13. TRANSIENT ANALYSIS OF CONTROL SYSTEMS (TACS)
Co-Author: S. Bhattacharya

The program part TACS (acronym for Transient Analysis of Control Systems) was developed 10 years ago
by L. Dubé. In 1983/84, Ma Ren-ming did a thorough study of the code, and made major revisions in it,
particularly with respect to the order in which the blocks of the control system are solved [187]. More improvements
will be made in the future by L. Dubé and others. Because changes are expected anyhow, and because L. Dubé was
not available for co-authoring this section, the general philosophy of the solution method in TACS and possible
alternatives are emphasized more than details of implementation.

TACS was originally written for the simulation of HVDC converter controls, but it soon became evident

that it had much wider applications. It has been used for the simulation of

(a) HVDC converter controls,

(b) excitation systems of synchronous machines,
(©) current limiting gaps in surge arresters,

(d) arcs in circuit breakers,

and for other devices or phenomena which cannot be modelled directly with the existing network components in the
EMTP.

Control systems are generally represented by block diagrams which show the interconnections among
various control system elements, such as transfer function blocks, limiters, etc. Fig. 13.1 is a typical example. A
block diagram representation is also used in TACS because it makes the data specification by the user simple. All
signals are assigned names which are defined by 6 alphanumeric characters (blank is included as one of the
characters). By using the proper names for the input and output signals of blocks, any arbitrary connection of blocks
can be achieved. Amazingly, there is no uniform standard for describing the function of each block in an
unambiguous way, except in the case of linear transfer functions [189]. Users of the EMTP should be aware of this.

The control systems, devices and phenomena modelled in TACS and the electric network are solved
separately at this time. Output quantities from the network solution can be used as input quantities in TACS over
the same time step, while output quantities from TACS can become input quantities to the network solution only over
the next time step. TACS accepts as input network voltage and current sources, node voltages, switch currents,
status of switches, and certain internal variables (e.g., rotor angles of synchronous machines). The network solution
accepts output signals from TACS as voltage or current sources (if the sources are declared as TACS controlled

sources), and as commands to open or close switches (if the switch is a thyristor or a TACS controlled switch).
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Fig. 13.1 - Typical block diagram representation of a control
system
The present interface between the network solution and TACS, and possible alternatives to it, are explained

first. The models available in TACS are described next, followed by a discussion of the initialization procedures.

13.1 Interface between TACS and the Electric Network

To solve the models represented in TACS simultaneously with the network is more complicated than for
models of power system components such as generators or transformers. Such components can essentially be
represented as equivalent resistance matrices with parallel current sources, which fit directly into the nodal network
equations (1.8). The equations of control systems are quite different in that respect. Their matrices are
unsymmetric, and they cannot be represented as equivalent networks.

Because of these difficulties, L. Dubé decided to solve the electric network (briefly called NETWORK from
here on) and the TACS models (briefly called TACS from here on) separately. This imposes limitations which the
users should be aware of. As illustrated in Fig. 13.2, the NETWORK solution is first advanced from (t - At) to t
as if TACS would not exist directly. There is an indirect link from TACS to NETWORK with a time delay of At,
inasmuch as NETWORK can contain voltage and current sources defined between (t - At) and t which were computed
as output signals in TACS in the preceding step between (t - 2At) to (t - At). NETWORK also receives commands
for opening and closing switches at time t, which are determined in TACS in the solution from (t - 2At) to (t - At).
In the latter case, the error in the network solution due to the time delay of At is usually negligible. First, At for this
type of simulation is generally small, say 50 us. Secondly, the delay in closing a thyristor switch is compensated
by the converter control, which alternately advances and retards the firing of thyristor switches to keep the current
constant in steady-state operation. With continuous voltage and current source functions coming from TACS, the
time delay can become more critical, however, and the user must be aware of its consequences. Cases have been
documented where this time delay of At can cause numerical instability, e.g., in modeling the arc of circuit breakers

with TACS [188].
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Fig. 13.2 - Interface between NETWORK and TACS solution

Once NETWORK has been solved, the network voltages and currents specified as input to TACS are known
between (t - At) and t, and are then used to bring the solution of TACS from (t - At) to t. No time delay occurs in
this part of the interface, except that TACS itself has built-in delays which may not always be transparent to the user.

