the case of fluids such as water and oils (Fig. 3.11b), it is tempting
to compare Dh with the δT given by eq. (2.42). Such a comparison is incorrect
because the δT scale (2.42) is valid in boundary layers where the velocity
thickness is consistently much greater than δT [so that the u scale is (δT/δ)U∞
inside a layer of thickness δT]. In a duct, unlike in external flow (Chapter 2), the
velocity profile spreads over Dh; hence, the u scale inside the δT layer is U itself.
Thus, it is easy to show that δT(x) ∼ xPr−1/2Rex

−1/2, which is identical to the
scaling encountered in Pr � 1 cases.

In conclusion, criterion (3.79) is general and also applies in the case of Pr � 1
fluids. Dividing eqs. (3.79) and (3.81), we learn that

XT
X

∼ Pr (3.81′)

This scaling is valid for all values of Pr (Fig. 3.11). The local Nusselt number in
the thermally developing section (x � XT) scales as follows:

Nu = hDh

k
∼ q′′

�T

Dh

k
∼ Dh

δT
∼

(
x/Dh

ReDhPr

)−1/2

(3.82)

Since the δT scale is x Pr
−1/2 Rex

−1/2 over the entire Pr range, the Nu scale (3.82)
is valid for all values of Pr. As is shown later in this section (Figs. 3.12–3.14),
this conclusion is supported by numerical analysis.

3.5.2 Thermally Developing Hagen–Poiseuille Flow

Consider the high-Pr limit (Fig. 3.11b) and focus on the tube section described
by X < x < XT. Here the velocity profile is fully developed while the temper-
ature profile is just being developed. Neglecting the effect of axial conduction
(Pex � 1), we must solve eq. (3.50) subject to these conditions:

Uniform wall temperature, T0 = constant
Symmetry about the centerline, ∂T/∂r = 0 at r = 0
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Isothermal entering fluid, T = TIN for x < 0, where x is measured (positive)
downstream from the location X in Fig. 3.11b

This problem was treated for the first time by Graetz [15] in 1883 and is known
as the Graetz problem. The problem statement is

1

2
(1 − r2∗)

∂θ∗
∂x∗

= ∂2θ∗
∂r2∗

+ 1

r∗

∂θ∗
∂r∗

θ∗ = 0 at r∗ = 1 (3.83)

∂θ∗
∂r∗

= 0 at r∗ = 0

θ∗ = 1 at x∗ = 0

with the following notation:

θ∗ = T − T0
TIN − T0

, r∗ = r

r0
, x∗ = x/D

ReD Pr
(3.84)

Figure 3.12 Heat transfer in the entrance region of a round tube with isothermal wall. (Based
on data from Refs. 10 and 14.)
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Figure 3.13 Heat transfer in the entrance region of a round tube with uniform heat flux. (Based
on data from Refs. 10 and 14.)

The energy equation is linear and homogeneous. Separation of variables is
achieved by assuming a product solution for θ*(r*, x*),

θ∗ = R(r∗) �(x∗) (3.85)

that yields two linear and homogeneous equations for R and �,

R′′ + 1

r∗
R′ + λ2(1 − r2∗)R = 0 (3.86)

�′ + 2λ2� = 0 (3.87)

The � equation admits solutions of the type � = C exp(− 2λ2x*), where both
C and λ2 are arbitrary constants. The R equation is of the Sturm–Liouville type
and its solution is obtainable as infinite series; the θ* solution satisfying the r* =
0,1 boundary conditions in (3.83) becomes the Graetz series

θ∗ =
∞∑
n=0

CnRn(r∗) exp(−2λ2
nx∗) (3.88)
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Figure 3.14 Heat transfer in the thermal entrance region of a parallel-plate duct with
Hagen–Poiseuille flow. (Based on data from Ref. 10.)

where Rn and λn are eigenfunctions and eigenvalues, and the Cn are constants
determined by the x* = 0 condition in the problem statement (3.83). The heat
transfer results of interest are

θ∗m = Tm − T0
TIN − T0

= 8
∞∑
n=0

Gn

λ2
n
exp(−2λ2

nx∗) (3.89)

Nux =

∞∑
n=0

Gn exp(−2λ2
nx∗)

2
∞∑
n=0

(Gn/λ
2
n) exp(−2λ2

nx∗)

(3.90)

Nu0−x = 1

4x∗
ln

1

θ∗m
(3.91)

where θ∗m , Nux, and Nu0–x are the bulk dimensionless temperature, the local
Nusselt number, and the overall Nusselt number for the entrance section of
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Table 3.4 Graetz series eigenvalues and constants (round tube,
isothermal wall, Hagen–Poiseuille flow)

n λn Gn

0 2.704 0.7488
1 6.679 0.5438
2 10.673 0.4629
3 14.671 0.4154
4 18.67 0.3829
5 22.67 0.3587

Source: Ref. 10.

length x. The eigenvalues λn and the constants Gn = −(Cn/2) R
′
n (1) for the first

five terms of the infinite series are tabulated in Table 3.4. The overall Nusselt
number for the thermal entrance region of a tube with isothermal wall is defined
as Nu0–x = q′′

0–xD/k �Tlm, where �Tlm is the log-mean temperature difference,
and TIN = Tm(0),

�Tlm = [T0 − TIN(x)] − (T0 − Tm)

ln{[T0 − Tm(x)]/(T0 − TIN)} (3.92)

Figure 3.12 shows expressions (3.89)–(3.91) as the curves labeled Pr = ∞
for θ∗m , Nux, and Nu0–x. The group x1/2∗ = [(x/D)/(ReDPr)]

1/2 is used on the
abscissa to illustrate the scaling law (3.79) that rules the transition from thermally
developing to thermally fully developed duct flow. The Nusselt number curves
show a knee at x1/2∗ = O(1), in very good agreement with eq. (3.79): The validity
of this transition criterion is dramatized further by the sudden drop of the bulk
temperature from the inlet value (θ∗m = 1) to the wall value (θ∗m = 0).

The following expressions are recommended by a simpler alternative to the
Graetz series solution, which is known as the Lévêque solution [16]. Analytical
alternatives [10, 17] to the Pr = ∞ curves shown in Fig. 3.12 are

Nux =


1.077x−1/3

∗ − 0.7, x∗ ≤ 0.01

3.657 + 6.874
(
103x∗

)−0.488
exp(−57.2x∗), x∗ > 0.01

(3.93)

Nu0−x =



1.615x−1/3

∗ − 0.7, x∗ ≤ 0.005

1.615x−1/3
∗ − 0.2, 0.005 < x∗ < 0.03

3.657 + 0.0499/x∗, x∗ ≥ 0.03

(3.94)

The thermally developingHagen–Poiseuille flow in a round tubewith uniform
heat flux q′′ can be analyzed by applying the same method (Fig. 3.13, the Pr= ∞
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curve). The results for the local and overall Nusselt numbers are represented
within 3 percent by the formulas [10, 17]

Nux =




1.302x−1/3
∗ − 1,

x∗ ≤ 0.00005

1.302x−1/3
∗ − 0.5,

0.00005 ≤ x∗ ≤ 0.0015

4.364 + 8.68
(
103x∗

)−0.506
exp(−41x∗),

x∗ ≥ 0.001

(3.95)

Nu0−x =
{
1.953x−1/3

∗ , x∗ ≤ 0.03

4.364 + 0.0722/x∗, x∗ > 0.03
(3.96)

where Nux = q′′D/k[T0(x) − Tm(x)] and Nu0–x = q′′D/(k�Tavg) with

�Tavg =
[
1

x

∫ x

0

dx

T0 (x) − Tm(x)

]−1

(3.97)

Analogous results are available for the heat transfer to thermally developing
Hagen–Poiseuille flow in ducts with other cross-sectional shapes. The Nusselt
numbers for a parallel-plate channel are shown in Fig. 3.14. The curves for a
channel with isothermal surfaces are approximated by [10, 17]

Nux =

1.233x−1/3

∗ + 0.4, x∗ ≤ 0.001

7.541 + 6.874
(
103x∗

)−0.488
exp(−245x∗), x∗ > 0.001

(3.98)

Nu0−x =



1.849x−1/3

∗ , x∗ ≤ 0.0005

1.849x−1/3
∗ + 0.6, 0.0005 < x∗ ≤ 0.006

7.541 + 0.0235/x∗, x∗ > 0.006

(3.99)

If the plate-to-plate spacing is D, the Nusselt numbers are defined as Nux =
q′′(x)Dh/k[T0 − Tm(x)] and Nu0–x = q′′

0–xDh/(k�Tlm), where Dh = 2D and �Tlm
is given by eq. (3.92).

The thermal entrance region of the parallel-plate channel with uniform heat
flux and Hagen–Poiseuille flow is characterized by [10, 17]

Nux =



1.490x−1/3

∗ , x∗ ≤ 0.0002

1.490x−1/3
∗ − 0.4, 0.0002 < x∗ ≤ 0.001

8.235 + 8.68
(
103x∗

)−0.506
exp(−164x∗), x∗ > 0.001

(3.100)
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Nu0−x =



2.236x−1/3

∗ , x∗ ≤ 0.001

2.236x−1/3
∗ + 0.9, 0.001 < x∗ ≤ 0.01

8.235 + 0.0364/x∗, x∗ ≥ 0.01

(3.101)

The definitions are Nux = q′′Dh/k[T0(x) − Tm(x)] and Nu0–x = q′′Dh/(k �Tavg),
where�Tavg is furnished by eq. (3.97). It is worth repeating that x* represents the
dimensionless longitudinal coordinate in the thermal entrance region, eq. (3.84),
which in the case of the parallel-plate channel becomes x∗ = (x/Dh)/ReDh Pr.
All the results compiled in the section apply in the limit Pr → ∞.

3.5.3 Thermally and Hydraulically Developing Flow

The most realistic (and most difficult) version of the tube flow problem consists
of solving eqs. (3.83) with the Hagen–Poiseuille profile 2(1 − r2∗) replaced
by the actual x-dependent velocity profile present in the hydrodynamic entry
region. This, the finite-Pr problem, has been solved numerically by a number of
investigators: The history of this numerical work is recounted in Ref. 10.

Figure 3.12 shows a sample of the finite-Pr data available for a round tube
with isothermal wall. The analytical expressions recommended for the local [17]
and overall [18] Nusselt numbers in the range 0.1 < Pr < 1000 in parallel-plate
channels are

Nux = 7.55 + 0.024x−1.14∗ (0.0179Pr0.17x−0.64∗ − 0.14)

(1 + 0.0358Pr0.17x−0.64∗ )2
(3.102)

Nu0−x = 7.55 + 0.024x−1.14∗
1 + 0.0358Pr0.17x−0.64∗

(3.103)

The pressure drop over the hydrodynamically developing length x, or �P =
P(0) − P(x), can be calculated with [10]

�P
1
2ρU

2
= 13.74(x+)1/2 + 1.25 + 64xx − 13.74(x+)1/2

1 + 0.00021(x+)−2
(3.104)

Here, x+ is the dimensionless coordinate for the hydrodynamic entrance region,

x+ = x/D

ReD
(3.105)

which also appears on the abscissa of Fig. 3.3. Equation (3.104) can be used
instead of the (Cf)0–x ReD curve shown in Fig. 3.3 by nothing the force balance
�P(πD2/4) = τ 0–xπDx, or

�P
1
2ρU

2
= 4x+(Cf )0−x ReD (3.106)
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Figure 3.13 shows several finite-Pr solutions for the local Nusselt number in
the entrance region of a tube with uniform heat flux. A closed-form expression
that covers both the entrance and fully developed regions is [19]

Nux
4.364[1 + (Gz/29.6)2]1/6

=

1 +

(
Gz/19.04[

1 + (Pr/0.0207)2/3
]1/2

[1 + (Gz/29.6)2]1/3

)3/2

1/3

(3.107)

where Nux = q′′D/k[T0(x) − Tm(x)] and Gz = π/(4x*) is the Graetz number.
Equation (3.107) agrees within 5 percent with numerical data for Pr = 0.7 and
Pr = 10 and has the correct asymptotic behavior for large and small Gz and Pr.

The heat transfer and pressure drop results for thermally and hydrodynamically
developing flow in ducts with other cross-sectional shapes have been cataloged
in Refs. 10 and 17. In general, the results show that in the entrance region
(x1/2∗ � 1), the Nusselt number obeys a relationship of the type

Nux = (constant)

(
x/Dh

ReDh Pr

)−1/2

(3.108)

where (constant) = O(1). This proves the validity of the scaling law (3.82)
and, considering the century-long effort of obtaining and perfecting the curves
of Figs. 3.12–3.14, illustrates the power of proper scale analysis. The log–log
presentation of Figs. 3.12–3.14 is intentional, to illustrate the existence of the
scaling law (3.82) as lines of slope −1.

Thermally developingflow is a fundamental topicwith applications throughout
thermal engineering [1]. One important application is the maximization of heat
transfer rate density (heat transfer per unit volume) in the miniaturization of heat
exchanger structures [20], the theoretical basis of which is presented in the next
section. Another application is in bioengineering, in the detection of vocal fold
pathology [21]. Developing flows in noncircular ducts are presented in Ref. 22.

3.6 STACK OF HEAT-GENERATING PLATES

In this section we determine the spacing for maximum heat transfer density in
a package (stack) of parallel plates that are cooled by forced convection [23,
24]. An application of this arrangement is the forced-air cooling of a stack of
electronic circuit boards. Of principal interest is the maximum heat transfer, rate,
that is, the maximum density of heat-generating electronics that can be fitted in
a package of specified volume.

Consider the geometry of Fig. 3.15, in which the coolant inlet temperature
T∞ and the pressure head established by the compressor (fan or pump) �P are
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Figure 3.15 Stack of parallel heat-generating plates cooled by forced convection.

fixed. The solution was first proposed for optimal natural convection spacings in
the 1984 edition of this book [25]. The analysis was based on the intersection-
of-asymptotes method. It has since been generalized to other domains, including
electrical engineering [26]. The flow is assumed laminar, and the board temper-
ature is assumed uniform at the safe level Tw. Each board has a thickness t that
is sufficiently smaller than D. To determine the optimal board-to-board spacing
D is the same as determining the optimal number of boards (n � 1) that fill a
space of thickness H,

n � H

D
(3.109)

Small Spacings Limit. Consider first the limit D → 0 when each channel is
slender enough so that the flow is fully developed all along L, and the fluid outlet
temperature approaches the board temperature Tw. The average fluid velocity in
each channel is given by eq. (3.19),

U = D2

12µ

�P

L
(3.110)

and the total mass flow rate ṁ′ through the stack of thickness H is

ṁ′ = ρUH = ρH
D2

12µ

�P

L
(3.111)

The mass flow rate ṁ′ is expressed per unit length in the direction perpendicular
to Fig. 3.15. The total heat transfer rate removed from the stack by the ṁ′
stream is

q′
a � ṁ′cP(Tw − T∞) = ρH

D2

12µ

�P

L
cP(Tw − T∞) (3.112)
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In conclusion, in the limit D → 0, the total cooling rate (or total rate of
allowable Joule heating in the package) decreases as D2. This trend is illustrated
qualitatively as curve (a) in Fig. 3.16. The direction toward small D values is not
good for design performance.

Large Spacings Limit. In the opposite extreme, D → ∞, the boundary layer
that lines one surface becomes ‘‘distinct.’’ In other words, each channel looks
like the entrance region to a parallel-plate duct. The overall pressure drop is
fixed at �P; therefore, we ask: What is the free-stream velocity U∞ that sweeps
these boundary layers? The overall force balance on the control volume H × L
requires that

�P H = n · 2τwL (3.113)

in which n is the number of channels and τw is the L-averaged wall shear stress
[cf. eq. (2.92′)],

τw = 1.328Re−1/2
L · 1

2ρU
2
∞ (3.114)

Combined, eqs. (3.113) and (3.114) yield

U∞ =
(

1

1.328

�P H

nL1/2 ρν1/2

)2/3

(3.115)

The total heat transfer rate from one of the L-long surfaces (q′
1) is calculated

from the overall Nusselt number for Pr > 0.5 [cf. eq. (2.110)],

hL

k
= q′′

Tw − T∞

L

k
= 0.664Pr1/3

(
U∞L

ν

)1/2

(3.116)

which leads to

q′
1 = q′′L = k(Tw − T∞)0.664Pr1/3

(
U∞L

ν

)1/2

(3.117)

The total heat transfer rate released by the stack is 2n times larger than q′
1 (we

are assuming that both surfaces of one board are Joule-heated to Tw):

q′
b = 2nq′

1 = 2nk(Tw − T∞)0.664Pr1/3
(
U∞L

ν

)1/2

(3.118)

In view of the n and U∞ expressions in eqs. (3.109) and (3.115), the total heat
transfer rate becomes

q′
b = 1.208k(Tw − T∞)H

Pr1/3 L1/3 �P1/3

ρ1/3ν2/3D2/3
(3.119)
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Intersection of Asymptotes. The second conclusion we reach is that in the
large-D limit, the total heat transfer rate decreases as D−2/3. This second trend
has been added as curve (b) in Fig. 3.16, to suggest that the maximum of the
actual (unknown) curve q′(D) can occur only at a spacing Dopt that is of the same
order as theD value obtained by intersecting the asymptotes (3.112) and (3.119).
The order-of-magnitude statement q′

a ∼ q′
b yields the optimal spacing:

Dopt � 2.73L Be−1/4
L (3.120)

where

BeL = �P L2

µα
(3.120′)

is the dimensionless pressure drop that in 1988 Bhattacharjee and Grosshandler
[27] termed the Bejan number. The role of this dimensionless group in forced
convection is discussed by Petrescu [28]. Equation (3.120) agrees very well with
the more exact result obtained by locating the maximum of the actual q′(D)
sketched in Fig. 3.16. Reference 23 showed numerically that in the Pr range
0.7–103, the optimal spacing is correlated by an expression like eq. (3.120) in
which the coefficient 2.73 is replaced by 3.05. The existence of the optimal
spacing (3.120) was also confirmed by experiments with microchannels [29].

The numerical maximization [23] of the actual q′(D) relation demonstrated
that in the entire range 0.7 < Pr < 103, the dimensionless length x* =
(L/Dh)/(UDh/α) was consistently equal to 0.04 when D = Dopt. In view of eq.
(3.80), this means that the optimal board-to-board spacing must be such that the
board length is of the same order of magnitude as the thermal entrance length
of the parallel-plate channel. This feature is the key to the design of compact
heat exchanger structures with maximal heat transfer rate density [20]. This idea

Figure 3.16 Intersection-of-asymptotes method: the optimal spacing as the intersection of the
small-D asymptote with the large-D asymptote.
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has been taken to higher performance levels in two ways, by optimally shaping
the channel with optimized spacing (i.e., by fitting the duct to the convective
flow [30]) and by packing a series of smaller plates and channels in the entrance
regions of the stack of Fig. 3.15. The latter is a generally valid strategy for
achieving maximal heat transfer density by constructing a flow structure with
multiple length scales [31]. The smallest length scale in such a structure (the
‘‘alveolus’’ of this ‘‘lung’’) is the cutoff below which convection ceases to be
effective (cf. constructal theory [8]). Along this conceptual route, the multiscale
flow structure with large-scale convection and small-scale diffusion becomes
a designed porous medium [32]. We return to this concept in more detail in
Section 12.10.

The order of magnitude of the maximum package heat transfer rate that
corresponds to D = Dopt is obtained by combining eqs. (3.112) and (3.120):

q′
max � 0.62

(
ρ �P

Pr

)1/2

HcP(Tw − T∞) (3.121)

The inequality sign is a reminder that the actual q′ maximum is lower than the q′
value obtained by intersecting asymptotes (a) and (b) in Fig. 3.16. The group of
properties and dimensions that emerged on the right side of eq. (3.121) represents
the correct scale of q′

max. Indeed, the numerical maximization of the actual q′(D)
relation [23] for 0.7 < Pr < 103 proved that q′

max is correlated by an expression
of type (3.121) where 0.62 is replaced by 0.52.

The intersection-of-asymptotes analysis presented in this section can be
repeated for the situation in which only one surface of the board is Joule-heated
to Tw, and the other surface can be modeled as adiabatic. The only change is that
2n is replaced by n in eq. (3.118), so that the results become

Dopt
∼= 2.10L Be−1/4

L (3.122)

q′
max � 0.37

(
ρ �P

Pr

)1/2

Hcp(Tw − T∞) (3.123)

Comparing eqs. (3.122)–(3.123) with eqs. (3.120)–(3.121) we see the preser-
vation of the scales derived for Dopt and q

′
max. In other words, the change in

the thermal boundary conditions of one board-to-board channel influences (by a
factor of order 1) only the value of the numerical coefficient in the expressions
for Dopt and q

′
max.

The stack in which both surfaces of each board release uniform heat flux
was optimized in Ref. 23, in which the peak of the q′(D) curve was determined
numerically. The results showed that in the Pr range 0.7–10, the optimal board-
to-board spacing is correlated by eq. (3.120) with 3.2 in place of 2.73. In the
same Pr range, the maximum thermal conductance of the stack q′/(Tw, L − T∞) is
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once again correlated by eq. (3.121), with ∼= 0.4 in place of � 0.62 and (Tw, L −
T∞) in place of (Tw − T∞). Note that when the boards release uniform heat
flux, the hot spot occurs at the trailing edge of the board, where the temperature
is Tw, L.

The optimization of spacings for structures withmaximal heat transfer density
has developed into a field of its own, which is growing [33–54]. Optimal spacings
have been identified for packages filled with staggered parallel plates, round and
elliptical cylinders in cross flow, natural convection (see Section 4.12), and
pin-fin arrays with impinging flow. This work is reviewed in a new book [8].

3.7 HEATLINES IN FULLY DEVELOPED DUCT FLOW

In this section we develop for duct flow the heatline visualization method
introduced in Section 1.6. Consider a parallel-plate channel of spacing D and
flow length L, and assume that the two walls release the heat flux q′′ uniformly
into the stream (Fig. 3.17). The channel is long enough so that the flow is
hydrodynamically and thermally fully developed over most of the length L. The
velocity distribution u(y) was derived in eq. (3.19). By repeating the steps that
led to eq. (3.62) for the round tube, it is possible to show that the temperature
distribution in the fluid is (see Problem 3.8 and Ref. 55)

T(x, y) = T0(x) − (T0 − Tm)
105

68

[
5

6
−

(
y

D/2

)2

+ 1

6

(
y

D/2

)4
]

(3.124)

in which q′′D/k(T0 − Tm) = 70/17. This Nusselt number can be rewritten based
on the hydraulic diameter Dh = 2D, namely, q′′Dh/k(T0 − Tm) = 140/17 =
8.235, to see that it is the same as the Nu value listed in Table 3.2.

The heatfunction H(x, y) is obtained by integrating eqs. (1.68) and (1.69), in
which we note two simplifications. First, the transversal velocity v is zero in
eq. (1.69) because the flow is hydrodynamically fully developed. Second, the
longitudinal conduction term k ∂T/∂x must be left out of eq. (1.68) because
the same effect was neglected in the development of the energy equation for
thermally fully developed flow [cf. eq. (3.48)]. With these simplifications,
eqs. (1.68) and (1.69) reduce to

∂H

∂y
= ρcPu(T − Tref) (3.125)

∂H

∂x
= k

∂T

∂y
(3.126)

We note that if q′′ is assumed positive in the direction shown in Fig. 3.17, the
wall is warmer than the fluid. The lowest temperature in the entire duct occurs
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Figure 3.17 Heatlines in a parallel-plate duct with hydrodynamically and thermally fully devel-
oped flow. (From Ref. 55.)
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at the inlet; therefore, we set Tref = Tm(x = 0) in eq. (3.125). The heatfunction
obtained by integrating eqs. (3.125) and (3.126) can be written as

H̃(x̃, ỹ) = x̃

(
3

4
ỹ− 1

4
ỹ3

)

+ 1

128

D

L
PeD

(
−117

35
ỹ+ 249

35
ỹ3 − 21

5
ỹ5 + 3

7
ỹ7

)
(3.127)

where PeD = UD/α, and

H̃ = H

2Lq′′ , x̃ = x

L
, ỹ = y

D/2
(3.128)

In the step prior to eq. (3.127), the constant of integration was determined by
setting H̃ = 0 at the start of each wall. Note also that the heatfunction scale 2Lq′′,
which was used in the nondimensionalization of H, is the total (known) heat
transfer rate released from both walls. Finally, eq. (3.80) shows that the group
(D/L)PeD in eq. (3.127) must be on the order of 1 or smaller because XT � L and

D

L
PeD ∼ 10

XT
L

(3.129)

The solution (3.127) shows that the heatfunction varies linearly along thewalls,
increasing along the top and decreasing along the bottom, H̃(x̃,±1) = ± x̃/2.
This linear variation accounts for the equidistant heatlines that are seen coming
out of the walls in Fig. 3.17. The heatlines are perpendicular to the wall because
right next to the wall the longitudinal velocity is zero, and the transfer of heat
is by pure conduction. Close to the midplane of the channel, the flow bends the
heatlines downstream.

The hot-wall frames of Fig. 3.17 show that the heatline pattern does not
change much as the group (D/L)PeD decreases from 1 to 0. In conclusion, when
(D/L)PeD < 1, the heatfunction H̃ is approximated well by the first group on the
right-hand side of eq. (3.127); in other words, H̃ is independent of (D/L)PeD.

The heatline pattern changes when the wall is colder than the fluid (i.e., when
q′′ has a negative value in the sketch at the top of Fig. 3.17). In this case, the
mean temperature and the wall temperature decrease linearly as we follow the
flow. The lowest temperature in the entire system occurs on the trailing edges of
the walls; therefore, in eq. (3.125), we set Tref = T0(x= L). The analysis consists
of integrating eqs. (3.125) and (3.126) by using eqs. (3.124) and (3.19), and the
result is

H̃(x̃, ỹ) = (1 − x̃)

(
3

4
ỹ− 1

4
ỹ3

)

+ 1

128

D

L
PeD

(
−15ỹ+ 11ỹ3 − 21

5
ỹ5 + 3

7
ỹ7

)
(3.130)
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The last frame of Fig. 3.17 shows the heatline pattern when (D/L)PeD = 0.
The heatlines are equidistant and perpendicular as they enter the cold walls. Note
also that this pattern is the mirror image of the one drawn immediately above
it for the same (D/L)PeD value. The last two frames illustrate the significant
reorientation of the paths of convection when the role of the walls switches from
heat source to heat sink. The growing field of heatline visualization is described
by the references at the end of Chapter 1.

3.8 DUCT SHAPE FOR MINIMUM FLOW RESISTANCE

Round pipes with constant diameter are not the best ducts. Here we consider the
problem of the optimal geometry (shape) of a duct [56] that must carry a stream
(ṁ) between two pressure levels (P0 and PL = P0 − �P) separated by a fixed
distance (L). The objective is to minimize the overall flow resistance �P/ṁ. The
duct is straight, with the flow pointing in the x direction; however, the cross-
sectional area A(x) and wetted perimeter p(x) may vary with the longitudinal
position.

There are at least two constraints. One is the total duct volume constraint,

∫ L

0
A(x) dx = V (constant) (3.131)

in which A(x) is the unknown duct shape. Another constraint is the amount of
duct wall material, ∫ L

0
P(x) dx = M (constant) (3.132)

where p(x) is the unknown wetted perimeter of the duct cross section. The
material constraint is crucial in designs where the unit cost of the material is
high, or where the weight of the overall heat exchanger is constrained, as in
aerospace applications.

The overall flow resistance can be calculated by noting that regardless of
whether the flow is laminar, turbulent, or fully developed, the pressure gradient
is given by [cf. eq. (3.23)]

dP

dx
= −τw(x)

p(x)

A(x)
(3.133)

In this expression we substitute f = τw/
( 1
2ρU

2
)
, ReDh = DhU/ν, and ṁ =

ρUA, and integrate from the inlet to the outlet to obtain the flow resistance,

�P

ṁ
=

∫ L

0
f ReDh

pv

2A2Dh
dx (3.134)
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Consider first the hydraulic entrance region of a duct with round cross section
[diameterD(x)] through which the flow is sufficiently isothermal such that ν may
be regarded as constant. Note further that since the cross section is circular, Dh
is equal to D, while p = πD and A = πD2/4. It follows that the geometric group
p/A2D appearing in eq. (3.134) scales as D−4.

In the developing entrance region of a tube of constant diameter, the group
f ReD decreases approximately as x−1/2. This group is usually plotted in dimen-
sionless terms versus x/(DReD) (see Fig. 3.3). In the present problem, D is
not a constant—in fact, to find the optimal function D(x) is the objective.
Consequently, instead of f ReD, we write φ(x), where the function φ could be
determined after the duct shapeD(x) is known. If the duct shapeD(x) turns out to
be a weak function of x, that is, if the duct diameter is nearly constant throughout
the 0 < x< L domain, it is reasonable to expect φ to decrease as x−1/2. We return
to this observation at the end of this section.

In sum, the integrand of eq. (3.134) behaves as φ/D4. On the other hand, the
integrand of the volume constraint (3.131) varies as D2. The problem of finding
the function D(x) that minimizes the flow resistance (3.134) subject to the fixed
volume (3.131) reduces to minimizing the integral

I1 =
∫ L

0

(
φ

D4
+ λ1D

2
)
dx (3.135)

where λ1 is a Lagrange multiplier. The variational calculus solution has the form

Dopt(x) =
[
2

λ1
φ (x)

]1/6

(3.136)

where assuming that φ(x) is known, the constant λ1 is determined by substituting
(3.136) into the volume constraint (3.131). We develop a better feel for the
optimal duct shape prescribed by (3.136) by assuming that Dopt is a sufficiently
weak function of x so that wemay take x−1/2 as the x dependence of the functionφ.
Combining this assumption with (3.136), we conclude that the Dopt must vary
approximately as x−1/12, which is indeed a weak function of longitudinal position.
It means that (3.136) reads approximately Dopt(x) ∼= (constant)x−1/12.

In conclusion, for minimum flow resistance, the entrance region to a pipe
should be shaped like a trumpet. The constant listed in the Dopt (x) expression
is determined from the volume constraint, so that the closed-form result of this
first example is

Dopt(x) ∼=
(
10V

3πL

)1/2(L
x

)1/12

(3.137)

A similar conclusion is reached if the flow resistance of the same entrance
region is minimized subject to the wall surface (material) constraint (3.132) [56].
The entrance regions of other duct geometries may be optimized in the same
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way. If the duct cross section is a flat rectangle of height D(x) and constant
width W, such what W � D(x), the group p/A2Dh of eq. (3.134) varies as
1/D3W. Assuming that the x dependence of D is sufficiently weak, the f ReDh
product may be recognized again as a function proportional to x−1/2. The optimal
D(x) function that minimizes the flow resistance integral subject to volume
constraint is

Dopt(x) ∼= 7V

8WL

(
L

x

)1/8

(3.138)

The optimal entrance shape is such that the plate-to-plate D tapers down very
slowly as the flow develops downstream. If instead of the volume we keep the
total duct wall surface fixed ∫ L

0
2W dx = M (3.139)

we find that the M constraint does not depend on the narrow spacing of the duct
cross section, D. This means that an optimal wall-to-wall spacing function D(x)
does not exist. Instead, we may consider D as constant and the cross-sectional
width W variable, while D remains negligible with respect to W(x). The optimal
entrance width that minimizes the overall flow resistance subject to the constraint
(3.139) is

Wopt(x) ∼= 3M

8L

(
L

x

)1/4

(3.140)

This optimal entrance geometry is one in which the width of the flat cross section
decreases gradually in the flow direction, while D remains constant.

3.9 TREE-SHAPED FLOW

A new research direction in convection is traced by flow architectures shaped
as tree networks [8, 57, 58]. A tree-shaped flow is required in order to connect
one point (source, or sink) with a very large number of points (volume, or area).
When the flow proceeds from the point (root) to the volume (canopy), the tree
flow serves as a distribution network: The tree distributes the single stream to
every ‘‘inhabitant’’ of the volume. When the flow is oriented from the canopy to
the root, the tree is a collection network. In such cases the tree structure generates
(constitutes) a single stream out of a large number of mini-streams that emanate
from every point of the volume.

According to constructal theory [8], tree-shaped flow structures are manifes-
tations of a natural tendency to flow more easily by changing the configuration
of the flow. This tendency is at work everywhere, and it is condensed in
the constructal law. It is widely applicable in engineering, from urban design
to the cooling of electronics and to heat exchanger design in general [8]. It
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is particularly evident in the continuing march toward smaller scales, where
increased ‘‘density’’ is achieved not only through smaller working elements but
also through better constructs (geometry, structure, architecture, packing).

In this section we outline the method and main features and properties of
tree-shaped constructs of ducts. Tree networks are special because they do not
have loops—tree networks are not ‘‘nets.’’ The flow path between the root and
one point in the canopy is unique. We start with the simplest tree, which is the
T-shaped construct of round tubes shown in Fig. 3.18. The flow connects one
point (source or sink) with two points. There are two constraints:

1. Total duct volume (D2
1L1 + 2D2

2L2 = constant)
2. Total space allocated to the construct (2L2L1 = constant)

If the flow is laminar and fully developed, the minimization of the flow
resistance subject to constraint 1 yields the ratio of tube diameters,

D1

D2
= 21/3 (3.141)

This ratio is an old result, which in physiology is known as the Hess–Murray
law [8, p. 115]. This result is remarkable for its robustness: The optimal D1/D2
ratio is independent of the assumed tube lengths and the relative position of

Figure 3.18 T-shaped construct of round tubes. (From Ref. 60.)
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the three tubes. It is independent of layout. The result equivalent to eq. (3.141)
for channels that are formed between parallel plates of spacings D1 and D2 is
D1/D2 = 21/2 (see Problem 12.22).

New is the second level of optimization, which consists of selecting the ratio
L1/L2 subject to space constraint 2. The result

L1
L2

= 21/3 (3.142)

shows that at the junction the tube lengths must change in the same proportion as
the tube diameters. Equations (3.141) and (3.142) are a condensed summary of
the geometric proportions found more laboriously in the optimization of three-
dimensional flow constructs [59], where the tube lengths increase by factors in
the cyclical sequence 2, 1, 1, 2, 1, 1, . . . . The average of this factor for one step
is 21/3, which means that the optimization of the plane construct of Fig. 3.18 is
an abbreviated substitute for the optimization of the three-dimensional construct.

If the flow in the T-shaped construct is fully developed and turbulent (see
Section 8.2), eqs. (3.141) and (3.142) are replaced by [60]

D1

D2
= 23/7,

L1
L2

= 21/7 (3.143)

Unlike in the laminar case, in which the ratio D/L was preserved in going from
each tube to its stem or branch, in turbulent flow the geometric ratio that is
preserved is D/L3. Note that eqs. (3.143) yield D1/L

3
1 = D2/L

3
2 . The assembly

of three tubes can be optimized further by giving the morphing geometry more
degrees of freedom. One example is to allow the angle of confluence to vary so
that the T-shaped construct acquires an optimized Y shape.

In the designs of eqs. (3.141)–(3.143), the time of fluid residence in the small
channels (D2) is equal to the residence time in the large channel (D1). This is
true for laminar and turbulent flow, river basin design, and urban traffic [7].

Other simple flow constructs (e.g., open channels, gravity-driven flows) and
other global constraints (e.g., tube wall material) lead to similar, compact
conclusions. Another way to see the robustness of the results is to compare
the minimized flow resistances for laminar and turbulent flow in the T-shaped
arrangement (Fig. 3.18). It was found that the minimized resistance can be
expressed in terms of the two constraints, the total tube volume (V) and the total
area of the territory (A),

Rlam = 4
A3/2

V2
, Rturb = 4

A7/4

V5/2
(3.144)

These expressions are surprisingly close even though their respective flow
regimes are drastically different. Equations (3.144) indicate the role played by
global constraints. Flow resistances are smaller when the served territories are
smaller and when the tube volumes are larger.

More complex tree-shaped flow architectures are taught in Ref. 8. For
illustration, consider the problem of distributing a stream from one central point
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to many points situated on a circle. This flow configuration has applications in the
cooling of electronics mounted on a disk [61–66]. A stream of coolant that enters
the disk through its center bathes the disk and exits through ports located on the
disk perimeter. There are two fundamental problems: the flow architecture for
best cooling (minimal overall thermal resistance) and the architecture forminimal
fluid flow resistance. In Figs. 3.19–3.21 we consider the fluid-flow problem by
employing two methods, the minimization of flow resistance [63] and the much
simpler and more direct method of minimizing flow path lengths [64].

The flow structure covers the disk shown in Fig. 3.19a. The disk radius is
R. The mass flow rate and pressure drop from the center to the periphery are ṁ
and �P. The fluid flows in the Hagen–Poiseuille regime through round tubes of
diameter Di, length Li, and flow rate ṁi, where i indicates the tube level (i = 0
near the center and increasing i values toward the periphery). The flow resistance
posed by each tube is

�Pi
ṁi

= 128ν

π

Li
D4
i

(3.145)

In the example of Fig. 3.19a, there are three levels of branching or pairing,
such that the numbers of tubes of the same level increase from the center to the
periphery: n0 = 3, n1 = 6, n2 = 12, n3 = 24. The number of outlets on the
disk perimeter is N; in Fig. 3.19a, for example, N is equal to 24. The global
flow resistance �P/ṁ can be minimized by selecting all the geometric features
of the flow structure [63]. These include not only the lengths and angles, but
also the ratios of tube diameters. When the total volume occupied by the tubes
is constrained, the optimal tube diameters are sized relative to each other in
accordance with eq. (3.141). When space is constrained, branchings with only
two tributaries pose less resistance than branchings with more tributaries [60].

The flow architecture of Fig. 3.19a was optimized numerically for minimal
global �P/ṁ, by selecting the angles (α, β, γ ) and tube lengths (L0, L1, L2)
subject to geometric constraints such as L0 + x1 + x2 = R. See also Ref. 8. The
flow architecture has two degrees of freedom. Figure 3.19a shows one example of
optimized layout of tubes. The optimal bifurcation angle is almost uniform (75◦)
throughout the design, especially away from the center. The minimized flow
resistance is reported as point 2 (N= 12) in Fig. 3.20, where f is a dimensionless
flow resistance factor defined by

�P

ṁ
= 8πv

R3

V2
f (3.146)

and V is the total volume occupied by the tubes. Point 2 is the start of the ‘‘two
pairings’’ or two levels of branching curve, which was obtained by generating
the optimized structures for cases with increasing numbers of outlets (N) on
the perimeter. The number N (= 4n0) varies discretely as the number of central
tubes n0 increases, despite the impression given by the continuous curve shown
in Fig. 3.20. Every flow structure on that curve has two levels of pairing or
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Figure 3.19 Tree flows between a circle and its center: (a) construct obtained by optimizing every geometric detail such that the global flow resistance
is minimal; (b) construct generated by minimizing every flow path length. (From Ref. 64.)
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Figure 3.20 Effect of the number of levels of pairing on the global flow resistance (f) when the
number of points on the periphery (N) is fixed and the disk radius and total tube volume are
fixed. (From Ref. 63.)

bifurcation. Complexity increases when the number of pairing levels increases.
For example, point 3 represents the simplest design with three pairings: This is
drawn to scale in Fig. 3.19a.

All the tree-shaped flows developed so far represent design—geometric form
with purpose. Which dendritic pattern is better? The answer depends on what
is fixed. We rely on one of the first features in constructal theory: The smallest
length scale of the flow pattern—the elemental scale—is known and fixed [8,
59]. This length scale is the distance (d) between two adjacent points on the
circle. The radius of the circle (R) is also fixed. This means that the number of
points on the circle (N) is fixed. Under these circumstances, formulas such as eq.
(3.146) show that the global flow resistance of the tree construct (�P/ṁ) varies
proportionally with f, while the other factors are constant. The flow pattern with
less global resistance is the one with the lower f value.

Figure 3.20 is instructive for several reasons. One conclusion is that pairing is a
useful feature if N is sufficiently large (greater than 6). The larger theN value, the
more likely the need to design more levels of pairings into the flow structure. If
the number of points on the rim of the structure (N) increases, the flow structure
with minimal flow resistance becomes more complex. Complexity increases
because N increases and because the number of pairing levels increases. The
right complexity, however, is finite (modest), not infinite or maximal. The right
complexity is one of the features of the flow design uncoveredwith the constructal
law [8].
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If we take a fixed disk (R) with more and more points on the rim (N), the
search for minimal flow resistance between the rim and the center requires
discrete changes in the structure that covers the disk. To start with, N has to
be large enough for an optimized structure with one or more pairings to exist.
The starting N values (6, 12, 24, . . . ) are indicated with circles in Fig. 3.20.
As the structures become more complex, the circles describe a nearly smooth
curve in the semilogarithmic field. When there are three or more levels of
pairing, the circles indicate the transition from one type of structure to the next
type with one more level of branching. This transition, or competition between
two flow structures, is analogous to the transition and flow pattern selection in
Bénard convection (see Section 5.5). In the vicinity of each circle in Fig. 3.20,
the designer can choose between two structures, as both have nearly the same
resistance.

It was shown by Lorente et al. [64] that it is much simpler to optimize the
layout of the flow structure by minimizing the lengths of the tubes that inhabit
every area element. The method is detailed in Refs. 8 and 64. Figure 3.19b shows
one minimal-length tree next to the design based on the resistance minimization
method. Visually, there is little difference between the two constructions. The
same can be said about the f values of the competing designs. The squares
plotted on Fig. 3.21 show that although consistently inferior, the performance of
minimal-length structures resembles closely the performance of fully optimized
structures. In conclusion, the length-minimization method proposed by Lorente

Figure 3.21 Minimal global flow resistance for (a) constructs obtained by optimizing every
geometric detail and (b) constructs produced by minimizing every flow path length. (From
Ref. 64.)
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et al. [64] provides a very effective shortcut to designs that come close to the best
designs. The minimal-length designs approach the optimal designs in terms of
global performance, and architecturally as well. The closeness between designs
(Figs. 3.19–3.21) shows again that optimized tree flow structures are robust.

The design features described in this section are important in general (i.e.,
regardless of what flows through the complex flow structure). For example,
structures similar to those of Fig. 3.19 can be used in the conduction cooling of
electronics. In such cases the disk generates heat at every point, and the ‘‘ducts’’
are blades or fibers with very high thermal conductivity, which are embedded
in the heat-generating medium. The heat sink is the center of the disk. In the
optimized design the inserts are arranged as a tree, which becomes larger, more
complex, and more robust as the size of the disk increases [62].

In summary, the convection cooling of a heat-generating body is a design chal-
lenge with at least two objectives: minimal thermal resistance and minimal flow
resistance (pumping power) [8, 65]. In this section we outlined the emergence
of tree-shaped structures when only one objective is being pursued—minimal
flow resistance. Unlike in thermodynamic optimization [7], where the search is
for a unique balance (for minimal irreversibility) between heat transfer perfor-
mance and fluid mechanics performance, in constructal design the search is for
architectures in which both levels of performance are as high as possible. On
a graph of thermal resistance versus fluid flow resistance (Fig. 3.22), there is
one curve for each flow architecture. In forced-convection configurations, the
thermal resistance decreases as the pumping power increases. The objective is
to morph the flow configuration—to optimize the flow architecture so that it is
represented by the curve that is situated as close as possible to the origin [8, 66].

One curve for one flow architecture

Better flow architectures

Increasing flow rate,
fixed architecture

Flow resistance
0

0

T
he

rm
al

 r
es

is
ta

nc
e

Figure 3.22 Search for flow architectures with two objectives: low thermal resistance and low
fluid flow resistance. (From Ref. 66.)
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Dendritic flow architectures were first reported in 1996 for minimal-time
transportation and for the cooling of electronics, where they were used to
optimize the insertion of high-conductivity blades and needles into the heat-
generating packages [67–69]. Trees for heat convection, fin assemblies, fluid
flow, traffic, economics, and business have also been optimized based on
constructal theory and are reviewed in Refs. 8, 57, and 58. The interest in
tree-shaped flow architectures is spreading to other sectors of heat and mass
transfer, as illustrated by recent papers [70–106].
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PROBLEMS

3.1. Determine the skin friction coefficient Cf, x for hydrodynamically devel-
oping flow in a parallel-plate duct by using the integral solution for the
velocity distribution shown in eqs. (3.5) and (3.6).

3.2. Determine the velocity distribution corresponding to fully developed
(Hagen–Poiseuille) flow through the annular space formed between two
concentric tubes. Let ri and ro be the inner and outer radii, respectively.
Show that the inner wall shear stress τw,ri

differs from the value along
the outer wall, τw,ro

. Calculate the friction factor for this flow by using
instead of τw in eq. (3.24) the average τw value defined based on
a force balance of type (3.23): π(r2o − r2i ) �P = τw,avg2π(ro + ri)L =
2πL(roτw,ro + riτw,ri).

3.3. Determine the velocity distribution and friction factor for Hagen–
Poiseuille flow through a duct whose cross section has the shape of
an extremely slender wedge (a triangle with tip angle ε � 1 and long
sides equal to b). Neglect the friction effect introduced by the short wall
opposing the tip angle, whose length is εb. Start with eq. (3.30), where y is
along b and z along εb. Check the relative order of magnitude of the two
terms on the right-hand side of eq. (3.30), and neglect the insignificant
one. To calculate the friction factor, use the perimeter-averaged wall
shear stress τw,avg defined in Problem 3.2.
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3.4. Determine the Hagen–Poiseuille flow through a duct of rectangular cross
section (Fig. 3.5) by solving eq. (3.30) for u(y, z) as a Fourier series.
This problem is analytically identical to determining the temperature
distribution inside a rectangular object with internal heat generation and
isothermal walls. With reference to Fig. 3.5, the problem statement is

∇2u = 1

µ

dP

dx
= constant

(A)
u =



0 at y = ±a/2
0 at z = ±b/2

To solve it, assume that

u(y, z) = u1(y) + u2(y, z)

where u1(y) is the Hagen–Poiseuille flow through the infinite parallel-plate
channel of width 2a,

d2u1
dy2

= 1

µ

dP

dx (B)

u1 = 0 at y± a/2

and where u2 is the necessary correction,

∇2u2 = 0

(C)
u2 =



0 at y = ±a/2
−u1 (y) at z = ±b/2

Note that adding problems B and C equation by equation yields the original
problem A. The advantage of decomposing the problem as A = B + C
is that problem C can be solved by Fourier series expansion, whereas
problem A cannot. Problem C is solvable because the equation ∇2u2 = 0
is homogeneous and one set of boundary conditions (y) is homogeneous
(see Ref. 24, pp. 91–98).

3.5. Consider the approximate solution to Hagen–Poiseuille flow through
a duct with rectangular cross section [eqs. (3.31)–(3.37)]. Retrace the
analytical steps of this solution by starting with another velocity profile
instead of eq. (3.31), for example,

u(y, z) = u0 cos
πy

a
cos

πz

b
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3.6. Table 3.2 and Fig. 3.7 suggest that an approximation for f and Nu in fully
developed duct flow is

f = 16

ReDh

πD2
h/4

Aduct

Nu =



3.66

πD2
h/4

Aduct
, T0 = constant

4.36
πD2

h/4

Aduct
, q′′ = constant

Check the accuracy of these geometric correlations by completing
Table P3.6 for friction and heat transfer through a duct with regular
hexagonal cross section.

Table P3.6

Numerical
Results

(Table 3.3)
Approximate

Results

f ReDh 15.065

Nu(T0 = constant) 3.353

Nu(q′′ = constant) 4.021

3.7. Determine the fully developed temperature profile in a tube with constant
wall temperature by solving eqs. (3.72)–(3.74) using the method of
successive approximations. The technique consists of guessing a particular
polynomial for φ(r*), substituting this guess into the left-hand side of
eq. (3.72), and finally, integrating eq. (3.72) to obtain a better guess
(approximation) for φ(r*). The procedure can be repeated until the change
in the Nu value from one approximation to the next is below a cost-
determined percentage. To start the procedure, a reasonable initial guess
is φ0(r*) = 1.

3.8. The heat flux through the walls of the channel of Fig. 3.1 is uniform,
q′′. The flow regime is laminar. The velocity and temperature profiles are
fully developed. Derive the expression for the fully developed temperature
profile, and show that the Nusselt number based on hydraulic diameter is
Nu = 8.235.

3.9. Solid food is heated by flowing through a parallel-plate channel of spacing
D. The plates are isothermal atT0, and the flow is thermally fully developed.
The flow can be modeled as slug, with the longitudinal velocityU uniform
across the channel. Attach a system of coordinates to the channel as in
Fig. 3.1, and determine the fully developed temperature profile and the
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longitudinal variation of the mean temperature. Show that the Nusselt
number based on hydraulic diameter is Nu = π2.

3.10. Consider the thermal development in the entrance region XT of a tube with
uniform (slug) flow throughout the XT length. This assumption amounts
to imagining a Pr = 0 fluid; in addition, the energy equation in eqs.
(3.83) is simplified as (1 − r2∗) is being replaced by the constant 1

2 . Solve
this simplified version of the problem using the separation of variables
indicated in eq. (3.85). As a guide, use a conduction heat transfer textbook
and the observation that the simplified problem is analytically identical to
the problem of transient heat conduction in an initially isothermal (θ* = 1)
cylindrical object with isothermal boundary (θ* = 0), where x* assumes
the role of dimensionless time.

3.11. Consider the Graetz series solution for Nux in a thermally developing
Hagen–Poiseuille flow in a tube [Table 3.4 and eqs. (3.89)–(3.91)]. Show
that in the range x* > O(1), the series expressions for Nux and Nu0–x tend
to the fully developed value of 3.66 (Table 3.2).

3.12. Evaluate the hydraulic diameter of a tube of internal diameter D, which
has a slowly twisting tape insert (dividing wall) positioned right through
the middle (see Fig. P3.12).

Figure P3.12

3.13. A water stream is heated in fully developed flow through a pipe with
uniform heat flux at the wall. The flow rate is ṁ = 10 g/s, the heat flux
q′′ = 0.1W/cm2, and the pipe radius r0 = 1 cm. The properties of water
are µ = 0.01 g/cm · s and k= 0.006 W/cm · K. Calculate (a) the Reynolds
number based on pipe diameter and mean fluid velocity, (b) the heat
transfer coefficient, and (c) the difference between the wall temperature
and the mean (bulk) fluid temperature.

3.14. A water chiller passes a stream of 0.1 kg/s through a pipe immersed in
a bath containing a mixture of crushed ice and water. Thus, the pipe
wall temperature may be assumed to be Tw = 0◦C. The original (inlet)
temperature of the stream is T1 = 40◦C, and the specific heat of water is
c = 4.182 J/g · K.
(a) If the effectiveness of this heat exchanger is ε = 0.85, calculate the

final (outlet) temperature of the water stream.

(b) Under the same conditions, what is the overall heat transfer rate
between the stream and ice-water bath?
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(c) Assume that the pipe length is L, the diameter D, and the flow regime
fully developed laminar. If a new pipe is to be used (D1 = D/2) and if
the effectiveness is to remain unchanged, what should be the length of
the new pipe (relative to the old length L), L1/L = ?

3.15. Consider the Hagen-Poiseuille flow through a tube of radius r0. The flow
is extremely viscous, so that the energy equation reduces to

0 = k
1

r

d

dr

(
r
dT

dr

)
+ µ�

where � is the viscous dissipation term � = (du/dr)2. Determine the
temperature distribution inside the pipe, subject to T = T0 (constant) at
r = r0. Let Q be the total heat transfer rate through the pipe wall, over
a pipe length L. Prove that Q = (ṁ �P)/ρ, where ṁ and �P are the
mass flow rate and the pressure drop over the length L. Comment on
the thermodynamic (lost-work) significance of this result; show that it is
the same as eq. (1.48).

3.16. Water is heated as it flows through a stack of parallel metallic blades. The
blade-to-blade spacing is D = 1 cm and the mean velocity through each
channel is U = 3.2 cm/s. Each blade is heated electrically so that the two
sides of the blade together release 1600W/m2 into the water. Assuming
that the water properties can be evaluated at 50◦C and that the flow is
thermally fully developed:

(a) Verify that the flow is laminar.

(b) Calculate the mean temperature difference between the blade and the
water stream.

(c) Calculate the rate of temperature increase along the channel.

(d) Show how long the channel must be so that the assumption that the
flow is thermally fully developed is valid.

3.17. The air flow through the gaps formed at the top and bottom of a closed
door is driven by the local air pressure difference between the two sides of
the door (Fig. P3.17). The door separates two isothermal rooms at different
temperatures, Tc and Th. In each room, the pressure distribution is purely
hydrostatic, Pc(y) and Ph(y), and the height-averaged pressure is the same
on both sides of the door.

(a) Assume that the air flow through each gap is laminar and fully
developed. In terms of the geometric parameters indicated in the
figure, show that the air flow rate through one gap is

ṁ = (ρc − ρh)
gD3WH

24vL
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where W is the door width in the direction perpendicular to the plane
of the figure. Show further that the net convection heat transfer rate
from the warm room to the cold room, through the two gaps, is

q = ṁcP(Th − Tc)

(b) Given are Tc = 10◦C, Th = 30◦C, D = 0.5mm, L = 5 cm, H =
2.2m, and W = 1.5m. Calculate ṁ and q, and comment on how these
quantities react to an increase in the gap thickness D.

Figure P3.17

3.18. The metallic blade shown in Fig. P3.18 is an electric conductor that must
be cooled by forced convection in a channel with insulated walls, with
spacing D and length L [107]. The blade and the channel are sufficiently
long in the direction perpendicular to the figure. The pressure difference
across the arrangement is fixed, �P, and the flow on either side of the
blade is laminar and fully developed. The inlet temperature is T0.

Figure P3.18

The objective is to lower the blade temperature as much as possible.
The total heat transfer rate from the blade to the fluid, through both sides
of the blade, is fixed by electrical design. What is the best position that the
blade should occupy in the channel—right in the middle, or closer to one
of the walls?
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For simplicity, assume that the blade is isothermal (Tw). Assume that
on either side of the blade (area Aw), the group hAw/ṁcP is sufficiently
greater than 1 so that the outlet temperature of the stream is approximately
equal to Tw. The blade thickness is negligible relative to D.

3.19. Figure P3.19 shows a simplified model of an electronic circuit board
cooled by a laminar fully developed flow in a parallel-wall channel of
fixed length L. The walls of the channel are insulated. The board substrate
has a sufficiently high thermal conductivity so that the board temperature
Tw may be assumed uniform in the longitudinal direction. The pressure
difference that drives the flow is fixed, �P, and the fluid inlet temperature
is T0.

Figure P3.19

The channel spacing D must be selected such that the thermal conduc-
tance q/(Tw − T0) is maximum. In this ratio, q is the total heat transfer rate
removed by the stream from the board. Show that the optimal spacing is
given by

Dopt

L
= 2.70 Be−1/4

L

and that the corresponding maximum thermal conductance or average heat
transfer coefficient is(

q′′

Tw − T0

)
max

L

k
= 0.693 Be1/4L

where BeL = (�P L2)/µα.

3.20. The electronic circuit board shown in Fig. P3.20 is thin and long enough
to be modeled as a surface with uniform heat flux q′′. The heat generated
by circuitry is removed by fully developed laminar flow channeled by the
board and a parallel wall above it. That wall and the underside of the board
are insulated. The length L is specified, and the inlet temperature of the
coolant is T0.

The circuit board reaches its highest temperature (Th) at the trailing
edge, that is, in the plane of the outlet. That temperature ceiling is fixed by
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electrical design; otherwise, the performance of the electronic components
incorporated in the board will deteriorate. The objective is to build as
much circuitry and as many components into the board as possible. This is
equivalent to seeking a board and channel design that ensures the removal
of the largest rate of heat generated by the board (q′′L). The lone degree of
freedom is the selection of the spacing D.

Figure P3.20

(a) Maximize the heat transfer rate removed by the stream, and show that
the optimal design is characterized by

Dopt

L
= 3.14 Be−1/4

L(
q′′

Th − T0

)
max

L

k
= 0.644 Be1/4L

where BeL = �P L2/µα.

(b) Compare this optimal design with the results of Problem 3.19 (with
Tw = Th), in which the board was made isothermal by bonding it to
a high-conductivity substrate. Why is the maximum heat transfer rate
higher when the board is isothermal? Is the increase in heat transfer
significant enough to justify the use of a high-conductivity substrate?

3.21. Figure P3.21 shows the cross section through a bundle of microscopic
water channels that are intended to serve as a heat sink in the substrate
of an integrated circuit. Their purpose is to remove the heat generated by
the circuit. The channels are etched into the high-conductivity substrate
(silicon) and are capped with a cover plate that is a relatively poor thermal
conductor. Water is pumped through the channels, and the flow is laminar
and fully developed. Several ways of optimizing the geometry of this
compact heat sink are described in Refs. 108–110. In this problem, we
consider only one question: What is the optimal fin thickness (t) that
maximizes the heat transfer rate from the substrate (Tw) to the water flow
(local bulk temperature Tf)? We conduct the optimization in the cross
section, that is, at each location along the stream.
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Assume that the heat transfer from Tw to Tf occurs primarily through
the fins, in other words, that heat transfer through the unfinned portions of
the substrate is negligible. For estimating the heat transfer coefficient only,
assume that L � D and that the wetted surfaces are almost isothermal
along L. Assume further that the thermal resistance posed by the substrate
of thickness S is negligible. Derive a formula for the total heat transfer rate
removed by all the channel streams, q′. This quantity is expressed per unit
length in the direction of flow. Arrange your results in the dimensionless
form

Q = function

(
b,

t

D

)

where Q and b are two dimensionless groups

Q = q′

kw(Tw − Tf )B/L
b = L

D

(
Nu

kf
kw

)1/2

In this notation kf, kw, and Nu are the fluid thermal conductivity, the
fin thermal conductivity, and the Nusselt number (constant) for fully
developed flow and heat transfer in the individual channel.

Figure P3.21

To find the optimal fin thickness for maximum q′ when all the other
parameters are fixed, you can maximize Q with respect to t/D for every b.
In this way, you can show that the optimal fin thickness is approximately
equal to the channel spacing when b � 2. On the other hand, when b � 1,
the optimal fin thickness is proportional to (i.e., a fraction of) the fin
length L.
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3.22. The electronic circuit board shown in Fig. P3.22 must be cooled by forced
convection in a parallel-plate channel of spacing D, length L, and width
W perpendicular to the plane of the figure [107]. The channel walls are
insulated. The coolant (air) is forced to flow through the channel by the
pressure difference �P, which is maintained by a fan. All the surfaces
may be modeled as smooth. The channel is sufficiently slender so that the
flow is laminar and fully developed in both subchannels, that is, on both
sides of the board.

Figure P3.22

The board material has the thermal conductivity kw and thickness t,
which is negligible relative to D. The two surfaces of the board are loaded
equally and uniformly with electronics; the constant heat generation rate
per unit board surface is q′′. It is important to note, however, that the heat
fluxes removed by the two streams generally are not equal because of the
conduction heat transfer across the board. The temperatures of the two
board surfaces (T1, T2) increase in the downstream direction and reach
their highest levels at the trailing edge, x = L.

How would you mount the board inside the channel to lower the highest
board temperature as much as possible? Would you place it in the middle
of the channel or closer to one of the sidewalls? You will discover that
the correct answer depends on the degree to which the board substrate is a
good thermal conductor in the transversal direction.

To simplify the analysis, assume that the local bulk temperature of each
stream is nearly the same as the temperature of the neighboring spot on
the board surface bathed by that stream. In other words, assume that the
local temperature difference between the stream and the board surface
is considerably smaller than the temperature rise from x = 0 to x = L
along the board surface. Derive expressions for the surface temperature
distributions T1(x) and T2(x), and try to minimize the larger of the two
trailing-edge temperatures, T1(L) or T2(L). Formulate the analysis in terms
of the following dimensionless parameters:
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ξ = x

L
, y = D1

D
, 1 − y = D2

D

θ1 = (T1 − T0)
ρcP �P D3

12µL2q′′ , θ2 = (T2 − T0)
ρcP �P D3

12µL2q′′

B = 12
kw
k

µαL2

�P D3t

The number B expresses the relative size of the thermal conductance of
the board substrate. The optimal board location (y) will be a function of B.

3.23. In this problem you will determine the optimal spacing of cylinders in
cross flow [33]. The fixed volume H × L × W shown in Fig. P3.23
contains a bundle of parallel cylinders of diameter D and temperature
Tw and is bathed by a cross flow of temperature T∞ and velocity U∞.
Maximize the heat transfer q between the bundle and the surrounding fluid
by selecting the cylinder-to-cylinder spacing S, or the number of cylinders
in the bundle.

That an optimal number of cylinders must exist can be expected based
on the following argument. If the volume H × L × W contains only one

Figure P3.23
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cylinder, then perhaps two or more cylinders will transfer more heat to
the surrounding flow. This trend continues until the cylinders become so
numerous that they almost touch, the bundle becomes impermeable to
the free stream, and the flow stops. The optimal spacing S emerges as a
trade-off between the limit of dense cylinders (large heat transfer area) and
that of sparse cylinders (large flow cross-sectional area).

This argument also suggests the analysis that you should construct.
Begin with the calculation of the heat transfer rate in the two asymp-
totic regimes noted above. For the large-S limit, assume that NuD =
c(U∞D/ν)1/2, where c is an empirical constant that can be deduced from
eq. (7.112). Finally, determine the optimal cylinder-to-cylinder spacing
by intersecting the two asymptotic estimates obtained for the total heat
transfer between the bundle and the free stream.

3.24. The optimal spacing derived in eq. (3.120) is valid for Pr > 0.5. Use the
intersection-of-asymptotes method (Section 3.6), assume that the group is
of low-Pr fluids (Pr < 0.5), and show that eqs. (3.120) and (3.121) are
replaced by

Dopt

L
� 3.33Be−1/4 Pr1/16

q′
max � 0.92(ρ �P)1/2 Pr−3/8 Hcp(Tw − T∞)

3.25. The two-dimensional volume shown in Fig. P3.25 contains a solid of
low thermal conductivity k0. This solid generates heat volumetrically at
the uniform rate q′′′(W/m3). The overall size (A = HL) is fixed, but
the geometric aspect ratio H/L may vary. The perimeter of the H × L
rectangle is insulated. The heat current generated (q′′′A) is removed by a
stream of ideal gas (cP), which flows through a thin channel of spacing D.
The mass flow rate ṁ′(kg/s · m) is proportional to the frontal dimension
(H), ṁ′ = ṁ′′H, where ṁ′′(kg/s · m2) is a constant. Assume that D � H

Insulated
Tpeak

Tw

Tout

L

D

H
T0

Figure P3.25
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and H � L. In this limit the conduction through the k0 material is oriented
in the direction perpendicular to the channel.

The hot spots (Tpeak) occur in the two corners that are situated farthest
from the inlet. Derive an expression for the overall thermal conductance
�T̃ = (Tpeak − T0)/(q

′′′A/k0), and minimize it with respect to the shape
parameter H/L. Report analytically (H/L)opt and �T̃min. For simplicity in
the derivation of �T̃ , neglect the difference between the channel wall
temperature and the bulk temperature of the stream (Tw − Tout). How large
must ṁ′′ be so that your analytical results are valid?

3.26. Assume that in Fig. 3.16 the flow is not driven by an imposed pressure
difference �P. Instead, the flow approaches the stack from the left with a
uniform velocity U, and when the stack is sufficiently dense, it stagnates
against the stack. The approach velocityU should not be confused with the
free-stream velocity in the channels, U∞. Approximate as �P ∼ 1

2 ρU2

the effective pressure rise that drives the flow through the stack, and derive
expressions that replace eqs. (3.120) and (3.123).

3.27. Consider the scale X of the hydrodynamic and thermal entrance regions of
a parallel-plate channel with spacing D and a fluid with Pr ∼ 1. Show that
this scale can also be written as

X

D
∼ Be1/2D

where BeD = (�PD2)/αµ, and �P is the pressure drop along X.

3.28. Consider a Y-shaped construct of three tubes. The stem has length L1
and diameter D1. The two branches are identical and have length L2 and
diameter D2. The flow is fully developed and laminar (Hagen-Poiseuille),
with negligible junction losses. The mass flow rate in the stem (ṁ1) is
twice the mass flow rate in one of the branches (ṁ2). The total pressure
drop (�P) along the Y-shaped construct is fixed. The total volume of the
three tubes is also fixed.

Determine the ratio D1/D2 such that the total residence time in the
Y-shaped construct is minimal. The residence time in one tube is t = L/U,
where U is the average velocity. The total residence time is t = t1 + t2.
Does the optimal ratio D1/D2 depend on L1 and L2? Comment on this
optimal D1/D2 ratio and the 21/3 value obtained by minimizing the flow
resistance of the Y construct.

3.29. Consider the Y-shaped construct of three tubes described in the preceding
problem. Assume that the tubes are sufficiently short, that all the pressure
drops are dominated by losses at the junctions. Now the issue is the flow
resistance of a ‘‘tree of junctions,’’ with pressure at the junctions, not
along the tubes. The pressure drop at the junction between the stem (L1,
D1) and the two branches (L2,D2) is�P1 = K 1

2ρV
2
1 , where V1 is the mean
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velocity in the L1 tube. The pressure drop in the subsequent junctions
(downstream of the L2 tubes) is �P2 = K 1

2ρV
2
2 , where V2 is the mean

velocity in the L2 tubes.
Minimize the overall pressure loss (�P1 + �P2) subject to the total

flow volume of the three-tube construct, and show that the ratio of tube
diameters should be

D1

D2
= 21/2

(
L2
L1

)1/6

Note that if L1 = 8L2, thenD1 =D2, which means that all the tubes should
have the same diameter.

Next, assume that the area A occupied by the layout of three tubes is
fixed. The two L2 tubes are collinear and perpendicular to the L1 tube, in
other words, the three-tube construct is shaped as a T. The area is A =
2L2L1, and its shape L1/L2 is free to vary. Minimize the overall pressure
drop with respect to L1/L2 (i.e., after using the D1/D2 ratio determined
above), and show that the T-shaped configuration with optimal D1/D2 and
L1/L2 is represented by

D1

D2
= 201/4,

L2
L1

= 53/2

3.30. In this problem we ask whether ducts with square cross sections (s) are
better than parallel-plate channels (p) for achieving greater heat transfer
densities in volumes packed with such channels. The comparison is shown
in Fig. P3.30. The flow is from left to right, and the pressure difference is
�P in both designs. Each channel is the best that it can be: Its boundary
layers merge just as they exit the channel.

(p) Parallel plates (s) Square ducts

Lp Ls

Ds

Hs

Hs

Dp
Hp

Hp

Figure P3.30
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According to Section 3.6, the optimal spacing between parallel plates
with fixed length (Lp) and pressure drop �P is Dp/Lp = ap Be−1/4

p .
The corresponding maximum heat transfer rate (qp) packed in a stack

of thickness Hp and width Hp is qpLp/(H
2
pk�T) = bp Be1/2p , where

Bep = �PL2p/(µα). There are np = Hp/Dp plates in the stack. Each plate
has the area HpLp and negligible thickness.

The numerical factors ap and bp are dimensionless and of order 1. We
assume that these factors do not changemuchwhen the shape of the channel
cross section changes. Thus, for a stack of channels with square cross
sections (square sideDs, length Ls), we write similarlyDs/Ls = as Be

−1/4
s

and qsLs/(H
2
s k�T) = bs Be

1/2
s , where Bes = �PL2s/(µα), as � ap and

bs � bp. For simplicity, assume that as = ap and bs = bp.
Two global constraints apply to both configurations, parallel plates and

squares. The total volume of the stack is the same, and so is the total
amount of channel wall material. Show that the (p) and (s) configurations
have the relative dimensions drawn in Fig. P3.30:

Dp

Ds
= 1

2

Lp
Ls

= 1

4

Hp

Hs
= 2

3.31. Here we determine the optimal tapering of a slender tube with Hagen-
Poiseuille flow and round cross section shown in Fig. P3.31. The tube
length is L, and the axial coordinate is x. The tube diameter varies along the
tube, D(x). The tube volume is fixed. The stream with mass flow rate ṁL
enters the tube through its x= L end. The mass flow rate ṁ(x) varies along
the tube because fluid leaks laterally (perpendicularly to x) at a uniform
rate dṁ/dx that is proportional to xp, where p is a known constant. The x=
0 end of the tube is closed. The pressure difference maintained between x
= L and x = 0 is �P. Determine the tube shape D(x) for which the overall
flow resistance �P/ṁL is minimal. Hint: Assume power law solutions,
ṁ = ax1+p and D = bxn, and determine the constants a, b, and n.

0 x

dm
dx

m(x)

D (x)

x = L

mL

Figure P3.31
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EXTERNAL NATURAL
CONVECTION

The basic feature that unites the external flow problems of Chapter 2 with
the internal flow problems of Chapter 3 is the presence of an additional entity
(a mechanism) that in all cases is responsible for driving the flow. Fluid flow is
not merely a body of fluid such as the stagnant water pool in a glass: It is the
relative motion of one fluid layer past an adjacent fluid layer or solid surface.
Since it is an intrinsic property of any flow (fluid, heat, mass) to destroy exergy
[1,2], all flows require a driving mechanism in order to exist.

For example, in order to witness the boundary layer forming along a smooth
wall in parallel uniform flow (Fig. 2.1), somebody must spend mechanical power
to drag the solid wall through the fluid; in the case of motorized sea transport, that
‘‘somebody’’ is the ship’s power plant. Similarly, in the duct flows of Chapter 3,
the fluid must be pumped (forced to flow) through the duct: The operation of a
pump always requires the expense of mechanical power.

For the thermodynamic reason outlined above, the convective heat transfer
problems of Chapters 2 and 3 can be regarded as examples of forced convection.
The creation and maintenance of the flow require a consistent sacrifice of
mechanical power (exergy).

Mathematically, the fluid flow problem in forced convection is decoupled
from the heat transfer problem. Historically, this has been the case, as the
Blasius flow solution preceded the Pohlhausen heat transfer solution and as the
Hagen–Poiseuille flow emerged almost 100 years before the fully developed
heat transfer results summarized in Table 3.2. The flow field must be known, or
at least assumed, before proceeding with an analysis of heat transfer in forced
convection.

In this chapter we focus on a class of convective heat transfer problems
that differ fundamentally from the forced convection class. The difference is
that the flows of this chapter are not forced by a visible mechanism. They
happen naturally, freely, as if pushed by buoyancy forces due to the presence of

168

Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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gravitational acceleration and density variations from one fluid layer to another.
Mathematically, the flow field is intimately coupled to the temperature field, as
temperature variations within the fluid can induce density variations.

We will see that, although invisible, the driving mechanism for natural
convection is present, and it is a work-producing engine like all the engines that
drive the fans and pumps of forced convection. It is customary to refer to natural
(or free) convection as ‘‘buoyancy-driven’’ flows. This is not correct, because
buoyancy is a force, and a force does not drive. A force pushes or pulls. No work
is produced unless there is displacement, that is, unless the force moves while
being opposed. Displacement means movement (flow), and it can only be driven
by the mechanisms that produce the work that is destroyed by the movement. The
mechanisms are heat engines, and they drive everything that moves in nature.
Natural convection flows are driven by natural engines.

4.1 NATURAL CONVECTION AS A HEAT ENGINE IN MOTION

A simple configuration with natural convection is in Fig. 4.1. Think of a body
of temperature T0 and height H immersed in a fluid of temperature T∞. For a
more meaningful discussion, think of a heat-generating body immersed in a cold

Figure 4.1 Heat engine responsible for driving natural convection.
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fluid reservoir, such as an old-fashioned stove in the middle of a room. Since
air at constant pressure expands upon being heated, the air layer adjacent to
the wall expands (becomes lighter, less dense) and rises. At the same time, the
cold reservoir fluid is displaced en masse downward. Thus, the wall–reservoir
temperature difference induces the all-familiar ‘‘natural circulation’’ sketched
in Fig. 4.1. In view of the thermodynamics discussed in the preceding segment,
we ask the question: What power plant is responsible for the steady cyclic flow
encountered in natural convection?

To answer this question, we follow the evolution of a fluid packet through
the imaginary closed duct that guides the flow loop. Starting from the bottom
of the heated wall, the packet is heated by the wall and expands as it rises to
lower pressures in the hydrostatic pressure field maintained by the reservoir.
Later, along the downflowing branch of the cycle, the fluid packet is cooled by
the reservoir and compressed as it reaches the depths of the reservoir. From the
circuit executed by every fluid packet, we learn that the loop-shaped flow is the
succession of four processes,

heating → expansion → cooling → compression

In conclusion, the fluid packet traveling along the flow loop of Fig. 4.1 is
equivalent to the cycle executed by the working fluid in a heat engine modeled as
a closed system. This heat engine cycle should be capable of deliveringwork if we
insert a suitably designed propeller in the stream; this is the origin of the ‘‘wind
power’’ discussed in connection with the harnessing of solar work indirectly from
the atmospheric heat engine loop. In the absence of work-collecting devices (e.g.,
windmill wheels), the heat engine cycle drives its working fluid fast enough so
that its entire work output is destroyed because of irreversibilities due to friction
between adjacent fluid layers and heat transfer along finite temperature gradients.
The entire circulation pattern (Fig. 4.1) is an infinity of nested heat engine loops
with friction between them.

The thermodynamics of natural convection is new for a heat transfer course
such as this. Yet, it illustrates with amazing simplicity and nakedness the
principle that governs all movement in nature, animate and inanimate [3–5],
and for this reason it has generated already a body of new research on the
thermodynamics of natural convection [2, 6–9].

The legacy of inanimate flow systems on earth is the same as that of animate
flow systems. They all move mass by destroying exergy that originates from the
sun. Rivers and animals use and destroy exergy in proportion with the moved
weight (Mg) times the horizontal displacement (L). The same holds for our
vehicles, on land, in air, and in water. The spent fuel is proportional to the weight
of the vehicle times the distance traveled.

River and animal designs have been morphed and perfected over millions of
years. Engineered design is evolving right now, on design tables and in factories.
The vehicle motor burns fuel in proportion to the high-temperature heating rate
QH. This stream of heat is converted partially into mechanical power delivered
to the wheels (W), while the remainder (QL, or QH − W) is dissipated into the
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Engines
Work

Heat
(QH – W )

Heat
(= W )

Heat to
environment

QH

QH

Q

Q

Heat to sky

Heat

Winds
Ocean currents
Animals, vehicles

Fuel & food

W

Brakes

Figure 4.2 The whole Earth is an engine + brake system, containing innumerably smaller
‘‘engine + brake’’ systems (winds, ocean currents, animals, and human and machine species).

environment. Not mentioned in thermodynamics until recently [2–5] is the fact
that W is itself dissipated into the ambient, because of the movement of vehicle
weight (Mg) over the horizontal distance L (Fig. 4.2).

To summarize, all the high-temperature heating that comes from burning fuel
(QH) is ultimately transmitted to lower temperature into the environment. This
is evident in Fig. 4.2 and any other ‘‘heat transfer’’ configuration. The need for
higher efficiencies in power generation (greaterW/QH) is the same as the need to
have moreW, that is, the need to move more weight over larger distances on the
surface of the earth, which is the natural phenomenon (tendency) summarized in
the constructal law.

At the end of the day, when all the fuel has been burned, and all the food has
been eaten, this is what animate flow systems have achieved. They have moved
mass on the surface of the earth (they have ‘‘mixed’’ the earth’s crust) more than
in the absence of animate flow systems.

The moving animal or vehicle is the equivalent to an engine connected to
a brake (Fig. 4.2), first proposed in 1976 [10] and later [2,11]. The power
generated by muscles and motors is ultimately and necessarily dissipated by
rubbing against the environment. There is no taker for the W produced by the
animal and vehicle. This is why in Fig. 4.3 the GDP of a country is roughly
proportional to the amount of fuel burned in that country [5].

Figure 4.2 holds also for the whole earth, as a closed thermodynamic
system (note: closed does not mean isolated). Earth, with its solar heat input,
heat rejection, and wheels of atmospheric and oceanic circulation, is a heat
engine without shaft. Its mechanical power output cannot be delivered to an
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Figure 4.3 Economic activity means fuel that is being burned. The annual gross domestic
product of regions and countries all over the globe versus their annual consumption of fuel.

extraterrestrial system. Instead, the earth engine must dissipate through air,
water, and solid (rocks) friction and other irreversibilities (e.g., heat leaks, mass
diffusion) all the mechanical power that it produces. It does so by ‘‘spinning
in its brake’’ as fast as is necessary (and from this follow the winds and the
ocean currents, which proceed along easier and easier routes, and flow at finite,
characteristic speeds, never getting out of hand). This is the constructal-law basis
of all natural convection phenomena.

In the human and nonhuman biosphere (power plants, animals, vegetation,
water flow) the engines have shafts, rods, legs, and wings that deliver the
mechanical power to external entities that use the power (e.g., vehicles and animal
bodies needing propulsion). Because the engines of engineering and biology are
constructal, they morph in time toward easier flowing configurations. They
evolve toward producing more mechanical power (under finiteness constraints),
which, for them, means a time evolution toward less dissipation or greater
efficiency.

Outside the engineering or biology engine, all the mechanical power is
destroyed through friction and other irreversibility mechanisms (e.g., transporta-
tion and manufacturing for humans, animal locomotion, and body heat loss to
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ambient). The engine and its immediate environment (the ‘‘brake’’), as one
thermodynamic system, are analogous to the entire earth. The flowing earth
(with all its engine + brake components, rivers, fish, turbulent eddies, etc.)
accomplishes as much as any other flow architecture, animate or inanimate: It
mixes the earth’s crust most effectively—more effectively than in the absence
of constructal phenomena of generation of flow configuration.

The movement of animals—the flow of animal mass on earth—is analogous
to other moving and mixing designs such as the turbulent eddies in rivers, oceans,
and the atmosphere. It is not an exaggeration to regard animals as self-driven
packs of water, that is, motorized vehicles of water mass, which spread and mix
the earth like the eddies in the ocean and the atmosphere.

Irrefutable evidence in support of this unifying view is how all these moving
packs of biological matter have morphed and spread over larger areas, depths
and altitudes, in this remarkable sequence in time: fish in water, walking fish and
other animals on land, flying animals in the atmosphere, human and machine
species in the air, and human and machine species in the outer space. Not in the
opposite time direction. The balanced and intertwined flows that generate our
engineering, economics, and social organization are no different than the natural
flow architectures of biology (animal design) and geophysics (river basins, global
circulation) [12].

Returning to Fig. 4.1, we see the fundamental difference between forced
convection and natural convection. In forced convection, the engine that drives
the flow is external, whereas in natural convection the engine is built into the
flow itself.

Natural convection will be analyzed by focusing on two extremes. In this
chapter we discuss mainly the interaction between a vertical heated object and
a much larger fluid reservoir, so large that the downward motion sketched in
Fig. 4.1 is negligible. In Chapter 5 we study the circulation present in finite-size
fluid layers heated from the side (Fig. 5.1); in that case, the downward portion
of the natural convection loop of Fig. 4.1 is as strong as the upward portion
because both portions are driven by two vertical walls maintained at different
temperatures.

4.2 LAMINAR BOUNDARY LAYER EQUATIONS

The heat transfer problem in Fig. 4.1 is to predict the heat transfer rate Q when
the wall–reservoir temperature difference is known,

Q = (HW)h0−H(T0 − T∞) (4.1)

In other words, the objective is to calculate the wall-averaged heat transfer
coefficient h0–H. Note that HW is the wall area and W the wall dimension in
the direction perpendicular to the x–y plane. In this section we focus on the
boundary layer regime, where the scale of h0–H is k/δT and the thermal boundary
layer thickness δT is negligibly small in comparison with H.
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Proceeding as in Chapter 2, the complete Navier–Stokes equations for the
steady constant-property two-dimensional flow of Fig. 4.1 are

∂u

∂x
+ ∂v

∂y
= 0 (4.2)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ µ ∇2u (4.3)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
+ µ ∇2v − ρg (4.4)

u
∂T

∂x
+ v

∂T

∂y
= α ∇2T (4.5)

Compare these with the equations of Chapter 2, and note the presence of
the body force term −ρg in the vertical momentum equation (4.4). Equations
(4.2)–(4.5) reduce to simpler forms if the focus is on the boundary layer region
(x ∼ δT, y ∼ H, and δT � H). Thus, only the ∂2/∂x2 term survives in the
∇2 operator and, as demonstrated in Chapter 2, the transversal momentum
equation (4.3) reduces to the statement that in the boundary layer, the pressure is
a function of longitudinal position only,

∂P

∂y
= dP

dy
= dP∞

dy
(4.6)

The boundary layer equations for momentum and energy are then

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −dP∞

dy
+ µ

∂2v

∂x2
− ρg (4.7)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂x2
(4.8)

Noting further that dP∞/dy is the hydrostatic pressure gradient dictated by the
reservoir fluid of density ρ∞, dP∞/dy = −ρ∞g, the equation (4.7) becomes

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= µ

∂2v

∂x2
+ (ρ∞ − ρ)g (4.9)

Equations (4.2), (4.8), and (4.9) must be solved in order to determine u, v,
and T in the boundary layer. Through the body force term (ρ∞ − ρ)g in the
momentum equation (4.9), the flow is driven by the density field ρ(x, y) generated
by the temperature field T(x, y). Equations (4.8) and (4.9) are coupled via the
equation of state of the fluid; for example, if the fluid behaves according to the
ideal gas model [2],

P = ρRT (4.10)
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At a level y, we have

ρ = P∞/R

T
and ρ∞ = P∞/R

T∞
(4.11)

and
ρ − ρ∞ = ρ

(
1 − T

T∞

)
(4.12)

Expression (4.12) can be rearranged as

ρ∞ − ρ

ρ∞

(
1 − ρ∞ − ρ

ρ∞

)−1

= T − T∞
T∞

(4.13)

which in the limit (T − T∞) � T∞ yields

ρ � ρ∞

[
1 − 1

T∞

(
T − T∞

) + · · ·
]

(4.14)

This result states that the density decreases slightly below ρ∞ as the local
absolute temperature increases slightly above the reservoir absolute temperature
T∞. In general, for fluids that are not necessarily ideal gases, expression (4.14)
is written as

ρ � ρ∞[1 − β(T − T∞) + · · ·] (4.15)

where β is the volume expansion coefficient at constant pressure [2],

β = − 1

ρ

(
∂ρ

∂T

)
P

(4.16)

Implicit in the expansion (4.15) is the assumption that the dimensionless product
β(T − T∞) is considerably smaller than unity.

The Boussinesq approximation of the boundary layer equations amounts to
substituting eq. (4.15) into eqs. (4.8) and (4.9) and, in each case, retaining
the dominant term. For example, in the momentum equation (4.9), ρ appears
in the inertia terms as well as in the body force term; using approximation
(4.15), the inertia terms will be multiplied by the dominant term ρ∞ = constant,
whereas the leading body force term becomes ρ∞βg(T − T∞). Therefore, the
momentum equation (4.9) becomes

u
∂v

∂x
+ v

∂v

∂y
= ν

∂2v

∂x2
+ gβ(T − T∞) (4.17)

where g, β, T∞, and ν = µ/ρ∞ are constants. Similarly, the thermal diffusivity
appearing in the energy equation (4.8), α = k/ρ∞cP is assumed constant.

TheBoussinesq-approximatedmomentum equation (4.17) effects the coupling
between the temperature field and the flow field. If the fluid is isothermal
(T = T∞), the driving force is zero everywhere and eqs. (4.17) and (4.2)
yield the ‘‘no-flow’’ solution u = v = 0. When the fluid is heated by the
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wall, the body force term is finite [∼gβ(T0 − T∞)] and so are the velocity
components u and v. In what follows we focus in more detail on the solution to
the Boussinesq boundary layer equations (4.2), (4.8), and (4.17) subject to the
following conditions:

Impermeable, no slip, isothermal wall:

u = v = 0 and T = T0 at x = 0 (4.18a)

Stagnant, isothermal infinite reservoir:

v = 0 and T = T∞ as x → ∞ (4.18b)

4.3 SCALE ANALYSIS

Consider the conservation of mass, momentum, and energy in the thermal
boundary layer region (x∼ δT, y∼H), where the heating effect of the wall is felt.
In the steady state, the heat conducted from the wall into the fluid is swept and
carried upwards as an enthalpy stream. The equation (4.8) expresses a balance
between longitudinal convection and transverse conduction,

u
�T

δT
, v

�T

H︸ ︷︷ ︸
Convection

∼ α
�T

δ2T︸ ︷︷ ︸
Conduction

(4.19)

where �T = T0 − T∞ is the scale of the variable T − T∞. From mass conserva-
tion in the same layer, that is,

u

δT
∼ v

H
(4.20)

we learn that the two convection terms in eq. (4.19) are of order (v �T)/H. Thus,
the energy balance involves two scales,

v
�T

H
∼ α

�T

δ2T
(4.21)

and it yields

v ∼ αH

δ2T
(4.22)

where the thermal thickness δT is still unknown.
Turning our attention to the momentum equation (4.17) and still focusing on

the δT × H region, we recognize the interplay among three forces:

u
v

δT
, v

v

H︸ ︷︷ ︸
Inertia

νv

δ2T︸ ︷︷ ︸
Friction

gβ �T︸ ︷︷ ︸
Buoyancy

(4.23)
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The mass conservation scaling (4.20) indicates that the two inertia terms are of
order v2/H. It remains to establish under what conditions the δT layer is ruled by
the inertia ∼ buoyancy balance, as opposed to the friction ∼ buoyancy balance.
The buoyancy force is not negligible because, without it, there would be no
flow. Dividing expression (4.23) through the buoyancy scale gβ �T and using
eq. (4.22) to eliminate the vertical velocity scale v, we obtain(

H

δT

)4

Ra−1
H Pr −1

︸ ︷︷ ︸
Inertia

(
H

δT

)4

Ra−1
H︸ ︷︷ ︸

Friction

1︸ ︷︷ ︸
Buoyancy

(4.24)

where the Rayleigh number is defined as

RaH = gβ �T H3

αν
(4.25)

Expression (4.24) shows that the competition between inertia and friction is
decided by a fluid property, the Prandtl number: High-Pr fluids will form a δT
layer ruled by the friction–buoyancy balance, while low-Pr fluids will form
a δT layer with buoyancy balanced by inertia. Below, we examine these two
possibilities in detail.

4.3.1 High-Pr Fluids

When Pr � 1, the friction–buoyancy balance of eq. (4.24) yields

δT ∼ H Ra−1/4
H (4.26)

and using eq. (4.22),

v ∼ α

H
Ra1/2H (4.27)

Since the heat transfer coefficient scales as k/δT, the Nusselt number scale is

Nu = hH

k
∼ Ra1/4H (4.28)

It will be shown later that the Nu ∼ Ra1/4H proportionality for Pr � 1 fluids is
confirmed by more precise analyses and numerous laboratory measurements;
therefore, the δT and v scales derived above are the correct scales for the thermal
boundary layer region.

Figure 4.4a shows qualitatively the conclusions reached so far: the δT-thick
layer effects the transition from T0 to T∞ and at the same time drives fluid
upward with a velocity given by eq. (4.27). The fluid motion is not restricted to
a layer of thickness δT. It is possible for the heated δT layer to entrain viscously
a layer of outer (unheated) fluid. Let δ be the thickness of this outer layer and
let us also assume that δ � δT. Consider now the conservation of momentum in
the boundary layer of thickness δ [eq. (4.17)]. Since the outer fluid is isothermal,
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Figure 4.4 Two length scales of the boundary layer flow along a heated vertical wall.

the buoyancy effect is absent. The δ layer is driven viscously by the much
thinner δT layer, and it is restrained by its own inertia. Thus, eq. (4.17) dictates
an inertia ∼ friction balance in a layer of thickness δ,

v
v

H
∼ ν

v

δ2
(4.29)

where the vertical velocity scale v is imposed by the driving instrument (the δT
layer); eliminating v between eqs. (4.29) and (4.27) yields

δ ∼ H Ra−1/4
H Pr1/2 (4.30)
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In other words,
δ

δT
∼ Pr1/2 > 1 (4.31)

In conclusion, the higher the Prandtl number, the thicker the layer of unheated
fluid driven upward by the heated layer. Influenced by the language of forced
convection (Chapter 2), we call δ the velocity boundary layer thickness. This
terminology is conceptually inappropriate because it obscures the fundamental
difference between forced convection boundary layers and natural convection
boundary layers. This fundamental difference is illustrated in Fig. 4.4, where
the velocity profile is described by two length scales (δT and δ), not by a single
length scale (δ) as in forced convection. The velocity scale [eq. (4.27)] is reached
within a thin layer δT, while the velocity decays to zero within a thick layer δ.

4.3.2 Low-Pr Fluids

Looking back at eq. (4.24), when Pr � 1, we see a balance between inertia and
buoyancy in a layer of thickness δT. Combining this balance with the v scale of
eq. (4.22) yields, in order,

δT ∼ H(RaH Pr)−1/4 (4.32)

v ∼ α

H
(RaH Pr)1/2 (4.33)

Nu = hH

k
∼ (RaH Pr)1/4 (4.34)

Correct scale analysis reveals the correct (new) dimensionless group, RaH Pr,
which plays the same role for low-Pr fluids as RaH plays for high-Pr fluids. The
name Boussinesq number is used for this group:

BoH = RaH Pr = gβ �T H3

α2
(4.35)

Figure 4.4b shows the meaning of scales (4.32) and (4.33): The δT layer is
driven upward by buoyancy and restrained by inertia. This means that outside
the δT layer, where the fluid is isothermal and the buoyancy effect is absent, the
fluid is motionless. The velocity profile must then be as wide as the temperature
profile. However, since the no-slip condition still applies at the wall, the location
of the velocity peak is an important second-length scale in the description of the
velocity profile. Let δv be the thickness of a very thin layer right near the wall, a
layer in which the buoyancy-driven fluid is restrained viscously by the wall. The
buoyancy ∼ friction balance in the layer of thickness δv yields

ν
v

δ2v
∼ gβ �T (4.36)
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where the v scale is dictated by the δT layer scale [eq. (4.33)]. Combining, we
find that

δv ∼ H Gr−1/4
H (4.37)

where the Grashof number is defined as

GrH = gβ �T H3

ν2
= RaH

Pr
(4.38)

Dividing eqs. (4.37) and (4.32) side by side yields

δv

δT
∼ Pr1/2 < 1 (4.39)

This relationship is shown qualitatively in Fig. 4.4; however, it should not be
confused with eq. (4.31), as δv should not be confused with δ.

As we saw in Chapter 2, the boundary layer thickness is the transversal
distance to which the effect of thermal diffusion spreads during the time needed
by the flow to sweep the wall. In the present case, the transversal diffusion time
is tδT ∼ δ 2

T /α and the longitudinal convection time is tH ∼ H/v. If we substitute
the δT and v scales for Pr > 1 fluids, eqs. (4.26) and (4.27), we find that these
two time scales are the same time scale, tδT ∼ tH . The same conclusion holds if
we use the δT and v scales for Pr < 1 fluids, eqs. (4.32) and (4.33).

4.3.3 Observations

Table 4.1 provides a bird’s-eye view of the conclusions reached based on scale
analysis. The first three columns contain the length scales governing the thermal
layer and the buoyancy-driven wall jet. It is apparent that the length scale
H Ra−1/4

H plays the role of primary length unit and that the remaining length
scales follow from H Ra−1/4

H through an appropriate stretching/compression
factor depending solely on Pr. The relative order of magnitude of all length
scales is shown in Fig. 4.5 using H Ra−1/4

H as the length unit on the ordinate; it is
clear that the boundary layer geometry of Pr < 1 fluids differs from the geometry
of Pr > 1 fluids.

Table 4.1 Summary of flow and heat transfer scales in a natural convection boundary
layer along a vertical wall

Wall Jet Velocity Profile
Distance from

Wall to
Velocity Peak

Thickness of
Wall Jet

Velocity
Scale

Prandtl
Number
Range

Thermal
Boundary
Layer

Thickness

Nusselt
Number

Nu = hH

k

Pr > 1 HRa−1/4
H H Ra−1/4

H Pr1/2(H Ra−1/4
H )

α

H
Ra1/2H Ra1/4H

Pr < 1 Pr−1/4(H Ra−1/4
H ) Pr1/4(H Ra−1/4

H ) Pr−1/4(H Ra−1/4
H )

α

H
(Pr RaH)1/2 (Pr RaH)1/4
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Figure 4.5 Length scales (thicknesses) and the Nu scaling of natural convection boundary
layers.

I developed the double-layer structure and scale analysis based on Fig. 4.4
while writing the first (1984) edition of this book. Subsequently, I found that
Kuiken [13,14] had recognized the same double-layer structure earlier. Although
the scales of Table 4.1 are the result of remarkably simple and brief analysis,
they are still unknown or misused in contemporary natural convection research.
Most common is the erroneous view that for Pr > 1 fluids, the wall jet thickness
varies as Gr−1/4

H . This is responsible for the widespread and incorrect use of the
Grashof number in the nondimensional presentation of natural convection results
in external (boundary layer) flow. The scales derived in this section demonstrate
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that GrH appears as a relevant dimensionless group only in the δv scale for
Pr < 1 fluids [eq. (4.37)]: As such, GrH would be relevant to estimating the
shear force along a vertical wall immersed in a liquid metal—not a pressing
engineering problem! From a heat transfer standpoint, the important groups in
external natural convection are the Rayleigh number for Pr > 1 fluids and the
Boussinesq number for Pr < 1 fluids.

An important observation concerns the very meaning of dimensionless num-
bers such as RaH, BoH, and GrH. We often hear that the Grashof number can be
interpreted as the parameter describing the ratio of buoyancy to viscous forces
in the natural convection boundary layer. To see the error in this interpretation,
consider the natural convection of air along the cold vertical wall in a room,
where GrH ∼ 108–1010: According to the traditional interpretation, the viscous
forces must be negligible in comparison with the body force because the Grashof
number is enormous vis-à-vis unity. This is certainly not true, because for air
(Pr ∼ 1) there always exists a balance between friction and buoyancy (or between
inertia and buoyancy): Without a balance of forces, the wall jet cannot exist in
the steady state. As shown in Problem 4.18, the notion that the inertia/friction
ratio scales as GrH comes from incorrect scale analysis performed in a flow
region distinct from the boundary layer region.

By themselves, dimensionless numbers such as RaH, BoH, and GrH have no
meaning. What has meaning is the one-fourth power of these numbers:

Ra1/4H ∼ wall height

thermal boundary layer thickness
(Pr > 1)

Bo1/4H ∼ wall height

thermal boundary layer thickness
(Pr < 1)

Gr1/4H ∼ wall height

wall shear layer thickness
(Pr < 1)

The meaning of Ra1/4H , Bo1/4H , and Gr1/4H is purely geometric; these numerical
values account for the slenderness of the boundary layer region occupied by the
buoyancy-induced flow. When in an actual problem the calculated value of RaH
or GrH is enormous compared with unity, Nature is telling us that the real-life
slenderness ratio Ra1/4H (already a number much greater than 1, because boundary
layers are present) was unnecessarily raised to the fourth power!

4.4 INTEGRAL SOLUTION

As a step beyond scale analysis, an integral solution to the governing equations
may be used to determine the actual y variation of features such as local heat
flux (q′′), thermal boundary layer thickness (δT), and wall jet velocity profiles.
So far, we know only the order of magnitude of the relevant flow and heat
transfer parameters (Table 4.1). Integrating the momentum equation (4.17) and
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the energy equation (4.8) from the wall (x = 0) to a far enough plane x = X in
the motionless isothermal cold reservoir, we obtain the integral boundary layer
equations for momentum and energy,

d

dy

∫ X

0
v2dx = −ν

(
∂v

∂x

)
x=0

+ gβ
∫ X

0
(T − T∞)dx (4.40)

d

dy

∫ X

0
v(T∞ − T)dx = α

(
∂T

∂x

)
x=0

(4.41)

The length scales of Table 4.1 and Fig. 4.3 are very useful in selecting the
proper shapes of v and T profiles to be substituted into the integral equations
(4.40) and (4.41). We must carry out the integral analysis in two parts, for Pr > 1
and Pr < 1, as the boundary layer constitution changes dramatically across
Pr ∼ 1. The other lesson learned from Fig. 4.5 is that the velocity profile shape
is governed by two length scales, one for the wall shear layer and another for the
overall thickness of the moving layer of fluid.

4.4.1 High-Pr Fluids

A suitable set of profiles for Pr > 1 fluids compatible with Fig. 4.4a is

T − T∞ = �Te−x/δT (4.42)

v = Ve−x/δ(1 − e−x/δT ) (4.43)

where V, δT, and δ are unknown functions of altitude (y), and �T = T0 −
T∞ = constant. Substituting profiles (4.42) and (4.43) into the momentum and
energy integrals and setting X → ∞ yield

d

dy

[
V2δq2

2 (2 + q) (1 + q)

]
= −νVq

δ
+ gβ �T

δ

q
(4.44)

d

dy

[
Vδ

(1 + q) (1 + 2q)

]
= α

δ
(4.45)

where q is the Pr function (Fig. 4.3):

q(Pr) = δ

δT
(4.46)

In eqs. (4.44) and (4.45), we have two equations for three unknowns: V(y),
δ(y), and q(Pr). The third equation, necessary for determining V, δ, and q
uniquely, is a challenging proposition. Historically, older integral analyses such
as Squire’s [15] avoided this problem by assuming that δT = δ from the outset
(i.e., q = 1). However, since a great deal of the information relating to boundary
layer geometry is buried in the δ/δT function (Table 4.1, Fig. 4.5), it is instructive
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to meet the challenge of an integral analysis with δ 	= δT. It is up to the
individual researcher to come up with a third equation that, next to eqs. (4.44)
and (4.45), determines V, δ, and q uniquely. First, we must keep in mind that
eqs. (4.44) and (4.45) are approximate substitutes for the real equations to be
satisfied [eqs. (4.17) and (4.8)]. So we have the freedom to bring into the analysis
any other condition (equation) that accounts approximately for conservation of
momentum or conservation of energy. Since the energy equation is, in a scaling
sense, less ambiguous than the momentum equation,∗ it makes sense to select as
a third equation a force balance: One that is both clear and analytically brief is
the statement that in the no-slip layer 0 < x < 0+, the inertia terms of eq. (4.17)
are zero:

0 = ν
∂2v

∂x2
+ gβ(T0 − T∞) (4.47)

This is to say that right next to the wall, there is no ambiguity associated
with whether inertia is negligible compared with both friction and buoyancy,
regardless of the Prandtl number.

Equations (4.44), (4.45), and (4.47) are then solved for V, δ, and q by first
noting that δ ∼ y1/4 and V ∼ y1/2. The main results are the function q(Pr)

Pr = 5

6
q2
q+ 1

2

q+ 2
(4.48)

and the local Nusselt number

Nu = q′′

T0 − T∞

y

k
=

[
3

8

q3

(q+ 1)
(
q+ 1

2

)
(q+ 2)

]1/4

Ra1/4y (4.49)

In the limit Pr → ∞, this solution reduces to

δ

δT
=

(
6

5
Pr

)1/2

and Nu = 0.783Ra1/4y (4.50)

thus confirming the scaling laws summarized in Table 4.1.

4.4.2 Low-Pr Fluids

According to Fig. 4.4b, for a Pr < 1 fluid, we combine the temperature profile
(4.42) with a new velocity profile:

v = V1e
−x/δT (1 − e−x/δv ) (4.51)

∗Because in natural boundary layer flow, the energy equation spells conduction ∼ convection,
whereas the momentum equation spells either friction ∼ buoyancy or inertia ∼ buoyancy.
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where V1, δT, and δv are unknown functions of y. Again using eqs. (4.40), (4.41),
and (4.47), and noticing from Table 4.1 that δT ∼ y1/4, δv ∼ y1/4, and V1 ∼ y1/2,
the solution reduces to

Pr = 5

3

(
q1

1 + q1

)2

, q1 = δv

δT
(4.52)

Nu = q′′

T0 − T∞

y

k
=

(
3

8

)1/4( q1
2q1 + 1

)1/2

Ra1/4y (4.53)

In the limit Pr → 0, these results become

δv

δT
=

(
3

5
Pr

)1/2

and Nu = 0.689 (Pr Ray)
1/4 (4.54)

Once again, this limiting behavior confirms within a numerical factor of order 1
the scaling laws discovered in the preceding section.

The integral heat transfer results are summarized in Fig. 4.6 next to the
similarity solution outlined in Section 4.5. The Nu expressions (4.49) and (4.53)
match at Pr = 5/12, where the assumed velocity profiles are identical (q = 1,
q1 = 1).

As shown in Table 2.1, the Nusselt number calculations depend to some
extent on the choice of analytical expressions for velocity and temperature

10–3
0.1

1

eq. (4.53)

Squire [15], Problem 4.2

Table 4.2

eq. (4.49)

N
u 

R
a y

–1
/4

10–2 10–1 1 10

Pr

102 103 104

Figure 4.6 Local Nusselt number for laminar natural convection on a vertical wall: integral
versus similarity results.
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profile. This choice is always a trade-off between what constitutes a reasonable
profile shape and the function that leads to the fewest analytical complications. In
the preceding example, the choice of exponentials in the makeup of temperature
and velocity profiles led to a relatively simple analysis. Figure 4.6 also shows
the Nusselt number predicted by Squire’s integral analysis [15], which assumes
polynomial temperature and velocity profiles with δT = δ; this analysis is outlined
in Problem 4.2. Although the δT = δ assumption is justified only for fluids with
Pr ∼ 1, the Squire analysis predicts the correct Nusselt number in a wide
Pr range.

4.5 SIMILARITY SOLUTION

Following the argument centered around Fig. 2.5, we can think of temperature
and wall jet profiles whose shape remains unchanged as both profiles occupy
wider areas as y increases. From Table 4.1 and the integral solution, we know
that any length scale of the boundary layer region is proportional to y1/4. The
dimensionless similarity variable η(x, y) can then be constructed as x divided by
any of the length scales summarized in Table 4.1; selecting the Pr > 1 thermal
boundary layer thickness y Ra−1/4

y as the most appropriate length scale (Fig. 4.5),
the similarity variable emerges as

η = x

y
Ra1/4y (4.55)

Introducing the streamfunction u= ∂ψ /∂y, v = −∂ψ /∂x in place of the continuity
equation (4.2), the boundary layer equations (4.8) and (4.17) become

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂x2
(4.56)

−∂ψ

∂y

∂2ψ

∂x2
+ ∂ψ

∂x

∂2ψ

∂x∂y
= −ν

∂3ψ

∂x3
+ gβ(T − T∞) (4.57)

Now, from the first column of Table 4.1we note that, in general, the dimensionless
temperature profile will be a function of both η(x, y) and Pr; let this unknown
function be θ(η, Pr), defined as

T − T∞
T0 − T∞

= θ(η, Pr) (4.58)

For the vertical velocity profile v, from the fourth column of Table 4.1 where
Pr > 1, we select the expression

v = α

y
Ra1/2y G(η, Pr) (4.59)
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where (α/y) Ra1/2y represents the scale of v, and G(η, Pr) is the dimensionless
similarity profile of the wall jet. From the definition v = −∂ψ /∂x, we conclude
that the streamfunction expression must be

ψ = α Ra1/4y F(η, Pr) (4.60)

where G = −∂F/∂η. Substituting eqs. (4.58) and (4.60) into the boundary
layer equations for energy and momentum [eqs. (4.56) and (4.57)], we obtain a
system of dimensionless equations

3
4Fθ ′ = θ ′′ (4.61)

1

Pr

(
1

2
F′2 − 3

4
FF′′

)
= −F′′′ + θ (4.62)

where (·)′ is shorthand notation for ∂(·)/∂η. These equations show once again
the meaning of the Pr > 1 scaling adopted in the definition of η and G (both of
order 1) [eqs. (4.55) and (4.59)]. The energy equation (4.61) is a balance between
convection and conduction, while the momentum equation (4.62) reduces to a
balance between friction and buoyancy as Pr → ∞, that is, as the inertia effect
vanishes.

