LAMINAR DUCT FLOW

HYDRODYNAMIC ENTRANCE LENGTH

Blasius's boundary layer thickness
the entrance length X by writing $\delta(X)=D / 2] \begin{array}{r}\frac{\delta}{x}=4.92 \mathrm{Re}_{x}^{-1 / 2}\end{array} \longrightarrow \frac{X / D}{\operatorname{Re}_{D}}=0.01$
$\begin{aligned} & U_{\infty}=U_{c} \\ & Y=\delta(x)\end{aligned} \Rightarrow \frac{d}{d x} \int_{0}^{Y} u\left(U_{\infty}-u\right) d y=\frac{1}{\rho} Y \frac{d P_{\infty}}{d x}+\frac{d U_{\infty}}{d x} \int_{0}^{Y} u d y+v\left(\frac{\partial u}{\partial y}\right)_{0}^{\Longrightarrow} \Longrightarrow U_{c} \frac{d U_{c}}{d x}+\frac{1}{\rho} \frac{d P}{d x}=0$

$$
\frac{d}{d x}\left[\int_{0}^{\delta}\left(U_{c}-u\right) u d y\right]+\frac{d U_{c}}{d x} \int_{0}^{\delta}\left(U_{c}-u\right) d y=v\left(\frac{\partial u}{\partial y}\right)_{0}
$$

mass conservation in the channel of half-width

$$
\int_{0}^{\delta} \rho u d y+\int_{\delta}^{D / 2} \rho U_{c} d y=\rho U \frac{D}{2}
$$

first assuming a boundary layer profile shape $\Rightarrow u / U_{c}=2 y / \delta-(y / \delta)^{2}$

$$
\left.\begin{array}{c}
\frac{x / D}{\mathrm{Re}_{D}}=\frac{3}{40}\left(9 \frac{U_{c}}{U}-2-7 \frac{U}{U_{c}}-16 \ln \frac{U_{c}}{U}\right) \\
\frac{\delta(x)}{D / 2}=3\left[1-\frac{U}{U_{c}(x)}\right] \quad \text { At the location } X \\
\delta(X)=D / 2
\end{array}\right\} \begin{gathered}
U_{c}(X)=\frac{3}{2} U \\
\frac{X / D}{\mathrm{Re}_{D}}=0.026
\end{gathered}
$$

Schlichting [3] $\frac{X / D}{\operatorname{Re}_{D}} \cong 0.04$

Figure 3.3 Local and average skin friction coefficients in the entrance region of a round tube.

FULLY DEVELOPED FLOW

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \Longrightarrow v \sim \frac{D U}{L}
$$

$$
x \sim L \quad y \sim D \quad u \sim U \underset{>}{ }
$$

$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \quad$ fully developed region $\Rightarrow v$ is negligible
$\left.u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial P}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)\right]$

$$
\left.\begin{array}{l}
v=0 \quad \text { and } \frac{\partial u}{\partial x}=0
\end{array}\right] \frac{{ }^{2}}{D y}=0 \quad \overbrace{}^{2})^{P \text { is a function of } x} \begin{array}{l}
u \text { is a function of } y
\end{array}] \begin{aligned}
& u=\frac{D^{2}}{12 \mu}\left(-\frac{d P}{d x}\right) \quad \text { at } y= \pm D / 2
\end{aligned}
$$

the fully developed laminar flow in a round tube of radius $r_{0} \Rightarrow \frac{d P}{d x}=\mu\left(\frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}\right)$
$u=2 U\left[1-\left(\frac{r}{r_{0}}\right)^{2}\right]$
$U=\frac{r_{0}^{2}}{8 \mu}\left(-\frac{d P}{d x}\right) \quad \dot{m}=\frac{\pi r_{0}^{4}}{8 v}\left(-\frac{d P}{d x}\right)$

Hagen-Poiseuille flows are flows in which the fluid inertia is zero everywhere

$$
\frac{\text { longitudinal pressure force }}{\text { friction force }} \Rightarrow \frac{-d P / d x}{\mu \partial^{2} u / \partial r^{2}} \sim \frac{\Delta P / L}{\mu U / D^{2}}=O(1)
$$

