

we are interested in calculating the

the total force
$$F = \int_0^L \tau W \, dx \longrightarrow \tau = \mu \left(\frac{\partial u}{\partial y}\right)_{y=0}$$

the total heat transfer rate $q = \int_0^L q'' W dx \implies q'' = h(T_0 - T_\infty)$

at $y = 0^+ \Rightarrow$ no-slip hypothesis heat from the wall to the fluid is first by pure conduction $q'' = -k \left(\frac{\partial T}{\partial y}\right)_{y=0}$

$$q'' = -k\left(\frac{\partial T}{\partial y}\right)_{y=0}$$
 $h = \frac{-k(\partial T/\partial y)_{y=0}}{T_0 - T_\infty}$ \longrightarrow $ildet value of the set of the set$

Modeling the flow as incompressible and of constant property (Chapter 1), the complete mathematical statement of this problem consists of the following. Solve four equations:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
four unknowns (u, v, P, T) ,
$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$$
boundary conditions
$$\begin{bmatrix}
(i) \text{ No slip} & u = 0\\
(ii) \text{ Impermeability} & v = 0\\
(iii) \text{ Wall temperature} & T = T_0
\end{bmatrix}$$
at the solid wall
$$\begin{bmatrix}
(iv) \text{ Uniform flow} & u = U_{\infty}\\
(v) \text{ Uniform flow} & v = 0\\
(v) \text{ Uniform temperature} & T = T_{\infty}
\end{bmatrix}$$
infinitely far from the solid, in both the y and x directions

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + v\frac{\partial^2 u}{\partial y^2}$$
The free stream $P = P_{\infty}$,
the y momentum equation reduces to $u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial P}{\partial y} + v\frac{\partial^2 v}{\partial y^2}$
 $v \sim \delta \frac{U_{\infty}}{L}$ is the x momentum equation the pressure ~ friction $\rightarrow \frac{\partial P}{\partial x} \sim \frac{\mu U_{\infty}}{\delta^2}$
 $\delta \ll L$ is the y momentum equation $\frac{\partial P}{\partial y} \sim \frac{\mu v}{\delta^2}$
 $\frac{(\partial P/\partial y)(dy/dx)}{\partial P/\partial x} \sim \frac{v\delta}{U_{\infty}L} \sim \left(\frac{\delta}{L}\right)^2 \ll 1$
 $dP = \frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy \rightarrow \frac{dP}{dx} = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y}\frac{dy}{dx}$
By: M. Farhadi, Faculty of Mechanical Engineering, Babol the x momentum equation v is the x momentum equation v .

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) \implies \frac{\partial T}{\partial x} \sim \frac{\Delta T}{L}, \quad \frac{\partial T}{\partial y} \sim \frac{\Delta T}{\delta_i}, \quad \frac{\partial^2 T}{\partial x^2} \sim \frac{\Delta T}{L^2}, \quad \frac{\partial^2 T}{\partial y^2} \sim \frac{\Delta T}{\delta^2}$$

$$\Delta T = T_0 - T_{\infty} \qquad u = U_{\infty}, \quad v \sim \frac{U_{\infty} \delta_t}{L} \implies \frac{\partial T}{\partial x} \sim \frac{U_{\infty} \Delta T}{L}, \quad \frac{\partial T}{\partial x} \sim \frac{U_{\infty} \Delta T}{L}, \quad \frac{\partial T}{\partial y} \sim \frac{\Delta T}{L}, \quad \frac{\partial T}{L} \rightarrow \frac{\Delta T}{L}, \quad \frac{\partial T}{\partial y} \sim \frac{\Delta T}{L}, \quad \frac{\partial T}{L} \rightarrow \frac{\Delta T}{L}, \quad \frac{\partial T}{\partial y} \sim \frac{\Delta T}{L}, \quad \frac{\partial T}{L} \rightarrow \frac{\Delta T}{L}, \quad \frac{\partial T}{L}$$

SCALE ANALYSIS

$$\delta \neq \delta_T$$
.
 $\tau = \mu \left(\frac{\partial u}{\partial y}\right)_{y=0} \longrightarrow \tau \sim \mu \frac{U_{\infty}}{\delta}$

 free stream with uniform pressure P_{∞}
 with $dP_{\infty}/dx = 0$
 $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2} \longrightarrow \frac{U_{\infty}^2}{L}, \frac{vU_{\infty}}{\delta} \sim v \frac{U_{\infty}}{\delta^2}$

 With $dP_{\infty}/dx = 0$
 $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2} \longrightarrow \frac{U_{\infty}^2}{L}, \frac{vU_{\infty}}{\delta} \sim v \frac{U_{\infty}}{\delta^2}$
 $\delta \sim \left(\frac{vL}{U_{\infty}}\right)^{1/2}$
 $\left[\frac{\delta}{L} \sim \operatorname{Re}_L^{-1/2}\right]$
 inertia ~ friction

 $\delta = L = U_{\infty}L/v$
 $\left[\frac{\delta}{L} \sim \operatorname{Re}_L^{-1/2}\right]$
 $\delta \ll L \longrightarrow \operatorname{Re}_L^{1/2} \gg 1$

 Sy: M. Farhady, Faculty of Mechanical Engineering, Babol

 University of Technology

$$\tau \sim \mu \frac{U_{\infty}}{\delta}$$

$$\frac{\delta}{L} \sim \operatorname{Re}_{L}^{-1/2} \qquad \tau \sim \mu \frac{U_{\infty}}{L} \operatorname{Re}_{L}^{1/2} \sim \rho U_{\infty}^{2} \operatorname{Re}_{L}^{-1/2}$$

$$r \sim \mu \frac{U_{\infty}}{L} \operatorname{Re}_{L}^{1/2} \sim \rho U_{\infty}^{2} \operatorname{Re}_{L}^{-1/2}$$

$$r \sim \mu \frac{U_{\infty}}{L} \operatorname{Re}_{L}^{1/2} \sim \rho U_{\infty}^{2} \operatorname{Re}_{L}^{-1/2}$$

$$r \sim \mu \frac{U_{\infty}}{L} \operatorname{Re}_{L}^{1/2} \sim \rho U_{\infty}^{2} \operatorname{Re}_{L}^{-1/2}$$

$$h = \frac{-k(\partial T/\partial y)_{y=0}}{T_{0} - T_{\infty}} \qquad h \sim \frac{k(\Delta T/\delta_{T})}{\Delta T} \sim \frac{k}{\delta_{T}} \qquad h \sim k/\delta_{T}$$

$$\frac{\partial T}{\partial y} \sim \frac{\Delta T}{\delta_{T}} \qquad h \sim \frac{k(\Delta T/\delta_{T})}{\Delta T} \sim \frac{k}{\delta_{T}} \qquad h \sim k/\delta_{T}$$