Equations (4.61) and (4.62) must be solved subject to the similarity formula-
tion of the appropriate boundary conditions [see eqs. (4.18)]:

(i) At x = 0, u = 0 F = 0

(η = 0) v = 0 F′ = 0

T = T0 θ = 1 (4.63)

(ii) As x → ∞, v = 0 F′ = 0

(η → ∞) T = T∞ θ = 0

Figures 4.7a and b present the solution as temperature profiles and velocity
profiles in the thermal boundary layer region η = O(1). As anticipated by
Fig. 4.4, in the limit Pr → ∞, the temperature profiles collapse onto a single
curve. Also, in the same limit, the η ∼ 1 portions of the velocity profiles approach
a single curve, while the dimensionless velocity peak is consistently a number of
order 1 (the velocity peak falls in the region occupied by the thermal boundary
layer). As Pr increases, the velocity profile extends farther and farther into
isothermal fluid. All these observations support the scale analysis whose results
have been summarized in Table 4.1.

The numerical solution plotted in Fig. 4.7 was obtained by modifying the
numerical results published by Ostrach as a solution to a different formulation
of the same problem [16]. For the boundary layer length scale, Ostrach chose
y Gr−1/4

y which, as observed in Section 4.3.3, is an incorrect scale (this scale had
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Figure 4.7 Similarity solution for laminar natural convection boundary layer flow: (a) tempera-
ture profiles; (b) vertical velocity profiles. These drawings are based on the correct scales of the
δT-thick layer in a Pr > 1 fluid.

been used earlier by Schmidt and Beckmann [17], who were the first to apply
boundary layer theory to solve the laminar natural convection problem).

The local heat transfer coefficient predicted by the similarity solution is

Nu = hy

k
= −(θ ′)η=0 Ra1/4y (4.64)

which is the expected scaling law in the Pr � 1 range (Table 4.1). The numerical
coefficient −(θ ′)η = 0 is, in general, a function of the Prandtl number, as shown
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Table 4.2 Similarity solution heat transfer results for natural convection boundary
layer along a vertical isothermal walla

Pr 0.01 0.72 1 2 10 100 1000

Nu Ra−1/4
y 0.162 0.387 0.401 0.426 0.465 0.490 0.499

aNumerical values calculated from Ostrach’s solution [16].

in Table 4.2 and Fig. 4.6. In the two Pr limits of interest, the Nusselt number
approaches the following asymptotes [18]:

Nu = 0.503Ra1/4y as Pr → ∞ (4.65)

Nu = 0.6(Ray Pr)1/4 as Pr → 0 (4.66)

Noting that since h ∼ y−1/4 the average heat transfer coefficient for a wall
of height H is h0−H = (4/3)h(y = H), the average Nusselt number Nu0−H =
h0−HH/k is equal to (4/3) Nu(y = H). Therefore, the wall-averaged heat transfer
results corresponding to the two Pr limits are

Nu0−H = 0.671 Ra1/4H as Pr → ∞ (4.65′)

Nu0−H = 0.8(RaH Pr)1/4 as Pr → 0 (4.66′)

These conclusions are anticipated within 30 percent by the scaling laws of
Table 4.1: Such good agreement is common when the scale analysis is correct.

Figure 4.6 shows that despite the factor of 10 increase in the Prandtl number
from air (Pr = 0.72) to water (Pr � 5–7), the Nusselt number varies by only
15 percent if the Rayleigh number is held constant. This observation is why the
natural convection of air in room-size systems is often simulated in small-scale
laboratory systems using water as working fluid (see Problem 4.4).

4.6 UNIFORM WALL HEAT FLUX

The analyses presented so far are based on the assumption that the vertical wall
is isothermal. This would be a good approximation in cases where the vertical
wall is massive and highly conducting in the vertical y direction: Indeed, the
object of Problem 4.5 is to estimate the needed vertical conductance through the
wall so that the T0 = constant description is valid.

From a practical standpoint, however, an equally important wall model is
the uniform heat flux condition q′′ = constant. In many applications, the wall
heating effect is the result of radiation heating from the other side or, as in
the case of electronic components, the result of resistive heating. The constant
heat flux condition applies to nuclear radiation heating, and only under special
conditions to thermal radiation heating (in general, in thermal radiation heat
transfer, the wall heat flux depends on the wall temperature). The heat transfer
problem in such cases consists of predicting the wall—ambient temperature
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difference T0(y) − T∞ when the uniform heat flux q′′ is given. The solution can
be pursued step by step according to the methodology outlined in the preceding
three sections. To avoid repetition, however, we outline only the scale analysis,
leaving the integral and similarity solutions as journal-assisted homework for the
reader (Problems 4.6 and 4.7).

Regardless of how q′′, �T, and δT vary with altitude y, the definition of wall
heat flux requires that

q′′ ∼ k
�T

δT
(4.67)

Figure 4.8a illustrates this scaling law in the case of an isothermal wall, where
both �T and the product q′′δT are independent of y. Figure 4.8b shows what

Figure 4.8 Effect of the thermal boundary condition on the natural convection boundary layer
along a vertical wall.
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to expect in the case of constant q′′, namely, identical �T and δT functions of
y. To determine these y functions, we make the observation that the scaling
analysis starting with eq. (4.19) is general; in other words, in that analysis, δT
and �T represent the correct order of magnitudes of thermal layer thickness and
wall–ambient temperature difference along a wall of height H.

For Pr � 1 fluids, eq. (4.26) recommends

δT ∼ H

(
gβ �T H3

αν

)−1/4

(4.68)

Recognizing that in the present problem�T is not given (q′′ is), we use eq. (4.67)
to eliminate �T and solve for δT,

δT ∼ H Ra−1/5
∗H (4.69)

where Ra* is a Rayleigh number based on heat flux q′′,

Ra∗H = gβH4q′′

ανk
(4.70)

From eq. (4.67), the corresponding (Pr � 1) scale of the wall–ambient temper-
ature difference is

�T ∼ q′′

k
H Ra−1/5

∗H (4.71)

Note that both δT and �T are proportional to H1/5; because the H-averaged
quantities are proportional toH1/5, the local values of δT and �T are proportional
to y1/5. This conclusion is illustrated in Fig. 4.8b. The local Nusselt number for
a constant heat flux wall is defined as

Nu = q′′

T0(y) − T∞

y

k
(4.72)

Therefore, in the range Pr � 1, the Nusselt number must scale as

Nu ∼ H

δT
∼ Ra1/5∗H (4.73)

For the low–Prandtl number fluids, we start with eq. (4.32) and, using the
same analysis as above, obtain

δT ∼ H(Ra∗H Pr)−1/5

�T ∼ q′′

k
H(Ra∗H Pr)−1/5 (4.74)

Nu ∼ (Ra∗H Pr)1/5
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The validity of these scaling results can be tested by referring to more exact
analyses published on the same topic. Sparrow [19] carried out an integral
analysis of the same type as Squire’s [15] (i.e., assuming only one length scale
δT for the velocity profile) and arrived at the local Nusselt number

Nu = 2

3601/5

(
Pr

4
5 + Pr

)1/5

Ra1/5∗y (4.75)

The similarity solution was reported by Sparrow and Gregg [20], who found that
eq. (4.75) is, in fact, an adequate curve fit for the similarity Nu results in the
range 0.01 < Pr < 100. Thus, in the two Pr limits, eq. (4.75) yields the following
local Nusselt numbers:

Nu =


0.616Ra1/5∗y (Pr → ∞)

0.644Ra1/5∗y Pr1/5 (Pr → 0)
(4.76)

Note that these limiting expressions are anticipated correctly by the scale laws
[eqs. (4.73) and (4.74)].

Similarity solutions can be developed for an infinity of wall temperature
conditions, provided that they obey either the power law T0 − T∞ = Aym [21],
the exponential law T0 − T∞ = Aemy [21], or the line T0 − T∞ = A + By [22],
where A, B, and m are all constants. Thus, the T0 = constant and q′′ = constant
problems discussed so far are only two special cases of the vast analytically
accessible class of problems. From an engineering standpoint, however, the
T0 = constant and q′′ = constant results are by far the most useful.

4.7 EFFECT OF THERMAL STRATIFICATION

To discover the basics of natural convection, so far we considered the simplest
model possible, that is, the heat transfer interaction between a vertical wall and
an isothermal semi-infinite fluid reservoir (Fig. 4.1). Now, we take a closer
look at a real situation involving natural convection. Vertical walls are rarely
in communication with semi-infinite isothermal pools of fluid: More often, their
height is finite and the heated boundary layer eventually hits the ceiling. At that
point, the heated stream has no choice but to discharge horizontally into the fluid
reservoir (to the right in Fig. 4.1): The direction of this discharge is horizontal
because the discharge contains fluid warmer than the rest of the reservoir. The
long-time effect of this discharge is thermal stratification, or warm fluid layers
floating on top of colder layers. Indeed, thermal stratification is a characteristic of
all fluid bodies surrounded by differentially heated sidewalls lined by boundary
layers, as demonstrated in Chapter 5. At this point it is sufficient to recognize
that the air in any room with the doors closed is thermally stratified in such a
way that the lowest layers assume the temperature of the coldest wall, and the
layers near the ceiling approach the temperature of the warmest wall.
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In view of this discussion, the inset in Fig. 4.9 is a more general model for
the buoyancy-driven flow near a vertical wall. The fluid reservoir is now linearly
stratified,

T∞(y) = T∞, 0 + γ y (4.77)

T∞, 0 being the lowest temperature in the arrangement and γ the constant
temperature gradient (assumed known). The dashed line in Fig. 4.9 shows the
location of the isothermal reservoir model employed so far (γ = 0◦C/m). If
the bottom temperature difference T0 − T∞, 0 remains constant, we expect
the overall heat transfer rate to decrease as γ increases: The reason for this
expectation is that the effective (mean) temperature difference between wall and
fluid decreases as γ increases.
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Figure 4.9 Effect of reservoir thermal stratification on the heat transfer from an isothermal
vertical wall.
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An integral solution can be constructed in a relatively straightforward man-
ner by combining the integral equations (4.40) and (4.41) with polynomial
temperature and velocity profiles:

T − T∞ = (T0 − T∞)

(
1 − x

δT

)2

v = V
x

δ

(
1 − x

δ

)2
(4.78)

where δT = δ and, according to eq. (4.77), T0 − T∞ (y) = T0 − T∞, 0 − γ y. In
the dimensionless form required by numerical integration, the momentum and
energy equations reduce to

1

(105) Pr

d

dy∗ (V2
∗δ∗) = −V∗

δ∗
+ δ∗

3
(1 − by∗) (4.79)

d

dy∗
[V∗δ∗(1 − by∗)] = 60

δ∗
(1 − by∗) (4.80)

with the nondimensional notation suggested by Table 4.1, and the definition of a
new dimensionless stratification parameter (b):

y∗ = y

H
, δ∗ = δ

H Ra−1/4
H

V∗ = V

(α/H)Ra1/2H

, RaH = δβH3(T0 − T∞,0)

αν
(4.81)

b = γH

T0 − T∞,0
= 1 − �Tmin

�Tmax
, �T = T0 − T∞(y)

Equations (4.79) and (4.80) can be integrated numerically from y* = 0 to y* = 1
to determine δ*(y*, b) and V*(y*, b). The local heat flux is then

q′′ = −k
(

∂T

∂x

)
x=0

= k(T0 − T∞,0)

H Ra−1/4
H

2

δ∗
(1 − by∗) (4.82)

Integrating q′′ over the wall height H yields q′ and the overall Nusselt number

Nu0−H = q′

k(T0 − T∞,0)
= Ra1/4H

∫ 1

0

2

δ∗
(1 − by∗) dy∗ (4.83)

The result of this calculation for Pr → ∞ is shown in Fig. 4.9 as Nu0−HRa
−1/4
H

versus the new dimensionless group b, where it should be kept in mind that both
Nu0–H and RaH are based on the maximum temperature difference T0 − T∞, 0.
Of special interest is the heat transfer rate in the fully stratified limit (b = 1),

Nu0−H = 0.324Ra1/4H (Pr → ∞) (4.84)
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that matches within 11 percent the conclusion of an Oseen-linearized analysis
of boundary layer convection in a stratified enclosure [23]. (The details of this
analysis are given in Chapter 5.)

Figure 4.8 also shows the Pr = 6 and Pr = 0.7 results predicted for the same
problem by Chen and Eichhorn [24], based on the local nonsimilarity technique
[25]. The general trend is the same as in the integral solution, namely, a gradual
decrease in Nu0–H as the stratification degree b increases. In the isothermal
reservoir limit, the Chen and Eichhorn results match the similarity solution
(Table 4.2); hence, they fall slightly below the corresponding results based on
the Squire type of integral analysis (Fig. 4.6).

4.8 CONJUGATE BOUNDARY LAYERS

There are many engineering situations in which the vertical wall that heats a
buoyant boundary layer is itself heated on the back side by a sinking boundary
layer. Such is the case in walls, partitions, and baffles encountered regularly in the
thermal design of living quarters and insulation systems. As shown in Fig. 4.10,
this heat transfer arrangement describes the common single-pane window where
an insulating impermeable wall of finite thickness separates two fluid reservoirs
at different temperatures.

Boundary layers form on both sides of the wall; however, the wall temperature
or heat flux are not known a priori as in the simpler models considered earlier;
the condition of the wall is the result of the heat transfer interaction between the
two boundary layers. It is said that depending on the layer-to-layer interaction,
the wall temperature ‘‘floats’’ to an equilibrium distribution between the two
extreme temperatures maintained by the two reservoirs. Since one boundary
drives the other, the boundary layers are termed conjugate (as two oxen engaged
in the same yoke; note the Latin verb conjungěre = to yoke).

Figure 4.10 shows the Nusselt number predicted analytically in the Pr → ∞
limit based on the Oseen-linearization method (Chapter 5) [26]. This approach
consists of writing integral conservation equations analogous to eqs. (4.40) and
(4.41) for both sides of the wall, with the additional complication that the wall
temperature T0(y) is unknown. The additional equation necessary for determining
T0 is the condition of heat flux continuity in the x direction, from one face of the
wall to the other. In Fig. 4.10, both the overall Nusselt number and the Rayleigh
number are based on the overall temperature difference imposed by the two fluid
reservoirs. The heat transfer rate (hence, the ratio Nu0–H/ Ra

1/4
H ) decreases as the

wall thickness resistance parameter ω increases. The dimensionless wall number
proposed in Ref. 26 is

ω = t

H

k

kw
Ra1/4H (4.85)

where t, H, k, and kw are the wall thickness, wall height, fluid conductivity,
and wall conductivity, respectively. Note that ω is the ratio of wall thermal
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Figure 4.10 Heat transfer between two fluid reservoirs separated by a vertical wall with natural
convection boundary layers on both sides. Note that both Nu0–H and RaH are based on the
overall temperature difference �T = TH − TC. (From Ref. 26.)

resistance t/Hkw divided by the thermal resistance of one boundary layer
(H Ra−1/4

H )/Hk.
One of the contributions of the analysis described in Ref. 26 is to show

that the wall heat flux distribution negotiated between two conjugate natural
convection boundary layers is approximated satisfactorily by the q′′ = constant
model discussed earlier. Therefore, as shown in Problem 4.9 and in Ref. 26,
an estimate of the Nu0–H(ω, RaH) relationship can be obtained by adding in
series the three resistances constituted by the two q′′ = constant boundary layers
sandwiching the wall. Figure 4.10 shows good agreement between this more
direct approach and the Oseen-linearized analysis.

The effect of thermal stratification on the conjugate boundary layer configura-
tion has been documented in Ref. 27. Figure 4.11 shows that the coefficient in the
Nu0–H ∼ Ra1/4H proportionality increases as the degree of thermal stratification
on either side increases (the dimensionless temperature gradients a and b are
defined graphically in Fig. 4.11). This behavior appears to contradict the effect
shown in Fig. 4.9 for a single isothermal wall. The contradiction is explained
by the fact that in Fig. 4.9, both Nu0–H and RaH are based on the maximum
temperature difference, whereas in Fig. 4.11 (and in Fig. 4.10), the same numbers
are based on the reservoir-to-reservoir temperature difference evaluated at mid-
height. Thus, the �T sketched in Fig. 4.11 is the average temperature difference
between the two stratified reservoirs.
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Figure 4.11 Effect of thermal stratification on heat transfer between two fluid reservoirs
separated by a vertical wall (ω = 0, Pr ≥ 1). (From Ref. 27.)

4.9 VERTICAL CHANNEL FLOW

Consider now the interaction between the boundary layers formed along two
parallel walls facing each other (Fig. 4.12). If the boundary layer thickness scales
are much smaller than the wall-to-wall spacing D, the flow along one wall may
be regarded (approximately) as a wall jet unaffected by the presence of another
wall. On the other hand, if the boundary layer grows to the point that its thickness
becomes comparable to D, the two wall jets merge into a single buoyant stream
rising through the chimney formed by the two walls.

Figure 4.12 Natural convection in the channel formed between two vertical hot plates.
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It is clear from Fig. 4.12 that the channel flow departs from the wall jet
description in the same way that the duct flows of Chapter 3 depart from the pure
boundary layer flows of Chapter 2. Here we focus on the simplest analysis of
the channel flow, with the final objective of predicting the capability of this flow
to cool or heat the walls of the channel. The flow part of the problem may be
solved by considering the momentum equation in the y direction (for notation,
see Fig. 4.12):

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
+ µ ∇2v − ρg (4.86)

The mass continuity equation, in conjunction with the assumption that the
channel is long enough so that the u scale becomes sufficiently small, leads to
the concept of fully developed flow, for which we have

u = 0 and
∂v

∂y
= 0 (4.87)

The momentum equation in the lateral direction x can be used to show that the
pressure in the fully developed region is a function of y only, and, because both
ends of the channel are open to the ambient of density ρ∞,

∂P

∂y
= dP

dy
= −ρ∞g (4.88)

Combining eqs. (4.86)–(4.88) and again using the Boussinesq approximation
yields the much simpler momentum equation

d2v

dx2
= −gβ

v
(T − T∞) (4.89)

which is the natural convection equivalent of the Hagen–Poiseuille equation
encountered in Chapter 3.

To solve eq. (4.89), it is necessary to derive the temperature profile T − T∞;
the reader can verify that in order to derive the temperature profile from
the energy equation, one must know the velocity profile. The two profiles,
velocity and temperature, are coupled; hence, eq. (4.89) and the energy
equation must be solved simultaneously. A much simpler solution approach
is possible if we observe that in the fully developed region between two isother-
mal walls, the temperature difference can be approximated by T0 − T∞; in
other words,

T0 − T � T0 − T∞ (4.90)

The range of validity of this approximation will be determined later in this
section. Based on this approximation, the right-hand side of eq. (4.89) becomes
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a constant, and the heat transfer solution follows without difficulty in a few
algebraic steps. The main features of this solution are:

Velocity profile:

v = gβD2(T0 − T∞)

8ν

[
1 −

(
x

D/2

)2
]

Mass flow rate per unit length normal to the plane of Fig. 4.12:

ṁ = ρgβD3(T0 − T∞)

(12)ν
(4.91)

Total heat transfer rate between stream and channel walls:

q′ = ṁ(outlet enthalpy − inlet enthalpy)

= ṁcP(T0 − T∞)

Average heat flux:
q′′
0−H = q′/(2H)

Overall Nusselt number:
q′′
0−HH

(T0 − T∞)k
= RaD

24

Note that the dimensionless group emerging from this analysis is the Rayleigh
number based on wall-to-wall spacing,

RaD = gβD3(T0 − T∞)

αν
(4.92)

and that the Grashof number is once again absent from the discussion. This
conclusion answers again the question of whether the Grashof number is a
relevant dimensionless group in natural convection. It is not.

The fully developed flow and heat transfer solution (4.91) is valid for all
Prandtl numbers. The Rayleigh number range of its validity follows from the
requirement that the thermal entrance length YT be much smaller than the channel
height H,

YT < H (4.93)

The order of magnitude of YT follows from the observation that the thermal
boundary layer thickness δT becomes of order D/2 when y is of order YT, that is,

YT Ra
−1/4
YT

∼ D

2
(Pr > 1)

YT Bo
−1/4
YT

∼ D

2
(Pr < 1)

(4.94)
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Evaluating YT from above, criterion (4.93) becomes

Ra1/4D < 2

(
H

D

)1/4

(Pr > 1)

Bo1/4D < 2

(
H

D

)1/4

(Pr < 1)

(4.95)

In conclusion, the fully developed flow and temperature profile assumptions
break down if the Rayleigh number exceeds an order of magnitude dictated by
the geometric aspect ratio of the channel, H/D (see also Problem 4.13).

The chimney flow is being contemplated in the design of ‘‘solar chimney’’
power plants [28].

4.10 COMBINED NATURAL AND FORCED CONVECTION
(MIXED CONVECTION)

If we think of the configuration examined in this chapter (Figs. 4.1 and 4.4) as
a model of the flow near a wall in a room, a major limitation of this model is
the assumption that the fluid reservoir is motionless. Look around any modern
building and you will see that the air inventory of each room is replenished
continuously or intermittently by, in most cases, a central air-conditioning
system. This means that in the vicinity of every heated wall or cooled window,
the room air reservoir is actually in motion: The reservoir is forced into and out
of the room by an external agent (the fan in the ventilation system). Depending
on the strength of this forced circulation, the heat transfer from the wall to the
room air may be ruled by either natural convection or forced convection or a
combination of natural and forced convection.

There are many ways in which these two mechanisms can interact, as there
are many ways in which the reservoir fluid may move relative to the direction
of buoyant flow near the wall. Think of the heated wall jet rising on the outer
surface of a flat solar collector in wintertime and how this wall jet will be
affected by the changing wind direction and velocity. Due to the diversity of the
natural–forced convection interaction, it is impossible to treat this subject fully;
however, it is instructive to study one simple configuration and to experience the
power and cost-effectiveness of pure scaling arguments.

As is shown in the inset of Fig. 4.13, let us consider the heat transfer from
a vertical heated wall (T0) to an isothermal fluid reservoir moving upward
(T∞, U∞), that is, in the same direction as the natural wall jet present when
U∞ = 0. From a heat transfer standpoint, the key question is: Under what
conditions is the combined natural–forced phenomenon characterized (approx-
imately) by the scales of pure natural convection, and conversely, under what
conditions is it characterized by the scales of pure forced convection? In other
words, what is the criterion for the transition from one convection mechanism
to another?
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Figure 4.13 Heat transfer by natural and forced convection along a vertical wall. (After Ref. 29.)

If the mechanism is natural convection, the thermal distance between the
heat-exchanging entities is of order

(δT)NC ∼ y Ra−1/4
y (Pr > 1) (4.96)

as reservoir fluid supplies the buoyantwall jet of thermal boundary layer thickness
(δT)NC. On the other hand, if the mechanism is forced convection, the wall and
the reservoir are separated by a thermal length of order (cf. Chapter 2)

(δT)FC ∼ y Re−1/2
y Pr−1/3 (Pr > 1) (4.97)

According to the constructal law [2–5], the type of convection mechanism is
decided by the smaller of the two distances, (δT)NC or (δT)FC, because the wall
will leak heat to the nearest heat sink (or because currents seek and construct
paths of greater access, or faster mixing). Thus, the scale criterion for transition
from natural to forced convection is

(δT)NC < (δT)FC natural convection

(δT)NC > (δT)FC forced convection
(4.98)

In other words, for Pr > 1 fluids,

Ra1/4y

Re1/2y Pr1/3

{
> O (1) natural convection

< O(1) forced convection
(4.99)
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To verify the validity of this criterion, we examine the local similarity
solution to the combined heat transfer problem (Fig. 4.13). This solution shows
that forced convection dominates at small values of the group Gry/ Re

2
y , while

natural convection takes over at large values of the same parameter. Note,
however, that the knee in each Nusselt number curve shifts to the right as Pr
increases: This effect is due to the fact that the abscissa parameter used, Gry/ Re

2
y ,

is not the same as the dimensionless group that serves as transition parameter in
eq. (4.99):

Gry
Re2y

=
(

Ra1/4y

Re1/2y Pr1/3

)4

Pr1/3 (4.100)

Figure 4.14 shows the replotting of the similarity solution [29] using the
transition parameter on the abscissa and the forced convection Nusselt number
scaling on the ordinate. The sign of correct scaling [hence the validity of criterion
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Figure 4.14 Correct transition between natural and forced convection on a vertical wall
when Pr ≥ 1.
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(4.99)] is that the Pr > 1 curves fall on top of each other, and the knee of all
the curves is at O(1) on the abscissa. Figure 4.14 shows that we can estimate the
Nusselt number with sufficient accuracy and efficiency by first using criterion
(4.99) and by relying on the appropriate asymptotic scaling (i.e., either pure
natural convection or pure forced convection).

In conclusion, mixed convection can be understood and predicted by inter-
secting its asymptotes, natural convection and forced convection. This is one of
the earliest applications of the intersection-of-asymptotes method (cf. the 1984
edition of this book, pp. 142–146).

Repeating the geometric argument of eq. (4.98), this time for Pr < 1 fluids,
we find the following transition criterion:

Bo1/4y

Pe1/2y

{
> O (1) natural convection

< O(1) forced convection
(4.101)

Note that the dimensionless group Bo1/4y Pe−1/2
y is equal to Lloyd and Sparrow’s

[29] abscissa parameter Gry/Re
2
y raised to the one-fourth power (Fig. 4.13).

The progress onmixed natural and forced convection was reviewed in Refs. 30
and 31.

4.11 HEAT TRANSFER RESULTS INCLUDING
THE EFFECT OF TURBULENCE

4.11.1 Vertical Walls

Consider again the vertical walls sketched in Figs. 4.1 and 4.8. The boundary
layer flow remains laminar if y is small enough so that the Rayleigh number Ray
does not exceed a critical value. Until recently, it was thought that the transition
to turbulent flow occurs at the y position where Ray ∼ 109, regardless of the
value of the Prandtl number. The established view was questioned by Bejan and
Lage [32], who showed that it is the Grashof number of order 109 (i.e., not the
Rayleigh number of order 109) that marks the transition in all fluids:

Gry ∼ 109 (10−3 ≤ Pr ≤ 103) (4.102)

This universal transition criterion is a manifestation of the constructal law [3]
and is derived in Section 6.6. It can also be expressed in terms of the Rayleigh
number by recalling that Ray = Gry Pr,

Ray ∼ 109 Pr (10−3 ≤ Pr ≤ 103) (4.103)

The heat transfer rate from a vertical wall in the presence of turbulence
in the boundary layer has been measured experimentally and correlated as a
function Nuy(Ray, Pr), where Nuy is an alternative notation for the overall
Nusselt number Nu0–y. It was found that in the turbulent regime, Nuy is
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approximately proportional to Ra1/3y ; this dependence differs from the Nuy ∼
Ra1/4y proportionality that characterizes laminar flow in high-Pr fluids.

An empirical isothermal-wall correlation that reports the wall-averaged Nus-
selt number Nuy for the entire Rayleigh number range—laminar, transition,
turbulent—was constructed by Churchill and Chu [33]:

Nuy =
{
0.825 + 0.387Ra1/6y[

1 + (0.492/Pr)9/16
]8/27

}2

(4.104)

This correlation holds for 10−1 < Ray < 1012 and for all Prandtl numbers. The
physical properties used in the definition of Nuy, Ray, and Pr are evaluated at the
film temperature (Tw + T∞)/2. In the case of air, eq. (4.104) yields

Nuy = (0.825 + 0.325Ra1/6y )2 (Pr = 0.72) (4.105)

In the laminar range, Gry < 109, a correlation that represents the experimental
data more accurately than eq. (4.104) is [33]

Nuy = 0.68 + 0.67Ra1/4y

[1 + (0.492/Pr)9/16]4/9
(4.106)

Nuy = 0.68 + 0.515Ra1/4y (Pr = 0.72) (4.107)

These correlations are an alternative to eq. (4.65′), especially in the low–Rayleigh
number limit, where the boundary layer (slender flow) approximation loses its
validity.

When the verticalwall is heated uniformly, q′′
w = constant, thewall temperature

Tw increases monotonically in the y direction. In the laminar regime, the
temperature difference (Tw − T∞) increases as y1/5 (e.g., Fig. 4.8b). In fluids of
the air–water Prandtl number range, the transition to turbulence occurs in the
vicinity of Ra∗y ∼ 1013. Vliet and Liu [34] recommend the formulas

Nuy = 0.6Ra1/5∗y

Nuy = 0.75Ra1/5∗y




laminar,

105 < Ra∗y < 1013
(4.108)

Nuy = 0.568Ra0.22∗y

Nuy = 0.645Ra0.22∗y

}
turbulent,

1013 < Ra∗y < 1016
(4.109)

The average Nusselt number Nuy is based on the wall-averaged temperature
difference (Tw − T∞). In particular, for heat transfer to air, Ref. 35, recommends

Nuy = 0.55Ra1/5∗y laminar (4.110)

Nuy = 0.17Ra1/4∗y turbulent (4.111)



4.11 HEAT TRANSFER RESULTS INCLUDING THE EFFECT OF TURBULENCE 205

A correlation that is valid for all Rayleigh and Prandtl numbers is [33]

Nuy =
{
0.825 + 0.387Ra1/6y[

1 + (0.437/Pr)9/16
]8/27

}2

(4.112)

In this expression, Ray is based on the y-averaged temperature difference
(Tw − T∞). This correlation is almost identical to the one recommended for
isothermal walls, eq. (4.104). For air at normal (room) conditions, eq. (4.112)
reduces to

Nuy = (0.825 + 0.328Ra1/6y )2 (Pr = 0.72) (4.113)

The high–Rayleigh number asymptote of this last formula is

Nuy ∼= 0.107Ra1/3y (Pr = 0.72 and Ray > 1010) (4.114)

Equations (4.112)–(4.114) can be restated in terms of the flux Rayleigh number
Ra∗y by noting the substitutionRay = Ra∗y/Nuy. For example, the high–Rayleigh
number asymptote for air (4.114) becomes

Nuy ∼= 0.187Ra1/4∗y (Pr = 0.72 and Ra∗y > 1012) (4.115)

4.11.2 Inclined Walls

Figure 4.15 shows four possible configurations in which a plane wall is inclined
relative to the vertical direction. The angle between the plane and the vertical
direction φ is restricted to the range −60◦

< φ < 60◦ (horizontal walls are
discussed in Section 4.11.3). In cases a and d—heated wall tilted upward and
cooled wall tilted downward—the effect of the angle φ is to thicken the tail end
of the boundary layer and to give the wall jet a tendency to separate from the
wall. The opposite effect is illustrated in cases b and c, where the wall jet is
pinched as it flows over the trailing edge.

In the boundary layer analysis of the flows of Fig. 4.15, it is found that the
momentum equation is analogous to eq. (4.17), except that g cosφ replaces g in
the buoyancy term. The group g cosφ is the gravitational acceleration component
oriented parallel to the wall. For this reason, the heat transfer rate in the laminar
regime along an isothermal wall can be calculated with eq. (4.106), provided that
the Rayleigh number is based on g cosφ:

Ray = g cosφ β(Tw − T∞)y3

αν
(4.116)

Similarly, for laminar flow over a plate with uniform heat flux, the Nusselt
number can be calculated with eqs. (4.108) and (4.110), in which

Ra∗y = g cosφ βq′′
wy

4

ανk
(4.117)
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Figure 4.15 Plane walls inclined relative to the vertical direction.

In the turbulent regime, it was found that the heat transfer measurements
are correlated better using g instead of g cosφ in the Rayleigh number [36].
Therefore, eq. (4.104) is recommended for isothermal plates. For inclined walls
with uniform heat flux, the Nusselt number is given by eqs. (4.109) and (4.111).

The angle φ has a noticeable effect on the location of the laminar–turbulent
transition, when the uniform-flux wall is oriented as in cases a and d of Fig. 4.15.
The flux Rayleigh numbers tabulated below mark the beginning and the end of
the transition region in water experiments (Pr ∼= 6.5):

φ Ra∗y

0◦ 5 × 1012 –1014

30◦ 3 × 1010 –1012

60◦ 6 × 107 –6 × 109
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The Ra∗y spread between the beginning and end of transition covers almost two
orders of magnitude. This observation reinforces the approximate character of the
threshold value Ra∗y ∼ 1013 used in eqs. (4.108)–(4.109). See also the transition
criterion derived in Section 6.4. The effect of wall inclination on transition along
an isothermal wall in water (Pr ∼ 6) is [37]:

φ Ray

0◦ 8.7 × 108

20◦ 2.5 × 108

45◦ 1.7 × 107

60◦ 7.7 × 105

Once again, the transition Rayleigh number [Ray = (gβy3�T)/αν] decreases as
the angle φ increases.

4.11.3 Horizontal Walls

The flow changes its character as the tilt angle φ increases beyond the moderate
values considered in Fig. 4.15. Two flow types are encountered in the extreme
where the plane wall becomes horizontal (Fig. 4.16). When the wall is heated
and faces upward, or when it is cooled and faces downward, the flow leaves the
boundary layer as a vertical plume rooted in the central region of the wall. When
the temperature difference is sufficiently large, the heated fluid rises from all
over the surface. As illustrated in Fig. 4.17, this flow is intermittent and consists
of balls of heated fluid (called thermals) that rise in buckling fashion through the
colder fluid [38].

In cases where the surface is hot and faces downward, or when it is cold and
faces upward, the boundary layer covers the entire surface, and the flow spills

Figure 4.16 Horizontal surfaces with plume (top row) and without plume (bottom row).
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Figure 4.17 Intermittent rise of heated fluid (thermals) from a horizontal surface facing upward
in a colder pool of water. (Reprinted with permission from E. M. Sparrow et al., Journal of Fluid
Mechanics, Vol. 41, pp. 793–800, 1970. Copyright 1970 Cambridge University Press.)

over the edges. This situation is illustrated in the lower half of Fig. 4.16. A
two-sided plate, hot or cold, will have flow of one type on the top side and flow
of the other type on the bottom side.

Average Nusselt number measurements for several horizontal-plate configu-
rations have been correlated by defining the characteristic length of the plane
surface [39]:

L = A

p
(4.118)

In this definition, A is the area of the plane surface and p is the perimeter of A. If
A is a disk of diameter D, then L= D/4. The NuL formulas listed below are valid
for Prandtl numbers greater than 0.5. The average Nusselt number NuL and the
Rayleigh number RaL are both based on L.

In the case of hot surfaces facing upward or cold surfaces facing downward
(Fig. 4.16, top), the Nusselt number varies as [40]

NuL =
{
0.54Ra1/4L

(
104 < RaL < 107

)
(4.119)

0.15Ra1/3L (107 < RaL < 109) (4.120)

The corresponding correlation for hot surfaces facing downward or cold surfaces
facing upward (Fig. 4.16, bottom) is (cf. Ref. 41, p. 548)

NuL = 0.27Ra1/4L (105 < RaL < 1010) (4.121)
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Equations (4.119)–(4.121) are for isothermal surfaces. The same correlations
can be used for uniform-flux surfaces, noting that in those cases, NuL and RaL
would be based on the L-averaged temperature difference between the surface
and the surrounding fluid. The flux Rayleigh number Ra∗L can be made to appear

on the right side by noting that RaL = Ra∗L/NuL.

4.11.4 Horizontal Cylinder

The natural convection around an isothermal cylinder positioned horizontally in
a fluid reservoir (Fig. 4.18) is similar to the flow along a vertical surface. The
difference is that now the wall is curved, and instead of the wall height y (or H),
the vertical dimension is the cylinder diameter D. These similarities explain why
the heat transfer correlation for horizontal cylinders [33],

NuD =
{
0.6 + 0.387Ra1/6D[

1 + (0.559/Pr)9/16
]8/27

}2

(4.122)

has the same form as the vertical wall correlation (4.104). Equation (4.122) is
valid for 10−5 < RaD < 1012 and the entire Prandtl number range. The average
Nusselt number and the Rayleigh number are based on diameter,

NuD = q′′
w,D

�T

D

k
, RaD = gβ �T D3

αν
(4.123)

4.11.5 Sphere

The flow around a sphere suspended in a pool at a different temperature has the
general features outlined in Fig. 4.18. The vertical dimension of the spherical

Cold

Warm

Figure 4.18 Horizontal cylinder, or sphere, immersed in a fluid at a different temperature.
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body is its diameter D, on which both NuD and RaD are based [cf. eqs. (4.123)].
Heat transfer data are correlated well by the formula [42]

NuD = 2 + 0.589Ra1/4D

[1 + (0.469/Pr)9/16]4/9
(4.124)

in which the appropriate ranges are Pr � 0.7 and RaD < 1011.

4.11.6 Vertical Cylinder

There are three surfaces in the vertical-cylinder geometry: the top and bottom
disks, which can be treated as in Section 4.11.3, and the lateral surface. The
boundary layer flow that develops over the lateral surface is illustrated in Fig. 4.19.
When the boundary layer thickness δT is much smaller than the cylinder diameter
D, the curvature of the lateral surface does not play a role, and the Nusselt
number can be calculated with the vertical-wall formulas (4.104)–(4.107). Note
that if H is the height of the cylinder, and if Pr � 1, the δT criterion requires that

D

H
> Ra−1/4

H (4.125)

The inequality above and the simplified heat transfer calculation recommended
by it represent the ‘‘thick cylinder’’ limit. The opposite limit is illustrated on the
right side of Fig. 4.19. An integral heat transfer solution that accounts for the
effect of wall curvature in the laminar regime is [43]

NuH = 4

3

[
7RaH Pr

5 (20 + 21 Pr)

]1/4

+ 4(272 + 315 Pr)H

35(64 + 63 Pr)D
(4.126)

Figure 4.19 Vertical cylinders with natural convection boundary layers on the lateral surfaces.
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where NuH = hH/k, RaH = (gβ �T H3)/αν, h is the wall-averaged heat trans-
fer coefficient, and �T is the temperature difference between the surface and the
fluid reservoir.

4.11.7 Other Immersed Bodies

So far, we have reviewed the simplest and most common body shapes that are
encountered in calculations of external natural convection. It turns out that the
heat transfer from bodies of other, less regular shapes follows Nu–Ra relations
that are similar to what we have seen so far. This similarity and the general need
for fewer and simpler formulas continue to stimulate research on a universal heat
transfer correlation for immersed bodies of various shapes. The simplest formula
of this kind was proposed by Lienhard [44],

Nul ∼= 0.52Ra1/4l (4.127)

inwhichNul = hl/k, Ral = (gβ �T l3)/αν, and h is the heat transfer coefficient
averaged over the entire surface of the body. Lienhard’s length l, on which both
Nul and Ral are based, is the distance traveled by the boundary layer fluid while
in contact with the body. In the case of a horizontal cylinder, for example,
l = πD/2. Equation (4.127) should be accurate within 10 percent provided that
Pr � 0.7 and the Rayleigh number is sufficiently large so that the boundary layer
is thin.

Yovanovich [45] developed a correlation that covers the entire laminar range,
0 < RaL < 108 that includes the limit of pure conduction RaL → 0. As length
scale, he used the square root of the entire surface of the immersed body,

L = A1/2 (4.128)

and defined NuL = hL/k and RaL = (gβ �T L
3)/αν. The correlation contains

two constants,

NuL = Nu
0
L + 0.67GL Ra1/4

L

[1 + (0.492/Pr)9/16]4/9
(4.129)

namely, the conduction-limit Nusselt number Nu
0
L and the geometric parameter

GL . The latter is a weak function of body shape, aspect ratio, and orientation in
the gravitational field. Table 4.3 lists the values of these two constants for the
bodies and orientations shown in Fig. 4.20. These values do not vary appreciably;
therefore, a general expression based on the average values of Nu

0
L and GL and

valid for Pr � 0.7 is [45]

NuL ∼= 3.47 + 0.51Ra1/4
L

(4.130)

Amore extensive correlation that covers the conduction, laminar, and turbulent
regimes was developed by Hassani and Hollands [46]. This correlation employs
two length scales, one of which is L , eq. (4.128). It covers the Rayleigh number
range 0–1014.
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Table 4.3 Constants for Yovanovich’s correlation [45] for laminar natural convection
heat transfer from immersed bodies (Fig. 4.20)

Body Shape Nu
0
L

G
L

Sphere 3.545 1.023
Bisphere 3.475 0.928
Cube 1 3.388 0.951
Cube 2 3.388 0.990
Cube 3 3.388 1.014
Vertical cylinder a 3.444 0.967
Horizontal cylinder a 3.444 1.019
Cylinder a at 45◦ 3.444 1.004
Prolate spheroid (C/B = 1.93) 3.566 1.012
Oblate spheroid (C/B = 0.5) 3.529 0.973
Oblate spheroid (C/B = 0.1) 3.342 0.768

aShort cylinder, H = D.

Figure 4.20 Shapes and orientations of bodies immersed in a fluid (Table 4.3).
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4.12 STACK OF VERTICAL HEAT-GENERATING PLATES

Here we consider the natural convection analog of the forced convection question
posed in Section 3.6. The optimization of spacings for natural convection was
the first theoretical step toward optimal internal structure (cf. the 1984 edition,
p. 157, problem 11) and the philosophy of design with constructal theory [47].
This step also marked the beginning of the method of intersecting the asymptotes.
For a current generalization and use of the method, see Lewins [48].

With reference to Fig. 4.21, we seek the optimal spacing D so that the
heat transfer rate from the vertical stack to the ambient (T∞) is maximized.
This problem is fundamental in the cooling of electronic packages, where the
objective is to maximize the density of heat-generating electronics that can be
fitted in a package of specified volume. In Fig. 4.21, the package volume is LHW,
where W is the width perpendicular to the plane of the figure.

The simplest way to solve this problem is by recognizing the limiting regimes
(D → 0 versus D → ∞) of the stack cooling mechanism. For this analysis it
is sufficient to assume that the surface of each board is smooth and isothermal
at T0 and that the board thickness t is negligible with respect to D. The number
of boards is n ∼= L/D, and the parameters H, W, T0, T∞, and L are assumed
given.

(a) Small Spacings Limit. Consider first the limit of vanishingly small plate-
to-plate spacing, D → 0. In this limit we can use with confidence eq. (4.91) for
the overall heat transfer rate extracted from the two surfaces of one channel,

q1 = ρgβcp(�T)2D3

12ν
W (4.131)

Figure 4.21 Vertical stack of heat-generating plates cooled by natural convection.
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Figure 4.22 Optimal plate-to-plate spacing as the intersection of (a) the small-D asymptote
with (b) the large-D asymptote.

where �T = T0 − T∞. The total number of channels is L/D; therefore, the total
heat transfer rate from the assembly is

qa = q1
L

D
= ρgβcp(�T)2D3

12ν
W
L

D
(4.132)

This shows that in the D → 0 limit, the total heat transfer rate decreases as D2.
This trend is shown in Fig. 4.22.

(b) Large Spacings Limit. Consider now the limit in which the spacing D
is sufficiently large, that is, larger than the thickness of the air boundary layer
formed on one of the vertical surfaces, D > H Ra−1/4

H , where RaH = (gβH3

�T)/αν and �T = T0 − T∞. The boundary layers are distinct (thin compared
with D), and the center of the plate-to-plate spacing is occupied by T∞-air.
The number of air boundary layers is 2(L/D) because there are two for each D
spacing. The corresponding formula for the total heat transfer rate is

qb = 2
L

D
qBL (4.133)

where qBL is the heat transfer through one boundary layer (one surfaceW × H):

qBL = hHWH �T (4.134)

We set Pr = 0.72 and calculate the average heat transfer coefficient based on
Table 4.2, where Nu = (4/3)Nu = (4/3)0.387 = 0.516,

hH = k

H
0.516Ra1/4H (4.135)
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In conclusion, in the large-D limit, the total heat transfer rate is proportional to
1/D:

qb = 2
L

D
WH �T

k

H
0.516Ra1/4H (4.136)

Intersection of Asymptotes. We have determined the two asymptotes of the
real (unknown) curve of q versus D. Figure 4.22 shows that the asymptotes
intersect above what would be the qmaximum of the actual curve. The optimum
spacing (Dopt) can be estimated (approximately) as the D value where the two
asymptotes intersect,

qa ∼= qb (4.137)

By using eqs. (4.132) and (4.136) and setting D = Dopt, we obtain, in order,

RaDopt
∼ 12.4Ra1/4H (4.138)

Dopt ∼ 2.3HRa−1/4
H (4.139)

The maximum heat transfer rate that corresponds to this optimal spacing is
obtained by placing D = Dopt in eq. (4.136) or (4.132):

qmax � 0.45k �T
LW

H
Ra1/2H (4.140)

The inequality sign is a reminder that the peak of the actual curve q versus D
is located under the intersection of the two asymptotes, as shown in Fig. 4.22.
Despite this inequality, the right side of eq. (4.140) represents the correct
order of magnitude of qmax. The maximum heat-generation (or electronics)
density qmax/HLW is proportional to H−1/2�T3/2 because RaH is proportional
to H3�T.

I first proposed this problem and method of solution in the 1984 edition of this
book, specifically, as Problem 11 on p. 157. The same problem was analyzed
simultaneously by a much lengthier method by Bar-Cohen and Rohsenow [49].
In fact, both versions, my 1984 book and Ref. 49, appeared in print at exactly the
same time, in August 1984, displayed side by side in the book exhibit at the 1984
National Heat Transfer Conference in Niagara Falls, New York. I remember
my first reaction to this amazing coincidence. Warren Rohsenow had been my
heat transfer professor at MIT. I thought that if a full-length article in a top
journal was needed to determine what my students could derive on the back of
an envelope by solving a homework problem, then my method of intersecting
the asymptotes is novel and extremely powerful.

History has proven this to be true. The identification of spacings for the
internal structures of volumes cooled by natural, forced and mixed convection,
laminar and turbulent, has become a very active and distinct research direction
in heat transfer and constructal design. This growing field is reviewed in a recent
book [47].
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4.13 DISTRIBUTION OF HEAT SOURCES ON A VERTICAL WALL

Consider a vertical wall of heightH in contact with a fluid reservoir of temperature
T∞ (Fig. 4.23) [50]. The wall is heated by horizontal line heat sources. Each
source has the strength q′(W/m). To start, assume that the heat sources appear
as points on the wall sketched in Fig. 4.23. Each line heat source extends in the
direction perpendicular to the figure. The flow is two-dimensional and by natural
convection in the boundary layer regime. The number of sources per unit of wall
height is unknown, N′(y),

N ′ = number of sources

unit length
(4.141)

According to constructal design (the optimal distribution of imperfection), the
global system (the wall and the fluid that bathes it) will perform best when all its
elements work as hard as the hardest working elements [47]. This means that if
Tmax is the maximal temperature that must not be exceeded at the hot spots that
occur on the wall, then the entire wall should operate at Tmax. The problem is to
determine the distribution of heat sources on the wall, N′(y), such that the wall
temperature is near the allowed limit,

Tw(y) ∼= Tmax, constant (4.142)

Figure 4.23 The multiple length scales of the nonuniform distribution of finite-size heat sources
on a vertical wall.
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Assume that the density of line sources is sufficiently high so that we may
regard the distribution of discrete q′ sources as a nearly continuous distribution
of nonuniform heat flux,

q′′(y) = q′N ′ (4.143)

The heat flux distribution that corresponds to eqs. (4.142) and (4.143) and Pr � 1
is approximately

Nu ∼= 0.5 Ra1/4y (4.144)

or, more explicitly,

q′′

Tmax − T∞

y

k
∼= 0.5

[
gβ

(
Tmax − T∞

)
y3

αν

]1/4

(4.145)

By eliminating q′′(y) between eqs. (4.143) and (4.145), we obtain the required
distribution of heat sources:

N ′(y) ∼= 0.5
k

q′ (Tmax − T∞)5/4
(
gβ

αν

)1/4

y−1/4 (4.146)

This function shows that the heat sources must be positioned closer when they
are near the start of the boundary layer. They must be farther apart on sections
of the wall near y = H. The total number of q′ sources that must be installed on
the wall of height H is

N =
∫ H

0
N ′ dy ∼= 2

3

k

q′ (Tmax − T∞)Ra1/4 (4.147)

where Ra = gβH3 (Tmax − T∞)/(αν). The Rayleigh number is a dimensionless
parameter that accounts for two global constraints, the wall height H and the
maximal allowable excess temperature at the hot spots. The total heat transfer
rate from the q′ sources to the T∞ fluid is

Q′ = q′N ∼= 2
3k(Tmax − T∞)Ra1/4 (4.148)

This represents the global performance level to which any of the nonuniform
distributions of concentrated heat sources will aspire.

The physical implementation of the preceding results begins with the obser-
vation that the smallest scale that can be manufactured in the heating scheme of
Fig. 4.23 is the D0 height of the line heat source. The local spacing between two
adjacent lines is S(y). This spacing varies with altitude in accordance with the
N′ distribution function (4.146). The wall height interval that corresponds to a
single line heat source is D0 + S(y). This means that the local number of heat
sources per unit of wall height is

N ′(y) = 1

D0 + S (y)
(4.149)
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The heat strength of one source (q′) is spread uniformly over the finite height of
the source, q′′

0 = q′/D0. The heat flux q
′′
0 is a known constant, unlike the function

q′′(y) of eq. (4.145), which will be the result of design. By eliminating N′(y)
between eqs. (4.146) and (4.149), we obtain the rule for how the wall heating
scheme should be constructed:

S (y)

H
∼= 2q′ Ra−1/4

k (Tmax − T∞)

( y
H

)1/4 − D0

H
(4.150)

The function S(y) of eq. (4.150) has negative values in the vicinity of the start
of the boundary layer. The smallest value that S can have is zero. This means that
there is a starting wall section (0 < y < y0) over which the line sources should
be mounted flush against each other. The height of this section (y0) is obtained
by setting S = 0 and y = y0 in eq. (4.150).

y0
H

∼= Ra

(
D0

H

)4
[
k
(
Tmax − T∞

)
2q′

]4

(4.151)

From y= 0 to y= y0 the wall is heated with uniform flux of strength q′′
0 = q′/D0.

The number of sources that cover the height y0 is N0 = y0/D0. Above y = y0 the
wall is heated on discrete patches of height D0, and the spacing between patches
increases with height.

These basic features of the design are illustrated in Fig. 4.23. The design has
multiple length scales: H, D0, y0, and S(y). The first two are constraints. The
last two are interrelated and are results of global maximization of performance
subject to the constraints. Taken together, the lengths represent the constructal
design—the flow architecture that out of an infinity of possible architectures
brings the entire wall to the highest performance level possible.

This fundamental problem of constructal design for natural convection
[47, 50] is driving a new research domain (e.g., Refs. 51–53), which is reviewed
in Ref. 47.
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PROBLEMS

4.1. Derive the integral forms of the momentum and energy equations
[eqs. (4.40) and (4.41)] by integrating eqs. (4.17) and (4.8) from the
wall (x = 0) to a plane x = X outside the vertical boundary layer.

4.2. Perform an integral analysis of the natural convection boundary layer by
assuming the following temperature and velocity profiles [15]:

T − T∞ = �T

(
1 − x

δT

)2

, v = V
x

δ

(
1 − x

δ

)2

For simplicity, assume that δ = δT. Follow the steps between eqs. (4.42)
and (4.49) to show that the local Nusselt number is given by

Nu = q′′

T0 − T∞

y

k
= 0.508

(
1 + 20

(21)Pr

)−1/4

Ra1/4y

Note that since δT = δ, eq. (4.47) cannot be satisfied by the solution.
Comment on the Pr range of validity of this δT = δ integral solution,
and explain why the Nusselt number predicted agrees with more exact
calculations over a surprisingly wide range (Fig. 4.6).

4.3. Derive the equations for energy and momentum in the similarity solution
formulation [eqs. (4.61) and (4.62)]; start with eqs. (4.56) and (4.57) and
exploit the similarity variable transformation (4.55) and (4.58)–(4.60).

4.4. Consider the natural convection heat leak from a life-size room with
one 3-m-tall wall exposed to the cold ambient. The room-air temperature
is 25◦C, while the room-side surface of the cold wall has an average
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temperature of 10◦C. If the room circulation is to be simulated in a small
laboratory apparatus filled with water, how tall should the water cavity
of the apparatus be? In the laboratory water experiment, the temperature
difference between the water body and the inner surface of the cooled
wall is 10◦C.

4.5. In many analyses of natural convection heat transfer problems, the vertical
wall heating a fluid or dividing two differentially heated fluids is modeled
as isothermal. This is an approximation valid in some cases and invalid in
others. To be isothermal, while bathed by natural convection in boundary
layer flow, a vertical solid wall must be thick enough. Comparing the
thermal conductance to vertical conduction through the wall (kwW/H) with
the thermal conductance to lateral heat transfer through the same wall
(and the fluid boundary layer, kH/δT), determine below what range of wall
widths W the ‘‘isothermal wall’’ assumption becomes inadequate (kW, H,
k, and δT are the wall thermal conductivity, wall height, fluid thermal
conductivity, and thermal boundary layer thickness, respectively). For a
wall of fixed geometry (W, H), is the isothermal wall assumption getting
better or worse as RaH increases?

4.6. Determine the local Nusselt number for the boundary layer natural convec-
tion along a q′′ = constant vertical wall by performing an integral analysis
using the profiles [19]

T − T∞ = �T

(
1 − x

δT

)2

, v = V
x

δ

(
1 − x

δ

)2

and taking δT = δ. Show that the wall temperature distribution is

T0(y) − T∞ = 1.622
q′′y
k

(
4
5 + Pr

Pr

)1/5

Ra−1/5
∗y

and that the local Nusselt number is given by eq. (4.75).

4.7. Construct the similarity formulation of the boundary layer flow problem
along a vertical wall with uniform heat flux. Start with eqs. (4.56)
and (4.57) and obtain the equivalent of eqs. (4.61) and (4.62) by first
noting the similarity variable dictated by the scaling law (4.69), η =
(x/y)Ra1/5∗y . Compare your final expressions for momentum and energy
conservation with the equations of Ref. 20; keep in mind that Ref. 20 uses
(x/y)(Ra*y/Pr)

1/5 as the similarity variable, not (x/y)Ra1/5∗y .

4.8. Consider the integral analysis of laminar natural convection along a
vertical wall bathed by a linearly stratified fluid (Fig. 4.9). Starting with
eqs. (4.78), show that the integral momentum and energy equations can be
expressed as in eqs. (4.79)–(4.81). Solve these equations in the limit of
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negligible inertia, Pr → ∞; show that in this limit the differential equation
of δ*(y*) is

d�

dy∗
= 240 + 8

3b�

1 − by∗

where � = δ4∗. Approximate this equation via finite differences and inte-
grate it setting b = 1. Compare your estimate of the average Nusselt
number [eq. (4.83)] with Fig. 4.9 and eq. (4.84).

4.9. Estimate the Nu0–H(ω, RaH) function displayed in Fig. 4.10 by matching
in series the thermal resistance of one q′′ = constant boundary layer
[eq. (4.75)], the thermal resistance of the wall, and finally, the resistance
of another q′′ = constant boundary layer. Assume that the temperature
along each face of the wall is y-independent and equal to the actual
temperature averaged over the wall height. Keep in mind that eq. (4.75)
describes the local heat transfer (hence, the local temperature difference)
and that the end result of this analysis, Nu0–H, describes the overall
heat transfer. For more details on how to approach this solution, consult
Ref. 26.

4.10. An electrical conductor in a piece of electronic equipment may be modeled
as an isothermal plate (T0) oriented vertically. The heat transfer rate
generated in the plate and released via laminar natural convection to the
ambient (T∞) is fixed and equal to Q. The height of the plate (H) may
vary.

(a) Neglecting numerical factors of order 1, what is the relationship
between the Nusselt number and the Rayleigh number for this arrange-
ment?

(b) How will the temperature difference (T0 − T∞) vary with the height
of the system? In other words, if H increases by a factor of 2, what
happens to (T0 − T∞)?

4.11. One way to visualize the y1/4 dependence of the thickness of the laminar
natural convection boundary layer is to execute the experiment shown in
Fig. P4.11. The vertical isothermal wall, Tw = 20◦C, is placed in contact
with an isothermal pool of paraffin, T∞ = 35◦C. Since the solidification
point of this paraffin is Tm = 27.5◦C, the wall becomes covered with a thin
layer of solidified paraffin.

Show that under steady-state conditions, the thickness of the solidified
layer, L, is proportional to the laminar boundary layer thickness; that is, it
increases in the downward direction as y1/4. Calculate L numerically and
plot to scale the L(y) shape of the solidified layer. The relevant properties
of liquid paraffin are kf = 0.15W/m ·K, β = 8.5 × 10−4 K−1, α = 9 ×
10−4 cm2/s, and Pr = 55.9. The thermal conductivity of solid paraffin is
ks = 0.36W/m · K. The overall height of the isothermal wall isH= 10 cm.
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Figure P4.11

4.12. The fully developed natural convection channel flow analysis presented in
Section 4.9 refers to only one simple geometry (the parallel-plate channel).
Using this analysis as a guideline, develop the corresponding Nusselt
number formula for other vertical channel cross sections, for example,
(a) circular, (b) square, and (c) equilateral triangle. Express your result in
the form

q′′
0−HH

(T0 − T∞)k
= (?)RaDh

where (?) is a numerical coefficient to be determined for each channel
cross-sectional shape and RaDh is the Rayleigh number based on hydraulic
diameter. [Hint: Note that, in general, eq. (4.89) is replaced by

∇2v = −gβ

ν
(T0 − T∞)

which is of the same type as eq. (3.20). The mean velocity solution to
this equation may be deduced from the friction factor data assembled in
Table 3.2.]

4.13. Find the Rayleigh number range in which the fully developed regime
formulas (4.91) are valid by translating the inequality (4.90) in the language
of RaD and H/D. Demonstrate that the RaD(H/D) criterion determined in
this manner is essentially the same as criterion (4.95).

4.14. Prove that for Pr < 1 fluids, the scale criterion for transition from natural
convection to forced convection in boundary layer flow along a vertical
wall (Fig. 4.13) is given by eq. (4.101).

4.15. One 0.5m× 0.5m vertical wall of parallelepiped water container is heated
uniformly by an array of electrical strip heaters mounted on its back. The
total heat transfer rate furnished by these heaters is 1000W. The water
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temperature is 25◦C. Calculate the height-averaged temperature of the
heated surface. Later, verify that most of the boundary layer that rises
along this surface is turbulent.

4.16. The air in a room is thermally stratified so that its temperature increases
by 5◦C for each 1-m rise in altitude. Facing the room air is a 10◦C vertical
window which is 1m tall and 0.8m wide. The room-air temperature at
the same level as the window midheight is 20◦C. Assume that the natural
convection boundary layer that falls along the window is laminar, and
calculate the heat transfer rate through the window.

4.17. You have a bottle of beer at room temperature, and you would like to
drink it cold as soon as possible. The beer bottle has a height/diameter
ratio of about 5. You place the bottle in the refrigerator; however, you
have the option of positioning the bottle (1) vertically or (2) horizontally.
The refrigerator cools by natural convection (it does not employ forced
circulation). Which way should you position the bottle? Describe the
goodness of your decision by calculating the ratio t1/t2, where t represents
the order of magnitude of the time needed for the bottle to reach thermal
equilibrium with the refrigeration chamber (base this calculation on scale
analysis).

4.18. Consider a vertical wall of height H in contact with an isothermal fluid
reservoir, as shown in Fig. 4.1. For the purpose of scale analysis, select
the square flow region of height H and horizontal thickness H. Show
that if in the momentum equation (4.17) you invoke a balance between
friction and buoyancy, the inertia/friction ratio comes out to be of order
GrH = (gβ �T H3)/ν2 (note that the H × H region is not the boundary
layer region; hence, the conclusion ‘‘inertia/friction ∼ GrH’’ does not
apply to the boundary layer region). Is the vertical velocity scale derived
above compatible with the v scale recommended by the energy equation
(4.8) for the H × H region? In other words, is the invoked balance
friction ∼ buoyancy in the H × H region realistic?

4.19. The downward trend exhibited versus b by the NuH/RaH curves of
Fig. 4.9 can be anticipated by means of a very simple analysis. Let �Tavg
be the average temperature difference between the isothermal wall and
the stratified reservoir. Assume a large Prandtl number (Pr → ∞), and
estimate the Nusselt number by using eq. (4.65′), in which both Nuy
and Ray are based on�Tavg (note also that y=H). Multiply and divide this
relationship by �Tmax to reshape it in terms of the NuH and RaH groups
defined in eqs. (4.83) and (4.81). Show that this relationship becomes

NuH = 0.671

(
1 − b

2

)5/4

Ra1/4H

and that it approximates within 13 percent the values suggested by the
Pr → ∞ curve of Fig. 4.9.
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4.20. A long, rectangular metallic blade has width H = 4 cm and temperature
Tw = 40◦C. It is surrounded on both sides by atmospheric air at T∞ = 20◦C.
The long side of the blade is always horizontal. Calculate the total heat
transfer rate per unit of blade length when the short side of its rectangular
shape (H) is (a) vertical, (b) inclined at 45◦ relative to the vertical, and (c)
horizontal. Comment on the effect that blade orientation has on the total
heat transfer rate.

4.21. The external surface of a spherical container with the diameter D = 3m
has a temperature of 10◦C. The container is surrounded by 30◦C air, which
is motionless except in the immediate vicinity of the container.

(a) Calculate the total heat transfer rate absorbed by the spherical con-
tainer.

(b) It is proposed to replace the spherical container with one shaped as a
horizontal cylinder with the diameter d = 1.5m. This new container
would have the same volume as the old one. Calculate the total heat
transfer rate absorbed by the cylindrical container.

(c) Which container design would you choose if your objective is to
prevent the warming of the liquid stored inside the container?

4.22. A cubic block of metal is immersed in a pool of 20◦C water and is
oriented as ‘‘Cube 1’’ in Fig. 4.20. The cube has a 2-cm side and
an instantaneous temperature of 80◦C. Calculate the average heat transfer
coefficient between the cube and the water by using (a) Lienhard’s method,
eq. (4.127); (b) Yovanovich’s method, eq. (4.129); and (c) Yovanovich’s
simplified formula (4.130). Comment on the agreement among these three
estimates.

4.23. A block of ice has the shape of a parallelepiped with the dimensions
indicated in Fig. P4.23. The block is oriented in such a way that two
of its long surfaces are horizontal. It is surrounded by 20◦C air from
all sides.

Figure P4.23
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Calculate the total heat transfer rate between the ambient air and the
ice block, q(W), by estimating the heat transfer through each face. Also
calculate the ice melting rate that corresponds to the total heat transfer
rate. The ice latent heat of melting is hsf = 333.4 kJ/kg.

4.24. Consider again the natural convection heat transfer from air to the ice block
described in Problem 4.23. Obtain a ‘‘quick’’ estimate of the total heat
transfer rate q(W) by using Lienhard’s formula (4.127). The length l on
which Nul and Ral are based can be approximated as the half-perimeter of
the smaller (0.3m × 0.3m) cross section of the ice block (see Fig. P4.23).

4.25. An electrical wire of diameter D = 1mm is suspended horizontally in air
of temperature 20◦C. The Joule heating of the wire is responsible for the
heat generation rate q′ = 0.01W/cm per unit length in the axial direction.
The wire can be modeled as a cylinder with isothermal surface. Sufficiently
far from the wire, the ambient air is motionless. Calculate the temperature
difference that is established between the wire and the ambient air. [Note:
This calculation requires a trial-and-error procedure; expect a relatively
small Rayleigh number.]

4.26. The single-pane window problem consists of estimating the heat transfer
rate through the vertical glass layer shown in Fig. P4.26. The window
separates two air reservoirs of temperatures Th and Tc. Assuming constant
properties, laminar boundary layers on both sides of the glass, and a
uniform glass temperature Tw, show that the average heat flux q′′ from Th
to Tc obeys the relationship

Figure P4.26
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q′′

Th − Tc

H

k
= 0.217

[
gβ

(
Th − Tc

)
H3

αν

]1/4

Use Table 4.2 as a starting point in this analysis, and neglect the thermal
resistance due to pure conduction across the glass layer itself.

4.27. Consider again the single-pane window described in Problem 4.26, and
model the heat flux through the glass layer as uniform, q′′. Starting with
the height-averaged version of eq. (4.75) for air, show that the relationship
between q′′ and the overall temperature difference Th − Tc is

q′′

Th − Tc

H

k
= 0.252

[
gβ

(
Th − Tc

)
H3

αν

]1/4

Compare this result with the formula recommended by the uniform-Tw
model in Problem 4.26, and you will get a feel for the certainty with which
you can calculate the total heat transfer rate through the window.

4.28. Evaluate the proposal to install windows with glass panes of nonuniform
thickness as a means of minimizing the heat leak from a room to the cold
outside air. This proposal was stimulated by the thought that since the
room-side heat transfer coefficient is higher near the top of the window (at
the start of the descending boundary layer), it is there that a thicker glass
layer can have the greatest effect on reducing the local heat flux [54]. This
thought points toward the tapered glass design illustrated on the left side
of Fig. P4.28. The thickness of the glass layer has been exaggerated to
make the notation clearer.

Figure P4.28
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One way to evaluate the merit of the proposed design is to compare the
total heat leak through the window, q′ (W/m), with the corresponding heat
leak through a constant-thickness glass window. The amount of glass used
in the variable-thickness design is the same as in the constant-thickness
(or reference) design. For the tapered glass window, assume that the glass
thickness decreases linearly in the downward direction:

δ = δ + b
( 1
2 − ξ

)
In this expression, ξ = y/H, and the taper parameter b = − dδ/dξ is
a design variable that must be determined optimally. The H-averaged
thickness δ is fixed because the window height H and the glass volume are
fixed.

For the heat transfer coefficient on the room-air side, assume a y depen-
dence consistent with that found in laminar natural convection boundary
layers,

h = hminξ
−1/4

where hmin is the smallest h value that occurs at the bottom of the window,
where the room-side boundary layer is the thickest. The heat transfer
coefficient on the outside of the glass layer is sufficiently large so that the
temperature of that surface is equal to the atmospheric temperature.

To have access to a bird’s-eye view of the merit of the proposed design
relative to the reference design, determine numerically the ratio q′/q′

ref as
a function of two dimensionless groups, the taper parameter

S = H

δ

(
−dδ

dy

)

and the bottom-end Biot number Bi = hminδ/kw. Determine the best taper
parameter S for the smallest q′/q′

ref ratio for a fixed Bi. By means of a
numerical example, determine the Bi range in which a common window
is likely to operate. Comment on the practicality of the heat leak reduction
promised by the tapered glass design.

4.29. The optimal spacing between horizontal tubes in a fixed volume cooled
by natural convection can be determined based on the method of Section
4.12. Consider the bundle of horizontal cylinders shown in Fig. P4.29. The
overall dimensions of the bundle (H, L, W) and the cylinder diameter (D)
are fixed. Natural convection heat transfer (q) occurs between the cylinder
surfaces (Tw) and the surrounding fluid reservoir (T∞). The objective is to
select the number of cylinders in the bundle, or the cylinder-to-cylinder
spacing (S) such that the overall thermal conductance between the bundle
and the ambient q/(Tw − T∞) is maximized.
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Figure P4.29

For the sake of concreteness, assume that the cylinders are staggered
and that their centers form equilateral triangles. Other arrays can be
treated similarly. The analysis consists of estimating the overall thermal
conductance in the two asymptotic regimes (large S, small S) and inter-
secting the two asymptotes to locate the optimal spacing for maximum
conductance.

4.30. This problem is about the thermodynamics fundamentals of the natural
convection engine described at the start of Section 4.1. We explore the
fundamentals in two parts, in accordance with Fig. P4.30.

(a) Consider a stream of ideal gas with the flow rate ṁ, which flows
isothermally and reversibly through the system shown in Fig. P4.30a.
The temperature T is constant throughout the system. The inlet and
outlet pressures are Pin and Pout. Invoke the first law and the second
law, the ideal gas model, and the isothermal and reversible model, and
show that the heat input rate Q̇ and work output rate Ẇ are equal and
given by

Q̇ = Ẇ = ṁRT ln
Pin

Pout
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Figure P4.30

(b) Next, the circulation of the atmosphere can be modeled as a heat
engine that functions in a cycle of four processes (Fig. P4.30b):
1–2, isothermal heating and expansion at TH, 2–3, isobaric cooling
at PL, 3–4, isothermal cooling and compression at TL, and 4–1,
isobaric heating at PH. The cycle is executed reversibly: There are
no pressure drops from 2 to 3, and from 4 to 1, and locally, there
is no temperature difference between the 2–3 and 4–1 streams. The
internal (regenerative) heat transfer Q̇i occurs across a zero temperature
difference. The heating and expansion process is a model for how the
air warms up and rises to higher altitudes (lower pressures) over the
equatorial zone (TH). The cooling and compression make of a model
for the sinking of the same airstream over the polar zones (TL). The
counterflow formed by the 4–1 and 2–3 streams is a model for the
circulation of the atmosphere in the meridional direction.

Use the results of part (a) to calculate the net power output of the
atmospheric heat engine (Ẇnet = ẆH − ẆL) and the energy conversion
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efficiency η = Ẇnet/Q̇H . Does your resulting expression for η look
familiar? Why?

4.31. A cylindrical cup of height H and radius R is filled completely with hot tea
and leaks heat to the ambient. See Fig. P4.31. Assume that the temperature
difference between tea and ambient is constant, �T. Neglect the thermal
insulation effect of the wall of the cup. The heat flux (W/m2) from the
cup to the ambient is equal to �T times the water–ambient heat transfer
coefficient. Assume that the heat transfer coefficient between the tea free
surface and the ambient is constant, h1. The heat transfer coefficient
between the remaining surfaces (lateral an bottom) and the ambient is also
constant, h2. The cup volume is fixed. Show that the total heat leak from
tea to ambient is minimal when the cup shape is R/H = (h1/h2 + 1)−1.
Sketch and describe the cup with optimal shape for the case where h1 = h2.

Figure P4.31
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INTERNAL NATURAL
CONVECTION

Enclosures filled with fluid are central components in a long list of engineering
and geophysical systems. The flow induced in the inner airspace of a double-
pane window system differs fundamentally from the external natural convection
boundary layer considered earlier. In this chapter we focus on natural convection
as an internal flow; convection in an enclosure is the result of the complex
interaction between a finite-size fluid system in thermal communication with all
the walls that confine it.

The phenomenon of natural convection in an enclosure is as varied as the
geometry and orientation of the enclosure. Judging from the number of potential
engineering applications, the enclosure phenomena can be organized into two
classes: (1) enclosures heated from the side and (2) enclosures heated from
below. The first class is representative of applications such as solar collectors,
double-wall insulations, and air circulation through the rooms in a building.
In addition, we find enclosures heated from the side in the cooling systems
of industrial-scale rotating electric machinery. The second class refers to the
functioning of thermal insulations oriented horizontally, for example, the heat
transfer through a flat-roof attic space. The study of both flow classes is also
relevant to our understanding of natural circulation in the atmosphere, the
hydrosphere, and the molten core of the earth.

5.1 TRANSIENT HEATING FROM THE SIDE

5.1.1 Scale Analysis

Consider a two-dimensional enclosure of height H and horizontal length L,
as is shown in Fig. 5.1. The enclosure is filled with a Newtonian fluid such
as air or water. We are interested in the transient behavior of the cavity

233Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
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Figure 5.1 Two-dimensional rectangular enclosure with isothermal sidewalls.

fluid as the sidewalls are instantaneously heated and, respectively, cooled to
temperatures +�T/2 and −�T/2. The top and bottom walls (y = 0, H) remain
insulated throughout this experiment. Initially, the fluid is isothermal (T = 0)
and motionless (u = v = 0) everywhere inside the cavity.

The equations governing the conservation of mass, momentum, and energy at
every point in the cavity are

∂u

∂x
+ ∂v

∂y
= 0 (5.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
(5.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
− g[1 − β(T − T0)] (5.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(5.4)
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The symbols appearing in eqs. (5.1)–(5.4) are defined in Fig. 5.1. Note that in
writing these equations, we modeled the fluid as Boussinesq-incompressible, in
other words, ρ = constant everywhere except in the body force term of the y
momentum equation, where it is replaced by ρ[1−β(T−T0)].

Instead of solving eqs. (5.1)–(5.4) numerically, we rely on pure scale analysis
to predict theoretically the types of flow and heat transfer patterns that can
develop in the enclosure [1]. Immediately after t = 0, the fluid bordering each
sidewall is motionless: This means that near the sidewall, the energy equation
(5.4) expresses a balance between thermal inertia and conduction normal to the
wall,

�T

t
∼ α

�T

δ2T
(5.5)

This equality of scales follows from recognizing �T, t, and δT as the scales of
changes in T, t, and x in eq. (5.4). In the same equation, we took u = v = 0;
we also recognized that ∂2T/∂y2 � ∂2T/∂x2 because near t = 0+, the thermal
boundary layer thickness δT is much smaller than the enclosure height (note
that y ∼ H and x ∼ δT). Equation (5.5) dictates that immediately following
t = 0, each sidewall is coated with a conduction layer the thickness of which
increases as

δT ∼ (αt)1/2 (5.6)

The layer δT rises along the heated wall. The velocity scale of this motion v

is easier to see if we first eliminate the pressure P between the two momentum
equations (5.2) and (5.3):

∂

∂x

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
− ∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= ν

[
∂

∂x

(
∂2v

∂x2
+ ∂2v

∂y2

)
− ∂

∂y

(
∂2u

∂x2
+ ∂2u

∂y2

)]
+ gβ

∂T

∂x
(5.7)

This new equation contains three basic groups of terms: inertia terms on the
left-hand side and four viscous diffusion terms plus the buoyancy term on the
right-hand side. It is easy to show that the three terms that dominate each basic
group are (Problem 5.1)

Inertia

∂2v

∂x ∂t
,

Friction

ν
∂3v

∂x3
,

Buoyancy

gβ
∂T

∂x
(5.8)

In terms of representative scales, the momentum balance (5.8) reads

v

δT t
, ν

v

δ3T
∼ gβ �T

δT
(5.9)
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The driving force in this balance is the buoyancy effect (gβ �T)/δT, which is
not zero. It is important to determine whether the buoyancy effect is balanced by
friction or inertia. Dividing eq. (5.9) through the friction scale and recalling that
δ2T ∼ αt yields

Inertia

1

Pr
,

Friction

1 ∼

Buoyancy

gβ �T δ2T

ν v
(5.10)

Therefore, for fluids with Prandtl number of order 1 or greater, the correct
momentum balance at t = 0 + is between buoyancy and friction,

1 ∼ gβ �T δ2T

ν v
(5.11)

We conclude that the initial vertical velocity scale is

v ∼ gβ �T αt

ν
(5.11′)

This velocity scale is valid for fluids such as water and oils (Pr > 1) and is
marginally valid for gases (Pr ∼ 1).

Next, we turn our attention back to the energy equation. The heat conducted
from the sidewall into the fluid layer δT is no longer spent solely on thickening
the layer: Part of this heat input is carried away by the layer δT rising with
velocity v. Thus, in the energy equation, we see a competition among three
distinct effects:

Inertia

�T

t
,

Convection

v
�T

H
∼

Conduction

α
�T

δ2T
(5.12)

As t increases, the convection effect increases [v ∼ t, eq. (5.11′)], while the
effect of inertia decreases in importance. There comes a time tf when the energy
equation expresses a balance between the heat conducted from the wall and the
enthalpy carried away vertically by the buoyant layer,

v
�T

H
∼ α

�T

δ2T
(5.13)

which yields

tf ∼
(

νH

gβ �T α

)1/2

(5.13′)

At such a time, the layer thickness is

δT , f ∼ (αtf )
1/2 ∼ H Ra−1/4

H (5.14)
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where RaH is the Rayleigh number based on the enclosure height,∗

RaH = gβ �T H3

αν
(5.15)

The time tf when the δT layer becomes convective could have also been
determined by setting inertia ∼ convection in eq. (5.12). Note further that
beyond the time tf, the convection ∼ conduction balance in eq. (5.12) is
preserved only if both v and δT no longer increase in time. Therefore, beyond
t ∼ tf, the thermal layers along each sidewall reach a steady state characterized
by an energy balance between conduction and convection and a momentum
balance between buoyancy and viscous diffusion (see Chapter 4).

In addition to thermal layers of thickness δT, f, the sidewalls develop viscous
(velocity) wall jets. The thickness of these jets δv from the momentum balance
(5.7) for the region of thickness x ∼ δv outside the thermal layer. In this region,
the buoyancy effect is minor, and we have a balance between inertia and viscous
diffusion,

v

δvt
∼ ν

v

δ3v
(5.16)

Hence,
δv ∼ (νt)1/2 ∼ Pr1/2 δT (5.17)

In the steady state, t > tf, the fluid near each sidewall is characterized
by a two-layer structure: a thermal boundary layer of thickness δT, f and a
thicker wall jet δv,f ∼ Pr1/2δT, f. The development of this structure is shown
in Fig. 5.2.

5.1.2 Criterion for Distinct Vertical Layers

If the final thermal boundary layer thickness δT, f is smaller than the transversal
extent of the enclosure (L), the thermal layers will be distinct; using eq. (5.14),
this criterion reads

H

L
< Ra1/4H (5.18)

We could have arrived at the same inequality by stating that the vertical
layers become convective in a time shorter than the thermal diffusion time
between the two vertical walls (tf < L2/α). The H/L − RaH subdomain in
which we should expect distinct wall layers in the horizontal temperature

∗Note that the majority of the experimental studies on natural convection in enclosures, particularly
those on tall enclosures, report their results in terms of a Rayleigh number based on the horizontal
dimension L; from a theoretical scaling viewpoint, this choice is without foundation.
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Figure 5.2 Development of two-layer structure near the warm wall.

profile is shown in Fig. 5.3. This subdomain is bounded on the left by the
conduction heat transfer regime (the proof that RaH < 1 is the criterion for
conduction-dominated heat transfer is proposed as Problem 5.3). Note further
that the corresponding criterion for distinct velocity boundary layers (wall jets)
is δv,f < L; hence,

H

L
< Ra1/4H Pr−1/2 (5.19)

5.1.3 Criterion for Distinct Horizontal Jets

The scale analysis presented so far can be extended to cover events near the two
horizontal adiabatic walls in an attempt to predict the shape of the temperature
and velocity profiles vertically across the cavity [1]. A more direct approach to
predicting the presence of distinct wall layers in the steady state is to regard
the circulation loop as a counterflow heat exchanger in which the horizontal
branches can communicate thermally over a horizontal distance of order L [2].
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Figure 5.3 Four heat transfer regimes for natural convection in an enclosure heated from
the side.

The enthalpy flow between the two vertical ends is

q′
convection
left→right
(Fig. 5.1)

∼ (ρv δT)f cP �T

∼ k �T Ra1/4H (5.20)

This estimate is the same as the heat transfer rate through each of the vertical
walls, (k/δT, f)H �T. Heat diffuses vertically from the warm upper branch of the
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counterflow to the lower branch at a rate

q′
conduction
top→bottom
(Fig. 5.1)

∼ kL
�T

H
(5.21)

The enthalpy carried by the stream (ρvδT)f reaches the opposite end intact when
the vertical diffusion is negligible,

kL
�T

H
< k �T Ra1/4H

in other words, when
H

L
> Ra−1/4

H (5.22)

When condition (5.22) is met, the horizontal streams along the adiabatic walls
retain their temperature identity, as shown in the sketch accompanying the
H/L = Ra−1/4

H line in Fig. 5.3.
The two criteria for distinct thermal layers [eqs. (5.18) and (5.22)] and the

convective heat transfer requirement [RaH > 1] divide the H/L − RaH field into
four sectors. Each sector corresponds to a distinct regime in the steady state:

• Regime I: conduction limit. The temperature varies linearly across the
cavity; hence, the heat transfer rate between the two sidewalls is of order
(kH �T)/L. The horizontal temperature gradient �T/L gives rise to a slow
clockwise circulation; however, the heat transfer contribution of this flow
is insignificant.

• Regime II: tall enclosure limit. For most of the enclosure height, the
temperature varies linearly between the two sidewalls. The heat transfer rate
is of order (kH�T)/L, as in the preceding case. The clockwise circulation
pattern is characterized by distinct layers in the vicinity of the top and
bottom walls.

• Regime III: high-RaH limit (boundary layer regime). Vertical thermal
boundary layers form distinctly along the differentially heated sidewalls.
The heat transfer rate across the cavity scales as (k/δT, f)H�T. The adiabatic
horizontal walls are lined by distinct thermal layers. Most of the cavity fluid
(the core) is relatively stagnant and thermally stratified.

• Regime IV: shallow enclosure limit. The heat transfer mechanism is dom-
inated by the presence of vertical thermal layers; hence, it scales again as
(k/δT, f)H �T. This scale represents an upper bound because an additional
insulation effect is provided by the long horizontal core of the cavity. In this
region, the two branches of the horizontal counterflow make good thermal
contact, rendering the counterflow an effective insulation in the left–right
direction [3].
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Figure 5.4 Circulation patterns associated with regimes I–IV shown in Fig. 5.3.

The flow patterns in regimes I–IV are sketched in Fig. 5.4. These patterns have
been confirmed by numerous experimental studies involving Pr > 1 fluids. The
scales and regimes of natural convection in shallow enclosures were investigated
by Boehrer [4]. The identification of the time scale of the rotation of the fluid
inside a cavity with periodic heating from the side led to the discovery of a
phenomenon of resonance for the global heat transfer across the cavity [5]. This
development generated a new direction in heat transfer research [6–14].

5.2 BOUNDARY LAYER REGIME

In the next two sections we focus on two classes of analytical advances in
the direction of predicting the heat transfer rate under regimes III and IV. The
first major theoretical work on natural convection in enclosures [15] considered
regimes (I), (II), and (III). Although it served as a stimulus for the theoretical
work that followed, it is not as critical to heat transfer engineering because
under regimes I and II, the heat transfer rate is practically equal to the pure
conduction estimate.

When vertical thermal boundary layers are present, the heat transfer rate is
controlled by the thermal resistance of order δT, f /k, which coats each sidewall.
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To calculate this thermal resistance we must determine the temperature field in
the vertical region of thickness δT, f. This justifies the following nondimension-
alization of the governing equations (5.1), (5.4), and (5.7):

x∗ = x

δT , f
, y∗ = y

H

T∗ = T

�T
(5.23)

u∗ = u

(δT , f /H)vf
, v∗ = v

vf

In these definitions, δT, f is the final thermal boundary layer thickness
[eq. (5.14)] and vf is the velocity scale (5.11′) evaluated at t = tf. Substituting
the new dimensionless variables (5.23) into the steady-state conservation
equations yields

∂u∗
∂x∗

+ ∂v∗
∂y∗

= 0 (5.24)

u∗
∂T∗
∂x∗

+ v∗
∂T∗
∂y∗

= ∂2T∗
∂x2∗

+ Ra−1/2
H

∂2T∗
∂y2∗

(5.25)

1

Pr

[
∂

∂x∗

(
u∗

∂v∗
∂x∗

+ v∗
∂v∗
∂y∗

)
− Ra−1/2

H
∂

∂y∗

(
u∗

∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

)]

= ∂

∂x∗

(
∂2v∗
∂x2∗

+ Ra−1/2
H

∂2v∗
∂y2∗

)
− Ra−1/2

H
∂

∂y∗

(
∂2u∗
∂x2∗

+ Ra−1/2
H

∂2u∗
∂y2∗

)

+ ∂T∗
∂x∗

(5.26)

In the high-RaH limit and for Pr > 1 fluids, eqs. (5.24)–(5.26) reduce to

∂u∗
∂x∗

+ ∂v∗
∂y∗

= 0 (5.24′)

u∗
∂T∗
∂x∗

+ v∗
∂T∗
∂y∗

= ∂2T∗
∂x2∗

(5.25′)

0 = ∂3v∗
∂x3∗

+ ∂T∗
∂x∗

(5.26′)

Gill [16] solved these equations approximately subject to the sidewall
conditions

u∗ = v∗ = 0, T∗ = 1

2
at x∗ = 0 (5.27)
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and the outer (far from the wall) conditions

u∗ → u∗∞ (y∗), v∗ → 0 as x∗ → ∞ (5.28)

T∗ → T∗∞ (y∗) as x∗ → ∞ (5.29)

where u*∞ and T*∞ are the unknown flow and temperature stratification of the
core. To circumvent the nonlinearity of the energy equation (5.25′), Gill [16]
used the Oseen-linearization technique and replaced the u* and ∂T*/∂y* factors
appearing on the convective side of eq. (5.25′) with two unknown functions of
altitude, uA(y*) and T

′
A(y∗),

(uA)
∂T∗
∂x∗

+ (T ′
A)v∗ = ∂2T∗

∂x2∗
(5.25′′)

Eliminating T* between this equation and the momentum equation (5.26′) yields

∂4v∗
∂x4∗

− (uA)
∂3v∗
∂x3∗

+ (T ′
A)v∗ = 0 (5.30)

This equation can be integrated in x*. The general solution has the form

v∗ =
4∑
i=1

ai (y∗)e
−λi(y∗)x∗ (5.31)

where the λi’s are the four roots of the characteristic equation

λ4 + uAλ
3 + T ′

A = 0 (5.31′)

Applying the boundary conditions (5.27)–(5.29), the solution takes the form

v∗ =
1
2 − T∗∞
λ2
2 − λ2

1

(−e−λ2x∗ + e−λ1x∗) (5.32)

T∗ =
1
2 − T∗∞
λ2
2 − λ2

1

(λ2
2e

−λ2x∗ − λ2
1e

−λ1x∗) + T∗∞ (5.33)

where λ1 and λ2 are the two roots with positive real parts of eq. (5.31′).
The solution expressed by eqs. (5.32) and (5.33) depends on four unknown

functions of altitude, λ1, λ2, u*∞, and T*∞. The fourth unknown, u*∞, appears in
the expression for u*, which is obtained by combining eqs. (5.32) and (5.24). Gill
determined these functions uniquely by invoking the energy integral condition∫ ∞

0

(
u∗

∂T∗
∂x∗

+ v∗
∂T∗
∂y∗

)
dx∗ = −

(
∂T∗
∂x∗

)
x∗=0

(5.34)
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plus two centrosymmetry conditions, meaning that the cold-side boundary layer
solution must approach the same core solution (5.28) and (5.29). The integral
condition (5.34) must be an energy condition because the inexact character of
solution (5.32, 5.33) stems from the Oseen-linearization (approximation) of the
energy equation (5.25′). Gill’s results are

λ1,2 = 1
4p(1 − q)[1 ± i(1 + 2q)1/2] (5.35)

T ∗∞ = q

1 + q2
(5.36)

where p(y*) is an even function and q(y*) is an odd function resulting from the
system:

p = 2(1 + 3q2)11/9

C(1 + q2)2/3 (1 − q2)
(5.37)

dq

dy∗
= 2(1 + 3q2)53/9

C4(7 − q2)(1 − q2)3 (1 + q2)2/3
(5.38)

For this formulation, the origin of y* was taken at the midheight of the enclosure,
so that y* varies from − 1

2 to
1
2 . Gill integrated eqs. (5.37) and (5.38) numerically

and determined the constant C from the arbitrary condition that the vertical
velocity in the boundary layers (v∗) is zero at the two corners (y∗ = ± 1

2 ).
Representative boundary layer isotherms and streamlines based on this solution
are reproduced in Fig. 5.5 (note the different notation; in Fig. 5.5, z is y*, T
is T*, and ψ is the streamfunction defined as u* = −∂ψ /∂y*, v∗ = ∂ψ /∂x*).
The complete solution was compared with the temperature and velocity profiles
reported experimentally by Elder [17]. The agreement between theory and
experiment proved adequate, although questions have persisted in connection
with the arbitrary choice of impermeable top and bottomwalls made to determine
the constant C. The basis for these equations is the fact that the solution for v∗ is
valid in the boundary layer only; therefore, it is improper to use it in the corners,
where the boundary layer scaling (5.23) breaks down.

The important heat transfer result of the preceding analysis, not reported by
Gill [16], is the overall heat transfer rate across the enclosure [18],

q′ = k
∫ H/2

−H/2

(
−∂T

∂x

)
x=0

dy

= 0.364k �T Ra1/4H (5.39)

Noting that the majority of experimental and numerical studies have reported
their findings as overall Nu correlations where

Nu = q′

q′
pure conduction
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Figure 5.5 Streamlines and isotherms near the vertical wall in the boundary layer regime.
(Reprinted with permission from A. E. Gill, Journal of Fluid Mechanics, Vol. 26, pp. 515–536,
1966. Copyright 1966 Cambridge University Press.)

the present result can be rewritten as

Nu = q′

(kH �T)/L
= 0.364

L

H
Ra1/4H (5.40)

The analytical heat transfer result developed above was improved and
extended. As a substitute for Gill’s choice of impermeable wall conditions
at y∗ = ± 1

2 , Bejan [18] proposed the condition of zero net energy flow (by
convection and conduction) through the top and bottom walls,

q′
y =

∫ L

0

(
ρcPvT − k

∂T

∂y

)
dx = 0 at y = ±H/2 (5.41)

This statement takes into account, in an integral sense, the conditions of both
impermeable and adiabatic horizontal walls. The heat transfer result based on
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Figure 5.6 Overall Nusselt number for the boundary layer regime in an enclosure heated from
the side. (From Ref. 18.)

this approach is shown in Fig. 5.6: The numerical factor in the Nu ∼ (L/H)

Ra1/4H relation (5.40) is a function of the new group Ra1/7H (H/L)4/7. Equation
(5.40) emerges as a limiting result, valid for the boundary layer regime in the
high-RaH limit. The general result of Fig. 5.6 shows that the Nu (H/L, RaH)
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(L /H ) RaH
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Figure 5.7 Comparison of the theoretical Nusselt number (Fig. 5.6) with experimental correla-
tions. (From Ref. 18.)
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relationship is more complicated than the one suggested by eq. (5.40). As shown
by the solid curves of Figs. 5.7 and 5.8, this relationship cannot be expressed as
a power law of the type Nu = a(L/H)b RacH , with constant a, b, and c (note that,
in general, c > 1

4 and b < 1).
We end this section with a survey of the overall Nu correlations found in the

literature. Figures 5.7 and 5.8 show a selection of experimental [19–23] and
numerical [24–27] correlations vis-à-vis the theoretical result of Fig. 5.6. As
should be expected, the numerical correlations of Fig. 5.8 are in superior mutual
agreement compared with the experimental results in Fig. 5.7. The analytical
results for the overall Nusselt number (the solid lines) split the field covered by
these correlations right through the middle.

The agreement between theory and correlations based on numerical correla-
tions is excellent, particularly near (L/H)Ra1/4 ∼ 10, which is the range where
the boundary layer model (L/δT, f > 1) is an acceptable approximation. Below
this range, the heat transfer mechanism is slowly replaced by direct conduction
in the horizontal direction (see Fig. 5.3). Above this range, the boundary layer
picture becomes considerably more complicated due to the transition to turbulent
flow. The theoretical Nusselt number of Fig. 5.6 and eq. (5.40) can be used with
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Figure 5.8 Comparison of the theoretical Nusselt number (Fig. 5.6) with numerical correlations.
(From Ref. 18.)
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the same if not a higher degree of confidence than the heat transfer correlations
available today.

In this section we focused on the boundary layer regime in enclosures filled
with Pr > 1 fluids such as water, oils, and as a limiting case, gases (air).

5.3 SHALLOW ENCLOSURE LIMIT

Another convection-dominated regime is regime IV: According to Figs. 5.3 and
5.4, ifH/L decreases and RaH and Pr remain fixed, the cavity becomes dominated
by a horizontal counterflow in which the two branches are in very good thermal
contact. Of interest is the end-to-end insulation effect produced by the horizontal
counterflow sandwiched by the two adiabatic walls of the enclosure. For this
reason, we focus on the core region—that is, the region sufficiently far from both
vertical walls—where the proper scales for x and y are L and H, respectively
(see Fig. 5.9).

In the shallow enclosure limit H/L→0, the scales of the terms that dominate
the steady-state mass, energy, and momentum conservation statements [eqs.
(5.1), (5.4), and (5.7)] are

u

L
∼ v

H
(5.42)

u
�T

L︸ ︷︷ ︸
Convection

∼ α
�T

H2︸ ︷︷ ︸
Vertical

conduction

(5.43)

u2

HL︸︷︷︸
Inertia

or ν
u

H3︸︷︷︸
Friction

∼ gβ
�T

L︸ ︷︷ ︸
Buoyancy

(5.44)

Figure 5.9 Shallow enclosure heated in the horizontal direction.
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This display is instructive because it unmasks the potential for erroneously
evaluating the scales of u and v: We have three apparent balances [eqs.
(5.42)–(5.44)] for determining only two unknowns, u and v. The correct way to
proceed is to recognize that, physically, the velocity scale is the result of a force
balance. This means that the u scale follows from eq. (5.44), not from eq. (5.43).
Now, in the momentum equation (5.44), we distinguish two possibilities:

1. Friction ∼ buoyancy
2. Inertia ∼ buoyancy

In both cases, the buoyancy effect is present because it is the driving effect
(without it, i.e., when g = 0, there is no flow). The second choice, inertia ∼
buoyancy, is incompatible with the H/L → 0 limit (see Problem 5.5). Assuming
the first possibility, friction ∼ buoyancy, we find that

u ∼ gβH3 �T

νL
(5.45)

and from eq. (5.42),

v ∼ gβH4 �T

νL2
(5.46)

Using these scales, the relative order of magnitude of the terms appearing in the
energy and momentum equations is

(
H

L

)2

RaH︸ ︷︷ ︸
Convection

(→ 0)

∼ 1︸ ︷︷ ︸
Vertical

conduction

(5.43′)

(
H

L

)2 RaH
Pr

,︸ ︷︷ ︸
Inertia
(→ 0)

1︸︷︷︸
Friction

∼ 1︸︷︷︸
Buoyancy

(5.44′)

Examining eq. (5.44′), we conclude that the assumed balance between friction
and buoyancy is the correct choice for the flow regime of interest (H/L → 0).
Second, expression (5.43′) states that in this regime, the heat transfer by
thermal diffusion in the vertical direction is far greater than the enthalpy flow
in the horizontal (end-to-end) direction. Indeed, the sharp imbalance revealed
by expression (5.43′) is the meaning of ‘‘good thermal contact in the vertical
direction,’’ the distinguishing feature of regime IV (Fig. 5.3).
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Scales (5.45) and (5.46) recommend the following dimensionless variables
for the core region:

uc = u

(gβH3 �T)/νL
, vc = v

(gβH4 �T)/νL2

xc = x

L
, yc = y

H
, Tc = T − Tcold

�T
(5.47)

where Tcold is the cold-end temperature and �T = Twarm − Tcold is the end-to-
end temperature difference. Expressions (5.43′) and (5.44′) indicate that in the
H/L → 0 limit, the governing equations reduce to the following:

Mass :
∂uc
∂xc

+ ∂vc

∂yc
= 0

Momentum : ε
RaH
Pr

[
ε

∂

∂xc

(
uc

∂vc

∂xc
+ vc

∂vc

∂yc

)
− ∂

∂yc

(
uc

∂uc
∂xc

+ vc
∂uc
∂yc

)]
(5.48)

= ε
∂

∂xc

(
ε
∂2vc

∂x2c
+ ∂2vc

∂y2c

)
− ∂

∂yc

(
ε
∂2uc
∂x2c

+ ∂2uc
∂y2c

)
+ ∂Tc

∂xc
(5.49)

Energy : εRaH

(
uc

∂Tc
∂xc

+ vc
∂Tc
∂yc

)
= ε

∂2Tc
∂x2c

+ ∂2Tc
∂y2c

(5.50)

where ε = (H/L)2 is a number considerably smaller than unity. We seek solutions
of the type

uc, vc, Tc = (uc, vc, Tc)0︸ ︷︷ ︸
∼1

+ ε(uc, vc, Tc)1︸ ︷︷ ︸
∼ε

+ ε2(uc, vc, Tc)2︸ ︷︷ ︸
∼ε2

+ · · · (5.51)

The solution for uc, vc, and Tc is developed systematically by substituting the
series expansions (5.51) into the three governing equations (5.48)–(5.50). Next,
the terms multiplied by the same power of ε are grouped together and, as a
group, set equal to zero. Corresponding to each power of ε, say, εk, we must
solve a system of three equations, subject to solid adiabatic wall conditions,
yielding as a solution (uc, vc, Tc)k. For this procedure to work, we must start with
the k = 0 solution and sequentially work our way down the right-hand side of
the series expansion (5.51). This asymptotic expansion procedure is described in
some detail in Ref. 28, which shows that except for (uc, vc, Tc)0, all the functions
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(uc, vc, Tc)k have the same analytical form, regardless of order k. The core
solution emerges as

uc (yc) = K1

(
y3c
6

− y2c
4

+ yc
12

)
, vc = 0 (5.52)

Tc (xc, yc) = K1xc + K2 + K2
1

(
H

L

)2

RaH

(
y5c
120

− y4c
48

+ y3c
72

)
(5.53)

Parameters K1 and K2 must be determined from end conditions in the x direction
to account for the flow and temperature patterns prevailing in the two end regions
(Fig. 5.9). The velocity and temperature profiles across the core region are
plotted in Fig. 5.10; the core flow consists of a thermally stratified counterflow
whose velocity profile and degree of thermal stratification are independent of
longitudinal position x.

The net heat transfer rate from Twarm to Tcold (Fig. 5.9) follows from the
energy flux integral at any x across the core counterflow:

q′ =
∫ H

0

(
k
∂T

∂x
− ρcPuT

)
dy (5.54)

Figure 5.10 Velocity and temperature profiles in the core region of a shallow enclosure. (From
Ref. 29.)
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Combining this statement with the core solution [eqs. (5.52) and (5.53)] and
using the conduction-referenced Nusselt number (5.40), we obtain [29]

Nu = K1 + K3
1

362,880

(
H

L
RaH

)2

(5.55)

The heat transfer rate depends on the core axial gradient K1. To determine K1,
we reason that as (H/L)2 RaH decreases, the core temperature distribution (5.53)
becomes independent of yc; hence, the core temperature must decrease linearly
between the extreme ends of the cavity [29]. Writing

Tc = 0 at xc = 0 and Tc = 1 at xc = 1 (5.56)

in the limit (H/L)2 RaH → 0, we find that

K1 = 1 and K2 = 0 (5.57)
Therefore,

Nu = 1 + 1

362,880

(
H

L
RaH

)2

as

(
H

L

)2

RaH → 0 (5.55′)

The asymptotic heat transfer result (5.55′) is of limited applicability; the
real challenge lies in evaluating parameters K1, 2 for the general Nu expression
(5.55) when (H/L)2 RaH is finite, that is, when the longitudinal temperature drop
across the core region is less than the overall end-to-end temperature difference
Twarm − Tcold. The general situation is shown schematically in Fig. 5.11

Figure 5.11 Temperature distribution along the top and bottom walls of a shallow enclosure.
(From Ref. 29.)
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where, in order to make the end regions visible, the horizontal coordinate is
defined as

x1 = x

H
(5.58)

Figure 5.11 shows that as (H/L)2 RaH increases, the thermal stratification of
the core must be taken into account. One way of treating this general case
analytically is to match the core solution [eqs. (5.52) and (5.53)] to integral
solutions for flow and temperature in the end regions [29].

We define the end region as that portion of the horizontal enclosure in which
the core solution [eqs. (5.52) and (5.53)] breaks down. Inside the end region,
0 < x1 < δ, the flow is turned around and cooled as it comes in contact with the
vertical wall at x1 = 0. We seek two equations for the unknown K1 and K2. The
first follows from integrating the steady-state energy equation (5.4) twice, from
yc = 0 to yc = 1, and from x1 = 0 to x1 = δ. To obtain the second equation, we
also integrate the momentum equation (5.7) twice:

∫ 1

0

∣∣∣∣∂Te∂x1

∣∣∣∣
x1=0

dyc = H

L
K1 −

∫ 1

0
|ueTe|x1=δ dyc (5.59)
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The next step is the selection of reasonable profiles for the velocity and
temperature distributions inside the end region (these functions are denoted by
subscript e). The recommendation is to select profiles that satisfy the boundary
conditions along the solid walls (yc = 0, 1 and x1 = 0) and match the value and
slope of the core profiles at x1 = δ, as shown in Fig. 5.12. Thus, using
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the energy and momentum integrals (5.59) and (5.60) yield
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Figure 5.12 Boundary conditions for the end region. (From Ref. 29.)

The third equation necessary for uniquely determining K1, K2, and δ must
come from the equivalent integral analysis of the warm-end region, (L/H−δ) <

x1 < L/H. This procedure is equivalent to noticing that the flow in the entire
cavity is symmetric about the geometric center of the cavity; the centrosymmetry
condition can be expressed as

Tc = 1

2
at xc = yc = 1

2
(5.62)

or, substituting into the core temperature expression (5.53),

K1

2
+ K2 +

(
H

L
K1

)2 RaH
1440

= 1

2
(5.62′)

Equations (5.59′), (5.60′), and (5.62′) constitute a parametric solution for the
result of interest, the function K1(H/L, RaH). Substituting this result into the
general Nu expression (5.55) leads to the relationship Nu(H/L, RaH), which is
displayed in Fig. 5.13. The presentation is made on a Nu − (H/L) RaH field, so
that the asymptote (5.55′) is plotted as a single line. Figure 5.13 also shows that
the Nusselt number predicted by the integral analysis of the end regions [29] is
in excellent agreement with experimental and numerical results [30, 31] for a
wide variety of shallow enclosures, including the square geometry (H/L = 1).
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Figure 5.13 Natural convection in a shallow enclosure heated from the side. (From Ref. 29.)

The usefulness of Fig. 5.13 is stressed further by the fact that the theoretical
curves agree with the empirical data not only in domain IV (Fig. 5.3), but also
well into domain (III): This would be easy to see if the III–IV frontier RaH ∼
(H/L)−4 were plotted on Fig. 5.13 (the frontier is not shown because it would
interfere with the reading of the Nu information). The success of the theoretical
curves in domain III is explained by the fact that the theory takes into account the
thermal resistances associated with the vertical end walls: Earlier in this chapter,
we concluded that regime III is one where the vertical boundary layers dominate
the overall Twarm → Tcold thermal resistance.

5.4 SUMMARY OF RESULTS FOR HEATING FROM THE SIDE

5.4.1 Isothermal Sidewalls

In Sections 5.2 and 5.3, we stressed the method behind two theoretical results
that predict the heat transfer through a two-dimensional rectangular space heated
from the side. A good way to use these results is to think of three classes of
possible applications:

1. Tall enclosures (H/L > 1). The Nusselt number formula recommended
for this class is eq. (5.40) or Fig. 5.6. As shown by the experimental and
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numerical data cited in Figs. 5.7 and 5.8, this calculation is applicable
when (L/H) Ra1/4H � 5, that is, when the convective heat transfer effect is
significant (Nu > 1).

2. Shallow enclosures (H/L< 1). For this class of applications, the theoretical
curves shown in Fig. 5.13 are adequate. For cases not plotted in Fig. 5.13,
the Nusselt number can be calculated using eqs. (5.55), (5.59′), (5.60′),
and (5.62′).

3. Square enclosures (H/L= 1). Figure 5.13 showed that the integralmatching
analysis of Ref. 29 predicts the Nusselt number correctly, provided that
(H/L) RaH does not exceed 105. A better way is to use the formula
recommended for tall cavities [eq. (5.40)]; Figure 5.14 shows that eq. (5.40)
agrees very well with numerical and experimental data [32] gathered from
eight independent sources.

Figure 5.15 presents an alternative summary of the heat transfer methodology
discussed in this chapter. Plotting the conduction-referenced Nusselt number Nu
versus the geometric ratio H/L, we learn that the convective heat transfer effect
reaches a maximum in the vicinity of H/L ∼ 1, that is, when the enclosure
geometry does not suppress the fluid circulation. Conversely, the convective heat
transfer contribution vanishes (Nu → 1) as the buoyancy-driven loop is snuffed
out (flattened) into a counterflow whose two branches are in excellent thermal
contact (H/L→0 or H/L → ∞).

