APPENDIX VI - TRANSIENT AND SUBTRANSIENT PARAMETERS OF
SYNCHRONOUS MACHINES

The derivations are the same for the direct and quadrature axis. They will therefore only be explained for
the direct axis. Furthermore, it is assumed that field structure quantities have been rescaled (in physical or p.u.
quantities) in such a way that the mutual inductances among the three windings d, f and D are all equal, as explained
in Section 8.2, except that the subscript "m" (fore modified) is dropped from Eq. (8.15a), to simplify the notation.

The equations with this simpler notation are then

A L, M oMl
M- M L, M|l (VL1)
Al M M Lyl
and
drid] R0l [y
A I ol (VL.2)
i, 1di| |0 Ry|lip| |0

In the past, it has often been assumed that the damper windings can be ignored for the transient effects,
which are associated with the open-circuit or short-circuit time constants T,,' or T,'. In earlier EMTP versions, this
assumption was made for the definition of the transient reactance X', with Eq. (VI.4), while for the definition of the
time constants the damper winding effects were always included. In later EMTP versions, the definition of the time

constants as well as of the transient reactance takes damper winding effects into account.

VI.1 Transient Parameters with Only One Winding on the Field Structure

If there is no damper winding, or if the damper winding were to be ignored, then there is only the field

winding f on the field structurel). The field current i, can then be eliminated from the second row of Eq. (VI.1)

oMy
L, L,°
Vi Vi

which, when inserted into the first row, produces

I)This is true for the direct axis. In the quadrature axis, the analogous assumption is that either the g- or the
Q- winding is missing.
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M . M
Ay = Ly =~ =) i, + —A, (VL3)
Lﬁ‘ Lﬁ‘

The flux A; cannot change instantaneously after disturbance, and can therefore be regarded as constant at first. The
transient inductance which describes the flux/current relationship in the armature immediately after the disturbance

is therefore

Ay =L, - — (VL4)

The open-circuit time constant T,,', which describes the rate of change of flux A; for open-circuit conditions
(i, = 0) is obtained from Eq. (VI.2) as
T =Ly/ Ry (VL5)
As shown in the next section, the definitions of both L,' and T,,' change in the presence of a damper

winding.

VI.2 Subtransient and Transient Time Constants with Two Windings on the Field Structure
The open-circuit time constants are found by solving the equations for the currents i, i,. By substituting

the last two rows of Eq. (VI.1),

A M L, M ||i
. l i+ |7 7 (VL6)
Apl M M L, iy
into Eq. (VI.2), and by setting i; = O for the open-circuit condition, we get
ﬁ L M| R, O]l
dt . - l v
i LA ! Ml (VL7)
diy, LLpp - M?* | M -Lg| |0 Ry i 0
dt

The field winding voltage v, is the forcing function in this equation, while the open-circuit time constants must be
the negative reciprocals of the eigenvalues of the matrix relating the current derivatives to the currents in Eq.

(VL.7)®. They are therefore found by solving

o L +1][ R, L, +l)_ R R, M?
(

f
Lﬁ” LDD - M? r Lﬁ” LDD -M* T Lﬁ‘ LDD -M 2)2

*The theory is explained in Appendix I.1, where it is shown that there will be two modes of the oscillations
defined by terms multiplied with e*!* and e** (A = eigenvalues). Since the eigenvalues are real and negative
here, their negative reciprocals define the two time constants.
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for T. The results are

/
To 1Ly, Lop) | 1|(Ly _ Lop|®, , M? (VL8)
T, 2\R R,)  2N|R R, R.R,

with the positive sign of the root for T, ', and negative sign for T,,". For some derivations, the sums and differences

of these two time constants are more useful because of their simpler form,

L
T, + T, =-L+ 22 (V1.92)
0 o Rf RD
L L, -M?
/ /!
Tap Tay = (V1.9b)
r p

For the short-circuit time constants, i, in Eq. (VI.6) is no longer zero. Instead, we express it as a function

of i, i, and A, with the first row of Eq. (VIL.1),

.M M. M?
Mij =25, -2 -2 ag (VL.10)
Ld Ld !

which, when inserted into (VI.6) and (VI.2), produces

dlf +M-d_)“d

ar| ; Lpy, M| R O]]i TL, at VLI
dip| 1y L - M| My Ll [0 R | |
dt L, dt

with subscript "s" added to define the inductances modified for short-circuit conditions,