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^{2} T}{\partial y^{2}} \qquad \text{the region } \delta_{T} \times L$$

$$convection \sim conduction$$

$$u \frac{\Delta T}{L}, v \frac{\Delta T}{\delta_{T}} \sim \alpha \frac{\Delta T}{\delta_{T}^{2}}$$

$$By: M. Farhadi, Faculty of Mechanical Engineering, Babol Interestly of Technology$$

Prandtl number $Pr = \nu/\alpha$

The first assumption, $\delta_T \gg \delta$, is therefore valid in the limit $Pr^{1/2} \ll 1$ liquid metals

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

9

$$h \sim k/\delta_T \qquad \qquad h \sim \frac{k}{L} \operatorname{Pr}^{1/2} \operatorname{Re}_L^{1/2} \qquad (\operatorname{Pr} \ll 1)$$

$$\frac{\delta_T}{L} \sim \operatorname{Pe}_L^{-1/2} \sim \operatorname{Pr}^{-1/2} \operatorname{Re}_L^{-1/2} \qquad \qquad \operatorname{Nu} = hL/k \implies \qquad \operatorname{Nu} \sim \operatorname{Pr}^{1/2} \operatorname{Re}_L^{1/2}$$

Thin thermal boundary layer, $\delta_T \ll \delta$ 2. it is clear that the scale of u in the δ_T layer is not U_∞ but $u \sim U_\infty \frac{\delta_T}{s}$ we note that $u/L \sim v/\delta_T$ because of mass conservation $u \frac{\Delta T}{L}, v \frac{\Delta T}{\delta_T} \sim \alpha \frac{\Delta T}{\delta_T^2} \longrightarrow u \sim U_{\infty} \frac{\delta_T}{\delta} \qquad \qquad \frac{\delta_T}{L} \sim \Pr^{-1/3} \operatorname{Re}_L^{-1/2}$ $\frac{\delta}{L} \sim \operatorname{Re}_L^{-1/2}$ U_{∞} δ T_{∞} $-\frac{\delta_T}{\delta} \sim \Pr^{-1/3} \ll 1 \qquad h \sim \frac{k}{L} \Pr^{1/3} \operatorname{Re}_L^{1/2} \qquad (\Pr \gg 1)$ $Nu \sim \Pr^{1/3} \operatorname{Re}_L^{1/2} \qquad (\Pr \gg 1)$ δ_T T_0 Pr >> 1 (b) $(\Pr \gg 1)$ 10 By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

 $\tau_{0-L} = \frac{1}{L} \int_0^L \tau \, dx, \qquad h_{0-L} = \frac{1}{L} \int_0^L h \, dx$ $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{dP_\infty}{dx} + v \frac{\partial^2 u}{\partial y^2}$ $u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$

by integrating each equation term by term from y = 0 to y = Y, where $Y > \max(\delta, \delta_T)$ is situated in the free stream

Before integrating

x

$$\frac{\partial}{\partial x}(u^2) + \frac{\partial}{\partial y}(uv) = -\frac{1}{\rho}\frac{dP_{\infty}}{dx} + v\frac{\partial^2 u}{\partial y^2}$$
$$\frac{\partial}{\partial x}(uT) + \frac{\partial}{\partial y}(vT) = \alpha\frac{\partial^2 T}{\partial y^2}$$

$$\frac{d}{dx} \int_{0}^{Y} u^{2} dy + u_{Y}v_{Y} - u_{0}v_{0} = -\frac{1}{\rho} Y \frac{dP_{\infty}}{dx} + v \left(\frac{\partial u}{\partial y}\right)_{Y} - v \left(\frac{\partial u}{\partial y}\right)_{0}$$

$$\frac{d}{dx} \int_{0}^{Y} uT dy + v_{Y}T_{Y} - v_{0}T_{0} = \alpha \left(\frac{\partial T}{\partial y}\right)_{Y} - \alpha \left(\frac{\partial T}{\partial y}\right)_{0}$$
Because the free stream is uniform, we note that $(\partial/\partial y)_{Y} = 0$ $u_{Y} = U_{\infty}$, and $T_{Y} = T_{\infty}$
 $v_{0} = 0$
integral on the continuity equation $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \implies \frac{d}{dx} \int_{0}^{Y} u \, dy + v_{Y} - v_{0} = 0$
 $v_{Y} = -\frac{d}{dx} \int_{0}^{Y} u \, dy$

$$\int_{0}^{Y} u \, dy = \frac{1}{\rho} \frac{dP}{dU} = \frac{dU}{\rho} \int_{0}^{Y} u \, dy$$

$$\frac{d}{dx} \int_0^Y u(U_\infty - u) \, dy = \frac{1}{\rho} Y \frac{dF_\infty}{dx} + \frac{uU_\infty}{dx} \int_0^Y u \, dy + \nu \left(\frac{\partial u}{\partial y}\right)_0$$
$$\frac{d}{dx} \int_0^Y u(T_\infty - T) \, dy = \frac{dT_\infty}{dx} \int_0^Y u \, dy + \alpha \left(\frac{\partial T}{\partial y}\right)_0$$

the integral boundary layer equations for momentum and energy

$$M_{x} = \int_{0}^{Y} \rho u^{2} dy \qquad M_{Y} = U_{\infty} d\dot{m} \qquad P_{\infty}Y \text{ Force due to pressure}$$
where $\dot{m} = \int_{0}^{Y} \rho u dy$ is the mass flow rate through the slice of height Y