One way to see why Nu can reach a maximum is to think of a double-wall
structure, as shown in the upper part of Fig. 5.15. The fluid layer is heated
from the side (�T = Th − Tc), and its thickness—the horizontal dimension—is
fixed. The ensuing flow is segmented into rolls by the insertion of horizontal
partitions, which are impermeable and adiabatic. The partitions are equidistant,
but their vertical spacing H may vary. The changes occur at constant L, that is,
at the constant Rayleigh number based on L, RaL = (gβ �T L3)/αν. The thermal
conductance reaches a maximum when each roll has a certain, intermediate
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Figure 5.14 Experimental and numerical convection in a square enclosure. (From Ref. 32.)
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Figure 5.15 Effect of cavity shape on heat transfer through an enclosure heated from the side.
(From Ref. 39.)

shape (not too tall, not too shallow). The evidence that supports the maxima
exhibited in Fig. 5.15 is strong and comes from seven independent studies, which
are indicated in the figure. The optimal roll shape becomes more slender as the
convection becomes more intense (i.e., as RaL increases).

The analogy between the geometric optimization of segmented vertical layers
(Fig. 5.15) and the geometric maximization of thermal conductance in layers
heated from below (Section 5.5.3) was not noted until Refs. 40 and 41. An
analogous geometric principle governs the maximization of thermal conductance
across a segmented vertical layer filled with a fluid-saturated porous medium
[39]. The maximum of Fig. 5.15 was confirmed more recently by Frederick [42].
Costa et al. [43] showed that further improvements are possible if the corners
of the two-dimensional cavity are rounded. Noteworthy is the research direction
started in Refs. 44–47, in which the cavity walls are deformable and the effect
of deformation on global heat transfer is documented.

The enclosure flows discussed so far are all laminar. As shown in Chapter 6,
the transition to turbulence occurs when the wall jet Reynolds number based on
the vertical velocity scale and the local thickness of the jet exceeds O(102).

The heatline visualization of natural convection in a square cavity with
isothermal sidewalls is presented in Fig. 5.16. This was in fact the first heatline
illustration of convection. The Rayleigh number is high enough so that the
side-to-side heat transfer rate is dominated by convection. The heatlines show
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Figure 5.16 Heatlines in natural convection (square enclosure, Pr = 7, RaH = 1.4 × 105):
(a) streamlines; (b) isotherms; (c) heatlines. (From Ref. 48.)

vividly that ‘‘heat rises’’ and that the true energy corridor consists of two
vertical boundary layers connected through an energy tube positioned along the
upper wall. The heatlines are parallel to the top and bottom walls, which are
adiabatic. Along the two isothermal vertical walls, the heat-lines are normal to
the wall because the near-wall regions are dominated by conduction (both u and
v vanish at the wall). One contribution of the heatline pattern is that it shows
graphically the magnitude of the Nusselt number: The conduction-referenced
Nusselt number appears in Fig. 5.16c as the value of maximum H on the top
heatline of the heatfunction plot. Note further that the heatline pattern shows
graphically the flow of energy downward through the core.

A comprehensive correlation for laminar natural convection in a rectan-
gular enclosure heated and cooled from the side is due to Berkovsky and
Polevikov [49]:

NuH = 0.22

(
Pr

0.2 + Pr
RaH

)0.28( L

H

)0.09

2 <
H

L
< 10, Pr < 105, RaH < 1013 (5.63)

NuH = 0.18

(
Pr

0.2 + Pr
RaH

)0.29( L
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)−0.13

1 <
H

L
< 2, 10−3 < Pr < 105

103 <
Pr

0.2 + Pr
RaH

(
L

H

)3

(5.64)

where NuH = q′′H/(k �T). These correlations are valid in the domain indicated
(H/L, Pr, RaH) and in the ‘‘wide’’ cavity limit, eq. (5.18). In Ref. 49, the
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Berkovsky–Polevikov correlations show a deceptively strong L/H effect because
the Nusselt and Rayleigh numbers in that paper were based on L as length scale,
namely, NuL and RaL.

5.4.2 Sidewalls with Uniform Heat Flux

A fully analytical solution for the flow and temperature field is possible [50]
when the sidewalls are heated and, respectively, cooled with uniform heat flux,
q′′. In the boundary layer regime, the temperature increases linearly in the vertical
direction along the heated wall and the cooled wall and in the core region,

∂T

∂y
= 0.0425

αν

gβH4

(
H

L

)4/9

Ra8/9∗H (constant) (5.65)

Because the temperature increases at the same rate in the vertical direction
along both walls, the wall-to-wall temperature difference is a constant at every
level, Th(y) − Tc(y) = �T. The solution for the average Nusselt number
NuH = q′′H/(�T k) in the boundary layer regime in Pr � 1 fluids is

NuH = 0.34Ra2/9∗H

(
H

L

)1/9

(5.66)

where Ra∗H = gβH4q′′/(ανk). If, instead of the flux Rayleigh number Ra∗H ,

we use the �T-based Rayleigh number RaH = Ra∗H/NuH = (gβ �T H3)/αν,
then eq. (5.66) becomes

NuH = 0.25Ra2/7H

(
H

L

)1/7

(5.67)

Note that since Ra2/7H = Ra0.286H , this theoretical alternative reproduces almost
all the features of the empirical correlations (5.63) and (5.64) recommended
for enclosures with isothermal sidewalls. This reinforces the observation that
the heat transfer correlations developed for a system with isothermal walls
apply reasonably well to the uniform-flux configuration, provided that the RaH
number is then based on the wall-averaged temperature difference, RaH =
Ra∗H/NuH . The analytical solution for the rectangular enclosure with uniform
flux on the sidewalls was validated through numerical simulations of the
flow and temperature fields [50], Fig. 5.17. Natural convection in enclosures
with discrete heat sources arranged in an array was documented numerically
by Tou et al. [51].

5.4.3 Partially Divided Enclosures

Real-life systems such as buildings, lakes, and solar collectors rarely conform
to the single-enclosure model used in much of the natural convection literature.
A very basic model for the study of natural convection in such systems is
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Figure 5.17 Natural convection in an enclosure with uniform heat flux (Pr = 7, RaH = 3.5 ×
106, H/L = 2). (From Ref. 50.)

the association of two enclosures communicating laterally through a doorway,
window, or corridor or over an incomplete dividing wall. The partially divided
enclosure model was studied [52–57] in the form of basic experiments involving
the two-dimensional geometries sketched in Fig. 5.18.

The new flow feature caused by the presence of a vertical obstacle inside the
cavity is the trapping of the fluid on one side of the obstacle. For example, if
the partial wall is mounted on the floor of the cavity, the fluid on the cold side
of the obstacle becomes trapped and inactive with respect to convection heat
transport. Relative to convection in a box without internal flow obstructions,
where the flow fills the entire cavity, the presence of sizable pools of inactive

Figure 5.18 Natural convection patterns in enclosures communicating through a side opening.
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fluid in Fig. 5.18 has a significant effect on the overall heat transfer rate between
the far ends of the cavity.

The reduction in the end-to-end heat transfer rate can be predicted based on
scale analysis, as shown in Refs. 52 and 55. Assuming that no heat transfer takes
place through the incomplete partition, the end-to-end heat transfer is impeded
by the two thermal resistances associated with the two vertical boundary layers
driven by the differentially heated end walls. Let (δ1, H1) and (δ2, H2) be the
length scales of the two boundary layers, as shown in Fig. 5.18. The two heights,
H1 and H2, are known from the geometry of the internal partition. The thermal
boundary layer thickness scales are known from arguments presented earlier in
this chapter and in Chapter 4 for Pr > 1,

δ1 ∼ H1 Ra−1/4
H1

, δ2 ∼ H2 Ra−1/4
H2

(5.68)

where the subscripts H1 and H2 indicate that in each case, the Rayleigh number
is based on the actual height of the boundary layer, not on the height of the
enclosure, H. Noting that the thermal resistances of the two boundary layers
scale as

δ1

kH1
and

δ2

kH2
(5.69)

the end-to-end heat transfer rate q′ may be calculated as

q′ = �T

C1 δ1/kH1 + C2 δ2/kH2
(5.70)

where C1 and C2 are by definition numerical coefficients of orderO(1). This heat
transfer result may be cast in dimensionless form to show the effect of obstacle
geometry:

q′

k �T
= Ra1/4H

C1(H/H1)
3/4 + C2(H/H2)

3/4
(5.71)

Looking at Fig. 5.18b and at eq. (5.71), we see that as the opening left above
the partition decreases, the ratio H/H2 becomes very large and the heat transfer
rate drops sharply. Setting C1 = 1.5 and C2 = 3, eq. (5.71) correlates the heat
transfer rates measured in a box with a single internal partition [55] (as in
Fig. 5.18b, where H = H1) in the RaH range 109–1010.

The ‘‘fluid trap’’ phenomenon created by the partitions considered above is
capable of totally shutting off the natural circulation in the enclosure. Figure 5.19
shows the two ways in which one could install two incomplete internal walls
whose heights add to more than H. If the floor obstacle is on the hot side of the
enclosure, the fluid sandwiched between the two obstacles is stably stratified and
natural convection is prohibited. If the floor obstacle is on the cold side, Fig. 5.19
shows that natural convection is possible as a single cell strangled by the two
obstacles. The effect of a venetian blind inserted in a double-walled enclosure
and modeled as a vertical permeable screen was studied by Zhang et al. [58].
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Figure 5.19 Incomplete partitions in an enclosure.

5.4.4 Triangular Enclosures

Another basic enclosure geometry that has important applications is the triangular
enclosure with different temperatures maintained along the horizontal wall and
the sloped wall. The interest in this geometry stems from problems involving
the natural circulation in shallow waters with sloping bottoms heated by solar
radiation, and energy conservation in solar collectors and attics. Experiments in
triangular enclosures were reported in Refs. 59 and 60. Numerical simulations
for 1 < RaH < 106 and an asymptotic analytical solution valid for very shallow
attic spaces are also available [61]. Attic spaces were simulated more recently
by Haese and Teubner [62].

Natural convection in triangular enclosures is an interesting interaction
between the two basic configurations identified in the introduction to this
chapter: enclosures heated from the side and enclosures heated from below. If
the sloped wall is situated above the horizontal wall, and if the sloped wall is
heated and the bottom wall is cooled, the downward heat transfer through the
enclosure is ruled by pure conduction. If the sloped wall is cooled and the bottom
wall is heated, the enclosure is ruled by a single-cell flow driven by the sloped
wall. The single-cell circulation persists (in a time-averaged sense) even at high
Rayleigh numbers, where the flow is turbulent [60]. The interesting aspect of this
conclusion is that whereas the enclosure is cooled from above and from the side
(along the sloped wall), the natural circulation observed is of the type associated
with enclosures heated from the side (i.e., single-cell).

5.5 ENCLOSURES HEATED FROM BELOW

The fundamental difference between enclosures heated from the side (Fig. 5.1)
and enclosures heated from below (Fig. 5.20) is that in enclosures heated from
the side, a buoyancy-driven flow is present as soon as a very small temperature
difference (Th − Tc) is imposed between the two sidewalls. By contrast, in
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Figure 5.20 Horizontal fluid layer heated from below.

enclosures heated from below, the imposed temperature difference must exceed
a finite critical value before the first signs of fluid motion and convective heat
transfer are detected. In this section we start with a review of the experimental
evidence on enclosures heated from below and continue with a series of new and
purely theoretical attempts to predict the experimental results.

5.5.1 Heat Transfer Results

When the enclosure is sufficiently long and wide in the horizontal direction,
the condition for the onset of convection is expressed by the critical Rayleigh
number [63]

RaH � 1708 (5.72)

where RaH = gβ(Th − Tc)H
3/αν. As suggested in Fig. 5.20, immediately

above RaH ∼= 1708, the flow consists of counterrotating two-dimensional rolls,
the cross sections of which are almost square. This flow pattern is commonly
recognized as Bénard cells, or Bénard convection, in honor of H. Bénard who
reported the first investigation of this phenomenon in 1900. The cellular flow
becomes considerably more complicated as RaH exceeds by one or more orders
of magnitude the convection-onset value. The two-dimensional rolls break up
into three-dimensional cells, which appear hexagonal in shape when viewed
from above (Fig. 5.21). At even higher Rayleigh numbers, the cells multiply
(become narrower), and eventually, the flow becomes oscillatory and turbulent.
The hierarchy of flow regimes and various transitions in Bénard convection has
been reviewed by Busse [64].

The generation of Bénard-like cells is visible in the process of filling a glass
with dark beer, while pouring as closely as possible to the center of the glass
(Fig. 5.22). The bubbles present in the beer are the flow visualization device:
They collect along the surface only in those regions that correspond to downward
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Figure 5.21 Rolls and hexagonal cells in a fluid layer heated from below. (Reprinted with per-
mission from J. Zierep and H. Oertel, Jr., eds., Convective Transport and Instability Phenomena,
1982, p. 10. Copyright 1982 G. Braun, Karlsruhe, Germany).

flow. The photographs show clearly the formation of surprisingly regular cells,
as each downflow zone is sandwiched between upflow zones (dark areas). After
some practice, it becomes possible to vary the pouring rate and to discover that
the cell number decreases as the pouring is done more gently. The flow has the
natural property to select its own length scales.

The heat transfer effect of the cellular flow is to augment the net heat transfer
rate in the vertical direction (i.e., to increase it above the pure-condition rate
that would prevail in the absence of fluid motion). The dimensionless number
that measures this augmentation effect is the average Nusselt number based
on the vertical dimension H, namely, NuH = q′′H/(k �T). Experimental heat
transfer measurements in the range 3 × 105 < RaH < 7 × 109 support the
correlation [65]

NuH = 0.069Ra1/3H Pr0.074 (5.73)

The physical properties needed for calculating NuH , RaH , and Pr are evaluated
at the average fluid temperature (Th + Tc)/2. Equation (5.73) holds when the
horizontal layer is sufficiently wide so that the effect of the short vertical sides
is minimal.
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Figure 5.22 Constructal design of turbulence in a glass of dark beer. The momentum from the
falling jet is transferred more effectively to the body of stationary liquid by a design of eddies
regularly spaced around the rim. The bubbles present in the beer are the visualization secret.
They gather on the surface only above the regions that correspond to downward flow.

The experimental data correlated by eq. (5.73) line up in such a way that
the exponent of RaH increases slightly as RaH increases. The exponent is closer
to 0.29 at the low-RaH end of the correlation (roughly, when RaH < 108). Its
value becomes practically equal to 1

3 when RaH exceeds approximately 108. The

proportionality NuH ∼ Ra1/3H persists as RaH increases above the range covered
by eq. (5.73).

I pointed out that the proportionality NuH ∼ Ra1/3H means that the actual heat
transfer rate (q′′) from Th to Tc is independent of the layer thickness H. In the
1984 edition of this book, I showed that the NuH ∼ Ra1/3H proportionality can
be predicted theoretically by performing the scale analysis of a single roll (cell)
of the Bénard convection pattern. Two alternative theories are presented later in
this section.

At subcritical Rayleigh numbers, RaH � 1708, the fluid is quiescent, and the
temperature decreases linearly from Th to Tc. The heat transfer rate across the
fluid layer is by pure conduction; therefore, NuH = 1.

The convection onset criterion (5.72)—the value 1708 on the right side—
refers strictly to an infinite horizontal layer with rigid (no-slip) and isothermal
top and bottom boundaries. Similar criteria, all with critical Rayleigh numbers on
the order of 103, hold for other horizontal layer configurations (i.e., combinations
of top and bottom boundary conditions).

5.5.2 Scale Theory of the Turbulent Regime

When the Rayleigh number RaH is orders of magnitude greater than the critical
value, convection in the bottom-heated fluid layer is turbulent. The core of the
fluid layer is practically at the average temperature (Th + Tc)/2, while temperature
drops of size (Th−Tc)/2 occur across thin fluid layers that line the two horizontal
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Figure 5.23 Flow structure of a layer heated from below in the high-RaH regime.

walls (Fig. 5.23). The turbulence over most of the horizontal layer of thicknessH
is caused by the buckling thermals that rise from the heated bottom and those that
fall from the cooled top. The turbulent core of the layer is sandwiched between
two δ-thin conduction layers. Each δ layer becomes unstable when its Rayleigh
number based on height (δ) exceeds the order 103:

Raδ ∼ 103 (5.74)

This is equivalent to writing

RaH ∼ 103
(
H

δ

)3

(5.75)

in which RaH is the usual Rayleigh number, RaH = (gβ �T H3)/αν, and
�T = Th − Tc. The heat transfer from Th to Tc is impeded by layers of thickness
δ (not H); therefore,

q′′ ∼ k
�T

δ
(5.76)

and

NuH = q′′

(k �T)/H
∼ H

δ
(5.77)

By eliminating H/δ between eqs. (5.75) and (5.77), we obtain

NuH ∼ 10−1Ra1/3H (5.78)

This simple theoretical result reproduces almost all the features of the
empirical correlation recommended for turbulent (high-RaH) Benard convection
calculations, eq. (5.73). This back-of-the-envelope derivation is also a reminder
that the heat transfer rate does not depend on H [see eq. (5.76)].
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5.5.3 Constructal Theory of Bénard Convection

Considerably more theoretical progress was made recently based on the con-
structal law [41,66–68]. First is the transition between the two heat transfer
regimes shown in Fig. 5.20. Why should a disorganized motion and heat transfer
mechanism (chaotic, molecular thermal diffusion) change abruptly such that the
disorganized entities ride together in a macroscopic motion visible as streams?
Why should shapelessness (diffusion) coexist with shape and structure (streams)?

The single-phase fluid layer is characterized by the thicknessH and the bottom
excess temperature �T = Th − Tc. In line with the access-facilitating principle
of the constructal law, we search for the most direct route for heat transfer across
the fluid layer. In other words, we subject heat transfer to the same principle of
facilitating momentum transfer that in Chapter 6 is used to predict turbulence.
The classical solution for time-dependent thermal diffusion near a wall with a
sudden jump in temperature (�T) is

T − Tc
�T

= erfc

[
y

2(αt)1/2

]
(5.79)

whereTc is the far-field temperature in the fluid. The effect of thewall temperature
jump is felt to the distance

y

2(αt)1/2
∼ 1 (5.80)

which represents the knee in the temperature profile of eq. (5.79). The time
needed by the heating effect to travel by thermal diffusion the distance H is

t0 ∼ H2

4α
(5.81)

The time t0 corresponds to the heating of the entire layer (y∼ H). The factor 4 in
the denominator arises from the shape of the time-dependent temperature profile
in eq. (5.79).

Pure conduction continues to be the preferred heat transfer mechanism, and
the fluid layer remains macroscopically motionless as long as H is small enough
that t0 is the shortest time of transporting heat across the layer. The alternative
to conduction is convection, or the channeling of energy transport on the back
of fluid streams, which act as conveyor belts (rolls, Fig. 5.21b). The question is
whether the convection time (t1) around the convection cell is shorter than t0:
This is the constructal law of greater flow access in time [66–68]. The convection
time is t1 ∼ 4H/v, where v is the vertical velocity of the fluid (the peripheral
velocity of the roll).

To evaluate the v and t1 scales, we rely on scale analysis. The effective
diameter of each roll is on the order of H, but smaller, for example, H/2. When
the roll turns, an excess temperature on the order on �T/2 is created between
the moving stream and the average temperature of the fluid layer. This excess
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temperature induces buoyancy on the order of (gβ �T)/2. The total buoyancy
force that drives the roll is on the order of [gβ �T/2]ρ(H/2)2. When the Prandtl
number is on the order of 1 or greater, the driving force is balanced by the
viscous shearing force τH/2, where the shear stress scale is τ ∼ µv/(H/4). The
force balance buoyancy ∼ friction yields the velocity scale v ∼ (gβ �T H2)16ν
and the corresponding convection time scale

t1 ∼ 64ν

gβ �T H
(5.82)

To see the emergence of an opportunity to greater flow access, imagine
that H increases. The thermal diffusion time t0 increases with H, whereas the
convection time t1 (a property of the H-tall system, even if quiescent) decreases
monotonically. Setting t1 � t0 and using eqs. (5.81) and (5.82), we find that the
first streams should occur when RaH = 256, where RaH = (gβ �T H3)/αν is the
Rayleigh number.

The exact solution for this critical condition is RaH = 1708, in other words,
RaH = O(103). The error in the result of scale analysis is understandable (and
not important) because it can be attributed to the imprecise geometric ratios
(factors on the order of 1) introduced along the argument made above eq. (5.82).
A more exact estimate can be achieved in an analysis that estimates better the
scales of the flow, as we demonstrate next. What is important is that the critical
RaH predicted is a constant considerably greater than 1. This constant expresses
the compounded effect of all the geometric ratios of the roll-between-plates
configuration. Had we neglected the geometric reality of how the rolls must
fit, e.g., the geometric fact that the factor 4 belongs in the denominator of
approximation (5.81), we would have obtained only RaH ∼ 1 [i.e., the correct
dimensionless group RaH but not the important result that the critical RaH is
a geometric (structural) constant]. All the transition (critical) numbers of fluid
mechanics are constants that reflect the geometry (shape) of the ‘‘elemental
system’’ of constructal theory—the first roll or the first eddy (e.g., Table 6.1),
where stream flow is balanced by diffusion.

When convection is present there are two heat transfer mechanisms, not
one. Each roll characterized by t0 ∼ t1 is an elemental system in the sense
of constructal theory. The equipartition of time t0 ∼ t1 is the analog of the
equipartition of temperature difference and pressure drop in other constructal
multiscale flow structures [41,66–68]. Conduction, or thermal diffusion, is
present and does its job at every point inside the elemental volume H × 2Lr,
shown in Figs. 5.24 and 5.25. Superimposed on this volumetric heat flow is an
optimal pattern of convection streets that guide the imposed heat current faster
across H.

The decrease of the temperature difference across H continues to manifest
itself as H (or RaH) increases, and convection becomes more intense. This is
achieved through the selection of the number of rolls that fill a layer of horizontal
dimension L, or the selection of the roll aspect ratio H/Lr. We can describe
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Figure 5.24 Flow geometry in the many-cells limit. (From Ref. 41.)

this process analytically by intersecting the two asymptotes of the geometric
configuration: many cells versus few cells.

All of the physical parameters of the system of Fig. 5.20 are fixed except
for the half-thickness of the cell Lr, or the number of cells. For simplicity, we
assume that the flow is two-dimensional; however, a strongly three-dimensional
flow can be discovered by use of the same intersection-of-asymptotes method
[69]. Because we are free to vary Lr, we can imagine the many-cells limit shown
in Fig. 5.24. Each cell is a very slender counterflow, which has the important
property that it can sustain a longitudinal (i.e., vertical) temperature gradient
of the same order as the imposed gradient �T/H. The longitudinal temperature
gradient occurs because one branch of the counterflow loses heat to (or gains
heat from) the other branch.

We are interested in more than just the orders of magnitude of the flow
variables: This is why in addition to using scale analysis we assume a rea-
sonable shape for the laminar temperature profile. If the temperature profile
is parabolic across each branch (Fig. 5.24), and if the maximum tempera-
ture difference across one branch is �Tt/2, the average temperature difference
between the two branches is 2

3�Tt. We can estimate the mass flow rate of one
branch, ṁ′, by writing the momentum equation for fully developed flow in the
upflowing branch:

d2v

dx2
= −gβ

ν
(Tup − Tdown) (5.83)
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Figure 5.25 Flow geometry in the few-cells limit. (From Ref. 41.)

where Tup and Tdown are the average temperatures of the upflowing and down-
flowing branches. Noting that (Tup − Tdown)

∼= 2
3�Tt and integrating eq. (5.83)

subject to the conditions of no-slip at x = 0 and zero shear at x = Lr, we obtain
v(x) and the mass flow rate,

ṁ′ = 2ρgβL3r �Tt
9ν

(5.84)

The enthalpy lost by the upflowing branch is ṁ′cP(Tin − Tout), where Tin and Tout
are the start and the finish bulk temperatures of the branch. Figure 5.24b shows
that Tin − Tout = �T− �Tt. This enthalpy loss is being conducted horizontally to
the downflowing branch. The horizontal temperature gradient across the interface
between the two branches (x = 0; dashed line in Fig. 5.24a) is 2

( 1
2�Tt/Lr

)
,

where the leading factor of 2 is the mark of the assumed parabolic temperature
profile. Finally, the first law of thermodynamics written for the upflowing branch
as a flow system of size H × Lr is

ṁ′cP(�T − �Tt) = kH
�Tt
Lr

(5.85)

Combining eqs. (5.84) and (5.85), we find the relation between the transversal
temperature difference �Tt and the difference imposed vertically (�T):

�Tt
�T

= 1 − 9

2RaH

(
H

Lr

)4

(5.86)

Another property of the counterflow is that it convects energy longitudinally
(upward) at the rate ṁ′cP (Tup,b − Tdown,b). The present analysis is sufficiently
approximate so that we may replace the bulk temperature difference with the
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mean temperature difference 2
3�Tt. The counterflow carries this energy current

upward through a space of thickness 2Lr. Consequently, the average heat flux
removed by the counterflow from the bottom wall is

q′′ = ṁ′cp
2
3�Tt

2Lr
(5.87)

or, after eqs. (5.84)–(5.86) are used,

q′′ = 2kgβL2r
27αν

(�T)2

[
1 − 9

2RaH

(
H

Lr

)4
]2

(5.88)

This result has been sketched in Fig. 5.26. The heat flux decreases approximately
as L2r in the limit Lr→0 (i.e., as the cells become more numerous).

In the opposite limit, the flow is spread out and consists of a small number
of upflows and downflows (Fig. 5.25). Each vertical flow is a plume formed
over a long portion of horizontal wall of length L = 4Lr. The thermal resistance
is due to the horizontal boundary layers that line each section of length 2Lr.
Although it is possible to obtain a purely theoretical estimate for the heat transfer
rate across such a boundary layer, we may use an estimate derived from an
experimental correlation. The plume rises or sinks in a quiescent and thermally
stratified fluid of average temperature difference �T/2. This means that the
effective temperature difference between the horizontal base of each plume and
the fluid reservoir that surrounds it is θ = �T/2. The average heat flux removed
by the plume is known from measurements [70]:

q′′L
θk

= 0.54Ra1/4L,θ (5.89)

Figure 5.26 Intersection of asymptotes yields Bénard convection: many cells versus few cells.
(From Ref. 41.)
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where RaL, θ is the Rayleigh number based on L and θ and RaL, θ < 107. Note in
eq. (5.89) the heat flux is independent of the vertical dimension of the system,
H. Expressed in terms of Lr and �T, eq. (5.89) reads as

q′′ = 0.161
k �T

H

(
H

Lr

)1/4

Ra1/4H (5.90)

In conclusion, when the horizontal surfaces are covered sparsely with isolated
plumes, the wall-averaged heat flux decreases monotonically as the spacing Lr
increases. This asymptotic trend has been added to Fig. 5.26 to show that a
flow geometry with maximal heat flux exists. We can locate the constructal flow
structure (Lr) by intersecting asymptotes (5.88) and (5.90):

Ra1/3H

(
Lr,opt
H

) 
1 − 9

2RaH

(
H

Lr,opt

)4

8/9

= 1.41 (5.91)

It is convenient to define the dimensionless factor f as

f = Lr,opt

H Ra−1/3
H

(5.92)

such that eq. (5.91) provides implicitly the function f(RaH):

f 4 − 1.474 f 23/8 = 9
2 Ra1/3H (5.93)

Equations (5.92) and (5.93) pinpoint the value of the flow slenderness ratio
Lr, opt/H as a function of RaH. The heat flux that corresponds to this geometry is
obtained by substitution of Lr = Lr, opt into eq. (5.88) or (5.90):

Numax ≤ 0.161f−1/4Ra1/3H (5.94)

The inequality sign is a reminder that the actual peak of the q′′
max(Lr) curve falls

under the intersection of the two asymptotes (Fig. 5.26). Electronics cooling
applications of the intersection-of-asymptotes method have shown repeatedly
that the inequality sign accounts for a factor of approximately 1

2 between the
height of the point of intersection and the peak of the actual curve. Finally, at the
intersection, eq. (5.86) reads as

�Tt
�T

= 1.47f−9/8 (5.95)

Figure 5.27 shows the main features of the geometry derived based on this
theory. The plotted Numax curve is based on relation (5.94) with the equal sign,
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Figure 5.27 Heat transfer in the cellular flow design defined by the intersection of asymptotes
in Fig. 5.26. (From Ref. 41.)

which means that the actual Numax should be lower by a factor of the order of
1
2 .

Several features of this solution are worth nothing:

1. The Numax(RaH) curve comes close to the experimental data [e.g., the
Pr ∼ 1 range of the widely accepted correlation (5.73)]. If the expected
factor on the order of 1

2 is applied, the Numax curve falls right on
top of the correlation, which is shown by a dashed line in Fig. 5.27a.
Furthermore, Lr, opt/H∼= 0.35, which agreeswith the linear stability solution
Lr, opt/H ∼ 0.5.
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2. The Numax(RaH) curve cuts the Numax = 1 line at an RaH ∼= 526, which
is a value of order 103. The predicted transition between pure diffusion
and stream flow is in agreement with the constructal law. This improved
estimate of the critical RaH for the onset of convection validates the
comments made in the second paragraph under eq. (5.87).

3. The Numax(RaH) curve is described approximately by Numax ∼RanH , where
the exponent n decreases from 0.333 to 0.313 as RaH increases. Over most
of the RaH range of Fig. 5.27, the n value is close to 0.313 as the f factor
approaches 1.033 Ra1/12H . This behavior also agrees with observations. The
minor and gradual decrease of the RaH exponent is well known and is one
point of controversy in the field of Bénard convection. In this section we
predicted this trend from pure theory.

4. The transversal temperature difference between the vertical branches of
the roll (�Tt) decreases as RaH increases (i.e., as convection intensifies).
Although this trend may seem counterintuitive, it is explained by the fact
that the rolls become more slender as RaH increases. In this limit the
vertical streams find themselves in a more intimate thermal contact.

5. The slenderness ratio is Lr, opt =Hf RaH
1/3 and approaches Lr, opt ∼= 1.033H

Ra−1/4
H as RaH increases (i.e., when f ∼= 1.033 Ra1/12H ).

5.6 INCLINED ENCLOSURES

In the tilted configuration (Fig. 5.28), L is the distance measured in the direction
of the imposed temperature difference (Th − Tc). The angle made with the
horizontal direction, τ , is defined such that in the range 0◦

< τ < 90◦, the heated
surface is positioned below the cooled surface. The enclosure heated from the
side is the τ = 90◦ case of the inclined enclosure. The τ = 0◦ case represents
the rectangular enclosure heated from below (Fig. 5.20), except that now the
distance between the differentially heated walls is labeled L.

The angle τ has a dramatic effect on the heat and flow characteristics of the
enclosure. As τ decreases from 180◦ to 0◦, the heat transfer mechanism switches
frompure conduction at τ = 180◦, to single-cell convection at τ = 90◦, and finally,
to Bénard convection at τ = 0◦. The conduction-referenced Nusselt number
NuL = q′′L/(k �T) rises from the pure conduction level NuL (180◦

) = 1 to a
maximum NuL value near τ = 90◦. As τ decreases below 90◦, the Nusselt
number decreases and passes through a local minimum at a special tilt angle
τ = τ*, which is a function of the geometric aspect ratio of the enclosure [71]:

H/L 1 3 6 12 >12

τ * 25◦ 53◦ 60◦ 67◦ 70◦
.
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Figure 5.28 Effect of inclination on natural convection in enclosures.

As τ continues to decrease below τ = τ*, the heat transfer rate rises toward
another maximum associated with the Bénard convection regime, NuL(0

◦
). The

NuL(τ ) curve is illustrated qualitatively in the lower part of Fig. 5.28. According
to Ref. 49, the various portions of the curve are represented well by

180◦
> τ > 90◦ : NuL (τ ) = 1 + [NuL(90

◦
) − 1] sin τ (5.96)

90◦
> τ > τ ∗ : NuL (τ ) = NuL(90

◦
)(sin τ)1/4 (5.97)

τ ∗ > τ > 0◦ and H/L < 10: NuL(τ ) = NuL(0
◦
)

×
[
NuL

(
90◦)

NuL (0◦)
(sin τ ∗)1/4

]τ/τ∗

(5.98)
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τ ∗ > τ > 0◦ and H/L > 10: NuL (τ ) = 1 + 1.44

(
1 − 1708

RaL cos τ

)∗

×
[
1 − (sin 1.8τ)1.61708

RaL cos τ

]∗

+
[(

RaL cos τ

5830

)1/3

− 1

]∗
(5.99)

The quantities in parentheses with an asterisk, (·)*, must be set equal to zero if
they become negative. The Rayleigh number is based on the distance between
the differentially heated walls, RaL = gβ(Th−Tc)L3/αν.

5.7 ANNULAR SPACE BETWEEN HORIZONTAL CYLINDERS

The flow generated between concentric horizontal cylinders at different tem-
peratures (Ti, To) has features similar to the circulation in an enclosure heated
from the side. As illustrated in Fig. 5.29, in the laminar regime, two counter-
rotating kidney-shaped cells are positioned symmetrically about the vertical
plane drawn through the cylinder centerline. Because the two cells are heated
and cooled from the side, the overall heat transfer correlation should have
the features of eqs. (5.63)–(5.64). The role of vertical dimension in this case
can be played by either of the two diameters (Di, Do): When Di is sensi-
bly smaller than Do, the overall heat transfer rate is determined (‘‘throttled’’)
by the smallness of Di rather than Do. These expectations are confirmed

Figure 5.29 Natural convection in the space between concentric cylinders or spheres.
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by the present interpretation∗ of a correlation developed by Raithby and
Hollands [72],

q′ ∼= 2.425k(Ti − To)

[1 + (Di/Do)
3/5]5/4

( Pr RaDi
0.861 + Pr

)1/4

(5.100)

This q′ (W/m) expression refers to the total heat transfer rate between the two
cylinders per unit length in the direction normal to the plane of Fig. 5.29. The
Rayleigh number is based on the cylinder-to-cylinder temperature difference and
on the inner diameter, RaDi = gβ(Ti − To)D

3
i/αν.

Equation (5.100) agrees within ± 10 percent with experimental data at
moderate (laminar regime) Rayleigh numbers as high as 107. The low–Rayleigh
number limit of the validity of eq. (5.100) occurs where the thickest free-
convection boundary layer would become larger than the transversal dimension
of the annular cavity

Do Ra−1/4
Do

> Do − Di (5.101)

The left side of this inequality shows the thermal boundary layer thickness along
the outer cylinder, which—it is easy to see†—is greater than the corresponding
thickness associated with the inner cylinder, Di Ra−1/4

Di
. When the Rayleigh

number is small enough that the inequality (5.101) is satisfied, the heat transfer
mechanism approaches the pure conduction regime. Another way of making sure
that the Rayleigh number is large enough for eq. (5.100) to apply is to calculate
q′ twice, using eq. (5.100) and the pure conduction formula, and to retain the
larger of the two q′ values. This alternative is based on the constructal law of
increase of flow access [66–68]: The true heat transfer rate q′ cannot be smaller
than the pure-conduction estimate.

Equation (5.100) has been tested extensively in the range Pr > 0.7. It
should hold also in the low-Prandtl number range because the function
[Pr/(0.861 + Pr)]1/4 is known to account properly for the Pr effect at both
ends of the Pr spectrum. Compare, for example, eq. (5.100) with eq. (4.106). All
the physical properties that appear on the right side of eq. (5.100) are evaluated
at the average temperature (Ti + To)/2. A lengthier correlation that covers a
wider Rayleigh number range, including the turbulent regime, was developed by
Kuehn and Goldstein [73].

∗The writing and use of the original correlation [72] are more complicated because its Rayleigh
number was based on the thickness of the annular space, (Do−Di)/2.
†Recall that in laminar boundary layer natural convection along (or around) a surface (flat, or
curved) of a certain height, the boundary layer thickness increases as the height raised to the power
1
4 . The boundary layer thickness scale is equal to the height divided by the Rayleigh number (based
on height) raised to the power 1

4 .



278 5 INTERNAL NATURAL CONVECTION

5.8 ANNULAR SPACE BETWEEN CONCENTRIC SPHERES

The natural circulation in the annulus between two concentric spheres has the
approximate shape of a doughnut. At small enough Rayleigh numbers in the
laminar regime, a vertical cut through the center of the two spheres reveals two
kidney-shaped flow patterns similar to what we saw in Fig. 5.29. A compact
expression for the total heat transfer rate q (W) between the two spherical
surfaces can be deduced from a correlation due to Raithby and Hollands [72],

q ∼= 2.325kDi(Ti − To)

[1 + (Di/Do)
7/5]5/4

( Pr RaDi
0.861 + Pr

)1/4

(5.102)

where RaDi = gβ(Ti − To)D
3
i/αν. The argument for basing the Rayleigh number

on Di is the same as in the opening paragraph of Section 5.7. Equation (5.102)
holds over the entire Prandtl number range, and the physical properties are
evaluated at the average temperature (Ti + To)/2. The similarities between
eq. (5.102) and eq. (5.100) are worth noting.

Equation (5.102) is accurate within ± 10 percent in the laminar range, at
Rayleigh numbers as high as 107. When the Rayleigh number is so low that the
inequality (5.101) applies, eq. (5.102) is no longer valid and the heat transfer
must be evaluated based on the pure conduction model. As a safety check,
it is a good idea to calculate q based on both formulas, eq. (5.102) and pure
conduction and to retain the larger of the two values, in accordance with the
constructal law.

5.9 ENCLOSURES FOR THERMAL INSULATION
AND MECHANICAL STRENGTH

The internal structure of a cavernous wall can be derived from the competition
between the thermal insulation and mechanical strength functions of the wall
[74]. This combination of two functions, thermal and mechanical, is new in a
design at such a simple and fundamental level. The classical literature on walls
with air enclosures deals primarily with the thermal insulation characteristics of
various wall structures.

Here is why we expect to find an optimal cavity size when we design a
cavernous wall as an insulation system. The two-dimensional wall configuration
shown in Fig. 5.30 has the thickness L, height H, and width W, which is
perpendicular to the plane of the figure. There are n vertical air-filled cavities of
thickness ta, which are distributed equidistantly over the wall thickness L. This
means that there are (n+ 1) slabs of solid wall material (e.g., brick) of individual
thickness tb, which are also distributed equidistantly. We characterize the air and
brick (terra-cotta) composite by using the air volume fraction φ, which along
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Figure 5.30 Vertical insulating wall with alternating layers of solid material (brick) and air.
(From Ref. 74.)

with the wall volume HLW is a global design parameter,

φ = nta/L (5.103)

1 − φ = (n+ 1)tb/L (5.104)

The overall thermal resistance of this composite is the sum of the resistances
of air and brick layers. If the heat transfer across each airspace is by pure
conduction, the thermal resistance posed by each airspace is ta/kaHW, where ka
is the thermal conductivity of air. Similarly, the resistance of each layer of brick
material is tb/kbHW. The overall resistance is

R = nta
kaHW

+ (n+ 1)tb
kbHW

(5.105)
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or, after using eqs. (5.103) and (5.104),

R = φL

kaHW
+ (1 − φ)L

kbHW
(5.106)

Equation (5.106) states that the thermal performance of the composite does not
depend on how many airspaces and slabs of brick we use. This is correct only
when the airspace is ruled by pure conduction, that is, when the thickness ta is
smaller than the thickness of the laminar natural convection boundary layers that
would line the vertical walls of each cavity,

ta � H Ra−1/4
H,θ (5.107)

The Rayleigh number RaH,θ is based on the height (H) and temperature difference
(θ) across one air cavity,

RaH,θ = gβH3θ/αν (5.108)

The temperature difference θ is smaller than the overall temperature difference
�T that is maintained across the entire system. In the case of air and brick
material, the two thermal conductivities are markedly different (kb/ka ≈ 20
 1),
and the overall �T is essentially the sum of the temperature differences across
all the air cavities,

�T ∼= nθ (5.109)

Putting eqs. (5.107)–(5.109) together, we see that the insensitivity ofR to varying
the internal structure (n) [eq. (5.106)] can be expected only when the number of
airspaces is sufficiently large so that

n5/4 � φ
L

H
Ra1/4H,�T (5.110)

In this inequality, RaH, �T is based on the overall temperature difference,
RaH, �T = (gβH3 �T)/αν, and is a known constant because H and �T are
specified global parameters.

If the number of airspaces is smaller than in eq. (5.110), the natural convection
effect decreases the resistance posed by each airspace, and the overall R value is
greater than in eq. (5.105). This is why a large enough n, or a small enough ta, is
desirable from a thermal insulation standpoint. On the other hand, the effect of
a large n is detrimental to the mechanical stiffness of the wall assembly. When
φ is prescribed, the stiffest wall is the one where all the solid material is placed
in the outermost planes (i.e., the wall where two tb-thin slabs sandwich a single
airspace). The stiffest wall is the worst thermal insulator, because it contains
the thickest airspace, which is penetrated by the largest natural convection heat
transfer current.
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The optimal internal structure of the wall (n) results from the competition
between thermal performance and mechanical performance. If the mechanical
performance is specified, the wall stiffness serves as a constraint in the process
of maximizing thermal performance, from which the optimal geometric form
emerges. The mechanical strength of the wall, or its resistance to bending and
buckling in the plane of Fig. 5.29 is controlled by the area moment of inertia of
the horizontal wall cross section:

In =
∫ L/2

−L/2
x2W dx (5.111)

The cross section overwhich this integral is performed is shown in Fig. 5.30b. The
area element W dx counts only the solid parts of the cross section, namely, the
tb-thick slabs of brick material. For the sake of simplicity, this calculation
neglected the transversal ribs [detail (a), Fig. 5.30] that connect the tb slabs so
that the wall cross section rotates as a plane during pure bending. It is assumed
that the transversal ribs use considerably less material than do the tb slabs. Their
role is the same as that of the web of the profile of an I-beam. In fact, the cross
section of the cavernous wall structure is a conglomerate of I-beam profiles
that have been fused solidly over the top and bottom surfaces of the I shape.
In practice, the ribs (a) are more commonly arranged in a staggered pattern, as
shown in the upper-right corner of Fig. 5.30.

In the case of a wall with no cavities (φ = 0), the area moment of inertia
is maximum and equal to L3W/12. We use this value as reference in the
nondimensionalization of In,

Ĩn = In
L3W/12

(5.112)

where the subscript n indicates the number of air gaps. The integral (5.111) can
be evaluated case by case [74], assuming that the cross section is symmetric
about x = 0, for example, Ĩ1 = 1 − φ3 and Ĩ∞ = 1 − φ. The stiffness is larger
when n and φ are smaller. Alternatively, when the stiffness is constrained, Ĩn is
constant, and for each geometry (n) that the designer might contemplate, there
is one value of φ that the wall composite must have. In such cases the φ value is
larger when the number of air gaps is smaller. Less structural (solid) material is
needed when there are fewer air gaps.

When the effect of natural convection cannot be neglected, the overall thermal
resistance formula (5.105) has the form

R = nta
kaHW Nu

+ (n+ 1)tb
kbHW

(5.113)

In the denominator of the first term (the contribution of all the air gaps), Nu is
the overall Nusselt number that expresses the relative heat transfer augmentation
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effect due to natural convection in a single airspace, Nu = qactual/qconduction. The
geometric maximization of R was performed numerically by using a Nu function
that covers smoothly the entire range of possibilities, from conduction (small ta)
to convection (large ta). The convection asymptote (5.40),

Nu = 0.364
ta
H

Ra1/4H,θ (when Nu � 2) (5.114)

was joined with the pure conduction asymptote (Nu = 1) by using the technique
of Churchill and Usagi [75],

Nu =
[
1 +

(
0.364

ta
H

Ra1/4H,θ

)m]1/m

(5.115)

withm= 3. The overall resistance formula (5.113) can be nondimensionalized by
using as reference scale the resistance across a completely solid wall (L/kbHW),
and converting RaH,θ into RaH, �T via eqs. (5.108) and (5.109):

R̃ = R

L/kbHW

= kb
ka

φ

[
1 +

(
0.364n−5/4φ

L

H
Ra1/4H,�T

)m]−1/m

+ 1 − φ (5.116)

The overall resistance R̃ emerges as a function of the geometric parameters n and
φ, the fixed ratio kb/ka and the natural convection parameter

b = L

H
Ra1/4H,�T (5.117)

The geometric parameters n and φ are related through the global stiffness
constraint. When the stiffness constraint is invoked, the global resistance R̃
depends on only one geometric parameter, φ or n. This effect is illustrated in
Fig. 5.31, which shows that R̃ can be maximized with respect to the number of
air cavities. The R̃ maximum shifts toward larger n values (more numerous and
narrower air gaps) as b increases. The R̃ maximization illustrated in Fig. 5.31
was repeated for other Ĩ values in the range 0.7–0.95. Let R̃max and nopt denote
the coordinates of the peak of one of the b = constant curves. Larger b values
represent stronger natural convection, and this is reflected in smaller R̃max
values. Larger Ĩ values represent stiffer walls that use more solid material, and
consequently, R̃max decreases as Ĩ increases. The optimal number of air gaps
(nopt) that corresponds to R̃max is reported in Fig. 5.32. Fewer air gaps are better
when the natural convection effect is weak (small b) and when the required
stiffness approaches that of the solid wall (Ĩ = 1).

In sum, simultaneous consideration of the thermal and mechanical functions
of the complex structure is the defining feature of the idea pursued in this
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Figure 5.31 Overall thermal resistance as a function of the number of air gaps when the
natural convection parameter b and stiffness parameter Ĩ are fixed. (From Ref. 74.)

Figure 5.32 Optimal number of air gaps as a function of the natural convection parameter b
and the stiffness parameter Ĩ. (From Ref. 74.)
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section. The chief conclusion is that the number of air gaps built into the wall
can be optimized when the overall stiffness is specified. The optimal number
of air gaps increases when the effect of natural convection increases and when
the specified wall stiffness decreases. The maximized wall thermal resistance is
larger when the effect of natural convection in the air gaps is weaker and when
the wall stiffness is smaller. The optimal volume fraction occupied by air in
the cavernous structure decreases when the natural convection effect becomes
stronger and when the wall stiffness increases.

The interplay between air conduction and natural convection in bricks with
cavities depends, among other things, on how the bricks are assembled in the
wall. A brick is usually 20–25 cm tall, while a wall has a height of roughly
250 cm (the height of a floor). This means that the aspect ratio of one continuous
(vertical) airspace formed by stacking the bricks is 10 times greater than the
aspect ratio of the airspace of a single brick. Consequently, the global heat
transfer across the airspace changes. Lorente [46] reported calculations based
on a combined model of conduction, radiation, and natural convection [76]. The
results show that the behavior of the global thermal resistance changes when the
height of the airspace changes. In the model, the total thickness of the bricks
remains constant but the number of enclosures (and thus their thickness) could
vary. The cavity width was always greater than the airspace thickness, so that
the natural convection pattern was essentially two-dimensional.

Another effect is that of radiation in the airspaces, which can be modeled
through the use of surface radiosities [77]. The shapes of air cavities in terra-
cotta walls and the type of thermal boundary conditions on such cavities also
play important roles in the model [76, 78]. Furthermore, terra-cotta is a porous
material in which thermal diffusion is accompanied by the diffusion of moisture.
The latter has an important effect on heat transfer, as shown by Vasile et al. [79].

The work outlined in this section is fundamental and exploratory. Its principal
objective is to show that the ‘‘combined heat flow and strength’’ method
advanced in Ref. 74 can be used in a wide domain of great contemporary
importance: structures that combine mechanical strength with thermal resistance.
An important contemporary application is the optimization of the architecture
of mechanical structures that must serve two functions, mechanical strength and
resistance (survival) in the presence of sudden intense heating (terrorist attack,
explosion, fire) [80–82]. This is unlike traditional approaches, where structures
are optimized for mechanical strength alone, and for heat resistance alone.

On the background of the constructal architectures that have been developed
so far [66–68], this section outlined the first steps toward the constructal design
of multiobjective (multidisciplinary) architectures.
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PROBLEMS

5.1. Employing the proper scales for the development of a thermal boundary
layer along the heated vertical walls of a rectangular enclosure, show that
the momentum equation (5.7) is dominated by the three terms the scales
of which are listed as expression (5.9).

5.2. Derive the criterion for distinct vertical thermal boundary layers [expres-
sion (5.18)] by comparing the time of convective layer development (tf)
with the time of penetration by pure conduction over the entire length of
the enclosure L.

5.3. Rely on pure scaling arguments to prove that RaH <1 denotes the domain in
which the overall heat transfer rate across a square enclosure is dominated
by pure conduction.

5.4. Derive an expression for the horizontal velocity u* in the vertical boundary
layer in the high-RaH regime. Recognizing u∗∞ = limx∗→∞u∗ as the
horizontal velocity through the core region, show that u*∞ is an odd
function of altitude. What is the scale of the horizontal velocity in the core
region?

5.5. Prove that inertia∼ buoyancy in eq. (5.44) is inadmissible as a momentum
balance in the shallow enclosure limit (H/L→0). In view of this finding,
is the stratified counterflow core solution (5.52) and (5.53) valid for all
values of Pr?

5.6. Machined into a solid wall of temperature T is a slender two-dimensional
cavity of height H and length L (H � L). The cavity communicates
laterally with an infinitely large fluid reservoir of temperature T + �T.
The situation is shown schematically in Fig. 12.17a. Show that if the cavity
is slender enough, the buoyancy-driven flow will penetrate the cavity only
to a certain depth whose order of magnitude is

Lx ∼ H Ra1/2H



290 5 INTERNAL NATURAL CONVECTION

Determine the order of magnitude of the total heat transfer rate between
the fluid reservoir and the walls of the cavity. Compare your scale analysis
result with the similarity solution to the same problem [83].

5.7. Consider the penetration of natural convection into a vertical slender cavity
of height H and gap thickness L (H 
 L). As is shown in Fig. 12.17b,
one end of the cavity is closed and the other communicates with a very
large fluid reservoir. Rely on scaling arguments to show that when a
temperature difference �T is established between the fluid reservoir and
the walls of the cavity, the flow penetrates vertically to a depth that
scales as

Ly ∼ L RaL

Estimate the order of magnitude of the heat transfer rate between the fluid
reservoir and the walls of the cavity, assuming that Ly < H.

5.8. Predict the time interval between the formation of two successive balls
of heated fluid (thermals) that rise from the same spot on the hot surface
photographed in Fig. 4.16. The bottom surface andwater pool temperatures
are 43.1 and 23.6◦C. Use an order-of-magnitude calculation based on the
view that the surface heats by conduction a thin layer of water. As
shown in Fig. P5.8, the thickness of this layer increases in time until its
thickness-based Rayleigh number reaches the critical level for the onset of
convection. Thermals are the aftermath of the onset of convection in the
conduction layer that grew over the surface.

Figure P5.8

5.9. The large-diameter cylindrical reservoir shown in Fig. P5.9 is perfectly
insulated and filledwithwater. Two horizontal tubeswith an outer diameter
of 4 cm are positioned at the same level in the vicinity of the reservoir
centerline. The temperatures of the tube walls are maintained at T1 = 30◦C
and T2 = 20◦C by internal water streams of appropriate (controlled)
temperature.
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Figure P5.9

Calculate the heat transfer rate from the hot tube to the cold tube via
the water reservoir by assuming that the tube-to-tube spacing is wide
enough so that the boundary layers that coat the tubes do not touch (this
case is illustrated in the figure). Assume further that the film–temperature
properties of the two boundary layers are equal to the properties evaluated
at the average temperature of the water reservoir, T∞. Begin with the
calculation of T∞, and recognize the centrosymmetry of the flow pattern,
that is, the symmetry about the centerline of the large reservoir.

5.10. The double-pane window problem consists of determining the H-averaged
heat flux through the system when the overall temperature difference Th –
Tc is specified (see Fig. P5.10). If the glass-to-glass spacing is wide enough
to house distinct laminar boundary layers, it is possible to approximate the
double-pane system as a sandwich of two of the single-pane windows. Use
the formula listed in Problem4.26 for the single-panewindowwith uniform
heat flux, and show that the average heat flux through the double-pane
window system is given approximately by

Figure P5.10



292 5 INTERNAL NATURAL CONVECTION

q′′

Th − Tc
∼= 0.106

[
gβ

(
Th − Tc

)
H3

αγ

]1/4

5.11. The thermal insulation capability of a horizontal layer of fluid is impaired
if natural convection currents are present. As shown in Fig. 5.20, the heat
transfer coefficient is lower when convection is absent, and the transfer of
heat from the bottom wall to the top wall is by pure conduction. Consider
the design of a thermal insulation that consists of a horizontal layer of fluid
of thickness H and bottom-to-top temperature difference Th – Tc = �T.
These two parameters, H and �T, happen to be large enough so that
convection currents would form in the fluid. To suppress the formation of
these currents, it is proposed to install a horizontal partition at some level
between the bottom wall and the top wall (Fig. P5.11). What is the optimal
level at which the partition should be installed?

Figure P5.11

To simplify your analysis, assume that the partition can be modeled as
an isothermal wall with a temperature between the bottomwall temperature
and the top wall temperature. Assume further that convection currents are
absent above and below the partition. Find the optimal partition level by
maximizing the overall temperature difference �T for which this state of
pure conduction can be preserved.

5.12. The steam generator of a modern power plant uses the siphon circulation
scheme shown in Fig. P5.12. There are two vertical columns of height H.
The downcomer (D1) contains dense fluid (liquid) with density ρ1. The
riser (D2) contains a mixture of liquid and vapor with density ρ2. The
flow along each column is fully developed turbulent in the fully rough
limit, meaning that the friction coefficients f1 and f2 are two constants
independent of flow rate. The total volume of the two columns is specified.
Determine the optimal allocation of volume (D1/D2) so that the global
flow resistance encountered by the circulation is minimal or the flow rate
ṁ is maximal. Show that the result is (D1/D2)opt = (f1/f2)

1/7 (ρ2/ρ1)
1/7.
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Figure P5.12

5.13. A panel of tubes in a steam superheater consists of three parallel tubes
which are supplied with T0 steam from a bottom plenum, Fig. P5.13.
The heated streams are collected in the upper plenum and discharged at
the temperature Tout. The total heating rate (q = 2q1 + q2) is fixed: It is
provided by flames from a burner. The totalmass flow rate (ṁ = 2ṁ1 + ṁ2)
is also fixed. Because the burner is not as wide as the three-tube assembly,
the inner tube receives a greater share of the heat transfer rate, q2/q1 > 1.
Close inspection of the design shows that a system of bottom valves is
used in order to adjust the tube flow rates (ṁ2/ṁ1) such that all the tube
outlets have the same temperature (T1 = T2).

T1

q
q1 q2 q1

q2

q1
> 1

T2 T1

m, Tout

m, T0

m1m2m1

Figure P5.13

(a) Is the maintenance of T1 = T2 beneficial for the purpose of improving
(i) thermodynamic performance, (ii) mechanical integrity, or (i) and
(ii)?
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(b) If the heat transfer rate imbalance is q2/q1 = α, what is the required
mass flow rate ṁ2/ṁ1 as a function of α?

(c) It is proposed to eliminate the system of valves and to maintain the
required flow imbalance ṁ2/ṁ1 by using an inner tube with a diameter
larger than the diameter of the outer tubes. Note that without the
valves the plenum-to-plenum pressure drop is the same for all the
tubes. Assume that the flow through each tube is in the fully developed
fully rough turbulent regime. Determine the required ratio D2/D1 as a
function of α.



6

TRANSITION TO
TURBULENCE

Most of the flows treated in the preceding chapters are laminar and, as such, are
destined to exist only under special circumstances. It is common knowledge—a
fact reinforced daily by direct observations—that laminar flows can come
undone and break down to a seemingly more complicated flow called turbulence.
It is also observed that turbulent flows that slow down become laminar. Yet
there is absolutely nothing in the laminar flow solutions of Chapters 2–5 to
suggest that these laminar flows do not exist for all Reynolds and Rayleigh
numbers imaginable. The special circumstances necessary for the transition from
analytically predictable laminar flows to analytically unpredictable turbulent
flows (as shown in Chapter 7) form one of the most active fields in fluid
mechanics research today. In convective heat transfer research, however, the
study of transition is important because the heat transfer potential of a turbulent
flow differs vastly from that of its laminar counterpart.

The traditional presentation of the phenomenon of transition in convective
heat transfer is empirical—a collection of observations recorded as ‘‘critical’’
dimensionless groups (Reynolds numbers, Rayleigh numbers, etc.). In this
chapter we review this body of information, and in addition, we develop a theory
to predict transition in every flow configuration imaginable. The theory is based
on the constructal law [1, 2] (also Section 5.5.3), according to which the flow
opts for configurations that offer greater access to its currents. We shall see that
the natural choice between the laminar and turbulent regimes is the one that
facilitates the transfer of momentum (mixing) between the fast and slow layers
of fluid.

6.1 EMPIRICAL TRANSITION DATA

The available observations of transition are summarized in Table 6.1. There
are important reasons for doing this up front. First, there is little interesting in
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Table 6.1 Summary of physical observations concerning the beginning of transition
from laminar to turbulent flow

Flow Configuration
Conditiona Necessary for the
Existence of Laminar Flow Source Observations

Boundary layer flow
(without longitudinal
pressure gradient)

Re < 3.5 × 105 [3]b Re is the Reynolds number
based on wall length and
free-stream velocity

Re < 2 × 104 –106

Duct flow Re < 2000 Re is based on hydraulic
diameter and duct-
averaged velocity

Free-jet flow
(axisymmetric)

Re < 10–30 [4] Re is based on nozzle
diameter and mean
velocity through the
nozzle

Wake flow (two-
dimensional)

Re < 32 [5] Re is based on the cylinder
diameter and free-stream
velocity

Natural convection
boundary layer flow

Isothermal wall Gr < 1.5 × 109 (Pr = 0.71) [6]c The Grashof number Gr is
based on wall height
and wall–ambient
temperature difference

Gr < 1.3 × 109 (Pr = 6.7) [6, 7]

Constant-heat-flux
wall

Gr* < 1.6 × 1010 (Pr = 0.71) [6] Gr* is the Grashof number
based on heat flux and
wall height [see
eq. (4.70), where
Gr* = Ra*/Pr]

Gr* < 6.6 × 1010 (Pr = 6.7) [8]

Plume flow
(axisymmetric)

Raq < 1010 (Pr = 0.71) [9] Raq is the Rayleigh number
based on heat source
strength and plume
height [see eq. (6.6)]

Film condensation on a
vertical plate

[10] � is the condensate mass
flow rate per unit of film
width

4�

µ
< 1800

aAll numerical values are order-of-magnitude approximate and vary from one experimental report
to another.
bThe transition is triggered by velocity disturbances in excess of 18 percent of the free-stream
velocity.
cAveraged from the data compiled in Ref. 6.

repeating after so many others that particular laminar flows break down at certain
(critical) Reynolds and Grashof numbers when, as demonstrated in the earlier
chapters, the conceptual basis for even speaking about numbers such as Re and
Gr is not at all clear. That laminar flows break down according to Table 6.1 is
of practical interest, of course (this is why the table is shown). But an important
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story lies beneath the type of physical observations we usually associate with
transition. The goal in this chapter is to stimulate the reader to search for the
meaning behind the numbers of Table 6.1: why they exist, why each is a constant,
and why each constant is much greater than 1.

6.2 SCALING LAWS OF TRANSITION

Nature offers us clear signs that the phenomenon of transition is associated with
a fundamental property of fluid flow. Table 6.1 shows that any special class of
laminar flows is characterized by a critical number that serves as a landmark
for the laminar–turbulent transition. One century of research on transition has
shown that these critical numbers are universal, despite the sometimes sizable
numerical variations from one experimental reporting of transition observations
to another. The concept of critical number of transition is empirical in origin.
The real challenge is to predict these numbers.

Another important clue emphasized in some textbooks (e.g., Ref. 11) is that
although the critical transition numbers differ in orders of magnitude from one
flow class to another, they all seem to suggest that an appropriate Reynolds
number based on the relevant velocity and transversal dimension of the flow
has in all cases the same order of magnitude, O(102). This observation is true
not only for forced boundary layer flow, as shown in Ref. 11, but for wall
jet flows and free-jet flows encountered in natural convection phenomena, as
well as for jet and wake flows (Table 6.1). It is important to keep in mind that
this seemingly universal transition Reynolds number is a number considerably
greater than O(1).

We can identify the most important features of the laminar–turbulent tran-
sition by taking a close look at one of the most common occurrences of the
phenomenon, namely, the cigarette-smoke plume shown in Fig. 6.1. The air
plume was generated by a concentrated heat source of known strength q (W) and
where the smoke was introduced separately only to visualize the flow [9]. One
feature is that the laminar plume prevails below a certain characteristic plume
height ytr. Another feature is that the transition is marked by the meandering
or buckling of the plume into a sinusoidal shape of characteristic wavelength
λB. One can take many photographs of the type shown in Fig. 6.1; one can
cough or not cough while taking each picture, but the buckling or meandering
wavelength λB always turns out to be proportional to the transition height ytr
[9]. By varying the heat source strength q, one has the opportunity to observe
many cigarette-smoke plumes; as summarized in Fig. 6.2a, although λB and ytr
decrease as q increases, the λB ∼ ytr proportionality is preserved. The line

ytr ∼ 10λB (6.1)

is an order-of-magnitude curve fit for the observations reported in Ref. 9. We
will return to this observation in Fig. 6.8.



298 6 TRANSITION TO TURBULENCE

Figure 6.1 Smoke visualization of transition in air plume flow above a concentrated heat
source: left side, side view; right side, direct view (q = 5.1 W; one division on the vertical scale
equals 1 cm). (From Ref. 9.)

Figure 6.2 Observations on transition in air plume flow: (a) transition height versus buckling
wavelength; (b) constancy of the transition Rayleigh number and local proportionality between
buckling wavelength and stream thickness scale. (From Ref. 9.)
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Another interesting aspect of these observations is that the buckled shape of
the transition section of the plume is in one plane. By photographing the plume
simultaneously from the front and the side, one learns that the meander is most
visible from the special viewing direction that happens to be perpendicular to
the plane of the meander. This observation is important because it contradicts
the belief that the transitional shape of the buoyant jet is spiral (helical),
hence three-dimensional. This belief is a good example of how an existing
theory (hydrodynamic stability) influences the written record of experimental
observations: In the first analytical treatment of the instability of an inviscid
axisymmetric jet, Batchelor and Gill [12] postulated the existence of helical,
not plane-sinusoidal, disturbances. This postulate was adopted by subsequent
theoretical studies (e.g., Refs. 13 and 14) and it soon became fashionable to
talk about observed helical and corkscrew deformations based on a purely
two-dimensional photographic record (e.g., Refs. 15 and 16).

In the case of the cigarette-smoke plume of Fig. 6.1, the disturbances were
unknown (random), yet the observed shape was plane–sinusoidal and the
wavelength was basically the same from one photograph to another. It seems that
the flow has the natural property to, as Gebhart and Mahajan [17] put it, ‘‘sharply
filter disturbances for essentially a single frequency’’ out of an entire spectrum
of unspecified disturbances. The flow has the natural property to meander with
a characteristic wavelength during transition, regardless of the nature of the
disturbing agent. This observation is important because it illustrates the conflict
between hydrodynamic stability thinking, to which the postulate of disturbances
is a necessity, and the natural meandering∗ tendency of real-life flows during
transition.

The characteristic wavelength chosen by the flow during transition is pro-
portional to the local thickness of the flow (the stream). For the air plumes
documented in Fig. 6.2a, we know from the scale analysis presented in Chapter 4
that (see Table 4.1, and set Pr ∼ 1)

D ∼ ytr

(
gβ �T y3tr

αν

)−1/4

(6.2)

where D is the transversal length scale of the plume and �T is the plume–
ambient temperature difference scale. We also know the vertical velocity scale

v ∼ α

ytr

(
gβ �T y3tr

αν

)1/2

(6.3)

and from the argument that the plume carries all the energy released by the heat
source,

q ∼ ρcPD
2v �T (6.4)

∗In the present context, meandering or buckling means a naturally sinusoidal flow with a universal
proportionality (scaling) between longitudinal wavelength and stream thickness.
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Combining eqs. (6.2)–(6.4) to eliminate v and �T, we find that

D ∼ ytrRa
−1/4
q (6.5)

where Raq is the Rayleigh number based on heat source strength,

Raq = gβq y2tr
ανk

(6.6)

Figure 6.2b shows the replotting of the transition data of Fig. 6.2a as λB/D
versus Raq. It is clear that regardless of the source strength q, the meander
wavelength λB always scales with the local plume thickness scale D. In addition,
the value of Raq at transition oscillates about 1010 as q varies: It is easy to show
that the local Reynolds number (vD/ν) based on the scales (6.3) and (6.5) is of
order 102 at transition [see Problem 6.3 and eq. (6.15)].

To summarize, cigarette-smoke observations suggest that the transition from
laminar flow to turbulent flow is characterized by two scaling laws:

1. A universal proportionality between longitudinal wavelength and stream
thickness, that is, by a meander or buckling phenomenon

2. A local Reynolds number of order 102, where the Reynolds number is
based on the local stream velocity scale and the local stream thickness
scale

These features can be seen in many other flows that undergo transition in
nature; an extensive compilation of such observations is provided in Refs. 18
and 19. Perhaps, the most striking transition phenomenon that confirms con-
clusions 1 and 2 is the highly regular (buckled) vortex street formed in the
wake of a solid obstacle. There, the universal proportionality between wake
wavelength and wake thickness is obvious, and the local Reynolds number is
certainly of order 102 (see Table 6.1). Deep down, the rule for being able to see
these common characteristics in other naturally behaving flows appears to be
Leonardo da Vinci’s advice, ‘‘O miseri mortali aprite li occhi!’’ [20].∗

6.3 BUCKLING OF INVISCID STREAMS

If the transition phenomenon is characterized by scaling laws 1 and 2, then
to predict the transition is to account for these scaling laws theoretically. The
remainder of this chapter is devoted to the presentation of two alternative
theoretical arguments, both capable of predicting the transition laws 1 and 2. The
first argument is the most direct and is based on the buckling property of inviscid
flow [18]. The second approach is based on reviewing the scaling implications
of classical results known from the hydrodynamic stability analysis of inviscid
flows [9].

∗O, wretched mortals, open your eyes!
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Figure 6.3 Translational and rotational equilibrium of a finite-size stream. (From Ref. 18.)

An interesting analogy between the buckling of elastic solid columns and the
meandering of inviscid streams results from considering the static equilibrium
of a finite-size control volume drawn around the stream. If, as shown in Fig. 6.3,
the stream and control volume thickness is of order D and if the stream cross
section is A, the control volume (or the thin-walled hose surrounding the stream)
satisfies the two conditions necessary for sinusoidal infinitesimal buckling in
elastic systems:

1. The control volume is in a state of axial compression subject to the impulse
and reaction forces (see the force balance discussed also in connection
with Fig. 2.3b)

C = ρV2A (6.7)

2. If subjected to a separate bending test, the control volume develops in its
cross section a resistive bending moment that is directly proportional to
the induced curvature (see Problem 6.4)

M = −ρV2I
d2Y

dx2
(6.8)

In eq. (6.8), I is the area moment of inertia of the stream cross section,
I = ∫∫

A z
2dA, and (−Y′′) is the local curvature of the infinitesimally deformed

control volume. Note also that eq. (6.8) is analogous to the equationM= −EIY′′
derived from applying the same bending test of prescribed curvature to a slender
elastic beam. This means that in inviscid streams, the product ρV2 plays the role
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of modulus of elasticity, a fact confirmed easily by trying to bend a thin-walled
hose containing a high-Reynolds-number stream. The stream control volume
possesses elasticity, that is, conservative mechanical properties, because in the
inviscid flow limit, the material and flow that fill the control volume are incapable
of generating entropy [18].

Conditions 1 and 2 are essential to the static equilibrium of the control
volume. The translational equilibrium is evident, as the two forces C balance
each other. However, as in Euler’s buckling theory of solid columns, the
rotational equilibrium must be preserved even when the two forces C are not
perfectly collinear; hence,

−M(x) + CY +M0 = 0 (6.9)

or, substituting expressions (6.7) and (6.8),

(ρV2I)Y ′′ + (ρV2A)Y +M0 = 0 (6.10)

This static rotational equilibrium condition indicates that the equilibrium shape
of the nearly straight stream column is a sinusoid of vanishingly small amplitude
and characteristic (unique) wavelength,

λB = 2π

(
I

A

)1/2

=




π

2
D circular cross section

π

31/2
D rectangular cross section

(6.11)

which means that in an order-of-magnitude sense,

λB ∼ 2D (6.11′)

The buckling wavelength λB is a geometric property of the finite-size control
volume, a length about twice the transversal dimension D. The λB ∼ D scaling
predicted by the buckling theory of inviscid streams accounts for the empirical
scaling law 1 detected during transition (see Section 6.2). Before showing how
the buckling property also accounts for the transition scaling law 2, it is worth
making the following observations:

1. The buckling wavelength of an inviscid stream is unique (and of order
D) because the compressive load ρV2A is always proportional to the
elasticity modulus ρV2. This feature sharply distinguishes the buckling of
inviscid streams from that of elastic solid columns where C and E are
independent. This is why in solid columns we encounter an infinity of
λB’s (an additional degree of freedom) and out of these we must determine
a discrete sequence of special λB’s that satisfy end-clamping conditions.
In the case of inviscid streams, the buckling wavelength is unique, and
end-boundary conditions are not an issue (where along the jet the first
meander appears depends on the transition scaling law 2, as is shown later
in this section and in Fig. 6.7).
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2. The buckling theory of inviscid streams invokes the equilibrium of a finite-
size region of the flow field and, as such, represents a dramatic departure
from the methodology that prevails in contemporary fluid mechanics.
Routine fluidmechanics analysis has as its starting point theNavier–Stokes
equations,which account formechanical equilibriumamong infinitesimally
small fluid packets (see Chapter 1).

3. Although the proportionality λB ∼ D is universal, the control volume
of transversal dimension D has been selected arbitrarily. Any fluid fiber,
that is, any control volume of thickness D′ �= D, satisfies conditions 1
and 2 for infinitesimal buckling. Out of this infinity of fibers, however,
only a special class is in a state of unstable equilibrium. The instability
of inviscid flow, the discovery that certain fluid fibers are unstable, is an
entirely different flow property and the contribution of an entirely different
theory (hydrodynamic stability). As shown in Section 6.4, it is only the
fibers thicker than the stream that are unstable, that resonate when shaken
with a prescribed frequency (wavelength) by the mathematician, or the
loudspeaker in a laboratory flow experiment.

4. The buckling property or the scaling law λB ∼ D is widely observed in
natural flows and can also be visualized in the laboratory. An extensive
photographic record of such observations is presented in Refs. 18 and 19;
among these, we note the river meandering phenomenon [21], the waving
of flags and the meandering fall of paper ribbons [22], the buckling of fast
liquid jets shot through the air [23], the wrinkling of two-dimensional fluid
layers being pushed from one end [24], and the sinuous structure of all
turbulent plumes [25].

Anyone can visualize the buckling scaling (6.11′) by placing an
obstacle under the capillary water column falling from a faucet. Figure 6.4

Figure 6.4 Plane buckled shape of a water column impinging on the flat end of a screwdriver:
left side, direct view; right side, view through the side mirror. (From Ref. 26.)
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shows the front and side views of the buckled stream: The sinuous defor-
mation is mainly in one plane, like the cigarette-smoke plume of Fig. 6.1,
and the locally measured λB/D ratio is consistently on the order of 2,
as in eq. (6.11′).

6.4 LOCAL REYNOLDS NUMBER CRITERION FOR TRANSITION

We now return to transition scaling law 2 armed with the idea that a stream has
the λB ∼ D property if it is inviscid. The inviscidity (or viscidity) of the stream
is a flow property, not a fluid property. It is inappropriate to refer to fluids such
as honey and lava as viscous when if the respective streams are wide and fast
enough, they buckle (meander) just as rivers do.

Consider the transition from the state of viscid stream to that of inviscid
stream, in the flow sketched in Fig. 6.3. In time, viscous diffusion penetrates in
the direction normal to the stream–ambient interface, so that in a time of order

tv ∼ D2

16ν
(6.12)

the stream is fully viscous. The time scale above follows from the error-function
solution to the problem of viscous diffusion normal to an impulsively started
wall (see Problem 6.5); according to this solution, the knee of the error function
is such that the time of viscous penetration to the stream centerline (to a depth
D/2) is given by

D/2

2(νtv)1/2
∼ 1 (6.12′)

Whether or not the stream has time to become viscous depends on how fast it
can buckle as an inviscid stream. The result of the incipient buckling analyzed
early in this section is the birth of eddies, as the crests of the λB waves roll at
the stream–ambient interface. From symmetry, the λB wave moves along the
stream with a velocity of order V/2; hence, the buckling time or the time of eddy
formation is

tB ∼ λB

V/2
(6.13)

The stream can buckle only if tB < tv , in other words, if the buckling frequency
number NB = tv/tB is greater than 1. The same comparison of time scales and the
same transition criterion are recommended by the constructal law of facilitating
the flow of momentum transversally, from the stream to the surrounding fluid,
that is, by facilitating a greater growth rate for the transversal flow, D(t) [1,27].

In conclusion, the time-scale argument presented above recommends the
following criterion for transition:

NB = tv
tB




< 1 laminar flow
∼ 1 transition
> 1 buckling or turbulent flow

(6.14)
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After replacing tv and tB with D2/16ν and 2λB/V, respectively, this criterion
becomes

Rel = VD

ν




< 102 laminar flow
∼ 102 transition
> 102 buckling or turbulent flow

(6.15)

The group VD/ν is the local Reynolds number Rel, which is based on the local
longitudinal velocity scale (V) and the local transverse dimension of the stream
(D). The local Reynolds number criterion (6.15) correctly predicts transition
scaling law 2, discovered empirically in Section 6.3.

Examine now the empirical critical numbers associated with the transition
(Table 6.1) by first recognizing the correct V and D scales and then calculating
the associated local Reynolds number. This bird’s-eye view of the transition
phenomenon is provided by Table 6.2 and Fig. 6.5. For example, the critical
local Reynolds number of laminar boundary layer flow over a flat plate is nearly
the same as that of the buoyancy-driven jet along a heated vertical wall. It can
be argued that the Rel range for transition in round jet flow is actually higher
than the nozzle Reynolds number listed because the laminar jet expands rapidly
outside the nozzle (i.e., the D scale of the jet is larger than the nozzle diameter).
The same observation applies to the transition in the wake behind a long cylinder,
where the Reynolds number listed is based on the diameter of the cylinder, not
on the transversal length scale of the wake.

On the high side of the transition criterion Rel ∼ 102, we note that the transition
in pipe flow occurs at diameter-based Reynolds numbers of order 2000. The
actual thickness of the centerline flow ‘‘fiber’’ that exhibits the sinuous motion
is considerably smaller than the pipe diameter; therefore, the local Reynolds
number is correspondingly smaller than 2000. This is why a smaller value
(Ral ∼ 500) is listed in the second column of the table.

Table 6.2 Traditional critical numbers for transition in several key flows and the
corresponding local Reynolds number scale

Flow
Traditional

Critical Number
Local Reynolds

Number

Boundary layer flow over flat plate Rex ∼ 2 × 104 –106 Rel ∼ 94–660
Natural convection boundary layer along
vertical wall with uniform temperature
(Pr ∼ 1)

Ray ∼ 109 Rel ∼ 178

Natural convection boundary layer along
vertical wall with constant heat flux
(Pr ∼ 1)

Ra*y ∼ 4 × 1012 Rel ∼ 330

Round jet Renozzle ∼ 30 Rel � 30
Wake behind long cylinder in cross-flow Re ∼ 40 Rel � 40
Pipe flow Re ∼ 2000 Rel ∼ 500
Film condensation on a vertical wall Re ∼ 450 Rel ∼ 450
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Figure 6.5 Universal transition criterion: local Reynolds number of order 102.

Figure 6.5 reviews the local Reynolds numbers that correspond to the tran-
sitions considered in Table 6.2. One remarkable aspect of this figure is that
it condenses the transition observations to a relatively narrow band of values
centered around Rel ∼ 102: Compare this narrow band with the 10–1012 range
covered by the traditional critical numbers.

Another interesting aspect of Fig. 6.5 is that it unveils the flow-straightening
effect that solid walls have on transition. Flows without solid walls (jets, wakes,
plumes) exhibit Rel values that are on the low side of 102. Flows stiffened by
one solid wall have somewhat higher local Reynolds numbers at transition. The
pipe flow is straightened by solid surfaces from all sides, and consequently, its
transition Rel value is on the high side of 102.

To summarize, the buckling property and the constructal law provide a
theoretical basis for the transition scaling laws 1 and 2, or the proportionality
between wavelength and stream thickness, and the local Reynolds number of
order 102 during transition. In the next section we learn that the predicted scales
are consistent with scales also recommended by the hydrodynamic stability
theory of inviscid flow. This does not mean that the two theories, buckling and
hydrodynamic stability, are equivalent. The purpose of a theory is to explain
known physical observations and to forecast future observations. Since no theory
is perfect (capable of explaining everything), it is possible that the domains
covered by two theories overlap. The next section is about such an overlap,
namely, the explanation of scaling laws 1 and 2. However, the discovery of this
overlap and even stating in English scaling laws 1 and 2 are contributions of the
newer theory.
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6.5 INSTABILITY OF INVISCID FLOW

The issue of whether a parallel inviscid flow is stable or unstable is a century-old
problem in modern fluid mechanics, a problem so traveled that it is one of the
most voluminous chapters in the field. The analytical treatment of this problem
originated with Helmholtz [28], Kelvin [29], and Rayleigh [30], who focused on
the inertial instability of a homogeneous incompressible fluid. In this section we
take another look at Rayleigh’s analysis of an inviscid jet [30] in order to identify
the proper length and time scales that govern the transition phenomenon.

Consider the parallel flow of homogeneous incompressible fluid shown in
Fig. 6.6. Modeling the flow as inviscid and two-dimensional, the continuity and
momentum equations become

∂u

∂x
+ ∂v

∂y
= 0 (6.16)

Figure 6.6 Stability characteristics of an inviscid jet of triangular profile.
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∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= 0 (6.17)

ζ = ∂v

∂x
− ∂u

∂y
(6.18)

where ζ is the vorticity function. Equations (6.17) and (6.18) are obtained by
eliminating the pressure gradient terms between eqs. (1.19a) and (1.19b). Next,
we assume that the parallel flow U(y) is disturbed slightly, such that

u = U(y) + u′ (6.19)

v = 0 + v′

where the disturbance components (u′,v′) are regarded as small compared with
the base flowU(y). Finally, we seek to find out whether the disturbance amplitude
grows with time, that is, whether the flow is unstable relative to the postulated
disturbance.

Substituting the (base flow) + (disturbance) decomposition (6.19) into the
governing equations and linearizing the result (i.e., neglecting the terms of
second order in u′,v′) yields

∂u′

∂x
+ ∂v′

∂y
= 0

(
∂

∂t
+ U

∂

∂x

) (
∂v′

∂x
− ∂u′

∂y

)
− d2U

dy2
v′ = 0 (6.20)

Having observed sinusoidal disturbances that grow or decay in time (i.e., using
empiricism), Rayleigh replaced u′ and v′ by the real parts of

ûei(kx+σ t) and v̂ei(kx+σ t) (6.21)

where k is the wave number 2π/λ describing the disturbance periodicity in the
x direction. Substituting these expressions into eqs. (6.20) and solving for v̂(y)
yielded what is recognized in the literature as the Rayleigh equation,

(σ

k
+ U

)
(v̂′′ − k2v̂) − U′′v̂ = 0 (6.22)

Think about the step between eqs. (6.20) and (6.22). The postulate of sinusoidal
disturbances is now made routinely and without explanation in stability analyses
of all kinds. Rayleigh, however, had a very good reason to be curious about the
growth of sinusoidal disturbances. He lived and created in a period when rooms
were lit by gaslight and candlelight and when the university club did not display
a ‘‘No Smoking’’ sign; his mind was stimulated by images similar to Fig. 6.1,
that is, by the flickering of cigarette smoke and candle flames. Rayleigh referred
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to such flows as sensitive jets because they all appeared to resonate and meander
most visibly when exposed to a particular sound frequency (musical tone).

From the preceding discussion and Fig. 6.2, it is already clear that this natural
sensitivity is the same as the buckling property of the jet manifested for the
first time during transition. For Rayleigh and his epigones, the postulate of
sinusoidal disturbances is pure empiricism, the result of unexplained physical
observations. In sharp contrast with stability analysis, the buckling theory predicts
the mathematically sinusoidal shape of the deformed stream in the earliest stages
of transition. Herein lies the aggregate contribution of the two theories: In time,
the hydrodynamic stability analysis begins where the buckling theory leaves off.

To solve eq. (6.22), most insight per unit effort is achieved by modeling the
base flow as a dashed-line profile (Fig. 6.6). Thus, U′′ vanishes in any region of
the base flow; hence,

v̂′′ − k2v̂ = 0 (6.23)

with the general solution
v̂ = C1e

ky + C2e
−ky (6.24)

For the four-line jet profile of Fig. 6.6, we write

v̂ = C1e
ky + C2e

−ky, y > D/2

v̂ = C3e
ky + C4e

−ky, D/2 > y > 0

v̂ = C5e
ky + C6e

−ky, 0 > y > −D/2

v̂ = C7e
ky + C8e

−ky, − D/2 > y

(6.25)

where from the condition that v̂ does not blow up as y → ±∞, we have
C1 = C8 = 0. The remaining six unknowns, C2 –C7, are determined from the
six conditions that account for the continuity of v̂ and pressure across the three
interfaces, y = −D/2, 0, D/2. For example, the condition that v̂ is continuous
across y= 0 yields C3 + C4 = C5 + C6. The three pressure continuity conditions
are obtained by integrating the Rayleigh equation (6.22) across each interface,

(σ

k
+ U

)
(v̂′

+ − v̂′
−) − v̂(U′

+ − U′
−) = 0 (6.26)

where the (+) and (−) subscripts indicate values calculated at the interface,
while approaching the interface from above and below. It is easy to see that these
six continuity conditions form a system of homogeneous equations; setting the
determinant equal to zero yields the condition necessary for nontrivial solutions

(m− γ 2)[m2 + (kD− 3 + γ 2)m+ γ 2(1 + kD)] = 0 (6.27)

where

γ = e−kD/2 and m = 1 + σD

U0
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Equation (6.27) contains the information sought by the stability analysis:
namely, the growth rate σ compatible with the postulated wave number k. From
the exponential forms chosen for u′ and v′ [eqs. (6.21)], it is clear that only if σ is
complex will the disturbance grow exponentially in time, indicating instability.
Complex σ ’s are possible if the discriminant is negative in the quadratic formed
by setting the brackets of eq. (6.27) equal to zero,

� = (kD− 3 + γ 2)2 − 4γ 2(1 + kD) < 0 (6.28)

Solving this for kD, we find that the instability condition means that

kD < 3.666 or λ > 1.714D (6.29)

In conclusion, the disturbance wavelength must exceed a certain multiple
of the jet diameter D for the flow to be unstable relative to the postulated
disturbance. Consulting eqs. (6.21), we discover that during instability, the time
rate of growth of the disturbance (the imaginary part of σ ) is proportional to
(−�)1/2:

σiD

U0
= (−�)1/2 (6.30)

The growth rate has been plotted in Fig. 6.6b, showing once again that
the neutral wavelength scales with the jet transversal scale D. Beginning with
Rayleigh’s paper [30], much has been made in the literature of the maximum
exhibited by the growth rate curve σ iD/U0. More important, however, is the
‘‘coincidence’’ that the neutral wavelength 1.714D is only 5 percent smaller than
the buckling wavelength scale of a two-dimensional stream [(π/31/2)D = 1.81D,
eq. (6.11)]. This coincidence seems to be insensitive to the actual shape of the
U(y) profile chosen for analysis. For example, in a stack of D-thick counterflow
jets of sinusoidal profile (u = U0 sinπy/D), the neutral wavelength is 2D, which
is only 10 percent greater than the buckling length scale (π/31/2)D. The same
scaling between flow thickness and neutral wavelength is revealed by the stability
analysis of many other finite-thickness flows [19].

What does this scaling tell us about the laminar–turbulent transition? It says
that during transition, the stream can fluctuate relative to its ambient with a
period on the order of λ/(U0/2), where λ is the assumed disturbance wavelength.
Because λ is greater than a length nearly identical to λB, the fluctuation time
scale can only be greater than the buckling time scale tB [eq. (6.13)]. Therefore,
the fluctuation period exceeds a minimum time scale that is proportional to the
transversal length scale D. The domain of inviscid instability appears to the right
of the tB –D line sketch in Fig. 6.7. However, as was argued in the preceding
section and in Ref. 18, any stream of finite thickness becomes viscid at times
greater than the viscous penetration scale tv given by eq. (6.12); the viscid flow
domain belongs to the right of the tv ∼ D2 curve sketched in Fig. 6.7.

To read Fig. 6.7, imagine the upward development of a plume like the cigarette
smoke shown in Fig. 6.1. The stream thickness increases monotonically with
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Figure 6.7 Transition as the competition between the viscous penetration time (tv) and the
time of buckling and rollup (tB).

altitude (this is why D is plotted on the ordinate in Fig. 6.7) and remains laminar
as long as tv < tB. Transition becomes possible beyond a critical plume diameter
(or plume height) marked by tv ∼ tB or by criterion (6.15) established earlier. The
first wave during transition has a length about twice the local stream thickness.

In conclusion, the scaling revealed by the stability analysis of an inviscid jet
(Fig. 6.6) leads back to the local Reynolds number criterion for transition (6.15).
In this way, the inviscid stability scaling accounts for transition laws 1 and 2
stated in Section 6.2.

The existence of a semi-infinity of wavelengths for which the D-thick jet is
unstable (Fig. 6.6) would seem to contradict the uniqueness of the wavelength
scale predicted by the buckling theory. In fact, there is no contradiction. The
scale analysis of the Rayleigh equation (6.22) or (6.23) indicates that the
disturbance amplitude is always felt to a y thickness of order k–1 ∼ λ. This means
that the thickness of the fluid layer that resonates to the imposed disturbance
wavelength λ always scales with λ, regardless of the actual thickness of the
base flow region [31].

It was shown [32,33] that the transition scaling laws 1 and 2 mean that the
laminar sections of all slender (i.e., boundary layer type) flows are geometrically
similar. For example, the proportionality between the laminar length and the
first buckling wavelength, which in eq. (6.1) was identified empirically, is
universal and can be derived from the local Reynolds number criterion of
eq. (6.15). Figure 6.8 reproduces Gore et al.’s [33] compilation of the transition
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Figure 6.8 Proportionality between the length of the laminar section and the buckling wave-
length. (From Ref. 33.)

observations furnished by experiments with several flow types, which show that
the proportionality (6.1) is valid universally:

Ltr ∼ 10λB (6.31)

In this proportionality, Ltr represents the length to transition [i.e., the length of
the laminar section of the slender flow (boundary layer, jet, plume, shear layer)].

The scaling law (6.31) can be predicted based on the two scaling laws
recognized at the start of this chapter,

λB ∼ 2D (6.32)

VD

ν
∼ 102 (6.33)

where V and D are the local velocity scale and the local thickness of the flow.
For example, if the flow is a laminar boundary layer on a flat plate, the thickness
at transition is

D ∼ δ ∼ cL

(
VL

ν

)−1/2

(6.34)

where L is the length of the laminar section and c is a factor of order 2 or 3,
depending on how the boundary layer thickness δ is calculated (see Chapter 2).
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By eliminating V and D between eqs. (6.32)–(6.34), we obtain

L ∼ 50

c2
λB ∼ 10λB (6.35)

which anticipates fully the empirical correlation (6.31).

6.6 TRANSITION IN NATURAL CONVECTION ON A VERTICAL WALL

A principle is powerful when it predicts observations and when it corrects and
simplifies older beliefs that are based on empirical evidence. The competition
of time scales on which this chapter is based, is the action of the constructal
law toward facilitating access for the flow of momentum and heat transfer [1].
In this chapter, this principle accounted for many transition phenomena across
the board, and the literature continues to show that this principle is universally
applicable [40]. We close with one more example—natural convection on a
vertical wall (Fig. 6.9)—and show how the theory unveils the effect that the
Prandtl number has on transition.

Figure 6.9 Laminar, transition, and turbulent sections of a natural convection boundary layer
along a vertical wall. (From Ref. 41.)
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For a long time it was thought that the transition from laminar to turbulent
flow occurs at the y position where Ray ∼ 109, regardless of the value of the
Prandtl number. The established view was questioned by Bejan and Lage [42],
who showed that it is the Grashof number of order 109, not the Rayleigh number,
that marks the transition in all fluids:

Gry ∼ 109 (10−3 ≤ Pr ≤ 103) (6.36)

This universal transition criterion can be expressed in terms of the Rayleigh
number, by recalling that Ray = Gry Pr:

Ray ∼ 109 Pr (10−3 ≤ Pr ≤ 103) (6.37)

It is supported very well by the experimental observations [43–51] reviewed
in Fig. 6.10 and in great detail in Ref. 42. The Gry ∼ 109 transition criterion
coincides with the traditional criterion Ray ∼ 109 in the case of fluids with Prandtl
numbers of order 1 (e.g., air). In the liquid-metal range Pr ∼ 10−3 –10−2, the
Grashof number criterion (6.32) means that the actual transition Rayleigh number
is of order 106–107, which is well below the often-mentioned threshold of 109.

The Pr range of the transition observations assembled in Fig. 6.10 can be
extended by adding the observations reported by Lloyd et al. [52]. In the current
context, Lloyd et al.’s experiments indicated that the laminar boundary layer
regime expires somewhere above Ray ∼ 3 × 1011 when Pr = 2000. This agrees
very well with the transition criterion (6.32), as Gry = Ray/Pr ∼ (3 × 1011)/
2000 = 1.5 × 108.

Correlations of transition for natural convection were reported more recently
by Yang [53]. Buckling of plumes and salt fingers during solidification was
described by Wirtz et al. [54]. Universality and correlation of transition obser-
vations were developed by Levi [55], Cervantes et al. [56], and Gharib et al.
[57] for vortex rings. Oscillating buckling jets were analyzed by Cervantes and
Solorio [58]. The Pr effect on transition in an enclosure with natural convection
was documented numerically by Lage and Bejan [59].

Touloukian et al. [50]
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Mahajan and
Gebhart [48]

Godaux and Gebhart [45]

Farmer and
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Figure 6.10 Universal criterion for transition to turbulence along a vertical wall with natural
convection boundary layer flow. (From Ref. 42.)
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PROBLEMS

6.1. Show that the transition condition listed for boundary layer flow in Table 6.1
corresponds to a critical Reynolds number of order 102 if this criti-
cal Reynolds number is based on either the displacement or momentum
thickness of the boundary layer.

6.2. Show that for the vertical natural convection boundary layer flow, the local
Reynolds number based on vertical velocity scale and velocity boundary
layer thickness (Table 4.1) is of order Pr–1/2 Ra1/4y if Pr > 1. By examining
Table 6.1, prove that during transition, this local Reynolds number is of
order 102.

6.3. Prove that in the case of the cigarette-smoke plume of Figs. 6.1 and 6.2,
the local Reynolds number based on the scales (6.3) and (6.5) is of the
same order as Ra1/4q during transition. Based on the physical observations
compiled in Fig. 6.2, show that this locally defined Reynolds number is of
order 102.

6.4. Consider the straight inviscid stream (ρ,V,P0,D,A) shown in Fig. 6.3.
Subject this stream to a bending test of prescribed radius of curvature R∞.
Show that in the limit of vanishingly small curvature, D/R∞ → 0, the
resistive bending moment integrated over the stream cross section is

M =
∫∫
A

[ρv(z)2 + P(z)]z dA = ρV2I

R∞

where z is measured radially away from the stream centerline and toward the
center of curvature. [Hint: Invoke the Bernoulli equation along a streamline
and a force balance in the radial direction to derive analytical expressions
for the velocity and pressure profiles v(z) and P(z) in the stream cross
section.]

6.5. Consider the transient flow generated in the vicinity of a flat wall: At times
t< 0, both the fluid and the wall are motionless, whereas for t> 0, the wall
moves along itself with a constant velocity U. Recognizing that the wall is
infinitely long (compared with the thickness of the viscous boundary layer
forming along the wall), show that the fluid is entrained in laminar flow
according to

u = U erfc

(
y

2(νt)1/2

)

where u is the fluid velocity in the direction parallel to the wall and y is
the distance measured away from the wall. Show that the knee in the above
velocity profile resides at y/2(νt)1/2 ∼ 1.

6.6. Verify that the local Reynolds number of a stream VD/ν is of order 102

during transition, that is, when the buckling frequency number NB is of
order 1. [Hint: Use eqs. (6.11)–(6.14).]
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6.7. Determine the range of disturbance wavelengths for which the following
inviscid flows are unstable:

(a) Shear flow: U = U0

U = U0y/h
U = −U0

for y > h
for h > y > −h
for − h > y

(b) Wall jet [60]: U = 0

U = U0

(
2 − y

D/2

)

U = U0
y

D/2

for y > D

for D > y > D/2

for
D

2
> y > 0

In each case, verify that the neutral wavelength scales with the transversal
length scale of the flow. [Hint: Follow the analytical course traced between
eqs. (6.22) and (6.30).]

6.8. A two-dimensional jet discharges freely into a reservoir that contains the
same fluid as the jet. The jet nozzle is a two-dimensional slit of gap D0.
The Reynolds number based on nozzle size (D0) and mean velocity through
the nozzle (U0) is Re0 = 1. Consulting Table 6.1 and the scaling laws of
transition discussed in this chapter, decide whether the jet is laminar over
its entire length, or turbulent, or something else (review the scaling laws
revealed by the solution to Problem 2.22).

6.9. One of the most fundamental problems of convection in lubrication by
sliding contact is the ‘‘lid-driven cavity’’ problem (see Fig. P6.9). A groove
with square cross section of side D is machined into one of the solid parts
and is filled with a fluid of kinematic viscosity ν. The other solid part slides
over the top of the square cavity with the velocity U and drives a clockwise
circulation of fluid inside the cavity. Predict the value of the cavity Reynolds
number (ReD = UD/ν ∼ 400) that marks the transition between laminar
flow and turbulent flow. Rely on the local Reynolds number criterion (6.15)
and the thickness of the laminar boundary layer that lines the sliding wall.

Figure P6.9



7

TURBULENT BOUNDARY
LAYER FLOW

7.1 LARGE-SCALE STRUCTURE

Looking back at the ground covered so far, we formulated the fundamental
principles that govern all convection phenomena (Chapter 1) and then used these
principles to predict friction and heat transfer in laminar flow (Chapters 2–5).
The limitations of the laminar flow description formed the subject of Chapter 6,
in which we relied on the constructal law to predict the transition to turbulent
flow. It is natural to continue here with momentum and heat transfer in turbulent
flow.

The objective of the present treatment is to review the basic ideas behind
the contemporary treatment of turbulent heat transfer. This objective is both
interesting and feasible because most of the turbulent heat transfer language in
use today was coined almost a century ago by Reynolds, Boussinesq, and Prandtl,
and because during all this time, relatively little has been done to question the
ideas that produced this language.

It goes without saying that a turbulent flow is complicated,∗ as witnessed
by the irregularity in the electrical output from velocity and temperature probes
inserted in the flow. It is not difficult to relate this irregularity to the eddy
motion exhibited so clearly by many flows that surround us (cumulus clouds,
muddy rivers, or the post-transition upper section of the cigarette-smoke plume
of Fig. 6.1). Thus, there is a great temptation to define turbulence as an
irregular and random fluid motion, but to do this would mean disregarding the
fact that turbulent flows possess orderly structure [1, 2]. For this reason, we

∗After all, this is why this type of flow was even named turbulent (note the original Latin meaning
of this terminology: the words turba, turbidus, turbulentus, etc., were used to describe tumult,
uproar, commotion in a crowd of people, confusion, the mentally deranged, muddy waters).
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Figure 7.1 Turbulent boundary layer in boiling water flowing from left to right over a flat surface;
U∞ = 0.52 m/s, q′′

0 = 4.8 × 105 W/m2. (Reprinted with permission from J. H. Lienhard, A Heat
Transfer Textbook, 1981, p. 417. Copyright 1981 Prentice-Hall, Inc.)

begin with Figs. 7.1 and 7.2, which show two strikingly similar turbulent flows
photographed under strikingly different circumstances by two strikingly different
people.

Figure 7.1 shows the turbulent boundary layer downstream from the leading
edge of a flat plate; the flow is visualized by boiling, that is, by the entrainment
of vapor bubbles formed near the solid surface. Figure 7.2 offers a glimpse of the
turbulent boundary layer over the surface of the South Atlantic; the visualization
in this case is made possible by flames (fed by an oil slick) and thick black
smoke. Of course, one may argue that in both photographs, the flow visualization
agents are buoyant and interfere with the actual boundary layer flow. This

Figure 7.2 Smoke showing the large-sale structure of the turbulent boundary layer over the
South Atlantic. (From Wide World Photos.)
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interpretation is correct only for regions situated sufficiently far downstream,
where buoyancy has had enough time to accelerate the marked fluid to a vertical
velocity comparable with the horizontal velocity of unmarked fluid.

The visualization method is closest to revealing the truth near the leading
edge of each flow. It is near the leading edge that both flows exhibit the same
large-scale structure. Note the sharpness of the interface between boundary layer
and free stream, and note the waviness of this interface. Large eddies protrude
through the interface, and their diameters appear to scale with both the local
thickness of the boundary layer and the local distance between two consecutive
large eddies. This scaling is consistent with the λB/D = constant scaling law
recommended by the buckling theory of inviscid flow in Chapter 6. In fact, the
theoretical λB/D can be used to predict that the angle between the wavy interface
and the solid surface is roughly 20◦ [3], which is the angle visible in Figs. 7.1
and 7.2. We return to this theoretical prediction in Fig. 9.9.

In this chapter we focus on the mechanism by which turbulent flows transport
energy between a stream and a solid wall. The presentation is constructed along
the same lines as classical turbulent heat transfer methodology, which is based
on the time-averaged description of the convection phenomenon and must rely
heavily on empirical information in order to solve the closure problem (i.e., the
fact that the time-averaged governing equations are fewer than the number of
unknowns). However, wherever possible, we shall invoke the constructal law
[4, 5] to minimize the empirical content of the time-averaged analysis.

7.2 TIME-AVERAGED EQUATIONS

It has been impossible to determine the turbulent flow solution at any point
in space and time by applying the mass, momentum, and energy conservation
equations in the form reported in Chapter 1. Mathematically, it has been
difficult enough to determine the smooth and time-independent velocity and
temperature profiles of simple laminar flows (Chapters 2–5); imagine, then,
trying to determine analytically a turbulent profile, for example, the longitudinal
velocity profile in turbulent boundary layer flow (when visualized, this wiggly
profile fluctuates in time in much the same way as an electric arc).

Confronted with this difficulty, Reynolds [6] thought that some of the com-
plications of instantaneous turbulent flow could be removed if one considers not
the instantaneous behavior, but the mean behavior averaged over a long enough
period. In terms of mean velocities, pressure, and temperature, the time-averaged
flow field is a simpler one, a field without fluctuations (eddies).

The time-averaged flow behavior is not a simpler flow (because only the
real turbulent flow exists); rather, it is a simpler way to think about turbulent
flows. Unfortunately, this is also an effective method of simplifying the reader’s
mind, inviting it to see smoothness in turbulence rather than coarseness, orderly
structure, and ‘‘design.’’
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The derivation of the conservation laws for time-averaged flow begins with
the transformation

u = u+ u′, P = P+ P′

v = v + v′, T = T + T ′ (7.1)

w = w+ w′

where the quantities denoted with an overbar (·) represent the mean values
obtained by time averaging over a long enough period,

u = 1

period

∫ period

0
u d(time) (7.2)

Combining eqs. (7.1) and (7.2), we recognize that, by definition, the fluctuating
components denoted with a prime (·)′ average to zero over time,

∫ period

0
u′ d(time) = 0 (7.3)

Definitions (7.2) and (7.3) are the foundation of a special kind of algebra that
emerges in the process of substituting the (·) + (·)′ decomposition (7.1) into the
mass, momentum, and energy equations and then time averaging these equations
according to definition (7.2). The rules (theorems) of this algebra are

u+ v = u+ v (7.4)

uu′ = 0 (7.5)

uv = uv + u′v′ (7.6)

u2 = u2 + u′2 (7.7)

∂u

∂x
= ∂u

∂x
(7.8)

∂u

∂t
= 0 (7.9)

∂u

∂t
= 0 (7.10)

Consider first the transformation of the mass conservation equation (1.8),

∂u

∂x
+ ∂u′

∂x
+ ∂v

∂y
+ ∂v′

∂y
+ ∂w

∂z
+ ∂w′

∂z
= 0 (7.11)
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Integrating this equation term by term over time and applying rules (7.3) and
(7.8) yields

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (7.12)

which is analytically identical to the original equation [eq. (1.8)]. Equation (7.12)
represents the condition for conservation of mass in time-averaged flow.

Consider next the x momentum equation listed as eq. (1.19a); this equation
may be rewritten as

∂u

∂t
+ ∂

∂x
(u2) + ∂

∂y
(uv) + ∂

∂z
(uw) = − 1

ρ

∂P

∂x
+ ν ∇2u (7.13)

Averaging each term over time and applying rules (7.8)–(7.10) yields

∂

∂x
(u2) + ∂

∂y
(uv) + ∂

∂z
(uw) = − 1

ρ

∂P

∂x
+ ν ∇2u (7.14)

Now applying the product averaging rules (7.6) and (7.7), we obtain

∂

∂x
(u2) + ∂

∂y
(uv) + ∂

∂z
(uw)

= − 1

ρ

∂P

∂x
+ ν ∇2u− ∂

∂x
(u′2) − ∂

∂y
(u′v′) − ∂

∂z
(u′w′) (7.15)

Making use of the mass continuity equation (7.12), the left-hand side of eq. (7.15)
can be simplified to read

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂P

∂x
+ ν ∇2u− ∂

∂x
(u′2)

− ∂

∂y
(u′v′) − ∂

∂z
(u′w′) (7.16a)

The corresponding time-averaged forms of the momentum equations in the y and
z directions are

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂P

∂y
+ ν ∇2v − ∂

∂x
(u′v′)

− ∂

∂y
(v′2) − ∂

∂z
(v′w′) (7.16b)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂P

∂z
+ ν ∇2w− ∂

∂x
(u′w′)

− ∂

∂y
(v′w′) − ∂

∂z
(w′2) (7.16c)
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Finally, the energy equation expressed as eq. (1.42) yields, after a similar
time-averaging procedure,

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α∇2T − ∂

∂x
(u′T ′) − ∂

∂y
(v′T ′) − ∂

∂z
(w′T ′) (7.17)

The derivation of eq. (7.17) follows in the steps contained between eqs. (7.13)
and (7.16a) in the derivation of the time-averaged x momentum equation.

To summarize, the time-averaged conservation laws for constant-property flow
are represented by eqs. (7.12), (7.16a-c), and (7.17). These are five equations
for 17 unknowns [the unknowns are u, v, w, P, T , and the 12 terms of type
∂ (u′v′)/∂y appearing in eqs. (7.16a-c) and (7.17)]: hence, the closure problem.
The difference between the number of equations and the number of unknowns has
its origin in the original transformation [eqs. (7.1)], which doubled the number
of unknowns; the final number of unknowns ballooned to 17 due to the various
product combinations of fluctuating quantities that survive the time-averaging
process. Fortunately, the gap between equations and unknowns is not nearly as
menacing if we consider especially simple flow configurations such as boundary
layers and fully developed flows through straight ducts.