Re_{D} has no meaning in fully developed laminar duct flow

HYDRAULIC DIAMETER AND PRESSURE DROP

$$
A \Delta P=\tau_{w} p L
$$

$$
\text { the friction factor. } \quad f=\frac{\tau_{w}}{\frac{1}{2} \rho U^{2}}
$$

This definition is essentially the same as skin friction coefficient One important difference between f and $C_{f, x}$ is
friction factor f is x independent because it is a fully developed regime concept

literature also uses $4 f$ as the friction factor

$$
\begin{aligned}
& f=16 / \operatorname{Re}_{D} \text { براى لوله حساب نماييد. براى رابطه فوق اين ضريب برابر است باي }
\end{aligned}
$$

the pressure drop ΔP across the duct is $\quad \Delta P=f \frac{p L}{A}\left(\frac{1}{2} \rho U^{2}\right)$
Finally, note that A / p is the linear dimension of the cross section:

$$
r_{h}=\frac{A}{p} \quad \text { hydraulic radius } \quad \text { or } \quad D_{h}=4 r_{h}=\frac{4 A}{p} \quad \text { hydraulic diameter }
$$

$$
\begin{array}{rlrl}
\Delta P & =f \frac{p L}{A}\left(\frac{1}{2} \rho U^{2}\right) \Longrightarrow \Delta P=f \frac{4 L}{D_{h}}\left(\frac{1}{2} \rho U^{2}\right) \\
f & =\frac{24}{\operatorname{Re}_{D_{h}}}, \quad D_{h} & =2 D & \text { parallel plates }(D=\text { gap thickness }) \\
f & =\frac{16}{\operatorname{Re}_{D_{h}}}, \quad D_{h} & =D \quad \text { round tube }(D=\text { tube diameter })
\end{array}
$$

These formulas hold as long as the flow is in the laminar regime ($\operatorname{Re}_{D_{h}}<2000$)

Cross Section

Circular

Square

Equilateral triangle

Rectangular (4:1)

Infinite parallel plates

Poiseuille number $\quad \mathrm{Po}=f \operatorname{Re}_{D_{h}}$ The product $f \operatorname{Re}_{D_{h}}$ is a number that depends only on the shape of the cross section

$$
\frac{\Delta P / L}{\mu U / D_{h}^{2}} \sim f \operatorname{Re}_{D_{h}}
$$

The fact that $f \operatorname{Re}_{D_{h}}$ is a constant expresses the balance between the only two forces that are present.

Table 3.2 Effect of cross-sectional shape on f and Nu in fully developed duct flow

Cross-sectional geometry	$f \mathrm{Re}_{D_{h}}$	$B=\frac{\pi D_{h}^{2} / 4}{A_{\text {duct }}}$		$\mathrm{Nu}=h D_{h} / k$	
	13.3	0.605		Uniform $q^{\prime \prime}$	Uniform T_{0}

By: M. Farhadi, Faculty of Mechanical Engineering, Babol University of Technology

$$
\frac{d P}{d x}=\mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)=\text { constant }
$$ can be solved for $u(y, z)$ by Fourier series

Figure 3.5 Straight duct with rectangular cross section.

$$
u(y, z)=u_{0}\left[1-\left(\frac{y}{a / 2}\right)^{2}\right]\left[1-\left(\frac{z}{b / 2}\right)^{2}\right]
$$

integrated over the entire cross section

$$
a b \frac{d P}{d x}=\mu \int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2}\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) d z d y \quad a b \frac{d P}{d x}=-\frac{16}{3} \mu u_{0}\left(\frac{b}{a}+\frac{a}{b}\right)
$$

average velocity U.
where u_{0} is the centerline (peak) velocity.

$$
\begin{aligned}
& a b U=\int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2} u d z d y \\
& \begin{array}{c}
a b \frac{d P}{d x}=-\frac{16}{3} \mu u_{0}\left(\frac{b}{a}+\frac{a}{b}\right) \stackrel{\text { جايگزارى }}{\rightleftarrows} \Delta P=f \frac{4 L}{D_{h}}\left(\frac{1}{2} \rho U^{2}\right) \\
u_{0}=\frac{9}{4} U
\end{array} \\
& f=\frac{a^{2}+b^{2}}{(a+b)^{2}} \frac{24}{\operatorname{Re}_{D_{h}}} \\
& D_{h}=\frac{4 a b}{2(a+b)}
\end{aligned}
$$

علت اختلاف مشاهده شده بدليل تابع سرعت ارائه شده در كانال با مقطع مستطيلى است.