$$M_{x+dx} = M_{x} + (dM_{x}/dx) dx \qquad \tau dx \text{ Tangential force due to friction}$$

$$Y[P_{\infty} + (dP_{\infty}/dx) dx] \text{ Force due to pressure}$$

$$\frac{d}{dx} \int_{0}^{Y} u(U_{\infty} - u) dy = \frac{1}{\rho} Y \frac{dP_{\infty}}{dx} + \frac{dU_{\infty}}{dx} \int_{0}^{Y} u dy + v \left(\frac{\partial u}{\partial y}\right)_{0}$$
It is an equivalent of the slice of the state of the slice of the slice

the shape of the longitudinal velocity profile is described by

$$u = \begin{cases} U_{\infty}m(n), & 0 \le n \le 1 \\ U_{\infty}, & 1 \le n \end{cases}$$
m is an unspecified shape function that varies from 0 to 1
$$\int_{0}^{y} \int_{0}^{u_{\infty}} \int_{0}^{u_{\infty}} \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - w} \int_{0}^{u_{\infty}} \frac{dP_{\infty}}{dx} = 0$$

$$dU_{\infty}/dx = 0$$

$$dU_{\infty}/dx = 0$$

$$\delta \frac{d\delta}{dx} \left[\int_{0}^{1} m(1 - m) dn \right] = \frac{v}{U_{\infty}} \left(\frac{dm}{dn} \right)_{n=0}$$

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

15

$$\frac{\delta}{x} = a_1 \operatorname{Re}_x^{-1/2} \quad a_1 = \left[\frac{2(dm/dn)_{n=0}}{\int_0^1 m(1-m) \, dn}\right]^{1/2}$$

$$C_{f,x} = \frac{\tau}{\frac{1}{2}\rho U_{\infty}^2} = a_2 \operatorname{Re}_x^{-1/2} \qquad a_2 = \left[2\left(\frac{dm}{dn}\right)_{n=0}\int_0^1 m(1-m) \, dn\right]^{1/2}$$

$$\int_{\delta_T}^{y} \int_{\delta_T} \int_{T_{\infty}}^{y} dT_{\infty}/dx = 0 \qquad p = y/\delta_T$$

$$T_0 - T = (T_0 - T_{\infty})m(p), \qquad 0 \le p \le 1$$

$$T = T_{\infty}, \qquad 1 \le p$$

$$\frac{\delta_T}{\delta} = \Delta$$
By M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

$$\delta_{T} < \delta \text{ (high-Pr fluids)}$$

$$\frac{d}{dx} \int_{0}^{Y} u(T_{\infty} - T) \, dy = \frac{dT_{\infty}}{dx} \int_{0}^{Y} u \, dy + \alpha \left(\frac{\partial T}{\partial y}\right)_{0}$$

$$T_{0} - T = (T_{0} - T_{\infty})m(p), \ 0 \le p \le 1$$

$$T = T_{\infty}, \quad 1 \le p$$

$$\frac{Pr = \frac{2(dm/dp)_{p=0}}{(a_{1}\Delta)^{2}} \left[\int_{0}^{1} m(p\Delta) \left[1 - m(p)\right] dp\right]^{-1}$$

$$\frac{\delta_{T}}{\delta} = \Delta \text{ is a function of Prandtl number only}$$

Table 2.1 Impact of the assumed profile shape on the integral solution to the laminar boundary layer friction and heat transfer problem

			Nu $\text{Re}_x^{-1/2}$ $\text{Pr}^{-1/3}$		
Profile Shape $m(n)$ or $m(p)$ (Fig. 2.4)	$\frac{\delta}{x} \operatorname{Re}_{x}^{1/2}$	$C_{f,x} \operatorname{Re}_x^{1/2}$	Uniform Temperature (Pr > 1)	Uniform Heat Flux (Pr > 1)	
m = n $m = (n/2) (3 - n^2)$ $m = \sin (\pi n/2)$ Similarity solution	3.46 4.64 4.8 4.92 ^a	0.577 0.646 0.654 0.664	0.289 0.331 0.337 0.332	0.364 0.417 0.424 0.453	

17

Assuming the simplest temperature profile,
$$m = p$$
.
 $T_0 - T = (T_0 - T_\infty)m(p), \quad 0 \le p \le 1$
 $T = T_\infty, \quad 1 \le p$
 $\Pr = \frac{2(dm/dp)_{p=0}}{(a_1\Delta)^2} \left[\int_0^1 m(p\Delta) [1 - m(p)]dp \right]^{-1}$
the cubic profile $m = (p/2)(3 - p^2) \Longrightarrow \Delta = \frac{\delta_T}{\delta} = 0.976 \Pr^{-1/3}$
 $h = 0.331 \frac{k}{x} \Pr^{1/3} \operatorname{Re}_x^{1/2} \longrightarrow \operatorname{Nu} = \frac{hx}{k} = 0.331 \Pr^{1/3} \operatorname{Re}_x^{1/2}$
In the case of liquid metals $(\Delta \gg 1)$
 $\Pr = \frac{2(dm/dp)_{p=0}}{(a_1\Delta)^2} \left[\int_0^{1/\Delta} m(p\Delta) [1 - m(p)] dp + \int_{1/\Delta}^1 [1 - m(p)] dp \right]^{-1}$

$$\delta_T \gg \delta, \quad \text{next to the wall } (0 < y < \delta), \quad U_{\infty}m,$$
whereas for $\delta < y < \delta_T$, the velocity is uniform, $u = U_{\infty}$

$$\Pr = \frac{2(dm/dp)_{p=0}}{(a_1 \Delta)^2} \left[\int_0^{1/\Delta} m(p\Delta) \left[1 - m(p) \right] dp + \int_{1/\Delta}^1 \left[1 - m(p) \right] dp \right]^{-1}$$
the simplest profile $m = p, \implies \Delta = \frac{\delta_T}{\delta} = (3\Pr)^{-1/2} \quad (\Pr \ll 1)$

$$\frac{\delta_T}{x} = 2\Pr^{-1/2} \operatorname{Re}_x^{-1/2} \quad (\Pr \ll 1)$$

$$h = \frac{k}{\delta_T} \qquad h = \frac{1}{2} \frac{k}{x} \Pr^{1/2} \operatorname{Re}_x^{1/2} \quad (\Pr \ll 1)$$

$$\operatorname{Nu} = \frac{hx}{k} = \frac{1}{2} \Pr^{1/2} \operatorname{Re}_x^{1/2} \quad (\Pr \ll 1)$$