7.3 BOUNDARY LAYER EQUATIONS

Consider turbulent flow near a wall parallel to a free stream U∞, T∞ oriented
in the positive x direction, as in Fig. 2.1 Although the actual turbulent flow is
three-dimensional regardless of how simple the flow boundaries, from symmetry,
the terms representing the ∂/∂z derivative of time-averaged quantities in eqs.
(7.16a) and (7.17) must vanish. Furthermore, if we think of u′ and v′ as the
velocity fluctuations caused by an eddy (a rotating fluid blob; a wheel) as it
rides along with the mean flow, then u′ and v′ are of comparable orders of
magnitude. This means that in the boundary layer, we can neglect (∂/∂x)(u′2)
relative to (∂/∂y)(u′v′) in eq. (7.16a), and (∂/∂x)(u′T ′) relative to (∂/∂y)(v′T ′)
in eq. (7.17). Applying the other simplifications that result from boundary layer
theory (Chapter 2), the x momentum and energy equations reduce to

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
(u′v′) (7.18)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− ∂

∂y
(v′T ′) (7.19)

Note that the use of dP/dx instead of ∂P/∂x in eq. (7.18) is the result of
having taken into account the boundary layer momentum equation in the y
direction (which says that P in the boundary layer is a function of x only; see
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Chapter 2). Equations (7.18) and (7.19), in conjunction with the two-dimensional
mass continuity equation

∂u

∂x
+ ∂v

∂y
= 0 (7.20)

represent the time-averaged conservation laws inside the boundary layer region.
These equations look very much like their counterparts in laminar flow
[eqs. (2.26), (2.27), and (2.7)] with one important difference: the (∂/∂y)(u′v′) and
(∂/∂y)(v′T ′) terms appearing in eqs. (7.18) and (7.19). These terms represent two
additional unknowns and account for the closure problem in the two-dimensional
boundary layer geometry.

It is instructive to rewrite eqs. (7.18) and (7.19) as

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

dP

dx
+ 1

ρ

∂

∂y

(
µ

∂u

∂y
− ρu′v′

)
(7.21)

u
∂T

∂x
+ v

∂T

∂y
= 1

ρcP

∂

∂y

(
k
∂T

∂y
− ρcPv′T ′

)
(7.22)

and to ask this question: If the products u′v′ and v′T ′ survive the time-averaging
process, that is, if they are nonzero, are they negative or positive? The answer
is visible in Fig. 7.3, which shows two possibilities in the evolution of the
instantaneous u velocity at some point N in the boundary layer. Figure 7.3a
presumes the existence of an eddy that causes a downward velocity fluctuation
through point N, v′ < 0; if the instantaneous u profile is such that the fluid
moves faster if situated farther from the wall, the short-time effect of v′ < 0 is to
increase the longitudinal velocity at point N, in other words, to induce a positive
fluctuation u′ > 0.

The reverse of this scenario is illustrated in Fig. 7.3b, and what is most
interesting, the product u′v′ emerges as a negative quantity regardless of the
sign of u′ and v′. Based on this argument (which applies unchanged to figuring
out the sign of v′T ′), we expect that the time-averaged products u′v′ and v′T ′
are negative. Since the size of the u′ and T ′ fluctuations with which the flow
responds to the postulated v′ depends on the steepness of the average u and T
profiles (Fig. 7.3), it makes sense to introduce the notation [7]

−ρu′v′ = ρεM
∂u

∂y
eddy shear stress

−ρcPv′T ′ = ρcPεH
∂T

∂y
eddy heat flux (7.23)

That −ρu′v′ and −ρcPv′T ′ represent shear stress and heat flux can be seen
from the last terms of eqs. (7.21) and (7.22): For example, in the momentum
equation (7.21), the molecular diffusion shear stress µ(∂u/∂y) is augmented by
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Figure 7.3 Behavior of the instantaneous longitudinal velocity profile, showing how the product
u′ν ′ survives the time averaging of the x momentum equation.

the time-averaged eddy shear stress (−ρu′v′). Comparing the momentum and
energy equations for turbulent boundary layer flow [eqs. (7.21) and (7.22)] with
the laminar boundary layer equations (2.26) and (2.27), we see that the role
played by shear stress and heat flux in turbulent flow is played by augmented
expressions∗

τapp = µ
∂u

∂y
− ρu′v′ = ρ(ν + εM)

∂u

∂y
apparent shear stress

−q′′
app = k

∂T

∂y
− ρcPv′T ′ = ρcP(α + εH)

∂T

∂y
apparent heat flux (7.24)

Substituting the new notation (7.23) into the boundary layer equations (7.21)
and (7.22) yields

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

dP

dx
+ ∂

∂y

[(
ν + εM

) ∂u

∂y

]
(7.25)

u
∂T

∂x
+ v

∂T

∂y
= ∂

∂y

[(
α + εH

) ∂T

∂y

]
(7.26)

∗Note that as in Chapter 2, q′′ is defined as positive when heat is transferred from the wall to the
fluid.
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where εM and εH are two empirical functions known as momentum eddy
diffusivity and thermal eddy diffusivity, respectively. Note that εM and εH are
flow parameters, not fluid properties. Although eqs. (7.25) and (7.26) look
even more like their correspondents in laminar flow, no real improvement has
taken place in solving the problem theoretically, that is, without relying on
experiment. The problem consists of three equations [eqs. (7.20), (7.25), and
(7.26)] outnumbered by five unknowns (u, v, T , εM , and εH).

The search for additional information to close the problem is the objective of
the activity known as turbulence modeling. This empirical activity consists of
scrutinizing the available body of experimental data in order to identify possible
trends that might lead to generally applicable expressions (models) for εM and
εH. In the present treatment, we discuss first the simplest and oldest models that
lead to concise formulas for wall friction and heat transfer.

7.4 MIXING LENGTH MODEL

The order of magnitude of εM can be determined based on the following scaling
argument due to Prandtl [8]. In the boundary layer of Fig. 7.3, imagine a ball
of fluid that at some point in time is situated at a distance y where the mean
longitudinal velocity is u(y). This ball migrates toward the wall to the new
location y − l, where the mean velocity is u(y− l); the distance l is the mixing
length along which the ball of fluid maintains its identity. Assuming that from
(y) to (y − l) the ball does not lose its longitudinal momentum, the u′ fluctuation
produced by it at the new level (y− l) is on the order of u(y) − u(y− l); in other
words,

O(u′) = l
∂u

∂y
(7.27)

As argued earlier, in the motion of an eddy superimposed on the time-averaged
motion, v′ is of the same order of magnitude as u′; hence,

O(v′) = l
∂u

∂y
(7.28)

Recalling the message of Fig. 7.3, namely, the negative sign of u′v′, we write

−u′v′ = l2
(

∂u

∂y

)2

(7.29)

where l is the length scale associated with travel normal to the wall. Therefore,
from the definition of momentum eddy diffusivity [eqs. (7.23)], we conclude

εM = l2
∣∣∣∣∂u∂y

∣∣∣∣ (7.30)
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There is no general rule for estimating the mixing length l since it varies from
one type of flow to another. In a turbulent boundary layer, however, an upper
bound for l must be the distance to the wall,

l = κy (7.31)

where κ is an empirical constant of order O(1). As is shown later, a suitable
value for von Kármán’s constant κ turns out to be 0.4, thus reconfirming the view
that y is an upper bound for the mixing length of individual eddies. Combining
eqs. (7.30) and (7.31), we conclude that Prandtl’s mixing length model for
momentum eddy diffusivity is

εM = κ2y2
∣∣∣∣∂u∂y

∣∣∣∣ (7.32)

with the value of κ and the goodness of this model to be decided based on
experiment.

Using eq. (7.32) or an equivalent model for εM, the mass and momentum
conservation equations (7.20) and (7.25) could be integrated numerically to
determine the flow field u, v. However, as shown below, some analytical
progress can be made based on additional scaling arguments.

7.5 VELOCITY DISTRIBUTION

If we are interested primarily in how the turbulent boundary layer rubs against
the wall and how it carries heat away from the wall, we can imagine an inner
region situated close enough to the wall that the left-hand side of eq. (7.25) is
sufficiently small. If the longitudinal pressure gradient dP/dx is zero, as in the
case of uniform flow parallel to a flat wall, the inner region is also characterized
by an apparent shear stress (ν + εM)(∂u/∂y) that does not vary with y [see
eq. (7.25)]. Therefore, we can write after Prandtl [9]

(ν + εM)
∂u

∂y
= τ0

ρ
(7.33)

in which τ 0 is the actual wall shear stress, that is, the value of τ app at y = 0
where the Reynolds stress −ρu′v′ vanishes. Keep in mind that τ 0 is the objective
of the entire analysis; however, since the dimensions of (τ 0/ρ)

1/2 are those of
velocity, the group (τ 0/ρ)

1/2 is recognized in the turbulence literature as the
friction velocity∗

u∗ =
(

τ0

ρ

)1/2

(7.34)

∗The fact that u* has the dimensions m/s does not mean that u* is the appropriate scale of u in the
boundary layer (the appropriate scale of u is U∞). That the friction velocity is not the appropriate
velocity scale is illustrated by the numerical values of u+, which are very much different from O(1)
(see Fig. 7.4).
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and is used in the wall coordinate nondimensionalization of the flow problem,

u+ = u

u∗
, v+ = v

u∗

x+ = xu∗
ν

, y+ = yu∗
ν

(7.35)

The constant τ app assumption (7.33) becomes

(
1 + εM

ν

) du+

dy+
= 1 (7.36)

where it should be noted that u+ is a function of y+ only (hence, the d/dy+
derivative sign) and that the x dependence is accounted for in the friction velocity
u* used in definitions (7.35).

The velocity distribution near the wall u+(y+) results from integrating eq.
(7.36) in conjunction with a suitable εM model such as eq. (7.32). The integration
is considerably simpler and more instructive if we recognize that the u+(y+)
function produced by eq. (7.36) must have two distinct limiting behaviors,
depending on the relative size of εM and ν. That the ratio εM/ν must vary with
the distance measured away from the wall is argued by the mixing length model
outlined in Section 7.4. In the inner layer defined by the constant τ app assumption
(7.33), we can visualize two sublayers:

1. The viscous sublayer (VSL), where ν � εM
2. The fully turbulent sublayer (or the turbulent core), where εM � ν

These two sublayers mesh at some value of y+, say, y+VSL, where ν and εM
are of the same order of magnitude. Neglecting the term εM/ν in eq. (7.36)
and integrating from the wall condition u+(0) = 0, we find that in the viscous
sublayer the velocity profile is linear,

u+ = y+ (7.37)

In the fully turbulent sublayer, the eddy diffusivity dominates, and eq. (7.36)
reduces to

εM

ν

du+

dy+
= 1 (7.38)

or, using Prandtl’s mixing length model (7.32),

κ2(y+)2
(
du+

dy+

)2

= 1 (7.39)
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Integrating this equation from the sublayer interface y+VSL [where, according to
eq. (7.37), u+ = y+VSL] to any y+ in the fully turbulent sublayer yields

u+ = 1

κ
ln y+ + y+VSL − 1

κ
ln y+VSL (7.40)

In other words,
u+ = A ln y+ + B (7.41)

where A and B are two empirical constants. Equation (7.41) is referred to as
the law of the wall and is attributed to both Prandtl and Taylor [10]. Fitting the
logarithmic expression (7.41) to experimental measurements, it is found that the
constants are approximately

A ∼= 2.5 and B ∼= 5.5 (7.42)

By examining eq. (7.40), note that A and B are equivalent to

κ ∼= 0.4 and y+VSL ∼= 11.6 (7.43)

Equations (7.37) and (7.41) are one way (perhaps, the simplest) to empirically
fit the u+(y+) measurements that pertain to the inner region. The success of fitting
the data with the law of the wall (7.41) (see Fig. 8 in Ref. 10) demonstrates the
goodness of Prandtl’s constant τ app assumption (7.33) and mixing length model
(7.32). In fact, experimental measurements indicate that the law of the wall holds
even in situations with finite pressure gradient [note the dP/dx assumption that
preceded eq. (7.33)].

As expected, eqs. (7.37) and (7.41) fail to agree with experiment in the vicinity
of y+ = y+VSL, where neither ν nor εM can be neglected (see Fig. 7.4). A number
of improved models have been proposed to smooth out the transition between the
two limiting behaviors; these have been reviewed in Ref. 10 and are summarized
in Table 7.1. It is not difficult to verify that the analytical expressions for u+(y+)
listed in Table 7.1 fall in the area covered by experimental measurements in the
Purtell et al. [11] data reproduced in Fig. 7.4.

The experimental observation that the transition from the viscous sublayer to
the fully turbulent sublayer takes place around y+VSL = O(10) is an interesting
example of the general applicability of the constructal theory of transition
advanced in Chapter 6. The nature and very existence of a viscous sublayer free
of eddy motion have been the subject of debate because for a long time it was
impossible to probe the velocity field so close to the wall. The development of
techniques (e.g., laser–Doppler anemometers) has made it possible to observe
the evolution of the instantaneous velocity near the wall. The viscous sublayer
maintains the same thickness y+VSL = O(10), regardless of the overall thickness
of the boundary layer. As shown in Fig. 7.4, as the overall boundary layer
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Figure 7.4 Example of u+(y+) velocity measurements in turbulent boundary layer flow without
longitudinal pressure gradient. Note the use of A ∼= 2.44 and B ∼= 5 to fit the data. (Reprinted
with permission from L. P. Purtell et al., Physics of Fluids, Vol. 24, pp. 802–811, May 1981.
Copyright 1981 American Institute of Physics.)

thickness increases, the viscous sublayer occupies a smaller fraction of the
boundary layer.

To predict the viscous sublayer based on the theory of Chapter 6, consider
one event that repeats itself many times near the solid wall. Imagine the high-
momentum fluid ball envisioned in the mixing length argument that led to
eq. (7.32). When this fluid packet slams into the wall, due to its high longitudinal
momentum, it gives birth to a sheer layer adjacent to the wall (Fig. 7.5). Initially,
the shear layer will be laminar because it is very thin and its transversal viscous
communication time is very short. The laminar shear layer grows until the local
Reynolds number based on local thickness becomes of order 102, of. eq. (6.15),

yVSLU∞
ν

∼ 102 (7.44)

The velocity scale outside the laminar shear layer isU∞, which is a reasonable
upper bound for the longitudinal velocity of the fluid ball that ran into the wall.
Under the same conditions, the wall shear stress scales as µU∞/yVSL. The scale
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Table 7.1 Summary of longitudinal velocity expressions for the inner region of a turbu-
lent boundary layer

u+(y+) Range Reference

u+ = y+ 0 < y+ < 11.6 Prandtl and
u+ = 2.5 ln y+ + 5.5 y+ > 11.6 Taylor [9]

u+ = y+ 0 < y+ < 5 von Kármán [12]
u+ = 5 ln y+ − 3.05 5 < y+ < 30
u+ = 2.5 ln y+ + 5.5 y+ > 30

u+ = 14.53 tanh(y+/14.53) 0 < y+ < 27.5 Rannie [13]
u+ = 2.5 ln y+ + 5.5 y+ > 27.5

du+

dy+
= 2

1 + {1 + 4κ2y+2[1 − exp(−y+/A+)]2}1/2
κ = 0.4 A+ = 26

All y+ van Driest [14]

u+ = 2.5 ln(1 + 0.4y+)

+ 7.8[1 − exp(−y+/11)

− (y+/11) exp(−0.33y+)]

All y+ Reichardt [15]

du+

dy+
= 1

1 + n2u+y+[1 − exp(−n2u+y+)]

n = 0.124

u+ = 2.78 ln y+ + 3.8

0 < y+ < 26 Deissler [16]

y+ = u+ + A[exp Bu+ − 1 − Bu+ − 1

2
(Bu+)2

− 1

6
(Bu+)3 − 1

24
(Bu+)4]

(last term in u+4 may be omitted)

All y+

A = 0.1108

B = 0.4
Spalding [17]

Source: After Ref. 10.

of y+VSL at transition can be calculated from eq. (7.35),

y+VSL = yVSL
ν

(
τ0

ρ

)1/2

=
(
yVSLU∞

ν

)1/2

(7.45)

or using the transition criterion (7.44),

y+VSL ∼ 10 (7.46)

Since O(10) is the measured scale of y+VSL, the derivation of eq. (7.46) implies
that the time-averaged viscous sublayer is the superposition of many laminar
shear layers terminated by buckling when NB = O(1) [3].



334 7 TURBULENT BOUNDARY LAYER FLOW

Figure 7.5 Formation of the viscous sublayer as the time-averaged superposition of laminar
shear layers with local Reynolds numbers no greater than ∼102.

In conclusion, the constructal law of Chapter 6 provides a purely theoretical
basis for the existence of a viscous sublayer and for predicting the thickness
of such a sublayer. It also provides a means for estimating the B constant in
eq. (7.41) without relying on experiment [note the definition of B in terms of
y+VSL and κ in eq. (7.40)].

An important implication of the y+VSL ∼10 theory presented above is that the
first eddy that forms immediately after the laminar shear layer reaches a local
Reynolds number value of order 102 is also characterized by a local Reynolds
number of order 102. According to the scenario sketched in Fig. 7.5, the first
eddy is also the smallest eddy in the eddy population resulting from the repeated
buckling and rolling-up of the shear layer. Thus, the smallest eddy Reynolds
number (based on peripheral velocity and eddy diameter) is of order 102 [3];
this conclusion contradicts the often-quoted statement that the small-scale eddy
motion is characterized by a Reynolds number equal to 1.

Why does the mixing-length-generated velocity profile (7.41) depend on two
empirical constants (A and B, or κ and y+VSL) when, in fact, the mixing length
model (7.32) introduces only one such constant (κ)? It is always important,
I believe, to question the origin of empirical constants in any analysis. To
find the answer to this question, let us derive the u+(y+) profile as if we
were unaware of the derivation taught in eqs. (7.37)–(7.41). Combining the
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mixing length model (7.32) with the near-wall momentum equation (7.36)
yields [

1 + κ2(y+)2 du+

dy+

]
du+

dy+
= 1 (7.47)

Note that this equation was integrated earlier in two extremes, each time by
neglecting one of the terms appearing in brackets. But since this time we are
‘‘unbiased,’’ we proceed with eq. (7.47) alone and find that it can be integrated
in closed form. Integrating away from the wall, where the boundary condition is
u+(0) = 0, we obtain

κu+ = cosα − 1

sinα
+ ln

[
tan

(π

4
+ α

2

)]
(7.48)

where
α = arctan(2κy+) (7.49)

The reader can easily verify that regardless of the value of κ , the solution
above is not a good curve fit for the data presented in Fig. 7.4. For example, in
the two limits discussed earlier in this section, the κ-dependent solution (7.48)
and (7.49) yields

u+ → y+ as y+ → 0

u+ → 1

κ
ln y+ + 2 ln 2 + ln κ − 1

κ
as y+ → ∞

(7.50)

Furthermore, if κ ∼= 0.4, the law of the wall recommended by this solution is

u+ = 2.5 ln y+ − 1.325 (7.51)

Comparing this result with the curve that agrees with the data [eqs. (7.41) and
(7.42)], we conclude that the single-constant profile (7.48) fails in the high-y+
limit. To ensure a reasonable curve fit in the high-y+ limit is the function of
an additional constant, B [eq. (7.41)]. The additional constant is the result of
a sleight of hand, namely, the breaking up of the integration of eq. (7.47) into
cases 1 and 2. The additional constant B represents the newly created degree of
freedom associated with joining the two solutions at a certain intermediate y+,
which was determined later.

As shown in Fig. 7.4, the two-constant curve fitting of the velocity data works
for sufficiently low values of y+, say y+ < 100. This means that the constant
τ app assumption that led to the law of the wall (7.41) breaks down as we leave
the wall region. The departure of u+(y+) measurement away from the law of
the wall is demonstrated by the right side of Fig. 7.4. The turbulent boundary
layer region emerges as the sandwiching of two distinct zones: an inner zone∗

∗The inner zone divided earlier into a viscous sublayer and a fully turbulent sublayer, in the
discussion immediately preceding eq. (7.37).
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where the τ app = constant assumption is fairly good and an outer zone where that
assumption fails. Recognizing the logarithmic scale employed on the abscissa of
Fig. 7.4, we note that the outer zone is generally much thicker than the constant
τ app layer. Furthermore, the thickness of the outer zone increases relative to that
of the inner zone as the momentum thickness Reynolds numberU∞θ /ν increases
(in other words, the outer zone becomes relatively thicker in the downstream x
direction, as θ is expected to increase monotonically in x).

If the outer zone is a region where the τ app = constant assumption fails, then
according to the complete momentum boundary layer equation (7.25), the outer
zone is ruled by a balance between inertia and changes in τ app. It is shown
in Chapter 9 that such a balance is characteristic of all turbulent shear flows
in regions situated sufficiently far from solid walls (jets, wakes, plumes). For
this reason and due to the similar appearance of turbulent wakes and the outer
regions of turbulent boundary layers, the literature refers to the outer region of a
boundary layer as the wake region. The outer region is visible in Figs. 7.1 and
7.2. Note also the similarity between the large-scale buckling of this region and
the meanders displayed by turbulent jets, wakes, and plumes (Chapter 9).

7.6 WALL FRICTION IN BOUNDARY LAYER FLOW

Of interest is the time-averaged friction force exerted by the turbulent boundary
layer on the wall. The wall shear stress τ 0 or, in dimensionless form, the local
skin friction coefficient

Cf , x = τ0
1
2ρU

2∞
(7.52)

can be derived from the longitudinal velocity measurements plotted in Fig. 7.4.
Recall that τ 0 was used to nondimensionalize the abscissa and the ordinate in
Fig. 7.4. Let the function fu(y

+) be an appropriate curve fit for the velocity data
of Fig. 7.4,

u+ ∼= fu(y
+) (7.53)

Examples of fu expressions can be found in the left column of Table 7.1.
Now, assuming that fu fits the measurements sufficiently well near the high-y+
extremity of the profile (i.e., in the wake region), we can use the curve fit (7.53)
to define an outer boundary layer thickness δ such that the time-averaged velocity
u calculated with eq. (7.53) equals U∞ when y equals δ. This definition amounts
to applying eq. (7.53) at the point of u = U∞ and y = δ:

U∞
(τ0/ρ)1/2

∼= fu

[
δ

ν

(
τ0

ρ

)1/2
]

(7.54)

Equation (7.54) is the source of a particular formula for τ 0 or Cf, x, a formula
that depends on the particular expression chosen for fu. However, to derive this
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formula, we must determine the outer boundary layer thickness δ. To do this, we
first recognize that the thickness δ and its x variation are intimately tied to the
behavior of the wake region. In other words, the thickening of the boundary layer
must be due to the progressive slowing down of outer layers of the free stream as
the flow proceeds in the x direction. To account for this phenomenon, we must
consider the complete form of the momentum equation for the boundary layer
[eq. (7.25)]. Integrating this equation across the boundary layer and keeping in
mind that in the present case dP/dx = 0 yields

d

dx

∫ ∞

0
u(U∞ − u) dy = τ0

ρ
(7.55)

The derivation of the more general momentum integral, for finite dP/dx, is the
object of Problem 7.6.

Equations (7.54) and (7.55) are sufficient for determining δ(x) and τ 0(x). For
example, using Prandtl’s one-seventh power law as the fit for the u+(y+) data,

fu = 8.7(y+)1/7 (7.56)

we obtain
τ0

ρU2∞
= 0.0225

(
U∞δ

ν

)−1/4

(7.57)

δ

x
= 0.37

(
U∞x

ν

)−1/5

(7.58)

δ = 8δ∗ = 72
7 θ (7.59)

Combining eqs. (7.57) and (7.58) yields the local and average skin friction
coefficients

τ0

ρU2∞
= 1

2Cf , x = 0.0296

(
U∞x

ν

)−1/5

(7.60)

τ0−x
ρU2∞

= 1
2Cf ,0−x = 0.037

(
U∞x

ν

)−1/5

(7.60′)

Equation (7.60) is shown plotted in Fig. 7.6 next to Schultz-Grunow’s
empirical correlation [18]

Cf , x = 0.37

[
log10

(
U∞x

ν

)]−2.584

(7.61)

The figure shows that the agreement between formula (7.60) and measurements
deteriorates above U∞x/ν of order 107 –108. The imperfect character of expres-
sion (7.60) can be traced back to the approximate character of the velocity profile
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Figure 7.6 Local skin friction coefficient for turbulent boundary layer flow over a plane wall.

curve fit fu chosen for the analysis that produced eq. (7.60). Other curve fits fu
will lead to friction formulas that differ from eq. (7.60) and to boundary layer
thickness formulas that differ from eq. (7.58).

This last observation is particularly relevant to understanding the not-so-
fundamental character of the notion that the turbulent boundary layer thickness
δ varies as x4/5, as might be memorized from eq. (7.58) or Ref. 9. What varies as
x4/5 is the distance normal to the wall, calculated by intersecting u = U∞ with
an arbitrarily chosen curve fit of the velocity profile [eq. (7.56)]. The distance
defined in such an arbitrary manner is certainly not the distance from the wall
to the stepped interface so evident in the turbulent boundary layer photographs
shown as Figs. 7.1 and 7.2.

7.7 HEAT TRANSFER IN BOUNDARY LAYER FLOW

For the heat transfer part of the turbulent boundary layer problem, we use the
time-averaged energy equation (7.26) and make the assumption that sufficiently
close to the solid wall the left-hand side of eq. (7.26) becomes negligible. This
move is analogous to the constant τ app assumption made earlier in connection
with the velocity profile. The energy equation reduces to the statement that
sufficiently close to the wall the apparent heat flux q′′

app does not depend on y,

(α + εH)
∂T

∂y
=

[(
α + εH

) ∂T

∂y

]
y=0

(7.62)

In other words,

(α + εH)
∂T

∂y
= −q′′

0

ρcP
(7.63)

As we shall demonstrate shortly, the assumed constancy of q′′
app leads in

relatively few steps to an analytical expression for temperature distribution in the
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close vicinity of the wall. Introducing the wall coordinates (7.35), the constant
q′′
app statement (7.63) becomes

ρcPu∗
−q′′

0

∂

∂y+
(T − T0) = 1

α/ν + εH/ν
(7.64)

This form is the basis for defining the temperature in wall coordinates:

T+(x+, y+) = (T0 − T)
ρcPu∗
q′′
0

(7.65)

In this notation, the integral of eq. (7.64) reads

T+ =
∫ y+

0

dy+

1/Pr + (1/Prt)(εM/ν)
(7.66)

We see that the temperature profile in the q′′
app = constant region is governed

by the Prandtl number, the turbulent Prandtl number (Prt = εM/εH), and, via
εM/ν, the velocity distribution in the same region [see eq. (7.36)]. The integral
appearing on the right-hand side of eq. (7.66) can be evaluated in closed form
based on further assumptions regarding Pr, Prt, and εM/ν. To begin with, we note
that in the fully turbulent region of the constant τ app layer, eqs. (7.36) and (7.41)
yield

εM

ν
= dy+

du+ = κy+ (7.67)

Therefore, according to the mixing length model, the second term in the
denominator of the integrand in (7.66) increases steadily as y+ increases.
Considering the range of values taken by y+ (Fig. 7.4) and assuming that both
Pr and Prt do not depart too drastically from O(1), chances are good that in the
integrand of eq. (7.66), the term (εM/ν)/Prt will outweigh the term 1/Pr if y+ is
sufficiently large. This suggests the two-part integration of (7.66):

T+ =
∫ y+CSL

0

dy+

1

Pr
+

(
negligible

term

) +
∫ y+

y+CSL

dy+(
negligible

term

)
+ 1

Prt

εM

ν

(7.68)

where y+CSL is the dimensionless thickness of a conduction sublayer (CSL) in
which themolecularmechanism outweighs the eddy transport of heat. Combining
eqs. (7.68) and (7.67) and regarding Prt as y independent, we obtain a broken
line expression for the temperature profile

T+ =



Pr y+, y+ < y+CSL

Pr y+CSL + Prt
κ

ln
y+

y+CSL
, y+ > y+CSL

(7.69)
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This result depends on three empirical constants, Prt, κ , and y
+
CSL. Agreement

with temperature measurements is achieved if [19]

Prt ∼= 0.9, κ ∼= 0.41, y+CSL ∼= 13.2 (7.70)

provided that the Prandtl number of the fluid is in the range 0.5–5. Substituting
these values into the y+ > y+CSL portion of the T+ profile (7.69) yields

T+ = 2.195 ln y+ + 13.2Pr − 5.66 (7.71)

In the fully turbulent region where q′′
app is constant, the temperature profile T+ is

analytically the same as the law of the wall [eq. (7.41)].
Awall heat flux formula consistentwith the temperature distribution developed

above can be derived by assuming that eq. (7.69) holds well enough near the
outer edge of the boundary layer (i.e., at the edge of the wake region). This
assumption is made for analytical convenience because the wake region is neither
one of constant q′′

app nor one of constant τ app. However, this assumption turns
out to be a fairly good one, and the heat transfer coefficient formula facilitated
by it turns out to be instructive. Setting T = T∞ at y = δ in eq. (7.69), we obtain

ρcPu∗
T0 − T∞

q′′
0

= Pr y+CSL + Prt
κ

ln
δu∗/ν
y+CSL

(7.72)

The heat transfer coefficient h = q′′
0/(T0 − T∞) appears explicitly and δ is

an unknown. To determine δ, we might be tempted to rely on eq. (7.58), but
this would be inappropriate because Prandtl’s formula for δ(x) is based on the
one-seventh power law velocity profile, whereas the temperature profile (7.69)
is based on the law of the wall. Therefore, to be consistent, we apply the law of
the wall (7.41) at the outermost edge of the boundary layer,

U∞
u∗

= 1

κ
ln

δu∗
ν

+ B (7.73)

Eliminating δu*/ν between eqs. (7.72) and (7.73) and keeping in mind that

U∞
u∗

=
(

2

Cf , x

)1/2

(7.74)

we obtain the desired heat transfer result,

h

ρcPU∞
=

1
2Cf , x

Prt +
( 1
2Cf , x

)1/2
[Pr y+CSL − B Prt − (Prt/κ) ln y+CSL]

(7.75)
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The left-hand side of this equation is a dimensionless way of expressing the
heat transfer coefficient in turbulent flow, namely, the local Stanton number:

Stx = h

ρcPU∞
= Nux

Pex
= Nux

Rex Pr
(7.76)

The right-hand side of eq. (7.75) can be refined by using appropriate values for
the empirical constants; for example, using the constants listed as eq. (7.70) and
taking B ∼= 5.1, the heat transfer rate formula becomes [19]

Stx =
1
2Cf , x

0.9 + ( 1
2Cf , x

)1/2
(13.2Pr − 10.25)

(7.77)

This result is worth thinking about before proceeding. Looking at the already
weak relationship between Cf, x and Rex displayed by Fig. 7.6, we get the idea
that the denominator in expression (7.77) is not very sensitive to changes in
the Reynolds number. Also, the Prandtl number Pr was already assumed to be
in the range 0.5–5, which means that the denominator is of order O(1) and
Pr-dependent. We reach the conclusion that at any x along the wall, the Stanton
number and the skin friction coefficient are proportional and of the same order of
magnitude and that the proportionality factor is a function of the Prandtl number.
Indeed, heat transfer measurements over a wider Pr range (0.6 < Pr < 60) satisfy
an empirical formula suggested by Colburn [20]:

Stx Pr2/3 = 1
2Cf , x (7.78)

The analysis outlined here between eqs. (7.63) and (7.77) is a simplified version
of what von Kármán obtained based on a smoother, three-region integration of
eq. (7.66) [14]. The three y+ regions are listed in Table 7.1. If Prt = 1, the local
Stanton number expression produced by this analysis is

Stx =
1
2Cf , x

1 + 5
( 1
2Cf , x

)1/2 {
Pr − 1 + ln

[
1 + 5

6 (Pr − 1)
]} (7.79)

The Colburn analogy (7.78) can be restated in terms of Nux and Rex, in
accordance with eqs. (7.60) and (7.76):

Nux = 1
2Cf , x Rex Pr1/3

= 0.0296Re4/5x Pr1/3 (Pr � 0.5) (7.78′)

NuL = 0.037Re4/5L Pr1/3 (Pr � 0.5) (7.78′′)

Although eq. (7.78′) was developed for an isothermal wall, it works satisfactorily
when the wall heat flux is uniform. The Nux value for a wall with uniform heat
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flux is only 4 percent greater than the value furnished by eq. (7.78′). Note further
that when the wall heat flux is uniform, the local Nusselt number is defined by
Nux = q′′

0x/k[T0(x) − T∞]. Regardless of the thermal boundary condition that
may exist at the wall, the reference temperature for evaluating the properties in
eqs. (7.78) and (7.78′) is the average film temperature (T0 + T∞)/2, where T0 is
the x-averaged wall temperature.

7.8 THEORY OF HEAT TRANSFER IN TURBULENT BOUNDARY
LAYER FLOW

It is instructive to substitute numerical values for Rex and Pr into formulas (7.77)
and (7.79) to discover that they predict practically the same heat transfer rate
as Colburn’s empirical correlation (7.78). The success of an extremely compact
analytical expression to convey the same message as fancier formulas produced
by increasingly fancier analyses suggests that Colburn’s formula is the carrier
of fundamental information regarding the nature (the physics) of turbulent heat
transfer near a solid wall in both boundary layer flow and duct flow. I use this
opportunity to present a theory that predicts Colburn’s empirical formula (7.78)
and its Pr range of validity∗.

The Pr= 1 equivalent of Colburn’s formula can be derived rather easily based
on an argument recognized as the Reynolds analogy between heat transfer and
wall friction in turbulent flow [21],

Stx = 1

2
Cf x (Pr = 1) (7.80)

The same result follows from setting Pr = 1 in von Kármán’s expression (7.79).
To derive the Reynolds analogy from the basic premises of this chapter, recall
that the near-wall region is characterized by constant τ app and constant q′′

app,

τ0 = (µ + ρεM)
du

dy
(7.81)

−q′′
0 = (k + ρcPεH)

dT

dy
(7.82)

Setting Pr = 1 and εM = εH and dividing eqs. (7.81) and (7.82) yields

τ0

−q′′
0

= 1

cP

du

dT
(7.83)

∗Colburn did not offer any theoretical basis for the Pr2/3 factor appearing in eq. (7.78). A number
of authors before him proposed similar empirical formulas, with the Pr exponent ranging from 0.6
to 0.7: Colburn chose the 0.66 = 2

3 exponent ‘‘because it is more or less an average value’’ [20].
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Integrating this from the wall (u = 0, T = T0) all the way to the free stream
(u = U∞, T = T∞; note the reality-bending character of this move) leads to

τ0

−q′′
0

= U∞
cP(T∞ − T0)

(7.84)

Recalling the definitions of the skin friction coefficient [eq. (7.52)] and the
Stanton number [eq. (7.76)], we conclude that eq. (7.84) is the same as eq. (7.80).
Considering the Prt = 1 assumption that led to eqs. (7.80) and (7.84), the
Reynolds analogy is nothing but shorthand for the view that each eddy has the
same propensity to convect heat as it has to transfer momentum in the direction
normal to the wall. Although the Reynolds analogy works for Pr ∼= 1 fluids such
as the common gases, it must be distinguished from Colburn’s formula (7.78)
because any time we try to relax the Pr = Prt = 1 assumptions in time-averaged
analysis, we end up with Stx expressions that never reproduce the Prandtl number
dependence envisioned by Colburn [e.g., eqs. (7.77) and (7.79)].

The observation above is, in fact, a very good clue for the path to follow toward
predicting the Colburn formula on a purely theoretical basis. If time-averaged
analysis never leads to Colburn’s correlation of so many experimental results,
perhaps the opposite sort of analysis does. To try the opposite analysis (in this
case, an analysis based on the view that the turbulent boundary layer is a coarse
structure pulsating in time, not a smooth picture that does not change in time) is
to proceed against method, against the march of the crowd.

By recognizing the fluctuating character of the boundary layer, we have
already been able to predict the existence of a viscous sublayer as well as its
time-averaged thickness [see Fig. 7.5 and eqs. (7.44)–(7.46)]. Now we rely on
the same point of view and conclude that the instantaneous distribution of shear
stress τ 0(t) and heat flux q′′

0(t) along the wall of Fig. 7.5 must be as shown in
Fig. 7.7. Each spot on the wall that is instantaneously in contact with U∞-fast
and T∞-cold fluid is instantaneously characterized by maximum shear stress and
heat flux. The in-between regions, being covered by slow and already hot fluid
that is ejected from the wall, are regions of substantially lower shear stress and
heat flux.

Pictures of τ 0(t) and q′′
0(t) (of the type sketched in Fig. 7.7) dance along

the x−x′ wall section as time passes. The time-averaged quantities τ 0(x) and
q′′
0(x) are related to the local density of contact spots, defined as

η(x) = cumulative length of direct contact spots

total length of sample wall section (x− x′)
(7.85)

That relationship is
τ0

τ0, max
∼ η ∼ q′′

0

q′′
0, max

(7.86)
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Figure 7.7 Analogy between skin friction and wall heat flux in turbulent boundary layer flow.

Focusing on only the extreme ends of this relation and writing the time-averaged
τ 0 and q

′′
0 in terms of the local coefficients Cf, x and Stx, we obtain

Stx
1
2Cf , x

∼ q′′
0, max

T0 − T∞

U∞
cPτ0, max

(7.87)
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Finally, since the direct contact spots are covered with laminar shear flow, and
since outside these laminar layers the flow temperature conditions are described
by U∞ and T∞, the scales of τ 0, max and q

′′
0, max are (see Chapter 2)

τ0, max ∼ ρU2
∞

(
U∞L

ν

)−1/2

(7.88)

q′′
0, max

T0 − T∞
∼ k

L
Pr1/3

(
U∞L

ν

)1/2

(Pr > 1) (7.89)

In eqs. (7.88) and (7.89), L is the longitudinal length scale of each laminar shear
layer. Combining eqs. (7.87)–(7.89), we obtain the following expression:

Stx
1
2Cf , x

∼ Pr−2/3 (Pr > 1) (7.90)

This is the same as Colburn’s formula (7.78). Therefore, experimental measure-
ments of both wall friction and wall heat flux support the constructal theory
of Chapter 6, which, after all, is the basis for the intermittent-contact scenario
illustrated in Figs. 7.5 and 7.7.

There is more to this theory than the ability to predict Colburn’s formula.
Regarding the new geometric concept of density of contact spots [eq. (7.85)], we
can easily estimate the order of magnitude of η,

η ∼ τ0

τ0, max
∼ Cf , x

(U∞L/ν)−1/2
(7.91)

Recalling that the growth of each laminar layer is terminated when the thickness-
referenced Reynolds number is of order 102, eq. (6.15), and that in laminar shear
flow the thickness varies as L1/2, we conclude that the Reynolds number based
on spot length scale L has a characteristic order of magnitude

U∞L
ν

∼ 104 (7.92)

Substituting this result into the density formula (7.91), we find that

η ∼ 102Cf , x (7.93)

This prediction is worth thinking about. Looking at Fig. 7.6, which shows that
Cf, x is consistently of order 10–3 –10–2, we predict that the density of contact
spots is of order 0.1 − 1; in other words, the laminar contact regions cover a
significant percentage of the wall. This is why the laminar shear layer thickness
alone accounts successfully for the time-averaged viscous sublayer thickness
[eqs. (7.44)–(7.46)]. Most important, however, is the proportionality between η
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and Cf, x: This proportionality gives us a geometric interpretation for the meaning
of the skin friction coefficient in turbulent boundary layer flow. In addition,
eq. (7.93) explains why the Cf, x values are so much smaller than 1.

Geometrically, the turbulent boundary layer emerges as a sequence of laminar
spots terminated when their buckling number NB exceeds O(1) (Chapter 6), a
population the density of which decreases very gradually as the outer thickness
of the boundary layer increases in the downstream direction.

The theory that led to eq. (7.90) predicts that the Colburn analogy (7.78)
should be valid in the Pr > 1 range. What, then, is the corresponding theory
for liquid-metal near-wall turbulence? To answer this question, we recall that
in Pr < 1 fluids the thermal diffusivity is such that given the same fluid layer
thickness, the thermal communication time across the layer is shorter than the
viscous communication time. Thus, although the laminar spot breaks down when
it reaches a length L, the direct thermal contact between wall (T0) and outer
fluid (T∞) persists over a longer length Lm (Fig. 7.5). In other words, if the
Prandtl number is sufficiently small, the wall will communicate via thermal
diffusion even across the first (smallest) eddies formed in the wake of laminar
spot breakdown.

As in the case of transition to turbulence (Chapter 6), the eddy diameter DT
across which the thermal diffusion effect will still have time to travel can be
estimated by equating the thermal diffusion time D2

T /16α with the rolling period
DT/(U∞/2); hence,

DTU∞
α

∼ 102 (7.94)

From the study of laminar thermal boundary layers in liquid metals (Chapter 2),
we recall that

DT

Lm
∼ Pr−1/2

(
U∞Lm

ν

)−1/2

(7.95)

Combining eqs. (7.94) and (7.95), we find that

LmU∞
ν

∼ 104Pr−1 (7.96)

or, using eq. (7.92),
Lm
L

∼ 1

Pr
> 1 (7.97)

We conclude that for liquid metals, which occupy the Pr range 10–1 –10–3,
the ratio Lm/L evaluated above would be of order 10–103. However, since Lm
cannot be greater than L/η [Fig. 7.7 and eq. (7.85)], and since η is of order 10–1

(Fig. 7.6), we learn that the ratio Lm/L cannot exceed O(10). This means that
in liquid metals, the intermittent thermal contact between free stream and wall
is not terminated by criterion (7.94) but by the next inrush of free-stream fluid
(note that the longitudinal length scale between two consecutive inrush events
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is of order L/η). The thermal contact between wall and free stream is therefore
characterized by the front portion of a thermal boundary layer of length L/η in
the Pr → 0 limit (Chapter 2):

q′′
0 ∼ k(T0 − T∞)

L/η
Pr1/2

(
U∞L/η

ν

)1/2

(7.98)

Combining this estimate with eqs. (7.92) and (7.93), we predict the following
relation between Stx and Cf, x for liquid metals:

St( 1
2Cf , x

)1/2 ∼ 10−1Pr−1/2 (7.99)

The validity of eq. (7.99) is confirmed by experimental results available for
turbulent pipe flow; see the discussion of eq. (8.39).

7.9 OTHER EXTERNAL FLOWS

7.9.1 Single Cylinder in Cross Flow

In the preceding sections we uncovered the most basic aspects of turbulent
convection by focusing on the simplest wall geometry—the flat plate. The same
fundamentals govern the more complicated configurations and account for the
largest portion of the external-convection literature and handbooks. This section
is a problem solving–oriented review of some of the simplest external convection
results that have been obtained for nonplane walls.

Consider the heat transfer between a long cylinder oriented across a fluid
stream of uniform velocity (U∞) and temperature (T∞) (Fig. 7.8). The temper-
ature of the cylindrical surface is uniform (Tw). There are many heat transfer
correlations for this configuration, but generally speaking, they are not in very
good agreement with the experimental data. For example, one correlation that is
based on data from many independent sources was developed by Churchill and
Bernstein [22],

NuD = 0.3 + 0.62Re1/2D Pr1/3

[1 + (0.4/Pr)2/3]1/4

[
1 +

(
ReD

282,000

)5/8
]4/5

(7.100)

where NuD = hD/k. This formula holds for all values of ReD and Pr, provided
that the Péclet number PeD = ReDPr is greater than 0.2. In the intermediate
range 7 × 104 < ReD < 4 × 105, eq. (7.100) predicts NuD values that can be
20 percent smaller than those furnished by direct measurement. The physical
properties needed for calculating NuD, Pr, and ReD are evaluated at the film
temperature (T∞ + Tw)/2. Equation (7.100) also applies to a cylinder with
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Figure 7.8 Single cylinder or sphere in turbulent cross flow.

uniform heat flux, in which case the average heat transfer coefficient h is based
on the perimeter-averaged temperature difference between the cylindrical surface
and the free stream.

In flows slow enough so that PeD < 0.2, a formula due to Nakai and Okazaki
[23] is more accurate than eq. (7.100):

NuD = 1

0.8237 − 0.5 ln(PeD)
(7.101)

This agrees well with experimental measurements conducted in air; however, it
has not been tested for a wide range of Prandtl numbers.

The single cylinder in cross flow also has been studied extensively from a fluid
mechanics standpoint. The first portion of the surrounding flow that becomes
turbulent as the Reynolds number ReD = U∞D/ν increases is the wake. When
the Reynolds number is of order 10 or smaller, the flow is nearly symmetric
about the transversal diameter of the cylinder. Eddies of size comparable with
the cylinder itself begin to shed periodically when ReD ∼ 40–70: This is another
manifestation of the local Reynolds number criterion of transition to turbulence
(Table 6.1). Thewake becomes increasingly turbulent as ReD increases; however,
the shedding of vortices of diameter comparable with D remains a feature of
the wake over most of the 102 < ReD < 107 range. The frequency fv[s

–1] with
which the vortices shed is roughly proportional to the flow velocity [24]:

fv ∼ 0.21
U∞
D

(7.102)

The total, time-averaged drag force FD exerted by the flow on the cylinder
can be calculated with the help of Fig. 7.9. Plotted on the ordinate is the drag



7.9 OTHER EXTERNAL FLOWS 349

Figure 7.9 Drag coefficients of smooth sphere and a single smooth cylinder in cross flow.
(Drawn based on data from Ref. 9, p. 16.)

coefficient CD, which is a dimensionless way of expressing the drag force:

CD = FD/A
1
2ρU

2∞
(7.103)

The area A is the frontal area of the cylinder (as seen by the approaching stream),
namely, A = LD, if L is the length of the cylinder. The drag coefficients of
several other body shapes have been compiled by Simiu and Scanlan [25].

7.9.2 Sphere

For the average heat transfer coefficient between an isothermal spherical surface
(Tw) and an isothermal free stream (U∞, T∞) (Fig. 7.8), Whitaker [26] proposed
the correlation

NuD = 2 + (0.4Re1/2D + 0.06Re2/3D )Pr0.4
(

µ∞
µw

)1/4

(7.104)

This relation has been tested for 0.71 < Pr < 380, 3.5 < ReD < 7.6 ×
104, and 1 < µ∞/µw < 3.2. All the physical properties in eq. (7.104) are
evaluated at the free-stream temperature T∞, except the viscosity at the surface
temperature, µw = µ(Tw). It is worth noting that the no-flow limit of this
formula, NuD = 2, represents the pure-conduction estimate for steady radial
conduction between the spherical surface and the motionless, infinite conducting
medium that surrounds it. Equation (7.104) also applies to spherical surfaces with
uniform heat flux, with the understanding that in such cases, NuD is based on the
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surface-averaged temperature difference between the sphere and the surrounding
stream, NuD = hD/k = q′′

wD/k(Tw − T∞).
Figure 7.9 shows the dimensionless drag coefficient for a sphere suspended

in a uniform stream. The total time-averaged drag force FD experienced by the
holder of the sphere can be calculated with eq. (7.103), in which the frontal area
this time is A = (π/4)D2. The regimes that are exhibited by the flow around the
sphere are analogous to those encountered in the case of a cylinder in cross flow.

Correlations for turbulent heat transfer from spherical and cylindrical objects
immersed in air flow have been developed by Dincer and Genceli [27] and Dincer
[28–30], with application to the cooling and drying of food products. Additional
results are reviewed in a heat transfer handbook [31].

7.9.3 Other Body Shapes

The single cylinder and sphere discussed in Sections 7.9.1 and 7.9.2 are
the simplest geometries of bodies immersed in a uniform flow of different
temperature. The heat transfer literature contains a wealth of analogous results
for bodies of other shapes. Some of these formulas have been reviewed critically
by Yovanovich [32], who also proposed a universal correlation for spheroids,
bodies of nearly spherical shape.

As illustrated in the lower part of Fig. 4.19, a spheroid can be obtained
by rotating an ellipse about one of the semiaxes. The spheroid geometry is
characterized by two dimensions (C, B), where C is the semiaxis aligned with the
free stream U∞. As length scale for the definition of the Reynolds and Nusselt
numbers, Yovanovich chose the square root of the spheroid surface (A),

£ = A1/2 (7.105)

Therefore,

Re£ = U∞£

ν
and Nu£ = h £

k
(7.106)

The universal correlation developed by Yovanovich [32] is

Nu£ = Nu
0
£ +

[
0.15

(
p

£

)1/2

Re1/2£ + 0.35Re0.566£

]
Pr1/3 (7.107)

where p is the maximum (equatorial) perimeter of the spheroid, perpendicular
to the flow direction U∞. The constant Nu

0
£ is the overall Nusselt number in

the no-flow limit (pure conduction). Representative values of this constant are
listed in Table 4.3, which is to be read in conjunction with Fig. 4.19. Equation
(7.107) is recommended for 0 < Re£ < 2 × 105, Pr > 0.7, and 0 < C/B < 5.
The physical properties involved in the definitions of Nu£ and Re£ are evaluated
at the film temperature.
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7.9.4 Arrays of Cylinders in Cross Flow

A considerably more complicated geometry is that of a large number of regularly
spaced (parallel) cylinders in cross flow (Fig. 7.10). This geometry is character-
ized by the cylinder diameter (D), the longitudinal spacing of two consecutive
rows (longitudinal pitch, Xl), and the transversal spacing between cylinders
(transversal pitch, Xt). It is assumed that the array is wide enough; that is, enough
cylinders exist in each row, so that the top and bottom boundaries (the shroud)
do not affect the overall flow and heat transfer characteristics of the array.

In the field of heat exchanger design, arrays such as those of Fig. 7.10 form
when tube banks or tube bundles are placed perpendicular to a stream of fluid.
Assume, for example, that the stream is warm. A second stream of cold fluid
flows inside the many tubes of the bundle, and because of the heat transfer
interaction between each tube and the external cross flow, it absorbs the energy
lost by the warm stream.

The two most common types of arrays have cylinders that are aligned one
behind the other in the direction of flow (Fig. 7.10a) and cylinders that are
staggered (Fig. 7.10b). Aligned cylinders form rectangles with the centers of
their cross sections, whereas staggered cylinders form isosceles triangles.

The work published on the heat transfer performance of banks of cylinders
in cross flow was reviewed by Zukauskas [33]. The overall Nusselt number
formulas presented below are based on Zukauskas’s recommendations, in which

NuD = hD

k
(7.108)

and h is the heat transfer coefficient averaged over all the cylindrical surfaces in
the array. The total area of these surfaces is nmπDL, where n is the number of

Figure 7.10 Cylinders in cross flow: (a) aligned array versus (b) staggered array.
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rows, m the number of cylinders in each row (across the flow direction), and L
the length of the array in the direction perpendicular to the plane of Fig. 7.10.

For aligned arrays of cylinders, the array-averaged Nusselt number is antici-
pated within ± 15 percent by

NuD =




0.9Cn Re
0.4
D Pr0.36

(
Pr

Prw

)1/4

(ReD = 1 − 102

0.52Cn Re
0.5
D Pr0.36

(
Pr

Prw

)1/4

= 102 − 103

0.27Cn Re
0.63
D Pr0.36

(
Pr

Prw

)1/4

= 103 − 2 × 105

0.033Cn Re
0.8
D Pr0.4

(
Pr

Prw

)1/4

= 2 × 105 − 2 × 106)

(7.109)

where Cn is a function of the total number of rows in the array (Fig. 7.11). The
Reynolds number ReD is based on the average velocity through the narrowest
cross section formed by the array, that is, the maximum average velocity Umax,

ReD = UmaxD

ν
(7.110)

In the case of aligned cylinders, the narrowest flow cross section forms in the
plane that contains the centers of the cylinders of one row. The conservation of

Figure 7.11 Effect of the number of rows on the array-averaged Nusselt number for banks of
cylinders in cross flow. (After Ref. 33.)
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mass through such a plane requires that (see Fig. 7.10a)

U∞Xt = Umax(Xt − D) (7.111)

All the physical properties except Prw in eqs. (7.109) are evaluated at the
mean temperature of the fluid that flows through the spaces formed between the
cylinders. The mean (or ‘‘bulk’’) temperature is a concept defined in eq. (3.42),
in which the cross flow of Fig. 7.10 can be viewed as a stream that flows through
the ‘‘duct’’ constituted by all the spaces between cylinders. The denominator
Prw is the Prandtl number evaluated at the temperature of the cylindrical surface,
Prw = Pr(Tw).

Figure 7.11 shows that the number of rows has an effect on the array-averaged
Nusselt number only when n is less than approximately 16. In the n < 16 range,
Cn and NuD increase as more rows are added to the array. This effect is analogous
to the observation that the individual h value of a cylinder positioned in the front
row is lower than that of the cylinder situated behind it. The front-row cylinder
is coated by a relatively smooth boundary layer formed by the undisturbed
incoming stream U∞, whereas a downstream cylinder benefits from the heat
transfer augmentation effect provided by the eddies of the turbulent wake created
by the preceding cylinder.

For staggered arrays, the following relations approximate NuD within ± 15
percent [33]:

NuD =




1.04Cn Re
0.4
D Pr0.36

(
Pr

Prw

)1/4

(ReD = 1 − 500

0.71Cn Re
0.5
D Pr0.36

(
Pr

Prw

)1/4

= 500 − 103

0.35Cn Re
0.6
D Pr0.36

(
Pr

Prw

)1/4(Xt
Xl

)0.2

= 103 − 2 × 105

0.031Cn Re
0.8
D Pr0.36

(
Pr

Prw

)1/4(Xt
Xl

)0.2

= 2 × 105 − 2 × 106)

(7.112)

The observations made in connection with eqs. (7.109) apply here as well. A new
effect is the role played by the aspect ratio of the isosceles triangle, Xt/Xl, which
is felt at relatively large Reynolds numbers. The Reynolds number continues
to be based on Umax, eq. (7.110); however, which flow cross section is the
narrowest depends on the slenderness of the isosceles triangle. For example, in
the staggered array shown in Fig. 7.10b, the narrowest flow area occurs in the
vertical plane drawn through the centers of one row of cylinders. In the other
extreme, where Xl is considerably smaller than Xt, the strangling of the flow may
occur through the area aligned with the direction labeled ‘‘a.’’
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The pressure drop experienced by the cross flow is proportional to the number
of tube rows counted in the flow direction, nl:

�P = nl fχ · 1
2
ρV2

max (7.113)

The dimensionless factors f and χ are presented in Fig. 7.12 for aligned arrays.
Each array is described by the longitudinal pitch Xl and the transversal pitch Xt,
or by their dimensionless counterparts,

X∗
l = Xl

D
, X∗

t = Xt
D

(7.114)

in which D is the tube outside diameter. The f curves in Fig. 7.12 correspond to a
square array (Xl = Xt), while the χ correction factor accounts for arrangements
in which Xl 	= Xt. Note that χ = 1 for the square arrangement.

Figure 7.13 contains the corresponding f and χ information for staggered
arrays. The f curves have been drawn for the equilateral triangle arrangement
[Xt = Xd or Xl = (31/2/2)Xt]. The upper-right inset shows that the χ value
plays the role of correction factor in cases where the tube centers do not form
equilateral triangles.

Zukauskas’ eq. (7.113) and Figs. 7.12 and 7.13 are valid when nl > 9. They
were constructed based on extensive experiments in which the test fluid was air,
water, and several oils [33].

Figure 7.12 Arrays of aligned cylinders: coefficients f and χ for the pressure drop formula
(7.113). (Reprinted with permission from A. A. Zukauskas, in S. Kakac et al., eds., Handbook
of Single-Phase Convective Heat Transfer, 1987, Chapter 6. Copyright 1987 John Wiley &
Sons, Inc.)
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Figure 7.13 Arrays of staggered cylinders: coefficients f and χ for the pressure drop formula
(7.113). (Reprinted with permission from A. A. Zukauskas, in S. Kakac et al., eds., Handbook
of Single-Phase Convective Heat Transfer, 1987, Chapter 6. Copyright 1987 John Wiley &
Sons, Inc.)

Zukauskas’ curves are numerous and complicated but are in fact collapsible
onto a single curve, as shown in Fig. 7.14 [34,35]. They represent a single
phenomenon: fluid friction through compact porous structures in the transition
regime between coarse and dense porous structures. The dense porous media are
described well by the Darcy flow model (Chapter 12). The departure from the
Darcy flow model is covered by Fig. 7.14, and it is valid for all porous structures,
arrays of cylinders in cross flow, wire meshes, cloth, textiles, gauze, and so on.
The flow friction results or all these ‘‘complicated’’ structures obey the simple
representation presented in Fig. 7.14.

The four curves drawn as one tight bundle for staggered cylinders in Fig. 7.14
are for the curves with transverse pitch/cylinder diameter ratios 1.25, 1.5,
2, and 2.5 in Fig. 7.13. The technique consists of treating the bundle as a
fluid-saturated porous medium and using the volume-averaged velocity U, the
pore Reynolds number UK1/2/ν on the abscissa, and the dimensionless pressure
gradient group (�P/L)K1/2/(ρU2) on the ordinate. This formulation forms the
subject of Section 12.2. The effective permeability of the bundle of cylinders
(K) is estimated based on the Carman–Kozeny model, K ∼= D2φ3/[kz(1 − φ)2],
where φ is the porosity of the assembly, D is the cylinder diameter, and the
empirical constant is kz = 100.
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Darcy flow

Parallel-plates
channel

0.01

0.01

1

100

1 100

Staggered cylinders
in crossflow

UK1/2

Figure 7.14 Porous medium representation of the classical pressure drop data for flow through
staggered cylinders and stacks of parallel plates. (From Refs. 34 and 35.)

Figure 7.14 shows very clearly the transition between Darcy flow (slope −1)
and Forchheimer flow (slope 0). The porous medium presentation of the array
of cylinders leads to a very tight collapse of the curves taken from Zukauskas’
chart. The figure also shows the pressure drop curve for turbulent flow through a
heat exchanger core formed by a stack of parallel plates. Figure 7.14 extends the
curves (Zukauskas’ data) reliably into the low–Reynolds number limit (Darcy
flow), where classical heat exchanger data are not available.

The method of Fig. 7.14 deserves to be applied to other configurations to
test the prediction that the single curve discovered for staggered cylinders is
generally applicable to flows through packings, weaves, meshes, and arrays of
objects of many shapes.

7.10 NATURAL CONVECTION ALONG VERTICAL WALLS

We studied laminar boundary layers in natural convection in Chapters 4 and
5 and then featured this phenomenon in order to identify the scaling laws of
transition to turbulence (Chapter 6). Key correlations for laminar and turbulent
natural convection heat transfer have been assembled in Section 4.11.

In this section we focus on the vertical wall with turbulent natural convection
(Fig. 7.15) in light of what we learned from the time-averaged treatment of the
forced convection boundary layer (Section 7.3). Consider the Churchill–Chu
correlation (4.104), which for an isothermal wall (T0) of height H reads

h0−HH
k

∼=
{
0.825 + 0.387Ra1/6H[

1 + (0.492/Pr)9/16
]8/27

}2

(7.115)
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Figure 7.15 Coordinates for turbulent natural convection along a vertical wall and the velocity
and temperature profiles used by Eckert and Jackson. (From Ref. 36.)

In this expression, h0–H is the heat transfer coefficient averaged over the wall
height H and RaH is the Rayleigh number based on H and (T0 − T∞). Of special
interest are the asymptotes suggested by the Churchill–Chu correlation in the
turbulent flow limit (large RaH),

h0−HH
k

∼=


0.15Ra1/3H (Pr � 1)

0.19(RaHPr)
1/3 (Pr 
 1)

(7.116)

In the lower expression, the 0.19 coefficient is replaced by 0.198 if the wall
condition is of uniform heat flux. Equations (7.116) should not be seen as exact
or definitive answers to the heat transfer question; nevertheless, they do offer a
bird’s-eye view of the trends followed by heat transfer data.

On the analytical side, the continuing effort of explaining the foregoing trends
has been influenced by the first analysis reported by Eckert and Jackson [36].
Here I outline an abbreviated version of the Eckert–Jackson analysis, a version
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that is better suited for the classroom because it accomplishes as much as Eckert
and Jackson’s analysis with less algebra. Relative to the time-averaged turbulent
flow analysis presented earlier in this chapter, the new element in vertical
boundary layer convection is the momentum equation with the body force
term. For the frame of Fig. 7.15, the time-averaged boundary layer momentum
equation is

u
∂v

∂x
+ v

∂v

∂y
= ∂

∂x

[(
ν + εM

) ∂v

∂x

]
+ gβ(T − T∞) (7.117)

Note the use of the Boussinesq incompressible flow model already seen in
the treatment of laminar flow (Chapter 4). Integrating eq. (7.117) across the
boundary layer region yields

d

dy

∫ ∞

0
v2 dx = −τ0

ρ
+ gβ

∫ ∞

0
(T − T∞) dx (7.118)

Eckert and Jackson used this momentum integral in conjunction with the
following velocity and temperature profiles:

v = V1

(
1 − x

δ

)4 (x
δ

)1/7

T − T∞ = (T0 − T∞)

[
1 −

(x
δ

)1/7
] (7.119)

which have been sketched in Fig. 7.15. Here we depart from Eckert and Jackson’s
analysis and neglect the inertia term in eq. (7.118):

τ0

ρ
= δ

8
gβ(T0 − T∞) (7.120)

The energy equation for the boundary layer flow of Fig. 7.15 is

u
∂T

∂x
+ v

∂T

∂y
= ∂

∂x

[(
α + εH

) ∂T

∂x

]
(7.121)

Integrating this equation across the boundary layer,

d

dy

∫ ∞

0
v(T − T∞) dx = q′′

0

ρcP
(7.122)

and making use of the assumed profiles [eqs. (7.119)] yields

0.0366 (T0 − T∞)
d

dy
(V1δ) = q′′

0

ρcP
(7.123)



REFERENCES 359

At this stage we have two equations for four unknowns (τ 0, q
′′
0, δ, V1)

[eqs. (7.120) and (7.123)]. To close the problem, Eckert and Jackson made two
additional assumptions:

1. The wall shear stress τ 0 depends on the velocity scale V1 and on the outer
boundary layer thickness δ in the same manner as in forced convection,

τ0
∼= 0.0225ρV2

1

(
V1δ

ν

)−1/4

(7.124)

2. The local shear stress and heat flux are related through a scaling law of the
Colburn type,

q′′
0

(T0 − T∞)ρcPV1
Pr2/3 = τ0

ρV2
1

(7.125)

By solving the problem represented in this book by eqs. (7.120) and (7.123)–
(7.125), we obtain the local Nusselt number (see Problem 7.25),

Nuy = q′′
0y

(T0 − T∞)k
= 0.039Pr−1/5Ra2/5y (7.126)

If the inertia term of eq. (7.118) is not neglected (i.e., unlike in the analysis
sketched above), the local Nusselt number takes the seemingly more general
form derived by Eckert and Jackson [36].

Nuy = 0.0295 Pr1/15

(1 + 0.494Pr2/3)2/5
Ra2/5y (7.127)

Equation (7.127) becomes the same as eq. (7.126) as Pr → ∞ but leaves
the impression that by taking the inertia term into account, it is valid for low
Prandtl numbers as well. In reality, the Eckert and Jackson formula (7.127)
can only refer to fluids with Pr of order O(1) or greater∗ because the Pr → 1
range is a constraint brought into the analysis through adoption of the scaling
law (7.125) (see the theory based on Fig. 7.7). Therefore, the retention of the
inertia term in eq. (7.118) only complicates the analysis because it is inconsistent
with a simplifying assumption inserted later. This inconsistency is corrected in
Problem 7.26, where the retention of the inertia term is combined with a more
appropriate assumption for Pr < 1, that is, with eq. (7.99) in place of the Colburn
form (7.125).
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12. T. von Kármán, The analogy between fluid friction and heat transfer, Trans. ASME,
Vol. 61, 1939, pp. 705–710.

13. W. D. Rannie, Heat transfer in turbulent shear flow, J. Aero Sci., Vol. 23, 1956,
pp. 485–489.

14. E. R. van Driest, On turbulent flow near a wall, J. Aero Sci., Vol. 23, 1956,
pp. 1007–1011.

15. H. Reichardt, Die Grundlagen des turbulenten Wärmeüberganges, Arch. Gesamte
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PROBLEMS

7.1. Prove the validity of the time-averaging rules of eqs. (7.4)–(7.10).

7.2. Derive the time-averaged form of the energy equation [eq. (7.17)] by
starting with eq. (1.42) and applying the rules of time averaging [eqs.
(7.4)–(7.10)]. Use the derivation of eq. (7.16a) as a guide.

7.3. One way to improve the mixing length model, that is, to achieve a
smoother overlap between measurements and the empirically adjusted
curves suggested by the mixing length model (Fig. 7.4), is to do away
with the assumption that the eddy diffusivity εM is zero in a layer of finite
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thickness yVSL. Instead, as proposed by van Driest [14], assume that εM
decays rapidly as y decreases and becomes zero strictly at the wall. Starting
with the new mixing length model,

l = κy(1 − e−y
+/A+

)

and assuming that it is valid throughout the inner region defined by the
constant shear stress postulate (7.33), develop the analytical means for
calculating u+ as a function of y+, κ , and A+. Setting κ = 0.4, show
that the new u+ calculation fits the data of Fig. 7.4 smoothly if the new
empirical constant A+ is approximately 25.

7.4. Integrate the constant τ app equation (7.47), using the wall condition
u+(0) = 0. A hint for performing the integration is hidden in eq. (7.49).
Show graphically that in the y+ → ∞ limit, the u+(κ , y+) formula (7.48)
does not agree with the data plotted in Fig. 7.4. Show that the disagreement
persists even if the value of κ is lowered below 0.4.

7.5. Prove that in a time-averaged turbulent boundary layer, the total flow rate
through the viscous sublayer,

∫ yVSL
0 u dy, is independent of the longitudinal

position x.

7.6. Derive the integral momentum equation for a boundary layer with a finite
longitudinal pressure gradient. Start with eq. (7.25) and integrate it across
the boundary layer; show that the resulting momentum equation is

dθ

dx
+ (H + 2)

θ

U∞

dU∞
dx

= τ0

ρU2∞

where θ is the momentum thickness [see eq. (2.87)]. Parameter H is the
shape factor,

H = δ∗

θ

where δ* is the displacement thickness [see eq. (2.86)]. Is the momentum
integral above valid only for time-averaged turbulent flow?

7.7. Derive the skin friction coefficient formula recommended by Prandtl’s
one-seventh power law velocity profile [eq. (7.56)]. Note that in this
case, eq. (7.54) means that u/U∞ = (y/δ)1/7. Step by step, compare your
findings with those listed as eqs. (7.57)–(7.60).

7.8. The x variation of the boundary layer thickness δ [eq. (7.58)] depends
on the choice of the analytical curve fit for the u+(y+) data. Prove this
statement by deriving general formulas for τ 0(x) and δ(x) based on the
general curve fit

fu = C(y+)1/m
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where C and m are constants. Note that the expression above is a
generalization of eq. (7.56) and that the present problem is a generalization
of Problem 7.7.

7.9. Consider the classical view that there exists an inner (near-wall) region in
turbulent boundary layer flow where the apparent shear stress τ app and the
apparent heat flux q′′

app are constant, that is, independent of the distance to
the wall y. What is then the constant (q′′

app/τ app) according to the Colburn
correlation StxPr

2/3 = 1
2Cf , x?

7.10. Consider the heat transfer in boundary layer flow from an isothermal
wall T0 to a constant temperature stream (U∞, T∞). The leading laminar
section of the boundary layer has a length comparable with the length of
the trailing turbulent section; consequently, the heat flux averaged over
the entire wall length L is influenced by both sections. Derive a formula
for the L-averaged Nusselt number, assuming that the laminar–turbulent
transition is located at a point x (between x= 0 and x= L) where xU∞/ν =
3.5 × 105.

7.11. (a) Show that these relationships exist among the Stanton, Nusselt,
Reynolds, Péclet, and Prandtl numbers in boundary layer flow:

Stx = Nux
Rex Pr

= Nux
Pex

(b) Show that the Colburn analogy (7.78) also applies to the laminar
section of the boundary layer near an isothermal wall if the fluid has a
Prandtl number in the range Pr � 0.5.

7.12. Water flows with the velocity U∞ = 0.2 m/s parallel to a plane wall. The
following calculations refer to the position x= 6 m measured downstream
from the leading edge. The water properties can be evaluated at 20◦C.

(a) A probe is to be inserted in the viscous sublayer to the position
represented by y+ = 2.7. Calculate the actual spacing y (mm) between
the probe and the wall.

(b) Calculate the boundary layer thickness δ, and compare this value with
the estimate based on the assumption that the length x is covered by
turbulent boundary layer flow.

(c) Calculate the heat transfer coefficient averaged over the length x.

7.13. In this book it was proposed to reduce the drag experienced by the hull of a
ship by heating the hull to a high enough temperature so that the viscosity
of the water in the boundary layer decreases. Evaluate the merit of this
proposal in the following steps:

(a) Model the hull as a flat wall of length L that is swept by turbulent
boundary layer flow. Show that the power spent on dragging the wall
through the water is proportional to ν1/5.
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(b) Assume that the hull temperature is raised to 90◦C, while the water
free-stream temperature is 10◦C. Calculate the relative decrease in the
drag power, a decrease that is caused by the heating of the wall.

(c) Compare the savings in drag power with the electrical power that
would be needed to maintain a wall temperature of 90◦C. Show that
when the ship speed is of order 10m/s, the savings in drag power are
much smaller than the power used for heating the wall.

7.14. A flat sheet (tabular) iceberg drifts over the ocean as it is driven by
the wind that blows over the top. The temperature of the surrounding
seawater is 10◦C, and the relative velocity between it and the iceberg is
10 cm/s. The length of the iceberg in the direction of drift is L. Calculate
the corresponding wind velocity when the atmospheric air temperature is
40◦C.

7.15. Air flows with velocity 3.24m/s over the top surface of the flat iceberg
discussed in Problem 7.14. The air temperature outside the boundary layer
is 40◦C, and the ice surface temperature is 0◦C. The length of the iceberg
in the direction of air flow is L = 100 m. The ice latent heat of melting is
hsf = 333.4 kJ/kg.

Calculate the L-averaged heat flux deposited by the air flow into the
upper surface of the iceberg (model this surface as flat). Calculate, in
millimeters per hour, the rate of melting caused by this heat flux, that is,
the erosion (thinning) of the ice slab.

7.16. The large faces of the tall building shown in Fig. P7.16 are swept by a
parallel wind withU∞ = 15 m/s and T∞ = 0◦C. Calculate the heat transfer
coefficient for the outer surface of a window situated on a large face at
x = 60 m downstream from the leading surface of the building. Evaluate
all the air properties at 0◦C. Do you expect the calculated heat transfer
coefficient to be smaller or larger than the true value?

Figure P7.16
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7.17. You are fishing while wading in a 75-cm-deep river that flows at 1m/s.
The immersed portion of each bare leg can be approximated as a vertical
cylinder with a diameter of 15 cm. The river velocity is approximately
uniform, and the water temperature is 10◦C.

(a) Calculate the horizontal drag force experienced by one leg.

(b) Compare the drag force with the weight (in air) of the immersed
portion of one leg.

(c) Determine the average heat transfer coefficient between the wetted
skin and the river water.

(d) After a long-enough wait, the temperature of the wetted skin drops to
11◦C. Calculate the instantaneous heat transfer rate that escapes into
the river through one leg.

7.18. The baseballs used in the major leagues have an average diameter of 7.4 cm
and an average weight of 145 g. The distance between the pitcher’s mound
and home plate is 18.5m. The pitcher throws an 80-mile/h fast-ball. The
rotation of the ball and its motion in the vertical direction are negligible.

(a) Calculate the drag force experienced by the fastball.

(b) Show that the drag force calculated is comparable with the weight of
the ball.

(c) Estimate the final horizontal velocity of the baseball as it reaches the
catcher’s mitt.

7.19. By holding and rubbing the ball in his hand, the pitcher warms the leather
cover of the baseball to 30◦C. The outside air temperature is 20◦C and
the ball diameter is 7 cm. The pitcher throws the ball at 50 miles/h to the
catcher, who is stationed 18.5m away.

(a) Assume that the ball surface temperature remains constant, and calcu-
late the heat transferred from the ball to the surrounding air during the
throw.

(b) Calculate the temperature drop experienced by the leather cover to
account for the heat transfer calculated in part (a). Assume that the
thickness of the layer of leather that experiences the air cooling effect
is comparable to the conduction penetration depth δ ∼ (αt)1/2, where
α is the thermal diffusivity of leather. Validate the correctness of the
constant surface temperature assumption made in part (a).

7.20. An electrical light bulb for the outdoors is approximated well by a sphere
with a diameter of 6 cm. It is being swept by a 2-m/s wind and its surface
temperature is 60◦C. The air temperature is 10◦C. Calculate the rate of
forced convection heat transfer from the outer surface of the light bulb to
the atmosphere.
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7.21. During the cooling and hardening phase of its manufacturing process, a
glass bead with a diameter of 0.5mm is dropped from a height of 10m.
The bead falls through still air of temperature 20◦C. The properties of the
bead material are the same as those listed for window glass in Appendix B.

(a) Calculate the ‘‘terminal’’ velocity of the free-falling bead, that is,
the velocity when its weight is balanced by the air drag force. Also,
calculate the approximate time that is needed by the bead to achieve
this velocity, and show that the bead travels most of the 10-m height
at terminal velocity.

(b) Calculate the average heat transfer coefficient between the bead surface
and the surrounding air when the bead travels at terminal velocity and
when its surface temperature is 500◦C. Treat the bead as a lumped
capacitance and estimate its temperature at the end of the 10-m fall.
Assume that its initial temperature was 500◦C.

7.22. Hot air with the average velocity U∞ = 2 m/s flows across a bank of
4-cm-diameter cylinders in an array with Xl = Xt = 7 cm. Assume that
the air bulk temperature is 300◦C and that the cylinder wall temperature
is 30◦C. The array has 20 rows in the direction of flow. Calculate the
average heat transfer coefficient when the cylinders are (a) aligned and
(b) staggered. Comment on the relative heat transfer augmentation effect
associated with staggering the cylinders.

7.23. The core of a cross-flow heat exchanger employs a bank of staggered bare
tubes with a longitudinal pitch of 20.3mm and transverse pitch of 24.8mm
(Fig. P7.23). The outer diameter of each tube is 10.7mm. Air flows
perpendicular to the bare tubes. The frontal area seen by the air-stream is a
0.5 m × 0.5 m square. The length of the heat exchanger core is 0.5m. The
air mass flow rate is 1500 kg/h, and the air properties may be evaluated
at 200◦C and 1 atm. Calculate the air pressure drop across the core of the
heat exchanger.

Airflow

Airflow

Figure P7.23
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7.24. In a cross-flow heat exchanger, air flows across a bundle of tubes with
dimensions D = 5 cm and Xt = Xl = 9 cm. The air velocity averaged over
the frontal area of the bundle is 3m/s. There are 21 rows of tubes counted
in the direction of air flow. The average air temperature inside the heat
exchanger is 100◦C. Calculate the air pressure drop caused by the tubes
by assuming that the tubes are (a) aligned and (b) staggered. Compare the
two pressure drops, and comment on the effect of staggering the tubes in
the array.

7.25. Consider the turbulent natural convection boundary layer shown in
Fig. 7.14. Derive the local Nusselt number formula (7.126) by com-
bining the momentum and energy integrals (7.120) and (7.123) with
Eckert and Jackson’s assumptions (7.124) and (7.125). [Hint: Assume
power law expressions for velocity and boundary layer thickness, V1 =
Aym, δ = Byn.] Derive the corresponding formula for the wall shear stress
τ 0, and sketch qualitatively the variation of τ 0 with altitude y.

7.26. Asnoted in the text, Eckert and Jackson’s formula (7.127) cannot be applied
to Pr < 1 fluids. Construct an abbreviated analysis of the type shown in
the text between eqs. (7.119)–(7.126), this time for the Pr < 1 limit. In the
integral momentum equation (7.118), retain only the buoyancy and inertia
terms, and instead of the Colburn analogy (7.125), use the scaling law
for Pr < 1 fluids [eq. (7.99)]. Compare your result with eqs. (7.116) and
(7.127) for Pr 
 1 fluids.

7.27. In the cases of air and water, numerically compare the abbreviated analysis
result (7.126) with the Pr > 1 asymptote followed by measurements
[eq. (7.116)]. Determine the RaH range in which the agreement between
these two formulas is better than 5 percent. [Note that eq. (7.126) refers to
the local Nusselt number.]

7.28. Consider the round turbulent jet analyzed in Section 9.2.2. The nozzle
is horizontal, and the nozzle conditions are diameter D0, mean velocity
U0, and temperature T0. The fluid reservoir is motionless and at a lower
temperature T∞. Buoyancy acts and bends the jet upward. Far enough
from the nozzle, the initially horizontal jet becomes a vertical plume.

(a) Let y(x) be the curve that describes the centerline of the time-averaged
jet plume. The virtual origin is located at x = y = 0. Determine
y(x) based on the following simplified approach. Assume that in the
vicinity of the bend the horizontal and vertical components of the
centerline velocity (uc, vc) are represented adequately by the pure-jet
and pure-plume solutions listed in the text: namely, uc = c1x

n and
vc = c2y

m. Identify the appropriate constants C1, C2, n, and m.

(b) Let (x1, y1) be the point on the centerline where the trajectory reaches
the 45◦ angle. This point may be regarded as the location where
the flow makes the transition from horizontal jet to vertical plume.
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Show that y1/x1 is a constant independent of the initial momentum and
energy strengths of the nozzle flow.

(c) The round plume of Section 9.3.1 is driven by a concentrated heat
source of strength q. What quantity plays the role of q in the present
jet–plume problem?

7.29. In this problem we explore the idea to replace the two-dimensional design
of a wind mill blade or airplane wing with a three-dimensional design that
has bulbous features on the front of the wing (Fig. P7.29). If the frontal
portion of the wing is approximated by a long cylinder of diameter Dc, the
proposal is qualitatively the same as replacing this material with several
equidistant spheres of diameterDs and spacing S. The approach air velocity
is V. In the Reynolds number range 103 < VDc, s/ν < 105, the sphere and
cylinder drag coefficients are Cs ∼= 0.4 and Cc ∼= 1 (cf. Fig. 7.9). Evaluate
the merit of this proposal by comparing the drag forces experienced by
the spheres and cylinder segment alone (i.e., by neglecting the rest of
the wing).

V

S

S

Dc

Dc
Ds

Bulbous
front

Two-dimensional
front

Figure P7.29
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TURBULENT DUCT FLOW

In this chapter we turn our attention to the effect of turbulence on the duct
heat transfer configurations considered in Chapter 3 for laminar flow. The time-
averaged analysis of friction and heat transfer in turbulent duct flow involves
many of the assumptions made in the presentation of the turbulent boundary
layer problem (Chapter 7). To avoid repetition, we highlight only the differences.

8.1 VELOCITY DISTRIBUTION

Consider turbulent flow through the round tube sketched in Fig. 8.1. The
time-averaged equations for mass, momentum, and energy are

∂u

∂x
+ 1

r

∂

∂r
(rv) = 0 (8.1)

u
∂u

∂x
+ v

∂u

∂r
= − 1

ρ

dP

dx
+ 1

r

∂

∂r

[
r
(
ν + εM

) ∂u

∂r

]
(8.2)

u
∂T

∂x
+ v

∂T

∂r
= 1

r

∂

∂r

[
r
(
α + εH

) ∂T

∂r

]
(8.3)

Equations (8.1) and (8.2) have already been simplified based on boundary layer
arguments of the type employed in Chapter 7 [see eqs. (7.25) and (7.26)]. It is
observed that the turbulent flow becomes hydrodynamically and thermally fully
developed after a relatively short distance from the entrance to the tube,

X

D
∼= 10 ∼= XT

D
(8.4)

369Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
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Figure 8.1 Distribution of apparent shear stress in fully developed turbulent flow in a pipe.

This full development criterion is particularly applicable to fluids with Prandtl
numbers of order 1. The turbulent entrance length (8.4) is much shorter than the
would-be laminar estimate (3.90) when ReD > 2000. It is easy to verify that
eq. (8.4) is a consequence of the linear growth of turbulent shear layers (also,
the wake region of turbulent boundary layers), as illustrated in Figs. 7.5, 7.7,
9.3, and 9.4. In other words, the observations summarized by eq. (8.4) offer
additional support for the constructal theory presented in Chapter 6 and Ref. 1,
because theory was the basis for drawing instantaneous turbulent-flow images
such as Figs. 7.5, 7.7, 9.3, and 9.4.

Review the beginning of Chapter 3 for the scaling implications of the concept
of fully developed flow. The first feature that distinguishes the pipe flow from the
boundary layer flow is that if the pipe flow is fully developed, the inertia terms
vanish from the left-hand side of eq. (8.2). This means that in pipe flow there is
no room for a wake region, not even in the close vicinity of the centerline. The
momentum equation (8.2) becomes

0 = − 1

ρ

dP

dx
+ 1

r

∂

∂r

[
r

(
ν + εM

) ∂u

∂r

]
(8.5)

where dP/dx is a function of x only. Next, we integrate eq. (8.5) from the
centerline (r = 0) to any r,

1

ρ

dP

dx

r

2
= (ν + εM)

∂u

∂r
(8.6)

which at the wall (r = r0, εM � ν) reads

1

ρ

dP

dx

r0
2

= ν

(
∂u

∂r

)
r0

(8.6′)

From eq. (7.24) we recall that

τapp = ρ(ν + εM)
∂u

∂y
and τ0 = ρν

(
∂u

∂y

)
y=0

(8.6′′)
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where y = r0 – r is the distance measured away from the wall. Finally, by
dividing eqs. (8.6) and (8.6′) we reach the conclusion that the apparent shear
stress decreases linearly away from the wall,

τapp

τ0
= 1 − y

r0
(8.7)

According to the fully developed flowmomentum equation (8.7), close enough
to the wall (i.e., such that y � r0), the turbulent flow is one of constant τ app. For
this reason, the mixing length analysis that produced the law of the wall (7.41) for
boundary layer flow could be applied here as well, with the understanding that
it breaks down near the pipe centerline, where τ app is no longer approximately
equal to τ 0. It is found that the broken-line velocity distribution represented by
eqs. (7.37) and (7.41) (with A ∼= 2.5 and B ∼= 5.5) fits measurements sufficiently
well. One drawback of the τ app

∼= τ 0 approximation of eq. (8.7) is that it produces
a velocity profile with a finite slope at the pipe centerline,(

du+

dy+

)
y=r0

= 2.5
ν

r0(τ0/ρ)1/2
(8.8)

An empirical velocity profile with zero slope at the centerline is [2]

u+ = 2.5 ln

[
3

(
1 + r/r0

)
2[1 + 2(r/r0)2]

y+
]

+ 5.5 (8.9)

This profile is identical to the law of the wall (7.41) in the limit y+ → 0.
Evidence that supports a power law profile, rather than the logarithmic law, has
been reviewed by Barenblatt et al. [3].

8.2 FRICTION FACTOR AND PRESSURE DROP

To each analytical expression that fits the measured velocity distribution corre-
sponds a certain formula for τ 0, the friction factor

f = τ0
1
2ρU

2
(8.10)

As in all duct flow problems, the role of velocity scaleU is played by the velocity
averaged over the duct cross section; in the geometry of Fig. 8.1, the average
velocity is

U = 1

πr20

∫ 2π

0

∫ r0

0
ur dr dθ (8.11)
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To illustrate the analytical derivation of a friction factor formula, consider
Prandtl’s one-seventh power law (7.56) under the assumption that it holds all the
way to the pipe centerline (u = Uc, y = r0):

Uc

(τ0/ρ)1/2
∼= 8.7

[
r0

(
τ0/ρ

)1/2
ν

]1/7

(8.12)

Noting that the f definition (8.10) implies that (τ 0/ρ)
1/2 = U(f/2)1/2 and that

eq. (8.11) provides the needed relationship between the centerline velocity Uc
and the average velocity U (namely, Uc/U = 120/98), the friction factor formula
derived from eq. (8.12) is

f ∼= 0.078Re−1/4
D (8.13)

In this notation, ReD is the Reynolds number based on average velocity and
pipe diameter, D = 2r0. Formula (8.13) agrees well with measurements for ReD
values up to 80,000 [4]; this formula is nearly identical to the one proposed by
Blasius in 1913, f ∼= 0.0791Re−1/4

D [5]. An empirical relation that holds at higher
Reynolds numbers in smooth tubes (Fig. 8.2) is

f ∼= 0.046Re−1/5
D , 2 × 104 < ReD < 106 (8.14)

An alternative formula that has wider applicability is obtained working with
the law of the wall, u+ = 2.5 ln y+ + 5.5 [eq. (7.41)] instead of the one-seventh
power law. The result is [4]

1

f 1/2
= 1.737 ln[ReD f

1/2] − 0.396 (8.15)

which agreeswithmeasurements for ReD values of up toO(106). The heat transfer
literature refers to eq. (8.15) as the Kármán–Nikuradse relation; this relation is
displayed as the lowest curve in Fig. 8.2. The figure shows that regardless of
the Reynolds number, the friction factor in turbulent flow is considerably greater
than that in laminar flow in the hypothetical case that the laminar regime can
exist at such large Reynolds numbers. The same observation can be made in
connection with the local skin friction coefficient Cf, x displayed in Fig. 7.6.

The fact that for the same Reynolds number, the values of f and Cf, x in
turbulent flow are greater than their counterparts in imaginary laminar flow
might tempt the student to think that turbulent flows are more viscid than laminar
flows. This thought would be in grave error: As pointed out in Chapter 6, if there
exists a ‘‘viscid’’ flow, that can only be the laminar flow (i.e., the flow that is
thoroughly penetrated by the viscous shear forces emitted by its confining walls).
The friction factor is greater in turbulent flow than in the imaginary laminar case
because in turbulent flow, the shear flow is a sequence of laminar shear layers
(tips of laminar boundary layers, Fig. 7.5) the thicknesses of which are much
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Figure 8.2 Friction factor for duct flow. (After Ref. 6.)

smaller than the pipe radius (i.e., much smaller than the shear layer thickness in
the imagined laminar flow).

The jump exhibited by both f and Cf, x across the laminar–turbulent transition
(Figs. 7.6 and 8.2) says something about the nature of the turbulent flow in the
vicinity of each laminar contact region. If the duct flow is in the ReD range that
makes the transition possible and if turbulence occurs in one isolated region
on the wall, the flow has the tendency to redistribute itself so as to go around
the turbulent spot. This effect is due to a greater resistance to flow through
the turbulent region than through the remaining laminar region, as both regions
are subjected to the same driving pressure gradient. This ‘‘tendency’’ is the
constructal law of design for flow access, or optimal distribution of imperfection,
where imperfection is a thermodynamics term that in this case means resistance
to flow.

The same flow redistribution effect is a well-known problem that causes the
clogging of parallel heat exchanger tubes (the more fouled a tube, the slower
the flow through it, hence the greater its fouling tendency; the opposite feedback
mechanism works in the parallel tube that has to make up the flow rate lost in
the fouled tube). Closer to home, the imbalance of flow through two parallel
ducts is why we breathe through one nostril most of the time! This phenomenon
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was studied for flows between one point and a large number of points, with the
conclusion that the ‘‘maldistribution’’ of channels gives birth to dendritic flow
structures [7]. The role of nonuniformly distributed (dendritic) flow arrangements
for heat exchanger design, as opposed to uniformly distributed arrangements
(e.g., parallel tubes), is discussed in Ref. 8.

Each spot of direct contact between wall and outer fluid (Fig. 7.5) is a region of
three-dimensional flow, as the surrounding fluid must go around what it perceives
as a region of relatively higher resistance. This is illustrated with greater clarity
by the photograph of the transition to turbulence in a water rivulet sandwiched
between two glass plates [9] (Fig. 8.3). The laminar straight portion is a strand
of the Hagen–Poiseuille flow that would have filled the entire parallel-plate
channel; this strand shows that whenever a turbulent region develops, the flow
seeks ways to go around this region (note that the Reynolds number based on
gap thickness is about 2000, in agreement with Table 6.1).

For fully developedflow through ductswith cross sections other than round, the
Kármán–Nikuradse relation (8.15) still holds if ReD is replaced by the Reynolds

(a) (b) (c)

Figure 8.3 Transition to turbulence in Hagen-Poiseuille water rivulet flow between two
transparent plates: (a) overall view; (b, c) closeups of the transition zone. Plate-to-plate
spacing = 1.45mm, volumetric flow rate = 1.35ml/s, transition Reynolds number based on
mean velocity and spacing = 1950. (From Ref. 9.)
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number based on hydraulic diameter, ReDh . Note that for a duct of noncircular
cross section, the time-averaged τ 0 is not uniform around the periphery of the
cross section; hence, in definition (8.10), τ 0 is the perimeter-averaged wall shear
stress.

An important feature that must be taken into account in the calculation of
pressure drop in turbulent flow through a straight duct is the wall roughness.
Experimentally, it is found that the performance of commercial surfaces that
do not feel rough to the touch departs from the performance of well-polished
surfaces. This effect is due to the very small thickness acquired by the laminar
sublayer in many applications [e.g., since U∞ yVSL/ν is of order 102, i.e.,
y+VSL = O(10), in water flow through a pipe withU∼ 10m/s and ν ∼ 0.01 cm2/s,
yVSL is approximately 0.01mm!]. Consequently, even slight imperfections of
the surface interfere with the natural formation of the laminar shear flow contact
spots sketched in Figs. 7.5 and 7.7. If the surface irregularities are taller than
yVSL, these ‘‘mountains’’ alone will rule the friction process by which, on the
one hand, the flow exerts a force on the wall and, on the other, the wall generates
eddies that slow the flow in a boundary layer.

Nikuradse [10] measured the effect of surface roughness on the friction factor
by coating the inside surface of pipes with sand of definite grain size glued
as tightly as possible to the wall. If ks is the grain size in Nikuradse’s sand
roughness, the friction factor fully rough limit is given by

f ∼=
(
1.74 ln

D

ks
+ 2.28

)−2

(8.16)

The fully rough limit is the regime where the roughness size exceeds the order
of magnitude of what would have been the laminar sublayer in time-averaged
turbulent flow over a smooth surface,

k+
s = ks(τ0/ρ)1/2

ν
> O(10) (8.17)

The roughness effect described by Nikuradse is illustrated by the upper curves
on the Moody chart (Fig. 8.2).

Moody’s chart [6] is reproduced in Fig. 8.2 for two reasons. First, it represents
a very useful tool for calculating pressure drop in many applications involving
diverse flow regimes, duct cross sections, and roughness conditions. Second,
Moody’s chart shines as an example of the importance of investing creativity
into the graphic reporting of technical information. Moody is not the one who
discovered the duct friction information projected on the chart that bears his
name; these discoveries are mainly the work of Nikuradse. Moody compiled
what was known in the 1940s (e.g., Nikuradse’s experiments [10] and the
analyses triggered by it [11,12]) and displayed this information on a single
chart in terms of easy-to-use dimensionless groups. The graphic presentation
of this information eliminated much of the difficulty associated with handling
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implicit friction factor formulas on the slide rule. In addition to being very useful,
Moody’s original chart is also a high-quality drawing: this, I feel, is responsible
for the so-frequent reproduction of this drawing in its original form (without
even mentioning Nikuradse, unfortunately).

Roughness can be useful: Skin friction can be reduced by using a random
arrangement of protuberances [13].

8.3 HEAT TRANSFER COEFFICIENT

The heat transfer potential of turbulent pipe flowmay be deduced from the friction
factor information discussed above by adopting further simplifying assumptions.
Rewrite the energy equation (8.3) for fully developed flow:

ρcPu
∂T

∂x
= 1

r

∂

∂r
(rq′′

app) (8.18)

and then integrate it from 0 to r and from 0 to r0:∫ r

0
ρcPu

∂T

∂x
r dr = rq′′

app (8.19)∫ r0

0
ρcPu

∂T

∂x
r dr = r0q

′′
0 (8.20)

Dividing eqs. (8.19) and (8.20) side by side and using the distribution of τ app
(8.7) as a guide, we obtain [14]

q′′
app

q′′
0

= M

(
1 − y

r0

)
(8.21)

where

M =
2
r2

∫ r

0
u
∂T

∂x
r dr

2
r20

∫ r0

0
u
∂T

∂x
r dr

(8.22)

In particular, if the pipe is heated with x-independent heat flux, the longitudinal
temperature gradient ∂T/∂x is independent of r; hence,

M =
2
r2

∫ r

0
ur dr

2
r20

∫ r0

0
ur dr

(8.23)



8.3 HEAT TRANSFER COEFFICIENT 377

Function M is the ratio of u averaged over a round cross section of radius
r divided by u averaged over the entire pipe cross section. Because the pipe
velocity profile u resembles the slug profile (the laminar sublayer is one or two
orders of magnitude thinner than the pipe radius), in many practical cases, M
is approximately equal to 1, while not a strong function of r. Therefore, an
acceptable approximation for the distribution of apparent heat flux over the pipe
cross section is

q′′
app

q′′
0

∼= 1 − y

r0
(8.24)

In conclusion, the apparent heat flux follows a distribution that is practically
the same as the one followed by the apparent shear stress. This observation is
the starting point in an analysis that ties the Stanton number to the friction factor
information presented earlier in this section. The following analysis was first
reported by Prandtl in 1910 (more detailed accounts of this analysis may be
found in Ref. 4, pp. 403–407, and Ref. 15, pp. 494–496). Dividing eqs. (8.6)
and (8.24) and recognizing the definitions of q′′

app and τ app yields

ν + εM

τ0
du = cP(α + εH)

−q′′
0

dT (8.25)

Now, imagine that the pipe cross section is composed of two distinct regions:
an annular region near the wall (0 < y < y1) where ν � εM and α � εH and
a disk-shaped region in the center (y1 < y < r0) where ν � εM and α � εH.
Integrating eq. (8.25) from y= 0 to y= y1, neglecting both εM and εH, we obtain

ν

τ0
u1 = cPα

−q′′
0

(T1 − T0) (8.26)

where u1 and T1 are the time-averaged quantities at y = y1. Next, we integrate
eq. (8.25) from y = y1 to y = y2, where y2 is chosen in such a way that T(y2)
is equal to the mean temperature Tm and u(y2) is approximately the same as the
mean velocity U; the result of this second integration is

εM

τ0
(U − u1) = cPεH

−q′′
0

(Tm − T1) (8.27)

Eliminating T1 between eqs. (8.26) and (8.27) and using the definitions of friction
factor τ0/

( 1
2ρU

2
)
and Stanton number h/(ρcPU), we find that

St = f /2

Prt + (u1/U)(Pr − Prt)
(8.28)

As in the case of turbulent boundary layers, the Stanton numbers turn out
to be proportional to the dimensionless wall shear stress, f/2 in this case. The
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proportionality factor in this relation is a function of the Prandtl number and
two more parameters (Prt, u1/U) that have to be adjusted empirically. Prandtl’s
formula (8.28) agrees with the measurements involving fluids with Prandtl
numbers greater than 0.5 if Prt = εM/εH is taken as unity and u1/U is replaced
by Hofmann’s empirical correlation u1/U ∼= 1.5Re−1/8

D Pr−1/6 [16].
More consistent agreement with measurements is registered by Colburn’s [17]

empirical correlation:

St Pr2/3 ∼= f

2
(8.29)

This formula is analytically the same as the one encountered in boundary layer
flow, eq. (7.78). Its success further supports the validity of the theoretical
argument used to deduce eqs. (7.85)–(7.90).

The Colburn analogy (8.29) holds for Pr � 0.5 and is to be used in conjunction
with the Moody chart (Fig. 8.2), which supplies the value of the friction factor.
It applies to ducts of various cross-sectional shapes, with wall surfaces having
various degrees of roughness. For example, in the special case of a pipe with
smooth internal surface, we can combine eq. (8.29) with eq. (8.14) to derive the
Nusselt number formula

NuD = hD

k
= 0.023Re4/5D Pr1/3 (8.30)

which, in accordance with eq. (8.14), holds for 2 × 104 < ReD < 106.
There are many formulas that in one way or another improve on the accuracy

with which eq. (8.30) predicts actual measurements. A review of these formulas
has been published by Bhatti and Shah [18]. The most popular formula is a
correlation due to Dittus and Boelter [19],

NuD = 0.023Re4/5D Prn (8.31)

which was developed for 0.7 ≤ Pr ≤ 120, 2500 ≤ ReD ≤ 1.24 × 105, and L/D>

60. The Prandtl number exponent is n = 0.4 when the fluid is being heated (T0
> Tm), and n = 0.3 when the fluid is being cooled (T0 < Tm). All the physical
properties needed for the calculation of NuD, ReD, and Pr are to be evaluated
at the bulk temperature Tm. The maximum deviation between experimental data
and values predicted using eq. (8.31) is on the order of 40 percent.

For applications in which temperature influence on properties is significant,
recommended is Sieder and Tate’s [20] modification of eq. (8.30),

NuD = 0.027Re4/5D Pr1/3
(

µ

µ0

)0.14

(8.32)

which is valid for 0.7 < Pr < 16,700 and ReD > 104. The effect of temperature-
dependent properties is taken into account by evaluating all the properties
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(except µ0) at the mean temperature of the stream, Tm. The viscosity µ0 is
evaluated at the wall temperature, µ0 = µ (T0).

The most accurate of the correlations of type (8.30)–(8.32) is a formula due
to Gnielinski [21]:

NuD = (f /2)(ReD − 103)Pr

1 + 12.7 (f /2)1/2(Pr2/3 − 1)
(8.33)

in which the friction factor is supplied by Fig. 8.2. It is accurate within ±10% in
the range 0.5 < Pr < 106 and 2300 < ReD < 5 × 106. Like eqs. (8.30)–(8.32),
the Gnielinski correlation (8.33) can be used in both constant-q′′

0 and constant-T0
applications. Two simpler alternatives to eq. (8.33) are [21]

NuD =


0.0214

(
Re0.8D − 100

)
Pr0.4

(0.5 ≤ Pr ≤ 1.5,
104 ≤ ReD ≤ 5 × 106)

(8.34)

0.012(Re0.87D − 280)Pr0.4
(1.5 ≤ Pr ≤ 500,
3 × 103 ≤ ReD ≤ 106)

(8.35)

The preceding results refer to gases and liquids, that is, to the range Pr � 0.5.
For liquid metals, the most accurate formulas are those of Notter and Sleicher
[22]:

NuD =
{
6.3 + 0.0167Re0.85D Pr0.93

(
q′′
0 = constant

)
(8.36)

4.8 + 0.0156Re0.85D Pr0.93 (T0 = constant) (8.37)

These are valid for 0.004 < Pr < 0.1 and 104 < ReD < 106 and are based
on both computational and experimental data. All the properties used in eqs.
(8.36)−(8.37) are evaluated at the mean temperature Tm.

One peculiarity of the mean temperature of the stream is that it varies with the
position along the duct, Tm(x). This variation is linear in the case of constant-q′′

0
and exponential when the duct wall is isothermal (review Figs. 3.9 and 3.10). In
order to simplify the recommended evaluation of the physical properties at the
Tm temperature, it is convenient to choose as representative mean temperature
the average value

Tm = 1
2 (Tin + Tout) (8.38)

In this definition, Tin and Tout are the bulk temperatures of the stream at the duct
inlet and outlet, respectively (Fig. 8.4).

In closing, note that the high-ReD limit of the liquid metals correlation (8.36)
can be combined with eq. (8.14) to yield

St

(f /2)1/2
∼= (0.11Re−0.05

D )Pr−0.07 (8.39)

In the ReD range 104–106, the right-hand side of this equation is equal to a
number of order 10–1 times a function that decreases with increasing Pr. This
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Figure 8.4 Temperature distributions along the duct: (a) isothermal wall; (b) wall with uniform
heat flux.

result confirms the scaling law proposed on purely theoretical grounds in eq.
(7.99). The fact that the Pr exponent in eq. (8.39) is not as large as in eq. (7.99)
does not necessarily spell disagreement, considering the narrow Pr range on
which the experimental correlation (8.36) is based.

8.4 TOTAL HEAT TRANSFER RATE

A primary objective of Chapter 3 and Section 8.3 has been the evaluation of
the heat transfer coefficient between the duct wall and the stream. We learned,
for example, that in fully developed laminar and turbulent duct flows, h is
independent of longitudinal position. The heat transfer coefficient is essential in
calculation of the total heat transfer rate q(W) that is received by the stream as
it travels the entire length of the duct, L. The heat transfer rate q is proportional
to the h constant, the total duct surface swept by the stream (Aw = pL), and an
effective temperature difference that is labeled �Tlm which is determined next:

q = hAw �Tlm (8.40)

8.4.1 Isothermal Wall

The magnitude of the effective temperature difference �Tlm depends on how the
actual wall–stream temperature difference varies along the duct, T0(x) – Tm(x).
Consider first the case where the wall temperature T0 is constant, as shown in
Fig. 8.4a. In fully developed laminar or turbulent flow, the temperature difference

�T = T0 − Tm (8.41)
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decreases exponentially in the downstream direction, from a value at the duct
inlet to a value at the outlet,

�Tin = T0 − Tin, �Tout = T0 − Tout (8.42)

The effective temperature difference �Tlm falls somewhere between the
extremes �Tin and �Tout. Its value can be determined by deriving the q formula
(8.40) based on thermodynamic analysis. For the stream viewed as an elongated
control volume, the total heat transfer rate through the duct wall is

q = ṁcP(Tout − Tin) (8.43)

Figure 8.4a shows that the bulk temperature excursion (Tout – Tin) is the same as
the difference (�Tin – � Tout); therefore, an alternative to eq. (8.43) is

q = ṁcP(�Tin − �Tout) (8.44)

It remains to determine the relationship between the heat capacity flow rate
ṁcP and the group hAw that appears on the right side of eq. (8.40). For this, we
use eq. (3.39), in which p = 2πr0,A = πr20, and q

′′
0 = h(T0 − Tm); therefore,

dTm
T0 − Tm

= hp

AρcPU
dx (8.45)

Assuming constant A, p, and cP, we integrate eq. (8.45) from the inlet (Tm = Tin
at x = 0) all the way to the outlet (Tm = Tout at x = L) and obtain

ln
T0 − Tin
T0 − Tout

= hpL

ρAUcP
(8.46)

In this equation we recognize the inlet and outlet temperature differences (8.42),
the mass flow rate ρAU = ṁ, and the total duct wall area pL = Aw; therefore, an
alternative form of eq. (8.46) is

ln
�Tin
�Tout

= hAw
ṁcP

(8.47)

The proper definition of the �Tlm factor adopted in eq. (8.40) emerges as we
eliminate ṁcP between eqs. (8.47) and (8.44),

q = hAw
�Tin − �Tout
ln(�Tin/�Tout)

(8.48)

In other words,

�Tlm = �Tin − �Tout
ln(�Tin/�Tout)

(8.49)
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The �Tlm factor is recognized as the log-mean temperature difference between
the wall and the stream. When the wall and inlet temperatures are specified,
eq. (8.48) expresses the relationships among the total heat transfer rate q, the
total duct surface conductance hAw, and the outlet temperature of the stream.
Alternatively, eqs. (8.47)–(8.49) can be combined to express the total heat
transfer rate in terms of the inlet temperatures, mass flow rate, and duct surface
conductance,

q = ṁcP �Tin

[
1 − exp

(
−hAw
ṁcP

)]
(8.50)

In cases where the heat transfer coefficient varies longitudinally, h(x), the h
factor on the right side of eqs. (8.46) and (8.47), represents the L-averaged heat
transfer coefficient, namely,

h = 1

L

∫ L

0
h(x) dx (8.51)

8.4.2 Uniform Wall Heating

In the analysis of heat exchangers [23], it can be shown that the applicability of
eq. (8.48) is considerably more general than what is suggested by Fig. 8.4a. For
example, when the heat transfer rate q is distributed uniformly along the duct,
the temperature difference �T does not vary with the longitudinal position. This
case is illustrated in Fig. 8.4b, where it was again assumed that A, p, h, and cP
are independent of x. The effective value �Tlm is the same as the constant �T
all along the duct,

�Tlm = �Tin = �Tout (8.52)

Equation (8.52) is a special case of eq. (8.49): the limit �Tin/�Tout → 1.