Friction factor for fully developed flow in a duct with rectangular cross section.

Figure 3.7 Cross-sectional shape number B and fully developed friction and heat transfer in straight ducts.

HEAT TRANSFER TO FULLY DEVELOPED DUCT FLOW

Mean Temperature

$$
\begin{gathered}
q^{\prime \prime} \cdot 2 \pi r_{0} d x=d \iint_{A} \rho u c_{P} T d A \\
\frac{d T_{m}}{d x}=\frac{2}{r_{0}} \frac{q^{\prime \prime}}{\rho c_{P} U}
\end{gathered} \quad\left[\begin{array}{r}
\\
T_{m} \rho c_{P} U A=\iint_{A} \rho c_{p} u T d A \\
\end{array}\right.
$$

For constant-property tube flow. $T_{m}=\frac{1}{\pi r_{0}^{2} U} \int_{0}^{2 \pi} \int_{0}^{r_{0}} u T r d r d \theta \quad h=\frac{q^{\prime \prime}}{T_{0}-T_{m}}=\frac{k(\partial T / \partial r)_{r=r_{0}}}{T_{0}-T_{m}}$

Fully Developed Temperature Profile

flow through a round tube, the energy equation

$$
\frac{1}{\alpha}\left(u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial r}\right)=\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial x^{2}}
$$

In the hydrodynamic fully developed region, we have $v=0$ and $u=u(r)$;

$$
\begin{gathered}
\frac{\begin{array}{l}
\frac{u(r)}{\alpha} \frac{\partial T}{\partial x}= \\
\frac{\partial^{2} T}{\partial r^{2}}
\end{array}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial x^{2}}}{\overbrace{\frac{U}{\alpha}\left(\frac{q^{\prime \prime}}{D \rho c_{P} U}\right)}^{\text {Convection }},} \overbrace{\frac{\text { radial }}{\text { Conduction }}}^{\frac{\Delta T}{D^{2}},} \begin{array}{l}
\frac{1}{x}\left(\frac{q^{\prime \prime}}{D \rho c_{P} U}\right)
\end{array})
\end{gathered}
$$

$$
D^{2} / \Delta T \times\left(\frac{U}{\alpha}\left(\frac{q^{\prime \prime}}{D \rho c_{P} U}\right), \quad \frac{\Delta T}{D^{2}}, \quad \frac{1}{x}\left(\frac{q^{\prime \prime}}{D \rho c_{P} U}\right)\right) \quad h=q^{\prime \prime} / \Delta T
$$

$\left(\mathrm{Pe}_{D} \gg 1\right), \Longrightarrow \frac{u(r)}{\alpha} \frac{\partial T}{\partial x}=\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}$ the fully developed temperature

$$
\frac{T_{0}-T}{T_{0}-T_{m}}=\phi\left(\frac{r}{r_{0}}\right)
$$

where, in general, T, T_{0}, and T_{m} can be functions of x.

$$
\text { or } \frac{\partial}{\partial x}\left[\frac{T_{s}(x)-T(r, x)}{T_{s}(x)-T_{m}(x)}\right]_{\mathrm{fd}, t}=0
$$

$\mathrm{Nu}=\frac{h D}{k}=\frac{D}{k} \frac{q^{\prime \prime}}{T_{0}-T_{m}} \quad \mathrm{Nu}=D \frac{(\partial T / \partial r)_{r=r_{0}}}{T_{0}-T_{m}} \sim 1$
the scaling law $\mathrm{Nu} \sim 1] \frac{\partial T / \partial\left(r / r_{0}\right)}{T_{0}(x)-T_{m}(x)}=f_{1}\left(\frac{r}{r_{0}}\right)=O(1)$
the x variation of $(\partial T / \partial r)_{r=r_{0}}$ must be the same as that of $T_{0}(x)-T_{m}(x)$

$$
\int \frac{\partial T / \partial\left(r / r_{0}\right)}{T_{0}(x)-T_{m}(x)}=f_{1}\left(\frac{r}{r_{0}}\right) \Longrightarrow T\left(x, \frac{r}{r_{0}}\right)=\left(T_{0}-T_{m}\right) f_{2}\left(\frac{r}{r_{0}}\right)+f_{3}(x)
$$