SIMILARITY SOLUTIONS

 $\frac{u}{U_{\infty}} = \text{function}(\eta) \quad \text{the similarity variable } \eta \text{ is proportional to } y$ that η must be proportional to $y/\delta(x)$ with $\delta \sim x \operatorname{Re}_{x}^{-1/2}$ $\frac{u}{U_{\infty}} = f'(\eta), \quad \eta = \frac{y}{x} \operatorname{Re}_{x}^{1/2}$ $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ Function $f' = df/d\eta$ is presently unknown $u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial v} = v\frac{\partial^2 u}{\partial v^2}$ $P_{\infty} = \text{constant boundary layer} \longrightarrow$ u = v = 0 at y = 0three boundary conditions $u \to U_{\infty}$ as $y \to \infty$ the streamfunction $\psi(x,y)$ $u = \frac{\partial \psi}{\partial y}$, $v = -\frac{\partial \psi}{\partial x}$ By: M. Farhadi, Faculty of Mechanical Engineering, Babol 20 University of Technology

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \quad \frac{\partial^2 \psi}{\partial y \partial y} - \frac{\partial \psi}{\partial x} \frac{\partial^2 \psi}{\partial y^2} = v \frac{\partial^3 \psi}{\partial y^3}$$

$$\frac{\partial \psi}{\partial y} = 0, \quad \psi = 0 \text{ at } y = 0$$

$$\frac{\partial \psi}{\partial y} \rightarrow U_{\infty} \quad \text{as } y \rightarrow \infty$$

$$u = \frac{\partial \psi}{\partial y},$$

$$\frac{u}{U_{\infty}} = f'(\eta), \quad \eta = \frac{y}{x} \operatorname{Re}_x^{1/2} \quad \psi = (U_{\infty}vx)^{1/2}f(\eta) \quad \Rightarrow \quad v = \frac{1}{2} \left(\frac{vU_{\infty}}{x}\right)^{1/2}(\eta f' - f)$$

$$\frac{f' = f = 0}{f' \to 1} \quad \text{as } \eta = 0$$

$$f' \to 1 \quad \text{as } \eta \to \infty$$

$$u = 0.99U_{\infty}$$
 at $\eta = 4.92$
$$\frac{\delta}{x} = 4.92 \operatorname{Re}_{x}^{-1/2}$$

Displacement thickness:

$$\delta^* = \int_0^\infty \left(1 - \frac{u}{U_\infty}\right) dy$$

Momentum thickness:

$$\theta = \int_0^\infty \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty} \right) \, dy$$

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

22

local skin friction coefficient $C_{f,x} = \frac{\mu (\partial u/\partial y)_0}{\frac{1}{2}\rho U_\infty^2} = 2(f'')_{\eta=0} \operatorname{Re}_x^{-1/2}$

Numerically, it is found that $(f'')_{y=0} = 0.332 \implies C_{f,x} = 0.664 \text{Re}_x^{-1/2}$

average skin friction coefficient $C_{f,0-x} = \frac{\tau_{0-x}}{\frac{1}{2}\rho U_{\infty}^2} = 1.328 \text{Re}_x^{-1/2} = 2 C_{f,x}$

valid when $\text{Re}_x \lesssim 5 \times 10^5$

Heat Transfer Solution

$$\theta(\eta) = \frac{T - T_0}{T_\infty - T_0} \qquad u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} \qquad \qquad \theta'' + \frac{\Pr}{2} f \theta' = 0$$

$$\theta = 0 \qquad \text{at } \eta = 0$$

$$\theta = 0 \qquad \text{at } \eta = 0$$

$$\theta \to 1 \qquad \text{as } \eta \to \infty$$

Note that if Pr = 1 and $\theta = f'$.

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

. . . .

integrate eq.
$$\theta'' + \frac{\Pr}{2} f \theta' = 0$$
 $\theta'(\eta) = \theta'(0) \exp\left[-\frac{\Pr}{2} \int_{0}^{\eta} f(\beta) d\beta\right]$
Integrating again from 0 to η and using the wall condition $\theta = 0$ at $\eta = 0$
 $\theta(\eta) = \theta'(0) \int_{0}^{\eta} \exp\left[-\frac{\Pr}{2} \int_{0}^{\gamma} f(\beta) d\beta\right] d\gamma$ where β and γ are two dummy variables
as $\eta \to \infty \to \theta \to 1$ $\theta'(0) = \left\{\int_{0}^{\infty} \exp\left[-\frac{\Pr}{2} \int_{0}^{\gamma} f(\beta) d\beta\right] d\gamma\right\}^{-1}$
 $\theta'(0)$ is a function of the Prandtl number
 $h = \frac{-k(\partial T/\partial y)_{y=0}}{T_0 - T_\infty}$
 $\theta(\eta) = \frac{T - T_0}{T_\infty - T_0}$
 $\eta = \frac{y}{x} \operatorname{Re}_x^{1/2}$ $\theta'(0) = 0.332 \operatorname{Pr}^{1/3} \to \operatorname{Nu} = 0.332 \operatorname{Pr}^{1/3} \operatorname{Re}_x^{1/2}$ (Pr > 0.5)