8.4.3 Time-Dependent Heat Transfer

When the heat transfer is between a single-phase stream (ṁcP, Tin) and a wall
that belongs to a body with finite heat capacity (liquid or solid, mass m, specific
heat c), the stream and wall temperatures vary in time as they approach Tin. This
scenario is expressible analytically for a model where the wall and the finite-size
body are isothermal at a temperature T0(t) that varies in time from an initial level
T0(0). The wall temperature and fluid outlet temperature histories are

T0(t) − T0(0)

Tin − T0(0)
= 1 − e−yθ (8.53)

Tout(t) − T0(0)

Tin − T0(0)
= 1 − ye−yθ (8.54)
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where θ is the dimensionless time

θ = ṁcP
mc

t (8.55)

and

y = 1 − e−Ntu , Ntu = hAw
ṁcP

(8.56)

Both Tout and T0 approach Tin as t increases. The mechanism captured by eqs.
(8.53) – (8.56) rules the processes of sensible-heat energy storage and retrieval
when the storage material (m) can be modeled as having a single temperature at
a given time.

8.5 MORE REFINED TURBULENCE MODELS

The fundamental feature that distinguishes the analysis of time-averaged turbu-
lent flow from other analyses (laminar flow, Chapters 2–5, 10, 11; porous media,
Chapter 12) is the closure problem. Even in relatively simple time-averaged
turbulent flows such as the boundary layer near a flat wall or the fully developed
flow through a round tube, the number of unknowns exceeded the number of
equations.

To proceed with the analysis, the difference between these numbers was
made up by introducing additional equations whose validity is supported by a
combination of intuitive reasoning and laboratory measurements. Thus, in the
case of the flow part of the turbulent convection problem, we relied on Prandtl’s
mixing length model [eq. (7.32)] to evaluate the unknown calledmomentum eddy
diffusivity εM. Similarly, for the heat transfer part of the convection problem,
we assumed a constant value for the turbulent Prandtl number [eq. (7.70)] in
order to evaluate the thermal eddy diffusivity εH. In both cases, εM and εH
resulted from the assumed algebraic expressions, that is, from algebraic models
of turbulence. Alternatives to the mixing length model as an algebraic model for
εM are summarized in Table 7.1. Alternatives to writing Prt ∼= 0.9, constant, as a
means of evaluating εH are reviewed by Reynolds [24].

The main shortcoming of these simple models is their proven lack of universal
applicability. For example, a model that works near the wall in turbulent
pipe flow breaks down near the pipe centerline [eq. (8.8)]. Also, as shown in
Chapter 9, turbulent flow regions situated sufficiently far from solid walls demand
eddy diffusivity models that differ from eq. (7.32). The need for a universally
applicable turbulence model is obvious; however, the idea that such a model
could be invented has been met with varying degrees of difficulty by proponents
and users of turbulence models. Due to technological advances in computers
during recent decades, the field of heat transfer has witnessed the emergence of
a new generation of more powerful turbulence models. The progress in this area
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of research has been reviewed in monographs [25, 26]. Below, we illustrate this
approach to turbulence modeling by means of the k – ε model [27].

The starting point in the k–ε model and other nonalgebraic (one- and two-
equation) models is the analogy that can be drawn between the motion of a
fluid packet in turbulent flow and the random motion of a molecule in an ideal
gas. A classical result in the kinetic theory of gases (a result derived first by
Maxwell in 1860 [28]) is that the kinematic viscosity of a gaseous substance
may be calculated with the formula ν = 1

3aλ, where a is the mean speed of
the molecule and λ is the mean free-path length. In the case of a fluid packet
in turbulent flow, the mean speed scale is k1/2, where k is the turbulence
energy,

k = 1
2 [(u

′)2 + (v′)2 + (w′)2] (8.57)

Therefore, the momentum eddy diffusivity εM may be modeled as

εM = Cµk
1/2L (8.58)

where Cµ is a dimensionless empirical constant, and for the time being, L is an
unknown length scale that plays the same role for the fluid packet as the mean
free-path length plays for the molecule of a gas. The eddy diffusivity model
represented by eq. (8.58) was proposed independently by Kolmogorov [29] and
Prandtl [30]. This model says that in order to calculate εM, that is, in order to
close the flow part of the problem, we must determine two more local quantities,
k and L. As shown below, these two quantities follow from two more equations:
the k-equation and the ε-equation.
The k-equation may be derived from the complete momentum equations.

The procedure consists of multiplying the x momentum equation (7.13) by u′,
the y momentum equation by v′, and the z momentum equation by w′; time
averaging the three equations; and then adding them term by term. From the
resulting equation, we subtract the equation obtained by first multiplying the x
momentum equation by u, the y momentum equation by v, and the z momentum
equation by w, and then time averaging and adding these equations term
by term.

A more direct approach is to imagine a control volume in a slender flow
region [e.g., boundary layer (Fig. 7.5)] and to argue that the convection of k
into the control volume (Dk /Dt) equals the eddy diffusion of k in the transversal
(y) direction plus the rate of k generation minus the rate of k destruction [31].
Assuming that εM � ν, the rate of k diffusion in the transversal direction may be
written as

∂

∂y

(
εM

σk

∂k

∂y

)
where σ k is a dimensionless empirical constant. The rate of k production can be
evaluated by multiplying the eddy shear stress (εM ∂u/∂y) by the time-averaged
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velocity gradient (∂u/∂y),

εM

(
∂u

∂y

)2

= Cµk
1/2L

(
∂u

∂y

)2

(8.59)

Finally, the rate of k destruction or the dissipation rate ε may be evaluated
by imagining a fluid packet of diameter L oscillating with velocity k1/2 in a
turbulent flow field. The drag force on this fluid packet is of order CD ρL2(k1/2)2,
where CD is a drag coefficient approximately equal to 1; the mechanical power
dissipated per unit mass is k1/2CD ρL2(k1/2)2/ρL3 ∼ CD(k

1/2)3/L; in other words,
ε = CDk

3/2/L. In conclusion, the k-equation for a boundary layer type of flow
region is

Dk

Dt︸ ︷︷ ︸
Convection

= ∂

∂y

(
εM

σk

∂k

∂y

)
︸ ︷︷ ︸

Diffusion

+ εM

(
∂u

∂y

)2

︸ ︷︷ ︸
Generaton

− ε︸︷︷︸
Destruction

(8.60)

where the dissipation rate ε should not be confused with the momentum eddy
diffusivity εM.
The ε-equation for a boundary layer type of region may be constructed in a

similar manner:

Dε

Dt
= ∂

∂y

(
εM

σε

∂ε

∂y

)
+ C1 εM

(
∂u

∂y

)2
ε

k
− C2

ε2

k
(8.61)

where σ ε , C1, and C2 are three more dimensionless empirical constants. Finally,
setting CD = 1 and eliminating the unknown length scale L between eqs. (8.58)
and ε = CDk

3/2/L yield

εM = Cµ

k2

ε
(8.62)

The three equations (8.60)–(8.62) are sufficient for determining the three
unknowns (k, ε, and εM). The recommended values for the five empirical
constants appearing in these equations are [32] Cµ = 0.09,C1 = 1.44,C2 =
1.92, σk = 1, andσε = 1.3. These values have been found to be appropriate for
the plane jets and plane shear layers discussed in Chapter 9. A nearly identical
set of constants works for turbulent boundary layers; hence, it is reasonable to
expect the foregoing constants to adequately serve the numerical simulation of
boundary layers as well.

To solve the heat transfer part of the problem, the most common approach is
to combine the εM calculation above with the statement that the turbulent Prandtl
number εM/εH is equal to 0.9.

It is instructive to look back at the mixing length model used throughout
Chapters 7 and 8 and to see if there is any overlap between that model and



386 8 TURBULENT DUCT FLOW

the k–ε model of eqs. (8.60)–(8.62). According to the mixing length model
[eq. (7.30)], we can write (

∂u

∂y

)2

= ε2M

l4
(8.63)

where l is the mixing length. This means that the k-generation term in the
k-equation (8.58) assumes the form

εM

(
∂u

∂y

)2

= ε3M

l4
= C3

µk
3/2L

3

l4
= C3

µ

CD

(
L

l

)4

ε (8.64)

which shows that the k-generation term equals the k-destruction term ε if the
length scale L is taken as

L = l

(
CD
C3

µ

)1/4

(8.65)

We conclude that in the inner region of a turbulent boundary layer (i.e.,
in the layer where the mixing length model works), the generation of k is
balanced by the dissipation of k. For this reason, the inner layer is referred
to as the equilibrium layer. In general, a given turbulent flow region is the
space for competition among four effects: convection, diffusion, generation, and
destruction, as indicated by eq. (8.60).

The k–ε model outlined above is valid only in flow regions that are strongly
turbulent, that is, in regions where the eddy diffusivity εM overwhelms the
molecular diffusivity ν. This limitation is illustrated by the construction of the
diffusion terms in eqs. (8.60) and (8.61). In the case of turbulent boundary layer
flow or fully developed turbulent flow through a duct, eqs. (8.60)–(8.61) do not
apply in the viscous sublayer.

One way to bridge the viscous sublayer and to impose the solid-wall boundary
condition on the k–ε simulation of the strongly turbulent regions is the wall-
function method. Let yc be the physical distance to the solid wall from a point
situated just outside the viscous sublayer, where the logarithmic law of the wall
holds (Fig. 7.4). The wall-function approach consists of the assumption that at
y = yc, the velocity component parallel to the wall obeys the logarithmic law of
the wall [eq. (7.40)],

uc
u∗

= 1

κ
ln

(u∗yc
ν

)
+ B (8.66)

and that at the same location, the generation of k is in equilibrium with the
destruction of k. If kc and εc are the turbulence energy and dissipation rate at
y= yc, it can be shown [33] that the conditions imposed on eqs. (8.60) and (8.61)
in lieu of solid-wall boundary conditions are kc = u2∗/C

1/2
µ and εc = u3∗/(κyc).

For further instructions on the numerical implementation of the k–ε model, the
reader is directed to Refs. 25, 26, 32, and 33.
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8.6 HEATLINES IN TURBULENT FLOW NEAR A WALL

In the second edition of this book it was reported that the time-averaged solution
for heat transfer from a plane wall with turbulent flow can also be visualized
by using heatlines. With reference to the coordinates shown in Fig. 2.1, the
boundary layer–approximated energy equation is

u
∂T

∂x
+ v

∂T

∂y
= ∂

∂y

[(
α + εH

) ∂T

∂y

]
(8.67)

The heatfunction H(x, y) that satisfies eq. (8.67) identically is defined by

∂H

∂y
= ρcPu(T − Tref) (8.68)

−∂H

∂x
= ρcPv(T − Tref) − (k + ρcpεH)

∂T

∂y
(8.69)

with the observation that in eq. (8.69), the apparent heat flux q′′
app = −(k +

ρcPεH)∂T/∂y can be replaced with the wall heat flux, q′′
app = q′′

0(x). The heat-
function is obtained by integrating eqs. (8.68) and (8.69), for which we need
u, v, T , and q′′

0. Analytical expressions for u(x, y) and v(x, y) are obtained by
assuming that Prandtl’s one-seventh power curve fit, eq. (7.56), is a good
approximation: u

u∗
= 8.7

(u∗y
ν

)1/7
(8.70)

where u* = (τ 0/ρ)
1/2 and τ 0(x) is the wall shear stress based on eq. (8.70),

namely, eq. (7.60). Combining u* with eq. (8.70), we obtain

u

U∞
= 1.164

(
U∞x

ν

)−8/70(U∞y
ν

)1/7

(8.71)

The corresponding v(x, y) expression follows from integrating the mass conser-
vation equation (7.20),

v

U∞
= 0.116

(
U∞x

ν

)−78/70(U∞y
ν

)8/7

(8.72)

To obtain a simple analytical expression for T(x, y), we make the classical
assumption that εM = εH or Prt = 1. If, in addition, the fluid has a Prandtl
number of order 1, we may write Pr = 1 such that in wall coordinates, we have
T+(y+) = u+(y+), or after using eq. (8.70),

[T0(x) − T]
ρcPu∗
q′′
0(x)

= 8.7
(u∗y

ν

)1/7
(8.73)



388 8 TURBULENT DUCT FLOW

Combining eq. (7.60) and the Colburn analogy [eq. (7.78) for Pr = 1], we obtain
an estimate for the local heat transfer coefficient,

q′′
0/(T0 − T∞)

ρcPU∞
= 0.0296

(
U∞x

ν

)−1/5

(8.74)

When the wall is isothermal (T0 = constant) and warmer than the free stream
(Tref = T∞), the integration of eqs. (8.68)–(8.69) by using eqs. (8.71)–(8.74)
yields

H

k(T0 − T∞)Re4/5L

= 1.015 x̃ −8/70 ỹ 8/7 − 1.054 x̃ −16/70 ỹ 9/7 − 0.037 x̃ 4/5

(8.75)

where x̃ = x/L and ỹ = (y/L)Re1/5L . Equation (8.75) is obtained if eq. (8.68)
is integrated first and eq. (8.69) second. If the order of integration is reversed,
the coefficient 1.054 on the right side of eq. (8.75) is replaced by 0.591. This
small discrepancy is due to the fact that the assumed u profile (8.70) is an
approximation. Figure 8.5 shows the heatlines based on eq. (8.75). This figure
can be compared with Fig. 2.16 to see the differences between the heatlines of
the turbulent flow and the laminar flow. That the heatlines are inclined as they
come out of the wall in Fig. 8.5 illustrates the high velocity (u ∼ U∞) that occurs
close to the wall when the flow is turbulent.

Figure 8.5 Heatlines near a hot isothermal wall with turbulent flow. (Drawn by A. M. Morega.)
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Figure 8.6 Heatlines near a cold isothermal wall with turbulent flow. (Drawn by A. M. Morega.)

The corresponding heatline pattern for the cold isothermal wall with turbulent
boundary layer flow is shown in Fig. 8.6. This is based on setting Tref = T0 and
integrating eq. (8.68) before eq. (8.69), which yields

H

k(T∞ − T0)Re
4/5
L

= 1.054 x̃ −16/70 ỹ 9/7 + 0.037 x̃ 4/5 (8.76)

If eq. (8.69) is integrated before eq. (8.68), the coefficient 1.054 is again replaced
by 0.591. The heatline pattern of Fig. 8.6 has some of the features seen in laminar
flow (Fig. 2.15), except that the heatlines are straighter and enter the cold wall at
an angle. The dotted lines in Figs. 8.5 and 8.6 show the thickness of the boundary
layer according to eq. (7.58).

8.7 CHANNEL SPACINGS FOR TURBULENT FLOW

The packing of channels into a fixed volume, which in Section 3.14 was outlined
for laminar duct flow, can be pursued based on the same method when the flow
is turbulent [34]. With reference to the notation defined in Fig. 3.17, where the
dimension perpendicular to the figure is W, the analysis consists of intersecting
the two asymptotes of the design: a few wide spaces with turbulent boundary
layers and many narrow channels with fully developed turbulent flow. The plate
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thickness (t) is not negligible with respect to the spacing D. When Pr ≥ 0.5, the
optimal spacing and maximal global conductance of the HWL package are

Dopt/L

(1 + t/Dopt)
4/11

= 0.071Pr−5/11 Be−1/11 (8.77)

and [
q′L

kH
(
Tmax − T∞

)]
max

≤ 0.57Pr4/99
(
1 + t

Dopt

)−67/99

Be47/99 (8.78)

where Be = (�P L2)/µα. These results are valid in the range 104 ≤ ReDh ≤ 106

and 106 ≤ ReL ≤ 108, which can be shown to correspond to the pressure drop
number range 1011 ≤ Be ≤ 1016.

The literature on turbulent heat transfer in ducts and other enclosed spaces is
vast [35–37]. For example, in the electronics cooling field, turbulent flows have
been studied numerically and experimentally with application to the cooling of
walls with discrete heat sources [38–40]. Noteworthy also is the progress toward
small dimensions and low Reynolds numbers. Muzychka and Yovanovich [41,
42] have developed models for predicting the thermohydraulic characteristics
of offset strip fin arrays at low Reynolds numbers. Chen and Cheng [43] have
constructed a fractal description of the effect of wall roughness on pressure drop
in microchannels.
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PROBLEMS

8.1. Derive the friction factor formula (8.13) recommended by Prandtl’s one-
seventh power velocity distribution (7.56). In the course of this derivation,
show that the average velocity is only slightly smaller than the centerline
velocity, U = 0.817Uc.

8.2. Use the scaling laws of transition discussed in Chapter 6 to explain the
jump in the value of f as the laminar flow breaks down (Fig. 8.2).

8.3. Determine the function M [eq. (8.23)] for Hagen–Poiseuille flow through
a pipe, and compare it with the M function that corresponds to the
time-averaged turbulent profile fitted with the one-seventh power law,
u/Uc = (y/r0)

1/7. Comment on the validity of the linear distribution of
apparent heat flux shown as eq. (8.24).
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8.4. Consider the fully developed turbulent flow through a parallel-plate chan-
nel with uniform heat flux. Following the procedure outlined in the text
for turbulent pipe flow, show that τ app decreases linearly from τ 0 at the
wall to zero along the centerline. Derive the equivalent of eq. (8.21) and
show that the apparent heat flux follows approximately the same linear
distribution.

8.5. Consider the case of uniform heat flux to fully developed turbulent flow in
a pipe, and derive a relationship among St, f/2, and Pr [i.e., an equivalent
of eq. (8.28)] in the following manner. Start with the energy equation
(8.18) and assume that u is practically independent of r and equal to U.
Show that in wall coordinates, the integral of the energy equation reads

T+ =
∫ y+

0

1 − y/r0
(1/Pr) + (εH/ν)

dy+

Integrate this result by breaking the 0 < y+ < r+0 interval into a conduction
sublayer 0 < y+ < y+CSL where εH/ν � 1/Pr and a core region in which
1/Pr is negligible relative to εH/ν. Make the additional assumptions that Prt
is a constant and that εM/ν is adequately represented by the mixing length
model [see eq. (7.38)]. Derive the relationship St( f/2, Pr, Prt, κ , y+CSL)
by writing T+(r+0 ) = T+

c and noting the difference between centerline
temperature Tc and mean temperature Tm in the definition of heat transfer
coefficient. Assume the one-seventh power law for the distribution of both
u(r) and (T0 − T)/(T0 − Tc) in order to calculate the ratios U/uc and
(T0 − Tm)/(T0 − Tc).

8.6. Consider the flow of a fluid through a tube of fixed diameter D and length
L. The mass flow rate ṁ is also fixed. The only change that may occur is
the switch from laminar to turbulent flow because the Reynolds number
ReD happens to be in the vicinity of 2000. In either regime, the flow is
fully developed. Calculate the change in the pumping power required as
the laminar flow is replaced by turbulent flow.

8.7. A stream of air (Pr= 0.72) is heated in fully developed flow through a pipe
of diameter D (fixed) and uniform heat flux q′′

w (fixed). Since the Reynolds
number ReD happens to be equal to 2500, there is some uncertainty with
regard to the flow regime that prevails in the airstream. Calculate the
relative change experienced by the local temperature difference Tw – Tm
as the flow regime switches from laminar to turbulent.

8.8. Water flows at the rate of 0.5 kg/s through a 10-m-long pipe with an inside
diameter of 2 cm. It is being heated with uniform wall heat flux at the
rate of 5 × 104 W/m2. Evaluate the water properties at 20◦C, assume that
the flow and temperature fields are fully developed, and calculate (a) the
pressure drop over the entire pipe length, (b) the heat transfer coefficient
based on the Colburn analogy (8.29), (c) the heat transfer coefficient
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based on the Dittus–Boelter correlation (8.31), (d) the difference between
the wall temperature and the local mean water temperature, and (e) the
temperature increase experienced by the mean water temperature in the
longitudinal direction from the inlet to the outlet.

8.9. Steam condenses at atmospheric pressure on the outside of a metallic tube
and maintains the tube wall temperature uniform at 100◦C. The interior
of the tube is cooled by a stream of 1-atm air with a mean velocity of
5m/s and an inlet temperature of 30◦C. The tube inside diameter is 4 cm.
Assume that the flow and temperature distributions across the tube are
fully developed, and calculate (a) the heat transfer coefficient, (b) the
length of the tube if the outlet mean temperature of the airstream is 90◦C,
and (c) the flow and thermal entrance lengths. Is the assumption of fully
developed flow and heat transfer justified?

8.10. Water is being heated in a straight pipe with an inside diameter of
2.5 cm. The heat flux is uniform, q′′

w = 104 W/m2, and the flow and
temperature fields are fully developed. The local difference between the
wall temperature and the mean temperature of the stream is 4◦C. Calculate
the mass flow rate of the water stream, and verify that the flow is turbulent.
Evaluate the properties of water at 20◦C.

8.11. Tap water of temperature 20◦C flows through a straight pipe 1 cm in
diameter, with a mean velocity of 1m/s. Verify that the flow regime is
turbulent, and calculate the friction factor f for fully developed flow. If
the dimensionless thickness of the viscous sublayer of the constant-τ app
region of the flow is equal to y+ ∼= 11.6, what is the actual thickness y
(mm) of the viscous sublayer?

8.12. One method of extracting the energy contained in a geothermal reservoir
consists of using the ‘‘downhole coaxial heat exchanger’’ shown in
Fig. P8.12. The underground temperature increases almost linearly with
depth. The stream ṁ = 100 tons/h of cold water is pumped downward
through the annular space of outer diameter Do = 22 cm and inner
diameter Di = 16 cm. In this portion of its circuit, the stream is heated
by contact with the increasingly warmer rock material, across the wall of
diameter Do.

After reaching the lower extremity of the well, the heated stream returns
to the surface by flowing through the inner pipe. A very effective layer
of insulation is built into the wall of diameter Di, which separates the
downflowing cold stream from the upflowing hot stream.

(a) Consider only the downflow through the annular space, and assume
that the depth (x) to which your calculations apply is such that the
mean temperature of the stream is 80◦C. The wetted surfaces of the
annular space are made of commercial steel. Calculate the frictional
pressure drop per unit length experienced by the stream at that depth.
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Figure P8.12

(b) Calculate the temperature difference �T between the outer wall of the
annulus and the mean temperature of the stream. Again, the depth x is
such that the mean temperature of the stream is 80◦C. Known also is
the mean temperature gradient dTm/dx= 200◦C/km, that is, the rate of
temperature increase with depth.

8.13. The single-stream coaxial heat exchanger described in Problem 8.12 brings
up a fundamental design question regarding the diameter of the inner pipe,
Di. The thickness of the wall of diameter Di is assumed negligible. If Di
is much smaller than Do, the stream is ‘‘strangled’’ as it flows upward
through the inner pipe. Conversely, when Di is nearly the same as Do, the
flow is impeded by the narrowness of the annular space. In both extremes,
the overall pressure drop that must be overcome by the pump is excessive.
Clearly, when Do is fixed, there exists an optimal inner diameter Di (or an
optimal ratio Di/Do) such that the total pressure drop experienced by the
stream is minimum.

(a) Determine this optimal Di/Do ratio in the large–Reynolds number
limit of the turbulent regime (Fig. 8.2) where the friction factors for
the annular space ( fa) and for the upflow through the inner pipe ( fi)
are both constant. For simplicity, assume that fa = fi.
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(b) Consider next the regime in which the flow is laminar both through
the annular space and through the inner pipe. Assume that the friction
factor for the annular space is approximately equal to the friction
factor for flow between two parallel plates positioned (Do – Di)/2
apart. Calculate the optimal Di/Do ratio for minimum total pressure
drop, and show that this result is almost the same as the result obtained
in part (a).

8.14. Air at 300◦C and 2m/s approaches a bundle of 4-cm-diameter tubes
arranged in a staggered array (Xt = Xl = 7 cm), with 21 rows and six or
five tubes per row (i.e., across the flow) (see Fig. P8.14). Each tube is
3m long, and its wall temperature is maintained at 30◦C by water flowing
in the tube. The bundle-averaged heat transfer coefficient between tubes
and airstream is 62W/m2 · K. The parallel sidewalls of the air duct are
insulated. Calculate the outlet temperature of the airstream and the total
heat transfer rate absorbed by the tube bundle.

Figure P8.14

8.15. Consider the turbulent flow near a solid wall, and let yc be the distance to
the wall from a point situated in the layer where the logarithmic law of the
wall (8.66) holds. Prove that according to the k–ε model, the turbulence
energy kc and the dissipation rate εc at y = yc are related to the friction
velocity u* by the kc and εc expressions listed under eq. (8.66).

8.16. Consider again the stack of parallel boards cooled by forced convection
(Fig. 3.17), and this time, assume that the flow is turbulent [34]. The
total heat transfer rate removed from the H × L stack is q’. Assume
that the board surfaces are isothermal at Tmax, while the coolant supply
temperature is T∞. The pressure difference across the stack is fixed, �P.
The board thickness t is not necessarily negligible when compared with the
board-to-board spacing D. In other words, the number of boards in the
stack of thickness H is n = H/(D + t), where we assume that n � 1.
Assume further that Pr � 0.5 and that the board surfaces are smooth.
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Determine the optimal spacing or the optimal n such that the overall
thermal conductance q′/(Tmax – T∞) is maximized. Do this by applying
step by step the method used in Section 3.6 for laminar flow. Show that
in turbulent flow, the optimal spacing and maximum conductance are
generally given by

Dopt/L

(1 + t/Dopt)
1/2

= (f Cf )
1/2 Pr−2/3

[
q′L

kH
(
Tmax − T∞

)]
max

�
(
Cf
f

)1/4

Pr1/6
(
1 + t

Dopt

)−3/4(
�PL2

µα

)1/2

Finally, substitute appropriate expressions for Cf and f, and show that the
optimal spacing and maximum conductance are given by eqs. (8.77) and
(8.78).

8.17. Consider the equivalent of Problem 3.28 for a parallel-plate channel that
bifurcates into two parallel-plate channels. The stem channel has length
L1 and plate-to-plate spacing D1. Each branch has length L2 and spacing
D2. The stem mass flow rate ṁ′

1(kg/s · m) splits into two equal streams of
size ṁ′

2. Assume that the flow in every channel is in the Poiseuille regime.

(a) Show that the overall flow resistance of the construct of three channels
depends on geometry in this way:

R = L1
D3
1

+ L2
2D3

2

(b) Assume that the volume of the flow space is fixed. This constraint is
the same as constraining the area A of the profile of the construct of
three channels. Minimize R subject to A = constant and show that

D1

D2
= 21/2

(c) If the flow regime in a parallel-plate channel (L,D)1,2 is fully developed
turbulent in the fully rough regime, one can show that the pressure
drop along each channel scales as �P ∼ (ṁ′)2L/(ρD3). Show that the
total pressure drop along the stem and one of the two branches depend
on geometry in accordance with the function L1/D

3
1 + L2/(4D

3
2).

Minimize this function subject to the fixed total flow volume and show
that the optimal ratio of spacings is D1/D2 = 23/4.
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FREE TURBULENT FLOWS

The tradition in the field of convection is to discuss turbulent transport only in the
context of the wall friction and wall heat transfer problems stated in Chapter 2.
Wall problems are very important because they constitute the backbone of many
applied activities (e.g., heat exchanger development). In the present chapter we
depart from tradition and add a different class of turbulent transport problems to
the field, ‘‘free’’ turbulent flow through regions that are situated sufficiently far
from solid walls that the effect of the walls is not important.

To include free-stream turbulent flows in a course on convection is to recognize
the emphasis placed by affluent societies on coexisting with and protecting the
environment. Almost without exception, the interactions between our lifestyle
and the environment are turbulent transport processes. The smoke plume swept
by the wind in the wake of an industrial area and the water jets discharged by a
city into the river are how our presence affects what surrounds us.

These flows rely on turbulent mixing to diminish the effect that high con-
centrations of our refuse have on the biosphere. Our reliance on turbulent jets
and plumes to disperse pollutants (thermal as well as chemical) is due to the
fact that turbulent mixing is the most effective transport mechanism known.
Turbulent flow is a manifestation of the natural tendency to increase the access
for momentum transfer, or mixing. This is achieved through the generation of
design: macroscopic flow architecture (streams, eddies), as opposed to viscous
diffusion, in accord with the constructal law [1].

9.1 FREE SHEAR LAYERS

9.1.1 Free Turbulent Flow Model

The simplest turbulent mixing problems concerning regions far away from solid
surfaces is sketched in Fig. 9.1. Consider the time-averaged growth (swelling) of
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Figure 9.1 Development of the free shear layers on the two sides of a two-dimensional jet.

the turbulent interface between a stream and a stagnant fluid reservoir, and keep
in mind that the instantaneous picture of the interface (the shear layer) is, in
fact, dominated by a chain of large eddies—so large that their diameters define
the visual thickness of the shear layer. The instantaneous large-scale structure
of a two-dimensional shear layer is shown in Fig. 9.2: Two shear layers of this
type form on both sides of a two-dimensional jet discharging from a slit into a
reservoir, as shown in Fig. 9.1.

How thickwill the shear layer be a certain distance x downstream from the edge
of the nozzle? The answer to this question is relevant to predicting the mixing
of (U0, T0) fluid with stagnant reservoir fluid (U∞, T∞). Considering the flow
part of the mixing problem first, we begin with the time-averaged continuity and
momentum equations for the (x, y) frame drawn in Fig. 9.1,

∂u

∂x
+ ∂v

∂y
= 0 (9.1)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

dP

dx
+ ∂

∂y

[(
ν + εM

) ∂u

∂y

]
(9.2)
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Figure 9.2 Discrete, stepwise growth of a turbulent shear layer (upper side: helium,
U0 = 9.15 m/s; lower side: nitrogen, U∞ = 0.33 m/s; pressure = 7 atm) [5]. (Reprinted with
permission from G. L. Brown and A. Roshko, J. Fluid Mechanics, Vol. 64, pp. 775–816.
Copyright 1974 Cambridge University Press.)

The momentum equation (9.2) is of the boundary layer type; hence, it applies to
the space occupied by the shear layer only if the shear layer is slender. The two
unknowns to be determined from eqs. (9.1) and (9.2) are u and v; however, in
order to proceed with an analytical solution, it is necessary to invoke additional
simplifying assumptions:

1. The longitudinal pressure gradient in the shear layer (dP/dx) is zero, as the
static pressure is uniform on both sides of the shear layer. This assumption
is fairly good for most turbulent free shear layer flows, including the
two-dimensional jet development sketched in Fig. 9.1. The pressure inside
a developing jet is practically the same as that of the ambient fluid
at rest [2].

2. The momentum eddy diffusivity εM is much greater than the kinematic
viscosity ν, so that ν can be omitted on the right-hand side of eq. (9.2).
This assumption is made without much hesitation in classical treatments
of the free shear layer problem (e.g., Refs. 2–4), because the flow region
is already assumed to be situated sufficiently far from solid surfaces.
However, if we look at the tip section of the shear layer of Fig. 9.2, we
see that near its origin the shear layer must be laminar; in other words,
sufficiently close to x = 0 the ν � εM assumption must break down. The
fact that the ν � εM assumption is valid only beyond a certain value of x
(hence, beyond a certain shear layer thickness) should be expected based
on the constructal theory of transition presented in Chapter 6.

The governing equations (9.1) and (9.2) could be solved for laminar
flow by setting εM = 0 and applying the boundary layer methods of
Chapter 2. Since there is nothing in the steady-state laminar shear layer
solution to suggest that it does not hold for all values of x, and since
the transition criterion (6.15) has universal applicability, the laminar shear
layer is destined to break down when it exceeds a certain thickness: in other
words, when x exceeds a certain order of magnitude (see Problem 9.1).
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The ν � εM assumption is valid only in the turbulent section of the shear
layer, sufficiently far downstream from the laminar–turbulent transition
region that the largest eddies are much bigger than the critical thickness of
the shear layer during transition (i.e., much bigger than the smallest eddies
discussed in Chapter 7).

3. The third assumption concerns the eddy diffusivity εM: This assumption is
necessary for closing the (u, v) problem described by eqs. (9.1) and (9.2).
What is usually assumed as an expression for εM [namely, eq. (9.4)] is
purely empirical in origin: This εM model is the result of observing that
the shear layer thickness D appears to be proportional to x (cf. Fig. 9.2).
Based on this observation and subject to assumptions 1 and 2 above, the
momentum equation (9.2) represents the following balance of scales:

U2
0

x
∼ εM

U0

D2
(9.3)

Since the eye sees D ∼ x, the scaling law (9.3) requires that

εM ∼ U0x (9.4)

The εM scale derived above can also be derived by invoking the mixing length
model (Chapter 7) coupled with the D ∼ x observation, as done originally by
Prandtl [2]. Thus, writing

εM = l2
∣∣∣∣∂u∂y

∣∣∣∣ (9.5)

and by taking in an order-of-magnitude sense

∂u

∂y
∼ U0

D
and l ∼ D (9.6)

the mixing length model (9.5) becomes identical to the scaling law (9.4). In
conclusion, physical observations suggest that εM is proportional to x and that
εM is not a function of y. The conclusion that εM is independent of y may seem
paradoxical considering that regardless of how large εM is inside the shear layer,
εM must decrease to zero outside the shear layer, where, as Fig. 9.2 shows clearly,
there are no eddies. In fact, no paradox exists, simply because eq. (9.4) is the
result of scale analysis that is valid only inside the slender shear layer region.

9.1.2 Velocity Distribution

According to assumptions 1 and 2, the boundary layer momentum equation (9.2)
reduces to

u
∂u

∂x
+ v

∂u

∂y
= εM

∂2u

∂y2
(9.7)
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The D ∼ x observation that led to the εM model (9.4) suggests the following
formulation for seeking a similarity solution to the turbulent free shear layer
problem,

η = σ
y

x
εM = 1

4σ 2
U0x

u = σ

2
U0F

′ (η) ψ = x

2
U0F(η)

(9.8)

where σ is an empirical constant, η is the similarity variable, and ψ is the
time-averaged streamfunction defined as u = ∂ψ/∂y, v = −∂ψ/∂x. Function
F′(η) represents the shape of the dimensionless velocity profile in the shear layer
region. In the notation of eqs. (9.8), the mass and momentum equations (9.1) and
(9.7) collapse into

F′′′ + 2σFF′′ = 0 (9.9)

subject to the following boundary conditions:

u = U0 as y → ∞ or F′ = 2

σ
as η → ∞

u = 0 as y → −∞ or F′ = 0 as η → −∞
v = 0 as y → −∞ or F = 0 as η → −∞

(9.10)

The similarity problem (9.9)–(9.10) can be solved numerically, and the
resulting velocity profile resembles the shape sketched in Fig. 9.1. A closed-form
curve fit to the numerical solution is [6]

u ∼= U0

2

[
1 + erf

(
σ
y

x

)]
(9.11)

Comparison with measurements indicates that

σ ∼= 13.5 (9.12)

is the approximate value for the empirical constant that accounts for the linear
growth of the shear layer.

9.1.3 Structure of Free Turbulent Flows

The large-scale structure observed for the shear layer (Fig. 9.2) is responsible for
the closed-form solution, (9.11) and (9.12). Geometrically, this solution implies
that the shear layer thickness grows linearly in x, the actual growth rate depending
on the definition of shear layer thickness: for example, if the effective thickness
is defined as the knee-to-knee distance Dk–k sketched in Fig. 9.3, where the two
knees are the intersections of the line u/y = (du/dy)y=0 with the two vertical
lines u = U0 and u = 0. The knee-to-knee growth angle αk–k is

αk−k = arctan
π1/2

σ
∼= 7.5◦ (9.13)
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Figure 9.3 Constant-angle growth of a turbulent shear layer, as the repeated manifestation of
the λB ∼ D buckling law of Chapter 6.

The numerical value of αk–k = 7.5◦ is intimately connected to the definition of
knee-to-knee thickness. Figure 9.2, for example, shows that the visual growth
angle is considerably greater (on the order of 20◦ [5]); a purely theoretical
explanation for the growth rate illustrated was reported in Ref. 7 based on the
λB ∼ D scaling law discussed in Chapter 6 and is presented below. The same
scaling law provides a theoretical basis for the time-averaged linear growth rate
of the shear layer, a fact that until recently was accepted empirically in the
development of the εM model given by eq. (9.4) (see Ref. 7, pp. 84, 89).

The scaling argument that predicts the constant-angle shape of the shear layer
is the following: If the λB ∼ D proportionality is a property of the shear layer
as a finite-size region, the λB wave will be rolled into a large eddy in time of
order tB ∼ λB/(U0/2). Note that from symmetry, U0/2 is the scale of the relative
velocity between the shear layer fluid and the fluid situated on either side of
the shear layer. During the same period, the formation of the eddy leads to the
stepwise thickening of the shear layer into a new region of thickness Dnew >

Dold (scale analysis of the lateral growth of each elbow of the λB wave indicates
that Dnew ∼ 2Dold [7, p. 75]). Also during a time of order tB, the shear layer
fluid travels downstream to a distance of order λB because the shear layer fluid
velocity relative to one of the fluid reservoirs at rest is U0/2.

In summary, the shear layer region thickens stepwise in the downstream
direction, and as shown schematically in Fig. 9.3, each building block is D thick
and λB long. Furthermore, if the λB ∼ D proportionality is universal, that is, if it
applies anywhere along the shear layer, all the steps are geometrically similar.
Averaging in time the parade of large eddies through this sequence of steps, we
anticipate that the time-averaged shear layer region must grow linearly with a
constant half-angle of order arctan[(D/2)/(3λB/2)] = arctan[1/(π31/2)] ∼ 10◦.
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The linear growth of turbulent free shear layers (and turbulent jets and plumes)
is amply documented, and through the eddy diffusivity model (9.4), it forms
the backbone of the classical time-averaged analytical description exhibited
in this chapter. Because of this ample documentation, the scaling argument
developed in the preceding two paragraphs could be reversed to conclude
that the universally observed constant-angle geometry of turbulent shear flow
validates the theory—the view that the λB ∼D scaling is a fundamental property
of the flow. Additional evidence that supports this view has been compiled in
Chapter 6 and in Refs. 7–9.

An important consequence of the stepped (repeated buckling) structure of the
shear layer (Fig. 9.3) is that, in time, the birth of the small eddy precedes the
birth of the next (larger) eddy. At every position x, the flow is a conglomerate of
eddies, small ones rolled up inside larger ones. In this conglomerate, the smallest
eddy is the oldest, and the largest is the youngest. This structure and distribution
of ages are shared by all the turbulent flows treated in this chapter, not just
the two-dimensional shear layer. They are shared by all flow designs in nature,
e.g., trees.

I stressed these features in my 1982 review of the buckling theory of turbulent
flow [7, p. 83] as well as in the 1984 edition of this book and Refs. 8 and 9. The
idea that the small eddy is older than the next size (larger) eddy was restated
a decade later by Gibson [10] in the annual forum entitled Some Unanswered
Questions in Fluid Mechanics. Gibson pointed out that present-day turbulence
theory is built on exactly the opposite view that, in time, large eddies break down
into smaller eddies. He traced the classical view to a Richardson’s [11] poem,
which influenced the early days of thinking about turbulence:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(in the molecular sense).

9.1.4 Temperature Distribution

Turning our attention to the thermal mixing between T∞ and T0 fluids in the
shear layer region, we note that assumptions 2 and 3 in Section 9.1.1 can also
be applied to the eddy thermal diffusivity. Based on the assumptions that εH is
much greater than α and that εH is not a function of y inside the shear layer
region, the time-averaged energy equation assumes the simpler form

u
∂T

∂x
+ v

∂T

∂y
= εH

∂2T

∂y2
(9.14)

Making the additional assumption that the turbulent Prandtl number is a constant
equal to 1,

Prt = εM

εH

∼= 1 (9.15)



9.2 JETS 405

the eddy thermal diffusivity εH is given by the same expression as that for
εM in eqs. (9.8). Finally, comparing the y → ±∞ boundary conditions for
temperature T with those for longitudinal velocity u, and noting the identical
form of the simplified momentum and energy equations [eqs. (9.7) and (9.14)],
the temperature field problem T(x, y) becomes identical to the flow problem
u(x, y) already discussed (see also Problem 9.5):

T − T∞
T0 − T∞

= u

U0

∼= 1

2

[
1 + erf

(
σ
y

x

)]
(9.16)

According to this solution, the temperature gradient ∂T/∂y is maximum at
y = 0; in other words, the heat transfer rate between the two semi-infinite fluid
reservoirs is maximum across the plane of original velocity discontinuity. If we
are asked to evaluate the time-averaged heat flux across the y = 0 plane, we
might be tempted to write q′′

y=0 = k(∂T/∂y)y=0, as in the early chapters of this
book; this would be wrong because the temperature field solution (9.16) was
developed based on the assumption that the eddy heat transport mechanism is
much more effective than the molecular mechanism (assumption 2). Therefore,
the proper way to evaluate the midplane heat flux is by writing

q′′
y=0 = ρcPεH

(
∂T

∂y

)
y=0

(9.17)

which combined with the eddy diffusivity model [eq. (9.8)] and with the Prt
assumption (9.15) yields [4]

q′′
y=0

T0 − T∞
= 1

4σπ1/2
ρcPU0 (9.18)

We reach the interesting conclusion that the midplane heat transfer coefficient
is x-independent or that the midplane Stanton number is a constant equal to
(4σπ1/2)–1 ∼= 0.01.

9.2 JETS

Jets are similar to rivers, except that they are fluid-in-fluid streams. Rivers are
fluid-in-solid streams or, more precisely, fluid in an erodible solid that stabilizes
the tendency of every turbulent stream to buckle, with bulging elbows that
become eddies. In rivers, the stabilized tendency to develop elbows is visible as
meanders, which are not static but morph and move along the stream very slowly.
Turned around, this analogy means that the turbulent jet domain (Fig. 9.4) is like
a river delta in which all the river channels have become so unstable that they
broke up into a hierarchy of eddies (few large and many small [12]) similar to
the hierarchy of the river channels themselves [13].
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Figure 9.4 Large-scale buckled structure of a two-dimensional turbulent jet and constant angle
of the time-averaged flow region.

9.2.1 Two-Dimensional Jets

An example of free-stream turbulent mixing is the jet discussed in connection
with Fig. 9.1. In the case of a two-dimensional jet (U0, T0) injected through a
slit of width D0 into a stagnant isothermal fluid reservoir (T∞), the initial mixing
between the two fluids is ruled by the free shear layer phenomenon. Since the
two shear layers grow linearly in the direction of the flow, they are destined to
merge downstream from the nozzle at a characteristic distance that scales with
the nozzle dimension D0. In the shear layer section of the flow (Fig. 9.4), the
centerline velocity is very close to U0 and practically independent of x. Beyond
the point where the two shear layers merge, the stream proceeds as a jet and the
centerline velocity uc decreases monotonically with x. The following analysis
applies only to the jet region of the flow, again, based on the boundary layer
theory assumption that this region is slender.

An analytical description of the time-averaged jet profile is possible [6] if the
mass and momentum equations (9.1) and (9.2) are coupled with assumptions
1–3 in Section 9.1.1. In particular, assumption 3 is justified by the empirical
fact (the observation) that the jet region flares out linearly in the x direction. As
shown in the bottom half of Fig. 9.4, if the jet thickness D is proportional to x,
the point of x = 0 represents a fictitious, point-size origin of the jet flow. After
assumptions 1–3, the momentum equation assumes the simpler form (9.7), with
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the eddy diffusivity obeying the model

εM = 1

4γ 2
ucx (9.19)

where γ is the empirical constant accounting for the growth rate of the jet region.
Before proceeding with the similarity solution to eqs. (9.1), (9.7), and (9.19),

it is instructive first to deduce the relationship between uc and x. As shown in
Problem 2.22, by integrating the x momentum equation from y = −∞ all the
way to y = ∞, we find that

∫ ∞

−∞
u2 dy = U2

0D0 (constant) (9.20)

In an order-of-magnitude sense, eq. (9.20) states

u2cD ∼ U2
0D0 (9.21)

or defining x0 such that D/D0 = x/x0, we can now write

uc
U0

=
(
x

x0

)−1/2

(9.22)

In conclusion, in a two-dimensional turbulent jet, the centerline velocity
decays as x–1/2. This scaling is the basis for the following construction of the
similarity solution:

η(x, y) = γ
y

x
, u = U0

(
x

x0

)−1/2

F′(η) (9.23)

In terms of the time-averaged streamfunction,

ψ = 1

γ
U0x

1/2
0 x1/2F(η) (9.24)

where u = ∂ψ/∂y, v = −∂ψ/∂x, the momentum equation (9.7) reduces to

(F′)2 + FF′′ + 1
2F

′′′ = 0 (9.25)

The boundary conditions on the dimensionless streamfunction profile F are

F = 0 and F′′ = 1 at η = 0

F′ = 0 at η = ∞ (9.26)
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The problem of eqs. (9.25) and (9.26) can be solved in closed form (see Ref. 3),

u = U0

(
x

x0

)−1/2

(1 − tanh2η) (9.27)

To use the velocity solution (9.27), we have to determine the value of x0 in
terms of the jet strength U2

0D0, which is assumed known. Substituting eq. (9.27)
into the jet strength constraint (9.20) yields

γD0

x0
=

∫ ∞

−∞
(1 − tanh2η)2 dη = 4

3
(9.28)

Finally, it is found that the linear growth parameter γ that produces the best
agreement between experimental measurements and the similarity profile is [14]

γ ∼= 7.67 (9.29)

This empirical constant is comparable with the one determined for shear layers,
stressing once more the universality of constant-angle growth in free-stream
turbulent flow. We return to this observation in Fig. 9.9.

The temperature distribution in the jet region is closely related to the velocity
distribution. The close connection between the two fields is to be expected in
view of the large-scale eddy formation process that, as in shear layers (Fig. 9.3), is
responsible for the lateral growth of the jet. Indeed, starting with the assumption
that εH is equal to εM, it is not difficult to show that the temperature excess
function (T − T∞) is given by an expression analogous to eq. (9.27) as the
boundary layer momentum and energy equations become identical and the jet
strength constraint (9.20) is replaced by an enthalpy flow constraint (see Problem
2.23). However, experimentally, it is found that the temperature field data are
fitted better by [15]

T − T∞
Tc − T∞

∼=
(
u

uc

)Prt

(9.30)

where Prt ∼= 0.5 and (Tc − T∞) is the time-averaged temperature difference
between jet centerline and stagnant ambient. The temperature difference (Tc −
T∞) decreases in the downstream direction as x–1/2, that is, in the samemanner as
the centerline velocity uc. The curve fit (9.30) shows that at a fixed longitudinal
position x, the temperature profile is broader than the velocity profile because
the ratio u/uc is always less than 1 and the exponent Prt is also less than 1.

The jet analysis reviewed in this section was based on the equations of
motion and the energy equation (the first law of thermodynamics). The complete
thermodynamic analysis of the two-dimensional turbulent jet must also account
for the second law of thermodynamics (i.e., for the irreversibility of the heat and
fluid flow in the jet region). This analysis has been performed [16,17], and one
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of its results is that the natural shape of the velocity and temperature profiles of
the turbulent jet is the one that minimizes the total rate of entropy generation.
The analysis of entropy generation in a two-dimensional turbulent jet with
quasiperiodic lateral oscillations was reported by Cervantes and Solorio [18].

9.2.2 Round Jets

Another common free turbulent flow is the round jet formed by discharge from a
nozzle into a fluid reservoir. The initial section of this type of jet is also governed
by the free shear layer flow sketched in Fig. 9.1; this time, the shear layer fills an
annular region that surrounds the fluid issuing from the nozzle. The jet section
of the flow begins at a distance of approximately 5D0 downstream from the
nozzle [19], D0 being the nozzle diameter.

An analytical solution for the time-averaged flow in the jet section is again
possible based on assumptions 1–3 [20]. In a cylindrical coordinate system (r, x)
drawn as in the lower half of Fig. 9.4 (where r replaces y), the mass continuity
and the simplified momentum equations are

∂u

∂x
+ 1

r

∂

∂r
(rv) = 0 (9.31)

u
∂u

∂x
+ v

∂u

∂r
= 1

r

∂

∂r

(
εMr

∂u

∂r

)
(9.32)

Because εM is modeled as proportional to the product xuc, it is independent of r,
and eq. (9.32) becomes

u
∂u

∂x
+ v

∂u

∂r
= εM

1

r

∂

∂r

(
r
∂u

∂r

)
(9.32′)

The jet strength defined as

K = 2π
∫ ∞

0
u2r dr = π

4
U2
0D

2
0 (9.33)

must have the same value at any distance x downstream from the fictitious
point-size origin of the jet (Fig. 9.4). The jet strength constraint (9.33) implies
that

u2cD
2 ∼ K (not a function of x) (9.34)

In other words,
uc ∼ K1/2

x
(9.35)

because, visually, the jet thicknessD is proportional to x. Recognizing once more
the eddy diffusivity model, we conclude that

εM ∼ xuc ∼ K1/2 (constant) (9.36)
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The conclusion that in turbulent round jets the eddy diffusivity can be modeled
as a constant independent of x or y is important. Its immediate implication is
that, analytically, the turbulent round jet problem is identical to the laminar
round jet problem [21] as the constant eddy diffusivity εM replaces the kinematic
viscosity ν in the boundary layer formulation of the momentum equation
[eq. (9.32)]. Therefore, the solution for the velocity profile can be written by
inspection as

u = γ0

2

(
3

π

)1/2 K1/2

x

(
1 + η2

4

)−2

(9.37)

where η is the similarity variable,

η = γ0
r

x
(9.38)

and γ 0 is the empirical constant related to the angle of the cone filled by the
time-averaged round jet. Reichardt’s experiments indicate that the value

γ0
∼= 15.2 (9.39)

is adequate for matching expression (9.37) to longitudinal velocity measurements
[3, p. 608]. An alternative way to curve-fit the time-averaged velocity profile is
to use the Gaussian form

u = uc exp

[
−

( r
b

)2
]

(9.40)

where b is a characteristic radial dimension proportional to the transversal length
scale D. Fischer et al. [22] surveyed the u data produced by 15 independent
experiments with water and concluded that

b = (0.107 ± 0.003)x (9.41)

In other words, the Gaussian profile usedmore often as a substitute for expression
(9.37) is

u = uc exp

[
−

(
9.35

r

x

)2
]

(9.42)

The reader can easily verify that expressions (9.37) and (9.42) are essen-
tially equivalent if η < 2. Furthermore, substituting eq. (9.42) into the jet
strength constraint (9.33) yields uc = 7.46K1/2/x, which is only 0.4 percent
higher than the corresponding uc value deduced from the right-hand side
of eq. (9.37).

The temperature distribution is again closely related to the velocity field. It
is found that the transversal scale of the flow region heated by the turbulent
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jet is proportional to x. Using Gaussian forms to curve-fit the temperature
profile,

T − T∞ = (Tc − T∞) exp

[
−

(
r

bT

)2
]

(9.43)

the 15 experiments compared by Fischer et al. [22] showed that the transversal
length scale bT varies little from one report to another,

bT = (0.127 ± 0.004)x (9.44)

The variation of the centerline temperature can be determined by invoking the
conservation of the flow of energy in a constant-x cut,

2π
∫ ∞

0
ρcPu(T − T∞)r dr = constant = ρcPU0(T0 − T∞)

π

4
D2
0 (9.45)

The constant shown on the right side was determined by performing the integral
in the plane of the nozzle, where u = U0 and T = T0. Using eqs. (9.40) and
(9.43) in the integral of eq. (9.45), we obtain the expression for the temperature
difference between the centerline and the reservoir,

Tc − T∞ ∼= 5.65
(T0 − T∞)D0

x
(9.46)

The excess centerline temperature decreases as x–1 in the downstream direction.
Together, eqs. (9.43) and (9.46) describe the extent to which the hotness or
coldness of the jet has spread into the isothermal reservoir. Formulas (9.41) and
(9.44) indicate that at a given axial location x, the temperature profile is slightly
broader than the velocity profile,

bT
b

∼= 1.19 (9.47)

The consistency of this observation, not only here but also in two-dimensional
jets and free shear layers, is worthy of our curiosity (Problem 9.5).

9.2.3 Jet in Density-Stratified Reservoir

When a jet is injected horizontally into a stratified fluid reservoir, it becomes
turbulent only if the density stratification is sufficiently weak. I use this opportu-
nity to show that the λB ∼ D scaling law of Chapter 6 can be used to predict the
critical stratification for the transition to the turbulent jet flows described so far
in this section.

Consider the inviscid jet of transversal length scaleD and longitudinal velocity
scale V sketched in Fig. 9.5. The inviscid stream has the property to buckle with
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Figure 9.5 Horizontal jet flowing through a density-stratified reservoir. (From Ref. 9.)

a longitudinal wavelength scale λB that is fixed by the stream thickness D,
eq. (6.11). The subsequent instability of the infinitesimally buckled stream can
be viewed as the result of the net lateral force (Fup) that acts on a control volume
(an elbow) of thickness D and length λB/2,

Fup ∼ ρV2Dα (9.48)

where the angle α is assumed infinitesimally small. The lateral instability and
eventual roll-up (eddy formation) may be inhibited if the stream flow through a
stably stratified medium,

ρ(y) = ρ0 − by (9.49)

where b = −dρ/dy > 0 is the degree of stratification (density gradient). Note
that the displaced finite-size control volume is pulled down by a restoring body
force of order

Fdown ∼ λBDg�ρ (9.50)

where �ρ is the density defect scale of the control volume (�ρ ∼ bαλB).
The condition for transition to buckling (turbulent flow) can be written

sequentially as
Fdown < Fup (9.51)

λBDgbαλB < ρV2Dα (9.52)

gb

ρ(V/D)2
<

(
D

λB

)2

(9.53)
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The left-hand side in inequality (9.53) is known as the Richardson number,

Ri = gb

ρ(V/D)2
(9.54)

On the right-hand side of eq. (9.53), λB is roughly equal to 2D [cf. eq. (6.11)], so
that the (9.53) criterion for transition to turbulent jet flow is simply [9]

Ri � 1
4 (9.55)

The same criterion describes the transition to turbulence in a two-dimensional
shear flow, where V/D represents the scale of the velocity gradient of the shear
flow.

It is important to note that eq. (9.55) is the same as one of the classical results
of hydrodynamic stability theory [23]; however, the analysis presented above
is much shorter and more direct (and transparent) than the classical stability
analysis. By reading eqs. (9.48)–(9.55) in the reverse order, we conclude that
if eq. (9.55) is classical and acceptable, then also acceptable is the λB ∼ D
scaling law of the buckling theory, eq. (6.11). The same kind of reverse-reading
argument can be used in connection with the success of the local Reynolds
number criterion for the laminar–turbulent transition (Table 6.2 and Fig. 6.5),
the prediction of the viscous sublayer thickness (Section 7.5), and the derivation
of the Colburn formula, eq. (7.90).

9.3 PLUMES

9.3.1 Round Plume and the Entrainment Hypothesis

In this section we analyze the mixing in turbulent jet flows driven not by the
strength given to them by the nozzle, but by the effect of buoyancy. Consider the
vertical flow of heated fluid above a point heat source or above a round nozzle
discharging upward, and attach to this flow a cylindrical coordinate system
(y,r) such that the axial point y = 0 coincides with the virtual origin of the
time-averaged plume. As suggested by Fig. 9.6, it is widely observed that at
sufficiently large values of y, the plume thickness D is proportional to y. The
time-averaged plume fills a cone.

In the case of free shear layers and jets, we saw that the observed constant-
angle growth of the flow region leads in relatively few steps to similarity
solutions that represent the time-averaged flow quite adequately. In this section
we conduct an integral analysis of the round plume: The chief conceptual
focus of this analysis is to highlight the relationship between the universally
observed D ∼ y proportionality and a technique known as the entrainment
hypothesis [24].
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(a) (b)

Figure 9.6 (a) Buckled shape of a turbulent plume above a concentrated heat source; (b) funnel
shape of the time-averaged flow region.

The mass, momentum, and energy equations applicable to the plume as a
slender flow region are

1

r

∂

∂r
(ru) + ∂v

∂y
= 0 (9.56)

∂

∂y
(v2) + 1

r

∂

∂r
(ruv) = 1

r

∂

∂r

[
r
(
ν + εM

) ∂v

∂r

]
+ gβ(T − T∞) (9.57)

∂

∂y
(vT) + 1

r

∂

∂r
(ruT) = 1

r

∂

∂r

[
r
(
α + εH

) ∂T

∂r

]
(9.58)

The integral analysis begins with integrating eqs. (9.56)–(9.58) over the
flow cross section defined by the plane y = constant. Integrating the mass
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continuity equation (9.56) yields

(ru)∞ − (ru)0 + d

dy

∫ ∞

0
vr dr = 0 (9.59)

In this equation, the second term is zero because of symmetry. The first term
requires special attention because it is tempting to see a vanishing u as r becomes
large. We must keep in mind, however, that in this boundary layer-type analysis,
‘‘large r’’ means ‘‘sufficiently larger than the transversal length scale of the
plume.’’ Therefore, as we look at the instantaneous picture of the plume edge (in
Fig. 9.6 or in an actual industrial smoke discharge), we conclude that (ru)∞ must
be finite because at the edge both r and u are finite. The actual scale of (ru)∞
will become evident later in this section. In conclusion, eq. (9.59) reduces to

d

dy

∫ ∞

0
vr dr = −(ru)∞ (9.60)

The integral form of the momentum equation (9.57) is

d

dy

∫ ∞

0
v2r dr + (ruv)∞ − (ruv)0

=
[
r
(
ν + εM

) ∂v

∂r

]
∞

−
[
r
(
ν + εM

) ∂v

∂r

]
0
+ gβ

∫ ∞

0
(T − T∞)r dr (9.61)

Although (ru)∞ is finite, the second term, (ruv)∞, vanishes because v vanishes
as we approach the T∞ reservoir. The third term, (ruv)0, is zero due to symmetry.
On the right-hand side of eq. (9.61), the first term vanishes because v = 0 and
the second term is zero, again due to symmetry. Thus, the momentum equation
(9.57) reduces to

d

dy

∫ ∞

0
v2r dr = gβ

∫ ∞

0
(T − T∞)r dr (9.62)

Finally, the energy equation (9.58) can be integrated over the plume cross
section to yield

d

dy

∫ ∞

0
vTrdr + (ruT)∞ − (ruT)0

=
[
r
(
α + εH

) ∂T

∂r

]
∞

−
[
r
(
α + εH

) ∂T

∂r

]
0

(9.63)

The last three terms in this equation drop out based on arguments similar to
those preceding eq. (9.62). The second term (ruT)∞ is, in fact, (ru)∞T∞, where
(ru)∞ is given by the mass conservation equation (9.60). Therefore, combining
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eqs. (9.60) and (9.63), we conclude that the enthalpy flow rate is conserved in
any cross section,

d

dy

∫ ∞

0
v (T − T∞)r dr = 0 (9.64)

A more useful version of eq. (9.64) is to write that the integral alone is y-
independent and proportional to the strength of the heat source q: Setting q equal
to the enthalpy flow rate through each cross section yields

∫ ∞

0
v (T − T∞)r dr = q

2πρcP
(9.65)

The second phase of any integral analysis is to assume known the actual
variation of the unknowns in the direction in which the governing equations
were integrated. Assuming the Gaussian profiles recommended by the survey of
round water jet data [22]

v = vc exp

[
−

( r
b

)2
]

(9.66)

T − T∞ = (Tc − T∞) exp

[
−

(
r

bT

)2
]

(9.67)

and keeping in mind that the ratio bT/b is a constant of order 1 [eq. (9.47)], the
integral equations (9.60), (9.62), and (9.65) reduce to

d

dy
(vcb

2) = −2(ru)∞ (9.68)

d

dy
(v2cb

2) = 2gβ(Tc − T∞)b2T (9.69)

vc(Tc − T∞) = q

πρcP

1 + (b/bT)
2

b2
(9.70)

These three equations are sufficient for determining vc(y), Tc(y), and b(y)
provided that the entrainment term (ru)∞ is known. The scale of (ru)∞ is the
direct consequence of observing that the time-averaged thickness of the plume
is proportional to the plume height,

b ∼ y (9.71)

From this observation and eq. (9.68), we deduce the following scaling law:

vcb ∼ (ru)∞ (9.72)
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In other words, near the sharp interface between the plume stream and the
ambient, the entrainment velocity must scale with the longitudinal (vertical)
velocity. This conclusion is consistent with the eddy formation mechanism
recommended by the λB ∼ D property of any inviscid stream: The growth of
the stream thickness is affected by D-wide eddies, which, rotating like bicycle
wheels on a track (on the ambient), bring ambient fluid into the stream with a
velocity proportional to the peripheral velocity of the eddy. Noting that in the
case of a plume vc > 0 and (ru)∞ < 0, we write

(ru)∞ = −α̂bvc (9.73)

where α̂ is an empirical constant tied to the measured cone angle of the plume.
This linear growth feature—either accepted empirically or derived theoretically
based on the λB ∼ D property—is the source of eq. (9.73).

The entrainment model (9.73) becomes the necessary substitute for the
similarity variable η = γ 0r/x [eq. (9.38)] if the similarity formulation of the
earlier sections is replaced by the integral formulation presented in this section.
The same entrainment hypothesis was used by Morton et al. [25] in the analysis
of buoyant turbulent jets in stratified media. Thus, combining the entrainment
assumption (9.73) with the integral equations (9.68)–(9.70) and appropriate
starting conditions (at y = 0), we have the means to derive the y dependence of
vc and Tc.

The starting conditions for integrating eqs. (9.68)–(9.70) require special
attention. We can focus on the simplest case—the simple plume—in which we
assume that the strength of the jet v2cb

2 is zero at y = 0. In addition, we take the
flow rate vcb

2 to be zero at y = 0. These assumptions make the simple plume
one that originates from a fictitious point, as shown on the right-hand side of
Fig. 9.6. The integral solution subjected to these starting conditions is [24]

b = 6
5 α̂y (9.74)

vc =
[

25

24πα̂2

qgβ

ρcPy

(
1 + b2T

b2

)]1/3

(9.75)

Tc − T∞ = 0.685

(
1 + b2

b2T

) (
1 + b2T

b2

)−1/3(
q

πρcP

)2/3

α̂−4/3y−5/3(gβ)−1/3

(9.76)

The value of the empirical constant is α = 0.12 [24].
Historically, the turbulent simple-plume problem was first solved and pub-

lished in 1941 by Wilhelm Schmidt [26], who used a similarity formulation of
the type presented earlier in the chapter (in other words, he used the mixing
length eddy diffusivity model instead of the entrainment hypothesis of integral
analysis). Fifteen years later, Morton et al. [25] published an integral solution for
the more general problem involving ambient stratification and pointed out that
the integral solution for zero stratification [eqs. (9.74)–(9.76)] ‘‘is of the same
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form as that of Schmidt [26].’’ They also pointed out that the agreement between
Schmidt’s solution and the integral solution for zero stratification ‘‘illustrates the
fact that the entrainment assumption is consistent with Schmidt’s mixture length
assumptions.’’

The integral equations (9.68)–(9.70) can be solved for the more general case
where the initial section of the plume is, in fact, a forced jet, one defined by
a nozzle producing a jet of known flow rate (vcb

2)y=0 and known strength
(v2cb

2)y=0. Given enough time, that is, above a certain height, the strength of
the buoyant jet becomes dominated by the effect of buoyancy [eq. (9.69)] and
the behavior of the buoyant jet becomes similar to that of the simple plume.
The height above which the initial jet becomes a plume can be evaluated by
comparing the local strength of the simple plume [v2cb

2, eqs. (9.74) and (9.75)]
with the imposed jet strength (v2cb

2)y=0.

9.3.2 Pulsating Frequency of Pool Fires

The time-averaged turbulent plume description provided by eqs. (9.74)–(9.76) in
conjunction with the assumed Gaussian profiles (9.66)–(9.67) is adequate only
for sufficiently large values of y, depending on the particular device that acts as
a heat source. For example, in the case of the smoke plume shown in Fig. 6.1,
the section immediately above the heat source is laminar; hence, the y = 0 point
of Fig. 9.6 does not coincide with the heat source. Another example is the plume
generated by a very large heat source (e.g., a barbecue or a campfire). In its initial
stages, this flow accelerates upward as an inviscid stream, and over a height of a
few diameters, its thickness decreases. Eventually, the formation of large eddies
takes over as a plume-thickening mechanism, and the upper section of the plume
falls in line with eqs. (9.74)–(9.76). However, even near the base, the stream
exhibits the λB ∼ D scaling law; Fig. 9.7 compares the sinuous shape predicted
by buckling theory [27] with the photographed base section of a natural gas well
on fire [7].

The known buckled structure of the turbulent plume is the key to predicting
the natural pulsating frequency of pool fires [28]. To predict this frequency was
the problem proposed by Pagni [29] to the 1989 forum on Some Unanswered
Questions in Fluid Mechanics. With reference to the empirical frequency data of
Fig. 9.8, he pointed out that ‘‘it has been known for twenty years that fires pulsate
with a regular frequency, releasing large annular vortices (coherent structures)
from their bases. What is not known is why the formula

f 2v ∼= 2.3 m/s2

D
(9.77)

describes the shedding frequency of pool-flame oscillation over more than three
orders of magnitude of the flame base diameter, from 0.03 to 60m?’’

The data displayed in Fig. 9.8 represent a wide variety of fuels and fire pool
(base) shapes, from circular to rectangular. These data were produced by six
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(a) (b)

Figure 9.7 Buckled shape of a turbulent plume rising from rest: (a) night photograph of a
natural gas well on fire; (b) large-scale sinuous structure predicted by buckling theory. [(a) From
Ref. 7, courtesy of World Wide Photos; (b) from Ref. 27.]

independent studies. The alignment of the (fv, D) data along the line represented
by eq. (9.77) is remarkable. The alignment calls for theory. It demands to be
predicted.

In this section, I show that eq. (9.77) can be derived in only a few steps from
eq. (6.11), which says that

λB

D
∼= C (9.78)

with C ∼= 1.6 for a stream with round cross section and C ∼= 1.8 for one with a
two-dimensional (flat) cross section. Consider now the fire plume rising above
the base of width D in Fig. 9.8 and assume that the plume thickness (of order
D itself) is large enough so that the stream is not penetrated horizontally by
viscous diffusion (i.e., it is ‘‘inviscid’’). We validate this assumption at the end
of this section. In an inviscid plume, the vertical flow is ruled by the balance
between buoyancy and inertia. At a height corresponding to the wavelength of
the buckled shape, the vertical velocity scale is the same as the Galilean velocity

v ∼= (2g′λB)
1/2 (9.79)
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Figure 9.8 Natural pulsating frequency of fires: measurements collected from six independent
studies (from Ref. 29.) and basic scales of a pulsating fire plume (from Ref. 28).

where
g′ = ρ∞ − ρfire

ρ∞
g (9.80)

and ρ∞ is the density of the surrounding atmosphere. The effective gravitational
acceleration g′ is nearly the same as g because ρ∞ � ρ fire (recall that ρ = P/RT,
P = constant, T∞ ∼ 300 K, and Tfire ∼ 1000–2000 K); therefore, g′ ∼= g.

The symmetry of the shear flow about the fire–ambient interface suggests
that if the plume velocity is v and the ambient velocity is zero, the interface
(meander) velocity is approximately v/2. This means that the meander of the
length λB rises along the plume with the velocity v/2. The period of the swaying
motion of the λB-tall section of the fire plume is

t ∼= λB

v/2
(9.81)

From the point of view of the observer on the ground, t is also the period of
the fire vortex shedding process. The frequency of this pulsating motion is

fv = 1

t
∼= v/2

λB
(9.82)

or, after using eqs. (9.78) and (9.79) and g′ ∼= g,

f 2v ∼= g/2C

D
(9.83)
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This theoretical trend already agrees with the trend of the empirical correlation
(9.77). It also agrees quantitatively, because if we substitute g = 9.81m/s2, we
obtain

f 2v ∼=



3.1 m/s2

D
(round plume) (9.84)

2.7 m/s2

D
(two-dimensional plume) (9.85)

The better than 16 percent agreement between these theoretical fv values
and the empirical fv value provided by eq. (9.77) is remarkable in view of
the simplicity of the scale analysis on which eqs. (9.84)–(9.85) are based.
Furthermore, the 7 percent discrepancy between the fv values calculated with
eqs. (9.84) and (9.85) explains some of the scatter that is visible in the data of
Fig. 9.8. This scatter can be attributed in part to the different shapes of the pool
fires whose pulsating frequencies have been plotted in that figure.

It remains to clarify when the fire plume is thick enough to be modeled
as inviscid. According to the constructal theory of Chapter 6, the plume is
not penetrated by viscous diffusion when the order of magnitude of the local
Reynolds number is greater than 102 [cf. eq. (6.15)],

vD

ν
> 102 (9.86)

When this inequality holds, the plume buckles and becomes turbulent. The
vertical velocity scale can be calculated by using eqs. (9.78) and (9.79). The
kinematic viscosity ν can be approximated as the viscosity of air at atmospheric
pressure and a temperature of order 1000◦C. And if we use C ∼= 1.7 as an
average value of the geometric constant of the buckled plume, the inequality
(9.86) assumes the dimensional form

D > 0.02 m (9.87)

This order-of-magnitude threshold for the size of the flame base agrees very
well with Pagni’s observation that vortex shedding occurs when D exceeds
0.03m [see the quotation following eq. (9.77) and the leftmost data in Fig. 9.8].
It also suggests that vortex shedding should be observed in pool fires with base
diameters even larger than 60m (i.e., to the right of the data of Fig. 9.8).

9.3.3 Geometric Similarity of Free Turbulent Flows

Based on the foregoing treatment of turbulent free shear layers, jets, and plumes,
we draw the very important conclusion that in a time-averaging sense, all these
flows and their associated temperature fields are geometrically similar. Figure 9.9
shows a drawn-to-scale summary of themean velocity profiles discussed earlier in
this chapter. This drawing is a restatement of the observation that the transversal
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Figure 9.9 Constant-angle mixing regions of turbulent shear layers, jets, and plumes.

Table 9.1 Effect of the longitudinal length x on the
time-averaged scales of free turbulent flows

Flow Configuration D vc Tc– T∞

Shear layers
Two-dimensional x x0 x0

Jets
Axisymmetric x x−1 x−1

Two-dimensional x x−1/2 x−1/2

Plumes
Axisymmetric x x−1/3 x−5/3

Two-dimensional x x0 x−1

length scale of shear layers, jets, and plumes is proportional to the distance
x measured from a fictitious origin. This observation was the basis for the
similarity treatment of shear layers and jets, and for the entrainment hypothesis
used in the integral analysis of the simple plume. The constant-angle growth is a
consequence of the λB ∼ D scaling law of inviscid flow (Fig. 9.3).

Table 9.1 summarizes the results that we have obtained for the effect of the
longitudinal distance x on the flow thickness scale (D), centerline velocity (vc),
and centerline excess temperature (Tc − T∞). The two-dimensional plume forms
the subject of Problem 9.3. The table shows that the proportionality between D
and x is a feature that characterizes all these flows.

9.4 THERMAL WAKES BEHIND CONCENTRATED SOURCES

A relatively simple way to model the spreading of thermal pollution in the wake
of a concentrated heat source is shown in Fig. 9.10. Consider a line heat source
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Figure 9.10 Development of a thermal wake behind a line heat source perpendicular to a
uniform stream with grid-generated turbulence.

of strength q′ (W/m), positioned normal to a time-averaged uniform stream
(U∞, T∞) populated throughout by eddies that have the same characteristic size
and peripheral speed. This sort of turbulence can be created in the laboratory,
immediately behind a turbulence-generating grid installed normal to the flow in a
wind tunnel. In nature, grid-generated turbulence is nomore than an approximate
model for the eddy transport capability of large streams that bathe concentrated
sources of heat or mass (e.g., the atmospheric boundary layer and the mainstream
section of a river). The eddy population in such streams is the result of earlier
stream–wall and stream–stream interactions of the type discussed in Chapters 7
and 8 and the preceding sections of this chapter.

To determine the time-averaged temperature field in the wake of the
line source of Fig. 9.10, consider the energy equation applicable to that
situation:

U∞
∂T

∂x
= εH

∂2T

∂y2
(9.88)

Equation (9.88) has been simplified based on the following assumptions:

1. The thermal eddy diffusivity is much greater than the molecular diffusivity,
εH � α.

2. The thermal wake region is slender; hence, eq. (9.88) is of the boundary
layer type.

3. The eddy diffusivity εH is not a function of either y or x; the value of this
constant, assumed known, is controlled by the mechanism that generates
turbulence in the U∞ stream.
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With these assumptions in mind, the scale analysis of the energy equation
shows that the thermal wake thickness scales as (εHx/U∞)1/2. Also, the scale
analysis of the enthalpy conservation constraint

q′ = ρcP

∫ ∞

−∞
U∞(T − T∞) dy (9.89)

shows that the centerline-to-ambient temperature difference (Tc − T∞) scales as
(q′/ρcP)(U∞εHx)

−1/2. The similarity solution recommended by these scales is

T(x, y) − T∞ = q′/ρcP
(U∞εHx)1/2

θ(η) (9.90)

η = y

(
U∞
εHx

)1/2

(9.91)

where the similarity profile θ is given by the solution to the following problem:

− 1
2 (θ + ηθ ′) = θ ′′, θ → 0 as η → ±∞, and

∫ ∞

−∞
θ dη = 1 (9.92)

The result is

θ = 1

2π1/2
exp

(
−η2

4

)
(9.93)

In conclusion, the time-averaged temperature field behind the line source has
a Gaussian profile the span of which increases as x1/2. The centerline temperature
difference T(x, 0) − T∞ decreases as 1/x1/2 in the flow direction [eq. (9.90)]. The
temperature field is known if the eddy diffusivity εH associated with the uniform
turbulence is known; in fact, the solution above can be combined with actual
measurements of T(x, y) in order to calculate the εH value of the population of
eddies produced by a laboratory technique.

The thermalwake behind a point source immersed in grid-generated turbulence
can be analyzed according to the same model. The temperature field is given by
(see Problem 9.4)

T(x, r) − T∞ = q

4πρcPεHx
exp

(
−U∞r2

4εHx

)
(9.94)

where q(W) is the strength of the point source and r is the radial distance
measured away from the wake centerline.

Free turbulent flows and their effect on the dispersal of heat and mass
in environmental configurations are treated in Ref. 30, which focuses on the
interface between energy engineering and environmental and civil engineering.
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PROBLEMS

9.1. Study the slender shear layer region of Fig. 9.1 as a laminar flow problem.
Rely on scale analysis to show that the thickness of this laminar region must
increase as (νx/U0)

1/2. Note the difference between the nonlinear growth of
the laminar layer and the linear growth of the turbulent case treated in the
text. Apply the local Reynolds number criterion for the laminar–turbulent
transition [eq. (6.15)], and determine the laminar tip length of the shear
layer. Sketch to scale the structure of the shear layer, showing the laminar
and turbulent sections for cases (a) and (b) such that (U0)a = 2(U0)b.
Comment on the change in this structure as U0 increases.

9.2. Repeat the scaling argument of Fig. 9.3 for the more general case where
both U0 and U∞ are finite (note that Fig. 9.2 corresponds to such a case).
Show that relative to the observer at rest, the constant angle of the mixing
region must scale as

arctan
D(U0 − U∞)

3λB(U0 + U∞)

where λB/D is a constant comparable with 2. The implication of this result is
that the angle photographed in Fig. 9.2 stands to decrease asU∞ approaches
U0. Test this conclusion against the comprehensive set of photographs
published in Ref. 5 and against Fig. 7 of Ref. 5.
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9.3. Consider the time-averaged development of a two-dimensional turbulent
plume above a horizontal line heat source of strength q′(W/m). In the usual
Cartesian system (x, y) and (u, v), with y and v pointing upward, derive
the integral equations for mass, momentum, and energy in each horizontal
cut through the plume. Combining the mass continuity equation with the
lateral entrainment hypothesis (discussed in the text in conjunction with
round plumes), and assuming that the velocity profile thickness D is of
the same order as the temperature profile thickness DT, use scale analysis
to derive the scales of DT , v, and Tc − T∞. In this notation, Tc − T∞ is
the temperature between a point on the centerplane and the ambient fluid
reservoir. Sketch qualitatively the variation of DT , v, and Tc − T∞ with
the altitude y. Assuming Gaussian profiles for both v and Tc − T∞, derive
expressions for the centerline velocity and temperature difference, vc and
Tc − T∞. Compare your results with the bottom line of Table 9.1.

9.4. Consider the development of a thermal wake behind a point source of
strength q(W) situated in a uniform stream U∞ that contains grid-generated
eddies. The eddy thermal diffusivity of this stream εH is constant and
assumed known. Develop a similarity solution for the time-averaged tem-
perature field behind the point source. Express your result as

T(r, x) − T∞ = function(q, εH ,U∞, r, x)

where (r, x) is the cylindrical coordinate system attached to the point source,
with the x axis pointing downstream, in the same direction as U∞. Note the
analogy between the energy equation simplified for this problem and the
transient equation for pure radial conduction away from a line source. Show
that your solution for the thermal wake behind a point source is analytically
the same as that for transient conduction around a line source instantly
releasing a finite amount of energy per unit length [31].

9.5. Consider the free shear layer formed between two streams at different
temperatures (Fig. 9.1). Show that in Pr > 1 fluids, the thickness of the
velocity profile, D, must be of the same order as the thickness of the
temperature profile,DT. [Hint: Based on scale analysis, estimate the thermal
penetration distance by which the D-size eddy swells as a temperature field
during one rotation. What is the scale of DT/D in Pr < 1 fluids?]
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CONVECTION WITH
CHANGE OF PHASE

When the temperature difference between the fluid and the wetted solid surface is
sufficiently large, the fluid or the surface may experience a change of phase. The
circumstances where convection heat transfer is accompanied by phase change
are extremely diverse, and to cover them all is not the objective of this book. The
objective is to show how the basic principles and analytical tools of single-phase
convection can be extended to problems of convection with phase change. We
accomplish this in two steps. In the first part of the chapter we review the main
results of the classical phase-change topics of condensation and boiling. In the
second part we discuss two basic phenomena of melting with fluid flow: contact
melting and lubrication and melting in the presence of natural convection. These
phenomena have generated considerable interest in contemporary research.

10.1 CONDENSATION

10.1.1 Laminar Film on a Vertical Surface

A simple configuration for phase change is the condensation of a vapor on a cold
vertical surface (Fig. 10.1). The film of condensate that forms on the surface
can have three distinct regions. The laminar section is near the top, where the
film is relatively thin. The film thickness increases in the downward direction as
more and more of the surrounding vapor condenses on the exposed surface of
the film. There comes a region where the film becomes thick enough to show the
first signs of transition to a nonlaminar flow regime, cf. eq. (6.15). In this wavy
flow region, the visible surface of the film shows a sequence of regular ripples:
The film buckles (cf. Chapter 6 and Refs. 2–5). Finally, if the wall extends
sufficiently far downward, the film enters and remains in the turbulent region,
where the ripples appear irregular in both space and time.
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Figure 10.1 Flow regimes of the film of condensate on a cooled vertical surface. (From Ref. 1.)

The right side of Fig. 10.1 shows that even in the laminar film region, which
is the simplest of the three regions, the flow of the liquid film interacts with
the descending boundary layer of cooled vapor. The temperature of the liquid–
vapor interface is the saturation temperature that corresponds to the local pressure
along the wall, Tsat. The saturation temperature is sandwiched between the
temperature of the isothermal vapor reservoir, T∞, and the wall temperature, Tw.

Through the shear stress at the liquid–vapor interface, the falling jet of vapor
aids the downward flow of the liquid film. The vapor in the falling jet is colder
than the vapor reservoir and warmer than the liquid in the film attached to
the wall.

This two-phase flow is considerably more complicated in the wavy and
turbulent sections of the wall. To make matters even more complicated, when
the film is sufficiently long to exhibit all three regimes, the overall heat transfer
rate from the vapor reservoir to the wall is dominated by the contributions from
the wavy and turbulent sections. The same can be said about the total rate of
condensation, which, as we will learn in eq. (10.21), is proportional to the total
heat transfer rate from the vapor to the vertical wall.

Consider the two-dimensional laminar film sketched in Fig. 10.2, in which the
distance y measures downward the length of the film. This flow is considerably
simpler than the one shown in Fig. 10.1, because here the entire reservoir of
vapor is assumed isothermal at the saturation pressure Tsat. The merit of this
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(a)

(b)

Figure 10.2 Laminar liquid film supplied by a reservoir of saturated vapor. (From Ref. 1.)

simplification is that it allows us to focus exclusively on the flow of the liquid
film and to neglect the movement of the nearest layers of vapor.

The analysis of the flow of liquid begins with the steady-state version of the
momentum equations (1.19), which in the case of a slender film (i.e., in boundary
layer flow) reduce to the single equation

ρl

(
u
∂v

∂x
+ v

∂v

∂y

)
= −dP

dy
+ µl

∂2v

∂x2
+ ρlg (10.1)

The last term on the right side represents the body force experienced by each small
packet of liquid. Because of the slenderness of the film, the vertical pressure
gradient in the liquid is the same as the hydrostatic pressure gradient in the
external vapor, dP/dy = ρvg. Review the second simplification of the boundary
layer momentum equations in Chapter 2, namely eq. (2.25). Equation (10.1)
can now be rewritten to show that the net sinking force felt by the liquid is, in
general, resisted by a combination of the effects of friction and inertia:

ρl

(
u
∂v

∂x
+ v

∂v

∂y

)
︸ ︷︷ ︸

Inertia

= µl
∂2v

∂x2︸ ︷︷ ︸
Friction

+ g(ρl − ρv)︸ ︷︷ ︸
Sinking effect

(10.2)
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We continue the analysis by assuming that the inertia effect is small compared
with the effect of friction and set the left side of eq. (10.2) equal to zero. The
domain of validity of this assumption is discussed at the end of this section.
Without the inertia terms, eq. (10.2) can be integrated twice in x and subjected
to the no-slip conditions at the wall (v = 0 at x = 0) and zero shear at the
liquid–vapor interface (∂v/∂x = 0 at x = δ). The solution for the vertical liquid
velocity profile is

v(x, y) = g

µl
(ρl − ρv)δ

2
[
x

δ
− 1

2

(x
δ

)2
]

(10.3)

in which the film thickness is an unknown function of longitudinal position, δ(y).
The local mass flow rate through a cross section of the film is

�(y) =
∫ δ

0
ρlv dx = gρl

3µl
(ρl − ρv)δ

3 (10.4)

The mass flow rate � (kg/s · m) is expressed per unit length in the direction
normal to the plane of Fig. 10.2. The downward velocity and the flow rate are
proportional to the sinking effect g(ρl − ρv); they are also inversely proportional
to the liquid viscosity.

The film thickness δ(y) can be determined by invoking the first law of
thermodynamics for the control volume δ × dy shown in the lower part of
Fig. 10.2a. Entering this control volume from the right is the saturated vapor
stream d�, the enthalpy flow rate of which is hg d�. The vertical enthalpy inflow
associated with the mass flow rate � (W/m) is

H =
∫ δ

0
ρlv[hf − cP,l(Tstat − T)] dx (10.5)

The quantity in brackets is the local specific enthalpy (kJ/kg) of the liquid at the
point (x, y). Since the liquid is slightly subcooled (T < Tsat), its specific enthalpy
is smaller than the specific enthalpy of saturated liquid (hf). Next, we assume [6]
that the local temperature T is distributed approximately linearly across the film,

Tsat − T

Tsat − Tw
∼= 1 − x

δ
(10.6)

and after using eqs. (10.3) and (10.6) in the integral (10.5), we obtain

H = [
hf − 3

8cP,l

(
Tsat − Tw

)]
� (10.7)

Finally, in accordance with the linear temperature profile assumption (10.6), the
heat flux absorbed by the wall is

q′′
w

∼= kl
Tsat − Tw

δ
(10.8)
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The first law of thermodynamics for the δ × dy system requires that in the
steady state

0 = H − (H + dH) + hg d� − q′′
w dy (10.9)

or, after using eqs. (10.7) and (10.8),

kl
δ

(Tsat − Tw) dy = [hfg + 3
8cP,l(Tsat − Tw)]︸ ︷︷ ︸

h′
fg

d� (10.10)

The group h′
fg represents the augmented latent heat of condensation, which

includes the actual latent heat (hfg) and a sensible-heat contribution accounting
for the cooling of the fresh condensate to temperatures below Tsat. Combined
with the � expression (10.4), eq. (10.10) becomes

klνl(Tsat − Tw)

h′
fgg(ρl − ρv)

dy = δ3 dδ (10.11)

and after integrating from y = 0 where δ = 0,

δ(y) =
[
y

4klνl
(
Tsat − Tw

)
h′
fgg(ρl − ρv)

]1/4

(10.12)

In conclusion, the thickness of the laminar film increases as the film length
raised to the power 1

4 , that is, in the same way as the thickness (thermal, or
velocity) of the vertical laminar boundary layer in a single-phase fluid, eq. (4.26).
Knowing δ(y), we can calculate in order the local heat transfer coefficient

hy = q′′
w

Tsat − Tw
= kl

δ
=

[
k3
l h

′
fgg

(
ρl − ρv

)
4yνl(Tsat − Tw)

]1/4

(10.13)

the average heat transfer coefficient for a film of height L,

hL = 4
3hy=L (10.14)

and the overall Nusselt number based on the L-averaged heat transfer coefficient,

NuL = hLL

kl
= 0.943

[
L3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/4

(10.15)

Regarding the physical meaning of the dimensionless group formed on the right
side of eq. (10.15), we note that it is nearly equal to the geometric slenderness
ratio of the liquid film [cf. eq. (10.12)]:

L

δ(L)
= 0.707

[
L3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/4

(10.16)
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The results reported in eqs. (10.12)–(10.16) can also be obtained based on
scale analysis, as we showed for laminar boundary layer natural convection in
Section 4.3. The resulting formulas are the same as in eqs. (10.12)–(10.16), but
without factors of order 1 such as 0.943 and 0.707 in eqs. (10.15) and (10.16).

In numerical calculations with these formulas, the liquid properties are best
evaluated at the average film temperature (Tw + Tsat)/2. The latent heat of
condensation hfg is found in thermodynamic tables of saturated-state properties
and takes the value that corresponds to the phase-change temperature Tsat.
Rohsenow [7] refined the preceding analysis by discarding the linear profile
assumption (10.6) and by performing an integral analysis of the temperature
distribution across the film. He found a temperature profile whose curvature
increases with the degree of liquid subcooling, cP, l(Tsat − Tw). In place of the
modified latent heat h′

fg defined under eq. (10.10), Rohsenow recommended

h′
fg = hfg + 0.68cP,l(Tsat − Tw) (10.17)

This expression is also recommended for calculations involving the wavy and
turbulent flow regimes. It can be rewritten as

h′
fg = hfg(1 + 0.68Ja) (10.18)

in which the Jakob number Ja is a relative measure of the degree of subcooling
experienced by the liquid film,

Ja = cP,l(Tsat − Tw)

hfg
(10.19)

To summarize, the total heat transfer rate absorbed by the wall per unit length
in the direction normal to the plane of Fig. 10.2 is

q′ = hLL(Tsat − Tw) = kl(Tsat − Tw)NuL (10.20)

The total flow rate collected at the bottom end �(L) can be calculated by
substituting y = L in what results from combining eqs. (10.4) and (10.12). It is
easy to show that the total condensation rate �(L) is proportional to the total
cooling rate provided by the vertical wall,

�(L) = q′

h′
fg

= kl
h′
fg

(Tsat − Tw)NuL (10.21)

Equations (10.20) and (10.21) are global: They hold for the entire film, not
just for the laminar section. Rewritten as q′ = �(L)hfg(1 + 0.68 Ja), eq. (10.21)
also shows that the cooling rate q′ increases with the latent heat hfg and the degree
of liquid subcooling Ja. This trend is expected because the cooling provided by
the wall causes condensation of vapor at the x = δ interface and cooling of the
newly formed liquid to temperatures below Tsat.
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The laminar-film results discussed until now were derived by Nusselt [6]
based on the assumption that the effect of inertia is negligible in the momentum
equation (10.2). The complete momentum equation was used by Sparrow and
Gregg [8] in a similarity formulation of the same problem. Their solution for
NuL falls below Nusselt’s eq. (10.15) when the Prandtl number is smaller than
0.03 and the Jakob number is greater than 0.01.

In a subsequent analysis, Chen [9] abandoned the assumption of zero shear
at the liquid–vapor interface (Fig. 10.2b), while retaining the effect of inertia
in the momentum equation. The vapor was assumed saturated and stagnant
sufficiently far from the interface. Next to the interface, the vapor is dragged
downward by the falling film of condensate and forms a velocity boundary
layer that bridges the gap between the downward velocity of the interface and
the zero velocity of the outer vapor (see the small detail above Fig. 10.3).
Chen’s chart for calculating the overall Nusselt number NuL is reproduced in
Fig. 10.3. Especially at low Prandtl numbers, the NuL values read off Fig. 10.3
are smaller than those furnished by Sparrow and Gregg’s solution [8] and agree
better with experimental data. The lower NuL values are due to the additional
restraining effect that the vapor drag has on the downward acceleration of the
liquid film.

The scale analysis of the laminar film condensation problem [mentioned
after eq. (10.16)] was reported in the first edition of this book (see Ref. 10,
pp. 146–151). It showed that the fall of the liquid film is restrained by friction
when Prl > Ja and by inertia when Prl < Ja. The group that marks the transition
from one type of flow to the other is the ratio Prl/Ja. Indeed, if we use the
group Prl/Ja on the abscissa of Fig. 10.4, the low-Prl information of Fig. 10.3 is
correlated well by the single curve shown in Fig. 10.4.

Figure 10.3 Prandtl number and wall subcooling (Ja) effects on laminar film condensation on
a vertical wall and on a single horizontal cylinder. (From Refs. 1 and 9.)
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Figure 10.4 Transition from inertia-restrained film to friction-restrained film condensation on a
vertical wall and on a single horizontal cylinder. (After Ref. 10.)

10.1.2 Turbulent Film on a Vertical Surface

The liquid film becomes wavy and, farther downstream, turbulent when the order
of magnitude of its local Reynolds number is greater than 102 (see Chapter 6).
The local Reynolds number of the liquid film [eq. (6.15)] is the group ρluδ/µl,
in which δ is the local thickness and u is the representative scale of the local
downward velocity. Because the product ρluδ is of the same order of magnitude
as the local liquid mass flow rate �, the local Reynolds number can also be
expressed as the ratio �/µl. This is why in the field of condensation heat transfer,
the local Reynolds number of the liquid film has historically been defined as

Rey = 4

µl
�(y) (10.22)

The flow rate �(y) and the Reynolds number Rey increase in the downstream
direction. Experimental observations of the condensate indicate that the laminar
section of the film expires in the general vicinity of Rey ∼ 30. The film can be
described as wavy in the segment corresponding approximately to 30 � Rey �
1800. Farther downstream, the film appears turbulent. The succession of these
flow regimes is illustrated on the abscissa of Fig. 10.5.

Experiments also revealed that the heat transfer rate in the wavy and turbulent
sections is considerably larger than the estimate based on the laminar film
analysis, eq. (10.15) and Fig. 10.3. The sizable record of experimental data and
correlations on condensation heat transfer in the wavy and turbulent regimes
was reviewed by Chen et al. [11], who developed the following correlation for
the average heat transfer coefficient for an L-tall film that may have wavy and
turbulent regions:

hL
kl

(
ν2
l

g

)1/3

= (Re−0.44
L + 5.82 × 10−6Re0.8

L Pr1.3
l )1/2 (10.23)
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Figure 10.5 L-averaged heat transfer coefficient for laminar, wavy, and turbulent film conden-
sation on a vertical surface. (From Ref. 1.)

Figure 10.5 shows that this correlation applies only above ReL ∼ 30. Equation
(10.23) agrees within ± 10 percent with measurements where the vapor was
stagnant (or slow enough) so that the effect of shear at the interface was
negligible. Below ReL ∼ 30, the average heat transfer formula recommended is
eq. (10.15), which when ρl � ρv can be projected on Fig. 10.5 as the line

hL
kl

(
ν2
l

g

)1/3

= 1.468Re−1/3
L (10.24)

The usual unknown in the vertical-film condensation problem is the total
condensation rate �(L), or alternatively, ReL. This unknown influences both
sides of eq. (10.23), i.e., the ordinate and abscissa parameters of Fig. 10.5.
Instead of the trial-and-error procedure required by eq. (10.23) or Fig. 10.5, it is
more convenient to rewrite the ordinate parameter of Fig. 10.5 as [1]

hL
kl

(
ν2
l

g

)1/3

= ReL
B

(10.25)

in which B is a new dimensionless group that is proportional to the physical
quantities [L and (Tsat − Tw)] that, when increasing, tend to augment the
condensation rate,

B = L(Tsat − Tw)
4kl

µlh
′
fg

(
g

ν2
l

)1/3

(10.26)
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The B group is the driving parameter for film condensation [1]. Equation (5) is
a consequence of the global statements (10.20)–(10.21) and allows us to rewrite
eqs. (10.23) and (10.24) as

B = ReL(Re−0.44
L + 5.82 × 10−6Re0.8

L Pr1.3
l )−1/2 (10.27)

= 0.681Re4/3
L (10.28)

Figure 10.6 displays this information by using the unknown ReL on the
abscissa and the driving parameter B on the ordinate. We see at a glance how the
condensation rate and the bottom-end Reynolds number increase monotonically
as the driving parameter increases. The condensation rate increases faster when
the film length is dominated by the turbulent regime.

Figure 10.6 Film condensation on a vertical surface: the total condensation rate (or ReL) as a
function of the condensation driving parameter B. (From Ref. 1.)
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10.1.3 Film Condensation in Other Configurations

The vertical-wall results described until now hold not only for flat surfaces
(Fig. 10.7a) but also for curved vertical surfaces on which the film of condensate
is sufficiently thin. In the case of the vertical cylindrical surface (internal or
external) shown in Fig. 10.7b, the film is ‘‘thin’’ when the order of magnitude of
its thickness is smaller than the cylinder diameter.

In the case of a plane wall inclined at an angle θ with respect to the vertical
direction (Fig. 10.8a), the gravitational acceleration component along the surface
is g cos θ . Condensation heat transfer results for the inclined wall can be
obtained by replacing g with g cos θ in the results reported until now for a
vertical plane wall.

(a) (b)

Figure 10.7 Vertical surfaces whose films of condensate can be modeled as a plane.
(From Ref. 1.)

(a) (b)

Figure 10.8 Film condensation on (a) inclined plane surface and (b) spherical surface.
(From Ref. 1.)
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More complicated surface shapes are those that are curved in such a way that
the tangential component of gravity varies along the flowing film of condensate.
One example is the spherical surface shown in Fig. 10.8b. If the film is laminar
all around, the diameter-averaged heat transfer coefficient is given by [12]

NuD = hDD

kl
= 0.815

[
D3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/4

(10.29)

The laminar-film condensation on the surface of a single horizontal cylinder
of diameter D (Fig. 10.9a) was first analyzed by Nusselt [6], who relied on the
same simplifying assumptions as in the vertical-wall analysis detailed in Section
10.1.1. The formula for the average heat transfer coefficient under a condensate
film that is laminar all around the cylinder is [12]

NuD = hDD

kl
= 0.729

[
D3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/4

(10.30)

(a)

(b)

(c)

Figure 10.9 Film condensation on (a) single horizontal cylinder and (b) vertical column (e.g.,
n= 2) of horizontal cylinders. (c) Effect of the condensation rate on the type of flow that impinges
on the next cylinder. (From Ref. 1.)
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This expression is similar to the laminar-film relations for the sphere, eq. (10.29),
and the vertical wall, eq. (10.15). For the horizontal cylinder and the sphere, the
diameterD plays the role of vertical dimension in the same sense that Lmeasures
the height of the vertical plane wall in eq. (10.15). The physical properties needed
in eqs. (10.29), (10.30), and other formulas presented in this subsection are to be
evaluated at the film temperature (Tw + Tsat)/2.

The Prandtl number effect on laminar-film condensation on a single horizontal
cylinder was documented by Sparrow and Gregg [13] and Chen [14]. The latter
also took into account the effect of interfacial shear and found that the Prl effect
is described fairly well by the curves plotted in Fig. 10.3. Note the alternative
NuD meaning of the ordinates of Figs. 10.3 and 10.4.

Analogous to the analysis that yields the single-cylinder formula (10.30), the
laminar-film analysis of a vertical column of n horizontal cylinders (Fig. 10.9b)
leads to

NuD,n = hD,nD

kl
= 0.729

[
D3h′

fgg
(
ρl − ρv

)
nklνl(Tsat − Tw)

]1/4

(10.31)

The heat transfer coefficient hD,n has been averaged over all the cylindrical
surfaces, so that the total heat transfer rate per unit of cylinder length is
q′ = hD,nnπD(Tsat − Tw). By comparing the right sides of eqs. (10.30) and
(10.31), we note that the average heat transfer coefficient of the n-tall column is
smaller than that of the single cylinder,

hD,n = hD
n1/4

(10.32)

The hD,n values that are found experimentally are usually greater than the
values calculated based on eq. (10.31). This augmentation effect can be attributed
to the splashing caused by the sheet or droplets of condensate, as they impinge
on the next cylinder. Figure 10.9c shows that the condensation rate depends on
the type of flow (i.e., drops, jets, or sheet) that falls on the next cylinder as the
condensation rate increases. An additional factor is the condensation that takes
place on the sheet (or droplets) between two consecutive cylinders [14] because
the falling sheet is at an average temperature below Tsat. Finally, if each tube
is tilted or bowed slightly (due to its weight, or a defect in the assembly), the
condensate runs longitudinally along the tube and drips only from its lowest
region. In such cases, most of the length of the next cylinder is not affected by
the condensate generated by the preceding cylinder.

When the cooled surface is perfectly horizontal and faces upward (Fig. 10.10a),
the condensate flows away from the central region and spills over the edges
[15]. In the case of a long horizontal strip of width L, the average heat transfer
coefficient is given by a formula similar to eq. (10.15) except that the exponent
of the dimensionless group on the right side is 1

5 :

NuL = hLL

kl
= 1.079

[
L3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/5

(10.33)
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Figure 10.10 Film of condensate on a horizontal strip of width L and on a horizontal disk of
diameter D. (From Refs. 1 and 15.)

The average heat transfer coefficient for an upward-facing disk with free edges
is similar [15]:

NuD = hDD

kl
= 1.368

[
D3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/5

(10.34)

The corresponding formula for any other surface whose shape is somewhere
between the very long shape of the strip and the round shape of the disk can be
deduced from eqs. (10.33)–(10.34) by using the concept of characteristic length
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of eq. (4.118). Equations (10.33) and (10.34) are based on an analysis and set of
assumptions of the same type as those outlined in Section 10.1.1.

These results may be used to estimate the contribution made by the horizontal
‘‘roof’’ surface to the total condensation rate on a three-dimensional body. The
horizontal surface contributes to the total condensation rate in two ways: directly,
through the flow rate estimated based on eqs. (10.33) and (10.34), and indirectly,
by thickening the film that coats the vertical lateral surface [15]. When the
condensate collected on the top surface spills over the edge, the vertical-surface
heat transfer coefficient is smaller than the value that would be calculated based
on eq. (10.15). This effect is documented in Fig. 10.10b, in which [unlike in
eq. (10.15)] the height of the vertical surfaces is labeled H. The symbol �H is
defined on the figure and represents the dimensionless group that emerged on
the right side of eq. (10.15). Figure 10.10 shows that the roof condensate inhibits
condensation on the vertical surfaces when the abscissa parameters exceed the
order of magnitude 1.

The film condensation processes described until now are examples of natural
convection because the flow is being driven by gravity. Considerably more
complicated are condensation processes where the vapor is forced to flow over
the cooled surface. In these processes the vapor and the condensate film interact
across their mutual interface. The forced flow of vapor tends to drag the liquid in
its direction, and the overall condensation heat transfer process is one of natural
convection mixed with forced convection.

One example of this type is the film condensation on the outside of a horizontal
cylinder in cross flow (Fig. 10.11a). The surface heat transfer coefficient depends
on the free-stream velocity of the vapor, U∞, as well as on gravity [16]:

hDD

kl
= 0.64Re 1/2

D


1 +

(
1 + 1.69

gh′
fgµlD

U2∞kl
(
Tsat − Tw

)
)1/2


1/2

(10.35)

Figure 10.11 Film condensation on (a) horizontal cylinder in cross flow and (b) flat plate
parallel to flow. (From Ref. 1.)
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The Reynolds number is based on the kinematic viscosity of the liquid,
ReD = U∞D/ν l. Equation (10.35) holds for Reynolds numbers up to 106.
In the limit of negligible gravitational effect, the right side of (10.35) approaches
0.64Re 1/2

D . In the opposite extreme, when the vapor stream slows to a halt,
eq. (10.35) becomes identical to eq. (10.30), which represents the pure natural
convection limit of the process of Fig. 10.11.

The results for laminar film condensation on a flat plate in a parallel stream of
saturated vapor (Fig. 10.11b) are represented by [17]

hLL

kl
= 0.872Re 1/2

L

[
1.508(

1 + Ja/Prl
)3/2 + Prl

Ja

(
ρvµv

ρlµl

)1/2
]1/3

(10.36)

The Reynolds number is again based on the liquid viscosity, ReL = U∞L/ν l,
and the Jakob number is the same as the one defined in eq. (10.19). Equation
(10.36) has the proper asymptotic behavior and has been tested in the range
(ρlµl/ρvµv)1/2 ∼ 10–500 and Ja/Prl ∼ 0.01–1.

Inside a vertical cylinder with cocurrent vapor flow (Fig. 10.12), the downward
progress of the liquid is aided by the vapor that flows through the core of the cross
section. The liquid film is therefore thinner than in the absence of downward
vapor flow, and the L-averaged heat transfer coefficient (hL) and the condensation
rate are greater. Chen et al. [11] reviewed the experimental information available
on this configuration and proposed a correlation that can be rearranged in
the following way:

hL
kl

(
ν2
l

g

)1/3

=
[

Re−0.44
L + 5.82 × 10−6Re 0.8

L Pr1/3
l

+ 3.27 × 10−4 Pr1.3
l

D2

(
ν2
l

g

)2/3(
µv

µl

)0.156

×
(

ρl

ρv

)0.78 Re0.4
L Re1.4

t

(1.25 + 0.39ReL/Ret)2

]1/2

(10.37)

This formula is similar to eq. (10.23) because the only difference between the
present configuration (Fig. 10.12) and those of Fig. 10.7 is the presence of the
core flow of vapor. Indeed, the third group on the right side of eq. (10.37)
accounts for the increase in hL that is due to the interfacial shear between the
vapor and the liquid film. The Reynolds number ReL is defined according to
eq. (10.22). The terminal Reynolds number Ret is based not on the actual flow
rate �(L), but on ṁv/πD, in which ṁv is the total flow rate of the vapor that
enters through the top of the tube. In other words, the terminal Reynolds number
Ret is the maximum value approached by ReL as a greater and greater fraction of
the original vapor stream is converted into liquid at the bottom of the tube (note
that ReL < Ret).
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Figure 10.12 Condensation in a vertical tube with cocurrent flow of vapor. (From Ref. 1.)