Uniform Wall Heat Flux

$$
\left.\begin{array}{l}
\frac{T_{0}-T}{T_{0}-T_{m}}=\phi\left(\frac{r}{r_{0}}\right) \\
h=q^{\prime \prime} \mid \Delta T \\
\Delta T=T_{0}-T_{m}
\end{array}\right]_{q^{\prime \prime} D / k\left[T_{0}(x)-T_{m}(x)\right] \sim 1 \Longrightarrow \frac{q^{\prime \prime}}{h} \phi\left(\frac{r}{r_{0}}\right) \Rightarrow \frac{\partial T}{\partial x}=\frac{d T_{0}}{d x}} T(x, r)=T_{0}(x)=\frac{d T_{0}}{d x}=\frac{d T_{m}}{d x}
$$

$$
\begin{aligned}
& \text { or } \\
& \frac{\partial}{\partial x}\left[\frac{T_{s}(x)-T(r, x)}{T_{s}(x)-T_{m}(x)}\right]_{\mathrm{fd}, t}=\left.0 \Rightarrow \frac{\partial T}{\partial x}\right|_{\mathrm{fd}, t}=\left.\frac{d T_{s}}{d x}\right|_{\mathrm{fd}, t}-\left.\frac{\left(T_{s}-T\right)}{\left(T_{s}-T_{m}\right)} \frac{d T_{s}}{d x}\right|_{\mathrm{fd}, t}+\left.\frac{\left(T_{s}-T\right)}{\left(T_{s}-T_{m}\right)} \frac{d T_{m}}{d x}\right|_{\mathrm{fd}, t} \\
& \left.\left.\frac{d T_{s}}{d x}\right|_{\mathrm{fd}, t}=\left.\frac{d T_{m}}{d x}\right|_{\mathrm{fd}, t} \quad q_{s}^{\prime \prime}=\mathrm{constant}\right]\left.\quad \frac{\partial T}{\partial x}\right|_{\mathrm{fd}, t}=\left.\left.\frac{d T_{s}}{d x}\right|_{\mathrm{fd}, t} \Longrightarrow \frac{\partial T}{\partial x}\right|_{\mathrm{fd}, t}=\left.\frac{d T_{m}}{d x}\right|_{\mathrm{fd}, t} \\
& \begin{array}{l}
\frac{d T_{m}}{d x}=\frac{2}{r_{0}} \frac{q^{\prime \prime}}{\rho c_{P} U} \\
\left.\frac{\partial T}{\partial x}\right|_{\mathrm{f}, t, t}=\left.\frac{d T_{m}}{d x}\right|_{\mathrm{f}, t, t}
\end{array} \quad\left[\frac{\partial T}{\partial x}=\frac{2}{r_{0}} \frac{q^{\prime \prime}}{\rho c_{P} U}=\mathrm{constant}\right. \\
& \left.\begin{array}{l}
\phi\left(r_{*}\right), \text { where } r_{*}=r / r_{0} \\
\underline{u(r)} \\
\frac{\partial T}{\partial}=\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{\partial T} \frac{\partial T}{\partial r}
\end{array}\right]-2 \frac{h D}{k}\left(1-r_{*}^{2}\right)=\frac{d^{2} \phi}{d r_{*}^{2}}+\frac{1}{r_{*}} \frac{d \phi}{d r_{*}} \\
& \left.u=2 U\left[1-\left(\frac{r}{r_{0}}\right)^{2}\right]\right] \\
& \phi=C_{2}-2 \mathrm{Nu}\left(\frac{r_{*}^{2}}{4}-\frac{r_{*}^{4}}{16}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T(x, r)=T_{0}(x)-\frac{q^{\prime \prime}}{h} \phi\left(\frac{r}{r_{0}}\right) \\
& \phi=C_{2}-2 \mathrm{Nu}\left(\frac{r_{*}^{2}}{4}-\frac{r_{*}^{4}}{16}\right) \\
& T_{m}=\frac{1}{\pi r_{0}^{2} U} \int_{0}^{2 \pi} \int_{0}^{r_{0}} u T r d r d \theta \\
& T_{0}-T_{m}=\frac{1}{\pi r_{0}^{2} U} \int_{0}^{2 \pi} \int_{0}^{r_{0}}\left(T_{0}-T\right) u r d r d \theta=4 \int_{0}^{1}\left(T_{0}-T\right)\left(1-r_{*}^{2}\right) r_{*} d r_{*} \\
& 1=4 \mathrm{Nu} \int_{0}^{1}\left(\frac{3}{8}-\frac{r_{*}^{2}}{2}+\frac{r_{*}^{4}}{8}\right)\left(1-r_{*}^{2}\right) r_{*} d r_{*}=\frac{11}{48} \mathrm{Nu} \\
& \mathrm{Nu}=\frac{48}{11}=4.36
\end{aligned}
$$