Unheated Starting Length based on the integral method. Assuming the temperature profile shape $m = (p/2)(3 - p^2)$ $\longrightarrow U_{\infty}, T_{\infty}$ the velocity cubic profile shape $m = (n/2)(3 - n^2)$ $T = T_0$ $T = T_{\infty}$ x = 0 $x = x_0$ integral energy equation Unheated length 3 $\Delta^3 + 4\Delta^2 x \frac{d\Delta}{dr} = \frac{0.929}{\Pr}$ with the general solution 2 Nu_{x0} = 0 Constant $\Delta^3 = \frac{0.929}{\Pr} + Cx^{-3/4}$ N $\Delta = 0.976 \mathrm{Pr}^{-1/3} \left[1 - \left(\frac{x_0}{r}\right)^{3/4} \right]^{1/3}$ Nu = $\frac{hx}{k} = 0.332 Pr^{1/3} Re_x^{1/2} \left[1 - \left(\frac{x_0}{x}\right)^{3/4} \right]^{-1/3}$ 0 2 3 4 0 1 x/x_0

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

27

$$q'' = 0.332 \frac{k}{x} \operatorname{Pr}^{1/3} \operatorname{Re}_{x}^{1/2} \sum_{i=1}^{N} \frac{\Delta T_{i}}{[1 - (x_{i}/x)^{3/4}]^{1/3}} \quad N \text{ step changes } \Delta T_{i} \text{ in wall temperature}$$

$$q'' = 0.332 \frac{k}{x} \operatorname{Pr}^{1/3} \operatorname{Re}_{x}^{1/2} \int_{0}^{x} \frac{(dT_{0}/d\xi) d\xi}{[1 - (\xi/x)^{3/4}]^{1/3}} \quad (\text{the limit of infinitesimally small steps})$$

Uniform Heat Flux

 $h = q'' [T_0(x) - T_\infty]$ when the heat flux q'' is known the cubic profile $m = (p/2)(3 - p^2)$ $Nu = \frac{q''}{T_0(x) - T_\infty} \frac{x}{k} = 0.453 Pr^{1/3} Re_x^{1/2}$ (0.5 < Pr < 10)

nonuniform wall heat flux q''(x)

$$T_0(x) - T_\infty = \frac{0.623}{k} \operatorname{Pr}^{-1/3} \operatorname{Re}_x^{-1/2} \int_{\xi=0}^x \left[1 - \left(\frac{\xi}{x}\right)^{3/4} \right]^{-2/3} q''(\xi) d\xi$$
(Pr > 0.5)

In real situations, fluid properties such as k, v, μ , and α are not constant, they depend primarily on the local temperature

the constant-property formulas describe sufficiently accurately the actual convective flows encountered in applications, provided that the fluid $(T_0 - T_\infty)$ is small

dimensionless groups (Re, Pe, Pr, C_f , Nu) can be evaluated at the average temperature of the fluid in the thermal boundary layer, $T = \frac{1}{2}(T_0 + T_\infty)$ film temperature

LONGITUDINAL PRESSURE GRADIENT: FLOW PAST A WEDGE AND STAGNATION FLOW

The potential flow solution for the velocity variation along the wedge-shaped wall is: $U_{\infty}(x) = Cx^{m}$ where C is a constant and m is related to the β angle of Fig. 2.10 $m = \frac{\beta}{2\pi - \beta}$

the Bernoulli equation along the streamline that coincides with the wall,

$$\frac{1}{\rho}\frac{dP_{\infty}}{dx} = -U_{\infty}\frac{dU_{\infty}}{dx} \implies \frac{1}{\rho}\frac{dP_{\infty}}{dx} = \frac{m}{x}U_{\infty}^{2} \implies u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{m}{x}U_{\infty}^{2} + v\frac{\partial^{2}u}{\partial y^{2}}$$

Figure 2.10 Local heat transfer and friction results for laminar boundary layer flow over an isothermal wedge-shaped body.

Falkner and Skan showed that	similarity solution	$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{m}{x}U_{\infty}^{2} + v\frac{\partial^{2}u}{\partial y^{2}}$
2f''' + (m+1)ff'' + 2m[1 - (f')]	$)^{2}] = 0$	
$\eta = y(U_{\infty}/vx)^{1/2} U_{\infty} = Cx^{m}$	$u = U_{\infty} f' \qquad f(0)$	$= 0, f'(0) = 0$ $f'(\infty) = 1$
$C_{f,x} = 2f''(0) \operatorname{Re}_x^{-1/2}$	گرفتن m=0 بدست آمده است	ایده حل بر اساس حل تشابهی بلازیوس با در نظر

 Table 2.2
 The local skin friction coefficient for laminar boundary layer flow over a wedge

β	т	$f''(0) = \frac{1}{2} C_{f,x} \operatorname{Re}_{x}^{1/2}$
$2\pi = 6.28$	∞	∞
$\pi = 3.14$	1	1.233 (two-dimensional stagnation)
$\pi/2 = 1.57$	$\frac{1}{3}$	0.757
$\pi/5 = 0.627$	$\frac{1}{9}$	0.512
0	0	0.332
-0.14	-0.0654	0.164 $\operatorname{Re}_{x} = U_{\infty} x / \nu = C x^{m+1}$
-0.199	-0.0904	0 (separation)