The tube orientation is no longer a factor when the vapor stream is fast enough
so that the last term overwhelms the others on the right side of eq. (10.37).
In this limit, the gravitational effect is negligible, and the average heat transfer
coefficient can be calculated with the simpler formula

hLD

kl
= 0.0181Pr0.65

l

(
µv

µl

)0.078(
ρl

ρv

)0.39 Re0.2
L Re0.7

t

1.25 + 0.39ReL/Ret
(10.38)

The rate of condensation inside a horizontal tube with fast vapor flow
(Fig. 10.13a) can be calculated based on eq. (10.37). In this limit, the liquid film
coats the perimeter of the cross section uniformly. When the vapor flow is slow,

(a) (b)

Condensate
flow

DUv

g

Vapor
flow

Figure 10.13 (a) Condensation as annular film in a tube with fast vapor flow; (b) accumulation
of condensate in a horizontal tube with slow vapor flow. (From Ref. 1.)
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the liquid flow favors the lower region of the tube cross section (Fig. 10.13b).
Chato [18] found that when the vapor flow Reynolds number is small,

ρvUvD

µv

< 3.5 × 104 (10.39)

the condensation process is dominated by natural convection and that hD is given
by an expression similar to eq. (10.30):

hDD

kl
= 0.555

[
D3h′

fgg
(
ρl − ρv

)
klνl(Tsat − Tw)

]1/4

(10.40)

In eq. (10.40) the effect of the buildup of condensate in the longitudinal direction
has not been taken into account.

Procedures for calculating the heat transfer and condensation rates in several
other configurations are described in Refs. 19 and 20. For example, in cases where
the vapor is superheated, T∞ > Tsat, Rohsenow [20] recommended replacing
h′
fg with a slightly larger quantity, h′′

fg, which also accounts for the cooling
experienced by the vapor en route to its saturation temperature at the interface,

h′′
fg = h′

fg + cP,v(T∞ − Tsat) (10.41)

A common feature of all the configurations discussed until now is that
the vapor is pure (i.e., it contains nothing but the substance that eventually
condenses into the liquid film). When the gas is a mixture containing not only
the condensing species but also one or more noncondensable gases, the heat
transfer coefficient is significantly lower than when the noncondensable gases
are absent. The condensation rate is lower because the condensing species must
first diffuse through the concentration boundary layer that coats the gas side
of the interface. The condensing species must first overcome the mass transfer
resistance posed by the concentration boundary layer. This process and its effect
on the condensation rate are described in Refs. 21 and 22.

10.1.4 Drop Condensation

The condensate distributes itself as a continuous thin film on the cooled surface
only when the liquid wets the solid. This happens when the surface tension
between the liquid and the solid material is sufficiently small: for example, when
the solid surface is clean (grease-free), as in the condensation of steam on a clean
metallic surface.

When the surface tension is large, the condensate coalesces into a multitude
of droplets of many sizes. In time, each droplet grows as more vapor condenses
on its exposed surface. The formation of each droplet is initiated at a point of
surface imperfection (pit, scratch) called a nucleation site. There comes a time
when the tangential pull of gravity, or shear force exerted by the vapor stream,
dislodges the droplet and carries it downstream. The moving droplet devours
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the smaller droplets found in its path, creating in this way a clean trail ready
for the initiation of a new generation of droplets of the smallest size. Since the
condensation rate is the highest in the absence of condensate on the surface (film
or droplets), the periodic cleaning performed by the large drops renews finite-size
regions of the surface for restart of the time-dependent condensation process.
This surface renewal process is the main reason why dropwise condensation is
a highly effective mechanism, which can be designed constructally to promote
condensation [23]. The heat transfer coefficient for dropwise condensation is
approximately 10 times greater than the corresponding coefficient estimated
based on the assumption that the condensate forms a continuous film. To be
conservative, it is recommended that the heat transfer coefficient be estimated
based on the continuous film model.

In the design of condensers, the function of which is to cool a vapor stream
and to convert it into liquid, there is a great incentive to promote the breakup
of the condensate film into drops. This can be accomplished by (1) coating the
solid surface with an organic substance (e.g., oil, wax, kerosene, oleic acid),
(2) injecting nonwetting chemicals into the vapor so that they would be deposited
on the condenser surface, and (3) coating the surface with a polymer with low
surface energy (e.g., Teflon, silicone), or with a noble metal (e.g., gold, silver)
[24]. In methods 1 and 2, unfortunately, the ‘‘promoter’’ material wears off,
as it is gradually removed by the scraping action of the droplet movement. In
method 3, fluorocarbon coatings such as Teflon have good surface characteristics
but a relatively low thermal conductivity. If the coating is thicker than about
20 µm, its conduction resistance tends to offset the heat transfer augmentation
effect due to dropwise condensation on the vapor side of the coating.

As a fundamental mechanism of convection with change of phase, the
phenomenon of dropwise condensation is complicated by its intermittent time-
dependent character, the dominant effect of surface tension (drop size and shape),
and the uncertainty associated with the location of nucleation sites and the time
when the largest droplet would start its movement downstream. For all these
reasons, a unifying theory of dropwise condensation has not been developed.
Reviews of the experimental information on the performance of surfaces with
promoters of dropwise condensation can be found in Ref. 25.

The film and drop condensation mechanisms are two examples of what is
generally referred to as surface condensation. In both cases, the condensate
adheres to a solid surface that is being cooled by an external entity (from the
back side). A different mechanism is direct-contact condensation, in which the
solid surface is absent and the cooling effect is provided by the large pool
of subcooled liquid through which bubbles of condensing vapor rise. Surface
tension plays an important role in determining the size, shape, and life of each
vapor bubble. The progress on direct-contact condensation has been reviewed in
Ref. 26. The field of convection was reviewed most recently in Ref. 27. A novel
augmentation technique is Belghazi et al.’s [28] use of dendritic (cross-shaped)
fins with laminar film condensation. This is an application of dendritic fins
[3, 29] to condensation heat transfer.



10.2 BOILING 447

10.2 BOILING

10.2.1 Pool Boiling Regimes

Boiling heat transfer occurs when the temperature of a solid surface is sufficiently
higher than the saturation temperature of the liquid with which it comes in contact.
The solid–liquid heat transfer is accompanied by the transformation of some of
the heated liquid into vapor and by the formation of vapor bubbles, jets, and
films. The vapor and surrounding packets of heated liquid are carried away by
buoyancy (natural convection or pool boiling) or by a combination of buoyancy
and the forced flow of liquid that may be sweeping the solid heater (mixed
convection, or flow boiling).

We begin with the configuration of Fig. 10.14, in which the heater surface
(Tw) is immersed in a pool of initially stagnant liquid (Tl). The fundamental
physics problem is to determine the relationship between the surface heat flux
(q′
w) and the temperature difference (Tw − Tsat), where Tsat is the saturation

temperature of the liquid. When, as shown in Fig. 10.14a, the liquid mass is at a
temperature below saturation (i.e., subcooled, Tl < Tsat), boiling is confined to a
layer in the immediate vicinity of the heater surface. The vapor bubbles collapse
(they recondense) as they rise through the subcooled liquid. When the liquid
pool is at the saturation temperature (Fig. 10.14b), the vapor generated at the
heater surface reaches the free surface of the pool. In what follows it is assumed
that the liquid in the pool is all saturated (Tl = Tsat).

Figure 10.15 shows the main features of the boiling curve, the relationship
between q′′

w and the excess temperature (Tw − Tsat). This particular curve
corresponds to the pool boiling of water at atmosphere pressure; however, its
roller coaster shape is a characteristic of the curves describing the pool boiling
of other liquids. The nonmonotonic relationship between heat flux and excess

Figure 10.14 Nucleate pool boiling in (a) subcooled liquid and (b) saturated liquid. (From
Ref. 1.)
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Nucleate
boiling

Film boiling

Figure 10.15 Regimes of pool boiling in water at atmospheric pressure. (From Ref. 1.)

temperature is due to the various configurations (bubbles, film) that the newly
generated vapor takes in the vicinity of the heater surface. The shape of the
boiling curve is the basis for distinguishing among several pool boiling regimes.
The transition from one regime to the next can be seen by reading Fig. 10.15
from left to right. This corresponds to a boiling experiment in which the heater
surface temperature is increased monotonically and the resulting heat flux is
measured. At the end of this section we return to the experiment setups that can
be used to trace the boiling curve.

The first interesting aspect of the curve is that at very low excess temperatures
(in water, at Tw − Tsat � 4◦C), the heat transfer occurs without the appearance
of bubbles on the heater surface. In this regime, the near-surface liquid becomes
superheated and rises in the form of natural convection currents to the free
surface of the pool. If the heater surface is horizontal and large, and if the liquid
pool is shallow, the convection currents are similar to the cellular (Bénard) flow
shown in Fig. 5.20b. The relationship between q′′

w and Tw − Tsat depends on
the shape and orientation of the immersed heater and can be determined by
employing the formulas assembled in Chapters 4 and 5.

Proceeding toward larger excess temperatures, the next regime is that of
nucleate boiling. This is characterized by the generation of vapor at a number
of spots on the surface (nucleation sites). A probable nucleation site is a tiny
crack in the surface, in which the trapped liquid is surrounded by a relatively
large heater area per unit of liquid volume. At the low end of the nucleate boiling
curve, the boiling process consists of isolated bubbles. At higher temperatures,
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the bubble frequency increases, the nucleation sites multiply, and the isolated
bubbles interact and are replaced by slugs and columns of vapor.

The formation of more and more vapor in the vicinity of the surface has the
effect of gradually insulating the surface against the Tsat-cold liquid. This effect
is responsible for the gradual decrease in the slope of the nucleate boiling part of
the curve and for its expiration at the point of maximum (peak) heat flux, q′′

max.
The latter is also called critical heat flux (CHF), and in water it is on the order of
106 W/m2. The excess temperature at this point is approximately 30◦C.

The next regime is the most peculiar because the heat flux actually decreases
as the excess temperature (Tw − Tsat) continues to increase. This trend is a
reflection of the fact that increasingly greater portions of the heater surface
become coated with a continuous film of vapor. The vapor is unstable and
is replaced intermittently by nucleate boiling. This regime is called transition
boiling: It expires at the point of minimum heat flux (q′′

min), where the excess
temperature (the Leidenfrost temperature [30]) has become just large enough to
sustain a stable vapor film on the heater surface. In water at 1 atm, the minimum
heat flux is in the range 104 –105 W/m2 and occurs at an excess temperature in
the range 100–200◦C.

At even larger excess temperatures, the vapor film covers the entire surface
and the heat flux q′′

w resumes its monotonic increase with Tw − Tsat. Radiation
heat transfer across the film plays a progressively greater role as the excess
temperature increases. This high-temperature mode is known as the film boiling
regime. It persists until Tw reaches the melting point of the surface material
[i.e., until the meltdown (burnout) of the heater surface]. If, as in the case of a
platinum surface, the melting point is very high (e.g., 2042 K), the film boiling
portion of the boiling curve can extend to heat fluxes above the critical q′′

max of
the nucleate boiling regime.

The tracing of the boiling curve from left to right in Fig. 10.15 was based on
the assumption that the excess temperature (Tw − Tsat) can be controlled and
increased monotonically. An experiment in which the heater temperature control
is possible is shown in Fig. 10.16a. The heater is a horizontal tube immersed
in a pool of liquid. The heater surface temperature is controlled by a preheated
stream that flows through the tube. In this temperature-controlled experiment,
the boiling curve can be traced in either direction by increasing or decreasing the
excess temperature gradually.

An alternative setup is the power-controlled experiment shown in Fig. 10.16b.
The heater is a horizontal cylinder (wire) stretched in a pool of liquid. The heat
flux q′′

w is controlled by the experimentalist, who measures the power dissipated
in the electrical resistance posed by the wire. In this experiment, the shape of the
emerging boiling curve depends on whether the power is increased or decreased.

When the power increases monotonically, the experimentalist observes the
transition from the natural convection regime to the several forms of the nucleate
boiling regime. As the imposed heat flux increases slightly above the critical
value q′′

max, the wire temperature increases abruptly to the value associated with
the film boiling portion of the boiling curve. In most cases, this new temperature
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Figure 10.16 Pool boiling curve in (a) temperature-controlled experiment and (b) power-
controlled experiment. (From Ref. 1.)

would be above the melting point of the surface material, and the wire burns
up. This is why the peak of the nucleate boiling portion of the curve is often
called the burnout point. The catastrophic event that can occur at heat fluxes
comparable with and greater than q′′

max is why in power-controlled applications
of boiling heat transfer (e.g., nuclear reactors, electrical resistance heaters), it is
advisable to operate at heat fluxes safely smaller than q′′

max.
The power-controlled pool boiling experiment can be run in reverse by

decreasing the heat flux. In that case, the excess temperature decreases along the
film boiling portion of the curve all the way down to the Leidenfrost temperature.
As the heat flux is lowered slightly below the minimum heat flux of film boiling,
q′′

min, the vapor film collapses, isolated bubbles form, and the wire temperature
drops to the low level associated with the nucleate boiling regime.

To summarize, during heat flux-controlled boiling, the transition boiling
regime is inaccessible, and certain portions of the boiling curve can be reached
while varying q′′

w in only one direction. For example, the nucleate boiling regime
in the vicinity of the point of maximum heat flux can be established only by
increasing the heat flux, starting from a sufficiently low level. Although much
less important in practice, the film boiling regime in the vicinity of q′′

min can
be achieved only by decreasing the heat flux, by starting from a sufficiently
high level. It is said that q′′

w-controlled boiling is an example of hysteresis,∗ a

∗This term has its origin in the Greek words hysteresis (a deficiency) and hysterein (to lag, to be
behind, to come short).
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phenomenon that depends not only on the imposed condition (q′′
w), but also on

its previous history: in this case, the previous value of q′′
w.

The boiling curve was discovered by S. Nukiyama [31] of Tohoku Uni-
versity (Sendai, Japan), who employed the q′′

w-controlled method illustrated in
Fig. 10.16b. The existence of the missing transition-boiling portion of the curve
was demonstrated based onTw-controlled experiments by Drew and Mueller [32].

10.2.2 Nucleate Boiling and Peak Heat Flux

In practice, the important regime of the curve displayed in Fig. 10.15 is nucleate
boiling, because here the boiling heat transfer coefficient

h = q′′
w

Tw − Tsat
(10.42)

reaches characteristically large values. These cover the range 103 –105 W/m2 · K.
An enormous volume of research has been devoted to the measurement and
correlation of the nucleate-boiling heat transfer coefficient. One of the earliest
and most successful correlations, which has withstood the test of time, was
proposed by Rohsenow [33]:

Tw − Tsat = hfg
cP,l

Prsl Csf


 q′′

w

µlhfg

(
σ

g
(
ρl − ρv

)
)1/2


1/3

(10.43)

This correlation applies to clean surfaces and is insensitive to the shape and
orientation of the surface. It depends on two empirical constants,Csf and s, which
are listed in Table 10.1. The dimensionless factor Csf accounts for the particular
combination of liquid and surface material, while the Prandtl number exponent s
differentiates only between water and other liquids. The subscripts l and v denote
saturated liquid and saturated vapor and indicate the temperature (Tsat) at which
the properties are evaluated.

Representative values of the surface tension σ (N/m) have been collected in
Table 10.2 along with other data needed for boiling heat transfer calculations.
The surface tension plays an important role in the growth of vapor bubbles, and
this role is being recognized in the theories aimed at predicting the nucleate
boiling curve. For example, in Problem 10.8, it is shown that the radius of a
spherical vapor bubble in mechanical equilibrium is 2σ /(Pv − Pl), where Pv and
Pl are the pressures inside and outside the bubble.

Written as eq. (10.43), Rohsenow’s nucleate boiling correlation can be used to
calculate the excess temperature (Tw − Tsat) when the heat flux q′′

w is known. The
calculated excess temperature agrees with experimental data within ±25 percent.
In the reverse case, in which the excess temperature is specified, eq. (10.43) can
be rewritten as

q′′
w = µlhfg

[
g

(
ρl − ρv

)
σ

]1/2[
cP,l

(
Tw − Tsat

)
Prsl Csf Hfg

]3

(10.44)
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Table 10.1 Empirical constants for Rohsenow’s nucleate
pool boiling correlation (10.43)–(10.44)

Liquid–Surface Combination Csf s

Water–copper
Polished 0.013 1.0
Scored 0.068 1.0
Emery polished, paraffin treated 0.015 1.0

Water–stainless steel
Ground and polished 0.008 1.0
Chemically etched 0.013 1.0
Mechanically polished 0.013 1.0
Teflon pitted 0.0058 1.0

Water–brass 0.006 1.0
Water–nickel 0.006 1.0
Water–platinum 0.013 1.0
CC14 –copper 0.013 1.7
Benzene–chromium 0.010 1.7
n-Pentane–chromium 0.015 1.7
n-Pentane–copper

Emery polished 0.0154 1.7
Emery rubbed 0.0074 1.7
Lapped 0.0049 1.7

n-Pentane–nickel
Emery polished 0.013 1.7

Ethyl alcohol–chromium 0.0027 1.7
Isopropyl alcohol–copper 0.0025 1.7
35% K2CO3 –copper 0.0054 1.7
50% K2CO3 –copper 0.0027 1.7
n-Butyl alcohol–copper 0.0030 1.7

Source: Refs. 33 and 34.

in order to calculate the unknown heat flux. In this case, the q′′
w calculated agrees

with actual heat flux measurements within ± 100 percent.
In conclusion, eqs. (10.43) and (10.44) provide only an approximate estimate

of the true position of the nucleate boiling curve. One reason for this is the S
shape taken by the nucleate boiling curve on the logarithmic grid of Fig. 10.15:
This shape departs from the straight line that would correspond to eq. (10.44).
Another reason is the potential effect of surface roughness, which tends to
increase the number of active nucleation sites. In artificially roughened surfaces,
for example, the heat flux can be one order of magnitude greater than the q′′

w
value furnished by eq. (10.44).

For calculations involving the critical or peak heat flux on a large horizontal
surface, the recommended relation is [39]

q′′
max = 0.149hfgρ

1/2
v [σg(ρl − ρv)]

1/4 (10.45)
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Table 10.2 Surface tension and other physical properties needed for calculating
boiling and condensation heat transfer rates

Tsat

Fluid K ◦C
P

(105 N/m2)a
ρl

(kg/m3)
ρv

(kg/m3)
hfg

(kJ/kg)
σ

(N/m)

Ammonia 223 −50 0.409 702 0.38 1417 0.038
300 27 10.66 600 8.39 1158 0.020

Ethanol 351 78 1.013 757 1.44 846 0.018
Helium 4.2 −269 1.013 125 16.9 20.42 10−4

Hydrogen 20.3 −253 1.013 70.8 442 0.002
Lithium 600 327 4.2 × 10–9 503 22,340 0.375

800 527 9.6 × 10–6 483 10−6 21,988 0.348
Mercury 630 357 1.013 12,740 3.90 301 0.417
Nitrogen 77.3 −196 1.013 809 4.61 198.4 0.0089
Oxygen 90.2 −183 1.013 1134 213.1 0.013
Potassium 400 127 1.84 × 10–7 814 2.2 × 10–7 2196 0.110

800 527 0.0612 720 0.037 2042 0.083
Refrigerant 12 243 −30 1.004 1488 6.27 165.3 0.016
Refrigerant 22 200 −73 0.166 1497 0.87 252.8 0.024

250 −23 2.174 1360 9.64 221.9 0.016
300 27 10.96 1187 46.55 180.1 0.007

Sodium 500 227 7.64 × 10–7 898 4.3 × 10–7 4438 0.175
1000 727 0.1955 776 0.059 4022 0.130

Water 323 50 0.1235 988 0.08 2383 0.068
373 100 1.0133 958 0.60 2257 0.059
423 150 4.758 917 2.55 2114 0.048
473 200 15.54 865 7.85 1941 0.037
523 250 39.73 799 19.95 1716 0.026
573 300 85.81 712 46.15 1405 0.014

Source: Adapted from Refs. 35–38.
aNote that the standard atmospheric pressure is nearly the same as the pressure of 105 N/m2 (i.e.,
1 bar); specifically, 1 atm = 1.0133 × 105 N/m2.

This analytical expression has a theoretical foundation, having first been pro-
posed based on dimensional analysis by Kutateladze [40] and based on the
hydrodynamic stability of vapor columns by Zuber [41].

The peak heat flux formula (10.45) is independent of the surface material. It
applies to a sufficiently large surface whose linear length is considerably greater
than the characteristic size of the vapor bubble. Equation (10.45) can also be
used for a sufficiently large horizontal cylinder by replacing the factor 0.149
with 0.116 [42]. When the size of the heater is comparable with or smaller than
the bubble size, the peak heat flux also depends on the size and geometry of the
heater. The peak heat flux can be calculated with a formula similar to eq. (10.45),
which contains an additional geometric correction factor [39]. Overall, the peak
heat flux is relatively insensitive to the shape and orientation of the heater
surface; therefore, eq. (10.45) provides an adequate order-of-magnitude estimate
of q′′

max when more specific correlations are not available.
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The maximum heat flux of eq. (10.45) depends strongly on the pressure
that prevails in the liquid pool. The pressure effect is brought into this relation
through both hfg and σ . Near the critical pressure, for example, the peak heat flux
approaches zero because both hfg and ρl − ρv approach zero. The relationship
between q′′

max and pressure is not monotonic; in the case of water, q′′
max increases

as the pressure rises to about 70 atm and then decreases to zero as the pressure
approaches the critical-point pressure of 218.2 atm.

Regarding the effect of the gravitational acceleration, the nucleate boiling
correlations presented in this and the next section are valid in the range 10–1 m/s2.
Despite the proportionality between q′′

w and g1/2 indicated by eq. (10.44), it has
been found that the gravitational effect has a considerably weaker effect on the
nucleate boiling heat flux.

10.2.3 Film Boiling and Minimum Heat Flux

The outstanding feature of the film boiling regime is the continuous layer of
vapor (typically, 0.2–0.5 mm thick) that separates the heater surface from the
rest of the liquid pool. The minimum heat flux q′′

min is registered at the lowest
heater temperature where the film is still continuous and stable (Fig. 10.15).
The recommended correlation for the minimum heat flux on a sufficiently large
horizontal plane surface is

q′′
min = 0.09hfgρv

[
σg

(
ρl − ρv

)
(ρl + ρv)

2

]1/4

(10.46)

An interesting feature of this correlation is that q′′
min does not depend on the

excess temperature Tw − Tsat. The analytical form of eq. (10.46) was discovered
by Zuber [41], who analyzed the Taylor instability of the horizontal vapor–liquid
interface of the film. The 0.09 numerical coefficient in eq. (10.46) was determined
by Berenson [43] based on experimental data.

The minimum heat flux calculated with eq. (10.46) agrees within 50 percent
with laboratory measurements at low and moderate pressures. The accuracy
deteriorates as the pressure increases. The surface roughness has a negligible
effect on the minimum heat flux (on the order of 10 percent) because the surface
asperities are cushioned by the film against the liquid.

For the rising portion of the film boiling curve, the correlations that have
been developed have the same analytical form as the formulas encountered in
our study of film condensation. For example, the formula for the average heat
transfer coefficient on a horizontal cylinder [44],

hDD

kv
= 0.62

[
D3h′

fgg
(
ρl − ρv

)
kvνv(Tw − Tsat)

]1/4

(10.47)

is similar to the film condensation formula (10.30). One important difference is
that in eq. (10.47) the transport properties are those of vapor (kv , νv) because
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Figure 10.17 Film boiling regime on a sphere or horizontal cylinder. (From Ref. 1.)

the film is occupied by vapor. The similarity between film boiling and film
condensation is also geometric, as can be seen by comparing Fig. 10.17 with
Fig. 10.9a. The corresponding formula for film boiling on a sphere is [39]

hDD

kv
= 0.67

[
D3h′

fgg
(
ρl − ρv

)
kvνv(Tw − Tsat)

]1/4

(10.48)

In eqs. (10.47) and (10.48), the augmented latent heat of vaporization h′
fg

also accounts for the superheating of the fresh vapor to temperatures above the
saturation temperature [44]

h′
fg = hfg + 0.4cP,v(Tw − Tsat) (10.49)

The vapor properties kv , νv , ρv , and cP,v are best evaluated at the average film
temperature (Tw + Tsat)/2. Equations (10.47)–(10.48) state further that the heat
transfer coefficient hD is proportional to (Tw − Tsat)

−1/4, which means that during
film boiling the heat flux q′′

w is proportional to (Tw − Tsat)
3/4.

As the heater temperature increases, the effect of thermal radiation across the
film contributes more and more to the overall heat transfer rate from the heater
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to the liquid pool. Bromley [44] showed that the thermal radiation effect can be
incorporated into an effective heat transfer coefficient h,

h ∼= hD + 3
4hrad (when hD > hrad) (10.50)

for which hD is furnished by eqs. (10.47)–(10.48) and hrad is the radiation heat
transfer coefficient

hrad = σεw(T4
w − T4

sat)

Tw − Tsat
(10.51)

The σ factor is the Stefan–Boltzmann constant, σ = 5.669 × 10–8 W/m2 · K4,
which should not be confused with the symbol used for surface tension. In the
same equation, εw is the emissivity of the heater surface, and numerically, the
temperatures (Tw, Tsat) must be expressed in kelvin. Equation (10.51) can be
derived from the more general formula for the net radiation heat transfer across a
narrow gap [1] by assuming that the emissivity of the liquid surface is equal to 1.

In water, the effect of thermal radiation begins to be felt as Tw − Tsat increases
above the range 550–660◦C [45]. When hrad is comparable with or greater than
hD, the recommended rule for the effective heat transfer coefficient h is [44]

h = hD

(
hD
h

)1/3

+ hrad (when hD � hrad) (10.52)

Sparrow [46] showed that a rigorous analysis of combined convection and
radiation in the vapor film leads to results that match within a few percentage
points the values calculated based on eq. (10.52). It can be shown that the simpler
eq. (10.50) follows from eq. (10.52) as hrad/hD → 0.

All the pool boiling heat transfer correlations described until now apply
when the pool contains saturated liquid. In cases where the bulk of the liquid
is subcooled (e.g., Fig. 10.14a), the degree of liquid subcooling (Tsat − Tl)
constitutes an additional parameter that further complicates the relationship
between the actual heat flux q′′

w and the excess temperature (Tw − Tsat). On the
natural convection portion of the boiling curve, where the liquid flow is single
phase, the heat flux increases if the degree of liquid subcooling increases. For
example, when the heater is small enough so that the natural convection flow
is laminar, the heat flux increases as (Tw − Tl)

5/4, or in terms of the degree of
subcooling as [(Tw − Tsat) + (Tsat − Tl)]

5/4. The subcooling parameter (Tsat − Tl)
has a relatively negligible effect on q′′

w in the nucleate boiling regime, while both
q′′

max and q′′
min increase linearly with Tsat − Tl. The effect of liquid subcooling is

most pronounced in the film boiling regime.
New directions of inquiry are emerging in the current literature. One is the

use of constructal theory [3–5, 29, 47, 48] to account for the emergence of
hierarchical multiscale flows in the presence of phase change. The effect of the
interaction between neighboring nucleation sites was documented by Golobic and
Gjerkes [49]. The constructal design of tree-shaped networks with evaporating
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flow, which are used for cooling a surface (e.g., skating rink), was developed by
Zamfirescu and Bejan [50]. Another direction is study of metastable explosive
evaporation, which may occur when the formation of bubbles is delayed and the
liquid that comes in contact with a wall with high superheat is metastable. In
such a liquid, the formation of vapor may occur en masse, causing a sudden and
explosive expansion of the mixture. This process is important in the design of
work-producing devices at very small scales. It is also relevant to predicting the
effect of vapor explosions at large scales, for example, in hypothetical nuclear
reactor accidents [51–54].

10.2.4 Flow Boiling

Boiling heat transfer is considerably more complicated and difficult to correlate
in situations where the liquid is forced to flow past the heater. In nucleate flow
boiling (e.g., Fig. 7.1), the heat transfer rate is due to a combination of two
closely interrelated effects: (1) the bubble formation and motion near the surface
and (2) the direct sweeping of the heater surface by the liquid itself. The heat
transfer mechanism is a combination of two basic ones: the nucleate pool boiling
of Section 10.2.2 and a forced convection phenomenon of the type treated in
Chapters 2, 3, 7, 8, and 9.

There is no general, definitive method of correlating flow boiling data. The
progress in this direction has been reviewed in Ref. 55. Rohsenow showed
that the experimental data on nucleate boiling with convection are represented
adequately by the additive formula [56]

q′′ = q′′
w + q′′

c (10.53)

In this expression, q′′
w is the nucleate pool boiling heat flux calculated based

on eq. (10.44) and the assumption that the bulk of the liquid is stationary.
The second term, q′′

c , is the single-phase convection heat flux to the liquid,
q′′
c = hc(Tw − Tl), for which the convection heat transfer coefficient hc can be

estimated by employing the results listed in the single-phase convection chapters.
For nucleate boiling in duct flow, Rohsenow recommended calculating hc by
replacing the coefficient 0.023 with 0.019 in the Dittus–Boelter correlation
(8.31). The superposition formula (10.53) works best when the flowing liquid is
subcooled and the generation of vapor near the heater surface is not excessive.

10.3 CONTACT MELTING AND LUBRICATION

In this section we turn our attention to close-contact melting, which is a relatively
new subfield in phase-change heat transfer. Melting and lubrication can occur
between two mating solid parts, one of which is at the melting point. It is a
phenomenon complicated by the fact that the phase-change heat transfer is tied
intimately to the fluid mechanics of the thin film of melt and to the mechanics of
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the two solid bodies. The research progress on contact melting and lubrication is
reviewed in Ref. 57.

The classical example of contact melting and lubrication is the friction on
ice and snow [58, 59]. Among the more modern applications is the coating of
a metallic part with another metal whose melting point is considerably lower.
The function of the latter is to melt and serve as a lubricant in the manufacturing
process to which the former may be subjected. Another application is in the field
of interior ballistics, where a projectile (e.g., brass bullet) melts superficially as
it travels along the gun barrel. Other applications include the storage of energy
as latent heat inside capsules and the burial of heat-generating objects.

10.3.1 Plane Surfaces with Relative Motion

The principles of contact melting and lubrication become evident if we analyze
the simplest geometric configuration possible [60], which is shown in Fig. 10.18.
A block of a substance at the melting point (Tm) is pushed with the force Fn
(N/m) against another solid that moves to the right with the velocity U. The
sliding solid is relatively warmer (Tm + 
T) and causes steady melting at the
lower surface of the Tm block. The liquid that is generated by this melting process
fills the gap δ and lubricates the relative motion between the two solids. The
tangential (friction) force is Ft (N/m).

The energy equation for the liquid film δ can be written with reference to the
(x, y) frame shown in Fig. 10.18, in which (u, v) are the corresponding liquid
velocity components,

u
∂T

∂x
+ v

∂T

∂y︸ ︷︷ ︸
U 
T

L

= α
∂2T

∂y2︸ ︷︷ ︸
α

T

δ2

+ µ

ρ cP
�︸ ︷︷ ︸

µ

ρcP

(
U

δ

)2

(10.54)

Figure 10.18 Block of melting material pressed against a plane slider. (From Ref. 1.)
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Equation (10.54) is based on the ‘‘boundary layer’’ assumption that the film
is thin, δ � L. Listed underneath are the representative scales of the three
effects that compete in the energy balance, convection, conduction, and internal
heat generation. The transversal conduction effect is always important because,
without it, there is no melting at the y = δ interface. Convection is negligible
relative to conduction if (U
T)/L � (α 
T)/δ2, which means that

(
δ

L

)2UL

α
� 1 (10.55)

This holds true in most film lubrication problems because the film is very thin,
δ/L � 1, and the Péclet number UL/α is finite. The viscous heating effect
is negligible with respect to transversal conduction when (µ/ρcP)(U/δ)2 �
(α 
T)/δ2, which means that

µU2

k
T
� 1 (10.56)

where the scale of the temperature difference is 
T = Tw − Tm. Note that the
viscous dissipation criterion (10.56) does not depend on the film thickness δ.

When conditions (10.55) and (10.56) are satisfied simultaneously, the heat
transfer in the liquid film is by pure conduction across the film. The energy
equation for the liquid in the relative-motion gap reduces to

∂2T

∂y2
= 0 (10.57)

with the general solution T = f1y + f2, where f1 and f2 are at most functions of x.
They are determined from the boundary conditions

T =
{
Tm + 
T at y = 0

Tm at y = δ

(10.58)

(10.59)

so that the temperature distribution emerges as a function of y only:

T = Tm +
(

1 − y

δ

)

T (10.60)

The energy balance for a control volume of infinitesimal thickness drawn
around the melting front requires that

LρV hs︸ ︷︷ ︸
Enthalpy
inflow from
above

+ Lk

T

δ︸ ︷︷ ︸
Conduction
heat transfer
from below

= LρV hf︸ ︷︷ ︸
Enthalpy
outflow,
downward

(10.61)
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The second term on the left side comes from using eq. (10.60) in the definition
of the heat transfer rate oriented in the y direction,

q′ = Lk

(
−∂T

∂y

)
y=δ

(10.62)

Equation (10.61) is one relationship between the chief unknowns of this problem,
the melting speed V and the liquid gap thickness δ:

Vδ = k
T

ρ hsf
(10.63)

The second relationship between V and δ is provided by the fluid mechanics
of the liquid flow. The momentum equation reduces to

dP

dx
= µ

∂2u

∂y2
(10.64)

and this yields

u = 1

2µ

(
dP

dx

)
y2 + f3y+ f4 (10.65)

The functions f3(x) and f4(x) are determined by invoking the boundary conditions

u =
{
U at y = 0

0 at y = δ

(10.66)

(10.67)

and the resulting expression for u(x, y) is

u = 1

2µ

(
dP

dx

)
(y2 − yδ) + U

(
1 − y

δ

)
(10.68)

This solution cannot be used yet because it involves the unknown excess
pressure gradient dP/dx. The excess pressure must be related to the normal force
with which the melting block is pushed downward and to the fact that P = 0
at both ends of the liquid channel, x = 0 and x = L. We determine the excess
pressure distribution by first calculating the liquid flow rate

Q =
∫ δ

0
u dy (10.69)

which, after using eq. (10.68), becomes

Q = 1

12µ

(
−dP

dx

)
δ3 + 1

2
Uδ (10.70)
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Next, we recognize the mass conservation statement

∂u

∂x
+ ∂v

∂y
= 0 (10.71)

which can be integrated across the liquid gap to yield

d

dx

∫ δ

0
u dy︸ ︷︷ ︸
Q

+ (v)y=δ︸ ︷︷ ︸
−V

− (v)y=0︸ ︷︷ ︸
zero

= 0 (10.72)

or dQ/dx = V, where V is the downward velocity of the solid block (Fig. 10.18).
By eliminating Q from eq. (10.70), we obtain an equation for P(x),

1

12µ

(
−d2P

dx2

)
δ3 = V (10.73)

which can be integrated subject to the end conditions (P = 0 at x = 0 and x = L)

P(x) = 6µV

δ3
(Lx− x2) (10.74)

Integrated along the liquid gap, this yields a second relationship between V and
δ,

Fn =
∫ L

0
P dx = µV

(
L

δ

)3

(10.75)

The melting speed is obtained by eliminating δ between eqs. (10.63) and
(10.75):

V =
(
Fn
µ

)1/4
(
k
T

ρhsf L

)3/4

(10.76)

An alternative form of this result, which will be compared later with the general
correlation (10.89), is

VL

α
=

(
cP 
T

hsf

)3/4

Be1/4
L (10.76′)

where BeL is the dimensionless pressure-difference number defined in
eq. (3.120′), BeL = (Fn/L) · L2/µα, and Fn/L is the scale of the pressure
difference. The tangential force experienced by the melting block is equal to the
negative of the shear force felt by the hot slider:

Ft = −
∫ L

0
µ

(
∂u

∂y

)
y=0

dx = Lµ
U

δ
(10.77)
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The coefficient of friction is [60]

µf = Ft
Fn

= U

(
µ

Fn

)3/4(ρhsf L

k
T

)1/4

(10.78)

which shows that the coefficient of friction decreases as the normal force
increases. All the results developed in this section can also be derived based on
scale analysis, for example, eqs. (10.76) and (10.78). See Section 10.3.3.

10.3.2 Other Contact Melting Configurations

To review the diversity of the contact melting field [57], it is sufficient to list
the theoretical results that have been reported. The melting of a phase-change
material inside a horizontal cylinder (Fig. 10.19) was analyzed by Bareiss and
Beer [62]. The solid is at the melting point (Tm) and fills the cylinder. The wall
temperature is raised to Tw at time t = 0. The time tf needed to melt all the solid
is given by the dimensionless expression

αtf
R2

= 2.49

(
ρ

ρs
Ste

)−3/4

(Pr Ar)−1/4(1 + C)−1 (10.79)

where the Stefan number and Archimedes number are defined by

Ste = cP(Tw − Tm)

hsf
, Ar =

(
1 − ρ

ρs

)
gR3

ν2
(10.80)

The term C is an empirical correction that accounts for additional melting (a
minor effect) associated with natural convection over the upper surface of the
solid,

C = 0.25

(
ρ

ρs
Ste

Ra

Pr Ar

)1/4

(10.81)

D

g

s

Figure 10.19 Contact melting inside a capsule shaped as a sphere or horizontal cylinder.
(From Ref. 61.)



10.3 CONTACT MELTING AND LUBRICATION 463

in which Ra = gβ(Tw − Tm)D3/αν. Labeled s in Fig. 10.19 is the distance
traveled by the geometric center of the original solid in the downward direction.
This distance is the same as the largest liquid gap s(t) at the top of the solid when
melting over the upper surface of the solid is negligible. Bareiss and Beer [62]
found that the solid falls with the nearly uniform speed V = D/tf because s(t)
increases almost linearly from s(0) = 0 to s(tf) = D.

Roy and Sengupta [63] and Bahrami and Wang [64] reported thin-film
analyses for contact melting in a spherical enclosure. Roy and Sengupta’s results
are presented as a family of curves with Ste/Pr and Ar(ρ/ρs) as independent
parameters. The predicted melting rate agrees with Moore and Bayazitoglu’s
[65] experiments with n-octadecane. In addition, analysis shows that the contact
melting film is thinner at the lowest point of the spherical surface, and the melting
rate decreases as Ar/(ρ/ρs) decreases. Bahrami and Wang [64] developed a
closed-form expression for the time interval needed to melt all the solid. If we
use the dimensionless formulation of the present treatment, Bahrami and Wang’s
expression can be rewritten as

αtf
R2

= 2.03

(
ρ

ρs
Ste

)−3/4

(Pr Ar)−1/4 (10.82)

If we turn the geometry of Fig. 10.19 inside out, we arrive at Fig. 10.20,
which shows how a hot object sinks into a larger body of solid phase-change
material. Contact melting occurs over the leading portion of the hot object: The
pressure built in the liquid film supports the weight of the object during its
quasisteady sinking motion. If the solid phase-change material is subcooled, the
liquid wake generated behind the object refreezes at some distance downstream.

D

g

Figure 10.20 Hot sphere or horizontal cylinder sinking in a solid phase-change material. (From
Ref. 61.)
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Emerman and Turcotte [66] studied the motion of a heated sphere (Tw) through
a solid phase-change material whose temperature T∞ is below its melting point
(Tm). They found that the liquid film thickness δ(φ) increases dramatically in the
direction away from the nose of the sphere (φ = 0),

δ(φ) = α Ste

V cos φ
(Ste � 1) (10.83)

where the Stefan number Ste = cP (Tw − Tm)/h′
sf is based on the augmented

latent heat of melting h′
sf = hsf + cs (Tm − T∞). The vertical velocity of the

sphere, V, is proportional to the imposed temperature difference (Tw − Tm) raised
to the power 3

4 . If the Stefan number is much smaller than 1, the velocity is
given by

VR

α
= Ste3/4

(
8g
ρ R3

3µα

)1/4

(Ste � 1) (10.84)

in which 
ρ = ρ0 − ρ is the difference between the density of the object
(sphere) and the density of the surrounding melt.

The sinking of a horizontal cylinder embedded in a solid phase-change
medium was studied experimentally and analytically by Moallemi and Viskanta
[67]. Their analytical results are valid for any Stefan number. In the Ste � 1
limit, the film thickness varies according to eq. (10.83) over the leading surface
of the cylinder, while the vertical velocity V is given by

VR

α
= Ste3/4

(
5π

16

g
ρ R3

µα

)1/4

(Ste � 1) (10.85)

10.3.3 Scale Analysis and Correlation

All the contact melting results reviewed in Sections 10.3.1 and 10.3.2 can be
anticipated based on a very simple analysis [61]. We write � for the longitudinal
length scale of liquid flow through the film and further assume that the contact
surface is not necessarily plane (Fig. 10.21). The conservation of mass in the
liquid film requires that

uδ ∼ V l (10.86)

The momentum balance is simply


P

l
∼ µ

u

δ2
(10.87)

because, if present, the shearing caused by relative motion does not contribute to
the longitudinal pressure gradient 
P/�. Finally, the conservation of energy at
the melting front requires that

k

T

δ
∼ ρshsf V (10.88)
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V

Fn

Figure 10.21 General shape of mating surfaces with close-contact melting. (From Ref. 61.)

If we eliminate u and δ between eqs. (10.86)–(10.88), we obtain a melting speed
that can be nondimensionalized in the form of the Péclet number based on �,

V l

α
∼

(
ρ

ρs
Ste

)3/4

Be1/4
l (10.89)

The pressure difference number is also based on �, Be� = (
P�2)/µα.
The scaling law (10.89) reproduces exactly the plane contact melting result

(10.76) if we set � = L and 
P = Fn/L. More important is that eq. (10.89) also
correlates the results for contact melting inside capsules and around embedded
hot objects. First, we must recognize that the excess pressure scale 
P is, in
general,


P = net weight of the object surrounded by liquid

horizontal projected area of that object
(10.90)

In the case of melting inside capsules, the numerator in this definition represents
the net initial weight of the solid phase-change material. The definition (10.90)
yields 
P = g 
ρ(πD/4) for a horizontal cylinder, and 
P = g 
ρ(2D/3) for
a sphere. The excess density of the sinking object is 
ρ = ρs − ρ for melting
inside a capsule (Fig. 10.19) and 
ρ = ρ0 − ρ for objects embedded in a
solid phase-change material (Fig. 10.20). The contact melting results reviewed
in Section 10.3.2 can now be rediscovered as follows:

Cylindrical capsule, horizontal [Fig. 10.19, eq. (10.79) with (1 + C) ∼= 1 and
V = D/tf ]:

VD

α
= 1.015

ρ

ρs
Ste3/4 Be1/4

D (l = 0.971D) (10.91)



466 10 CONVECTION WITH CHANGE OF PHASE

Spherical capsule [Fig. 10.19, eq. (10.82) with V = D/tf ]:

VD

α
= 1.297

ρ

ρs
Ste3/4 Be1/4

D (l = 0.595D) (10.92)

Embedded horizontal cylinder [Fig. 10.20, eq. (10.85)]:

VD

α
= 1.257Ste3/4 Be1/4

D (l = 0.633D) (10.93)

Embedded sphere [Fig. 10.20, eq. (10.84)]:

VD

α
= 1.682Ste3/4 Be1/4

D (l = 0.353D) (10.94)

The Bejan number is based on D as length scale, BeD = (
PD2)/µα.
Equations (10.76) and (10.91)–(10.94) show that the scaling law (10.89)

anticipates within percentage points the melting speed in all geometries if the
length scale � is interpreted as the actual dimension of the projected area of
contact, namely, � = D, in Figs. 10.19 and 10.20. There is some disagreement
with regard to the role played by the density ratio ρ/ρs. Note that this ratio
enters as (ρ/ρs)

3/4 in the scaling law (10.89), as ρ/ρs in the formulas (10.91) and
(10.92) for melting inside capsules, while being absent from the results (10.93)
and (10.94) for melting around embedded hot objects. Numerically, however,
the effect of ρ/ρs is very small because this ratio is a number close to 1.

Listed in parentheses to the right of eqs. (10.91)–(10.94) are the � values
that would make these equations agree exactly with eq. (10.89), again, if we
discount the small ρ/ρs effect. In this case, exact agreement means that the
leading numerical factor on the right-hand side of eqs. (10.91)–(10.94) becomes
equal to 1. Contact melting in various configurations was analyzed subsequently
in Refs. 68–72.

10.3.4 Melting Due to Viscous Heating in the Liquid Film

In the configurations covered in Sections 10.3.1–10.3.3 melting is caused by
a temperature difference maintained between the solid surface and the melting
front. Consider now the case where the plane slider of Fig. 10.18 is not heated
externally and where the viscous heating of the liquid film is responsible for the
steady melting of the phase-change material. This happens at sufficiently high
slider velocities U. In this limit the conduction heat transfer absorbed by the
melting front is balanced by the viscous heating effect, as shown by the last two
scales of eq. (10.54),

α

T

δ2
∼ µ

ρcP

(
U

δ

)2

(10.95)
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so that the temperature difference scale becomes


T ∼ µ

k
U2 (10.96)

The 
T scale is independent of the film thickness δ. The order-of-magnitude
conservation statements for mass, momentum, and energy continue to be rep-
resented by eqs. (10.86)–(10.88), for which � ∼ L, and the 
T scale is now
furnished by eq. (10.96). By solving these equations, we obtain the melting
speed V,

VL

α
∼

(
ρ

ρs
Steµ

)3/4

Be1/4
L (10.97)

where BeL = (
PL2)/µα. Equation (10.97) looks like eq. (10.89) except that
Steµ is a new dimensionless group: the Stefan number based on the viscous
heating temperature rise (10.96),

Steµ = cP
hsf

(µ

k
U2

)
= Pr

U2

hsf
(10.98)

Equation (10.97) shows that when the contact melting is due to viscous
heating, the melting speed V is proportional to U3/2. We saw earlier that when
viscous heating is negligible [eq. (10.76)], V is independent of U. The film
thickness scale is

δ

L
∼

(
ρ

ρs
Steµ

)1/4

Be−1/4
L (10.99)

which shows that the film thickness increases as U1/2 (i.e., as the viscous heating
effect intensifies). The δ scale is also proportional to L1/2 and 
P–1/4. Finally, the
friction coefficient is obtained by dividing the total friction force Ft ∼ µ(U/δ)L
by the total normal force Fn = 
PL,

µf ∼ UL

α

(
ρ

ρs
Steµ

)−1/4

Be−3/4
L (10.100)

This can be compared with eq. (10.78) to see the difference that the viscous
heating effect makes in the behavior of the friction coefficient. In eq. (10.100),
the friction coefficient is proportional to U1/2, whereas in eq. (10.78), it is
proportional to U. The dependence of µf on L and 
P is the same in eqs. (10.78)
and (10.100); in other words, the impact of parameters L and 
P is insensitive to
the degree to which viscous heating sustains the melting and lubrication process.

The scaling trends outlined in this section agree with the more exact results
delivered by complete thin-film analyses of the viscous melting and lubrication
process [57]. In addition to the scale shown in eq. (10.99), the film thickness
has the peculiar feature illustrated in Fig. 10.22. The relative motion gap is a
converging–diverging channel with liquid squirting out through both ends. The
slider moves to the right, so that x = 0 represents the upstream end and x = L
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Figure 10.22 Shape of the relative motion gap when melting is driven by viscous heating in
the liquid film. (From Ref. 60.)

the downstream end. The curves are labeled according to the liquid flow rate
Q0 forced to the left through the x = 0 opening. This flow rate increases with
the normal force (or 
P = Fn/L) in a manner that is reported parametrically in
Ref. 60. The excess temperature between the slider (Tw) and the melting front
(Tm) varies longitudinally as shown in Fig. 10.23. The hot spot is always on the

Figure 10.23 Temperature of the slider in Fig. 10.18 when melting is driven by viscous heating
in the liquid film. (From Ref. 60.)
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slider and in the plane of its entrance to the contact region (x = 0). The slider
temperature increases as Q0 and the normal force increase.

Contact melting and lubrication can occur in several other circumstances.
One example is when the phase-change material is subcooled (below the melting
point) and the slider is not isothermal [73]. Melting can occur when a shaft
rotates inside a bearing [74] and when a cylinder rolls on a plane surface [75].
A topic that attracts constant attention is the sliding friction on ice [58], which
is complicated further by the asperities of the melting surface and the effect
of pressure melting, or the decrease experienced by the ice melting point as
the applied pressure increases [59,76]. Finally, glasslike substances can provide
a contact-heating lubrication effect similar to that of melting phase-change
materials [77].

10.4 MELTING BY NATURAL CONVECTION

Melting in the presence of significant natural convection is an important
phenomenon in the field of materials processing, thermal energy storage in
phase-change materials, waste heat utilization as latent heat, the loss of heat from
building foundations to frozen ground, deicing, and the melting of the ice that
builds up on transmission lines. Considerable empirical and theoretical work has
been devoted already to this phenomenon, and one 1985 conclusion was that
this phenomenon is quite complicated, to the point that ‘‘no unified theoretical
treatment . . . is within our grasp’’ [78]. The complications stem from the strong
coupling that exists between the flow of the liquid phase and the melting rate
of the solid. It is this coupling that determines the instantaneous shape of the
two-phase interface, which constitutes one of the unknowns in each problem.

10.4.1 Transition from the Conduction Regime
to the Convection Regime

The key to the correct correlation of complicated trends of natural convection
melting is the identification of the correct scales of the phenomenon. Consider
the two-dimensional configuration shown in Fig. 10.24, in which the solid phase-
change material is at the melting point (Ts = Tm). Beginning with a certain point
in time (t = 0), the left wall of the enclosure is heated and maintained at the
constant temperature level Tw. This heating induces melting at the liquid–solid
interface and natural convection in the region carved out by the liquid phase.

The natural convection melting process can be analyzed as a sequence of four
regimes [79]: These are labeled (a)–(d) in Fig. 10.24. The first regime is the
conduction limit, when the heat flux across the incipient vertical liquid film is
balanced entirely by the enthalpy absorbed at the two-phase interface,

k
Tw − Ts

s
∼ ρhsf

ds

dt
(10.101)
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Figure 10.24 Regimes for melting in the presence of significant natural convection when the
phase-change material is being heated from the side. (From Ref. 79.)

In dimensionless terms, this yields

s

H
∼ θ1/2 (10.102)

where θ is the dimensionless time group

θ = k(Tw − Ts)

ρhsf H2
t = Ste Fo (10.103)

and Ste and Fo are the Stefan and Fourier numbers,

Ste = c(Tw − Ts)

hsf
, Fo = αt

H2
(10.104)

The Nusselt number that corresponds to this conduction limit is

Nu = Q

k(Tw − Ts)
∼ H

s
∼ θ−1/2 (10.105)

where Q is the total heat transfer rate through the left wall of the enclosure, per
unit length in the direction perpendicular to the plane of Fig. 10.24.

In the second regime, the conduction process is gradually replaced by
convection. This has been named the mixed regime (conduction + convection)
and is characterized by an upper liquid region that has become wide enough so
that its lateral surfaces are lined by distinct boundary layers (Fig. 10.24b). Let the
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unknown dimension z be the height of this upper region. Heat transfer across the
remainder of the liquid space (heightH− z) continues to be ruled by conduction.

Convection in the upper zone means that the thermal boundary layer thickness
in this zone, δz, is smaller than the horizontal dimension of the carved-out upper
zone. The convective zone expires at its lower extremity, where δz is of the same
order as the gap thickness of the lower (conduction) zone:

δz ∼ s at the convection–conduction transition level (10.106)

Assuming that the liquid has a Prandtl number of order 1 or greater, we write
[cf. eq. (4.26)]

δz ∼ z Ra−1/4
z (10.107)

where Raz is the Rayleigh number based on z, namely, Raz = gβz3(Tw − Ts)/αν

or Raz = (z/H)3 Ra. Combining eqs. (10.106) and (10.107) with eq. (10.102) for
the conduction gap s yields

z ∼ H Ra θ2 (10.108)

In conclusion, the convection zone expands downward as the time increases. The
expansion is faster at higher Rayleigh numbers.

With regard to the total heat transfer rate through the heated wall, Q, we note
that the heat transfer mechanism is convection over the height z and conduction
over H − z. The total heat transfer rate is therefore the sum

Q ∼ kz
Tw − Ts

δz
+ k(H − z)

Tw − Ts
s

(10.109)

which in view of eqs. (10.102), (10.105), (10.107), and (10.108) translates into

Nu = K1 θ−1/2 + K2 Ra θ3/2 (10.110)

where K1 and K2 are constants of order 1. The Nusselt number is made up
of two contributions, one due to conduction and the other to convection. One
rewarding feature of eq. (10.110) is that it meshes perfectly with the scaling law
that holds in the θ → 0 limit, eq. (10.105). This time, however, the convection
contribution (Ra θ3/2) is not necessarily negligible compared with the conduction
contribution (θ –1/2).

In conclusion, the heat transfer scaling law (10.110) holds starting with θ = 0
until the assumed convection zone (height z) extends all the way to the bottom of
the liquid space, that is, until z∼H. If we label θ1 the time scale that corresponds
to z ∼ H, eq. (10.108) suggests that the mixed regime ends at a time of order

θ1 ∼ Ra−1/2 (10.111)

in which the factor of order 1 on the right side is neglected. The Nusselt number
scaling law (10.110) distinguishes itself through the theoretical prediction of an
Nu minimum of order

Numin ∼ Ra1/4 at θmin ∼ Ra−1/2 (10.112)
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(i.e., at the end of the mixed heat transfer regime, θmin ∼ θ1). These scales follow
from applying ∂Nu/∂θ = 0 to eq. (10.110). The Nu minimum is confirmed by
many experiments and is one of the reasons for the statement quoted from Ref. 78
at the start of this section.

10.4.2 Quasisteady Convection Regime

In the convection regime (Fig. 10.24c), convection fills the entire liquid space of
height H. According to eq. (4.28), the overall Nusselt number scale is

Nu ∼ Ra1/4 (10.113)

This scaling law holds even though the phase-change interface is deformed and
continues to deviate from the vertical plane shape. It is known that the boundary
layer convection scaling law (10.113) also works very well for curved surfaces,
provided that Ra is based on a length scale of the same order as the vertical
dimension of the surface. The same is true in single-phase natural convection
(Chapter 4). The height-averaged melting front location that corresponds to
eq. (10.113) is

sav ∼ H Ra1/4 θ (10.114)

In a system of finite horizontal extent L, this scenario holds until the liquid—
solid interface reaches the right wall, sav ∼ L. Let θ2 represent the time scale
associated with this event. Equation (10.114) yields immediately

θ2 ∼ L

H
Ra−1/4 (10.115)

The convection regime exists only if θ2 > θ1, that is, if

Ra1/4 >
H

L
(10.116)

When this criterion is not satisfied (i.e., when θ2 < θ1), the mixed conduction
plus convection regime of Fig. 10.24b ends at a time of order θ2, that is, before
the Nu (θ) curve has had time to reveal its minimum. Criterion (10.116) and the
Nu minimum are threatened as Ra decreases: This is illustrated by the numerical
Nu (θ) curves plotted in Fig. 10.25. What happens after the melting front reaches
the right wall, θ > θ2, constitutes a distinct heat transfer regime, the main features
of which are sketched in Fig. 10.24d. The scales of this regime are described in
Ref. 79.

The scaling trends reviewed above have been verified numerically, as shown
in Figs. 10.25 and 10.26. The numerical simulations are based on the quasi-
steady natural convection approximation [79] and are valid in the limit of
negligible liquid thermal inertia, Ste � 1. Figure 10.25 shows how the Rayleigh
number affects the shape and position of the Nusselt number versus time curve.
Each Nu (θ) curve has the features anticipated by the scale analysis: first,
the pure conduction decay of order θ –1/2, followed by the mixed regime with
its Nu minimum, and finally, the pure convection Nu plateau of order Ra1/4.
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Figure 10.25 Numerical solutions for the average Nusselt number as a function of time and
Rayleigh number. (From Ref. 79.)

Figure 10.26 Numerical verification of the theoretical scales predicted for θmin, θknee, Numin,
and Nuknee. (From Ref. 79.)
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The Nusselt number curve changes slope as it passes through the ‘‘knee’’ point
where the melting front first touches the right-hand-side adiabatic boundary. The
time associated with this event is θknee. At times greater than θknee, the Nusselt
number decreases relatively fast and almost linearly in time.

Figure 10.26 tests the correctness of some of the scaling laws reviewed earlier
in this section. The top row of points shows that the time of the Nusselt number
minimum, θmin, is indeed on the order of θ1. The second row of points shows
that the time θ when the melting front reaches the right wall is of order Ra–1/2.
The third row of points uses the knee-point Nusselt number to show that in the
pure convection limit the Nusselt number scales as Ra1/4. The bottom row shows
that Numin scales as Ra1/4, as anticipated in eq. (10.113).

The tested Nusselt number and time scales provide the necessary backbone on
which to construct a heat transfer correlation that spans the conduction, mixed,
and convection regimes. In the conduction regime (θ � θ1), the Nusselt number
must approach the pure-conduction asymptote (2θ)–1/2. In the mixed regime
(θ ∼ θ1), the Nu(θ) passes through a minimum of order Ra1/4. In the pure
convection regime (θ1 < θ < θ2), the Nusselt number is time independent and
of order Ra1/4. These three behaviors are evident in the single correlation [79]

Nu = (2θ)−1/2 + [c1 Ra1/4 − (2θ)−1/2][1 + (c2 Ra3/4 θ3/2)n]1/n (10.117)

for which the recommended empirical constants are c1 = 0.35, c2 = 0.0175, and
n = − 2.

The numerical results obtained for the average melting-front location versus
time can be correlated similarly,

sav

H
= {[(2θ)1/2]m + [c1 Ra1/4 θ]m}1/m (10.118)

by using the numerical constants c1 = 0.35 and m = 5. It was shown that
the correlations (10.117) and (10.118) agree very well with numerical and
experimental data [79]. It is possible to go significantly beyond scale analysis
and to produce an entirely analytical description of the heat transfer and melting
process [80–82].

10.4.3 Horizontal Spreading of the Melt Layer

In this final section we consider the effect of the severe deformation undergone
by the upper end of the melting front [83]. The preceding analysis was based
on the assumption that the melting front is relatively smooth and nearly vertical.
In reality, even during the earliest stages (conduction-dominated melting), the
freshly formed liquid erodes the upper end of the melting front much faster,
creating a shallow pool near the upper surface (Fig. 10.24a detail). This pool
continues to grow horizontally and after some time becomes a distinct layer
of shallow liquid. Its development is evident in Fig. 10.27, which is based on
experimental observations at high Rayleigh numbers (RaH ∼ 1010 [81]). The
horizontal liquid layer is labeled A1 on the left side of Fig. 10.28.
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Figure 10.27 Development of a shallow intrusion layer of liquid on top of a block of
n-octadecane heated from the right. (From Ref. 83; drawn to scale after Ref. 81.)

Figure 10.28 Liquid zone as a vertical slot (A2) added to a horizontal intrusion layer (A1) (the
heating is from the left). (From Ref. 83.)
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The behavior of the horizontal intrusion layer can be anticipated based on
scale analysis, as shown in Ref. 83. Consider the two-dimensional layer enlarged
on the right side of Fig. 10.28. The coordinate system x–y is attached to the tip of
the liquid layer, which advances to the right with the velocity U = dL/dt, where
L(t) is the instantaneous length of the layer. The solid moves to the left with the
velocity U. The solid is isothermal and at the melting point Tm.

The analysis is based on two key assumptions. First, the natural convection
velocities in the liquid layer are greater than the melting speed, u � U. The
domain of validity of this assumption will be established later in eq. (10.128).
When this assumption is valid, the natural convection in the horizontal layer
is quasisteady; that is, it proceeds as if the liquid blowing velocity across the
melting front (the melting effect) is negligible. The second assumption is that
the horizontal liquid intrusion layer is slender, δ � L. Later, in eq. (10.129),
we will see that this assumption is justified when the Rayleigh number is large.
Based on these assumptions, the equations that govern the conservation of mass,
momentum, and energy in the horizontal liquid layer are

∂u

∂x
+ ∂v

∂y
= 0 (10.119)

ν
∂3u

∂y3
− gβ

∂T

∂x
= 0 (10.120)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(10.121)

The inertia terms have been neglected in the momentum equation (10.120)
because the Prandtl number is considerably greater than 1 (for n-octadecane, Pr∼= 50). The liquid is being modeled as Newtonian with constant properties (α, β,
ν); the use of the Boussinesq approximation is evident in eq. (10.120).

An additional equation is provided by the melting-front energy continuity
condition. According to this, the conduction heat flux arriving from the liquid
side of the interface is balanced by the new solid that crosses the ∂δ/∂x-sloped
interface with the horizontal velocity U,

k

(
∂T

∂y

)
y=−δ

= ρhsf U
∂δ

∂x
(10.122)

It is assumed that the solid density ρ is equal to the liquid density. Properties k
and hsf are the liquid thermal conductivity and the latent heat of melting.

The system selected for scale analysis is the liquid layer of length L and depth
of order δ. The scale of the liquid excess temperature above the melting point is

T= Th − Tm, where Th is the temperature of the left wall in Fig. 10.28. With this
notation, and if we write u and v for the horizontal and vertical velocity scales,
we can replace eqs. (10.119)–(10.122) by the following order-of-magnitude
statements:

u

L
∼ v

δ
(10.123)
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ν
u

δ3
∼ gβ


T

L
(10.124)

u

T

L
, v


T

δ
∼ α


T

δ2
(10.125)

k

T

δ
∼ ρhsf U

δ

L
(10.126)

The mass conservation equation (10.123) implies that the two scales listed on the
left side of eq. (10.125) are both of order (u
T)/L. The system (10.123)–(10.126)
can be combined with U ∼ L/t in order to solve for L,

L ∼ (
T)7/4
(
gβ

αν

)1/2
(

kt

ρhsf

)5/4

(10.127)

or in dimensionless form,

L

H
∼ Ra1/2

H (Ste Fo)5/4 (10.127′)

where RaH = (gβH3
T)/αν, while Ste Fo is the dimensionless time θ of
eq. (10.103). By solving the same system, it can be shown that the assumption
that the melting front moves slowly, U � u, is equivalent to the statement that
the degree of liquid superheat is small,

Ste � 1 (10.128)

Similarly, the shallow-layer assumption δ � L holds when

RaH (Ste Fo)3/2 � 1 (10.129)

Equation (10.127′) agrees in an order-of-magnitude sense with the L(t)
measurements [84–86] that covered a relatively wide domain in Rayleigh
number (106 –109) and in Ste Fo time number (10–4 –10–1). The data are fitted
within 30 percent by the correlation [83],

L

H
∼= 0.11Ra1/3

H Ste Fo (10.130)

Note that in eq. (10.130) the effect of H cancels out, leaving a penetration
distance L that increases as

L ∼= 0.11(
T)4/3
(
gβ

αν

)1/3 kt

ρhsf
(10.131)

This correlation is qualitatively similar to the form anticipated analytically in eq.
(10.127). The solidification counterpart of the melting phenomenon of Section
10.4 was analyzed in Ref. 87.



478 10 CONVECTION WITH CHANGE OF PHASE

REFERENCES

1. A. Bejan, Heat Transfer, Wiley, New York, 1993.
2. A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York,

1982, Chapter 4.
3. A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University

Press, Cambridge, 2000, Chapter 6.
4. A. Bejan and S. Lorente, The constructal law of design and evolution in nature,

Philos. Trans. Roy. Soc. B, Vol. 365, 2010, pp. 1335–1347.
5. A. Bejan and P. J. Zane, Design in Nature, Doubleday, New York, 2012.
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PROBLEMS

10.1. Consider the control volume drawn around the entire film of height
L shown in Fig. P10.1, and make no assumption concerning the flow
regimes that may be present inside the control volume. The vertical
wall is isothermal, Tw. To the right of the film of condensate, the vapor
is stagnant and saturated. Show that in this general configuration, the
total wall cooling rate is proportional to the condensate mass flow rate,
q′ = h′

fg�(L).

Figure P10.1

10.2. Show that regardless of the flow regime, the length of a vertical film of
condensate L is related to the average heat transfer coefficient hL and the
total condensation rate �(L) by the general formula

L = h′
fg�(L)

(Tsat − Tw)hL
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Use this formula to derive eq. (10.24), which holds only for a laminar
vertical film, when ρl � ρv .

10.3. Saturated vapor condenses on a cold vertical slab of height L. Both
sides of the slab are covered by laminar films of condensate. A single
horizontal cylinder of diameter D and at the same temperature as the slab
is immersed in the same saturated vapor. For what special diameterDwill
the total condensation rate on the cylinder equal the total condensation
rate produced by the slab?

10.4. The horizontal thin-walled tube shown in Fig. P10.4 is cooled by an
internal fluid of temperature Tw. The tube is immersed in a stagnant
atmosphere of saturated vapor, which condenses in laminar-film fashion
on the outer cylindrical surface. It is proposed to increase the total
condensation rate by flattening the tube cross section into the shape
shown on the right side of the figure. Calculate the percent increase in
condensation flow rate associated with this design change.

Figure P10.4

10.5. A plane rectangular surface of width L = 1 m, length Z � L, and
temperature Tw = 80◦C is suspended in saturated steam of temperature
100◦C. When this surface is oriented such that L is aligned with the
vertical, the steam condenses on it at the rate 0.063 kg/s · m. The purpose
of this exercise is to show how the condensation rate decreases when the
surface becomes tilted relative to the vertical direction (Fig. P10.5).

(a) Calculate the condensation rate when the L width makes a 45◦ angle
with the vertical and the Z length is aligned with the horizontal.
Determine also the film Reynolds number and the flow regime.

(b) Assume that the surface is perfectly horizontal facing upward (as
the top surface in Fig. 10.10) and that the film of condensate is
laminar. Calculate the condensation rate and the Reynolds number of
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the liquid film spilling over one edge, and verify the validity of the
laminar film assumption.

Figure P10.5

10.6. The bank of horizontal tubes shown in Fig. P10.6a is surrounded by
100◦C saturated steam, which condenses on the outside of each tube. The
tube surface is maintained at 60◦C by a cold fluid that flows through each
tube in the direction perpendicular to the plane of the figure. Assuming
that the condensate film is laminar, calculate the total mass flow rate
of condensate per unit length of tube bank. In a competing design, the
same bundle of tubes appears rotated by 90◦, as shown in Fig. P10.6b.
Calculate the total condensate mass flow rate in this new design, and
comment on the effect of the 90◦ rotation.

Figure P10.6

10.7. The average heat transfer coefficients for film condensation on an upward-
facing strip and disk (Fig. 10.10) are listed in eqs. (10.33)–(10.34).
Rewrite each of these formulas by using as a length scale the characteristic
length of the surface, Lc = A/p, where A and p are the area and perimeter
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of the surface. Show that the average heat transfer coefficient of any
other surface whose shape is somewhere between the ‘‘very long’’ limit
(the strip) and the ‘‘round’’ limit (the disk) is given by the approximate
formula

NuLc = hLc
kl

∼= 0.8

[
L3
ch

′
fgg

(
ρl − ρv

)
klνl(Tsat − Tw)

]1/5

10.8. Consider the spherical vapor bubble of radius r shown in Fig. P10.8. The
pressure and temperature inside the bubble (Pv , Tv) are slightly above
the pressure and temperature in the liquid (Pl, Tl). The liquid is saturated,
Tl = Tsat.

(a) Invoke the mechanical equilibrium of one hemispherical control
volume and show that the bubble radius varies inversely with the
pressure difference, r = 2σ /(Pv − Pl).

(b) Rely on the Clausius–Clapeyron thermodynamics relation dP/dT =
hfg/Tvfg in order to show that the bubble radius also varies inversely
with the temperature difference, r = 2σTsat/hfg ρv(Tv − Tsat).

(c) Calculate the radius of a steam bubble with Tv − Tsat = 2 K in water
at Tsat = 100◦C.

Figure P10.8

10.9. The vacuum insulation around a spherical liquid helium vessel develops
an air leak and allows the heat transfer rate of q′′

w = 103 W/m2 to land
on the external surface of the vessel (Fig. P10.9). An amount of saturated
liquid helium at atmospheric pressure boils at the bottom of the vessel.
Calculate the excess temperature (Tw − Tsat) by assuming nucleate boiling
with Csf = 0.02 and s= 1.7. Compare the heat leak q′′

w with the peak heat
flux for nucleate boiling in the pool of liquid helium.
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Figure P10.9

10.10. Water boils in the pressurized cylindrical vessel shown in Fig. P10.10.
The steam relief valve is set in such a way that the pressure inside the
vessel is 4.76 × 105 N/m2. The bottom surface is made out of copper
(polished), and its temperature is maintained at Tw = 160◦C. Assume
nucleate boiling, and calculate the total heat transfer rate from the bottom
surface to the boiling water. Later, verify the correctness of the nucleate
boiling assumption.

Figure P10.10

10.11. The cylindrical vessel described in Problem 10.10 has an inner diameter
of 20 cm. The depth of the original amount of liquid is 5 cm, and the
pressure is maintained at 4.76 × 105 N/m2 (Fig. P10.11). The nucleate
boiling heat transfer rate to the liquid (calculated in Problem 10.10) is
qw = 12.44 kW.

(a) Estimate the time needed to evaporate all the liquid. Base your
estimate on the relation qw = ṁhfg, which is used routinely.

(b) The qw = ṁhfg relation is valid only approximately and is incorrect
from a thermodynamic standpoint. With reference to the control
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volume defined by the pressurized vessel, show that the correct pro-
portionality between qw and ṁ is qw = ṁ[hg − (uf vg − ugvf )/(vg −
vf )] where u, v, (·)g, and (·)f are the usual thermodynamics symbols
for specific internal energy, specific volume, saturated vapor, and
saturated liquid. Note that the pressure (or temperature) and the total
volume (V) remain constant. Numerically, show that the quantity
arrived at in parentheses deviates from hfg [assumed in part (a)] as
the saturated liquid–vapor mixture approaches the critical point.

Figure P10.11

10.12. In a power-controlled pool boiling experiment, a horizontal cylindrical
heater is immersed in saturated water at atmospheric pressure. The peak
heat flux is 106 W/m2. The power is increased slightly above this level,
and the nucleate boiling regime is replaced abruptly by film boiling
(Fig. 10.16b). Estimate the excess temperature in this new regime by
assuming that radiation is the only mode of heat transfer across the film.
Also assume that εw = 1. Compare your estimate with the value read off
Fig. 10.15. Will the actual excess temperature be larger or smaller than
this pure-radiation estimate?

10.13. Film boiling occurs on the surface of a sphere of temperature Tw = 354◦C
and diameter D = 2 cm which is plunged in a bath of saturated water at
atmospheric pressure. The sphere is made out of polished copper.

(a) Calculate the heat transfer coefficient due to convection, hD, the
correction due to radiation, hrad, and the total heat transfer rate from
the copper ball to the water pool. For the emissivity of the copper
surface, assume that εw = 0.05.

(b) Model the copper sphere as a lumped capacitance, and calculate its
new temperature 10 s after the start of film boiling.
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10.14. Solar energy is stored by heating from above a large pool of molten
salt (Fig. P10.14). The heated liquid is drawn slowly horizontally. Cold
salt at the temperature T∞ is injected slowly and horizontally along the
bottom of the pool. As a very good approximation, the motion of the
salt is purely vertical with the uniform velocity V. The temperature field
is unidimensional, T(y). The temperature gradient at the free surface
(y = 0) is fixed by the solar heat flux q′′, which is a known constant.
The temperature of the molten salt sufficiently far from the surface
approaches T∞. Determine analytically the temperature distribution T(y)
and the surface temperature T(0). What is the order of magnitude of the
thickness of the salt layer that is heated by the solar effect?

0

V

y

Free surface

Molten salt

Figure P10.14
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MASS TRANSFER

Convective phenomena in nature are often accompanied by mass transfer, that
is, by the transport of substances that act as components (constituents, species)
in the fluid mixture. The circulation of atmospheric air is driven by differential
heating; however, in an industrial area, atmospheric circulation also acts as a
carrier for the many exhaust streams put out by factories into the atmosphere.
Ocean currents driven by differential heating also act as freight trains for salt (in
the form of saline water).

Convection mass transfer alone (in the absence of heat transfer) constitutes
the backbone of many operations in the chemical industry. This seems enough
reason to include mass transfer in this convection course. An additional reason
is the analogy that exists between convective mass transfer and convective heat
transfer. I highlight this analogy with a review of the principles outlined in this
book, including the application of constructal design to the maximization of
mass transfer density in mass exchangers [1] and fuel cells [2], and an extension
to topics of natural convection mass transfer and mass convection through
porous media.

11.1 PROPERTIES OF MIXTURES

The study of convective heat transfer—the object of the first 10 chapters of
this book—began with a review of the thermodynamics of pure substances.
That review was demanded, first, by the role of mutual relative played by
thermodynamics to both heat transfer and fluid mechanics [3] and, second, by
the fact that the student is likely to have been exposed first to thermodynamics.
For the same reasons, we begin the discussion of mass convection with a review
of the thermodynamics and nomenclature of mixtures of substances.

489Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
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Consider a batch of fluid of volume V and mass m. Like the air surrounding
a fin in natural convection or like the river water sweeping away the discharge
from a chemical plant, this fluid batch is a mixture of identifiable components
(e.g., in the case of air, the components are nitrogen, oxygen, carbon dioxide,
inert gases, and impurities). Let mi be the individual masses of the components
that constitute the mixture. Then, by definition, the concentration of component
i in the mixture (m, V) is

Ci = mi

V
(11.1)

with units of kg/m3. Concentration is another word for the component density ρi
demanded by the viewpoint that each component (mi) fills the entire volume V ,

ρi = mi

V
(11.2)

Because all the components contribute to the total mass of the batch, � mi = m,
the aggregate density of the mixture ρ is the sum of all concentrations,

ρ =
∑

Ci (11.3)

The aggregate density ρ is the density used in the preceding chapters to describe
the mixture’s ability to act as a conveyer belt for energy.

The size of the fluid batch can be described in terms of its extensive properties
mass (m) and volume (V). An alternative description, preferred by chemical
engineers, involves the concept of mole: A 2-mole batch of a certain substance
is bigger than a 1-mole batch of the same substance. By definition, a mole is the
amount of substance in a batch (in a thermodynamic system) that contains as
many elementary entities (e.g., molecules) as there are in 0.012 kg of carbon-12
[3]. That special number of entities is Avogadro’s constant, 6.022 × 1023.

The mole is not a mass unit, simply because the mass of 1mole is not the
same for all substances (five basketballs together weigh more than five tennis
balls taken together; note that in this example, the group of five entities plays the
role of 1mole). The molar mass M of a mixture or a component (a molecular
species) in a mixture is the mass of 1mole of that mixture or component. The
units of molar massM are g/mol or kg/kmol, where kmol represents 1000 moles.
The total number of moles n found in a batch is obtained by dividing the total
mass of the batch by the mass of 1mole,

n = m

M
(11.4)

The number of moles of a component (ni) found in a mixture is equal to the mass
of that component (mi) divided by its molar mass (Mi),

ni =
mi

Mi
(11.5)
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A dimensionless way to describe the composition of a mixture is by use of
the mass fraction of each constituent,

�i = mi

m
(11.6)

where ��i = 1. The concept of mass fraction is the same as that of quality
encountered in the study of liquid and vapor mixtures. (When the quality of wet
steam is 0.9, the mass fraction of saturated steam in the two-phase mixture is 0.9.)
Another dimensionless alternative to describing composition is by comparing
the number of moles of each component (ni) with the total number of moles
found in the mixture (n),

xi =
ni
n
,

∑
xi = 1 (11.7)

The ratio xi is themole fraction of component i. To summarize, we have seen three
alternative ways to discuss composition: a dimensional concept (concentration)
and two dimensionless ratios (mass fraction and mole fraction). The conversion
formulas relating these three properties are

Ci = ρ�i = ρ
Mi

M
xi (11.8)

where the equivalent molar mass of the mixture (M) is related to the molar
masses of all the constituents by

M =
∑

Mixi (11.9)

If the mixture can be modeled as an ideal gas, one of its equations of state is

PV = mRT or PV = nRT (11.10)

where the mixture’s ideal gas constant (R) and the universal gas constant
(R = 8.314 J/mol · K) are related via

R = R

M
(11.11)

The partial pressure Pi of constituent i is the pressure that one would measure if
constituent i alone were to fill the mixture volume (V) at the same temperature
as the mixture (T):

Pi V = miRT or PiV = niRT (11.12)

Summing the foregoing equations over i, we obtain Dalton’s law,

P =
∑

Pi (11.13)
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which states that the pressure of a mixture of gases at a specified volume and
temperature is equal to the sum of the partial pressures of constituents. Of use in
the calculation of concentrations is the relationship between partial pressure and
mole fraction,

Pi
P

= xi (11.14)

which is obtained by dividing eqs. (11.12) and (11.10). The concentration of a
gaseous species (Ci) is related to the partial pressure of that gas via eq. (11.8).

The nomenclature reviewed in this section applies to a mixture in equilibrium,
that is, to a fluid batch whose composition, pressure, and temperature do
not vary from point to point. Beginning in the next section, we focus on a
fundamental departure from the equilibriummixture description: amixturewhose
composition, pressure, and temperature may vary from one point to another. We
view this nonequilibrium mixture as a patchwork of small equilibrium batches
of the type described in the field of entropy generation minimization [3]; the
equilibrium state of each of these batches varies slightly as one shifts from one
small batch to the next.

11.2 MASS CONSERVATION

The centerpiece of convective mass transfer analysis is the principle of mass
conservation in (or continuity through) the control volume sketched in Fig. 11.1.
In Chapter 1 we invoked the same principle for a fluid of density ρ whose
composition was not questioned: that fluid might very well have been a mixture
of two or more fluids. In this section we apply the principle of mass conservation
to each component or constituent in the mixture. Relative to Fig. 11.1, we argue
that the net flow of constituent i into the control volume is equal to the rate of
accumulation of constituent i inside the control volume,

∂ρi

∂t
�x �y = ρiui �y−

[
ρiui +

∂

∂x

(
ρiui

)
�x

]
�y

+ ρivi �x−
[
ρivi +

∂

∂y

(
ρivi

)
�y

]
�x+ ṁ′′′

i �x �y (11.15)

In the balance above, ρi is the number of kilograms of constituent i per cubic
meter found locally in the mixture at point (x, y). The velocity components
(ui, vi) account for the motion of constituent i relative to the control volume. The
use of the (ui, vi) notation at this stage should not be taken as a suggestion that a
motion with such velocity components can actually be seen or measured. These
velocity components do have a physical meaning: The group ρiui represents
the net mass flux of constituent i (measured in kg/s · m2) in the x direction.
Concluding eq. (11.15) is the term containing ṁ′′′

i , which is the volumetric rate
of constituent i generation (the units of m′′′

i are kg/s · m3). This last term must
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Figure 11.1 Conservation of the mass of component i during the flow of a mixture.

be taken into account in reactive flows that generate constituent i locally, as
a product of reaction. If constituent i is consumed by the reaction, the species
generation rate m′′′

i is negative.
The mass conservation statement (11.15) reduces to

∂ρi

∂t
+ ∂

∂x
(ρiui) + ∂

∂y
(ρivi) = ṁ′′′

i (11.16)

which in the absence of constituent generation (m′′′
i = 0) has the same form as

the mass conservation statement for mixture flow, eq. (1.3). Indeed, the mass
conservation equation for mixture flow can be derived as in Fig. 11.1 by viewing
the mixture flow as the superposition of all the flows involving one constituent
at a time. Superposing the constituent flows, that is, summing eq. (11.16) over i
and letting ṁ′′′

i = 0, we obtain

∂ρ

∂t
+ ∂

∂x

∑
ρiui +

∂

∂y

∑
ρivi = 0 (11.17)

This mass conservation statement must be the same as the statement derived in
Chapter 1,

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0 (11.18)
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A term-by-term comparison of eqs. (11.17) and (11.18) brings us to a very
important concept in mass convection—the concept of mass-averaged velocity
components (u, v),

u = 1

ρ

∑
ρiui, v = 1

ρ

∑
ρivi, (11.19)

What in the heat transfer part of this convection book was called the velocity
component emerges in mass transfer as a weighted average of all the constituent
velocities.

In general, the mass-averaged velocity differs from the velocity of each
constituent. To see this, take a glass with some water in it and inject a layer
of grenadine syrup in the lower portion of the glass. What happens is shown
in Fig. 11.2: In time, the syrup diffuses upward, its place being taken by clear
water diffusing downward. In any horizontal cross section, the vertical velocity
of each constituent is finite (one positive and the other negative), while the
mass-averaged velocity—the velocity of the mixture as a whole—is zero (to the
reader of Chapter 1, the water in the glass is stagnant). Clearly, each constituent
moves relative to the mixture as a whole.

The velocity difference (ui−u) is the diffusion velocity of constituent i in the
x direction. The product ρi(ui−u) is the flow rate of constituent i per unit area in
the x direction relative to the bulk motion of the mixture; a shorter name for this
quantity is diffusion flux, jx, i. Combining the diffusion flux definitions

jx,i = ρi(ui − u) (11.20)

jy,i = ρi(vi − v)

0 h 7 h 15 h 25 h 38 h

Figure 11.2 Vertical diffusion of grenadine syrup in water.
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with the mass continuity equation for constituent i [eq. (11.16)] yields

∂ρi

∂t
+ ∂

∂x
(ρiu) + ∂

∂y
(ρiv) = −∂jx,i

∂x
− ∂jy,i

∂y
+ ṁ′′′

i (11.21)

Reverting now to the concentration notation [Ci = ρi, eqs. (11.1) and (11.2)]
and assuming that the mixture flow may be treated as one with ρ = constant, the
conservation of constituent i requires that

∂Ci
∂t

+ u
∂Ci
∂x

+ v
∂Ci
∂y

= −∂jx,i
∂x

− ∂jy,i
∂y

+ ṁ′′′
i (11.22)

The three-dimensional counterpart of this conclusion is

DCi
Dt

= −∇ · ji + ṁ′′′
i (11.23)

The diffusion flux vector ji is driven by the concentration gradient ∇Ci in the
same manner that the conduction heat flux is driven by the local temperature
gradient. This idea was put forth by the German physiologist Adolph Fick in
1855 [4]: It has the merit of having triggered the modern analytical development
of the field of mass transfer in the same way that Fourier’s ideas on conduction
made heat transfer a modern science. For a two-component mixture, Fick’s law
of mass diffusion is

j1 = −D12 ∇C1 (11.24)

where D12 = D21 = D is the mass diffusivity of component 1 into component 2,
and vice versa. The diffusivity D, whose units are m2/s, is a transport property
whose numerical value depends, in general, on the mixture pressure, temperature,
and composition. In view of the thermodynamics of irreversible processes, the
diffusion flux is caused solely by the concentration gradient [as in eq. (11.24)]
strictly in a fluid with uniform pressure and temperature [3]; nevertheless, eq.
(11.24) is a useful approximation even in combined mass and heat transfer
problems. Substituting eq. (11.24) in the mass conservation statement (11.23)
and dropping the subscript i yields

DC

Dt
= D ∇2C + ṁ′′′ (11.25)

Throughout the remainder of this chapter, the concentration C refers to the
component whose migration by mixture flow is of interest.

Themass transfer problem consists of solving eq. (11.25) for the concentration
field C(x, y, z), and determining the mass fluxes associated with the concentration
field from Fick’s law (11.24). From the outset, we note the similarities between
the mass convection problem and the energy convection problem formulated in
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Chapter 1. The latter consists of determining the temperature field T(x, y, z) from
the energy equation

DT

Dt
= α ∇2T + q′′′

ρcP
(11.26)

and the heat fluxes from Fourier’s law of thermal diffusion, q′′ = −k ∇T
[recall that eq. (11.26) holds under special circumstances outlined in Chapter 1].
Equations (11.25) and (11.26) show that the concentration C occupies the place
of temperature, while the mass diffusivity D replaces the thermal diffusivity
α. To streamline the presentation and to avoid repetition, the correspon-
dence between mass transfer and heat transfer will be exploited throughout
this chapter.

The mass conservation or concentration equation (11.25) has the following
forms in three dimensions (Fig. 1.1):

Cartesian (x, y, z):

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D

(
∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2

)
+ ṁ′′′ (11.27a)

Cylindrical (r, θ , z):

∂C

∂t
+ vr

∂C

∂r
+ vθ

r

∂C

∂θ
+ vz

∂C

∂z

= D

[
1

r

∂

∂r

(
r
∂C

∂r

)
+ 1

r2
∂2C

∂θ2
+ ∂2C

∂z2

]
+ ṁ′′′ (11.27b)

Spherical (r, φ, θ):

∂C

∂t
+ vr

∂C

∂r
+ vφ

r

∂C

∂φ
+ vθ

r sin φ

∂C

∂θ

= D

[
1

r2
∂

∂r

(
r2

∂C

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂C

∂φ

)
+ 1

r2 sin2φ

∂2C

∂θ2

]
+ ṁ′′′ (11.27c)

Given the proportionality that links concentration, mass fraction, and mole
fraction as a means of quantizing composition [eq. (11.8)], the concentration
equations formulated above can be replaced with equations written in terms of
mass fraction (�),

D�

Dt
= D∇2� + ṁ′′′

ρ
(11.28)

j = −ρD ∇� (11.29)
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or in terms of mole fraction (x),

Dx

Dt
= D ∇2x+ M

M1

ṁ′′′

ρ
(11.30)

j = −ρ
M1

M
D ∇x (11.31)

where M1 is the molar mass of the constituent of interest (whose mole fraction
is x). To be consistent, the material that follows refers to only one formulation,
the concentration-type equations (11.24), (11.25), and (11.27).

11.3 MASS DIFFUSIVITIES

To solve the concentration equation (11.27), we need information on the mass
diffusivity of the species of interest, D, and the species conservation at the
two surfaces that define the mass transfer medium. The second item—the
specification of boundary conditions—forms the subject of the next section.
Here, we review the contents of Tables 11.1 and 11.2 and the ways in which
these mass diffusivity data can be extrapolated to temperatures and pressures
that differ from those specified in the tables.

Consider first the case of a binary gaseous mixture such as hydrogen and
nitrogen at atmospheric pressure and room temperature. Let subscripts 1 and 2
represent the two components in the mixture. Table 11.1 shows the value of the
mass diffusivity D, which is the mass diffusivity of species 1 into 2 [namely,
D12, eq. (11.24)], and the mass diffusivity of species 2 into 1 (labeled D21); in
other words, D ≡ D12 = D21. For this reason, the D values listed in Table 11.1
are also known as mutual diffusion coefficients.

The theoretical work of predicting the mass diffusivity in binary gaseous
mixtures has been reviewed in Refs. 6 and 8. Recommended is a semiempirical
correlation developed by Fuller et al. [9], according to whom D is proportional
to the group T1.75/P, where T and P are the mixture absolute temperature and
pressure. This functional dependence can be used to extend the applicability of
the mass diffusivity data of Table 11.1. If T0 and P0 are the mixture temperature
and pressure specified in the table, the diffusivity at different values of T and P
can be evaluated by writing

D(T ,P)

D(T0,P0)
∼=

(
T

T0

)1.75P0

P
(11.32)

The effect of temperature onmass diffusivity deviates somewhat from this simple
formula if the ratio T/T0 is significantly greater than 1. Worth keeping in mind
is that the mass diffusivity of a binary gaseous mixture does not depend on the
concentration.



498 11 MASS TRANSFER

Table 11.1 Mass diffusivities of binary gaseous mixtures at
atmospheric pressure

Gaseous Mixture D (m2/s) T (K)

Air-acetone 1.09 × 10−5 273
Air-ammonia 2.80 × 10−5 298
Air-benzene 0.77 × 10−5 273
Air-carbon dioxide 1.42 × 10−5 276

1.77 × 10−5 317
Air-ethanol 1.45 × 10−5 313
Air-helium 7.65 × 10−5 317
Air-n-hexane 0.80 × 10−5 294
Air-methanol 1.32 × 10−5 273
Air-naphthalene 5.13 × 10−6 273
Air-water vapor 2.60 × 10−5 298

2.88 × 10−5 313
Ammonia-hydrogen 5.70 × 10−5 263

1.10 × 10−4 358
Argon-carbon dioxide 1.33 × 10−5 276
Argon-hydrogen 8.29 × 10−5 295
Benzene-hydrogen 4.04 × 10−5 311
Benzene-nitrogen 1.02 × 10−5 311
Carbon dioxide-nitrogen 1.67 × 10−5 298
Carbon dioxide-oxygen 1.53 × 10−5 293
Carbon dioxide-water vapor 1.98 × 10−5 307
Cyclohexane-nitrogen 0.73 × 10−5 288
Helium-methane 6.76 × 10−5 298
Hydrogen-nitrogen 7.84 × 10−5 298
Hydrogen-water vapor 9.15 × 10−5 307
Methane-water vapor 3.56 × 10−5 352
Nitrogen-water vapor 3.59 × 10−5 352
Oxygen-water vapor 3.52 × 10−5 352

Source: Data from Refs. 5–7.

The evaluation of mass diffusivities is considerably more complicated for
a multicomponent gaseous mixture because the mixture composition plays
an important role (see, e.g., Ref. 7). Nevertheless, Fick’s law of diffusion
and eq. (11.27) continue to hold, provided that D is an appropriately chosen
(calculated, or measured) coefficient. The method for making this selection is
outlined in Refs. 6 and 9–12.

The mass diffusivities of liquid mixtures are generally 104−105 times smaller
than the diffusivities exhibited by gaseous mixtures. In binary liquid mixtures,
the mass diffusivity is a function of composition (i.e., unlike in binary gaseous
mixtures). The effect of mixture composition on D becomes negligible in the
limit of infinite dilution, where only small amounts of the diffusing species of
interest (the solute) are mixed with a second species (the solvent).
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Table 11.2 Mass diffusivities of gases and organic solutes at low
concentrations in water (dilute aqueous solutions)

Solute Solvent D (m2/s) T (K)

Acetone Water 1.16 × 10−9 293
Air Water 2.5 × 10−9 293
Aniline Water 0.92 × 10−9 293
Benzene Water 1.02 × 10−9 293
Carbon dioxide Water 1.92 × 10−9 298
Chlorine Water 1.25 × 10−9 298
Ethanol Water 0.84 × 10−9 298
Ethylene glycol Water 1.04 × 10−9 293
Glycerol Water 0.72 × 10−9 288
Hydrogen Water 4.5 × 10−9 298
Nitrogen Water 2.6 × 10−9 293
Oxygen Water 2.1 × 10−9 298
Propane Water 0.97 × 10−9 293
Urea Water 1.2 × 10−9 293
Vinyl chloride Water 1.34 × 10−9 298

Source: Data from Refs. 5 and 6.

Table 11.2 shows a collection of mass diffusivity data for dilute binary liquid
mixtures, in which the solvent is always liquid water. More data for other dilute
binary liquid mixtures can be found in Refs. 5 and 6.Dilutemeans that the solute
mole fraction does not exceed approximately 5 percent.

The D values of Table 11.2 refer strictly to the mixture temperature listed
in the rightmost column. Let subscript 1 represent the solute and subscript 2
represent the solvent in the dilute binary liquid mixture. It has been shown
[13] that the diffusion coefficient of interest (D12, or D in Table 11.2) increases
with the temperature as the group T/µ2, where the viscosity of the solvent (µ2)
is, in general, a function of temperature. If T0 is the absolute temperature that
corresponds to the D value listed in Table 11.2, the temperature domain covered
by that table can be extended by using the relation

D(T)

D(T0)
∼= T

T0

µ2(T0)

µ2(T)
(11.33)

11.4 BOUNDARY CONDITIONS

An important feature of the boundary conditions to be specified in connection
with the concentration equation is that each condition applies to the inner side
of the boundary. The inner side is the side that faces the medium through
which the species of interest diffuses. This feature has been stressed in the
drawing of Fig. 11.3, where the boundary conditions have been attached to
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Figure 11.3 Boundary types and ways of specifying boundary conditions. (From Ref. 14.)

the inner sides of the boundary (i.e., in the shaded domain). It is an impor-
tant feature because—unlike the temperature—the species concentration does
not vary continuously across the interface. The exception is the case of the
single-component system (pure substance), in which the mole fraction is equal
to 1 on both sides of the interface. Figure 11.3 shows three examples of
interfaces that may confine a certain diffusive domain. The diffusive domain
of interest is indicated by the shaded area and forms the subject of the mass
transfer analysis.

Figure 11.3a shows the interface between an ideal-gas mixture and the liquid
phase of one of its components. For example, if 1 is a pure substance in the
liquid phase (e.g., water), 1 is also a component in the gaseous mixture above
the interface (i.e., water vapor in air). The proper boundary condition on the
gas side of the interface states that the vapor pressure of the component of
interest (P1) is equal to its own saturation pressure at the temperature of interface
liquid (T),

P1 = P1,sat(T) (11.34)

The second example (Fig. 11.3b) is the interface between a liquid medium
and a gaseous mixture. The species of interest—species 1—diffuses through the
liquid and is also present as a component in the gaseous mixture. The boundary
condition of interest is the mole fraction of species 1 on the liquid side of the
interface: namely, xL. The boundary mole fraction xL will be greater when larger
quantities of species 1 are present in the mixture on the gaseous side of the
interface, that is, when the partial pressure P1 is higher. In the case of a dilute
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Table 11.3 Henry’s constant H for several gases in water at moderate pressures

H (bar)

T (K) Air N2 O2 H2 CO2 CO

290 6.2 × 104 7.6 × 104 3.8 × 104 6.7 × 104 1.3 × 103 5.1 × 104

300 7.4 × 104 8.9 × 104 4.5 × 104 7.2 × 104 1.7 × 103 6 × 104

320 9.2 × 104 1.1 × 105 5.7 × 104 7.6 × 104 2.7 × 103 7.4 × 104

340 1.04 × 105 1.24 × 105 6.5 × 104 7.6 × 104 3.7 × 103 8.4 × 104

Source: Data from Ref. 15.

solution, where only small amounts of the solvent 1 are found in the liquid, xL
and P1 are linked through the proportionality known as Henry’s law,

xL = P1

H
(11.35)

Table 11.3 shows a collection of values of Henry’s constant H, the units
of which are those of pressure. In addition to the dilute-solution requirement
mentioned already, it should be noted that Henry’s law applies only at low and
moderate pressures, for example, when the partial pressure P1 does not exceed
1 atm in the gaseous mixture [5]. At higher partial pressures, Henry’s constant
is a function of the partial pressure itself, and the use of a certain H value in
eq. (11.35) is restricted to a limited range of partial pressures P1.

The third example (Fig. 11.3c) refers to a binary liquid mixture in which
species 1 is the solute. The other side of the interface is occupied by pure 1,
as a pure substance at the temperature and pressure of the liquid mixture. For
example, this type of boundary condition occurs between a block of salt (NaCl),
which would be situated on the upper side of the interface in Fig. 11.3c, and a
pool of saline water (NaCl and H2O). The concentration of NaCl on the liquid
side of the interface can be determined by claiming thermodynamic equilibrium
at the interface and consulting the solubility data available in the chemical
engineering literature [5, 15–17]. For the example above, Ref. 5 indicates that
the solubility of NaCl in H2O is 35.7 at 0◦C, which means that 35.7 g of NaCl
will coexist with 100 g of H2O in the solution. The mass fraction of NaCl on the
liquid side of the interface is therefore 35.7/(35.7 + 100) = 0.263 if the interface
temperature is 0◦C.

11.5 LAMINAR FORCED CONVECTION

The analogy between mass transfer and heat transfer is clear in laminar boundary
layer flow (Fig. 11.4). A uniform stream U∞ flows parallel to a solid surface
coated or made out of a substance that is soluble in the stream. An example is
the forced convection drying of a porous solid wall saturated with water. The
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Figure 11.4 Concentration boundary layer near a flat surface.

airstream U∞ is humid, its water vapor content far away from the wall described
by the free-stream concentration C∞. Following the boundary layer method
of Chapter 2, we can expect a concentration boundary layer in the vicinity of
the wall, that is, a concentration distribution that smoothes out the discrepancy
between the relatively dry free stream C∞ and the relatively wet flow lamina
situated close to the wall C0. The concentration gradient between the wall and
the free stream sucks the soluble substance away from the wall: To predict the
rate of such mass transfer is the objective of this chapter.

The wall concentration C0 is the concentration of a fluid batch adjacent to the
wall, not the concentration of soluble substance inside thewall. The concentration
C0 is the concentration on the y= 0+ side of the wall (Fig. 11.4). Returning to the
wall-drying example of the preceding paragraph, the concentration of H2O can
differ vastly from y = 0− to y = 0+. The concentration inside the wall (y = 0−)
depends on the porosity of the wall and the degree to which the pores are filled
with water. The concentration on the fluid side of the wall–stream interface is
dictated by the equilibrium vapor pressure of water at the free-stream pressure and
temperature (assuming that dP∞/dx= 0 and there is no wall–stream temperature
difference) [18].

The mass flux from the wall into the stream is, by Fick’s law,

j0 = −D
(

∂C

∂y

)
y=0

(11.36)

The concentration field C(x, y) is obtained by solving the boundary layer
concentration equation

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(11.37)
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subject to the following boundary conditions:

C = C0 at y = 0, C → C∞ as y → ∞ (11.38)

where both C0 and C∞ are constants. The mixture flow field (u, v) is known
from Blasius’s solution for laminar boundary layer flow (Chapter 2). The mass
transfer problem [(11.37) and (11.38)] is identical to that solved by Pohlhausen
for heat transfer [see eqs. (2.93)–(2.96)]; hence, the wall concentration gradient
can be written by noting the T → C, α → D transformation:(

∂C

∂y

)
y=0

= (C∞ − C0)

(
U∞
νx

)1/2{∫ ∞

0
exp

[
−ν/D

2

∫ γ

0
f (β) dβ

]
dγ

}−1

(11.39)
In this solution we see the emergence of a new dimensionless group, the

Schmidt number,
Sc = ν

D
(11.40)

in place of the Prandtl number ν/α of the original Pohlhausen solution. Recalling
the two asymptotes of the nested integral of eq. (11.39), we conclude that

(∂C/∂y)y=0

(C∞ − C0)(U∞/νx)1/2
=

{
0.332Sc1/3 (Sc > 1)

0.564Sc1/2 (Sc < 1)
(11.41)

Mimicking the Nusselt number nondimensionalization of temperature gradient
(or wall heat flux) employed in convective heat transfer, the conclusion above
can be put in dimensionless form as a local Sherwood number,

Sh =
(

∂C

∂y

)
y=0

x

C∞ − C0
= j0
C0 − C∞

x

D
(11.42)

namely,

Sh =
{
0.332Sc1/3 Re1/2x

(
Sc � 0.5

)
0.564Sc1/2 Re1/2x (Sc � 0.5)

(11.43)

(11.44)

Carrying the analogy between mass transfer and heat transfer one step further,
the ratio

hm = j0
C0 − C∞

(11.45)

may be called the mass transfer coefficient hm, so that the Sherwood number can
also be defined as

Sh = hmx

D
(11.46)
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The symmetry between the mass transfer scaling laws (11.43) and (11.44) and
their heat transfer correspondents [eqs. (2.102) and (2.107)] implies that if the
bulk (mixture) flow configuration is the same in both problems and if the wall
boundary condition is the same (e.g., T0 = constant versus C0 = constant), the
mass transfer result is obtained directly from the heat transfer result through the
transformation

Nu → Sh, Pr → Sc, Rex → Rex (11.47)

The local mass transfer coefficient hm can be calculated with eqs. (11.43) and
(11.44), in which hm = (Sh D)/x. This coefficient can be averaged over the total
length L of the swept surface,

hm = 1

L

∫ L

0
hm dx (11.48)

The overall Sherwood number based on this L-averaged mass transfer coefficient
is

Sh = hmL

D
(11.49)

and, after using eqs. (11.43) and (11.44), can be calculated with the formulas

Sh =
{
0.664Sc1/3 Re1/2L

(
Sc � 0.5

)
1.128Sc1/2 Re1/2L (Sc � 0.5)

(11.50)

(11.51)

In summary, the mass transfer coefficient is needed to calculate the rate at
which the species leaves the surface swept by the flow:

ṁ′ = hmL(C0 − C∞) (11.52)

Themass transfer rate ṁ′ (kilograms of species per second per meter) is expressed
per unit length in the direction perpendicular to Fig. 11.4. More general is the
relation

ṁ = hmA(C0 − C∞) (11.53)

in which A is the area of the swept surface and ṁ (kilograms of species per
second) is the total mass transfer rate.

11.6 IMPERMEABLE SURFACE MODEL

The mass transfer–heat transfer analogy described in Section 11.5 rests on the
important assumption that the transversal velocity of the flow (v, in Fig. 11.4)
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is zero at the wall. Only then is the flow distribution [u, v, assumed known in
eq. (11.37)] the same as in the velocity boundary layer studied in Section 2.5. In a
mass transfer problem, this assumption is an approximation because the transfer
of mass through the surface amounts to a flow perpendicular to the surface. The
v = 0 approximation is justified when the concentration of the species of interest
is ‘‘low’’ (i.e., lower than a critical level).

To see this, consider the laminar boundary layer mass transfer configuration
studied in relation to Fig. 11.4. The mass transfer conclusions (11.50)–(11.51)
mean that the mass flux (kg/s · m2) through the y = 0 surface has the scale:

j0 ∼ (C0 − C∞)
D

x
Re1/2x Scn (11.54)

The exponent n is 1
3 when Sc � 0.5 and 1

2 when Sc � 0.5.
The next challenge is to determine when the transversal mass flow (or surface

blowing effect) is negligible. The analysis presented in the second edition was
based on a comparison of two transversal velocity scales, which was first reported
in Ref. 14. One scale is the transversal velocity associated with the addition of
the mass flux j0 from the wall side of the concentration boundary layer,

v0 ∼ j0
ρ

(11.55)

The other scale is the transversal velocity of the laminar boundary layer, which
according to eq. (2.81) is

v∞ ∼ U∞Re−1/2
x (11.56)

Weber [19] pointed out that this comparison is valid only for Sc � 0.5, when
the velocity boundary layer is thinner than the concentration boundary layer.
The following alternative is valid for all Schmidt numbers. The comparison now
is not between v0 and v∞, but between v0 and the transversal velocity at the
outer edge of the concentration boundary layer, vc. The wall mass transfer is
negligible, and the wall may be regarded as impermeable, when v0 < vc.

When Sc � 0.5, the concentration boundary layer thickness δc is greater
than the velocity boundary layer thickness δ, and consequently, vc ∼ v∞.
The impermeable wall condition v0/vc becomes v0 < v∞, which after using
eqs. (11.54)–(11.56) and n = 1

2 yields

C0 − C∞
ρ

< Sc1/2 < 1 (11.57)

When Sc � 0.5, the concentration thickness δc is smaller than the velocity
thickness δ,

δc

δ
∼ Sc−1/3 < 1 (11.58)



506 11 MASS TRANSFER

This can be deduced by comparing eq. (11.43), in which Sh ∼ x/δc, with
eqs. (2.31) and (2.33), where Cf ∼ x/δ. Next, at the edge of the concentration
boundary layer, the longitudinal velocity scale is

uc ∼ U∞
δc

δ
(11.59)

Mass conservation in the δc layer requires that [cf. eq. (2.7)]

vc ∼ ucδc
x

(11.60)

Combining eqs. (11.59)–(11.60) with δ ∼ x Re−1/2
x leads to

vc

v∞
∼

(
δc

δ

)2

∼ Sc−2/3 (11.61)

Finally, the impermeable wall condition v0 < v∞ can be written by using
eqs. (11.54)–(11.56) with n = 1

3 and eq. (11.60). The result is

C0 − C∞
ρ

< 1 (11.62)

In summary, eqs. (11.57) and (11.62) show that the impermeable-surface
assumption is valid at sufficiently low concentrations. Table 11.4 lists the Sc
values of several common substances that diffuse through air or water.