For noncircular cross sections, $\mathrm{Nu}=\frac{h D_{h}}{k}$

Uniform Wall Temperature

$$
\begin{aligned}
& \begin{aligned}
+q^{\prime \prime}(x) & =h\left[T_{0}-T_{m}(x)\right] \\
\frac{d T_{m}}{d x} & =\frac{2}{r_{0}} \frac{q^{\prime \prime}}{\rho c_{P} U}
\end{aligned} \\
& \text { integrating from } T_{m}=T_{1} \text { at } x=x_{1} \\
& \text { bulk temperature is } T_{1} \text { at some place } x=x_{1} \\
& \underbrace{q^{\prime \prime}}_{x} \begin{aligned}
T_{0}-T_{m}(x)= & \left(T_{0}-T_{1}\right) \exp \left[-\frac{\alpha \mathrm{Nu}}{r_{0}^{2} U}\left(x-x_{1}\right)\right] \\
\frac{T_{0}-T}{T_{0}-T_{m}}=\phi\left(\frac{r}{r_{0}}\right) & \Rightarrow T=T_{0}-\phi\left(T_{0}-T_{m}\right) \\
& \Rightarrow \frac{\partial T}{\partial x}=\frac{\partial}{\partial x}\left[T_{0}-\phi\left(T_{0}-T_{m}\right)\right]=\phi \frac{d T_{m}}{d x}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{u(r)}{\alpha} \frac{\partial T}{\partial x}=\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r} \\
& u=2 U\left[1-\left(\frac{r}{r_{0}}\right)^{2}\right] \\
& \frac{\partial T}{\partial x}=\phi \frac{d T_{m}}{d x} \\
& \text { for the unknown } \phi\left(r_{*}\right) \\
& \begin{array}{l}
-2 \mathrm{Nu}\left(1-r_{*}^{2}\right) \phi=\frac{d^{2} \phi}{d r_{*}^{2}}+\frac{1}{r_{*}} \frac{d \phi}{d r_{*}} \quad \mathrm{Nu}=-2\left(\frac{d \phi}{d r_{*}}\right)_{r_{*}=1} \\
\text { boundary conditions }
\end{array} \\
& d \phi / d r_{*}=0 \quad \text { at } r_{*}=0 \quad \text { radial symmetry } \\
& \phi=0 \quad \text { at } r_{*}=1 \quad \text { isothermal wall }
\end{aligned}
$$

to solve the problem numerically \Longrightarrow guess the value of Nu the differential equation is first approximated by finite differences
integrated from $r_{*}=1$ to $r_{*}=0 \Rightarrow \mathrm{Nu} \Longrightarrow-2 \mathrm{Nu}\left(1-r_{*}^{2}\right) \phi=\frac{d^{2} \phi}{d r_{*}^{2}}+\frac{1}{r_{*}} \frac{d \phi}{d r_{*}}$ مقايسه عدد ناسلت به دست آمده با مقدار حدس زده شده، در صورت وجود اختلاف، جاييًزينى عدد ناسلت جديد در معادله و تكرار تا $\mathrm{Nu}=3.66$