By: M. Farhadi, Faculty of Mechanical Engineering, Babol

University of Technology

β m 0.7 0.8 1 5 10 -0.512 -0.0753 0.242 0.253 0.272 0.457 0.570 0 0 0.292 0.307 0.332 0.585 0.730 $\pi/5$ $\frac{1}{9}$ 0.331 0.348 0.378 0.669 0.851 $\pi/2$ $\frac{1}{3}$ 0.384 0.403 0.440 0.792 1.013 π 1 0.496 0.523 0.570 1.043 1.344 $8\pi/5$ 4 0.813 0.858 0.938 1.736 2.236 The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re $_x^{1/2}$ depends mainly on the wedge h varies as x^{-1} Re $_x^{1/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+x}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 2.3	Local Nusselt n	umber Nu/Re	^{1/2} for lamina	r boundary la	yer flow over	a wedge	
β m0.70.81510-0.512-0.07530.2420.2530.2720.4570.570000.2920.3070.3320.5850.730 $\pi/5$ $\frac{1}{9}$ 0.3310.3480.3780.6690.851 $\pi/2$ $\frac{1}{3}$ 0.3840.4030.4400.7921.013 π 10.4960.5230.5701.0431.344 $8\pi/5$ 40.8130.8580.9381.7362.236The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re $_x^{1/2}$ depends mainly on the wedgeh varies as x^{-1} Re $_x^{1/2}$ h varies as $x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+x}$	$\frac{\beta}{-0.512} \qquad m \qquad 0.7 \qquad 0.8 \qquad 1 \qquad 5 \qquad 10$ $-0.512 \qquad -0.0753 \qquad 0.242 \qquad 0.253 \qquad 0.272 \qquad 0.457 \qquad 0.570$ $0 \qquad 0 \qquad 0.292 \qquad 0.307 \qquad 0.332 \qquad 0.585 \qquad 0.730$ $\pi/5 \qquad \frac{1}{9} \qquad 0.331 \qquad 0.348 \qquad 0.378 \qquad 0.669 \qquad 0.851$ $\pi/2 \qquad \frac{1}{3} \qquad 0.384 \qquad 0.403 \qquad 0.440 \qquad 0.792 \qquad 1.013$ $\pi \qquad 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $8\pi/5 \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} depends mainly on the wedge h varies as x^{-1} Re ^{1/2} $h \text{ varies as } x^{(m-1)/2} \qquad h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$		Pr						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	т	0.7	0.8	1	5	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.512	-0.0753	0.242	0.253	0.272	0.457	0.570	
$\pi/5 \qquad \frac{1}{9} \qquad 0.331 \qquad 0.348 \qquad 0.378 \qquad 0.669 \qquad 0.851$ $\pi/2 \qquad \frac{1}{3} \qquad 0.384 \qquad 0.403 \qquad 0.440 \qquad 0.792 \qquad 1.013$ $\pi \qquad 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $8\pi/5 \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} depends mainly on the wedge $x = x^{-1} \operatorname{Re}_{x}^{1/2}$ $h = x^{(m-1)/2} \qquad h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+x}$	$\frac{\pi}{5} \qquad \frac{1}{9} \qquad 0.331 \qquad 0.348 \qquad 0.378 \qquad 0.669 \qquad 0.851$ $\frac{\pi}{2} \qquad \frac{1}{3} \qquad 0.384 \qquad 0.403 \qquad 0.440 \qquad 0.792 \qquad 1.013$ $\frac{\pi}{1} \qquad 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $\frac{8\pi}{5} \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} depends mainly on the wedge waries as x^{-1} Re ^{1/2} Re _x = $U_{\infty}x/v = Cx^{m+1}/v$ h varies as $x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$	0	0	0.292	0.307	0.332	0.585	0.730	
$\frac{\pi}{2} \qquad \frac{1}{3} \qquad 0.384 \qquad 0.403 \qquad 0.440 \qquad 0.792 \qquad 1.013$ $\pi \qquad 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $\frac{8\pi}{5} \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} depends mainly on the wedge varies as x^{-1} Re ^{1/2} h varies as $x^{(m-1)/2} \qquad h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+x}$	$\frac{\pi/2}{\pi} = \frac{1}{3} = 0.384 = 0.403 = 0.440 = 0.792 = 1.013$ $\frac{\pi}{1} = 0.496 = 0.523 = 0.570 = 1.043 = 1.344$ $\frac{8\pi/5}{4} = 0.813 = 0.858 = 0.938 = 1.736 = 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} depends mainly on the wedge waries as x^{-1} Re ^{1/2} $\frac{1}{Re_x} = U_{\infty}x/v = Cx^{m+1}/v$ h varies as $x^{(m-1)/2} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$	π/5	$\frac{1}{9}$	0.331	0.348	0.378	0.669	0.851	
$\pi \qquad 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $8\pi/5 \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} _x depends mainly on the wedge <i>n</i> varies as x^{-1} Re ^{1/2} _x $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+n}$	$\pi = 1 \qquad 0.496 \qquad 0.523 \qquad 0.570 \qquad 1.043 \qquad 1.344$ $8\pi/5 \qquad 4 \qquad 0.813 \qquad 0.858 \qquad 0.938 \qquad 1.736 \qquad 2.236$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re ^{1/2} _x depends mainly on the wedge a varies as x^{-1} Re ^{1/2} _x $h = U_{\infty}x/v = Cx^{m+1}/v$ $h = h = x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$	π/2	$\frac{1}{3}$	0.384	0.403	0.440	0.792	1.013	
8 $\pi/5$ 4 0.813 0.858 0.938 1.736 2.236 The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re _x ^{1/2} depends mainly on the wedge a varies as x^{-1} Re _x ^{1/2} h varies as $x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$	$\frac{8\pi/5}{4} = \frac{4}{0.813} = \frac{0.858}{0.938} = \frac{0.938}{1.736} = \frac{2.236}{2.236}$ The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re _x ^{1/2} depends mainly on the wedge waries as x^{-1} Re _x ^{1/2} $\frac{1}{1 + (m-1)/2} = \frac{2}{1 + m}$ $\frac{1}{1 + (m-1)/2} = \frac{2}{1 + m}$	π	1	0.496	0.523	0.570	1.043	1.344	
The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re _x ^{1/2} depends mainly on the wedge a varies as x^{-1} Re _x ^{1/2} h varies as $x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+n}$	The solid curves in Fig. 2.10 show that Nu/Pr ^{1/3} Re _x ^{1/2} depends mainly on the wedge <i>a</i> varies as x^{-1} Re _x ^{1/2} h varies as $x^{(m-1)/2}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$ $h_{0-x} = \frac{h}{1+(m-1)/2} = \frac{2}{1+m}$	8π/5	4	0.813	0.858	0.938	1.736	2.236	
	$\operatorname{Re}_{x} = U_{\infty} x/\nu = C x^{m+1}/\nu$	The solid $\frac{1}{2}$ varies $\frac{1}{2}$	curves in Fig. 2 as $x^{-1} \operatorname{Re}_x^{1/2}$	2.10 show th h varies a	hat Nu/Pr ^{1/3} as $x^{(m-1)/2}$	$\operatorname{Re}_{x}^{1/2} \operatorname{depend}_{h_{0-x}} = \frac{1}{1}$	s mainly on the head of the h	the wedge $= \frac{2}{1+r}$	
$Nu_{x} = \sqrt{\frac{m+1}{2}} \sqrt{Re_{x}} \theta' \bigg _{\eta^{*}=0} \alpha^{*} = \sqrt{\frac{m+1}{2}} \theta' \bigg _{\eta^{*}=0} Nu_{x} = \alpha^{*} \sqrt{Re_{x}}$		By By	y: M. Farhadi, Faculty of N	lechanical Engineer	ing, Babol Universit	y of Technology			