11.7 OTHER EXTERNAL FORCED CONVECTION
CONFIGURATIONS

Analogous mass transfer rate formulas can be deduced for the other external
forced convection configurations treated in this book. For example, in the case
of a turbulent boundary layer flow over a flat surface, we begin with the overall
Nusselt number relation (7.78′′):

NuL = 0.037Pr1/3 Re4/5L (Pr � 0.5, 106 < ReL < 108) (11.63)

and substitute ShL in place of NuL and Sc in place of Pr. We arrive at the overall
Sherwood number, or the L-averaged mass transfer coefficient hm,

ShL = hmL

D
= 0.037Sc1/3 Re4/5L (Sc � 0.5, 106 < ReL < 108) (11.63′)
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Table 11.4 Schmidt number, Lewis number, and composition buoyancy coefficient at
low concentration, 1 atm, and approximately 25◦C

Species at Low
Main Fluid Concentrations Sc = ν/D Le = Sc/Pr ρβc = −(∂ρ/∂ρ i)T, P

Air (Pr = 0.7) Ammonia 0.78 1.11 +1.07
Carbon dioxide 0.94 1.34 −0.34
Hydrogen 0.22 0.314 +13.4
Oxygen 0.75 1.07 −0.094
Water vapor 0.60 0.86 +0.61
Benzene 1.76 2.51 −0.63
Ether 1.66 2.37 −0.61
Methanol 0.97 1.39 −0.095
Ethyl alcohol 1.30 1.86 −0.37
Ethylbenzene 2.01 2.87 −0.73

Water (Pr = 7) Ammonia 445 63.57 −0.5
Carbon dioxide 453 64.71
Hydrogen 152 21.71
Oxygen 356 50.86
Nitrogen 468 66.86
Chlorine 617 88.14
Sulfur dioxide 523 74.71
Calcium chloride 750 107.14 +0.8
Sodium chloride 580 82.86 +0.7
Methanol 556 79.43 −0.17
Sucrose 1700 242.86

Source: After Ref. 20.

An alternative expression for the high-ReL range can be obtained by recog-
nizing the Colburn relation for the local heat transfer coefficient,

Stx = 1
2Cf ,x Pr

−2/3 (Pr � 0.5) (11.64)

and the corresponding local skin friction coefficient expression

1

2
Cf ,x = 0.0296

(
U∞x

ν

)−1/5

(11.64′)

Combined, eqs. (11.64) and (11.64′) yield

Stx = 0.0296Pr−2/3 Re−1/5
x (Pr � 0.5) (11.65)
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The next challenge is to find the mass transfer analog of the local Stanton
number that appears on the left side of eq. (11.65): namely,

Stx = hx
ρcPU∞

= hxα

kU∞
= q′′

0 α

(T0 − T∞)kU∞
(11.65′)

The mass transfer analog of Stx is obtained by replacing q
′′
0 with j0, T0−T∞ with

C0−C∞, α with D, and k again with D:

q′′
0 α

(T0 − T∞)kU∞
→ j0D

(C0 − C∞)DU∞
(11.66)

What emerges on the right side of (11.66) is simply the ratio hm/U∞, which is
called the local mass transfer Stanton number,

Stm = hm
U∞

(11.66′)

In the end, the mass transfer analog of eq. (11.65) becomes

Stm = 0.0296Sc−2/3 Re−1/5
x (Sc � 0.5) (11.67)

or in terms of the L-averaged mass transfer coefficient,

Stm = hm
U∞

= 0.037Sc−2/3 Re−1/5
L (Sc � 0.5) (11.67′)

For a single cylinder in cross flow, the expression for the surface-averaged
Sherwood number can be derived from the heat transfer correlation listed in eq.
(7.100), where NuD is replaced by

ShD0
= hmD0

D
(11.68)

in which the outer diameter of the cylinder (Do, Fig. 11.5) must not be confused
with the mass diffusivity coefficient D. As usual, on the right side of eq. (7.100),
the Reynolds number retains its position and becomes ReDo , while Pr is replaced
by Sc:

ShD0
= 0.3 + 0.62Re1/2D0

Sc1/3

[1 + (0.4/Sc)2/3]1/4

[
1 +

(
ReD0

282, 000

)5/8
]4/5

(ReD0
Sc > 0.2)

(11.69)
The surface-averaged Sherwood number for mass transfer from a sphere

of diameter D0 to a uniform flow (U∞, C∞, Fig. 11.5) can be deduced from
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Figure 11.5 Uniform flow past a perpendicular cylinder or a sphere.

eq. (7.104). The operation consists of replacing Pr with Sc and NuD with the
average Sherwood number defined in eq. (11.68):

ShD0
= 2 + (0.4Re1/2D0

+ 0.06Re2/3D0
)Sc0.4 (3.5 < ReD0

< 7.6 × 104)
(11.70)

11.8 INTERNAL FORCED CONVECTION

In configurations of internal forced convection, or duct flow, the local mass
transfer coefficient is based on the difference between the species concentra-
tion of the exposed side of the wall (Cw) and the bulk concentration of the
stream (Cb),

hm = jw
Cw − Cb

(11.71)

In a way that parallels the definition of bulk temperature at the start of Chapter 3,
the bulk concentration of the stream is defined by

Cb = 1

UA

∫
A
uC dA (11.72)

In this averaging process, u is the longitudinal velocity of the stream (Fig. 11.6),
U is the cross-sectional averaged velocity, and A is the cross-sectional area.

Figure 11.6 Flow through a round tube with constant species concentrations at the wall.



510 11 MASS TRANSFER

The flow begins with an entrance region, followed by a fully developed
region. In the entrance region, the concentration profile changes shape from one
longitudinal location to the next. In accordance with eqs. (3.8) and (3.91) and
the mass transfer—heat transfer analogy discussed in the preceding sections, the
concentration entrance length XC for laminar flow is

XC
Dh

∼= 0.04ReDh Sc (11.73)

The Reynolds number is based on the mean velocityU and the hydraulic diameter
Dh; in other words, ReDh = UDh/ν. The XC estimate provided by eq. (11.73) is
valid for all Schmidt numbers.

In the case of laminar flow through a round tube with constant species
concentration at the wall (Cw, Fig. 11.6), the local mass transfer coefficient
hm can be estimated with the help of Fig. 3.14. On the ordinate of that
figure, Nux is replaced by the local Sherwood number based on the tube inner
diameter Di,

ShDi = hmDi

D
(11.74)

In this definition, the tube inner diameter Di should not be confused with the
mass diffusivity D. The subscript i means that the diameter Di is internal.
In other words, i does not refer to the species i mentioned in many parts of
this chapter.

The new dimensionless group for the abscissa of Fig. 3.14 is (x/Di)/(ReDiSc),
while the new parameter that distinguishes between the curves is Sc instead of
Pr. This modified version of Fig. 3.14 shows that in the fully developed region
the mass transfer coefficient becomes independent of longitudinal position,
approaching the value

hmDi

D
= 3.66 (11.75)

In the turbulent regime, the concentration entrance length is about 10 times the
tube diameter [i.e., approximately the same as the hydrodynamic entrance length
X of eq. (8.4)]. The heat transfer correlations of Chapter 8 can be converted
into their mass transfer equivalents through the substitutions NuD → ShDi ,
Pr → Sc, and ReD → ReDi . For example, the heat transfer correlation (8.30)
leads to the following estimate for the Sherwood number in fully developed
turbulent flow:

ShDi = 0.023Re4/5Di
Sc1/3 (Sc � 0.5, 2 × 104 < ReDi < 106) (11.76)

Forced convection mass transfer plays an important role in modern technolo-
gies [21]. One example is the constructal design of the flow architecture of
desalination units [22].
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11.9 NATURAL CONVECTION

Consider the vertical wall with heat and mass transfer sketched in Fig. 11.7,
where T0, T∞, C0, and C∞ are constants. The vertical boundary layer flow is
due to the buoyancy effect due to the density difference between boundary layer
fluid and unaffected (reservoir) fluid. As was shown in Chapter 4, the boundary
layer momentum equation for this flow is

u
∂v

∂x
+ v

∂v

∂y
= ν

∂2v

∂x2
+ 1

ρ
(ρ∞ − ρ)g (11.77)

In the case of heat transfer, we saw that the density difference (ρ∞−ρ) is
approximately proportional to the temperature difference (T−T∞), in accordance
with the Boussinesq approximation. In the presence of mass transfer, the driving
density difference (ρ∞−ρ) may also be due to the concentration difference
(Fig. 11.7); a vertical buoyant layer forms if the wall releases a substance less
dense than the reservoir fluid mixture. The thermodynamic state of the fluid
mixture depends on pressure, temperature, and composition. In the limit of small

Figure 11.7 Combined mass and heat transfer effected by a buoyant boundary layer flow.
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density variations at constant pressure, we can write

ρ ∼= ρ∞ +
(

∂ρ

∂T

)
P
(T − T∞) +

(
∂ρ

∂C

)
P
(C − C∞) + · · · (11.78)

Recalling the definition of thermal expansion coefficient,

β = − 1

ρ

(
∂ρ

∂T

)
P

(11.79)

we introduce the concentration expansion coefficient,

βc = − 1

ρ

(
∂ρ

∂C

)
P

(11.80)

to obtain the equivalent of the Boussinesq approximation for the combined heat
and mass transfer problem. Coefficients β and βc can be positive or negative;
hence, in the scale analysis of this section, β(T0−T∞) means the absolute value of
β(T0−T∞). Based on the approximation (11.78), the boundary layer momentum
equation (11.77) becomes

u
∂v

∂x
+ v

∂v

∂y︸ ︷︷ ︸
inertia

= ν
∂2v

∂x2

Friction

+ gβ(T − T∞)

︸ ︷︷ ︸
Body force
due to

nonuniform
temperature

+ gβc(C − C∞)

︸ ︷︷ ︸
Body force

due to
nonuniform
concentration

(11.81)

The flow field is coupled to the temperature and concentration fields obtained by
solving the boundary layer energy and concentration equations

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂x2
(11.82)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂x2
(11.83)

11.9.1 Mass-Transfer-Driven Flow

To determine the mass transfer rate between wall and fluid reservoir, we focus
on two limiting situations. Consider first the limit of no heat transfer, that is,
the case of a boundary layer driven solely by the concentration gradient. The
problem reduces to solving eqs. (11.81) and (11.83), subject to the velocity
and concentration boundary conditions sketched in Fig. 11.7. This problem is
analytically identical to the heat transfer problem solved in Chapter 4; the local
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Sherwood number is obtained by subjecting the heat transfer results to the
transformation Nu → Sh, α → D, Pr → Sc, β(T0−T∞) → βc(C0−C∞). The
mass transfer results are

Sh =
{
0.503Ra1/4m,y (Sc > 1)

0.6(Ram,y Sc)
1/4 (Sc < 1)

(11.84)

(11.85)

where Ram, y is the local ‘‘mass transfer Rayleigh number’’ of a vertical boundary
layer the buoyancy of which is caused by mass transfer

Ram,y = gβc(C0 − C∞)y3

vD
(11.86)

11.9.2 Heat-Transfer-Driven Flow

The second limit is the mass transfer to a vertical boundary layer driven by the
wall–reservoir temperature difference. The length and velocity scales of such a
layer have been summarized in Table 4.1. Below we rely on scale analysis to
derive the mass transfer rate, or the Sherwood number.

Let δc be the boundary layer thickness scale of the concentration profile. In
the flow region of thickness δc and height H, the concentration equation (11.83)
requires that

v

H
∼ D

δ2c
(11.87)

Note that v is the vertical velocity scale in the region of thickness δc: Naturally,
v will depend on the relative size of δc and the other (two) length scales of the
�T-driven boundary layer flow. Four possibilities exist, as is shown in Fig. 11.8.
We examine in some detail the first possibility (Pr > 1, δc < δT), and for the
remaining three, we list only the conclusions (Table 11.5).

Table 4.1 shows that in a heat-transfer-driven boundary layer, the vertical
velocity reaches the order of magnitude (α/H)Ra1/2H at a distance of order
H Ra−1/4

H away from the wall (if Pr > 1). From the first sketch of Fig. 11.8, we
conclude that the velocity scale in the δc-thin layer is

v ∼ δc

δT

α

H
Ra1/2H , δc < δT (11.88)

where δT ∼ HRa−1/4
H is the thermal boundary layer thickness. Combining

eqs. (11.87) and (11.88), we obtain the δc scale,

δc ∼ H

(
D

α

)1/3

Ra−1/4
H (11.89)
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Figure 11.8 Relative size of the boundary layer thicknesses in natural convection mass and
heat transfer.

Table 11.5 Mass transfer rate scales for a vertical boundary layer driven by heat
transfer

Overall Sherwood Number
or Concentration Layer

Fluid Slenderness Ratio H/δc

Pr > 1, δc < δT (or Le > 1) Le1/3Ra1/4H

Pr > 1, δc > δT (or Le < 1) Le1/2Ra1/4H (Sc > 1)

Le Pr1/2Ra1/4H (Sc < 1)

Pr < 1, δc < δv (or Sc > 1) Le1/3Pr1/12Ra1/4H

Pr < 1, δc > δv (or Sc < 1) Le1/2Pr1/4Ra1/4H (Le > 1)

Le Pr1/4Ra1/4H (Le < 1)
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The order of magnitude of the overall Sherwood number is inversely proportional
to δc,

Sh = j0
C0 − C∞

H

D
∼ H

δc
(11.90)

Hence,

Sh ∼
( α

D

)1/3
Ra1/4H (11.91)

More exact analyses could be carried out to refine this mass transfer result
[23–25]. However, based on the extensive comparison of scaling results with
integral and similarity results (Chapters 2–5), it is reasonable to expect eq. (11.91)
to be correct within 25 percent.

It is known that dimensional analysis reveals all the dimensionless groups
that could be formed by combining the dimensional parameters of the problem
algebraically. Scale analysis, on the other hand, leads (1) to quantitative results
and (2) to only those dimensionless groups that have a physical meaning. In
this way, eqs. (11.90) and (11.91) teach us that the slenderness ratio of the
concentration boundary layer is governed by a new dimensionless group,

( α

D

)1/3
Ra1/4H ∼ height of boundary layer

thickness of concentration layer
(11.92)

The dimensionless ratio α/D has been identified already by dimensional analysis
and is called the Lewis number,

Le = α

D
or Le = Sc

Pr
(11.93)

Finally, the δc < δT assumption made in the beginning of this analysis means
that

H Le−1/3 Ra−1/4
H < H Ra−1/4

H (11.94)

or
Le > 1 (11.95)

In conclusion, the first case of Fig. 11.8 corresponds to fluid mixtures with
both Prandtl number and Lewis number greater than 1. The remaining three
possibilities are sketched in Fig. 11.8, and their corresponding mass transfer
scaling laws are listed in Table 11.5. The student is invited to derive these results
based on scale analysis (see Problem 11.11). Note that in the case of low-Prandtl
number fluids, the concentration thickness δc is compared with the viscous layer
thickness δv (Chapter 4).

To summarize, we analyzed the combined heat and mass transfer problem in
natural convection first by calculating mass transfer in a mass-transfer-driven
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flow [eqs. (11.84) and (11.85)] and later by deriving the mass transfer scales
in boundary layers driven by heat transfer (Table 11.5). It remains to decide
whether a given layer is actually driven by mass transfer or heat transfer; in other
words, is the Sherwood number given by eqs. (11.84) and (11.85) or Table 11.5?

One way to decide is to think of the wall surface, whose concentration is C0,
as being coated with two mass-insulating blankets, one (δc)MT thick when the
layer is driven by mass transfer, and the other with a thickness (δc)HT when heat
transfer is the driving mechanism [one blanket extends from x = 0 to x = (δc)MT
and the other from x = 0 to x = (δc)HT]. According to the constructal law [3, 26,
27], the mass flux released by the wall will select the flow design that provides
easier flow access, which means the shorter path to the mass sink (the reservoir);
hence, the scales of Table 11.5 hold when their corresponding δc’s are smaller
than the concentration profile thickness in a mass-transfer-driven layer,

(δc)HT < (δc)MT (11.96)

For example, for fluids with Pr > 1 and Le > 1 (the top line in Table 11.5),
criterion (11.96) implies that

β(T0 − T∞)

βc(C0 − C∞)
> Le−1/3 (11.97)

is the condition for heat-transfer-driven natural convection mass transfer. This
criterion is not the same as the direct comparison of the scales of the last two
terms in the boundary layer momentum equation (11.81).

In the scale analysis above, the competition between the temperature and
concentration layers of Fig. 11.7 was illustrated by calculating the mass transfer
rate from the wall to the fluid reservoir. The transition from concentration-driven
to temperature-driven natural convection also has an interesting effect on the
heat transfer rate calculation. This aspect is examined in Problem 11.13.

Similarity and integral solutions for vertical boundary layer natural convection
driven by the combined effect of mass and heat transfer have been reported by
Gebhart and Pera [20], Somers [28], and Khair and Bejan [23]. The problem
formulated in Ref. 23 was extended to natural convection along a wavy wall [29]
and in a fluid-saturated porous medium [30].

11.10 TURBULENT FLOW

11.10.1 Time-Averaged Concentration Equation

The analogy between mass transfer and heat transfer also rules turbulent convec-
tion again under conditions of low-wall-mass transfer rates. The time-fluctuating
concentration field can be smoothed out through the process of time averaging
of Chapter 7, which begins with the decomposition

C = C + C′ (11.98)
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where C(x, y, z) is the time-averaged concentration field. Substituting eq. (11.98)
into the concentration equation (11.27a) with ṁ′′′ = 0 and observing the rules of
time-averaging algebra yields

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D ∇2C − ∂

∂x
(u′C′) − ∂

∂y
(v′C′) − ∂

∂z
(w′C′) (11.99)

The time-averaged products of type (v′C′) are the additional unknowns that are
responsible for the closure problem in turbulent convective mass transfer.

In a two-dimensional slender flow region such as the forced boundary layer
sketched in Fig. 11.4, the time-averaged concentration equation (11.99) assumes
the simpler form

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− ∂

∂y
(v′C′) (11.100)

To bring into view the eddy mass transfer across the boundary layer, we write
eq. (11.100) as

u
∂C

∂x
+ v

∂C

∂y
= −∂japp

∂y
(11.101)

where the apparent mass flux japp(x, y) is due to molecular and eddy transport,

japp = −D∂C

∂y
+ v′C′ (11.102)

Based on an argument similar to the one presented in Fig. 7.3 for heat transfer,
the eddy mass flux term v′C′ is related to the mean concentration gradient

−v′C′ = εm
∂C

∂y
eddy mass flux (11.103)

This equation is the definition for the mass eddy diffusivity εm(x, y), an empirical
function that is not to be confused with the momentum eddy diffusivity εM
of Chapter 7. In sum, we can write the boundary layer concentration equation
(11.100) as

u
∂C

∂x
+ v

∂C

∂y
= ∂

∂y

[(
D+ εm

) ∂C

∂y

]
(11.104)

11.10.2 Forced Convection Results

The similarity between eq. (11.104) and the boundary layer energy equation
(7.26) makes many of the turbulent heat transfer results convertible into mass
transfer results. Thus, in the case of mass transfer in turbulent boundary layer
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flow from a wall surface of concentration C0 to a free stream of concentration
C∞, we can combine the τ app = τ 0 analysis of the momentum boundary layer
with a similar assumption for the concentration layer,

japp = j0 independent of y (11.105)

to obtain the equivalent of eq. (7.77),

hm
U∞

=
1
2Cf ,x

0.9 + ( 1
2Cf ,x

)1/2
(13.2Sc − 10.25)

(11.106)

Here Cf, x is the local skin friction coefficient (Fig. 7.6). Experimental measure-
ments of the mass transfer coefficient hm are correlated very well by formulas
like eq. (11.106), or the Colburn relation,

hm
U∞

Sc2/3 = 1

2
Cf ,x (11.107)

In conclusion, experiment-aided formulas for the mass transfer coefficient in
turbulent boundary layer flow can be obtained by subjecting the heat transfer
correlations to the transformation

h

ρcPU∞
→ hm

U∞
(11.108)

Pr → Sc (11.109)

For fully developed turbulent mass transfer inside a duct, we can derive the
mass transfer equivalent of eq. (8.28). Simpler experimental correlations are the
formulas obtained by changing the notation in the Colburn and Dittus-Boelter
relations, eqs. (8.29) and (8.31),

hm
U

Sc2/3 ∼= f

2
(11.110)

hmDh

D
∼= 0.024Sc0.4 Re0.8Dh (11.111)

In these formulasDh is the hydraulic diameter of the duct,D the mass diffusivity,
and U the cross-section-averaged velocity.

The turbulent mixing of a flow region surrounded by a region of different
concentration is a phenomenon of great interest in environmental engineering.
The mass transfer by free-stream turbulence can be analyzed based on the
methodology constructed in Chapter 9. The first idea in this methodology is that
free-stream mixing regions such as shear layers, jets, and plumes are slender,
so that the boundary layer approximation applies. In addition, recognizing the
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overwhelming contribution of large eddies to turbulent transport across the
stream, it is assumed that the eddy diffusivity is independent of the coordi-
nate normal to the stream. Finally, based on empirical observations or the
λB/D = constant property of inviscid flow (Chapter 6), it is recognized that all
these mixing regions grow linearly in the flow direction (Fig. 9.9).

For a two-dimensional flow proceeding in the x direction, the boundary layer
concentration equation (11.104) reduces to

u
∂C

∂x
+ v

∂C

∂y
= εm

∂2C

∂y2
(11.112)

because in the free-stream region, εm can be regarded as much greater than
D. The identical form of eq. (11.112) for mass transfer and eq. (9.14) for heat
transfer suggests that the time-averaged temperature fields derived in Chapter 9
can be converted to concentration fields via the transformation

T → C (11.113)

εH → εm (11.114)

For example, the time-averaged concentration in a two-dimensional shear layer
may be condensed in the expression

C − C∞
C0 − C∞

∼= 1

2

[
1 + erf

(
σ
y

x

)]
(11.115)

where C0 and C∞ are the constant concentrations found on either side of the
shear layer and where σ is an empirical constant accounting for the angle of
the mixing region (σ = 13.5). Note that expression (11.115) also rests on the
assumption that the turbulent Schmidt number Sct is approximately equal to 1,

Sct = εM

εm

∼= 1 (11.116)

As a second example, the turbulent mixing zone created by the discharge
of a round jet of concentration C0 into a reservoir of concentration C∞ has a
concentration field described by [eq. (9.43)]

C − C∞
Cc − C∞

∼= exp

[
−

( r

0.127x

)2
]

(11.117)

The centerline concentration Cc is related to the nozzle concentration C0 by
invoking the conservation of the constituent of concentration C,

u0(C0 − C∞)
r20
2

=
∫ ∞

0
u(C − C∞)r dr (11.118)
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where u0 is the cross-section-averaged velocity through the nozzle and u is the
time-averaged velocity distribution in the conical mixing region, eq. (9.40).

As a third example, the concentration downstream from a point mass source
bathed by a turbulent stream with uniform time-averaged velocity U∞ and
uniform eddy diffusivity εm (grid-generated turbulence, Chapter 9) is distributed
according to

C − C∞ = ṁ

4πεmx
exp

(
−r2U∞

4εmx

)
(11.119)

In this expression, ṁ is the strength of the point mass source measured in
kilograms (of the constituent whose concentration is C) per second. The concen-
tration field downstream from a line source of strength ṁ (kg/m · s) is analogous
to the temperature field behind a line heat source in a uniform turbulent stream,
eqs. (9.90) and (9.93),

C − C∞ = ṁ′

(4πU∞εmx)1/2
exp

(
−y2U∞

4εmx

)
(11.120)

11.10.3 Contaminant Removal from a Ventilated Enclosure

We close this section with an example of numerical results of turbulent mass
transfer, with emphasis on correlating the results by relying on a simple theory.
The example is the time-dependent removal of contaminated air from a two-
dimensional enclosure with one inlet and one outlet [31] (Fig. 11.9 inserts). It is
a very important application, stimulated by concern over the quality of indoor air
and that office workers may be exposed to the sick building syndrome. A healthy
building must supply an adequate amount of outside air and control indoor
contaminants in addition to saving energy. This mass transfer phenomenon is
also relevant to the problem of providing adequate forced convection cooling to
enclosures containing electronic components.

In the two-dimensional model of Fig. 11.9, the chamber is initially filled with
contaminated air in which the contaminant concentration is C0. Clean air starts
flowing through the inlet at t = 0, while an equal flow rate of contaminated air
exits through the outlet. In time, the amount of contaminant held in the enclosure
decreases. Its evolution is described by the ventilation or displacement efficiency

ηd = C0 − C

C0 − Cin
(11.121)

where C(t) is the instantaneous contaminant concentration averaged over the
enclosure volume and Cin is the concentration in the inlet stream (Cin = 0). The
dimensionless time is

τ ∗ = tUinh

LH
(11.122)
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Figure 11.9 Effect of (a) Reynolds number and (b) flow configuration on the ventilation
displacement efficiency (Re = 1000). (From Ref. 31.)

where L andH are the length and height of the enclosure,Uin is the mean velocity
through the inlet, and h is the inlet width (the dimension transversal to the flow).
The enclosure becomes clean (ηd → 1) as t → ∞.

The numerical results sampled in Fig. 11.9 were obtained for Sc = 1,
Sct = 0.7, L/H = 2, and h/H = 0.1 by solving eq. (11.99) in combination
with the turbulence model of Jones and Launder [32]. The details of the model,
numerical formulation, and execution can be found in Ref. 31. The evolution
of the flow and concentration patterns is illustrated in Fig. 11.10, where �

is defined by writing U = ∂�/∂Y, V = −∂�/∂X, (X, Y) = (x, y)/h, and
(U, V) = (u, v)/Uin. The local instantaneous dimensionless concentration is
C̃ = (C0 − C)/(C0 − Cin).

The important feature revealed by the numerical results is that the ventilation
efficiency depends very strongly on the position and orientation of the inlet and
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Figure 11.10 Evolution of the flow and concentration patterns when the inlet and outlet ports
are located in diametrically opposite corners (Re = 5000). (From Ref. 31.)

outlet and on the Reynolds number based on inlet quantities,

Re = Uinh

ν
(11.123)

Many charts like Fig. 11.9 can be produced numerically; however, the challenge
is to explain the emerging trends and to try to anticipate them. Let us not forget
that the objective is to predict and, later, minimize by design the characteristic
time associated with the removal of the original contaminant. This can be done
only if the trends are understood and if the results can be predicted without
having to simulate numerically every single possible design configuration.
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For environmental design calculations, it is useful to condense the numerical
ventilation efficiency curves into simple analytical expressions of the type ηd
(τ*, Re, flow configuration). The analytical form of these expressions can be
anticipated theoretically. Three possible models are sketched in Fig. 11.11.

In the first model (Fig. 11.11a), it is assumed that the new fluid (C̃ = 0)
displaces the contaminated fluid in pistonlike fashion. This is equivalent to
assuming that (1) the new and old fluids do not mix and (2) the new fluid arrives
at the outlet only after all the old fluid has vacated the enclosure. Under these
circumstances, the ventilation efficiency is given by

ηd =
{
τ ∗, 0 ≤ τ ∗ ≤ 1

1, τ ∗ > 1
(11.124)

In the second model (Fig. 11.11b), the instantaneous fluid inventory of the
enclosure is assumed perfectly mixed, so that the concentration at the outlet is

Figure 11.11 Three models for predicting the ventilation efficiency function. (From Ref. 31.)
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equal to the concentration at a point inside the enclosure. The analysis is the
same as in the classical problem of batch mixing (Ref. 14, p. 499). The result is
that the concentration of the mixed fluid rises exponentially to the concentration
of the inlet stream

ηd = 1 − exp(−τ ∗) (11.125)

One would think that these two simple models—no mixing and perfect
mixing—would recommend formulas that act as upper and lower bounds for
the actual ηd value revealed by numerical simulations. Figure 11.12 shows that,
surprisingly, both models overpredict the displacement efficiency for all times
τ* > h/H. The overprediction is dramatic at high Reynolds numbers, while the
simple models do relatively well in the low-Re range of 5–30. The piston-flow
model is successful only in the very beginning of the through-flow process, when
the new fluid travels directly from the inlet to the outlet.

A third model is outlined in Fig. 11.11c. The enclosure volume is viewed as
a sandwich of two regions. The upper region—the ‘‘jet’’—connects the inlet
to the outlet and has a width on the order of h. Only in this region does the
new fluid displace the contaminated fluid in pistonlike fashion. The jet region
becomes filled completely with new fluid at a time t on the order of L/Uin, which
corresponds to the dimensionless time τ* ∼ h/H. At times τ* shorter than h/H,
this new model is equivalent to the piston-flow model discussed first; therefore,
the displacement efficiency is

ηd = τ ∗, τ ∗ ≤ h/H (11.126)

Figure 11.12 Ventilation efficiency: comparison between numerical results and predictions
based on the models of Fig. 11.11 (Re = 5000; inlet and outlet oriented as in Fig. 11.9a). (From
Ref. 31.)
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At times τ * > h/H, the jet region is inhabited by new fluid (C̃ = 1).
It is assumed that the remaining (lower) volume of the enclosure—the ‘‘roll’’
(Fig. 11.10, left)—contains fluid that is well mixed by the recirculating flow. The
instantaneous dimensionless concentration in this lower region is time-dependent
C̃i(τ

∗). This concentration increases in time because of the mass transfer that
takes place across the turbulent shear layer that separates the jet region from the
roll region (Fig. 11.11c). The existence of this turbulent shear layer was already
noted while examining Fig. 11.10b, which shows a thin concentration boundary
layer between the jet and the roll.

It is assumed finally that the mass transfer rate across the jet-roll concentration
boundary layer is proportional to the instantaneous jet-roll concentration differ-
ence (1− C̃i). Taking into account the geometry of the enclosure, we write that
the conservation of contaminant in the roll region of height (H–h) and length L
requires that

L(H − h)
dC̃1

dt
= b1L(1 − C̃i) (11.127)

in which the factor b1 accounts for the effective mass eddy diffusivity in the
boundary layer region. This factor will be determined empirically.

In the search for the ηd expression in the limit τ* → ∞, we integrate
eq. (11.127) from the beginning (C̃i = 0 at τ* = 0),

C̃i = 1 − exp

[
− LH

h (H − h)
b̃1τ

∗
]

(11.128)

by writing b̃1 for the dimensionless empirical factor that corresponds to b. Next,
we note that the ventilation efficiency ηd is equal to the concentration averaged
over the entire volume (jet + roll),

ηd = h

H
+ H − h

H
C̃i (11.129)

and arrive in this way at the expression

ηd = 1 −
(
1 − h

H

)
exp

[
− LH

h (H − h)
b̃1 τ ∗

]
(11.130)

Finally, we note that in the volume-averaging operation executed in eq. (11.129),
the geometric factors h/H and (H–h)/H are correct in an order-of-magnitude
sense. This means that a more accurate alternative to eq. (11.130) is

ηd = 1 −
(
1 − h

H

)
b̃2 exp

(
− L/h

1 − h/H
b̃1 τ ∗

)
(11.131)

where b̃ 2 is a second empirical factor whose expected order of magnitude is 1.
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The contribution of the jet-roll model is that it predicts the exponential form
(11.131), in which b̃ 1 and b̃ 2 are independent of time. The constancy of b̃ 1 in
time stems from the observation that the flow pattern (in particular, the turbulent
shear layer) is in steady state during most of the long-time interval (τ* ≥ h/H)
in which eq. (11.131) applies. This prediction is equivalent to saying that the
numerical ηd results must appear as a straight line when plotted as log (1–ηd)
versus τ*. It has been shown that this is indeed the case [31]. Such figures were
drawn for each flow configuration to determine the b̃ 1 and b̃ 2 factors that lead
to the best agreement between eq. (11.131) and the numerical ηd data. The b̃ 1
and b̃ 2 values were themselves curve fitted as functions of Reynolds number in
the range 5–5000, as shown in Table 11.6. Equation (11.131) reproduces the
calculation ηd values with an accuracy better than 4.3 percent. This correlation
also includes the effect of the geometry (L/H, h/H), which was fixed during the
numerical simulations.

In conclusion, significant gains in ventilation efficiency can be achieved
by properly positioning and orienting the inlet and outlet ports. Figure 11.9
(bottom) showed that the highest efficiency belongs to geometric arrangements
where the path of the jet that transverses the enclosure is the longest. Important
is the demonstration that it is possible to invent a simple theory to correlate
numerical results into formulas that have wider applicability. It is not sufficient to
produce volumes of empirical results (numerical or experimental) aimlessly and
to blindly accept these results as ‘‘facts.’’ Theory and empiricism must be given
equal rights.

Another key problem in the design of healthy buildings is the removal of
contaminated air from an enclosure in which the contaminant is produced by
a discrete source. This problem was investigated similarly in Ref. 33, where
it was shown that superior ventilation is achieved when the inlet and outlet
ports are arranged in relation to the position of the source of contaminant. The

Table 11.6 Empirical factors b̃1 and b̃2 needed for the
ventilation efficiency correlation (11.131)

b̃ 1 = 0.08Re−0.43 b̃ 2 = 0.8

b̃ 1 = 0.11Re−0.36 b̃ 2 = 4.38Re−0.30

b̃ 1 = 0.20Re−0.28 b̃ 2 = 9.12Re−0.40

b̃ 1 = 0.16Re−0.30 b̃ 2 = 7.06Re−0.38

Source: Ref. 31.
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time-dependent migration of contaminant from one region of a room to the
remainder (initially clean region) of the same room is documented in Ref. 34.

11.11 MASSFUNCTION AND MASSLINES

The transport of mass by convection can be visualized by using the concepts
of massfunction and masslines [35]. These are the mass transfer analogs of the
heatfunction and heatlines discussed beginning in Section 1.6. With reference
to the concentration equation (11.27a) for steady two-dimensional convection
without chemical reaction,

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+ ∂2C

∂y2

)
(11.132)

the massfunctionM(x, y) is defined by

∂M

∂y
= u(C − Cref) − D

∂C

∂x
(11.133)

−∂M

∂x
= v(C − Cref) − D

∂C

∂y
(11.134)

such that M satisfies eq. (11.132) identically. The pattern of masslines (the
M = constant curves) is most instructive when the reference concentration Cref
is set equal to the lowest concentration that occurs in the space of interest.
Masslines are exhibited in Ref. 35 for mass transfer by natural convection in an
enclosure with sidewalls at different temperatures and concentrations. Massline
visualizations are reviewed in Section 1.6.

11.12 EFFECT OF CHEMICAL REACTION

In the laminar and turbulent mass transfer examples discussed so far, the mixture
was not reacting chemically. Of interest in chemical engineering is the case when
a chemical reaction is present and the constituent generation term ṁ′′′ in eq.
(11.25) is finite. In some reactions, the species of interest is a product of reaction
(ṁ′′′ > 0); in others, the species is being consumed (ṁ′′′ < 0). In the case of
homogeneous reactions, the volumetric mass rate of production of a species can
be expressed as [8]

ṁ′′′ = k′′′
n C

n (11.135)

where n is the order of the reaction and k′′′
n is the rate constant. In the case of

a first-order reaction n = 1, and units of k′′′
1 are s−1. In homogeneous reactions

the production or consumption of the species takes place in the fluid, that is,
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wherever the species exists. In heterogeneous reactions, the reaction takes place
on the surface of a catalyst; the rate of species production in this case is

ṁ′′′ = k′′
nC

n
0 (11.136)

where C0 is the concentration at the surface, n is the order of the reaction, and k
′′
n

is the reaction rate.
Because a reaction can either generate or consume a species, it influences

the distribution of that species in the flow of the mixture. One way to illustrate
the effect of chemical reaction on mass convection is to focus on a very basic
problem for which we already know the solution for the case when the chemical
reaction is absent. We will then solve the problem, allowing for the presence of
a chemical reaction, and comparing the two solutions, we will develop a feeling
for the effect of chemical reaction.

Consider the laminar boundary layer flow sketched in Fig. 11.4: Mass is
being swept away from a wall surface of concentration C0 by a uniform stream
containing none of the species released by the wall, C∞ = 0. The concentration
field for this flow configuration is known [see the Pohlhausen solution leading to
eq. (11.39)]. With homogeneous reaction present, the problem assumes a slightly
different statement,

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k′′′

n C
n (11.137)

C(x, 0) = C0, C(x,∞) = 0 (11.138)

where the flow (u, v) is known from Chapter 2. Note the minus sign of the last
term in eq. (11.137), which implies that in this example the chemical reaction
consumes the species of interest. This homogeneous reaction problemwas solved
by Chambré and Young [36], and its counterpart with catalytic surface reaction
by Chambré and Acrivos [37]. Below, we outline and extend the integral solution
reported by Bird et al. [8]. The integral version of the concentration equation
(11.137) is

d

dx

∫ ∞

0
uC dy = −D

(
∂C

∂y

)
y=0

− k′′′
n

∫ ∞

0
Cn dy (11.139)

Assuming the simplest shape for the velocity and concentration profiles

U = U∞
y

δ(x)
, 0 ≤ y ≤ δ (11.140)

C = C0

[
1 − y

δc (x)

]
, 0 ≤ y ≤ δc (11.141)
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eq. (11.139) reduces to

1

Sc
= 4

3
x
d(�3)

dx
+ �3 + 12k′′′

n C
n−1
0

(n+ 1)U∞
x�2 (11.142)

where

� = δc

δ
≤ 1 (11.143)

Note that δc is the unknown thickness of the concentration profile, while the
velocity boundary layer thickness δ is listed in Table 2.1,

δ = 3.46x Re−1/2
x (11.144)

In the absence of chemical reaction (k′′′
n = 0), the solution of eq. (11.142) is

� = Sc−1/3, as is known already from eq. (2.61). With chemical reaction, the
thickness ratio � emerges as a function of two parameters,

� = �(Sc, X) (11.145)

where X is a dimensionless longitudinal variable

X = 12k′′′
n C

n−1
0

(n+ 1)U∞
x (11.146)

such that X = 0 represents the case of no chemical reaction. The local Sherwood
number or the local wall mass flux can be expressed as

Sh = j0
C0

x

D
= x

δc
= 0.289

�
Re1/2x (11.147)

In the absence of chemical reaction, the local Sherwood number reduces to

Sh = 0.289Sc1/3 Re1/2x (Sc > 1) (11.148)

which is only 13 percent below the similarity solution (11.43). Now the effect of
chemical reaction on mass transfer can be presented as the ratio

φr = Sh(with chemical reaction)

Sh(without chemical reaction)
(11.149)

which, dividing eq. (11.147) by eq. (11.148), means that

φr = 1

Sc1/3 �
or φr = �(Sc, 0)

�(Sc, X)
(11.150)
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Functionφr has been plotted in Fig. 11.13 after integrating eq. (11.142) numer-
ically from the initial condition � = Sc−1/3 at X= 0. It is evident that, depending
on the values of Sc and X, the effect of chemical reaction on the mass transfer rate
can be significant. For a given fluid (Sc = constant), the mass transfer rate with
chemical reaction is greater than the mass transfer rate in the absence of chemical
reaction, and the discrepancy between the two rates increases in the downstream
direction. This effect is due to the decrease in δc caused by the chemical reaction
(i.e., by the consumption of the species of concentration C). The reverse effect
would be observed if the homogeneous reactionwere generating the species in the
boundary layer.

In conclusion, the local Sherwood number in Sc > 1 laminar boundary layer
flow with homogeneous reaction that consumes the species can be calculated as

Sh = 0.289φr Sc
1/3 Re1/2x (11.151)

where φr is given by Fig. 11.13. Sufficiently far downstream (X > 10),
the correction factor φr approaches Sc1/6X1/2, the local Sherwood number
becomes [8]

Sh = 0.289 Sc1/2
[
12k′′′

n C
n−1
0 x2

(n+ 1) ν

]1/2

(11.152)

and the mass transfer rate j0 (or δc) becomes independent of longitudinal
position.

Figure 11.13 Effect of species-depleting chemical reaction on forced convection mass transfer
to laminar boundary layer flow on a plane surface.
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36. P. L. Chambré and J. D. Young, On the diffusion of a chemically reacting species in
a laminar boundary layer flow, Phys. Fluids, Vol. 1, 1958, pp. 48–54.
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PROBLEMS

11.1. Show that concentration (Ci), mass fraction (�i), and mole fraction (xi)
are proportional to one another and that these proportionalities are given
by eqs. (11.8) and (11.9).

11.2. Consider the configuration of Fig. 11.4, in which air passes in laminar
boundary layer flow past a porouswall saturatedwithwater. Thewall con-
tains 25 percent water on a volume basis. The airstream is at atmospheric
pressure and temperature (T∞ = 310K). Calculate the stream-side water
concentration C0, and compare the result with the water concentration
immediately below the wall—stream interface.
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11.3. A shallow pool is filled with water at 25◦C. The pool surface is 3m× 3m
square. The wind blows at 30 km/h parallel to the water surface and
parallel to one side of the square. The atmospheric air has a temperature
of 25◦C and a relative humidity of 30 percent. Assume that relative to
this air flow, the pool water surface behaves as a plane stationary wall.

(a) Calculate the instantaneous flow rate of the water that is being
removed by the wind.

(b) How long does the wind have to blow for the pool level to drop by
2mm?

11.4. Consider the straight duct with fully developed mixture flow sketched in
Fig. P11.4. The mixture average velocity is U, the duct cross-sectional
area is Ac, and the duct length is L. The cross-sectional perimeter is
p = A/L, where A is the total surface of the duct wall. The bulk density
of the species of interest is denoted by ρ (kg/m3) (the symbol C was used
in the text). The ρ value at the duct inlet is known, ρin. Specified also is
the ρ value on the duct wall, ρw = constant. Show that the rate of mass
transfer from the entire duct to the mixture stream is

ṁ = UAc(ρw − ρin)

[
1 − exp

(
−hm
U

A

Ac

)]

Figure P11.4

11.5. The double-pane window system shown in Fig. P11.5 is plagued by the
deposition of liquid water (fogging) on the inner surfaces of the glass
panes. On each surface, the liquid is approximated by a film with the
constant thickness δ = 10−5 m. It is proposed to defog the window by
blowing dry air through the parallel-plate channel. The mean velocity of
the channel airstream is 0.1m/s. The temperature in the entire system
is uniform and equal to 25◦C. The pressure is atmospheric. Neglecting
natural convection effects, determine (a) the flow regime over most of the
length L, (b) the mass transfer coefficient between the liquid films and
the channel flow, (c) the rate at which the airstream removes water from
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the wetted surfaces (using the formula listed in the preceding problem
statement), and (d) the time needed to defog the double-pane window
system completely.

Figure P11.5

11.6. Determine the mass flux of a gas i that diffuses into a liquid film that
falls along a vertical solid wall. Assume that the liquid film flow is
laminar and that it has reached terminal velocity. Let vmax = constant
and δ = constant be the film velocity at the liquid—gas interface and the
film thickness, respectively. Take a two-dimensional Cartesian system
of coordinates with the y axis pointing downward and x = 0 on the
liquid—gas interface. The concentration of i at the interface (on the
liquid side) is C0 = constant, and the solid surface is impermeable to i,
∂C/∂x= 0 at x= δ. State the complete mathematical problem that would
allow you to determine the mass flux j0 = − D(∂C/∂x)x = 0 as a function
of altitude. Solve this problem in the limit of ‘‘small contact length y,’’
that is, in the limit where the concentration boundary layer thickness (or
penetration distance) δc is much smaller than the film thickness δ.

11.7. Use scale analysis or the order-of-magnitude conclusions of Problem
11.6 to estimate the rate of gas absorption from a gas bubble into the
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liquid pool through which the gas bubble rises. The gas concentration on
the liquid side of the gas—liquid interface is C0 and the mass diffusivity
is D. The bubble has a diameter Db and rises through the liquid pool with
the terminal velocity vmax. State clearly all the assumptions on which
your scale analysis is based.

11.8. A film of liquid solvent flows downward along a vertical wall and in
the process dissolves the layer of paint with which the wall is coated.
The liquid film falls at terminal velocity in fully developed laminar flow;
hence, its velocity distribution and thickness δ are independent of vertical
position. Attach a two-dimensional Cartesian system to the wall such that
the y axis points downward and the plane x = 0 coincides with the wall
surface. The liquid film extends from x= 0 to x= δ. The concentration of
paint in the film is C0 = constant at x = 0. Determine the local mass flux
−D(∂C/∂x)x = 0, assuming that the concentration layer is much thinner
than the layer of liquid solvent. Is the coat of paint being eroded evenly?

11.9. Water wets as a thin film a vertical wall 1m high and 1m wide. The
temperature of the wall and the surrounding air is 25◦C. The surrounding
air is still and has a relative humidity of 40 percent. Calculate the mass
transfer Rayleigh number based on height and the water mass transfer
rate removed by the natural convection of humid air. Is the humid air
rising or descending along the wall?

11.10. Consider the laminar natural convection boundary layer driven by mass
transfer along a vertical wall of height H. The wall and the surround-
ing fluid mixture (density ρ) are at the same temperature, while the
species mass concentration difference between the vertical surface and
the mixture reservoir is (ρi, w–ρi, ∞).

(a) Invoke the analogy between natural convection mass transfer and
natural convection heat transfer, and obtain an order-of-magnitude
expression for the horizontal (or ‘‘entrainment’’) velocity component
of the mixture.

(b) Rely on the same analogy to estimate the order of magnitude of the
mass flux of species i through the wall.

(c) Compare the horizontal mass fluxes estimated in parts (a) and (b),
and show that the vertical surface may be modeled as an impermeable
surface when |ρi, w–ρi, ∞| � ρ. In other words, show that the analogy
with the heat transfer phenomena of Chapter 4 holds when the species
of interest is present in small quantities in the mixture.

11.11. Determine the overall Sherwood number scales for the last three con-
figurations sketched in Fig. 11.8. In each case, determine the condition
necessary for heat-transfer-driven natural convectionmass transfer. [Note
that for Pr > 1 and Le > 1, this condition is expressed by eq. (11.97).]
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11.12. A vertical wall of height H heats a liquid pool in such a way that the local
heat flux through the wall surface q′′ is independent of position along the
wall. This arrangement generates a natural convection boundary layer
flow along the wall. The liquid has the property to dissolve the wall
material; the concentration of wall material is C0 at the wall surface and
C∞ = 0 sufficiently far from the surface. Assuming the mass diffusivity
of wall material known, D, determine the order of magnitude of the mass
transfer rate from the wall to the boundary layer flow. Assume that the
boundary layer is driven by heat transfer.

11.13. Consider the concentration and temperature boundary layers sketched in
Fig. 11.7. If the flow is driven by mass transfer (i.e., not by heat transfer),
what is the wall-reservoir heat transfer rate?

11.14. Consider the mass transfer with chemical reaction in laminar boundary
layer flow in the limit Sc→ 0. Construct an integral analysis based on eq.
(11.137) and the assumption that the concentration layer is much thicker
than the velocity boundary layer; hence, u = U∞ and v = 0. Determine
the local Sherwood number, and explain how this parameter is influenced
by the presence of chemical reaction.

11.15. Illustrate the effect of a first-order chemical reaction on the mass transfer
rate in forced convection to a uniform flow (U∞ = constant, C∞ = 0)
adjacent to a surface of concentration C0. Show that the concentration
equation in this case reduces to

U∞
∂C

∂x
= D

∂2C

∂y2
± k′′′

1 C
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CONVECTION IN
POROUS MEDIA

Convection in porous media was used for the first time as a heat transfer
classroom topic in the first edition of this book. In this chapter we outline the
basic principles of fluid mechanics and heat transfer through a fluid-saturated
porous structure, in the same manner in which we developed the foundations of
convective heat transfer in Chapter 1.

The fluid mechanics of flow through a porous medium is a relatively old
topic because of the management of the underground water table and irrigation
systems. The conceptual centerpiece in this branch of fluid mechanics—the
Darcy flow model—originated in the nineteenth century in connection with the
engineering of public fountains [1]. The convective heat transfer potential of
flows through porous media is a relatively new topic, as the technologies of
porous insulation, gas-cooled electric machinery, and nuclear reactors grew out
of the contemporary concern with the cost of energy and the miniaturization of
cooling schemes. This body of work was reviewed in Refs. 2 and 3.

12.1 MASS CONSERVATION

The heat and fluid flow through a porous medium is complicated: Figure 12.1
shows a porous structure with flow through the pores. The flow geometry
differs unpredictably from one region of the material to another. It is tempting
to disregard the local complication and unpredictability of the phenomenon
and instead to concentrate on the overall capability of this system to transport
fluid and energy. This decision is analogous to the idea of time averaging a
turbulent flow field (Chapter 7) in order to smooth away the flow complications
called eddies. These decisions do not simplify the respective flows—as smooth
(laminarlike) porous media and turbulent flows do not exist—instead, they
simplify the description of such phenomena.

537Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
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Figure 12.1 Averaging of the pore velocity distribution as a basis for the homogeneous porous
medium model.

For these reasons, the analysis of convection through porousmedia is largely an
empirical exercise. The method consists of applying the conservation principles
of Chapter 1 to a ‘‘gray’’ medium visualized by holding the porous structure
sufficiently far away so that the grain become indistinguishable [3]. A two-
dimensional version of such a medium is sketched in Fig. 12.1, which shows
that a small enough control volume �x �y retains the irregular features of the
grainy structure. Although the flow and heat transfer through the gray medium
may be regarded as two-dimensional, the picture in the small control volume
�x �y differs from one z = constant plane to another. Locally, in regions of
size comparable with the channel size and solid grain size, the flow is always
three-dimensional. This is another similarity between porous medium flow and
turbulent flow.

From the two-dimensional flow we isolate a volume element (�x�y W) with
W so much larger than either �x or �y so that for the purpose of mass-flow
accounting the important flow rates are in the x and y directions only (the flow
cross sections in the x and y directions are W �y and W �x, and both are much
larger than the flow cross section in the z direction, �x �y). Consider the mass
flow rate entering the �x �y W chunk of porous material from the left through
the x = constant plane,

ṁx = ρ

∫ y+�y

y

∫ W

0
up dz dy (12.1)

where up(y, z) is the uneven x-velocity distribution over the void patches of the
x= constant plane. Imagining a control surfaceW�y sufficiently larger than the
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pore and solid grain cross sections, we define the area-averaged velocity in the x
direction,

u = 1

W �y

∫ y+�y

y

∫ W

0
up (y, z) dz dy (12.2)

In other words,
ṁx = ρu (W �y) (12.3)

The area-averaged velocity in the y direction is defined in the same way,

v = 1

W �x

∫ x+�x

x

∫ W

0
vp(x, z) dz dx (12.4)

so that the mass flow rate in the y direction can be expressed as in Chapter 1,

ṁy = ρv(W �x) (12.5)

In deriving eqs. (12.3) and (12.5), we treated the density ρ as constant in the �x
�y element of the two-dimensional flow. This does not mean that ρ is constant
throughout the x–y field.

The reward for smoothing out the complications of the channel flow and
introducing the area-averaged velocities u and v is that, with expressions such
as (12.3) and (12.5), the averaged flow looks like any other homogeneous fluid
flow. Therefore, applying the mass conservation principle [eq. (1.1)] to the �x
�y W element yields

∂

∂t
(ρφW �x �y) + ∂ṁx

∂x
�x+ ∂ṁy

∂y
�y = 0 (12.6)

where φ is the porosity or void fraction of the medium, φ = (void volume)/(total
volume) [see also eq. (12.22)]. Note that φW �x �y is the volume occupied by
fluid in the W �x �y element, and ρφW �x �y is the instantaneous fluid mass
inventory of the element. Combining eqs. (12.3), (12.5), and (12.6), we obtain

φ
∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (12.7)

In general, the mass conservation equation for three-dimensional flow is

φ
∂ρ

∂t
+ ∇(ρv) = 0 (12.8)

where v is the volume-averaged velocity vector (u, v, w). Note that eq. (12.8)
with φ = 1 (pure fluid) is the same as eq. (1.6): This coincidence is not accidental
because the concept of area-averaged velocity was introduced precisely to be
able to apply the pure-fluids mathematical apparatus (Chapter 1) to flows through
porous media.
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12.2 DARCY FLOW MODEL AND THE FORCHHEIMER MODIFICATION

In the fluid mechanics of porous media, the place of momentum equations
or force balances is occupied by the experimental observations summarized
mathematically as the Darcy law. These observations were first reported by
Darcy [1], who, based on measurement alone, discovered that the area-averaged
fluid velocity through a column of porous material is proportional to the pressure
gradient established along the column. Subsequent experiments proved that the
area-averaged velocity is, in addition, inversely proportional to the viscosity
(µ) of the fluid seeping through the porous material. For the history of these
developments, the reader is directed to Lage [4].

With reference to Fig. 12.2a, the Darcy observations amount to writing

u = K

µ

(
−dP

dx

)
(12.9)

where K is an empirical constant called permeability. From eq. (12.9), which
is the definition of permeability (in the same way as the Fourier law of heat

Figure 12.2 Darcy experiment and three possible models for estimating the permeability.
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conduction is the definition of thermal conductivity), we learn that the dimensions
of K must be

[K] = [µ][u]

[−dP/dx]
= (length)2 (12.10)

There is a similarity between eq. (12.9) and the formula for average velocity
in Hagen–Poiseuille flow [eq. (3.22)]; this similarity suggests that the Darcy
flow is the macroscopic manifestation of a highly viscous flow through the pores
of the permeable structure and that K1/2 is a length-scale representative of the
effective pore diameter. In fact, by assuming a small-scale bundle of channels of
known geometry (e.g., Fig. 12.2), and assuming Hagen–Poiseuille flow through
each channel, it is possible to derive eq. (12.9), where K emerges as a function
of geometry. Analyses of this kind are proposed in Problems 12.2–12.4. Ergun
[5] proposed that K = d2φ3/[150(1 − φ)2] as a correlation for the measured
permeabilities of columns of packed spheres of diameter d and porosity φ.

Using K1/2 as a length scale to define the Reynolds number

Re = uK1/2

ν
(12.11)

and the friction factor

f =

(
−dP

dx

)
K1/2

ρu2
(12.12)

the Darcy law (12.9) can be rewritten as

f = 1

Re
(12.13)

Experiments [6] have shown that eqs. (12.9) and (12.13) are valid as long as
O(Re) < 1. There is a transition in the Re range 1–10, and if the Reynolds
number based on K1/2 exceeds O(10), inertial effects flatten the f(Re) curve in
a manner reminiscent of the friction factor curve in turbulent flow over a rough
surface (Fig. 8.2):

f = 1

Re
+ C (12.14)

where C is an empirical constant approximately equal to 0.55 and discussed
in Ref. 2. The more general friction factor expression (12.14) follows from
Forchheimer’s [7] modification of the Darcy law,

−dP

dx
= µ

K
u+ bρ|u|u (12.15)

where b is another empirical constant. Ergun’s [5] correlation for a column of
packed spheres is b = 1.75(1 − φ)/φ3d.
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If a body force per unit volume ρgx is present, the Darcy law (12.9) is

u = K

µ

(
−∂P

∂x
+ ρgx

)
(12.16)

acknowledging the fact that the flow through the porous column of Fig. 12.2 stops
when the externally controlled pressure gradient dP/dx matches the hydrostatic
gradient ρgx. In vectorial notation, the three-dimensional generalization of
eq. (12.16) is

v = K

µ
(−∇P+ ρg) (12.17)

where v is the vector (u, v, w) and g the acceleration vector (gx, gy, gz).
In many problems involving only the seepage flow of water through soil, ρ and

µ may be regarded as constant. With the y axis oriented against the gravitational
acceleration g, the acceleration vector is (0, −g, 0), and eq. (12.17) becomes

v = −K

µ
∇φ (12.18)

where the new function φ(x, y, z),

φ = P+ ρgy (12.19)

should not be confused with the porosity. Under the same conditions
(ρ = constant), the mass conservation statement (12.8) reduces to

∇ · v = 0 (12.20)

Combining eqs. (12.18) and (12.20), we find that seepage flows are governed by
the Laplace equation

∇2φ = 0 (12.21)

which in the absence of free surfaces can be solved in the (x, y, z) space with the
classical methods of steady-state conduction heat transfer [8].

12.3 FIRST LAW OF THERMODYNAMICS

A simple way to derive the energy equation for a porous medium is to consider
the one-dimensional heat and fluid flow model of Fig. 12.3. The figure shows
the elementary building block suggested by models such as the capillary tube
bundle and the capillary fissures of Fig. 12.2. The void space contained in the
volume element A�x is Ap �x; the volume element is defined such that the ratio
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Figure 12.3 Unidirectional flow elements for formulating the first law of thermodynamics for a
homogeneous porous medium.

(Ap �x)/(A�x) matches the porosity ratio of the porous medium from which the
elementary volume has been isolated,

φ = Ap �x

A �x
(12.22)

To derive the energy equation for a homogeneous porous medium, we start
with the energy equations for the solid and fluid parts and average these equations
over the elementary volume A �x. For the solid part, we have

ρscs
∂T

∂t
= ks

∂2T

∂x2
+ q′′′

s (12.23)

where (ρ, c, k)s are the properties of the solid matrix and q′′′
s is the rate of internal

heat generation per unit volume of solid material. If the temperature T does not
vary within the solid volume, the integral of eq. (12.23) over the solid is

�x(A− Ap)ρscs
∂T

∂t
= �x(A− Ap)ks

∂2T

∂x2
+ �x(A− Ap)q

′′′
s (12.24)

The energy conservation equation in the space occupied by fluid is [eq. (1.39)]

ρf cPf

(
∂T

∂t
+ up

∂T

∂x

)
= kf

∂2T

∂x2
+ µ� (12.25)

where (ρ, cP, k)f are fluid properties. The subscript (·)f is used to distinguish
the fluid properties only in the energy equation; thus, ρf is the same as the fluid
density ρ used in the mass conservation equation (12.8) and in the Darcy law
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(12.17). It is assumed that the compressibility term βT DP/Dt is negligible in
eq. (1.39). It is also assumed that (c, k)s and (cP, k)f are known constants.

Note further that T is the temperature of both parts, solid and fluid; in other
words, the fluid and the porous structure are assumed to be in local thermal
equilibrium. This assumption, although adequate for small-pore media such as
geothermal reservoirs and fibrous insulation, must be relaxed in the study of
nuclear reactor cores, electronic packages, and electrical windings where the
temperature difference between solid and fluid (coolant) is a very important
safety parameter. When the solid and fluid are not in thermal equilibrium locally,
every point of the volume-averaged medium has two temperatures, one for
the solid and the other for the fluid. Two-temperature models for the forced
convection cooling of electronic microstructures are illustrated in Refs. 9 and 10.

Integrating eq. (12.25) over the pore volume Ap �x yields

�x Apρf cPf
∂T

∂t
+ �x Aρf cPf u

∂T

∂x
= �x Apkf

∂2T

∂x2
+ �x µ

∫∫
Ap

� dAp (12.26)

In the second term on the left-hand side we used the definition of average velocity
[eq. (12.2)]: Au = ∫∫

Ap
up dAp. The last term on the right-hand side represents

the internal heating associated with viscous dissipation or entropy generation.
The dissipation term in eq. (12.26) equals the mechanical power needed to
extrude the viscous fluid through the pore. This power requirement is equal to
the mass flow rate times the externally maintained pressure drop divided by the
fluid density,

�x µ

∫∫
Ap

� dAp = Au

(
−∂P

∂x
+ ρf gx

)
�x (12.27)

It is easy to prove this identity in the case of known Hagen–Poiseuille flows
through pores with simple cross sections (Problem 12.6); however, eq. (12.27)
holds for any unspecified pore geometry.

Volumetric averaging of the energy conservation statement is achieved by
adding eqs. (12.24) and (12.26) side by side and dividing by the volume element
A �x of the porous structure regarded as a homogeneous medium:

[φρf cPf + (1 − φ)ρscs]
∂T

∂t
+ ρf cPf u

∂T

∂x

= [φkf + (1 − φ)ks]
∂2T

∂x2
+ (1 − φ)q′′′

s + u

(
−∂P

∂x
+ ρf gx

)
(12.28)

The thermal conductivity of the porous medium k emerges as a combination of
the conductivities of the two constituents,

k = φkf + (1 − φ)ks (12.29)
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This simple expression, however, is the result of the one-dimensional model of
Fig. 12.3 which corresponds to a parallel conduction model. In general, k must
be measured experimentally, as the thermal conductivity of the porous matrix
filled with fluid.

Other models for approximating k when kf and ks are known are discussed
in Refs. 2 and 3. The optimization of the configuration of the high-conductivity
material (ks in this case) is an opportunity to maximize the global thermal
conductance of the two-material medium [11] and to minimize the thermal
contact resistance at the boundary between this medium and another body
[11,12]. The optimization of the fluid space configuration is pursued in Ref. 13,
where it is shown that minimal global flow resistance is achieved when the
flow is distributed non-uniformly or optimally ‘‘maldistributed’’ as a multiscale
flow structure of small and large nonparallel channels (e.g., tree-shaped heat
exchangers) [14,15]. When scales are small enough, the complex flow structures
constructed in this manner may be viewed as designed porous media. This new
direction is charted in Ref. 3.

The thermal inertia of the medium depends on the inertias of the solid and the
fluid. This is accounted for by introducing the capacity ratio:

σ =
φρf cPf + (1 − φ)ρscs

ρf cPf
(12.30)

The internal heat generation rate per unit volume of porous medium q′′′ decreases
as the porosity increases,

q′′′ = (1 − φ)q′′′
s (12.31)

With the new notation of eqs. (12.29)–(12.31), the energy equation for the
homogeneous porous medium reads

ρf cPf

(
σ

∂T

∂t
+ u

∂T

∂x

)
= k

∂2T

∂x2
+ q′′′ + µ

K
u2 (12.32)

A similar derivation performed for a three-dimensional flow model yields

ρf cPf

(
σ

∂T

∂t
+ v · ∇T

)
= k ∇2T + q′′′ + µ

K
(v)2 (12.33)

where v is the volume-averaged velocity vector (u, v, w). In situations without
internal heat generation q′′′ and negligible viscous dissipation effect (µ/K)(v)2,
the first law of thermodynamics reduces to

σ
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(12.34)
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The thermal diffusivity of the homogeneous porous medium α is defined as

α = k

ρf cPf
(12.35)

Note that k and α are aggregate properties of the fluid-saturated porous medium,
whereas ρf cPf is a property of the fluid alone.

In the present treatment, we rely on eqs. (12.8), (12.17), and (12.34) as
governing equations for convection through a homogeneous porous medium.
The assumptions made in deriving these equations are:

1. The medium is homogeneous; in other words, the solid material and the
fluid permeating through the pores are distributed evenly throughout the
porous medium.

2. The medium is isotropic, meaning that transport properties such as K and
k do not depend on the direction of the experiment from which they are
measured.When the medium is anisotropic, the permeability, conductivity,
and thermal diffusivity depend on the direction of the measurement:
namely, (Kx, Ky, Kz), (kx, ky, kz), and (αx, αy, αz) = (kx, ky, kz)/ρf cPf. When
the principal directions of the anisotropic medium [16] coincide with the
axes x, y, and z, the Darcy law (12.17) assumes the form

u = Kx
µ

(
−∂P

∂x
+ ρgx

)

v = Ky
µ

(
−∂P

∂y
+ ρgy

)
(12.36)

w = Kz
µ

(
−∂P

∂z
+ ρgz

)
and the energy equation (12.34) is replaced by

σ
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= αx

∂2T

∂x2
+ αy

∂2T

∂y2
+ αz

∂2T

∂z2
(12.37)

3. At any point in the porous medium, the solid matrix is in thermal
equilibrium with the fluid filling the pores.

4. The local Reynolds number based on averaged velocity and K1/2 does not
exceed the range 1–10, meaning that the Darcy law applies in its original
form (12.17).

12.4 SECOND LAW OF THERMODYNAMICS

Convection processes through fluid-saturated porous media are inherently irre-
versible, due to the transfer of heat in the direction of finite temperature gradients
and to the viscous flow through the pores. The second law of thermodynamics
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[eq. (1.47)] may be applied to the one-dimensional flow model discussed in the
preceding section (Fig. 12.3) to yield the entropy generation rate per unit volume
of homogeneous porous medium,

S′′′
gen = k

T2

(
∂T

∂x

)2

+ µu2

KT
≥ 0 (12.38)

where it was assumed that q′′′ = 0. The analysis leading to eq. (12.38) is
proposed as an exercise using Ref. 17 as a guide (Problem 12.7). For a general
three-dimensional convection process, the local rate of entropy generation
becomes

S′′′
gen = k

T2
(∇T)2︸ ︷︷ ︸
≥0

+ µ

KT
(v)2︸ ︷︷ ︸

≥0

≥ 0 (12.39)

where, it must be stressed, T represents absolute temperature. Important to note
is that the viscous irreversibility term in eq. (12.39) may not be negligible,
even in cases when the viscous dissipation term can be neglected in the energy
equation (12.33) (see Ref. 17, p. 102).

12.5 FORCED CONVECTION

12.5.1 Boundary Layers

The basic problem in heat convection through porousmedia consists of predicting
the heat transfer rate between a differentially heated, solid impermeable surface
and a fluid-saturated porous medium. We begin with the simplest wall heat
transfer problem, namely, the interaction between a solid wall and the parallel
flow permeating through the porous material confined by the wall.

Constant Wall Temperature. Relative to the two-dimensional coordinate
system of Fig. 12.4, the steady-state governing equations are

∂u

∂x
+ ∂v

∂y
= 0 (12.40)

u = −K

µ

∂P

∂x
v = −K

µ

∂P

∂y
(12.41)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(12.42)

where it has been assumed that ρ is constant, the boundary layer is slender, and
the gravity effect is negligible. Consider now the uniform parallel flow

u = U∞, v = 0, P(x) = −µ

K
U∞x+ constant (12.43)
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Figure 12.4 Thermal boundary layer near an isothermal wall with parallel flow.

which satisfies the fluid mechanics part of the problem [eqs. (12.40) and (12.41)].
If the temperature of the fluid-saturated medium is T∞ and the wall temperature
downstream of some point x = 0 is T0, what is the heat transfer rate between
the x > 0 wall and the porous medium? We answer this question based on scale
analysis.

Let δT be the thickness of the slender layer of length x that affects the
temperature transition from T0 to T∞. We refer to δT as the thermal boundary
layer thickness, keeping in mind the analogy between the present problem and
the Blasius–Pohlhausen problem of Chapter 2. However, unlike in Chapter 2,
this time we do not encounter a velocity boundary layer thickness. Writing
�T = T0 − T∞, the energy equation (12.42) reveals a balance between enthalpy
flow in the x direction and thermal diffusion in the y direction,

U∞
�T

x
∼ α

�T

δ2T
(12.44)

where it has been assumed that the thermal boundary layer region is slender,
δT � x. The heat transfer implications of eq. (12.44) are

δT

x
∼ Pe−1/2

x (12.45)
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Nux = h
x

k
∼ x

δT
∼ Pe1/2x (12.46)

The Péclet number is based on the thermal diffusivity of the porous medium,

Pex = U∞x
α

(12.47)

In conclusion, the thermal boundary layer thickness δT increases as x1/2

downstream from the point where wall heating begins. The local heat transfer
coefficient (or the local heat flux q′′) decreases as x−1/2. Since results (12.45) and
(12.46) are based on the slender thermal boundary layer assumptions, they are
valid only when Pe1/2x > O(1), that is, sufficiently far downstream from x = 0.

The similarity solution to the heat transfer problem defined by eqs.
(12.40)–(12.42) and the boundary conditions of Fig. 12.4 is developed by
introducing the similarity variable suggested by the scaling law (12.45),

η = y

x
Pe1/2x (12.48)

The similarity temperature profile is

T − T0
T∞ − T0

= θ(η) (12.49)

With this notation, the energy equation and its boundary conditions become

θ ′′ + 1
2ηθ ′ = 0 (12.50)

θ(0) = 0, θ(∞) = 1 (12.51)

Solving eqs. (12.50) and (12.51) by separation of variables, we find that

θ = erf
(η

2

)
(12.52)(

dθ

dη

)
η=0

= π−1/2 = 0.564 (12.53)

According to this similarity solution, the local Nusselt number is

Nux = q′′

T0 − T∞

x

k
=

(
dθ

dη

)
η=0

Pe1/2x = 0.564Pe1/2x (12.54)

which agrees within a factor of order 1 with the scale law (12.46). Averaging the
heat transfer coefficient over the wall length L, we obtain

Nu = h
L

k
= 1.128Pe1/2L (12.55)
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Constant Wall Heat Flux. If the impermeable wall is subjected to the uniform
heat flux condition q′′ = constant, the temperature difference T0(x) − T∞ varies
as x1/2 downstream from x = 0. This problem was first solved numerically in
the first edition of this book, where the method was based on finite differences
(Problem 12.10). Morega and Bejan [18] reported that the problem can be solved
analytically in closed form; this compact approach is shown next.

The energy equation to solve is (12.42) with u = U∞ and v = 0, subject to
the boundary conditions

∂T

∂y
= −q′′

k
at y = 0 (12.56)

T → T∞ as y → ∞ (12.57)

We select the similarity variables by keeping in mind the proportionality between
thermal boundary layer thickness and x1/2, eq. (12.45), and the proportionality
between [T0(x) − T∞] and x1/2:

ζ = y

(
U∞
αx

)1/2

(12.58)

τ(ζ ) = T(x, y) − T∞
(q′′/k)(αx/U∞)1/2

(12.59)

The similarity version of eqs. (12.42), (12.56), and (12.57) is

τ ′′ + 1
2 (ζ τ ′ − τ) = 0 (12.60)

τ ′(0) = −1 (12.61)

τ(∞) = 0 (12.62)

Separation of variables is achieved by differentiating eq. (12.60) once,

τ ′′′

τ ′′ = − 1
2ζ (12.63)

The equation is then integrated sequentially three times, and after using
eqs. (12.60)–(12.62), the analytical expression for the similarity temperature
profile becomes

τ(ζ ) = 2

π1/2
exp

(
−ζ 2

4

)
− ζ erfc

(
ζ

2

)
(12.64)

This expression shows that the value at the wall is τ (0) = 2/π1/2 = 1/0.886.
The local Nusselt number is therefore

Nux = q′′x
k[T0(x) − T∞]

= 0.886Pe1/2x (12.65)
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Figure 12.5 Similarity temperature profiles of the forced convection boundary layers in a
porous medium with uniform flow.

with the corresponding overall Nusselt number

Nu = q′′L
k(T0 − T∞)

= 1.329Pe1/2L (12.66)

where 1.329 stands for 3π1/2/4. The similarity temperature profile has been
superimposed on Fig. 12.5 because ζ of eq. (12.58) is the same as η of
eq. (12.48). This new curve was drawn as τ /τ (0) such that its ends coincide with
the ends of the θ(η) profile. In this way, Fig. 12.5 shows that the τ profile is
steeper than the θ profile. The heatlines of these boundary layers are presented
in Ref. 19. The analytical solution (12.64) also represents the Pr → 0 limit of the
thermal boundary layer on a flat plate with uniform heat flux (Section 2.6.3).

Other Conditions. In the preceding two examples, the flow was uniform and
parallel to the impermeable wall. Amore general class of problems emerges if we
consider the uniform flow (U∞, T∞) incident to a wedge-shaped impermeable
obstacle of included angle mπ. As in the classical Falkner–Skan flows of
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Section 2.7, potential flow theory reveals that the velocity along each side of the
wedge varies as u = Cxn, where n = m/(2 − m). Cheng [20] showed that in
such cases, a similarity solution exists for the heat transfer problem if the wall
temperature varies as T0(x) = T∞ + Axn, with x measured downstream from the
tip. The isothermal wall problem considered earlier in this section is the n = 0
special case of the class of wedge flows. The time-dependent heat transfer and
thermal boundary layer near a wall heated suddenly in a porous medium are
described in Ref. 21.

12.5.2 Concentrated Heat Sources

With reference to Fig. 12.6a, the temperature field T(x,r) downstream from a
point heat source of strength q buried in a fluid-saturated porous medium is [cf.
eq. (9.94)]

T − T∞ = q

4πkx
exp

(
− ur2

4αx

)
(12.67)

Figure 12.6 Forced convection configurations: (a) point heat source; (b) line heat source in
cross flow; (c) sphere or cylinder in cross flow; (d) long duct filled with a porous medium.
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This result is valid where convection overwhelms diffusion as a longitudinal heat
transfer mechanism in the wake (i.e., where ux/α � 1).

The thermal wake behind a line heat source perpendicular to a uniform
volume-averaged flow (u, T∞) is sketched in Fig. 12.6b. If the source strength is
q′, the two-dimensional temperature field T(x, y) is analogous to what we derived
in eqs. (9.90)–(9.93):

T − T∞ = q′

(ρcP)f (4πuαx)1/2
exp

(
− uy2

4αx

)
(12.68)

Equation (12.68) holds in the convection-dominated regime, ux/α � 1.When this
criterion fails, the T field is governed by pure diffusion, and its analytical form
may be derived by classical heat conduction methods (e.g., Ref. 8, pp. 177–184).

12.5.3 Sphere and Cylinder in Cross Flow

The distributions of heat flux around the sphere and cylinder in cross flow were
determined by Cheng [22], who assumed that the flow is in the Darcy regime.
With reference to the angular coordinate θ defined in Fig. 12.6c, Cheng obtained
the following expressions for the local peripheral Nusselt number:

Sphere:

Nuθ = 0.564

(
ur0θ

α

)1/2(3

2
θ

)1/2

sin2θ

(
1

3
cos3θ − cos θ + 2

3

)−1/2

(12.69)
Cylinder:

Nuθ = 0.564

(
ur0θ

α

)1/2

(2θ)1/2 sin θ(1 − cos θ)−1/2 (12.70)

Worth noting in these expressions is the Péclet number based on the swept
arc r0θ : namely, Peθ = ur0θ /α. The local Nusselt number is defined as
Nuθ = q′′r0θ /[k(Tw − T∞)]. Equations (12.69) and (12.70) are valid when
the boundary layers are distinct (thin) (i.e., when the boundary layer thickness
r0Pe

−1/2
θ is smaller than the radius r0). This requirement can also be written as

Pe1/2θ � 1 or Nuθ � 1.
The heat flux averaged over the area of the cylinder and sphere, q′′, is

calculated by averaging the local heat flux q′′ of eqs. (12.69) and (12.70). This
was done by Nield and Bejan [2], and the results are

Sphere : NuD = 1.128Pe1/2D (12.71)

Cylinder : NuD = 1.015Pe1/2D (12.72)

In these expressions, the Nusselt and Péclet numbers are based on the diameter
D = 2r0: namely, NuD = q′′D/k(Tw − T∞) and PeD = uD/α.
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12.5.4 Channel Filled with Porous Medium

Consider a flow of volume-averaged velocity u through a porous medium that
fills a long channel (Fig. 12.6d). In the Darcy flow regime, the velocity u is
uniform over the channel cross section. When the temperature field is fully
developed, the relationship between wall heat flux q′′ and local temperature
difference (Tw − Tm) is analogous to the formula for fully developed heat
transfer to ‘‘slug flow’’ through a channel without a porous matrix (Chapter 3).
The temperature Tm is the mean temperature of the stream that flows through the
channel (Section 3.4.1), which for slug flow reduces to

Tm = 1

A

∫
A
T dA (12.73)

in which A is the area of the channel cross section.
In cases where the confining wall is a tube with the internal diameter D, the

relation for fully developed heat transfer can be expressed as a constant Nusselt
number,

NuD = q′′(x)
Tw − Tm(x)

D

k
= 5.78 (tube, Tw = constant) (12.74)

NuD = q′′

Tw(x) − Tm(x)

D

k
= 8 (tube, q′′ = constant) (12.75)

When the porous matrix is sandwiched between two parallel plates with the
spacing D, the corresponding Nusselt numbers are

NuD = q′′(x)
Tw − Tm(x)

D

k

= 4.93 (parallel plates, Tw = constant) (12.76)

NuD = q′′

Tw(x) − Tm(x)

D

k

= 6 (parallel plates, q′′ = constant) (12.77)

The forced correction results (12.74)–(12.77) are valid when the temperature
profile across the channel is fully developed [i.e., sufficiently far from the channel
entrance (x = 0 in Fig. 12.6d)]. The length needed for the temperature profile
to become fully developed can be estimated by recalling from eq. (12.45) that
the thermal boundary layer thickness scales as (αx/u)1/2. By setting x ∼ XT
in (αx/u)1/2 ∼ D, we obtain the thermal entrance length XT ∼ D2u/α. Inside
the entrance region 0 < x < XT, the heat transfer is impeded by the forced
convection thermal boundary layers that line the channel walls and can be
calculated approximately with the formulas derived in Section 12.5.1.
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12.6 NATURAL CONVECTION BOUNDARY LAYERS

12.6.1 Boundary Layer Equations: Vertical Wall

In this section we consider the heat transfer between a vertical heated surface
and a fluid-saturated semi-infinite porous reservoir (Fig. 12.7). This, the simplest
boundary layer model for natural convection in porous media, was published
in a classical paper by Cheng and Minkowycz [23]. Because the gravitational
acceleration g is oriented in the negative y direction, the Darcy flow satisfies

u = −K

µ

∂P

∂x
v = −K

µ

(
∂P

∂y
+ ρg

)
(12.78)

or by eliminating P,
∂u

∂y
− ∂v

∂x
= Kg

µ

∂ρ

∂x
(12.79)

Defining the streamfunction ψ

u = ∂ψ

∂y
, v = −∂ψ

∂x
(12.80)

Figure 12.7 Natural convection boundary layer flow through a porous medium placed near a
hot vertical wall.



556 12 CONVECTION IN POROUS MEDIA

so that the mass continuity equation (12.40) is satisfied identically, the Darcy
law (12.79) becomes

∂2ψ

∂x2
+ ∂2ψ

∂y2
= Kg

µ

∂ρ

∂x
(12.81)

If the boundary layer of Fig. 12.7 is slender, the governing balances [force
(12.81) and energy (12.34)] reduce to

∂2ψ

∂x2
= −Kgβ

ν

∂T

∂x
(12.82)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂x2
(12.83)

In writing eq. (12.82), we used the Boussinesq approximation of Chapter 4,
ρ = ρ0[1 − β(T− T0)], to effect the coupling between the flow field ψ(x, y) and
the temperature field T (x, y).

12.6.2 Uniform Wall Temperature

Consider first the case where the temperature of the vertical impermeable wall is
uniform, T0; the boundary conditions are

T = T0, ψ = 0 at x = 0

T → T∞, ∂ψ/∂x → 0 as x → ∞ (12.84)

The scale analysis of problem (12.82)–(12.84) reveals the order of magnitude
of the heat transfer rate between the wall and the semi-infinite porous reservoir.
From eqs. (12.82) and (12.83), we obtain

ψ

δ2T
∼ Kgβ

ν

�T

δT
(12.85)

ψ �T

yδT
∼ α

�T

δ2T
(12.86)

where δT is the boundary layer thickness (the x scale) and �T = T0 − T∞.
Combining expressions (12.85) and (12.86), we conclude that

δT

y
∼ Ra−1/2

y , ψ ∼ α Ra1/2y (12.87)

Nuy = h
y

k
∼ y

δT
∼ Ra1/2y (12.88)

where the heat transfer coefficient scales as h ∼ q′′/�T ∼ k/δT, and Ray is the
Darcy-modified Rayleigh number

Ray = Kgβy �T

αν
(12.89)
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Natural boundary layers in Darcy flow porous media have a single length scale
δT [eq. (12.87)]. This feature distinguishes them from their counterparts in pure
fluids (Chapter 4), which are characterized by two length scales (see Fig. 4.3 and
Table 4.1).

The similarity formulation of the isothermal wall problem starts with recog-
nizing from the first of eqs. (12.87) the similarity variable

η = x

y
Ra1/2y (12.90)

Introducing the similarity profiles

ψ

α Ra1/2y

= f (η),
T − T∞
T0 − T∞

= θ(η) (12.91)

the problem statement (12.82)–(12.84) becomes

f ′′ = −θ ′ (12.92)

f θ ′ = 2θ ′′ (12.93)

θ(0) = 1, f (0) = 0

θ(∞) → 0, f ′(∞) → 0 (12.94)

The numerical integration performed by Cheng and Minkowycz [23] yielded

Nuy = q′′

T0 − T∞

y

k
= 0.444Ra1/2y (12.95)

or, averaged over a wall of height H,

Nu = h
H

k
= 0.888Ra1/2H (12.96)

These exact heat transfer results confirm the validity of the scaling law (12.88).
Mixed convection is the heat transfer mechanism that occurs when, super-

imposed on the buoyancy effect shown in Fig. 12.7, there is also a forced
stream such as the one shown in Fig. 12.4. The latter is pushed from the
bottom in Fig. 12.7 and flows with the uniform velocity V∞ in the y direction.
According to eq. (12.45), the thermal boundary layer thickness in the limit
of pure forced convection is δFC ∼ y Pe−1/2

y , where Pey = V∞y/α and α is
the thermal diffusivity of the saturated porous medium. In the limit of pure
natural convection, eq. (12.87) indicates the thermal boundary layer thickness
δNC ∼ y Ra−1/2

y .
Note that both δFC and δNC increase as y1/2. This is important because it means

that the ratio δFC/δNC is a constant of order (Ray/Pey)
1/2. Invoking once again
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the constructal law [16,24–26], we expect the flow field to acquire the smaller
of δFC and δNC [27]. Accordingly, when (Ray/Pey)

1/2 < 1, the forced convection
thickness is the smaller thickness, and the mixed convection flow is dominated
by forced convection. When (Ray/Pey)

1/2 > 1, the natural convection thickness is
the smaller of the two thicknesses: It is selected by the flow, and the heat transfer
rate resembles the result known for the natural convection limit.

12.6.3 Uniform Wall Heat Flux

If the vertical wall is characterized by a uniform heat flux q′′, the local temperature
difference T0(y) − T∞ and the boundary layer thickness δT must vary such that

q′′ ∼ k
T0(y) − T∞

δT
= constant (12.97)

Combining this with the scaling results (12.85)–(12.87), we find

δT

y
∼ Ra−1/3

∗y (12.98)

where Ra∗y is the Darcy-modified Rayleigh number based on heat flux,

Ra∗y = Kgβy2q′′

ανk
(12.99)

The local heat transfer rate must therefore scale as

Nuy = q′′

T0(y) − T∞

y

k
∼ Ra1/3∗y (12.100)

The numerical solution to the similarity for formulation of this problem was
reported by Cheng and Minkowycz [23] and confirms this scaling result (see
Problem 12.14),

Nuy = q′′

T0(y) − T∞

y

k
= 0.772Ra1/3∗y (12.101)

Nu = q′′

T0 − T∞

H

k
= 1.03Ra1/3∗H (12.102)

The results presented above for a vertical wall apply, subject to a slight
modification, to the more general case where the wall is inclined relative to the
vertical direction. The gravitational acceleration acts in both x and y directions,

u = −K

µ

(
∂P

∂x
− ρgx

)
, v = −K

µ

(
∂P

∂y
− ρgy

)
(12.103)
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where gx and gy are the respective components of gravitational acceleration. Intro-
ducing the Boussinesq approximation and eliminating P between eqs. (12.103)
yields

∂2ψ

∂x2
+ ∂2ψ

∂y2
= Kβ

ν

(
gy

∂T

∂x
− gx

∂T

∂y

)
(12.104)

which is a more general version of eq. (12.82). In the boundary layer regime,
we have x ∼ δT and y � δT; therefore, the boundary layer approximation of
eq. (12.104) is

∂2ψ

∂x2
= Kgyβ

ν

∂T

∂x
(12.105)

This approximation is valid as long as gx is not order-of-magnitude greater
than gy. Note that eq. (12.105) is the same as eq. (12.82) employed earlier. In
conclusion, if the impermeable wall makes an angle γ with the vertical direction,
the results developed for vertical walls are applicable as long as g is replaced by
g cos γ in the Rayleigh number calculations.

12.6.4 Spacings for Channels Filled with Porous Structures

The constructal design of spacings in the limit of decreasing length scales
(Sections 3.6 and 4.12) leads to flow structures that look more and more like
porous structures with ‘‘designed’’ pores. The development of such structures
defines a field that may be regarded as designed porous media [3].

In this section we cover another fundamental configuration of designed porous
media: spacings between plates that sandwich a porous medium. For example,
the channels may be occupied by a metallic foam such that the saturated
porous medium has a thermal conductivity (k) and a thermal diffusivity (α) that
are much higher than their pure fluid properties (kf, αf), which were used in
Chapters 2–4. We consider both natural convection and forced convection with
Boussinesq incompressible fluid and assume that the structures are fine enough
that Darcy flow prevails in all cases. The analysis is another application of the
intersection-of-asymptotes method [28,29].

The natural convection configuration is shown in Fig. 12.8. EachD-thin space
is filled with the assumed fluid-saturated porous structure. The width in the
direction perpendicular to Fig. 12.8 is W. The effective pressure difference that
drives the flow is due to buoyancy,

�P = ρHgβ(Tw − T0) (12.106)

This �P estimate is valid in the limit where the spacingD is sufficiently small so
that the temperature in the channel porous medium is essentially the same as the
plate temperature Tw. In this limit, the heat current extracted by the flow from the
H × L volume is q = ṁcP(Tw − T0), with ṁ = ρULW and Darcy’s law, U = K
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Figure 12.8 Volume filled with vertical heat-generating plates separated by a fluid-saturated
porous medium and the effect of the channel spacing on the global thermal conductance.

�P/µH, where K is the permeability of the structure. In conclusion, the total heat
transfer rate in the small-D limit is independent of the spacing D (see Fig. 12.8),

q = ρcP (Tw − T0)LW(K �P)/µH (12.107)

In the opposite limit,D is large enough so that the natural convection boundary
layers that line the H-tall plates are distinct. The heat transfer rate from one
boundary layer is hHW(Tw − T0), where eq. (12.96) yields hH/k = 0.888Ra−1/2

H ,
and RaH is the Rayleigh number for Darcy flow, RaH = KgβH(Tw − T0)/αν.
The number of boundary layers in the H× L volume is 2L /D. In conclusion, the
total heat transfer rate decreases as D increases (see Fig. 12.8),

q = 1.78(L/D)Wk(Tw − T0)Ra
1/2
H (12.108)

The effect of the spacing requires discussion. For maximal thermal conduc-
tance q/(Tw − T0), the spacing D must be smaller than the estimate obtained by
intersecting asymptotes (12.107) and (12.108),

Dopt/H � 1.78 Ra−1/2
H (12.109)

The simplest design that has the highest possible conductance is the design with
the fewest plates (i.e., the one with the largest Dopt); hence Dopt/H ∼= 1.78Ra−1/2

H
for the recommended design. Contrary to Fig. 12.8, however, q does not remain



12.6 NATURAL CONVECTION BOUNDARY LAYERS 561

constant if D decreases indefinitely. There exists a small enough D below which
the passages are so tight (tighter than the pores) that the flow is snuffed out. An
estimate for how large D should be so that eq. (12.109) is valid is obtained by
requiring that the Dopt value for natural convection when the channels are filled
only with fluid, Dopt/H ∼= 2.3 [gβH3(Tw − T0)/αfν]

−1/4 [cf. eq. (4.139)], must be
smaller than the Dopt value of eq. (12.109). We find that this is true when

H2

K

α

αf
> RaH (12.110)

in which, normally, α/αf � 1 and H2/K � 1.
The forced convection configuration can be optimized similarly. The flow is

driven by the imposed �P through parallel-plates channels of length L and width
W. The thermal conductance in the small-D limit is the same as in eq. (12.107).
In the large-D limit there are 2H/D distinct boundary layers, and the heat transfer
rate across one boundary layer is hLW(Tw − T0), where hL/k = 1.128(UL/α)1/2

[cf. eq. (12.55)]. Putting these formulas together, we find that in the large-D limit
the global thermal conductance is

q = 2.26(H/D)Wk(Tw − T0)(UL/α)1/2 (12.111)

The forced convection asymptotes (12.107) and (12.111) behave as in Fig. 12.8.
The highest conductance occurs to the left of the intersection of the two
asymptotes, when

Dopt/L � 2.26Be−1/2
p (12.112)

and where Bep is the porous medium Bejan number, Bep = (�PK)/µα.
This forced convection optimization is valid when the Dopt estimate for the
channel with pure fluid [eq. (3.133)] is smaller than the Dopt value provided by
eq. (12.112), that is, when

L2

K

α

αf
> Bep (12.113)

In summary, eqs. (12.109) and (12.112) provide estimates for the constructal
spacings when the channels between heat-generating plates are filled with a
fluid-saturated porous structure. The relevant dimensionless groups are RaH,
Bep, K/H

2, K/L2, and α/αf. The symmetry between eqs. (12.109) and (12.112),
and between eqs. (12.110) and (12.113), reinforces Petrescu’s [30] argument
that the role of the Bejan number in forced convection is analogous to that of the
Rayleigh number in natural convection.

These results are most fundamental and are based on a simple model and
a simple analysis: Darcy flow and the intersection-of-asymptotes method. The
same idea of geometry discovery deserves to be pursued in future studies of
‘‘designed porous media,’’ based on more refined models and more accurate
methods of flow simulation.
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12.6.5 Conjugate Boundary Layers

Natural boundary layers are rarely driven by surfaces with known temperature
or heat flux, as in Fig. 12.7; more often, they are the consequence of the thermal
interaction between two fluid systems separated by a vertical (or inclined)
impermeable wall. The wall may face fluid-saturated porous media on both sides
(Fig. 12.9a) or on only one side (Fig. 12.9b). If a temperature difference exists
between the two fluid systems, conjugate boundary layers form on both sides of
the wall.

The problem of conjugate boundary layers on both sides of a solid wall
inserted in a fluid-saturated porous medium was formulated and solved in
Ref. 31. The problem was solved analytically based on the Oseen-linearization
method described in Chapter 5: it was found that the coefficient in the (Nusselt
number) ∼ (Rayleigh number)1/2 proportionality decreases steadily as the wall
thickness parameter ω increases,

Nu = 0.382(1 + 0.615ω)−0.875 Ra1/2H (12.114)

In this expression, Nu = q′′H/[(T∞,H − T∞,L)k] and q′′ is the heat flux averaged
over the height H. In addition, RaH = KgβH(T∞, H − T∞, L)/αν; the wall
thickness parameter ω is defined as ω = (Wk/Hkw) Ra1/2H , where kw is the
thermal conductivity of wall material.

If one side of the wall faces a fluid reservoir (as the outer surface of a double
wall filled with fiberglass insulation, in a house), the conjugate boundary layer

Figure 12.9 Conjugate boundary layers on the two sides of a vertical impermeable partition
separating: (a) two porous media; (b) a porous medium and a fluid reservoir.
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problem consists of the interaction of a porous medium layer with a wall jet
(Fig. 12.9b). When both sides of the interface are lined by boundary layers, the
overall Nusselt number may be estimated as [32]

Nu = [(0.638)−1 + (0.888B)−1]−1 Ra1/4H,f (12.115)

where Nu = q′′H/[(T∞,H − T∞,L)k] and B = k Ra1/2H /kf Ra
1/4
H,f . The parameter

kf is the fluid-side thermal conductivity; the fluid-side Rayleigh number is
RaH, f = g(β/αν)fH

3(T∞, H − T∞, L). Equation (12.115) is valid when both

boundary layers are distinct, Ra1/2H � 1 and Ra1/4H,f � 1; it is also assumed that
the fluid on the right side of the partition in Fig. 12.9b has a Prandtl number
of order 1 or greater. Structures with solid walls separating cavities filled with
porous media and spaces filled with air are being contemplated in the advanced
design of bricks and buildings [33].

12.6.6 Thermal Stratification

Since the fluid-saturated porous medium of Fig. 12.7 is not infinite in the x and
y directions, the discharge of the boundary layer into the medium leads, in time,
to the thermal stratification of the x > δT region. According to Fig. 12.10, if the
bottom (or starting) temperature difference T0 − T∞,0 remains fixed, then as the
positive temperature gradient γ = dT∞/dy increases, the average temperature
difference between the wall and the porous medium decreases. Therefore, we
should expect a steady decrease in the total heat transfer rate as γ increases.

The effect of stable thermal stratification on natural convection in porous
media was studied in the context of two conjugate boundary layers on both
sides of an impermeable partition inserted vertically into a porous medium [31]
(Fig. 12.9a). We focus on this case later. The simpler problem of a vertical or

Figure 12.10 Heat transfer from a vertical isothermal wall to a linearly stratified porous medium
saturated with fluid.
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slightly inclined impermeable wall facing a linearly stratified porous medium
was treated by integral analysis in the first edition of this book. This analysis is
shown next.

In accordance with the previous notation and the new temperature conditions
of Fig. 12.10, the Darcy law (12.82) integrated once requires

T = ν

Kgβ
v + function(y) (12.116)

Unlike in the Kármán–Pohlhausen integral procedure employed in Chapter 2, in
the present case we have the freedom to choose only one profile shape (e.g., v),
because the second profile follows from eq. (12.116). Let the vertical velocity
profile be

v = v0 exp

(
− x

δT

)
(12.117)

where both v0 ad δT are unknown functions of altitude. Then, using the
Darcy law (12.116) and the temperature boundary conditions T(0, y) = T0 and
T(∞, y) = T∞, 0 + γ y, the corresponding temperature profile is

T(x, y) = (T0 − T∞,0 − γ y) exp

(
− x

δT

)
+ T∞,0 + γ y (12.118)

with the maximum (wall) vertical velocity v0 = (Kg β/ν)(T0 − T∞,0 − γ y).
The integral form of the boundary layer energy equation is obtained by

integrating eq. (12.83) across the boundary layer from x = 0 to x → ∞,

(u)x→∞(T)x→∞ + d

dy

∫ ∞

0
vT dx = −α

(
∂T

∂x

)
x=0

(12.119)

where (T)x→∞ = T∞,0 + γ y and, from the mass conservation equation,

(u)x→∞ = − d

dy

∫ ∞

0
v dx (12.120)

Substituting the assumed v and T profiles into the energy integral equation
(12.119) yields

dδ∗
dy∗

= 2

δ∗(1 − by∗)
(12.121)

with the following dimensionless notation:

b = γH

T0 − T∞,0
stratification parameter

y∗ = y

H
, δ∗ = δT

H

[
gβH

(
T0 − T∞,0

)
αν

]1/2

(12.122)
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Integrating eq. (12.121) from δ*(0) = 0, we obtain δ*(y*) = [−(4/b) ln
(1 − by*)]

1/2, which yields the expected result (δ∗ ∼ y1/2∗ ) as b approaches
zero. The total heat transfer rate can then be calculated by averaging the heat
flux over the wall height H,

Nu0−H
Ra1/2H

=
∫ 1

0

(1 − by∗) dy∗
[−(4/b) ln (1 − by∗)]1/2

(12.123)

where both Nu0–H and RaH are based on the maximum (starting) temperature
difference

Nu0−H = q′′
0−HH

k(T0 − T∞,0)
, RaH = KgβH

αν
(T0 − T∞,0) (12.124)

Equation (12.123) is plotted in Fig. 12.10: As expected, the coefficient in
the Nu0−H ∼ Ra1/2H proportionality decreases monotonically as b increases. The
accuracy of the integral solution above can be assessed by comparing its b = 0
limit, Nu0−H/Ra1/2H = 1, with the similarity average Nusselt number for an
isothermal wall adjacent to an isothermal porous medium [eq. (12.96)]: The
discrepancy between the two solutions is only 12.6 percent.

The effect of stable stratification on both sides of an impermeable wall
was studied in Ref. 31 based on the Oseen-linearization method. The heat
transfer result is reproduced in Fig. 12.11, along with the temperature conditions
sufficiently far from the vertical wall (Fig. 12.9a). The stratification parameter

Figure 12.11 Effect of stable stratification on natural convection heat transfer through a vertical
wall embedded in a porous medium. (From Ref. 31.)
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b′, defined in Fig. 12.11, is the same for both porous sides. The average Nusselt
number Nu0–H and the Rayleigh number are based on the temperature difference
�T between the two fluid-saturated porous media (note that �T is a constant
independent of y).

12.6.7 Sphere and Horizontal Cylinder

With reference to the coordinate system shown in Fig. 12.12a, the local Nusselt
numbers for boundary layer convection around an impermeable sphere or a
horizontal cylinder embedded in an infinite porous medium are:

Sphere:

Nuθ = 0.444Ra1/2θ

( 3
2θ

)1/2
sin2θ

( 1
3 cos3θ − cos θ + 2

3

)−1/2
(12.125)

Horizontal cylinder:

Nuθ = 0.444Ra1/2θ (2θ)1/2 sin θ(1 − cos θ)−1/2 (12.126)

where Nuθ = q′′r0θ /k(Tw − T∞) and Raθ = Kgβθr0(Tw − T∞)/αν. These
steady-state results have been reported by Cheng [22]; they are valid provided
that the boundary layer region is slender (i.e., if Nuθ � 1). The corresponding
overall Nusselt numbers are (see Ref. 2):

Sphere:
NuD = 0.362Ra1/2D (12.125′)

Horizontal cylinder:
NuD = 0.565Ra1/2D (12.126′)

where NuD = q′′D/k(Tw − T∞),D = 2r0, and RaD = Kg βD (Tw − T∞)/αν.

Figure 12.12 External natural convection in a porous medium: (a) impermeable sphere or
horizontal cylinder; (b) hot surface facing upward; (c) cold surface facing upward.
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12.6.8 Horizontal Walls

The boundary layer flow in the vicinity of a heated horizontal surface that
faces upward (Fig. 12.12b) was studied by Cheng and Chang [34]. Measuring x
horizontally away from the vertical plane of symmetry of the flow, the local
Nusselt number for an isothermal wall is

Nux = 0.42Ra1/3x (12.127)

where Nux = q′′x/k(Tw − T∞) and Rax = Kg βx(Tw − T∞)/αν. The local Nusselt
number for a horizontal wall heated with uniform flux is

Nux = 0.859Ra1/4∗x (12.128)

where Ra∗x = Kgβx2q′′/kαν. Equations (12.127) and (12.128) are valid in the
boundary layer regime, Ra1/3x � 1 and Ra1/4∗x � 1, respectively. They also apply
to porous media bounded from above by a cold surface; this new configuration
is obtained by rotating Fig. 12.12b by 180◦.

The other horizontal wall configuration, the upward-facing cold plate of
Fig. 12.12c was studied by Kimura et al. [35]. The overall Nusselt number in
this configuration is

Nu = 1.47Ra1/3L (12.129)

where Nu = q′/k(T∞ − Tw) and RaL = Kg βL(T∞ − Tw)/αν, and where q′ is
the overall heat transfer rate through the upward-facing cold plate of length L.
The result of eq. (12.129) holds if RaL � 1 and applies equally to hot horizontal
plates facing downward in an isothermal porous medium.

12.6.9 Concentrated Heat Sources

The heat transfer from small heat sources buried inside conducting media is
already a large and important chapter in conduction heat transfer (e.g., Ref. 8,
Chap. 4). If the conducting medium is saturated with fluid, as, for example, the
ground beneath us, the heat released by concentrated sources migrates in accord
with the principles of natural convection through porous media. Applications of
this class of convection problems are the cooling of underground electric cables
and the environmental impact of underground explosions and buried nuclear
(heat-generating) waste.

There are many heat source configurations that occur in real life: A review
of the published work is available in Ref. 2. This work can be divided into
two categories: (1) the low–Rayleigh number regime and (2) the high–Rayleigh
number regime. Regime 1 is ruled by pure conduction, with a small contribution
due to natural convection [36]. Regime 2 is dominated by convection: The thermal
plume rising above the buried heat source is slender (i.e., of the boundary layer
type), as shown in the following analysis.
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Figure 12.13 Natural convection above a point heat source in a porous medium.

Imagine a slender plume above the point heat source of Fig. 12.13 and attach
a cylindrical system of coordinates (r, z) and (vr, vz) to the plume so that the z
axis passes through the heat source and points against gravity. The governing
equations for this θ-symmetric convection problem are

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0 (12.130)

vr = −K

µ

∂P

∂r
, vz = −K

µ

(
∂P

∂z
+ ρg

)
(12.131)

vr
∂T

∂r
+ vz

∂T

∂z
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2

]
(12.132)

Inside the slender plume, we can write r ∼ δT and z ∼ H � δT; therefore, after
eliminating the pressure terms, eqs. (12.131) and (12.132) reduce to

∂vz

∂r
= Kg β

ν

∂T

∂r
(12.133)
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vr
∂T

∂r
+ vz

∂T

∂z
= α

r

∂

∂r

(
r
∂T

∂r

)
(12.134)

The scale analysis of these two equations dictates that

vz ∼ Kgβ

ν
�T and vz ∼ αH

δ2T
(12.135)

where �T is the plume–ambient temperature difference, T− T∞ = function (z).
A third scaling law follows from the fact that energy released by the point source
q (W) is convected upward through the plume flow,

q ∼ ρvz δ
2
TcP �T (12.136)

Combining relations (12.135) and (12.136) yields the plume scales

vz ∼ α

H
Ra, δT ∼ H Ra−1/2, �T ∼ q

kH
(12.137)

where Ra is the Rayleigh number based on source strength, Ra= Kg βq/ανk.The
scale analysis above suggests the following dimensionless formulation:

Dimensionless variables:

z∗ = z

H
, r∗ = r

H
Ra1/2

vz∗ = vz

(α/H)Ra
, vr∗ = vr

(α/H)Ra1/2
, T∗ = T − T∞

q/kH

(12.138)

Equations:
∂vr∗
∂r∗

+ vr∗
r∗

+ ∂vz∗
∂z∗

= 0 (12.139a)

∂vz∗
∂r∗

= ∂T∗
∂r∗

(12.139b)

vr∗
∂T∗
∂r∗

+ vz∗
∂T∗
∂z∗

= ∂2T∗
∂z2∗

(12.139c)

Boundary conditions:

vr∗ = 0,
∂T∗
∂r∗

= 0 at r∗ = 0

vz∗ → 0, T∗ → 0 as r∗ → ∞ (12.140)

Integrating eq. (12.139b) subject to the r* → ∞ boundary conditions, we
find that vz∗ = T∗. Replacing T* by vz∗ in eqs. (12.139c) and (12.140), we
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obtain a problem identical to that of the laminar round jet discharging into a
constant-pressure reservoir [see the discussion under eq. (9.36)]. We introduce
the similarity variable η and streamfunction profile F(η) such that

η = r∗
z∗
, ψ = z∗F(η) (12.141)

where ψ is the streamfunction

vr∗ = − 1

r∗

∂ψ

∂z∗
, vz∗ = 1

r∗

∂ψ

∂r∗
(12.142)

Substituting eqs. (12.141) and (12.142) into eq. (12.139c) yields

d

dη

(
F′′ − F′

η
+ FF′

η

)
= 0 (12.143)

Integrating this result once and invoking the η → ∞ condition, we obtain

FF′ = F′ − ηF′′ (12.144)

The solution satisfying both eq. (12.144) and boundary conditions (12.140) is

F = (Cη)2

1 + (Cη/2)2
(12.145)

where constant C is determined from the energy conservation integral

q =
∫ 2π

0

∫ ∞

0
ρcPvz(T − T∞)r dr dθ (12.146)

We find that C = 1/(4π1/2) = 0.141; therefore, the solution is

T∗ = vz∗ = 2C2

z∗

1

1 + (Cη/2)2

vr∗ = C

z∗

Cη − 1
4 (Cη)3

[1 + (Cη/2)2]2
, ψ = 4z∗ ln

[
1 +

(
Cη

2

)2
]

(12.147)

Figure 12.13 shows the traces of theψ ,T* = constant surfaces in a θ = constant
cut through the point source. The T* = constant trace has the same shape as the
vertical velocity profile vz∗ , in accordance with the first of eqs. (12.147). Note
further that the flow and temperature field is presented in dimensionless form (in
the r*, z* domain). Whether or not the actual flow field is slender is determined
by the slenderness condition δT/H < O(1), which, from eq. (12.137), translates
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into Ra1/2 >O(1). Therefore, the low-Ra steady-state solution of Ref. 36 coupled
with the high-Ra solution presented as eqs. (12.147) and Fig. 12.13 covers the
entire Ra range for convection around a point heat source in a saturated porous
medium.