Ly = Ly - MYL,, Ly, = Lpp - MY/, M, = M - M?/L, (VI.12)
Taking v, and dA,/dt as the forcing functions, we obtain the short-circuit time constants as the negative reciprocals
of the eigenvalues of the matrix in Eq. (VI.11). Since this equation has the same form as Eq. (VI.7), we can

immediately give the answer as

/ 2 2
To 1By, Lopg) 1 ([ Eg _ Loos|™, o M (VL13)
T, 2R R,]  2\| R R, R.R,

with the positive sign of the root for T,', and the negative sign for T,". Again, their sums and differences are easier

to work with,
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T, +T; = =2+ + (VI.14a)
R, R,
L, Ly, - M’
T, T, = LD 5 (VL.14b)
R, R,
There is also a useful relationship between the open- and short-circuit time constants,
L//
TiTi = T To 7 (VL 14c)
d

which can easily be derived from Eq. (VI.9b) and (VI.14b) by using the definition for L," given later in Eq. (VI.16).
It is not quite correct to treat dA,/dt in Eq. (VI.11) as a forcing function, unless R, is ignored. Only for R,
= 0 are the fluxes known from the first two rows of Eq. (8.9) as
Ay = Ag(O)coswt, A, = A (O)sinwt
with vy=0, v,=0 because of the short circuit. In practice, R, is not zero, but very small. Then the fluxes are still

known with fairly high accuracy it 1,(0) is replaced by A,(0)e™, where
== (=) (VL.14d)
q

is the reciprocal of the time constant for the decaying dc offset in the short-circuit current [105]. If R, were
unrealistically large, then the time constants could no longer be defined independently for each axis, and the data

conversion would be much more complicated than the one described in Section VI.4.
VI.3 Subtransient and Transient Reactances with Two Windings on the Field Structure
The subtransient reactance can easily be defined by knowing that the fluxes A;, A, cannot change

immediately after the disturbance. By treating them as constants, we can express i, i, as a function of i; with Eq.

(VI.6), which after insertion into the first row of Eq. (VI.1), produces

L+L,,-2M) . M
A, = [Ld—MZﬁD—DZ) iy + ——————[Lpp=MA, + Ly=M)A,] (VL15)
L, Ly,M L,L,, M

By definition, the term relating A, to i, must be the subtransient inductance,

L,+ Ly, - 2M
Lj=L,-M L 2 — (VL16)
LyLy, - M

To obtain the definition of the transient reactance is more complicated. For many years people have simply

assumed that the damper winding currents have already died out after the subtransient period is over, and have used
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Eq. (VI.4). Canay has recently shown, however, that this assumption can lead to noticeable errors [104], and that
the data conversion is just as easy without this simplification. For the data given in the first IEEE benchmark model
for subsynchronous resonance [74], 80% of the current associated with the transient time constant T,' flows in the
field winding, and another 20% in the damper winding after a short-circuit (values obtained while verifying the
theory for this section). Ignoring the damper winding for the definition of X,' would therefore produce errors in the
field structure as well as in the armature currents.

Adkins [105] and others derive the transient reactance with Laplace transform techniques. First, Eq. (VI.2)
is solved for the currents, after replacing the fluxes with Eq. (VI.6), which leads to the s-domain expression for their

sum,

—st(Rf+sLﬁ+RD +sL,,,~2sM)

(Ri+sLy) (Ry+sLpy)=s M2

M(I (5)+ D(s)) =

1s) + 1 (V(s))

where f(V;) is some function of the field voltage which is not of interest here. Inserting this into the first row of Eq.

(VI.1) produces

st(Rf+sLﬁ+RD+sLDD—25M)

(Ri+sLy) (Ry+sLp,)=s M2

Afs) = | L, - 1) + f (VAs)

with the expression in parentheses being the operational inductance L(s),
Ay(s) = Ly(s) Io(s) + £(V(s)) (VL17)

Through some lengthy manipulations it can be shown that it has the simple form

(1+sT,) (1+sT))

Ls) =L, ; 7 (VI.18)
(1+sT,,) (1+sT,)
The basic definition of L;' and L," in the IEEE and IEC standards is
1 L, L1, 5 11, ST
- (= (- (V1.19a)
Lfs) L, Ld/ L, 1+sT‘; L! L‘; 1+sT!
in the s-domain, or
1 1 1 1., -ur) 1 1., -wr/
=— +(—-—) "+ (—-——)
L0 L, Ld/ L, Ld// Ld/ (VI.19b)
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in the time domain3). The transient reactance can therefore be found by expanding 1/L,(s) from Eq. (VI.18) into

partial fractions,

11 @) T Ty sT, 1 (T)-T) (/T s T
LI : - = : (V1.20)
L) Ly Ly rya@-1) 1+s7T, Lo 1/@-T) 1+s7T)