 $\theta(\eta) = (T - T_0)/(T_\infty - T_0) \implies \theta'' + \frac{1}{2} \operatorname{Pr}(m+1)f\theta' = 0 \qquad \theta(0) = 0 \text{ and } \theta(\infty) = 1$

FLOW THROUGH THE WALL: BLOWING AND SUCTION

where the boundary layer fluid crosses the wall surface with the normal velocity $v_0(x)$,

Positive v_0 values indicate *blowing*, Negative v_0 values represent *suction*,

the free stream $U_{\infty} = Cx^m$ The surface is isothermal (T_0) ,

$$v = -\partial \psi/\partial \xi$$
 with $\psi = (U_{\infty}vx)^{1/2} f(\eta), \eta = y(U_{\infty}/vx)^{1/2}$

 $\psi = (C\nu x^{m+1})^{1/2} f[y(C/\nu)^{1/2} x^{(m-1)/2}]$

$$v = -\frac{\partial \psi}{\partial x} = -\frac{m+1}{2} x^{(m-1)/2} (Cv)^{1/2} f(\eta)$$

- $(Cur^{m+1})^{1/2} \frac{df}{df} v (C/u)^{1/2} \frac{m-1}{2} r^{(m-3)/2}$ $f'(0) = 0$

 $-(C\nu x^{m+1})^{1/2} \frac{3}{d\eta} y(C/\nu)^{1/2} \frac{1}{2} x^{(m-3)/2} \qquad f'(\infty) = 1$ At the wall, the normal velocity $v_0 = v(y = 0) \implies v_0 = -\frac{m+1}{2} x^{(m-1)/2} (C\nu)^{1/2} f(0)$

if $f(0) = \text{constant} \implies v_0 \text{ must vary as } x^{(m-1)/2}$

$$\Gamma(0) = -\frac{2}{m+1} \frac{v_0}{U_\infty} \operatorname{Re}_x^{1/2} \qquad \text{(constant)} \\ \operatorname{Re}_x = U_\infty x/\nu$$

(v_0/U_∞) Re_x^{1/2} is the blowing parameter

Table 2.4 Effect of flow through the wall: local skin friction coefficient and Nusselt number for laminar boundary layer flow over a permeable isothermal wall parallel to the stream

			Nu/Re $_x^{1/2}$		
$\frac{v_0}{U_\infty} \mathrm{Re}_x^{1/2}$	$f''(0) = \frac{1}{2}C_{f,x} \operatorname{Re}_{x}^{1/2}$	Pr = 0.7	Pr = 0.8	Pr = 0.9	
-2.5	2.59	1.85	2.097	2.59	2.0
-0.75	0.945	0.722	0.797	0.945	Suction
-0.25	0.523	0.429	0.461	0.523	
0	0.332	0.292	0.307	0.332	Impermeable wall
+0.25	0.165	0.166	0.166	0.165	
+0.375	0.094	0.107	0.103	0.0937	Blowing
+0.5	0.036	0.0517	0.0458	0.0356	J
+0.619	0	0	0	0	Separation
В	y: M. Farhadi, Faculty of Mechanical Er	ngineering, Babol	Ţ	when the wall is	parallel to the free stream
36 u	niversity of Technology	0 0'			

				т				
$v_0 = 1/2$	-0.0418	-0.0036	0	0.0257	0.0811	0.333	0.500	1
$\overline{U_{\infty}}^{\mathrm{Re}_{\chi}^{1/2}}$	$(\beta/\pi=-0.08)$	(-0.0072)	(0)	(0.05)	(0.15)	(1/2)	(2/3)	(1)
0			0.292			0.384		0.496
0.0239	0.103							
0.25			0.166					
0.333						0.242		
0.375			0.107				0.259	
0.5		0.0251	0.0517					0.293
0.518				0.087				
0.558					0.109			
0.667						0.131		
1								0.146

Table 2.5 Local Nusselt number $Nu/Re_x^{1/2}$ for laminar boundary layer flow over an isothermal wedge with blowing (Pr = 0.7)

By: M. Farhadi, Faculty of Mechanical Engineering, Bal	ool
University of Technology	

$$J \frac{\partial \theta}{\partial \eta} = \theta \qquad (\eta = 0) \qquad \text{where } \theta = (T - T_0)/(T_\infty - T_0), \ \eta = y(U_\infty/vx)^{1/2}, \text{ and}$$

$$J = \frac{k}{k_w} \left(\frac{U_\infty t^2}{vx}\right)^{1/2} \qquad J = 0 \text{ corresponds to the Pohlhausen problem}$$

$$t(x) = \overline{t} \left[1 + b\left(\frac{1}{2} - \frac{x}{L}\right)\right] \quad \overline{t} \text{ is the coating thickness averaged from } x = 0 \text{ to } x = L,$$

$$b \text{ is a dimensionless taper parameter.} \qquad J = \overline{J} \left(\frac{x}{L}\right)^{-1/2} \left[1 + b\left(\frac{1}{2} - \frac{x}{L}\right)\right]$$
in which \overline{J} is the J value based on the L-averaged thickness $\overline{t}, \quad \overline{J} = \frac{k}{k_w} \frac{\overline{t}}{L} \operatorname{Re}_L^{1/2}$