12.7 ENCLOSED POROUS MEDIA HEATED FROM THE SIDE

12.7.1 Four Heat Transfer Regimes

As in the study of natural convection in enclosed spaces filled with fluid
(Chapter 5), we begin with the time and length scales of the flow in a porous
layer heated from the side [37]. The system is shown in Fig. 12.14: A two-
dimensional rectangular space of height H and horizontal dimension L is filled
with a fluid-saturated porous medium of permeability K. In accordance with the
homogeneous porous medium model, the equations governing the conservation
of mass, momentum, and energy are

∂u

∂x
+ ∂v

∂y
= 0 (12.148)

u = −K

µ

∂P

∂x
, v = −K

µ

(
∂P

∂y
+ ρg

)
(12.149)

σ
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(12.150)

Figure 12.14 Enclosure filled with a porous medium and heated from the side.
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It is convenient to eliminate the pressureP between eqs. (12.149) and to introduce
the Boussinesq approximation ρ = ρ0[1 − β(T − T0)] in the body force term.
We obtain a single momentum conservation statement

∂u

∂y
− ∂v

∂x
= −Kgβ

ν

∂T

∂x
(12.151)

Initially, the porous layer is isothermal (T = 0) and the fluid is motionless
(u = v = 0). At the time t = 0, the vertical wall temperatures are instantly
changed to + �T/2 and –�T/2, respectively. We study the evolution of the flow
through the porous layer, subject to the boundary conditions

u = 0, T = �T/2 at x = 0

u = 0, T = −�T/2 at x = L (12.152)

v = 0,
∂T

∂y
= 0 at y = 0,H

These conditions account for the impermeability of the rectangular frame and
for the fact that the two horizontal walls are insulated.

Since the fluid is initially motionless, the vertical wall effect first propagates
into the porous space through pure conduction. Equation (12.150) dictates a
balance between thermal inertia and heat conduction in the layer δ(t),

σ
�T

t
∼ α

�T

δ2
(12.153)

Hence

δ ∼ (αt/σ)1/2 (12.154)

The growth of the δ layer gives rise to a horizontal temperature gradient of order
∂T/∂x ∼ �T/δ. This development makes the buoyancy term in the momentum
equation finite: The scales of the three terms in eq. (12.151) are

u

H
,

v

δ
,

Kgβ

ν

�T

δ
(12.155)

Noting that mass conservation requires u/δ ∼ v/H, we conclude that
(u/H)/(v/δ) ∼ (δ/H)2. Therefore, if the vertical layer is slender (δ < H), the
momentum equation dictates a balance between the second and third terms in
expression (12.155); the result of this balance is the vertical velocity scale in the
vicinity of each vertical wall,

v ∼ Kgβ

ν
�T (12.156)
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This scale is time independent. However, in view of the earlier result for δ(t) [eq.
(12.154)], the flow rate driven by the heated wall (vδ) increases in time as t1/2.

Once fluid motion is initiated, the energy equation (12.150) is ruled by three
different scales,

σ
�T

t
, v

�T

H
, α

�T

δ2

Inertia
t−1

Convection
t0

Conduction
t−1

(12.157)

Below each scale we see the evolution of each effect in time. Because conduction
from the wall will always be present, the convection effect eventually takes the
place of inertia in the energy balance. The time tf when the vertical layer becomes
convective is given by the balance σ�T/tf ∼ v �T/H, hence

tf ∼ σH

v
(12.158)

Beyond this point, the boundary layer thickness ceases to grow: its steady-state
scale is

δf ∼ H Ra−1/2
H (12.159)

where RaH is the Darcy-modified Rayleigh number based on height,

RaH = (Kg βH �T)/αν (12.160)

The necessary condition for the existence of distinct vertical boundary layers in
the steady state is δf < L; in other words,

L

H
Ra1/2H > 1 (12.161)

This condition is plotted on the H/L − RaH field of Fig. 12.15.
The flow scales reported as eqs. (12.156) and (12.159) can be used to predict

the existence of distinct horizontal layers along the horizontal adiabatic walls
(Fig. 12.14). The volumetric flow rate driven horizontally in counterflow is of
order vδf. This stream carries enthalpy between the two vertical walls at the rate

q′
convection
left → right
(Fig.12.14)

∼ vδf (ρcP)f �T (12.162)

The two branches of this horizontal counterflow experience heat transfer by
thermal diffusion at a rate

q′
conduction
top → bottom
(Fig.12.14)

∼ kL
�T

H
(12.163)
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Figure 12.15 Heat transfer regimes for natural convection in a porous layer heated from the
side. Compare with Fig. 5.3.

As in a poorly designed counterflow heat exchanger, one stream will travel the
entire length of the porous layer (L) without a significant change in temperature
when the vertical conduction rate (12.163) is negligible relative to the horizontal
convection rate (12.162),

kL
�T

H
< vδf (ρcP)f �T (12.164)

Therefore, the criterion for distinct horizontal layers is

H

L
Ra1/2H > 1 (12.165)

Figure 12.15 shows the four natural convection regimes possible in a porous
layer heated from the side. These regimes are analogous to regimes I–IV present
in fluid-filled cavities heated from the side, Fig. 5.4. Of interest is the net heat
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transfer rate q′ across the overall �T. The results of this section reveal the
following heat transfer rate scales:

(I) Pure conduction q′ ∼ (kH �T)/L

(II) Tall layers q′ �(kH �T)/L

(III) High-RaH convection q′ ∼ (kH �T)/δf

(IV) Shallow layers q′ �(kH �T)/δf

(12.166)

In the following section we focus on regimes III and IV, where the heat transfer
rate is dominated by convection.

12.7.2 Convection Results

Considerable analytical, numerical, and experimental work has been done to
estimate more accurately the overall heat transfer rate q′, or the overall Nusselt
number

Nu = q′

kH(Th − Tc)/L
(12.167)

where Th − Tc = �T is the side-to-side temperature difference. Unlike the
single-wall configurations of Section 12.6, in confined layers of thickness L the
Nusselt number is defined as the ratio (actual heat transfer rate)/(pure conduction
heat transfer rate). An analytical solution that covers smoothly the four heat
transfer regimes was developed by Bejan and Tien [38]:

Nu = K1 + 1

120
K3
1

(
RaH

H

L

)2

(12.168)

where the function K1(H/L, RaH) is obtained by eliminating δe (i.e., the ratio end
region thickness/H) from the system:

1

120
δe Ra

2
H K

3
1

(
H

L

)3

= 1 − K1 = 1

2
K1
H

L

(
1

δe
− δe

)
(12.169)

This result is displayed in Fig. 12.16, along with numerical results reported by
Hickox and Gartling [39]. The two asymptotes of this solution are

Nu ∼ 0.508
L

H
Ra1/2H as RaH → ∞ (12.170)

Nu ∼ 1 + 1

120

(
RaH

H

L

)2

as
H

L
→ 0 (12.171)
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Figure 12.16 Rate of heat transfer through a porous layer heated from the side. (From Ref. 38.)

The heat transfer in the convection-dominated regime III is representedwell by
eq. (12.170) or by alternative results reported specifically for the high–Rayleigh
number regime: Weber [40] obtained Nu = 0.577(L/H) Ra1/2H ; this formula
overestimates by roughly 14 percent experimental and numerical data from
three sources (see the first edition of this book, p. 398). A more refined theory
for regime III was proposed in Ref. 41, where the constant that appears in
Nu ∼ (L/H)Ra1/2H is replaced by a weak function of both H/L and RaH. For cal-
culations involving heat transfer dominated by convection, Fig. 12.16 is recom-
mended for shallow layers and eq. (12.170) for regime III, Ra−1/2

H <H/L<Ra1/2H .
Another model for heat transfer in the configuration of Fig. 12.14 is the case

where the heat flux q′′ is distributed uniformly along the two vertical sides of the
porous layer. In the high–Rayleigh number regime (regime III), the overall heat
transfer rate is given by [42]

Nu = 1

2

(
L

H

)4/5

Ra2/5∗H (12.172)
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where Ra∗H = KgβH2q′′/ανk. The overall Nusselt number is defined as in
eq. (12.167), where Th − Tc is now the height-averaged temperature difference
between the two sides of the rectangular cross section. The result (12.172)
holds in the high–Rayleigh number regime Ra−1/3

∗H < H/L < Ra1/3∗H . Convection
results for many other configurations of enclosed porous media can be found in
Refs. 2 and 3.

12.8 PENETRATIVE CONVECTION

A separate class of buoyancy-driven flows through porous media is defined by
the interaction of finite-size porous layers with neighboring heat reservoirs. This
can be modeled as a two-dimensional layer of size H× L, with three sides at one
temperature. The fourth side is permeable and in communication with a reservoir
(fluid, or porous, medium) of different temperature. We focus on two orientations
of this configuration, a shallow layer with lateral heating (Fig. 12.17a) and a
tall layer with heating from below or cooling from above (Fig. 12.17b). In both
cases, natural convection penetrates the porous medium over a length dictated
by the Rayleigh number alone and not by the geometric ratio H/L.

12.8.1 Lateral Penetration

To determine the scale of the lateral penetration length Lx, consider the governing
equations (12.148), (12.150), and (12.151):

Mass :
u

Lx
∼ v

H
(12.173)

Figure 12.17 (a) Lateral and (b) vertical penetration of natural convection in a porous space
heated from one end.
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Energy : u
�T

Lx
∼ α

�T

L2x
,α

�T

H2
(12.174)

Momentum :
u

H
,

v

Lx
∼ kgβ

ν

�T

Lx
(12.175)

Above, we have three equations for the three unknown scales u, v, and Lx.
Assuming that the penetration is such that Lx > H, we obtain

Lx ∼ H Ra1/2H (12.176)

The convective heat transport between the isothermal porous layer and the heat
reservoir positioned laterally scales as

q′ ∼ (ρcP)f Hu �T ∼ k �T Ra1/2H (12.177)

This result shows that the actual length of the porous layer (L) does not influence
the heat transfer rate; q′ and Lx are set by the Rayleigh number RaH.

The flow and temperature patterns associated with the lateral penetration
phenomenon have been determined analytically as a similarity solution [43]. The
penetration length and heat transfer rate predicted by the similarity solution are
Lx = 0.158H Ra1/2H and q′/(k�T) = 0.319Ra1/2H . Reference 43 also documents
the effect of anisotropy in the medium and the effect of temperature variation
along the horizontal walls of the porous layer.

12.8.2 Vertical Penetration

Consider the two-dimensional layer of Fig. 12.17b, where the bottom wall is
permeable and in communication with a different reservoir. We learn in the
next section that in porous layers heated from below (or cooled from above),
fluid motion is possible only above a critical Rayleigh number. In Fig. 12.17b,
however, fluid motion will set in as soon as a �T is imposed between the bottom
surface and vertical walls. Fluid motion will be present because no matter how
small the �T, the porous medium experiences a finite-temperature gradient of
order �T/L in the horizontal direction near the heated wall [see eq. (12.151)].

Let Ly be the distance of vertical penetration. From eqs. (12.148), (12.150),
and (12.151), we have the following balances:

Mass :
u

L
∼ v

Ly
(12.178)

Energy : u
�T

L
∼ α

�T

L2
,α

�T

L2y
(12.179)

Momentum :
u

Ly
,
v

L
∼ kgβ

ν

�T

L
(12.180)
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Assuming vertical penetration over a distance Ly greater than L, we find

Ly ∼ L RaL (12.181)

where RaL is the Rayleigh number based on L, RaL = (KgβL�T)/αν. The net
heat transfer rate through the bottom wall of the system scales as

q′
y ∼ (ρcP)f Lv �T ∼ k �T RaL (12.182)

Both Ly and q
′
y are proportional to RaL, unlike the corresponding quantities in

the case of lateral penetration, which are proportional to Ra1/2H . Once again, the
imposed temperature difference (�T) and the transversal dimension of the layer
(L) determine the longitudinal extent (Ly) of the penetrative flow. The physical
height of the porous layer (H) does not influence the phenomenon as long as it is
greater than Ly.

The phenomenon of partial vertical penetration was also studied in the
cylindrical geometry [44]. The vertical penetration length and net heat trans-
fer rate are Ly/r0 = 0.0847Rar0 and q′

y/(r0k�T) = 0.255Rar0 , where Rar0 =
(Kgβr0 �T)/αν is the Rayleigh number based on the dimension perpendicular
to the penetrative flow (the cylindrical well radius, r0).

12.9 ENCLOSED POROUS MEDIA HEATED FROM BELOW

12.9.1 Onset of Convection

We now consider the Bénard-type flow, that is, the cellular convection that may
take place through a porous layer heated from below and cooled from above,
Fig. 12.18. We look at an infinite horizontal layer of thickness H with a warm
bottom (T0) and a cold top (T0 − �T). The steady-state version of the transient
equations (12.148), (12.150), and (12.151) admits the no-flow (pure conduction)
solution

ub = vb = 0

Tb = T0 − �T
y

H
(12.183)

Figure 12.18 Two-dimensional porous layer heated from below.
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The question is whether this no-flow solution will prevail forever, regard-
less of how high a �T we impose. We answer this question by running a
stability experiment of the type described in Chapter 6 in connection with the
laminar–turbulent flow transition. The stability experiment consists of disturbing
the base solution (12.183) and observing under what conditions the imposed
disturbance grows in amplitude. Thus, we substitute

T(x, y, t)
u(x, y, t)
v(x, y, t)︸ ︷︷ ︸

Transient
flow

=
=
=

Tb(y)
0+
0+︸ ︷︷ ︸

Base
solution

+ T ′ (x, y, t)
u′ (x, y, t)
v′ (x, y, t)︸ ︷︷ ︸
Disturbance

(12.184)

into the transient governing equations. We obtain

∂u′

∂x
+ ∂v′

∂y
= 0 (12.185)

σ
∂T ′

∂t
+ u′ ∂T

′

∂x
+ v′

(
dTb
dy

+ ∂T ′

∂y

)
= α

(
∂2T ′

∂x2
+ ∂2T ′

∂y2

)
(12.186)

∂u′

∂y
− ∂v′

∂x
= −Kgβ

ν

∂T ′

∂x
(12.187)

In the energy equation (12.186), we eliminate the nonlinear terms u′∂T ′/∂x
and v′∂T ′/∂y based on the assumption that in the very beginning, the flow and
temperature disturbances are negligibly small. Thus, we retain only the first-order
terms in primed (disturbance) quantities,

σ
∂T ′

∂t
− �T

H
v′ = α

(
∂2T ′

∂x2
+ ∂2T ′

∂y2

)
(12.188)

To nondimensionalize the problem we introduce the variables

x̂ = x/H, ŷ = y/H

û = u′

α/H
, v̂ = v′

α/H
(12.189)

T̂ = T ′/�T , t̂ = αt/H2σ

The mass, momentum, and energy equations become

∂ û

∂ x̂
+ ∂v̂

∂ ŷ
= 0 (12.190)

∂ û

∂ ŷ
− ∂v̂

∂ x̂
= −RaH

∂T̂

∂ x̂
(12.191)
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∂T̂

∂ t̂
− v̂ = ∂2T̂

∂ x̂2
+ ∂2T̂

∂ ŷ2
(12.192)

The horizontal velocity û is eliminated by cross-differentiating between
eqs. (12.190) and (12.191), leading to

∂2v̂

∂ x̂2
+ ∂2v̂

∂ ŷ2
= RaH

∂2T̂

∂ x̂2
(12.193)

Equations (12.192) and (12.193) must be solved subject to the following
isothermal impermeable wall conditions:

v̂ = T̂ = 0 at ŷ = 0, 1 (12.194)

The initial condition to this transient problem is arbitrary; however, inspired
by visual observations of Bénard cells, i.e., based on empiricism, it makes sense
to assume sinusoidal variation in x̂ and exponential variation in t̂,

T̂ = θ(ŷ)ept̂+iαx̂, v̂ = V(ŷ)ept̂+iαx̂ (12.195)

This assumption transforms the (T̂ , v̂) problem into one of determining the
ŷ-profiles θ and V subject to

Momentum : −α2V + V ′′ = −α2 RaHθ (12.196)

Energy : pθ − V = −α2θ + θ ′′ (12.197)

Boundaryconditions : θ = V = 0 at ŷ = 0, 1 (12.198)

Finally, we zero in on the condition of neutral stability (p = 0), and eliminating
V(y) between eqs. (12.196) and (12.197), we obtain

θ IV − 2α2θ ′′ + α4θ = α2 RaH θ (12.199)

This equation admits solutions of the form

θ = C sin(nπŷ) (12.200)

whereC is an arbitrary constant and n is an integer so that the boundary conditions
(12.198) are satisfied. Combining eqs. (12.200) and (12.199), we learn that the
assumed flow is neutrally stable when

RaH = (n2π2 + α2)2

α2
(12.201)
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Figure 12.19 Rayleigh number for neutrally stable cellular convection in a porous layer heated
from below.

This result says that the assumed disturbance (n,α) is likely to exist, neither
growing nor decaying, if the Rayleigh number is as high as in eq. (12.201).
Figure 12.19 shows the dependence of RaH on both α and n. As RaH increases
above zero, the first chance of convective heat transfer materializes at n = 1 and
∂RaH/∂α = 0, that is, when

RaH = 4π2 = 39.5 (n = 1, α = π) (12.202)

As shown in Fig. 12.19, the disturbance (n = 1, α = π) represents rolls with
square cross sections, that is, ‘‘square’’ rolls whose horizontal dimension is equal
to the porous layer thickness H. In place of eq. (12.202), constructal theory and
the intersection-of-asymptotes method [28,45,46] predict much more directly
square rolls with the critical Rayleigh number RaH = 12π = 37.7.

Result (12.202) implies that only for Rayleigh numbers less than approxi-
mately 40 is the heat transfer rate accurately predicted by the pure conduction
estimate. For Rayleigh numbers much larger than 40, we are forced to rely on
experimental and numerical measurements. Figure 12.20 shows Cheng’s [47]
compilation of time-average Nusselt number measurements reported by nine
independent investigators (the references are available in previous editions of
this book). Figure 12.20 is perhaps the best tool to use in engineering calculations;
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Figure 12.20 Heat transfer measurements in a porous layer heated from below. (Reprinted
with permission from P. Cheng, Adv. Heat Transfer, Vol. 14, pp. 1–105, 1978. Copyright 1978
Academic Press).

it shows that above RaH ∼ 40, the conduction-referenced Nusselt number

Nu = q′′

(k �T)/H
(12.203)

is a strong function of the Rayleigh number and that there is considerable scatter
in the data.

12.9.2 Darcy Flow

The slope of the log Nu–log RaH curve for RaH > 40 can be predicted on the basis
of a pure scaling argument. Think of a convection-dominated regime made up of
rising warm plumes coexisting with descending cold plumes. Let L (unknown)
be the thickness of each plume, that is, the horizontal extent of an elementary
cell (Fig. 12.21). Let δH be the thermal boundary layer thickness across which
the bottom–top �T takes place. Note that in the convection-dominated regime,
the scale of ∂T/∂y is not �T/H; it is �T/δH, with δH unknown. The cellular flow
model contains two building blocks:

1. Core region: a vertical counterflow of length H and thickness L
2. End regions: two identical boundary layers of length L and thickness δH
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Figure 12.21 Cellular convection model for determining the scales of the convection regime in
a porous layer heated from below.

Invoking the conservation principles in the core region, we write

Momentumbalance (Darcy) :
v

L
∼ Kgβ

ν

�T

L
(12.204)

Energybalance : v
�T

H
∼ α

�T

L2
(12.205)

Results : L ∼ H Ra−1/2
H (12.206)

v ∼ (Kgβ �T)/ν (12.207)

A relationship for δH is obtained by stating that the enthalpy flow vertically
through the core must match the heat conducted vertically through the end
region, ρvLcP �T ∼ (kL �T)/δH, or

δH ∼ H Ra−1
H (12.208)

Therefore, in the convection-dominated regime with Darcy flow, the Nusselt
number scales as

Nu = actual heat transfer

pure conductoin
∼ (kL �T)/δH

(kL �T)/H
∼ H

δH
∼ RaH (12.209)

This means that in Fig. 12.20, the initial slope of the log Nu–log RaH curve in
the convective domain must be 1; this result is confirmed by the bulk of the heat
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transfer measurements, and an adequate correlation is

Nu =
{
1 if RaH < 40
1
40 RaH if RaH > 40 (Darcy)

(12.210)

12.9.3 Forchheimer Flow

Wang and Bejan [48] showed that the deviation of experimental data from
eq. (12.210) in Fig. 12.20 is due to inertial effects (i.e., the transition from Darcy
flow to Forchheimer flow). They repeated the analysis based on the cellular model
of Fig. 12.21 by using a momentum balance between inertia and buoyancy:

Momentum balance (Forchheimer) :
Kbv2

νL
∼ Kgβ

ν

�T

L
(12.211)

The origin of the inertia scale on the left side of eq. (12.211) can be seen by
comparing it with the Darcy scale of eq. (12.204) and with the two terms on the
right side of eq. (12.15). Combining eqs. (12.211) and (12.205) yields

L ∼ H

(
α2b

gβ �T

)1/4

(12.212)

v ∼
(
gβ �T

b

)1/2

(12.213)

The continuity of energy from the core counterflow to the horizontal boundary
layers, ρvLcP �T ∼ (kL�T)/δH, requires

δH ∼ α

(
b

gβ �T

)1/2

(12.214)

The overall Nusselt number in Forchheimer flow must scale as (Fig. 12.22)

Nu ∼ H

δH
∼ (RaH Prp)

1/2 (12.215)

where Prp is the new dimensionless group called the porous medium Prandtl
number [49,50],

Prp = ν

α

H

bK
(12.216)

The transition from Darcy flow to Forchheimer flow occurs at the intersection of
eqs. (12.209) and (12.215),

RaH ∼ Prp (12.217)
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Figure 12.22 (a) Asymptotes of the function Nu(RaH, Prp) suggested by scale analysis; (b) heat
transfer measurements in a horizontal layer heated from below. (From Ref. 48.)

from which we deduce

Nu

Prp
∼ 1

40

RaH
Prp

, 40 < RaH < Prp (12.218)

Nu

Prp
∼

(
RaH
Prp

)1/2

, RaH > Prp (12.219)
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An important feature of eqs. (12.218) and (12.219) is that they are both of the
form Nu/Prp = f(RaH/Prp). This motivates the plotting of Nu/Prp against RaH/Prp
to produce the graph shown in Fig. 12.22b. The agreement is surprisingly good
with the notable exception of Schneider’s [51] data for Prp = 12 in the top-right
corner of the figure. A line through this subset of data has the correct slope but
is clearly too high, and possibly the deduced Prp value of 12 is not correct [2].
With this subset ignored, Wang and Bejan [48] obtained the correlation

Nu =
{(

Ra

40

)n

+ [c(Ra Prp)
1/2]n

}1/n

(12.220)

where n and c are two empirical constants, n = −1.65 and c = 1896.

12.10 MULTIPLE FLOW SCALES DISTRIBUTED NONUNIFORMLY

In this section we bring together several of the main threads followed in this
book: Convection in fluids vs. convection in porous media, constructal design of
flow architecture, and the design of multiple scales and optimized complexity.
We find that in the pursuit of greater heat transfer density, the design acquires
multiple length scales that are distributed nonuniformly through the working
volume. The flow and its length scales are intelligently maldistributed [3,50].

Smaller and smaller flow passages are placed in all the tiny spaces that can
be forced to perform better, to contribute more to the global enterprise. As in
the alveolus of the lung, when flow passages are small enough, the heat transfer
mechanism of convection is replaced by conduction (diffusion) across the fluid.
In the direction of decreasing scales, the flow structure becomes a designed
porous medium [3].

The emergence of flow structures with multiple length scales that are dis-
tributed nonuniformly is well illustrated in the development of tree-shaped
convective flows (cf. Section 3.9). Tree-shaped structures are unlike the classical
structures of heat transfer and heat exchanger design. The classical structures
have very small numbers of length scales (usually one or two), which are
distributed uniformly through the flow system (e.g., parallel plates, bundles of
cylinders in cross flow).

There we illustrate the development of multiscale structures for maximal heat
transfer density by focusing on a constructal design: the existence of spacings in
any convective heat transfer structure (cf. Sections 3.6 and 4.12). In Fig. 3.17, the
optimal parallel-plate spacing has a single value. This length scale is distributed
uniformly through the flow volume. Is the stack of Fig. 3.17 the best way to pack
heat transfer into a fixed volume?

Bejan and Fautrelle [52] showed that structures such as Fig. 3.17 can be
improved if more length scales (D0, D1, D2, . . . ) are available. Improvement
comes from more freedom. The technique consists of placing more heat transfer
in regions of the volume HL0 where the boundary layers are thinner (Fig. 12.23).
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Figure 12.23 Optimal package of parallel plates with one spacing. (From Ref. 52.)

Those regions are situated immediately downstream of the entrance plane, x= 0.
Regions that do not work in a heat transfer sense must either be put to work or
eliminated. The key observation is that the wedges of flow contained between
the tips of opposing boundary layers are not involved in transferring heat. They
can be involved if heat-generating blades of shorter lengths (L1) are installed on
their planes of symmetry. This new design is shown in Fig. 12.24.

Each new L1 blade is coated by Blasius boundary layers with the thickness
δ(x) ∼= 5x(Ux/ν)−1/2 [cf. eq. (2.85)]. Because δ increases as x1/2, the boundary
layers of the L1 blade merge with the boundary layers of the L0 blades at a
downstream position that is approximately equal to L0/4. The approximation
is due to the assumption that the presence of the L1 boundary layers does not
affect significantly the downstream development (x > L0/4) of the L0 boundary
layers. By choosing L1 such that the boundary layers that coat the L1 blade merge
with surrounding boundary layers at the downstream end of the L1 blade, we
invoke one more time the packing principle of Sections 3.6 and 4.12. We are
being consistent as constructal designers, and because of this, every structure
with merging boundary layers will be constructal and natural, no matter how
complex.
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Figure 12.24 Optimal multiscale package of parallel plates. (From Ref. 52.)

The wedges of isothermal fluid (T0) remaining between adjacent L0 and L1
blades can be populated with a new generation of even shorter blades, L2 ∼= L1/4.
Two such blades are shown in the upper-left corner of Fig. 12.24. The length
scales become smaller (L0, L1, L2), but the shape of the boundary layer region
is the same for all the blades, because the blades are all swept by the same flow
(U). The merging and expiring boundary layers are arranged according to the
formulas

Li ∼= 1
4 Li−1, Di

∼= 1
2 Di−1 (i = 1, 2, ...,m) (12.221)

where we shall see that m is finite, not infinite. In other words, as in all the
constructal tree structures, the image generated by the algorithm (12.221) is not a
fractal. It is a Euclidean image (cf. Ref. 53, p. 765). The sequence of decreasing
length scales is finite, and the smallest size (Dm, Lm) is very important and
known, as we will see in Section 12.10.3.
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To complete the description of the discovery of the multiscale flow structure,
we note that the number of blades of a certain size increases as the blade size
decreases. Let n0 = H/D0 be the number of L0 blades in the uniform structure
of Fig. 12.23, where D0

∼= 2δ(L0) ∼= 10(νL0/U)
1/2. The number of L1 blades is

n1 = n0, because there are as many L1 blades as there are D0 spacings. At scales
smaller than L1, the number of blades of one size doubles with every step,

ni = 2ni−1 (i = 2, 3, ...,m) (12.222)

Two conflicting effects emerge as the structure grows in the sequence started
in Fig. 12.24. One is attractive: The total surface of temperature Tw installed
in the HL0 volume increases. The other is detrimental: The flow resistance
increases, the flow rate driven by the fixed �P decreases, and so does the heat
transfer rate associated with a single boundary layer. The important question is
how the volume is being used: What happens to the heat transfer rate density as
complexity increases?

12.10.1 Heat Transfer

The total heat transfer rate from the Tw surfaces to the T0 fluid can be estimated
by summing up the contributions made by the individual blades. The heat transfer
rate through one side of the L0 blade is equal in an order of magnitude sense to
the heat transfer rate associated with a laminar boundary layer [cf. eq. (2.110)],
q′′
0L0/(k�T) ∼= 0.664(UL0/ν)

1/2. Here q′′
0 (W/m2) is the L0-averaged heat flux,

�T = Tw − T0, and k is the fluid thermal conductivity. There are 2n0 such
boundary layers, and their combined contribution to the total heat transfer rate
of the package of Fig. 12.24 is q′

0 = 2n0q
′′
0L0

∼= 1.328k �Tn0(UL0/ν)
1/2.

The same calculation can be performed for any group of blades of one size,
Li. Their total heat transfer rate q

′
i (W/m) is given by a formula similar to the q′

0
formula above, in which n0 and L0 are replaced by ni and Li. The heat transfer
rate of all the blades is the sum

q′ =
m∑
i=0

q′
i
∼= 1.328k �T n0

(
UL0
ν

)1/2

S (12.223)

where S is the dimensionless parameter that accounts for geometry,

S = 1 + n1
n0

(
L1
L0

)1/2

+ n2
n0

(
L2
L0

)1/2

+ · · · + nm
n0

(
Lm
L0

)1/2

= 1 + m

2
(12.224)

This analysis confirms the anticipated trend: The total heat transfer rate increases
monotonically as the complexity of the structure (m) increases.
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12.10.2 Fluid Friction

It is necessary to evaluate the flow resistance of the multiscale structure, because
the velocityU that appears in eq. (12.223) is not specified. The pressure difference
�P is specified, and it is related to all the friction forces felt by the blades. We
estimate the friction force along one face of one blade by using the solution
for the laminar boundary layer [cf. eq. (2.92′)], namely, τ i

∼= CfiρU
2/2 and

Cfi = 1.328/(UL0/ν)
1/2. Here τ i and Cfi are the averaged shear stress and skin

friction coefficient, respectively. The total force felt by the blades of size Li is
Fi = 2niτ iLi ∼= 1.328ρ(νLi)

1/2niU
3/2. The total force for the multiscale package is

F =
m∑
i=0

Fi ∼= 1.328 ρ(νL0)
1/2n0U

3/2S (12.225)

This force is balanced by the longitudinal force imposed on the control volume,
�P H = F, which combined with eq. (12.225) and D0

∼= 10(νL0/U)
1/2 yields the

order of magnitude of the average velocity of the fluid that permeates through
the structure:

U ∼= 2.7

(
�P

ρS

)1/2

(12.226)

This result confirms the second anticipated trend: The flow slows down as the
complexity of the structure (S or m) increases.

12.10.3 Heat Transfer Rate Density: The Smallest Scale
for Convection

Putting together the results of the heat transfer and fluid flow analyses, we
find how the structure performs globally, when its constraints are specified
(�P,�T, H, L0). Eliminating U between eqs. (12.223) and (12.226) yields the
dimensionless global thermal conductance,

q′

k�T
∼= 0.36

H

L0
Be1/2S1/2 (12.227)

where the pressure drop number is based on �P and L0: namely,
Be = (�PL20)/µα. In this expression, µ and α are the viscosity and thermal
diffusivity of the fluid. The alternative to using the global conductance is to use
the heat transfer rate density, q′′′ = q′/HL0. Both quantities increase with the
applied pressure difference (Be) and the complexity of the flow structure (S).

In conclusion, despite the conflicting effects of S in eqs. (12.223) and (12.226),
the effect of increasing S is beneficial from the point of view of packing more
heat transfer in a given volume. Yet, we will see that the complexity must be
finite. The constructal design of complexity should not be confused with the
maximization of complexity.



592 12 CONVECTION IN POROUS MEDIA

How large can the factor S be? The answer follows from the observation that
the geometry of Fig. 12.24 is valid when boundary layers exist (i.e., when they
are distinct). To be distinct, boundary layers must be slender. Figure 12.24 makes
it clear that boundary layers are less slender when their longitudinal scales (Li)
are shorter. The shortest blade length Lm below which the boundary layer heat
transfer mechanism breaks down is Lm ∼ Dm. At this scale, convection along
the channel is as effective as diffusion across the channel. The channel becomes
a pore. In view of eqs. (12.221), Lm ∼ Dm means that L0 ∼ 2mD0. The analysis
concludes with the smallest scale, which occurs at the level m given by [52]:
2m(1 + m/2)1/4 ∼ 0.17 Be1/4. This establishes m as a slowly varying monotonic
function of Be1/4, such that the complete effect of Be on the global heat transfer
performance is

q′

k �T
∼= 0.36

H

L0
Be1/2

(
1 + 1

2
m

)1/2

(12.228)

In conclusion, the required complexity (m) increases monotonically with the
imposed pressure difference (Be). More flow means more length scales and
smaller smallest scales. The structure becomes not only more complex but also
finer. The monotonic effect of m is accompanied by diminishing returns: Each
new length scale (m) contributes to global performance less than the preceding
length scale (m − 1).

Forced convection was used in Ref. 52 only for illustration (i.e., as a flow
mechanism on which to build the multiscale structure). A completely analogous
multiscale structure can be deduced for laminar natural convection. This is
recommended by the complete analogy that exists between spacings in forced
convection and natural convection [30].

12.11 NATURAL POROUS MEDIA: ALTERNATING TREES

Natural porous flow structures exhibit multiple scales and nonuniform distribu-
tion of length scales through the available space. Can such heterogeneous flow
structures be derived from the constructal law of enhancing flow access? To
answer this question, we explore the properties and performance of the dendritic
flow architecture proposed in Ref. 54 and Fig. 12.25. The vision is to connect two
parallel lines (or two parallel planes) with trees that alternate with upside-down

d

Figure 12.25 Tree architecture for connecting the points of one line with the points of another
line [54].
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trees. The resulting dendritic pattern connects the bottom boundary of the flow
domain with the top boundary.

The flow access between the points of one line and the points of a parallel
line can be viewed as a sequence of point-to-line flow access opportunities. The
building blockwith which Fig. 12.25 is constructed was proposed in Lorente et al.
[55], where it was based on optimally shaped rectangular area elements, which
led to 90◦ angles between tributaries and to collinear ducts on the extremities of
the V-shaped tree structure.

Consider the building blocks sketched in Fig. 12.26 and explore several ways
in which to maximize line-to-line flow access. We assume a large number of
bifurcation levels (i = 1, 2, . . . , n). The tube lengths decrease by a factor of 1

2 ,
from the largest (L0) to L1 = L0/2, L2 = L1/2, etc. The smallest length scale is
the smallest tube length,

Ln = 2−nL0 (12.229)

or the distance between the two ends of two neighboring Ln tubes,

d = 2Ln sinα (12.230)

In this analysis [29], α is the half angle between the smallest branches,
which according to the preceding discussion [55] is equal to 45◦. We assume
Hagen–Poiseuille flow in every tube. The pressure drop along one tube of length
Li and diameter Di is

�Pi = ṁi
8

π
Po ν

Li
D4
i

(12.231)

where Po is the Poiseuille constant (e.g., Po= 16 for round tubes), which appears
in the formula for the friction factor (Table 3.2),

fi = Po

ReDi
(12.232)

y

x

m

Figure 12.26 One of the point-to-line trees of Fig. 12.25. (From Ref. 54.)
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and ReDi = UiDi/ν with Ui = ṁi/(ρ πD2
i /4). Mass conservation at every

junction requires that ṁi = 2ṁi+1, where it is again assumed that the tubes are
sufficiently slender so that the asymmetry of the Y junction does not affect the
splitting of ṁi into two equal streams ṁi+1. After using the ratios for diameters,
lengths, and mass flow rates indicated above, the total pressure drop from the
open end of the L0 tube to the open ends of the Ln tubes becomes

�P =
n∑
i=1

�Pi = ṁ0
8

π
ν Po

L0
D4
0

σ1 (12.233)

where σ1 = 1 + 2−2/3 + · · · + 2−2n/3 = [1 − (2−2/3)n+1]/(1 − 2−2/3). The total
tube volume occupied by the tree flow is

V = π

4
(D2

0L0 + 2D2
1L1 + · · · + 2nD2

nLn) = π

4
D2
0 L0 σ1 (12.234)

The largest length scale (L0) is related to the vertical dimension of the tree (y) by

y = (L0 + L1 + · · · + Ln) cosα = L0 σ2 cosα (12.235)

where σ 2 = 2 [1 − 2−(n+1)]. The horizontal dimension (x) of the area occupied
by the tree projection is

x = 2nd = 2L0 sinα = 2

σ2
y tanα (12.236)

where 2n is the number of Ln tubes that reach the upper end of the construct.
Eliminating L0 and D0 between eqs. (12.233) − (12.235) we obtain

�P = ṁ0
π

2
Po

ν

V2

(
σ1y

σ2 cosα

)3

(12.237)

We question how effective the tree structure of Fig. 12.26 is relative to a
simpler reference architecture: an array of N equidistant parallel tubes each of
length y and diameter D. This classical structure carries the same total flow
rate ṁ0 in the same total tube volume [V = N (π/4) D2y] and over the same
area xy/2. The structure has one degree of freedom, the tube diameter D, or the
number of parallel tubes,

N = 4V

πD2y
(12.238)

The pressure drop along this structure (�Pref) is the same as the pressure drop
along a single tube, cf. eq. (12.231), through which the flow rate now is ṁ0/N,

�Pref = ṁ0

N

8

π
Po ν

y

D4
(12.239)
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Eliminating D by using eq. (12.238), we obtain

�Pref = ṁ0
π

2
Po

ν

V2
N y3 (12.240)

The tree-shaped structure of Fig. 12.26 has a smaller flow resistance than the
parallel channels when �P < �Pref or, using eqs. (12.237) and (12.240), when

N >

(
σ1

σ2 cosα

)3

(12.241)

The right side of this inequality is a number on the order of 1. In conclusion,
as the reference structure becomes finer (i.e., as N increases), the tree-shaped
design of Fig. 12.26. becomes more attractive.

This conclusion can be read as a statement of howfine the tree structuremust be
such that it is preferable to the reference design. For a more practical comparison,
assume that the smallest dimension (d) is the same in both architectures, that is,
the d spacing of Fig. 12.26 is the same as the spacing between parallel tubes.
This means that the number of parallel channels that occupy the area y× (x/2) is
N = 2n/2, and when α = 45◦, the inequality (12.241) becomes

�P

�Pref

∼= 14

2n
< 1 (12.242)

We conclude that when the number of branching levels is 4 or larger, the
tree-shaped architecture offers greater access to the flow that permeates through
the porous structure of thickness y. The superiority of the tree design increases
fast as n increases: When n = 7, the ratio �P/�Pref is as low as 1

10 .
In closing, the flow architecture uncovered in this section is qualitatively the

same as that of natural porous materials, for example, the soil of the hill slope in
a river drainage basin, where two scales dominate: fine porous soil with seepage
and larger pores (‘‘pipes’’) embedded in the fine structure. Very promising are the
similarities that emerge between natural porous structures and the ones derived
from the constructal law. They shed light on the natural process that generates
multiple scales and heterogeneity in natural flow systems such as hill slope
drainage and living tissues. The fact that natural flow structures (the champions
of flow perfection) have features similar to those discovered in constructal design
lends confidence in pursuit of better design with the constructal law [29,56].
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PROBLEMS

12.1. Derive the two-dimensional mass conservation equation (12.7) by invok-
ing the instantaneous conservation of mass in the �x �y porous element
of Fig. 12.1. [Hint: Start with eq. (1.1).]

12.2. The unidirectional flow through a porous medium can be modeled as the
flow through a bundle of capillary tubes of diameter 2r0, as shown in
Fig. 12.2. Assume that the density of such tubes per unit frontal area is
N/A (tubes/m2). Assume further that the flow through each tube can be
modeled Hagen–Poiseuille (Chapter 3). Demonstrate that the Darcy law
(12.9) can be derived analytically and that the effective permeability K
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of the capillary tube bundle porous medium is

K = πr40
8

N

A

12.3. Another way of deriving the proportionality between mean velocity
and pressure gradient, the Darcy law (12.9), is to employ the capillary
fissure model of Fig. 12.2. Assume the existence of parallel cracks
(fissures) separated by a distance a; the thickness of each crack is
b = constant. Assuming that in each crack the flow can be modeled as
Hagen–Poiseuille through a parallel-plates channel, derive eq. (12.9) and
show that the effective permeability of the medium is

K = b3

(12)(a+ b)

12.4. Model the porous column of Fig. 12.2 as a swarm of spherical particles
of diameter d; the packing is such that the number of spheres per unit
volume is Nvol (particles/m

3), and the number of spheres per unit frontal
area is NA (particles/m

2). For simplicity, assume that the fluid velocity up
is uniform through the pores (void spaces) left between the NA particles
on the frontal area. If upd/ν is of order O(1) or less, the drag force F1
exerted by the flow on each particle is given by Stokes’ solution

F1/(πd
2/4)

1
2ρu

2
p

= CD = 24

upd/ν

where CD is the drag coefficient. Summing up these forces over the Nvol
particles, derive the Darcy law (12.9) and the porosity function φ (d/L)
and show that for this model the permeability is [57]

K = d2φ

18(1 − φ)

12.5. Derive the friction factor equation (12.14) from Forchheimer’s modifica-
tion of the Darcy law, eq. (12.15).

12.6. Model the elementary pore flow of Fig. 12.3 as Hagen–Poiseuille
flow through a cylinder of radius r0 and length �x. Recalling that the
volumetric dissipation rate anywhere in the fluid is (Chapter 1)

µ� = µ

(
∂u

∂r

)2

demonstrate that eq. (12.27) is correct. Repeat this proof by modeling the
pore flow as Hagen–Poiseuille through a fissure (parallel-plates channel)
of thickness b.
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12.7. Derive the local entropy generation rate formula (12.39) for a homoge-
neous porousmedium. Start by applying eq. (1.47) to the one-dimensional
convection model of Fig. 12.3; write eq. (1.47) for the solid part and the
fluid part separately. Integrate each S′′′

gen expression over their respective
volumes, (A − Ap) �x and Ap �x, and then average the sum of the two
entropy generation integrals over the total volume A �x. To obtain eqs.
(12.38) and (12.39), make use of the appropriate mass and energy con-
servation statements and the canonical relation among entropy, enthalpy,
and internal energy.

12.8. In the one-dimensional porous medium flow of Fig. 12.2a, top, the
following scales are known: x∼ L, ∂T/∂x∼ �T/L, and u∼U. In addition,
the transport properties (k, K, µ) are known. Based on this information, it
is found that the viscous dissipation term may be neglected in the energy
equation (12.33); in other words,

k
�T

L2
>

µU2

K

Show that the scaling conclusion above does not imply that the viscous
contribution to irreversibility can be neglected in the S′′′

gen formula (12.39).

12.9. Develop the heat transfer results for uniform porous medium fluid
flow along an isothermal wall [eqs. (12.54) and (12.55)]. Derive first
the similarity form of the energy equation [eq. (12.50)] and integrate
this equation, keeping in mind the error function notation reviewed in
Appendix E.

12.10. Determine numerically the local heat transfer coefficient for uniform
seepage flow parallel to a wall with uniform heat flux. Define the new
similarity temperature profile θq′′(η) by writing

T(x, y) − T∞ = q′′/k
(−dθq′′/dη)η=0

(
αx

U∞

)1/2

θq′′(η)

where η is given by eq. (12.48). Show that the similarity energy equation
is the same as eq. (12.60) with θq′′ in place of τ . Solve this equation
numerically subject to θq′′ = 1 at η = 0 and θq′′ = θ ′

q′′ = 0 as η → ∞.
Divide the η domain into equal intervals of size �η. At each level
ηi = i �η, approximate the θq′′ function and its derivatives by finite
differences. Substituting these finite-difference approximations into the
energy equation will yield a recurrence formula for calculating θq′′ at
location i based on the θq′′ values at the preceding two locations (i − 1,
i − 2). Determine the θq′′(η) profile by marching from η = 0 to a
sufficiently large η; this can be done by guessing the value of (dθ /dη)η = 0
and ‘‘shooting’’ to satisfy the outer boundary conditions θq′′ = θ ′

q′′ = 0
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at as large a value of η as possible. Compare your result with the results
summarized Table P12.10. Note that the accuracy of the numerical
integration depends on the value chosen for �η.

Table P12.10

Step Size
�η

(−dθq′′ /dη)η = 0

or Nux Pe
−1 / 2
x

Value of η where
θq′′ = θ ′

q′′ � 0

0.1 0.898 5.5
0.05 0.892 5.25
0.01 0.887 4.94
0.005 0.886 4.68
0.001 0.8863 5.722

12.11. Consider a fluid-saturated porous medium with u = Cxn near a solid
impermeable wall of temperature T0 = T∞ + Axλ. The temperature T∞
is the porous medium temperature sufficiently far away from the wall,
outside the thermal boundary layer. Referring to eqs. (12.40)–(12.42),
prove that a similarity temperature profile exists if n = λ. Derive the
similarity form of the boundary layer energy equation (12.42), and show
that this form matches eq. (12.50) if n= 0 (i.e., if the wall is isothermal).

12.12. Develop an integral solution for the natural boundary layer along the
vertical isothermal wall of Fig. 12.7. Assume the vertical velocity profile

v = v0 exp

(
− x

δT

)

where both v0 and δT are unknown functions of altitude (y). Determine
the temperature profile based on the assumption above and the boundary
layer approximation of the Darcy law [eq. (12.82)]. Integrate the energy
equation (12.83) across the boundary layer and determine v0(y) and
δT(y). Verify that these results agree with the results of the scale analysis
[eqs. (12.87)]. Calculate the local Nusselt number Nuy, and estimate the
percent departure of your result from the similarity result of eq. (12.95).

12.13. Develop the dimensionless similarity formulation of the problem of
natural boundary layer convection along a vertical wall with uniform
wall heat flux q′′. Begin your analysis with the boundary layer equations
(12.82) and (12.83) and use the scale analysis (12.97)–(12.100) in order
to define the appropriate similarity variables.

12.14. For the local heat transfer coefficient in natural convection along a
q′′ = constant wall, Cheng and Minkowycz [23] reported that

Nuy = 0.6788Ra1/2y
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where Nuy and Ray are defined as in eqs. (12.89) and (12.95). Keeping
in mind that T0 − T∞ is a function of y and that the scales for uniform
heat flux convection are given by eqs. (12.97)–(12.100), translate the
expression above into the language of eq. (12.100); compare your result
with the local Nusselt number given in eq. (12.101).

12.15. Consider the heat transfer between two isothermal porousmedia separated
by an impermeable partition (Fig. 12.9a). Develop an approximate
estimate for the overall heat transfer rate by modeling the partition as
isothermal. Report your result in the dimensionless notation employed
in eq. (12.114) with ω = 0. Repeat this approximate calculation by
modeling the partition as a surface with uniform heat flux. Comparing
both results with eq. (12.114), which partition model is better—the
constant temperature or the constant heat flux?

12.16. Consider the natural convection heat transfer between a porous
medium and fluid reservoir separated by a vertical impermeable surface
(Fig. 12.9b). Calculate the overall Nusselt number based on H and
overall temperature difference (T∞, H − T∞, L) by first modeling the
surface as isothermal. Show that the B number [eq. (12.115)] emerges
from this calculation as the ratio of the thermal resistances for each side.
Repeat the analysis by modeling the interface as a surface with uniform
heat flux.

12.17. Repeat the integral analysis (12.116)–(12.124) for an isothermal wall
facing a linearly stratified porous medium (Fig. 12.10) by assuming the
parabolic velocity profile

v = v0

(
1 − x

δT

)2

in place of the exponential profile (12.117). Based on this exercise,
determine how susceptible the heat transfer results of Fig. 12.10 are to
the selection of profile shapes for the integral analysis. Comparing your
result with the similarity solution known for b = 0, decide which choice
of profile shape yields more accurate predictions, the exponential or the
parabolic.

12.18. A swarm of honeybees attached to a tree branch can be approximated
as a ball of diameter D ∼ 10 cm containing packed spheres (the bees)
of diameter d ∼ 1 cm. The temperature inside the swarm is roughly
35◦C, while the ambient temperature is 5◦C. The swarm loses heat to
the ambient in two ways: (1) internally, to the air that rises between
the bees; and (2) externally, to the natural convection boundary layer
that rises over the surface of the swarm. Rely on scale analysis to show
that the ratio between the internal and external heat transfer rates is of
order (K/D2)[(gβD3�T)/αν]3/4 and that the internal heat transfer rate is
comparable with the external heat transfer rate.
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12.19. Determine the boundary layer–type flow and temperature field above
a horizontal line heat source of strength q′ (W/m). Recognizing that
this flow is two-dimensional, attach the coordinate system (x, y), (u, v)
perpendicularly to the line source so that the y axis points upward.
Proceeding in the same manner as in the analysis of high-Ra convection
above a point source [eqs. (12.130)–(12.147)], show that the vertical
velocity distribution is the same as in a plane incompressible momentum
jet (Section 9.2.2).

12.20. Consider the heat transfer through a shallow porous layer with dif-
ferent end temperatures. Show that the heat transfer rate scale is
q′ �(kH�T)/δf and explain the basis for the ‘‘<’’ sign in this inequality
[see eqs. (12.166), regime IV].

12.21. Show that in the RaH → ∞ limit, the Nusselt number of shallow layers
[eq. (12.168)] acquires a form similar to that for the high-RaH regime
[eq. (12.170)].

12.22. A fissured porous medium is dominated by features that can be modeled
as bifurcated two-dimensional parallel-plate channels organized into Y-
shaped constructs. As shown in Fig. P12.22, one channel of length L1 and
spacing D1 branches into two identical channels of length L2 and spacing
D2. One mechanism that generates such structures through natural porous
media is the facilitating of flow access, or the constructal design of global
resistance to fluid flow. Neglect local pressure losses associated with
entrance and junction effects. Show that if the total fluid volume of the Y
construct is fixed, the overall flow resistance of the construct is minimized
when the ratio of channel spacings is D1/D2 = 21/2.

Figure P12.22
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12.23. Afissured porous medium is used to enhance a chemical reaction between
a gas and graphite. The porous structure shown in Fig. P12.23 is a stack
of graphite blades of high thermal conductivity ks and thickness Ds. The
fissures are of size Df and are filled with flowing gas of low thermal
conductivity kf. The structure is two-dimensional with the dimensions H,
L, and W defined in the figure.

Figure P12.23

The gas is driven into the fissures by the pressure difference scale
�P, which is measured between the entrance to the fissures (the bottom
plane in the figure) and the pressure on each reacting adsorbing surface
LW. The flow is in the Darcy regime, and the gas viscosity is µ. The
chemical reaction is accompanied by heat generation: If ṁ′′ is the scale
of the mass flow rate of gas adsorption per unit area of adsorbing surface,
then q′′ = Cṁ′′ is the rate of heat generation per unit area and C is a
known constant factor. The heat current generated is conducted along the
blades toward the gas reservoir, which acts as heat sink. The scale of the
allowable excess temperature that drives the heat current is �T. The top
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and lateral surfaces of the HLW volume shown in the figure are adiabatic
and impermeable.

The objective is to maximize the use of the volume filled by the porous
structure. The proposal is to select the flow structure that maximizes the
volumetric rate of gas used (ṁ′′′ = ṁ/HLW), where ṁ is the total gas
flow rate. Of special interest is the optimal porosity of the structure, or
the aspect ratio Ds/Df.
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A

CONSTANTS AND
CONVERSION FACTORS

CONSTANTS

Universal ideal gas constant P. R = 8.314 kJ/kmol · K
Patm = 1.9872 cal/mol · K
Patm = 1.9872 Btu/lbmol · ◦R
Patm = 1545.33 ft · lbf/lbmol · ◦R

Boltzmann’s constant k = 1.38054 × 10−23 J/K

Planck’s constant h = 6.626 × 10−34 J · s
Speed of light in vacuum c = 2.998 × 108 m/s

Avogadro’s number N = 6.022 × 1023 molecules/mol

Stefan–Boltzmann constant σ = 5.669 × 10−8 W/m2 · K4

Patm = 0.1714 × 10−8 Btu/h · ft2 · ◦R4

Atmospheric pressure Patm = 0.101325MPa

Patm = 1.01325 bar

Patm = 1.01325 × 105 N/m2

Ice point at 1 atm Tice = 0◦C = 273.15 K

Gravitational acceleration g = 9.807m/s2

Patm = 32.17 ft/s2

Calorie 1 cal = 4.187 J

Mole 1mol = sample containing 6.022 × 1023

elementary entities (e.g.,
molecules); also abbreviated
as 1 gmol, or

609
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1mol = 10−3 kmol

= 10−3 kgmol

= 1

453.6
lbmol

Natural logarithm ln x = 2.30258 log10x

log10x = 0.4343 ln x

Important numbers e = 2.71828

π = 3.14159

1◦ = 0.01745 rad

CONVERSION FACTORS

Acceleration 1m/s2 = 4.252 × 107 ft/h2

Area 1 in2 = 6.452 cm2

1 ft2 = 0.0929m2

1 yd2 = 0.8361m2

1 mi2 = 2.59 km2

1 hectare = (100m)2

1 acre = 4047m2

Density 1 kg/m3 = 0.06243 lbm/ft3

1 lbm/ft3 = 16.018 kg/m3

Energy 1 kJ = 737.56 ft · lbf
= 0.9478 Btu

= 3.725 × 10−4 hp · h
= 2.778 × 10−4 kW · h

1 Btu = 1055 J

= 778.16 ft · lbf
= 3412.14 kW · h
= 2544.5 hp · h

1 cal = 4.187 J

1 erg = 10−7 J

Force 1 lbf = 4.448N

= 0.4536 kgf

1 dyne = 10−5 N
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Heat flux 1W/m2 = 0.317 Btu/h · ft2
1 Btu/h · ft2 = 3.154W/m2

Heat transfer coefficient 1W/m2 · K = 0.1761 Btu/h · ft2 · ◦F
= 0.8598 kcal/h · m2 · ◦C

1 Btu/h · ft2 · ◦F = 5.6786W/m2 · K
Heat transfer rate 1 Btu/s = 1055W

1 Btu/h = 0.2931W

1 hp = 745.7W

1 ft · lbf/s = 1.3558W

Kinematic viscosity (ν),
thermal diffusivity (α),
mass diffusivity (D)

1m2/s = 104 cm2/s

= 104 stokes

= 3.875 × 104 ft2/h

= 10.764 ft2/s

Latent heat, specific energy,
specific enthalpy

1 kJ/kg = 0.4299 Btu/lbm
= 0.2388 cal/g

1 Btu/lbm = 2.326 kJ/kg

Length 1 in = 2.54 cm

1 ft = 0.3048m

1 yd = 0.9144m

1 mile = 1.609 km

Mass 1 lbm = 0.4536 kg

1 kg = 2.2046 lbm

= 1.1023 × 10−3 U.S. ton

= 10−3 tonne

1 oz = 28.35 g

Mass transfer coefficient 1m/s = 1.181 × 104 ft/h

1 ft/h = 8.467 × 10−5 m/s

Power 1 Btu/s = 1055W = 1.055 kW

1 Btu/h = 0.293W

1W = 3.412 Btu/h

= 9.48 × 10−4 Btu/s

1 HP = 0.746 kW

= 0.707 Btu/s
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Pressure, stress 1 Pa = 1N/m2

1 psi = 6895N/m2

1 atm = 14.69 psi

= 1.013 × 105 N/m2

1 bar = 105 N/m2

1 torr = 1mmHg

= 133.32N/m2

1 psi = 27.68 in H2O

1 ft H2O = 0.4335 psi

Specific heat, specific
entropy

1 kJ/kg · K = 0.2388 Btu/lbm · ◦F
= 0.2389 cal/g · ◦C

1 Btu/lbm · ◦F = 4.187 kJ/kg · K
Speed 1 mi/h = 0.447m/s

= 1.609 km/h

1 km/h = 0.278m/s

= 0.622 mi/h

1m/s = 3.6 km/h

= 2.237 mi/h

Temperature 1 K = 1◦C
1 (K) = (9/5)◦F
T (K) = T(◦C) + 273.15

T (◦C) = 5/9[T(◦F) − 32]

T (◦F) = T(◦R) − 459.67

Temperature difference �T (K) = �T (◦C)
= 5/9 �T (◦F)
= 5/9 �T (◦R)

Thermal conductivity 1W/m · K = 0.5782 Btu/h · ft · ◦F
= 0.01W/cm · K
= 2.39 × 10−3 cal/cm · s · ◦C

1 Btu/h · ft · ◦F = 1.7307W/m · K
Thermal resistance 1 K/W = 0.5275◦F/Btu · h

1◦F/Btu · h = 1.896 K/W

Viscosity (µ) 1N · s/m2 = 1 kg/s · m
= 2419.1 lbm/ft · h
= 5.802 × 10−6 lbf · h/ft2

1 poise = 1 g/s · cm
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Volume 1 L = 10−3 m3 = 1 dm3

1 in3 = 16.39 cm3

1 ft3 = 0.02832m3

1 yd3 = 0.7646m3

1 gal (U.S.) = 3.785 L

1 gal (imperial) = 4.546 L

1 pint = 0.5683 L

Volumetric heat generation
rate

1 Btu/h · ft3 = 10.35W/m3

1W/m3 = 0.0966 Btu/h · ft3

DIMENSIONLESS GROUPS USED IN THIS BOOKa

Bejan number Be = (�PL2)/µα

Biot number Bi = hL/ks
Boussinesq number Bo = (gβ �T H3)/α2

Eckert number Ec = U2/(cP �T)

Fourier number Fo = αt/L2

Graetz number Gz = D2U/αx = ReD Pr (D/x)

Grashof number Gr = (gβ �T H3)/ν2

Lewis numberb Le = α/D = Sc/Pr

Mass transfer Rayleigh numberb Ram = (gβc �ρiH
3)/νD

Mass transfer Stanton number Stm = hm/U

Nusselt number Nu = hL/kf
Péclet number Pe = UL/α = Re Pr

Porous medium Bejan numberc Be = (�P K)/µα

Porous medium Péclet numberc Pe = UL/α

Porous medium Prandtl numberc Pr = (ν/α)(H/bK)

Porous medium Rayleigh number,
Darcy flowc

Ra = (KgβH �T)/αν

Porous medium Rayleigh number
based on heat flux, Darcy flow

Ra* = Kgβq′′H2/ανk

Prandtl number Pr = ν/α = Sc/Le

aSubscripts: (·)s = solid, (·)f = fluid.
bD is the mass diffusivity (m2/s).
ck and α are properties of the fluid-saturated porous medium.



614 A CONSTANTS AND CONVERSION FACTORS

Rayleigh number Ra = gβ�TH3/αν

Rayleigh number based on heat
flux

Ra* = gβq′′H4/ανk

Reynolds number Re = UL/ν

Schmidt numberb Sc = ν/D = Le Pr

Sherwood numberb Sh = hmL/D

Stanton number St = h/ρcPU = Nu/Re Pr

Stefan number Ste = (cf �T)/hsf
Turbulent Prandtl number Prt = εM/εH



B

PROPERTIES OF SOLIDS

NONMETALLIC SOLIDS

Material
T

(◦C)
ρ

(kg/m3)
cP

(kJ/kg · K)
k

(W/m · K)
α

(cm2/s)

Asbestos
Cement board 20 0.6
Felt (16
laminations/cm)

40 0.057

Fiber 50 470 0.82 0.11 0.0029
Sheet 20 0.74

50 0.17
Asphalt 20 2120 0.92 0.70 0.0036
Bakelite 20 1270 1.59 0.230 0.0011
Bark 25 340 1.26 0.074 0.0017
Beef (seeMeat)
Brick
Carborundum 1400 11.1
Cement 10 720 0.34
Chrome 100 1.9
Common 20 1800 0.84 0.38–0.52 0.0028–0.0034
Facing 20 1.3
Firebrick 300 2000 0.96 0.1 0.00054
Magnesite (50%
MgO)

20 2000 2.68

Masonry 20 1700 0.84 0.66 0.0046
Silica (95% SiO2) 20 1900 1.07
Zircon (62% ZrO2) 20 3600 2.44
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NONMETALLIC SOLIDS (Continued)

Material
T

(◦C)
ρ

(kg/m3)
cP

(kJ/kg · K)
k

(W/m · K)
α

(cm2/s)

Brickwork, dried in air 20 1400–1800 0.84 0.58–0.81 0.0049–0.0054
Carbon
Diamond (type IIb) 20 3250 0.51 1350 8.1
Graphite (firm,
natural)

20 2000–2500 0.61 155 1.02–1.27

Carborundum (SiC) 100 1500 0.62 58 0.62
Cardboard 0–20 ∼790 ∼0.14
Celluloid 20 1380 1.67 0.23 0.001
Cement (Portland,
fresh, dry)

20 3100 0.75 0.3 0.0013

Chalk (CaCO3) 20 2000–3000 0.74 2.2 0.01–0.015
Clay 20 1450 0.88 1.28 0.01
Fireclay 100 1700–2000 0.84 0.5–1.2 0.35–0.71
Sandy clay 20 1780 0.9

Coal 20 1200–1500 1.26 0.26 0.0014–0.0017
Anthracite 900 1500 0.2
Brown coal 900 0.1
Bituminous in situ 1300 0.5–0.7 0.003–0.004
Dust 30 730 1.3 0.12 0.0013

Concrete, made with
gravel, dry cinder

20 2200 0.88 1.28 0.0066
24 0.76

Cork
Board 20 150 1.88 0.042 0.0015
Expanded 20 120 0.036

Cotton 30 81 1.15 0.059 0.0063
Earth
Coarse-grained 20 2040 1.84 0.59 0.0016
Clayey (28%
moisture)

20 1500 1.51

Sandy (8%
moisture)

20 1500 1.05

Diatomaceous 20 466 0.88 0.126 0.0031
Fat 20 910 1.93 0.17 0.001
Felt, hair −7 130–200 0.032–0.04

94 130–200 0.054–0.051
Fiber insulating board 20 240 0.048
Glass
Borosilicate 30 2230 1.09
Fiber 20 220 0.035
Lead 20 2890 0.68 0.7–0.93 0.0036–0.0047
Mirror 20 2700 0.80 0.76 0.0035
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NONMETALLIC SOLIDS (Continued)

Material
T

(◦C)
ρ

(kg/m3)
cP

(kJ/kg · K)
k

(W/m · K)
α

(cm2/s)

Pyrex 60–100 2210 0.75 1.3 0.0078
Quartz 20 2210 0.73 1.4 0.0087
Window 20 2800 0.80 0.81 0.0034
Wool 0 200 0.66 0.037 0.0028

Granite 20 2750 0.89 2.9 0.012
Gypsum 20 1000 1.09 0.51 0.0047
Ice 0 917 2.04 2.25 0.012
Ivory 80 0.5
Kapok 30 0.035
Leather, dry 20 860 1.5 0.12–0.15 ∼0.001
Limestone (Indiana) 100 2300 0.9 1.1 ∼0.005
Linoleum 20 535 0.081
Lunar surface dust, in
high vacuum

250 1500 ± 300 ∼0.6 ∼0.0006

Magnezia (85%) 38–204 0.067–0.08
Marble 20 2600 0.81 2.8 0.013
Meat 25 ∼1060 0.3–0.6 ∼0.0014
Mica 20 2900 0.52
Mortar 20 1900 0.8 0.93 0.0061
Paper 20 700 1.2 0.12 0.0014
Paraffin 30 870–925 2.9 0.24–0.27 ∼0.001
Plaster 20 1690 0.8 0.79 0.0058
Plexiglas (acrylic
glass)

20 1180 1.44 0.184 0.0011

Polyethylene 20 920 2.30 0.35 0.0017
Polystyrene 20 1050 0.157
Polyurethane 20 1200 2.09 0.32 0.0013
Polyvinyl chloride
(PVC)

20 1380 0.96 0.15 0.0011

Porcelain 95 2400 1.08 1.03 0.004
Quartz 20 2100–2500 0.78 1.40 ∼0.008
Rubber
Foam 20 500 1.67 0.09 0.0011
Hard (ebonite) 20 1150 2.01 0.16 0.0006
Soft 20 1100 1.67 ∼0.2 ∼0.001
Synthetic 20 1150 1.97 0.23 0.001

Salt (rock salt) 0 2100–2500 0.92 7 0.03–0.036
Sand
Dry 20 0.58
Moist 20 1640 1.13

Sandstone 20 2150–2300 0.71 1.6–2.1 0.01–0.013
Sawdust, dry 20 215 0.07
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NONMETALLIC SOLIDS (Continued)

Material
T

(◦C)
ρ

(kg/m3)
cP

(kJ/kg · K)
k

(W/m · K)
α

(cm2/s)

Silica aerogel 0 140 0.024
Silica stone (85% SiC) 700 2720 1.05 1.56 0.055
Silicon 20 2330 0.703 153 0.94
Silk (artificial) 35 100 1.33 0.049 0.0037
Slag 20 2500–3000 0.84 0.57 0.0023–0.0027
Slate
Parallel to
lamination

20 2700 0.75 2.9 0.014

Perpendicular to
lamination

20 2700 0.75 1.83 0.009

Snow, firm 0 560 2.1 0.46 0.0039
Soil (see also Earth)
Dry 15 1500 1.84 1 0.004
Wet 15 1930 2

Strawberries, dry −18 0.59
Sugar (fine) 0 1600 1.25 0.58 0.0029
Sulfur 20 2070 0.72 0.27 0.0018
Teflon (polytetrafluo-
roethylene)

20 2200 1.04 0.23 0.001

Wood, perpendicular
to grain
Ash 15 740 0.15–0.3
Balsa 15 100 0.05
Cedar 15 480 0.11
Mahogany 20 700 0.16
Oak 20 600–800 2.4 0.17–0.25 ∼0.0012
Pine, fir, spruce 20 416–421 2.72 0.15 0.0012
Plywood 20 590 0.11

Wool
Sheep 20 100 1.72 0.036 0.0021
Mineral 50 200 0.92 0.046 0.0025
Slag 25 200 0.8 0.05 0.0031

Source: Constructed based on data compiled in Refs. 1–9.
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ICE PROPERTIES

T
(0◦C)

ρb

(g/cm3)
hsf

(kJ/kg)
β

(K−1)a

0 0.9164 333.4
−5 308.5

−10 0.9187 284.8 1.56 × 10−4

−15 261.6
−20 0.9203 241.4 1.38 × 10−4

−40 0.9228 1.29 × 10−4

−100 0.9273 1.24 × 10−4

−200 0.9328 1.1 × 10−5

Source: Constructed based on data compiled in Ref. 10.
aAt atmospheric pressure.

POROUS MATERIALS

Material
Porosity

ϕ

Permeability
K (cm2)

Contact Surface per
Volume (cm−1)

Agar–agar 2 × 10−10 –4.4 × 10−9

Black slate powder 0.57–0.66 4.9 × 10−10 –1.2 × 10−9 7 × 103 –8.9 × 103

Brick 0.12–0.34 4.8 × 10−11 –2.2 × 10−9

Catalyst
(Fischer–Tropsch,
granules only)

0.45 5.6 × 105

Cigarette 1.1 × 10−5

Cigarette filters 0.17–0.49
Coal 0.02–0.12
Concrete (ordinary mixes) ∼0.10
Concrete (bituminous) 1 × 10−9 –2.3 × 10−7

Copper powder
(hot-compacted)

0.09–0.34 3.3 × 10−6 –1.5 × 10−5

Cork board 2.4 × 10−7 –5.1 × 10−7

Fiberglass 0.88–0.93 560–770
Granular crushed rock 0.45
Hair (on mammals) 0.95–0.99
Hair felt 8.3 × 10−6 –1.2 × 10−5

Leather 0.56–0.59 9.5 × 10−10 –1.2 × 10−9 1.2 × 104 –1.6 × 104

Limestone (dolomite) 0.04–0.10 2 × 10−11 –4.5 × 10−10

Sand 0.37–0.50 2 × 10−7 –1.8 × 10−6 150–220
Sandstone (‘‘oil sand’’) 0.08–0.38 5 × 10−12 –3 × 10−8

Silica grains 0.65
Silica powder 0.37–0.49 1.3 × 10−10 –5.1 × 10−10 6.8 × 103 –8.9 × 103

Soil 0.43–0.54 2.9 × 10−9 –1.4 × 10−7

Spherical packings (well
shaken)

0.36–0.43

Wire crimps 0.68–0.76 3.8 × 10−5 –1 × 10−4 29–40

Source: Bejan et al. [11], based on data compiled in Refs. 12–14.
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C

PROPERTIES OF LIQUIDS

WATER AT ATMOSPHERIC PRESSURE

T
(◦C)

ρ

(g/cm3)
cP

(kJ/kg · K)
cv

(kJ/kg · K)
hfg

(kJ/kg)
β

(K−1)

0 0.9999 4.217 4.215 2501 −0.6 × 10−4

5 1 4.202 4.202 2489 +0.1 × 10−4

10 0.9997 4.192 4.187 2477 0.9 × 10−4

15 0.9991 4.186 4.173 2465 1.5 × 10−4

20 0.9982 4.182 4.158 2454 2.1 × 10−4

25 0.9971 4.179 4.138 2442 2.6 × 10−4

30 0.9957 4.178 4.118 2430 3.0 × 10−4

35 0.9941 4.178 4.108 2418 3.4 × 10−4

40 0.9923 4.178 4.088 2406 3.8 × 10−4

50 0.9881 4.180 4.050 2382 4.5 × 10−4

60 0.9832 4.184 4.004 2357 5.1 × 10−4

70 0.9778 4.189 3.959 2333 5.7 × 10−4

80 0.9718 4.196 3.906 2308 6.2 × 10−4

90 0.9653 4.205 3.865 2283 6.7 × 10−4

100a 0.9584 4.216 3.816 2257 7.1 × 10−4

625Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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WATER AT ATMOSPHERIC PRESSURE (Continued)

gβ

αν
= RaH
H3 �TT

(◦C)
µ

(g/cm · s)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr (K−1 · cm−3)

0 0.01787 0.01787 0.56 0.00133 13.44 −2.48 × 103

5 0.01514 0.01514 0.57 0.00136 11.13 +0.47 × 103

10 0.01304 0.01304 0.58 0.00138 9.45 4.91 × 103

15 0.01137 0.01138 0.59 0.00140 8.13 9.24 × 103

20 0.01002 0.01004 0.59 0.00142 7.07 14.45 × 103

25 0.00891 0.00894 0.60 0.00144 6.21 19.81 × 103

30 0.00798 0.00802 0.61 0.00146 5.49 25.13 × 103

35 0.00720 0.00725 0.62 0.00149 4.87 30.88 × 103

40 0.00654 0.00659 0.63 0.00152 4.34 37.21 × 103

50 0.00548 0.00554 0.64 0.00155 3.57 51.41 × 103

60 0.00467 0.00475 0.65 0.00158 3.01 66.66 × 103

70 0.00405 0.00414 0.66 0.00161 2.57 83.89 × 103

80 0.00355 0.00366 0.67 0.00164 2.23 101.3 × 103

90 0.00316 0.00327 0.67 0.00165 1.98 121.8 × 103

100 0.00283 0.00295 0.68 0.00166 1.78 142.2 × 103

Source: Data collected from Refs. 1–3.
aSaturated.

WATER AT SATURATION PRESSURE

T
(◦C)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(g/cm · s)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

0 0.9999 4.226 0.0179 0.0179 0.56 0.0013 13.7
10 0.9997 4.195 0.0130 0.0130 0.58 0.0014 9.5
20 0.9982 4.182 0.0099 0.0101 0.60 0.0014 7
40 0.9922 4.175 0.0066 0.0066 0.63 0.0015 4.3
60 0.9832 4.181 0.0047 0.0048 0.66 0.0016 3
80 0.9718 4.194 0.0035 0.0036 0.67 0.0017 2.25

100 0.9584 4.211 0.0028 0.0029 0.68 0.0017 1.75
150 0.9169 4.270 0.00185 0.0020 0.68 0.0017 1.17
200 0.8628 4.501 0.00139 0.0016 0.66 0.0017 0.95
250 0.7992 4.857 0.00110 0.00137 0.62 0.0016 0.86
300 0.7125 5.694 0.00092 0.00128 0.56 0.0013 0.98
340 0.6094 8.160 0.00077 0.00127 0.44 0.0009 1.45
370 0.4480 11.690 0.00057 0.00127 0.29 0.00058 2.18

Source: Data collected from Refs. 1 and 2.
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AMMONIA, SATURATED LIQUID

T
(◦C)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

−50 0.704 4.46 3.06 × 10−4 4.35 × 10−3 0.547 1.74 × 10−3 2.50
−25 0.673 4.49 2.58 × 10−4 3.84 × 10−3 0.548 1.81 × 10−3 2.12

0 0.640 4.64 2.39 × 10−4 3.73 × 10−3 0.540 1.82 × 10−3 2.05
25 0.604 4.84 2.14 × 10−4 3.54 × 10−3 0.514 1.76 × 10−3 2.01
50 0.564 5.12 1.86 × 10−4 3.30 × 10−3 0.476 1.65 × 10−3 2.00

Source: Constructed based on data compiled in Ref. 4.

CARBON DIOXIDE, SATURATED LIQUID

T
(K)

P
(bar)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

216.6 5.18 1.179 1.707 2.10 × 10−4 1.78 × 10−3 0.182 9.09 × 10−4 1.96
220 6.00 1.167 1.761 1.86 × 10−4 1.59 × 10−3 0.178 8.26 × 10−4 1.93
240 12.83 1.089 1.933 1.45 × 10−4 1.33 × 10−3 0.156 7.40 × 10−4 1.80
260 24.19 1.000 2.125 1.14 × 10−4 1.14 × 10−3 0.128 6.03 × 10−4 1.89
280 41.60 0.885 2.887 0.91 × 10−4 1.03 × 10−3 0.102 4.00 × 10−4 2.57
300 67.10 0.680 0.71 × 10−4 1.04 × 10−3 0.081
304.2 73.83 0.466 0.60 × 10−4 1.29 × 10−3 0.074

Source: Constructed based on data compiled in Refs. 5 and 6.

FUELS, LIQUIDS AT P ∼= 1 atm

T
(◦C)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

Gasoline

20 0.751 2.06 5.29 × 10−4 7.04 × 10−3 0.1164 7.52 × 10−4 9.4
50 0.721 2.20 3.70 × 10−4 5.13 × 10−3 0.1105 6.97 × 10−4 7.4
100 0.681 2.46 2.25 × 10−4 3.30 × 10−3 0.1005 6.00 × 10−4 5.5
150 0.628 2.74 1.56 × 10−4 2.48 × 10−3 0.0919 5.34 × 10−4 4.6
200 0.570 3.04 1.11 × 10−4 1.95 × 10−3 0.0800 4.62 × 10−4 4.2

Kerosene

20 0.819 2.00 1.49 × 10−3 1.82 × 10−2 0.1161 7.09 × 10−4 25.7
50 0.801 2.14 9.56 × 10−4 1.19 × 10−2 0.1114 6.50 × 10−4 18.3
100 0.766 2.38 5.45 × 10−4 7.11 × 10−3 0.1042 5.72 × 10−4 12.4
150 0.728 2.63 3.64 × 10−4 5.00 × 10−3 0.0965 5.04 × 10−4 9.9
200 0.685 2.89 2.62 × 10−4 3.82 × 10−3 0.0891 4.50 × 10−4 8.5
250 0.638 3.16 2.01 × 10−4 3.15 × 10−3 0.0816 4.05 × 10−4 7.8

Source: Constructed based on data compiled in Ref. 7.
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HELIUM, LIQUID AT P = 1 atm

T
(K)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

2.5 0.147 2.05 3.94 × 10−6 2.68 × 10−4 0.0167 5.58 × 10−4 0.48
3 0.143 2.36 3.86 × 10−6 2.69 × 10−4 0.0182 5.38 × 10−4 0.50
3.5 0.138 3.00 3.64 × 10−6 2.64 × 10−4 0.0191 4.62 × 10−4 0.57
4 0.130 4.07 3.34 × 10−6 2.57 × 10−4 0.0196 3.71 × 10−4 0.69
4.22a 0.125 4.98 3.17 × 10−6 2.53 × 10−4 0.0196 3.15 × 10−4 0.80

Source: Data collected from Ref. 8.
aSaturated.

LITHIUM, SATURATED LIQUID

T
(K)

P
(bar)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

600 4.2 × 10−9 0.503 4.23 4.26 × 10−4 0.0085 47.6 0.223 0.038
800 9.6 × 10−6 0.483 4.16 3.10 × 10−4 0.0064 54.1 0.270 0.024
1000 9.6 × 10−4 0.463 4.16 2.47 × 10−4 0.0053 60.0 0.312 0.017
1200 0.0204 0.442 4.14 2.07 × 10−4 0.0047 64.7 0.355 0.013
1400 0.1794 0.422 4.19 1.80 × 10−4 0.0043 68.0 0.384 0.011

Source: Constructed based on data compiled in Refs. 5 and 6.

MERCURY, SATURATED LIQUID

T
(K)

P
(bar)

ρ

(g/
cm3)

cP
(kJ/

kg ·K)
µ

(kg/s ·m)
ν

(cm2/s)

k
(W/
m ·K)

α

(cm2/
s) Pr

β

(K−1)

260 6.9× 10−8 13.63 0.141 1.79× 10−3 1.31× 10−3 8.00 0.042 0.0316 1.8× 10−4

300 3.1× 10−6 13.53 0.139 1.52× 10−3 1.12× 10−3 8.54 0.045 0.0248 1.8× 10−4

340 5.5× 10−5 13.43 0.138 1.34× 10−3 1.00× 10−3 9.06 0.049 0.0205 1.8× 10−4

400 1.4× 10−3 13.29 0.137 1.17× 10−3 8.83× 10−4 9.80 0.054 0.0163 1.8× 10−4

500 0.053 13.05 0.135 1.01× 10−3 7.72× 10−4 10.93 0.062 0.0125 1.8× 10−4

600 0.578 12.81 0.136 9.10× 10−4 7.10× 10−4 11.94 0.071 0.0100 1.9× 10−4

800 11.18 12.32 0.140 8.08× 10−4 6.56× 10−4 13.57 0.079 0.0083 1.9× 10−4

1000 65.74 11.79 0.149 7.54× 10−4 6.40× 10−4 14.69 0.084 0.0076 1.9× 10−4

Source: Constructed based on data compiled in Refs. 5 and 6.
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NITROGEN, LIQUID AT P = 1 atm

T
(K)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

65 0.861 1.988 2.77 × 10−5 3.21 × 10−3 0.161 9.39 × 10−4 3.42
70 0.840 2.042 2.12 × 10−5 2.53 × 10−3 0.151 8.77 × 10−4 2.88
75 0.819 2.059 1.77 × 10−5 2.17 × 10−3 0.141 8.36 × 10−4 2.59
77.3a 0.809 2.065 1.64 × 10−5 2.03 × 10−3 0.136 8.15 × 10−4 2.49

Source: Interpolated from data in Ref. 9.
aSaturated.

POTASSIUM, SATURATED LIQUID

T
(K)

P
(bar)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

400 1.84 × 10−7 0.814 0.805 4.13 × 10−4 0.0051 52.0 0.794 0.0064
600 9.26 × 10−4 0.767 0.771 2.38 × 10−4 0.0031 43.9 0.742 0.0042
800 0.0612 0.720 0.761 1.71 × 10−4 0.0024 37.1 0.677 0.0035
1000 0.7322 0.672 0.792 1.35 × 10−4 0.0020 31.3 0.589 0.0034
1200 3.963 0.623 0.846 1.14 × 10−4 0.0018 26.3 0.499 0.0037
1400 12.44 0.574 0.899 0.98 × 10−4 0.0017 21.5 0.416 0.0041

Source: Constructed based on data compiled in Refs. 5 and 6.

REFRIGERANT 12 (FREON 12, CCI2F2), SATURATED LIQUID

P
(bar)

T
(K)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

0.2 211.1 1.579 0.865 5.28 × 10−4 3.34 × 10−3 0.101 7.40 × 10−4 4.52
0.4 223.5 1.554 0.876 4.48 × 10−4 2.88 × 10−3 0.097 7.12 × 10−4 4.05
0.6 231.7 1.522 0.884 4.08 × 10−4 2.68 × 10−3 0.094 6.98 × 10−4 3.84
1.0 243.0 1.488 0.894 3.59 × 10−4 2.41 × 10−3 0.089 6.68 × 10−4 3.61
2.0 260.6 1.435 0.914 2.95 × 10−4 2.06 × 10−3 0.083 6.33 × 10−4 3.25
3.0 272.3 1.392 0.930 2.62 × 10−4 1.88 × 10−3 0.079 6.11 × 10−4 3.08
6.0 295.2 1.321 0.969 2.13 × 10−4 1.61 × 10−3 0.070 5.47 × 10−4 2.95
10.0 314.9 1.247 1.023 1.88 × 10−4 1.51 × 10−3 0.063 4.94 × 10−4 3.05
20.0 346.3 1.099 1.234 1.49 × 10−4 1.36 × 10−3 0.053 3.91 × 10−4 3.47
30.0 367.2 0.955 1.520 1.16 × 10−4 1.21 × 10−3 0.042 2.89 × 10−4 4.20

Source: Constructed based on data compiled in Refs. 5 and 6.
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REFRIGERANT 22 (Freon 22, CHCIF2), Saturated Liquid

T
(K)

P
(bar)

ρ

(g/cm3)
cp

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

180 0.037 1.545 1.058 6.47 × 10−5 4.19 × 10−4 0.146 8.93 × 10−4 0.47
200 0.166 1.497 1.065 4.81 × 10−5 3.21 × 10−4 0.136 8.53 × 10−4 0.38
220 0.547 1.446 1.080 3.78 × 10−5 2.61 × 10−4 0.126 8.07 × 10−4 0.32
240 1.435 1.390 1.105 3.09 × 10−5 2.22 × 10−4 0.117 7.62 × 10−4 0.29
260 3.177 1.329 1.143 2.60 × 10−5 1.96 × 10−4 0.107 7.04 × 10−4 0.28
280 6.192 1.262 1.193 2.25 × 10−5 1.78 × 10−4 0.097 6.44 × 10−4 0.28
300 10.96 1.187 1.257 1.98 × 10−5 1.67 × 10−4 0.087 5.83 × 10−4 0.29
320 18.02 1.099 1.372 1.76 × 10−5 1.60 × 10−4 0.077 5.11 × 10−4 0.31
340 28.03 0.990 1.573 1.51 × 10−5 1.53 × 10−4 0.067 4.30 × 10−4 0.36

Source: Constructed based on data compiled in Ref. 6.

SODIUM, SATURATED LIQUID

T
(K)

P
(bar)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

500 7.64 × 10−7 0.898 1.330 4.24 × 10−4 0.0047 80.0 0.67 0.0070
600 5.05 × 10−5 0.873 1.299 3.28 × 10−4 0.0038 75.4 0.66 0.0057
700 9.78 × 10−4 0.850 1.278 2.69 × 10−4 0.0032 70.7 0.65 0.0049
800 0.00904 0.826 1.264 2.30 × 10−4 0.0028 65.9 0.63 0.0044
900 0.0501 0.802 1.258 2.02 × 10−4 0.0025 61.4 0.61 0.0041
1000 0.1955 0.776 1.259 1.81 × 10−4 0.0023 56.7 0.58 0.0040
1200 1.482 0.729 1.281 1.51 × 10−4 0.0021 54.5 0.58 0.0036
1400 6.203 0.681 1.330 1.32 × 10−4 0.0019 52.2 0.58 0.0034
1600 17.98 0.633 1.406 1.18 × 10−4 0.0019 49.9 0.56 0.0033

Source: Constructed based on data compiled in Refs. 5 and 6.

UNUSED ENGINE OIL

T
(K)

ρ

(g/cm3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr
β

(K−1)

260 0.908 1.76 12.23 135 0.149 9.32 × 10−4 144500 7 × 10−4

280 0.896 1.83 2.17 24.2 0.146 8.90 × 10−4 27200 7 × 10−4

300 0.884 1.91 0.486 5.50 0.144 8.53 × 10−4 6450 7 × 10−4

320 0.872 1.99 0.141 1.62 0.141 8.13 × 10−4 1990 7 × 10−4

340 0.860 2.08 0.053 0.62 0.139 7.77 × 10−4 795 7 × 10−4

360 0.848 2.16 0.025 0.30 0.137 7.48 × 10−4 395 7 × 10−4

380 0.836 2.25 0.014 0.17 0.136 7.23 × 10−4 230 7 × 10−4

400 0.824 2.34 0.009 0.11 0.134 6.95 × 10−4 155 7 × 10−4

Source: Constructed based on data compiled in Refs. 5 and 6.
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CRITICAL POINT DATA

Critical
Specific
Volume
(cm3/g)

Critical Temperature Critical Pressure

Liquid K ◦C MPa atm

Air 133.2 −140 3.77 37.2 2.9
Alcohol (ethyl) 516.5 243.3 6.39 63.1 3.6
Alcohol (methyl) 513.2 240 7.98 78.7 3.7
Ammonia 405.4 132.2 11.3 111.6 4.25
Argon 150.9 −122.2 4.86 48 1.88
Butane 425.9 152.8 3.65 36 4.4
Carbon dioxide 304.3 31.1 7.4 73 2.2
Carbon monoxide 134.3 −138.9 3.54 35 3.2
Carbon tetrachloride 555.9 282.8 4.56 45 1.81
Chlorine 417 143.9 7.72 76.14 1.75
Ethane 305.4 32.2 4.94 48.8 4.75
Ethylene 282.6 9.4 5.85 57.7 4.6
Helium 5.2 −268 0.228 2.25 14.4
Hexane 508.2 235 2.99 29.5 4.25
Hydrogen 33.2 −240 1.30 12.79 32.3
Methane 190.9 −82.2 4.64 45.8 6.2
Methyl chloride 416.5 143.3 6.67 65.8 2.7
Neon 44.2 −288.9 2.7 26.6 2.1
Nitric oxide 179.3 −93.9 6.58 65 1.94
Nitrogen 125.9 −147.2 3.39 33.5 3.25
Octane 569.3 296.1 2.5 24.63 4.25
Oxygen 154.3 −118.9 5.03 49.7 2.3
Propane 368.7 95.6 4.36 43 4.4
Sulfur dioxide 430.4 157.2 7.87 77.7 1.94
Water 647 373.9 22.1 218.2 3.1

Source: Based on a compilation from Ref. 10.
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D

PROPERTIES OF GASES

DRY AIR AT ATMOSPHERIC PRESSURE

T
(◦C)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

gβ

αν
= RaH
H3 �T

(cm−3 · K−1)

−180 3.72 1.035 6.50 × 10−6 0.0175 0.0076 0.019 0.92 3.2 × 104

−100 2.04 1.010 1.16 × 10−5 0.057 0.016 0.076 0.75 1.3 × 103

−50 1.582 1.006 1.45 × 10−5 0.092 0.020 0.130 0.72 367
0 1.293 1.006 1.71 × 10−5 0.132 0.024 0.184 0.72 148
10 1.247 1.006 1.76 × 10−5 0.141 0.025 0.196 0.72 125
20 1.205 1.006 1.81 × 10−5 0.150 0.025 0.208 0.72 107
30 1.165 1.006 1.86 × 10−5 0.160 0.026 0.223 0.72 90.7
60 1.060 1.008 2.00 × 10−5 0.188 0.028 0.274 0.70 57.1

100 0.946 1.011 2.18 × 10−5 0.230 0.032 0.328 0.70 34.8
200 0.746 1.025 2.58 × 10−5 0.346 0.039 0.519 0.68 9.53
300 0.616 1.045 2.95 × 10−5 0.481 0.045 0.717 0.68 4.96
500 0.456 1.093 3.58 × 10−5 0.785 0.056 1.140 0.70 1.42
1000 0.277 1.185 4.82 × 10−5 1.745 0.076 2.424 0.72 0.18

Source: Data collected from Refs. 1–3.

633Convection Heat Transfer,   Fourth Edition.    Adrian Bejan
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AMMONIA, GAS AT P = 1 atm

T
(◦C)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

0 0.793 2.18 9.35 × 10−6 0.118 0.0220 0.131 0.90
50 0.649 2.18 1.10 × 10−5 0.170 0.0270 0.192 0.88

100 0.559 2.24 1.29 × 10−5 0.230 0.0327 0.262 0.87
150 0.493 2.32 1.47 × 10−5 0.297 0.0391 0.343 0.87
200 0.441 2.40 1.65 × 10−5 0.374 0.0467 0.442 0.84

Source: Constructed based on data compiled in Ref. 4.

CARBON DIOXIDE, GAS AT P = 1 bar

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

300 1.773 0.852 1.51 × 10−5 0.085 0.0166 0.109 0.78
350 1.516 0.898 1.75 × 10−5 0.115 0.0204 0.150 0.77
400 1.326 0.941 1.98 × 10−5 0.149 0.0243 0.195 0.77
500 1.059 1.014 2.42 × 10−5 0.229 0.0325 0.303 0.76
600 0.883 1.075 2.81 × 10−5 0.318 0.0407 0.429 0.74
700 0.751 1.126 3.17 × 10−5 0.422 0.0481 0.569 0.74
800 0.661 1.168 3.50 × 10−5 0.530 0.0551 0.714 0.74
900 0.588 1.205 3.81 × 10−5 0.648 0.0618 0.873 0.74

1000 0.529 1.234 4.10 × 10−5 0.775 0.0682 1.043 0.74

Source: Constructed based on data compiled in Refs. 5 and 6.

HELIUM, GAS AT P = 1 atm

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

4.22 16.9 9.78 1.25 × 10−6 7.39 × 10−4 0.011 6.43 × 10−4 1.15
7 7.53 5.71 1.76 × 10−6 2.34 × 10−3 0.014 3.21 × 10−3 0.73

10 5.02 5.41 2.26 × 10−6 4.49 × 10−3 0.018 6.42 × 10−3 0.70
20 2.44 5.25 3.58 × 10−6 0.0147 0.027 0.0209 0.70
30 1.62 5.22 4.63 × 10−6 0.0286 0.034 0.0403 0.71
60 0.811 5.20 7.12 × 10−6 0.088 0.053 0.125 0.70

100 0.487 5.20 9.78 × 10−6 0.201 0.074 0.291 0.69
200 0.244 5.19 1.51 × 10−5 0.622 0.118 0.932 0.67
300 0.162 5.19 1.99 × 10−5 1.22 0.155 1.83 0.67
600 0.0818 5.19 3.22 × 10−5 3.96 0.251 5.94 0.67

1000 0.0487 5.19 4.63 × 10−5 9.46 0.360 14.2 0.67

Source: Data collected from Ref. 7.
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n-HYDROGEN, GAS AT P = 1 atm

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

250 0.0982 14.04 7.9 × 10−6 0.804 0.162 1.17 0.69
300 0.0818 14.31 8.9 × 10−6 1.09 0.187 1.59 0.69
350 0.0702 14.43 9.9 × 10−6 1.41 0.210 2.06 0.69
400 0.0614 14.48 1.09 × 10−5 1.78 0.230 2.60 0.68
500 0.0491 14.51 1.27 × 10−5 2.59 0.269 3.78 0.68
600 0.0408 14.55 1.43 × 10−5 3.50 0.305 5.12 0.68
700 0.0351 14.60 1.59 × 10−5 4.53 0.340 6.62 0.68

Source: Constructed based on the data compiled in Refs. 5 and 6.

NITROGEN, GAS AT P = 1 atm

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

77.33 4.612 1.123 5.39 × 10−6 0.0117 0.0076 0.0147 0.80
100 3.483 1.073 6.83 × 10−6 0.0197 0.0097 0.0261 0.76
200 1.711 1.044 1.29 × 10−5 0.0754 0.0185 0.103 0.73
300 1.138 1.041 1.78 × 10−5 0.156 0.0259 0.218 0.72
400 0.854 1.045 2.20 × 10−5 0.258 0.0324 0.363 0.71
500 0.683 1.056 2.58 × 10−5 0.378 0.0386 0.535 0.71
600 0.569 1.075 2.91 × 10−5 0.511 0.0442 0.722 0.71
700 0.488 1.098 3.21 × 10−5 0.658 0.0496 0.925 0.71

Source: Data collected from Ref. 8.

OXYGEN, GAS AT P = 1atm

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

250 1.562 0.915 1.79 × 10−5 0.115 0.0226 0.158 0.73
300 1.301 0.920 2.07 × 10−5 0.159 0.0266 0.222 0.72
350 1.021 0.929 2.34 × 10−5 0.229 0.0305 0.321 0.71
400 0.976 0.942 2.58 × 10−5 0.264 0.0343 0.372 0.71
500 0.780 0.972 3.03 × 10−5 0.388 0.0416 0.549 0.71
600 0.650 1.003 3.44 × 10−5 0.529 0.0487 0.748 0.71
700 0.557 1.031 3.81 × 10−5 0.684 0.0554 0.963 0.71

Source: Constructed based on the data compiled in Refs. 5 and 6.
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REFRIGERANT 12 (FREON 12, CCI2F2), GAS AT P = 1 bar

T
(K)

ρ

(kg/m3)
cp

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

300 4.941 0.614 1.26 × 10−5 0.026 0.0097 0.032 0.80
350 4.203 0.654 1.46 × 10−5 0.035 0.0124 0.045 0.77
400 3.663 0.684 1.62 × 10−5 0.044 0.0151 0.061 0.73
450 3.248 0.711 1.75 × 10−5 0.054 0.0179 0.077 0.70
500 2.918 0.739 1.90 × 10−5 0.065 0.0208 0.097 0.67

Source: Constructed based on the data compiled in Refs. 5 and 6.

REFRIGERANT 22 (FREON 22, CHCIF2), GAS AT P = 1 atm

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

250 4.320 0.587 1.09 × 10−5 0.025 0.008 0.032 0.80
300 3.569 0.647 1.30 × 10−5 0.036 0.011 0.048 0.77
350 3.040 0.704 1.51 × 10−5 0.050 0.014 0.065 0.76
400 2.650 0.757 1.71 × 10−5 0.065 0.017 0.085 0.76
450 2.352 0.806 1.90 × 10−5 0.081 0.020 0.105 0.77
500 2.117 0.848 2.09 × 10−5 0.099 0.023 0.128 0.77

Source: Constructed based on the data compiled in Refs. 5 and 6.

STEAM AT P = 1 bar

T
(K)

ρ

(kg/m3)
cP

(kJ/kg · K)
µ

(kg/s · m)
ν

(cm2/s)
k

(W/m · K)
α

(cm2/s) Pr

373.15 0.596 2.029 1.20 × 10−5 0.201 0.0248 0.205 0.98
400 0.547 1.996 1.32 × 10−5 0.241 0.0268 0.246 0.98
450 0.485 1.981 1.52 × 10−5 0.313 0.0311 0.324 0.97
500 0.435 1.983 1.73 × 10−5 0.398 0.0358 0.415 0.96
600 0.362 2.024 2.15 × 10−5 0.594 0.0464 0.633 0.94
700 0.310 2.085 2.57 × 10−5 0.829 0.0581 0.899 0.92
800 0.271 2.151 2.98 × 10−5 1.10 0.0710 1.22 0.90
900 0.241 2.219 3.39 × 10−5 1.41 0.0843 1.58 0.89

1000 0.217 2.286 3.78 × 10−5 1.74 0.0981 1.98 0.88
1200 0.181 2.43 4.48 × 10−5 2.48 0.130 2.96 0.84
1400 0.155 2.58 5.06 × 10−5 3.27 0.160 4.00 0.82
1600 0.135 2.73 5.65 × 10−5 4.19 0.210 5.69 0.74
1800 0.120 3.02 6.19 × 10−5 5.16 0.330 9.10 0.57
2000 0.108 3.79 6.70 × 10−5 6.20 0.570 13.94 0.45

Source: Constructed based on data compiled in Refs. 5 and 6.
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IDEAL GAS CONSTANTS AND SPECIFIC HEATSa

Gas
M

(kg/kmol)
R

(kJ/kg · K)
cP

(kJ/kg · K)
cv

(kJ/kg · K)
Air, dry — 28.97 0.287 1.005 0.718
Argon Ar 39.944 0.208 0.525 0.317
Carbon dioxide CO2 44.01 0.189 0.846 0.657
Carbon monoxide CO 28.01 0.297 1.040 0.744
Helium He 4.003 2.077 5.23 3.15
Hydrogen H2 2.016 4.124 14.31 10.18
Methane CH4 16.04 0.518 2.23 1.69
Nitrogen N2 28.016 0.297 1.039 0.743
Oxygen O2 32.000 0.260 0.918 0.658
Water vapor H2O 18.016 0.461 1.87 1.40

Source: After Ref. 9.
aThe cP and cv values correspond to the temperature 300 K. This ideal gas model is valid at low
and moderate pressures (P � 1 atm).

HUMID AIR AS AN IDEAL GAS MIXTURE OF DRY AIR
AND WATER VAPOR

Mole fraction of water vapor:

xv = Pv

P
, Pv = partial pressure of water vapor

P = mixture pressure

Relative humidity:

φ = Pv

Psat (T)
, Psat = pressure of saturated water vapor at

the mixture temperature T

φ = xv in the actual mixture, at T and P

xv in the saturated mixture, at the same T and P

Specific humidity, or humidity ratio:

ω = mv (kg water vapor in the mixture)

ma (kg dry air in the mixture)

ω = 0.622

[P/φPsat(T)] − 1
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Relations between relative humidity and specific humidity:

φ = ω

ω + 0.662

P

Psat (T)

φ = ωPa
0.662Psat (T)

, Pa = P− Pv

Source: After Ref. 9.
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E

MATHEMATICAL
FORMULAS

ERROR FUNCTION

Definition and properties:

erf(x) = 2

π1/2

∫ x

0
e−m

2
dm

erf(−x) = −erf(x)

erfc(x) = 1 − erf(x) (complementary error function)

d

dx
[erf(x)]x= 0 = 2

π1/2
= 1.12838

The usual error-function table: finding erf(x) when x is specified.

x erf(x) x erf(x)

0 0 0.9 0.79691
0.01 0.01128 1 0.8427
0.1 0.11246 1.2 0.91031
0.2 0.2227 1.4 0.95229
0.3 0.32863 1.6 0.97635
0.4 0.42839 1.8 0.98909
0.5 0.5205 2 0.99532
0.6 0.60386 2.5 0.99959
0.7 0.6778 3 0.99998
0.8 0.74210 ∞ 1
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The inverted table: finding x when erf(x) is specified:

erf(x) x

0 0
0.1 0.08886
0.2 0.17914
0.25 0.22531
0.3 0.27246
0.4 0.37081
0.5 0.47694
0.6 0.59512
0.7 0.73287
0.75 0.81342
0.8 0.90619
0.9 1.16309
1 ∞

Closed-form approximate expressions for erf(x) and erfc(c), accurate within 0.42
percent [1]:

erf(x) ∼= 1 − A exp[−B(x+ C)2]

erfc(x) ∼= A exp[−B(x+ C)2]

where A, B, and C are three constants,

A = 1.5577, B = 0.7182, C = 0.7856

LEIBNIZ’S FORMULA FOR DIFFERENTIATING AN INTEGRAL

d

dx

[∫ b(x)

a(x)
F(x,m) dm

]
=

∫ b(x)

a(x)

∂F(x,m)

∂x
dm+ F(x, b)

db

dx
− F(x, a)

da

dx
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Momentum equations, 4
Momentum thickness, 53
Moody chart, 373, 378
Movement in nature 169–173
Multiple scales, 587–592, 595
Multiscale flow structures, 268

Natural convection, 296, 306, 313,
314, 555–587

external, 168–232
internal, 233–294
mass transfer, 511–516
melting, 469–477
turbulent, 356–359

Natural porous materials, 592
Navier-Stokes equation, 6
Neutral wavelength, 307, 310
Nucleate boiling, 451–454
Number of heat transfer units, Ntu,

383
Nusselt number, 40, 107, 113, 120,

155, 177, 199

Oseen linearization, 243

Packaging, 559–561, 587–592;
see also Stack of Plates

Partitions, 259–262, 562, 563
Peak heat flux, 451–454
Péclet number, 39, 113
Penetration, 289, 290
Penetrative convection, 577–579
Permeability, 540, 541
Phase change, 428–488
Plumes, 266, 290, 296, 413–422, 427,

567–571
Pohlhausen solution, 53–56, 95
Poiseuille flow, see Hagen-Poiseuille
Poiseuille number, 106
Pool boiling, 447–451
Porosity, 355, 543
Porous media, 537–605
Prandtl number, 39, 314

porous medium, 585
Prandtl’s one-seventh power law, 337,

362, 372, 392
Pressure drop, 103–110, 371–376
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Pressure melting, 469
Pulsating fires, 418–421

Radiation, 456
Rayleigh number, 177, 314
mass transfer, 513
porous medium, 556, 558, 569

Regimes, natural convection, 239
Resistance, thermal, 281–283
Reynolds analogy, 342
Reynolds number, 38, 41, 296
local, 304–306
questioned, 102–103

Richardson number, 413
Rivers, 405
Rivulet, 374
Rohsenow correlation, 451–454
Rolling contact, 87, 88
Rolling friction, 469
Rolling time, 304
Roughness, 373–375

Scale analysis, 17–20, 37–42, 121,
122, 176–182, 233–237, 265,
266, 464–466, 469–477,
583–587

Scaling laws of transition, 297–300
Schmidt number, 503
Second law of thermodynamics,

15–17, 546, 547
Series expansions, 250
Shallow enclosure, 248–255
Shape factor, 362
Shear layers, 398–405, 426, 427
Shear stress, 32, 370
Sherwood number, 503
Shooting, 600
Similarity of turbulent flows, 421, 422
Similarity solutions, 48–56, 186–189
Skin friction coefficient, 38, 336–338

Slenderness, 35, 41, 182, 406, 414,
430, 515, 548, 592

Solar pond, 488
Sources, 77–79, 216–218, 520, 552,

553, 567–571
Spacings, 129–134, 213–215, 218,

229, 230, 279–283, 389, 390,
397, 559–561, 587–592

Sphere, 209, 210, 278, 349, 350, 439,
455, 462, 463, 465, 466, 553, 566

Spreading, 474–477
Square enclosures, 256
Stability analysis, 580–582
Stacks of plates, 129–134, 213–215,

389, 390, 397
Staggered, 351–356
Stagnation flow, 61–64
Stanton number, 341, 377, 405
mass transfer, 508

Steam generator, 292–294
Stefan number, 462, 467, 470
Stokes’ solution, 599
Storage, 382, 383
Stratification, 192–195, 411–413,

563–566
Streamfunction, 21, 186
Strength, 278–284, 407–409
Stresses, 79–80
Structure of turbulence, 320, 322
Structure, 400, 402–404, 406
Suction, 64–68
Swarm of bees, 602

Theory, 30, 31
Thermal boundary layer, 39, 40, 176
Thermal conductivity, 544
Thermal diffusivity, 546
Thermodynamic relations and models,

12
Time-averaged equations, 322–325,

516, 517
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Transient heating, 233–237
Transition, 203, 295–319, 413, 421
Trapping of fluid, 260–262
Trees, alternating, 592–595
Trees, minimum-length, 143–145
Tree-shaped channels, 165, 397
Tree-shaped flow, 139–147
Turbulence, 104, 203–212, 295–319,

320–368, 398–427, 516–527
Turbulence energy, 384
Turbulence modeling, 328, 329,

383–386
Turbulent Bénard convection,

265–266
Turbulent core, 330
Turbulent duct flow, 369–397
Turbulent film, 435–437
Turbulent Prandtl number, 339
Turbulent Schmidt number, 519

Unheated starting length, 57–58
Uniform heat flux, 60–61, 189–192,

259, 260

Variational calculus, 137–139
Velocity boundary layer thickness,

176

Ventilated enclosure, 520–527
Vertical channel flow, 197–200
Vertical walls, 203–205
Viscous diffusion time, 304
Viscous dissipation function, 10, 14
Viscous dissipation, 157, 600
Viscous heating, 466–469
Viscous sublayer, 330, 331–334,

413
Volume-averaging, 538, 539
Vorticity function, 308

Wake, 296, 306, 520
Wakes, thermal, 422–424, 427
Wall coordinates, 330
Wall function method, 386
Wall number, 195
Walls, 203–209
Wavy wall, 516
Wealth, 172
Wedge flow, 61–64
Windmill blade, 368
Window

double pane, 291, 533
single pane, 196, 227–229

Y-shaped bifurcation, 604