and by equating the coefficient of the second term in Eq. (VI.19a), which describes what is read off the oscillogram
in the short-circuit test, with the coefficient of the second term in Eq. (VI.20), which describes the mathematical

model. Then, with the help of Eq. (VI.14c), we obtain

L L, L
! d /" d d / /7
T, 7 T, - — =) =Ty, + Ty, (V1.21)

d ¢ La
for the definition of the transient reactance or inductance.
Laplace transform techniques are downgraded in Appendix I for EMTP implementation, but for the type
of analytical work just described they are quite useful. The transient reactance can also be derived using the
eigenvalue/eigenvector approach of Eq. (I.5). The starting point for that approach is Eq. (VI.11), which has the

general form

[%} - 4] [x] +[g()]
of Eq. (I.1), with the solution
[x(®)] = [M] [e™] [M] [x(0)] + fo " IM] [eAC0] IMTT [g(w)] du (V1.22)

If we treat the variables as deviations from the pre-short-circuit steady-state values, then the initial conditions for
these "deviation variables" are zero, and the first term in the above solution with [x(0)] drops out. This is in line
with the usual practice of assuming zero initial conditions in Laplace transform techniques. What is of interest then

is the expression under the integral. To obtain it, we must first find the eigenvector matrix [M] of

_LDDst M SRD

MR, -LyR,

1

[4] = ————
LﬁsLDDs B M:

(VL.23)

which is

3)These definitions are used to read the inductance and time constant values from the oscillograms of the
short-circuit test.
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% ﬁ - Td/
~ R, R
M] = I3 M (V1.24a)
DDs T// s
R a R
D D
with its inverse
M, T’fﬁ
) 1 R, 'R
M) = (V1.24b)
(T/fﬁ) (T/fT//) T//_LDDS M,
" p a1a 4" p R
S D f

That [M][M]" = unit matrix can easily be verified by knowing that T," - L, /R, = Ly /R - T," from Eq. (VI.14a).
The forcing function vector [g(t)] is

Ms B LDDS

MS—LﬁcS

dx,
dr

M

e = ———
LT,T/RR,

(VL.25)

The matrix with exponentials in Eq. (V1.22) contains the two diagonal elements ¢ /™" and ™"/, Since we are

only interested in the part associated with the transient time constant T,', we ignore the parts containing T," and

obtain
L M
I =
1 Rf Rf ~G-uIT, ~-w/T)
[M] [e2™] M = — e ¢ + [a 2x2 matrix]e a4 (V1.26)
T d_T d Ms LDDS T//
o Y
RD RD
Then
i, — transient i [product of matrix and vector| f, “aurzy Gy d
i, - transient from (V1.26) and (VI.25) 0 dt

which produces the 80%/20% split in the two field structure currents for the IEEE benchmark case mentioned at the

beginning of this section, when numerical values are inserted. Since

i, =

1 M . .
4 L—d),d*f(lf+lD)

d

the sum of i; and i, after multiplication with -M/L,, will give us the transient part of i; associated with T
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: L1 T Tl oo @y,
Li-vransiems = L_ / T f € 7 u (V1.27)
d T, (T,+T,) 0

By comparing the coefficient in front of the integral with the coefficient of the second term in Eq. (VI.20), we can
see that the eigenvalue/eigenvector approach does indeed produce the same definition of the transient inductance as

the Laplace transform method.

VI.4 Canay's Data Conversion

Assume that M has been found from either Eq. (8.20a) or (8.20b) (subscript "m" dropped here), and that
the four time constants T,,', T,", T4', T," are known. If only one pair of time constants as well as X,', X," are
known, the other pari can be found from Eq. (8.12). We then obtain the two time constants of the "f-branch" and

"D-branch" of Fig. 8.2,

L L
T, = ;f, T, = R_D, with L, = Ly - M, Ly = Ly, - M (V1.28)
f D

by solving the two equations

T

, + T

M-L L
Y = Ty + Ty) - 4 (Ty+T)) Md (V1.29a)

T\T, = Ty, Tgo" (Lparallel wmm /M) (VI.29b)

with L, e mim Deing the inductance of M, L, Ly, in parallel, which can be shown with Eq. (VI.16) to be
Lparallel MDD — M - Ld + Ld" (V129C)
Eq. (VI.29a) is obtained by multiplying Eq. (VI.9a) with (1-M/L,) and then subtracting it from Eq. (VI.14a), while
Eq. (VI.29)) is obtained from Eq. (VI.9b) with the definition of L;" from Eq. (VI.16). Once T, and T, are known,

the inductance of M, L; in parallel is found,

. i M(T, - T))
‘parallel Mf ~
T, T, -1+ —M (VI.30)
‘parallel MfD

This equation is derived from rewriting Eq. (VI.9a) as

T, r, .. %
M(_+_)_Tdo+Td07T17T2
L I,
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and rewriting Eq. (VI.9b) as