$$q' = \int_0^L k \left(\frac{\partial T}{\partial y}\right)_{y=0} dx = k(T_\infty - T_0) \operatorname{Re}_L^{1/2} \int_0^1 \theta'(0) \left(\frac{x}{L}\right)^{-1/2} d\left(\frac{x}{L}\right)$$
a single similarity solution for θ does not exist in this case,

$$\int_{A} q''(T_{0} - T_{\infty}) dA = q''(\overline{T}_{0} - T_{\infty})(2LW)$$

$$Nu = \frac{q''}{T_{0}(x) - T_{\infty}} \frac{x}{k} = 0.453 Pr^{1/3} Re_{x}^{1/2} \quad (0.5 < Pr < 10)$$

$$\int_{Uniform Heat Flux} F_{D} = 2LW\tau_{0-L}.$$

$$\tau_{0-L} = 0.664\rho U_{\infty}^{2} Re_{L}^{-1/2}$$

$$\int_{-L} \frac{F_{D} U_{\infty}}{T_{\infty}} = 1.328 \frac{\mu}{T_{\infty}} U_{\infty}^{2} Re_{L}^{1/2}$$

$$\int_{-L} \frac{S_{gen}}{T_{\infty}^{2}k} \frac{0.736(q')^{2}}{Pr^{1/3}Re_{L}^{1/2}} + 1.328 \frac{\mu}{T_{\infty}} U_{\infty}^{2} Re_{L}^{1/2}$$

$$Re_{L} = U_{\infty}L/\nu$$
irreversibility due to heat transfer decreases as the plate ismade longer, while the fluid flow irreversibility increases Sgen is minimum when L has a certain value By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology
$$\frac{0.736(q')^{2}}{T_{\infty}^{2}k Pr^{1/3}Re_{L}^{1/2}} + U_{\infty}^{2}Re_{L}^{1/2}$$

$$Re_{L,opt} = U_{\infty}L_{opt}/\nu$$

$$Re_{L,opt} = U_{\infty}L_{opt}/\nu$$

The number *B* is the dimensionless version of the ratio of the heat transfer rate divided by the flow speed,

 $\operatorname{Re}_L \ll B^2 \implies$ the entropy generation rate is due mainly to heat transfer

 $\operatorname{Re}_L \gg B^2 \longrightarrow$ the plate is so long that most of its work destruction is due to fluid friction.

its swept length for minimum irreversibility

$$L_{\rm opt} = 0.554 \frac{(q')^2}{kT_{\infty}\rho U_{\infty}^3 \ \rm Pr^{1/3}}$$

$$S_{\text{gen,min}} = 1.98 \frac{qU_{\infty}}{(k/\mu)^{1/2} T_{\infty}^{3/2} \text{ Pr}^{1/6}}$$

2.12 DISTRIBUTION OF HEAT SOURCES ON A WALL COOLED BY FORCED CONVECTION

the wall temperature is near the allowed limit

$$T_w(x) = T_{\max}$$
, constant

The number of heat sources per unit of plate length (N') is unknown.

First, we assume that the density of line sources is sufficiently high so that we may express the distribution of discrete q' sources as a nearly continuous distribution of heat flux

$$q''(x) = q'N'$$

$$\Pr \gtrsim 1$$

$$Nu = 0.332 \operatorname{Pr}^{1/3} \operatorname{Re}_{x}^{1/2}$$

$$Nu = \frac{hx}{k}$$

$$N'(x) = 0.332 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \left(\frac{U_{\infty}x}{v}\right)^{1/2} x^{-1/2}$$

$$N'(x) = 0.332 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \left(\frac{U_{\infty}}{v}\right)^{1/2} x^{-1/2}$$

$$N'(x) = 0.332 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \left(\frac{U_{\infty}}{v}\right)^{1/2} x^{-1/2}$$

$$N'(x) = 0.332 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \left(\frac{U_{\infty}}{v}\right)^{1/2} x^{-1/2}$$

$$N = \int_{0}^{L} N' dx = 0.664 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \operatorname{Re}^{1/2}$$

$$Q'_{\max} = q'N = 0.664 k(T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \operatorname{Re}^{1/2}$$
This Q'_{\max} expression is the same as the total heat transfer rate from an isothermal wall at T_{\max}
the local number of heat sources per unit of wall height is $N'(x) = \frac{1}{D_0 + S(x)}$
 $T_{\omega} \rightarrow (x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$
 $U_{\omega} \rightarrow (x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$
 $U_{\omega} \rightarrow (x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$
 $V_{\omega} \rightarrow (x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$
The heat flux q''_0 is a known constant \rightarrow the function $q'(x)$
 $N'(x) = 0.332 \frac{k}{q'} (T_{\max} - T_{\infty}) \operatorname{Pr}^{1/3} \left(\frac{U_{\infty}}{v}\right)^{1/2} x^{-1/2}$
 $N'(x) = \frac{1}{D_0 + S(x)}$
 $S: M.$ Farhadi, Faculty of Mechanical Engineering, Babol

University of Technology

45

$$\frac{S(x)}{L} \cong \frac{3q' \operatorname{Pr}^{-1/3} \operatorname{Re}^{-1/2}}{k(T_{\max} - T_{\infty})} \left(\frac{x}{L}\right)^{1/2} - \frac{D_0}{L} \quad \text{The spacing } S \text{ increases as } x \text{ increases}$$
Near the start of the boundary layer, the $S(x)$ has negative values.
Because D_0 is the smallest length scale of the structure, the spacings S
cannot be smaller than D_0
 $S \sim D_0 \quad \text{when} \quad x \sim x_0$
 $\frac{S(x)}{L} \cong \frac{3q' \operatorname{Pr}^{-1/3} \operatorname{Re}^{-1/2}}{k(T_{\max} - T_{\infty})} \left(\frac{x}{L}\right)^{1/2} - \frac{D_0}{L} - \left(\frac{x_0}{L}\right)^{1/2} \sim 0.664 \frac{D_0}{L} \frac{k}{q'} (T_{\max} - T_0) \operatorname{Pr}^{1/3} \operatorname{Re}^{1/2}$

46

(

_