رسيدن به همكترايى

Table 3.3 Friction factors and Nusselt numbers for heat transfer to laminar flow through ducts with regular polygonal cross sections

Cross Section	$f \mathrm{Re}_{D_{h}}$	$\mathrm{Nu}=h D_{h} / k$			
		Uniform Heat Flux		Isothermal Wall	
	Fully Developed Flow	Fully Developed Flow	Slug Flow	Fully Developed Flow	$(\operatorname{Pr} \rightarrow 0)$ Slug Flow
Square	14.167	3.614	7.083	2.980	4.926
Hexagon	15.065	4.021	7.533	3.353	5.380
Octagon	15.381	4.207	7.690	3.467	5.526
Circle	16	4.364	7.962	3.66	5.769
Source: Data from Ref. 12. velocity profile remains uniform over the cross section, $u=U$,					

HEAT TRANSFER TO DEVELOPING FLOW
(a) $\operatorname{Pr} \ll 1$

(b) $\operatorname{Pr} \gg 1$

Scale Analysis
$\delta_{T}\left(X_{T}\right) \sim D_{h}$
$\operatorname{Pr} \ll 1 . \quad \delta_{T}(x) \sim x \operatorname{Pr}^{-1 / 2} \operatorname{Re}_{x}^{-1 / 2}$
Because at the end of thermal development $x \sim X_{T}$ and $\delta_{T} \sim D_{h}$,
$X_{T} \operatorname{Pr}^{-1 / 2} \operatorname{Re}_{X_{T}}^{-1 / 2} \sim D_{h} \Rightarrow\left(\frac{X_{T} / D_{h}}{\operatorname{Re}_{D_{h}} \operatorname{Pr}}\right)^{1 / 2} \sim 1$
other publications

$$
\frac{X_{T} / D_{h}}{\operatorname{Re}_{D_{h}} \operatorname{Pr}} \sim 0.1
$$

$\operatorname{Pr} \gg 1 \quad \ddot{\delta}_{T}(x) \sim x \operatorname{Pr}^{-1 / 2} \operatorname{Re}_{x}^{-1 / 2}$

$$
\frac{X_{T}}{X} \sim \operatorname{Pr} \quad \text { the thermally developing section }\left(x \ll X_{T}\right)
$$

$$
\mathrm{Nu}=\frac{h D_{h}}{k} \sim \frac{q^{\prime \prime}}{\Delta T} \frac{D_{h}}{k} \sim \frac{D_{h}}{\delta_{T}} \sim\left(\frac{x / D_{h}}{\operatorname{Re}_{D_{h}} \operatorname{Pr}}\right)^{-1 / 2}
$$

Thermally Developing Hagen-Poiseuille Flow

Graetz problem
Uniform wall temperature, $T_{0}=$ constant
Symmetry about the centerline, $\partial T / \partial r=0$ at $r=0 \quad \frac{1}{2}\left(1-r_{*}^{2}\right) \frac{\partial \theta_{*}}{\partial x_{*}}=\frac{\partial^{2} \theta_{*}}{\partial r_{*}^{2}}+\frac{1}{r_{*}} \frac{\partial \theta_{*}}{\partial r_{*}}$

$$
\begin{aligned}
\frac{\partial \theta_{*}}{\partial r_{*}} & =0 \quad \text { at } r_{*}=0 \quad \theta_{*}=0 \quad \text { at } r_{*}=1 \\
\theta_{*} & =\frac{T-T_{0}}{T_{\mathrm{IN}}-T_{0}}, \quad r_{*}=\frac{r}{r_{0}}, \quad x_{*} \\
=\frac{x / D}{\operatorname{Re}_{D} \operatorname{Pr}} &
\end{aligned}
$$

Figure 3.12 Heat transfer in the entrance region of a round tube with isothermal wall. (Based on data from Refs. 10 and 14.)

Figure 3.13 Heat transfer in the entrance region of a round tube with uniform heat flux. (Based on data from Refs. 10 and 14.)