I, T M
ME+2)=(—2 - 1T
(L L)( ) T,

f D ‘parallel MfD

which produces M/L; after subtracting the second from the first equation. After addition of 1 to M/L; and division

by M the reciprocal of L follows. Then

parallel M
Ly = (Lpsaner mr * M) 7 (ML wie) (V1.31a)
Lo = (Lypaaner wn * Liparaiiel ) / Wparatiel mr = Loparaiiel i) (VL31b)

and
R, =LJ/T,, Ry =Ly/T,, Ly=L+M, Ly,=L, +M (V1.32)

Table VI.1 compares the results from the approximate data conversion of [74], from the data conversion
which ignores the damper winding in the definition of L;' by using Eq. (VI.4) instead of (VI.21) [106], and from
Canay's data conversion. The approximate data conversion produces an incorrect model with X,;'=0.156 instead
of 0.169 (transient short-circuit currents 8% too large) and with T,,' too large while T,," is too small. The data
conversion with the wrong definition of L;' produces an incorrect model with X,'=0.142 instead of 0.169 (transient
short-circuit currents 19% too large), but with correct time constants T,,' and T,,". The iterative method mentioned
in [74] is correct and produces the same answers as Canay's conversion, except that no procedure is given there on
how to perform the iterations.

To double-check whether Canay's data conversion is indeed correct, a system of seven equations of the form

[ digg / dt ] = [A] [igg] + [BI [V{]
was set up which describes the three-phase short-circuit condition. The values of Table VI.1 were first used to find
the matrix [A]. Then the eigenvalues of [A] were determined. The reciprocals of four of the eigenvalues differ from
the time constants T,', T,", T,', T," by no more than 0.05% for realistic values of R,=0.004 p.u., the reciprocal
of one eigenvalue agrees with T, of Eq. (VI.14d) to within 0.1%. Unrealistically large values of R, would produce
errors for reasons explained in Section VI.2; for R,=0.04 p.u., the error would still be only 4% for Tq' and 1% or

less for the other time constants.
VI.5 Negative Sequence Impedance

Negative sequence currents in the armature produce a magnetic field which rotates in opposite direction to
the field rotation, thereby inducing double frequency currents in the field structure windings. The negative sequence
impedance can therefore be obtained by setting s=j2w in Eq. (VI.18), and adding the armature resistance R, to it,

5 (1 + j20T) (1 + j20T))

ineg = Ry * J0Ly ; m (VL.33)
(I +j2wT,) (1 + j2wT,)
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Table VI.1 - Data conversion for direct axis data from [74] (X; = 1.79 p.u., X;' = 0.169 p.u., X," = 0.135 p.u.,
X, =0.13p.u., T,' =435, T," = 0.032 s, f = 60 Hz).

Approx. Wrong L,' ” Canay
Conversion results
X (p-u.) 1.6999 1.7036 1.7218
Xpp (p-u.) 1.6657 1.6700 1.6655
R; (p.u.) 0.00105 0.002086 0.001407
Ry (p-u.) 0.00371 0.002045 0.004070
Implied model parameters
X, (p-u.) from (VI.21) 0.1564 0.1416 0.169
T, (s) from (VI.8) 5.466 4.3 4.3
Ty (s) from (VI.8) 0.0252 0.032 0.032
T,' (8) from (VI.13) 0.4744 0.3388 0.4000
T," (s) from (VI.13) 0.0219 0.0306 0.0259
T, = Ly/R; (s) 4.300 2.166 3.246
T, = Lyn/Ry (8) 1.192 2.166 1.085

“For conversion of [106] to work, X, had to be reduced by 1.4%.

and analogous for the quadrature axis. Then

Zneg = (Zd—neg + Z

with R, = Re{Z,.,} and X, = Im{Z,}.

If there is only one winding on the field structure, say only the Q-winding on the g-axis, then

/2 (V1.34)

qfneg)

, 1 +j 20T,
Z, e = R, + JOL, — (V1.33a)
1 +j2wT,
with
T," = (@L," /L) T," (V1.35b)

Egq. (VI.352) follows from (VI.33) by setting T,' = 0 and T,' = 0, and Eq. (VI.35b) from T," = Ly, / R,, with
Lyq, defined by Eq. (VI.12) and T,," = L, / Ry
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