1. INTRODUCTION TO THE SOLUTION METHOD USED IN THE EMTP

This manual discusses by and large only those solution methods which are used in the EMTP. It is therefore
not a book on the complete theory of solution methods for the digital simulation of electromagnetic transient
phenomena. The developers of the EMTP chose methods which they felt are best suited for a general-purpose
program, such as the EMTP, and it is these methods which are discussed here. For analyzing specific problems,
other methods may well be competitive, or even better. For example, Fourier transformation methods may be
preferable for studying wave distortion and attenuation along a line in cases where the time span of the study is so
short that reflected waves have not yet come back from the remote end.

The EMTP has been specifically developed for power system problems, but some of the methods have
applications in electronic circuit analysis as well. While the developers of the EMTP have to some extent been aware
of the methods used in electronic circuit analysis programs, such as TRAC or ECAP, the reverse may not be true.
A survey of electronic analysis programs published as recently as 1976 [22] does not mention the EMTP even once.

Computer technology is changing very fast, and new advances may well make this manual obsolete by the
time it is finished. Also, better numerical solution methods may appear as well, and replace those presently used
in the EMTP. Both prospects have been discouraging for the writer of this manual; what has kept him going is the
hope that those who will be developing better programs and who will use improved computer hardware will find
some useful information in the description of what exists today.

Digital computers cannot simulate transient phenomena continuously, but only at discrete intervals of time
(step size At). This leads to truncation errors which may accumulate from step to step and cause divergence from
the true solution. Most methods used in the EMTP are numerically stable and avoid this type of error build-up.

The EMTP can solve any network which consists of interconnections of resistances, inductances,
capacitances, single and multiphase m-circuits, distributed-parameter lines, and certain other elements. To keep the
explanations in this introduction sample, only single-phase network elements will be considered and the more
complex multiphase network elements as well as other complications will be discussed later. Fig. 1.1 shows the
details of a larger network just for the region around node 1. Suppose that voltages and currents have already been
computed at time instants 0, At, 2At, etc., up to t-At, and that the solution must now be found at instant t. At any
instant of time, the sum of the currents flowing away from node 1 through the branches must be

equal to the injected current i,:

Ip(0) + i@ + i, @) + 150 = ;@) (1.1)
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lossless distributed para-
meter line with 2, T

Fig. 1.1 - Details of a larger network around node no. 1

Node voltages are used as state variables in the EMTP. It is therefore necessary to express the branch

currents, i,,, etc., as functions of the node voltages. For the resistance,

i) = % v, vy} (1.2)

For the inductance, a simple relationship is obtained by replacing the differential equation

v:Lﬂ
dt

with the central difference equation

W) ¢ Ay i) - i
2 At

This can be rewritten, for the case of Fig. 1.1, as

i) = %{vl(t) = vy(O)} + hist 5(t-Ar) (1.3a)

with hist,; known from the values of the preceding time step,

hist j(t-At) = i,(t-At) + %{vl(tht) - v(t-An)} (1.3b)
The derivation for the branch equation of the capacitance is analogous, and leads to
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i, = %{vl(t) = v,(0)) + hist (t-Ar) (1.4a)

with hist,, again known from the values of the preceding time step,

hist (t-At) = —i ,(t-Ar) - %{vl(t—m) - v, (t-An)} (1.4b)

Readers fresh out of University, or engineers who have read one or one too many textbooks on electric
circuits and networks, may have been misled to believe that Laplace transform techniques are only useful for "hand
solutions" or rather small networks, and more or less useless for computer solutions of problems of the size typically
analyzed with the EMTP. Since even new textbooks perpetuate the myth of the usefulness of Laplace transforms,
Appendix I has been added for the mathematically-minded reader to summarize numerical solution methods for
linear, ordinary differential equations.

For the transmission line between nodes 1 and 5, losses shall be ignored in this introduction. Then the wave

equations
_ov L’ oi
ox ot
7ﬂ = C’ ﬂ
ox ot
where

L', C' = inductance and capacitance per unit length!,
x = distance from sending end,

have the well-known solution due to d'Alembert:

i =Fx -c) - fix +cp)
v = ZF(x - ct) + Zfix + cf) (1.5a)

with
F(x - ct)
f(x = ct) | = functions of the composite expressions x - ct and x + ct,
Z = surge impedance Z = VL'/C' (constant),
¢ = velocity of wave propagation (constant).

If the current in Eq. (1.5a) is multiplied by Z and added to the voltage, then

'The prime is used on L', C' to distinguish these distributed parameters from lumped parameters L, C.
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v + Zi = 2ZF(x - cf) (1.5b)

Note that the composite expression v + Zi does not change if x - ct does not change. Imagine a fictitious observer
travelling on the line with wave velocity c. The distance travelled by this observer is x = x;, + ct (X, = location
of starting point), or x - ct is constant. If x - ct is indeed constant, then the value of v + Zi seen by the observer
must also remain constant. With travel time
T = line length / ¢,

an observer leaving node 5 at time t - T will see the value of vs(t - T) + Zis,(t - T), and upon arrival at node 1 (after
the elapse of travel time 1), will see the value of v,(t) - Zi;s(t) (negative sign because i,; has opposite direction of is; ).
But since this value seen by the observer must remain constant, both of these values must be equal, giving, after

rewriting,

i) - %vl(t) + hist,(t - T) (1.62)

where the term hist,; is again known from previously computed values,

hist (1) - f%vs(tfr) - i) (1.6b)

Example: Let At = 100 us and T = 1 ms. From equations (1.6) it can be seen that the known "history"
of the line must be stored over a time span equal to t, since the values needed in Eq. (1.6b) are those computed 10
time steps earlier. Eq. (1.6) is an exact solution for the lossless line if At is an integer multiple of t; if not, linear
interpolation is used and interpolation errors are incurred. Losses can often be represented with sufficient accuracy
by inserting lumped resistances in a few places along the line, as described later in Section 4.2.2.5. A more
sophisticated treatment of losses, especially with frequency dependent parameters, is discussed in Section 4.2.2.6.

If Eq. (1.2), (1.3a), (1.4a) and (1.6a) are inserted into Eq. (1.1), then the node equation for node 1 becomes

1 At 2C 1 1 At 2C
—r—+ ==+ v - =) - =) - =, =
(R+2L+At+Z)V1() P TAC I v
i,(t) - histj(t-At) - hist, (t-Af) - hist,y(t-T) (1.7)

which is simply a linear, algebraic equation in unknown voltages, with the right-hand side known from values of
preceding time steps.

For any type of network with n nodes, a system of n such equations can be formed?,

(Gl @] = [i(@®] - lhist] (1.8a)

Brackets are used to indicate matrix and vector quantities.
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with [G] = n x n symmetric nodal conductance matrix,

[v(t)] = vector of n node voltages,

[i(t)] = vector of n current sources, and

[hist] = vector of n known "history" terms.
Normally, some nodes have known voltages either because voltage sources are connected to them, or because the
node is grounded. In this case Eq. (1.8a) is partitioned into a set A of nodes with unknown voltages, and a set B

of nodes with known voltages. The unknown voltages are then found by solving

(G, 1v,0] = [[,0] - [hist,] ~ [G ] [v40] (1.8b)

for [v,(t)].

The actual computation in the EMTP proceeds as follows: Matrices [G,,] and [G,;] are built, and [G,,]
is triangularized with ordered elimination and exploitation of sparsity. In each time step, the vector on the right-hand
side of Eq. (1.8b) is "assembled" from known history terms, and known current and voltage sources. Then the
system of linear equations is solved for [v,(t)], using the information contained in the triangularized conductance
matrix. In this "repeat solution" process, the symmetry of the matrix is exploited in the sense that the same
triangularized matrix used for downward operations is also used in the backsubstitution. Before proceeding to the
next time step, the history terms hist of Eq. (1.3b), (1.4b) and (1.6b) are then updated for use in future time steps.

Originally, the EMTP was written for cases starting from zero initial conditions. In such cases, the history
terms hist,;, hist,, and hist,; in Eq. (1.7) are simply preset to zero. But soon cases arose where the transient
simulation had to be started from power frequency (50 or 60 Hz) ac steady-state initial conditions. Originally, such
ac steady-state initial conditions were read in®, but this put a heavy burden on the program user, who had to use
another steady-state solution program to obtain them. Not only was the data transfer bothersome, but the separate
steady-state solution program might also contain network models which could differ more or less from those used
in the EMTP. It was therefore decided to incorporate an ac steady-state solution routine directly into the EMTP,
which was written by J.W. Walker.

The ac steady-state solution shall again be explained for the case of Fig. 1.1. Using node equations again,

Eq. (1.1) now becomes
Iy + Iy + Ly + 15 = 1 (1.9)

where the currents I are complex phasor quantities |I|-e* now. For the lumped elements, the branch equations are

obvious. For the resistance,

1
ly = =0, = V) (1.10)

3This option is still available in the EMTP, but it has become somewhat of a historic relic and has seldom
been used after the addition of a steady-state solution routine. For some types of branches, it may not even work
({11, p. 37¢).
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for the inductance,

13- ].Q)—L(Vl - Vi)

and for the capacitance,

I, = joC(V, - V)

For a line with distributed parameters R', L', G', C', the exact steady-state solution is

Y

+ - .
shunt Y series

Vi
Vs

N | —

series

1
Y series series T 5
2

Y

shunt

if the equivalent m-circuit representation of Fig. 1.2 is used, with

series

Fig. 1.2 - Equivalent n-circuit for ac steady-state
solution of transmission line

Yseries = L’ with Zseries = g“P(R/ + JoL /)M
Zseries yS.P
tan_h( E]
1 <4 . 2
5 shunt E(G/ +](‘OC/)T
2
and sometimes equally useful,
Ly, - cosh(y<d) - ¥
series 5 shunt ~ COS (v<h) series

where vy is the propagation constant,

y = YR’ + joL) (G’ + juC)
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For the lossless case with R' = 0, and G' = 0, Eq. (1.14) simplifies to
7z = geiel! - sin(w<LyL'C")
series g Jw. - —
wdyL'C’
wd [l
—L'C
2

~
|

shunt E.j(‘oc/ ’ (1.16)

N =

+

1 Iy
Yseries EYShbmt = COS((.O%E L/C/) ’ Yseries

If the value of wd is small, typically ¥ < 100 km at 60 Hz for overhead lines, then the ratios sinh(x) / x and
tanh(x/2) / x/2 in Eq. (1.14), as well as sin(x) / x and tan(x/2) / x/2 in Eq. (1.16) all become 1.0. This simplified

m-circuit is usually called the "nominal" m-circuit,

V4

series

= 4R’ + joL)

Y, - %(G/ joCh if o is small, (1.17)

0| =

With the equivalent wt-circuit of Fig. 1.2, the branch equation for the lossless line finally becomes

1
I = (Y, Y, )V, - Y,

. + —
series 2 shunt

eries V5 (1 . 18)

Now, we can again write the node equation for node 1, by inserting Eq. (1.10), (1.11), (1.12) and (1.18)
into Eq. (1.9),

1.1 . 1 1 1 .
E * ](OL +J(")C+ Yseries * 5 Yslmm Vl B E V2 B ](*)—L V3 7‘](")CV4 B Yseries V5 = 11
(1.19)
For any type of network with n nodes, a system of n such equations can be formed,
(Y1(vi = il (1.20)

with [Y] = symmetric nodal admittance matrix, with complex elements,
[V] = vector of n node voltages (complex phasor values),
[I] = vector of n current sources (complex phasor values).

Again, Eq. (1.20) is partitioned into a set A of nodes with unknown voltages, and a set B of nodes with known
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voltages. The unknown voltages are then found by solving the system of linear, algebraic equations

(Y, [V, = ] — [Y ][Vl (1.21)
Bringing the term [Y,;][Vy] from the left-hand side in Eq. (1.20) to the right-hand side in Eq. (1.21) is the
generalization of converting Thevenin equivalent circuits (voltage vector [V;] behind admittance matrix [Y ,z]) into

Norton equivalent circuits (current vector [Y ,5][V;] in parallel with admittance matrix [Y ,3]).

Norton equivalent circuits (current vector [Y ,5][V;] in parallel with admittance matrix [Y ,3]).
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