If the EMTP is re-written some day to eliminate the time delay from TACS to NETWORK, two approaches
(and possibly others) could be used:

(a) Predict the output from TACS at time t, and use the predicted values to solve the NETWORK and then
TACS from (t - At) to t. Use the output from TACS as corrected values, and repeat the solution of the two
parts again from (t - At) to t. If the differences between the predicted and corrected values are still larger
than a specified tolerance, then do another iteration step with a repeat solution, until the values have
converged to their final values. This approach is conceptually easy to implement, but its usefulness depends
on the convergence behavior. Two or three iteration steps, on average, would probably be acceptable. This
method would make it possible to add other corrections in NETWORK and TACS where only predictions

are used now (e.g. correction of predicted armature currents in synchronous machines).
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Fig. 13.3 - Form of difference equations for a control system. [X;grnva] =
internal variables, [x,,;] = output signals, and [#] = input signals

Do not solve the equations in TACS completely, but reduced them to an input-output relationship at time
t, by eliminating variables which are internal to TACS. This approach has been used successfully in a
stability program for the representation of excitation systems [72]. Assume that the trapezoidal rule of
integration (or any other implicit integration method) is applied to the differential equations of the control
system. Assume further that the variables are ordered in such a way that the internal variables [X;yrgryaril
come first, then the output signals [X,;y] which become input to NETWORK (v, in an excitation system)
and finally the input signals [u] which come from the output of NETWORK (Vigruvmvar 10 an excitation
system). Then the equations would have the form of Fig. 13.3(a). By eliminating the internal variables
[Xivternar] With Gauss elimination, the reduced system of equations in the bottom rectangle of Fig. 13.3(b)

is obtained, which has the form
[Aour] opr] + A1 1u] = [b] (13.1)
or in the case of an excitation system,
v =b’

Qour Vs * Ay ViERMINAL

In the latter case, this equation would have to be incorporated into the synchronous machine model of
Section 8. Limiters can be handled as well with this approach, as explained in [72].

Method (b) could be implemented in a number of different ways. For control systems which can be

represented by one transfer function, the implementation would be very simple, because TACS already produces an

equation of the form of Eq. (13.1), as explained later in Eq. (13.7). For more complicated systems, the existing

code of TACS could be used to solve the equations of system twice, e.g., in the case of the excitation system, for

2 predicted values of Viggyvinar- 1he two solutions vi(t) and v, (t) would create 2 points in the Viggvinar - Vi - plane,

and a straight line through them would produce Eq. (13.1) indirectly.

13.2 Transfer Function Block with Summer

The transfer function block (Fig. 13.4) is used to describe a relationship between input U(s) and output X(s)

in the Laplace domain,

X(s) = G(s) U(s) (13.2a)

where the transfer function is a rational function of order n,

N, + Njs...+ N s"
D, + D;s...+ Ds"

G(s) = K

with m < n (13.2b)
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The Laplace operator is replaced by jw to obtain the steady-state frequency response at any angular

frequency w, including dc. For transient solutions, s is replaced by the differential operator d/dt, which converts

Eq. (13.2) into a linear n-th order differential equation

dx dx du d™u
Dyx + DlEm+ D, v = K| Nyu ~+ NlE...+ N, o (13.3)
N+ Nys +Nmsm
U(s) ~ K = — X(s)
DO+ Dls +D_s

Fig. 13.4 - Transfer function block

In TACS, the n-th order differential equation is re-written as a system of n first-order differential equations

by introducing internal variables for the derivatives of u and x

dx dx, _dx,
X, = E s X, = _dl‘ s eee een xn = —d[
du du du
u, = T u, = 7;, ...... u, = Tn;l (13.4)

With these internal variables, Eq. (13.3) becomes an algebraic equation

Dyx + D x, ... + D,x, = K(Nyu + Nyu, ... + N, u,) (13.5)

To eliminate these internal variables again, the differential equations (13.4) are first converted into difference

equations with the trapezoidal rule of integration,

2 2 .
x.(0) = EXH(I) - {xt-An) ~+ Exﬂ(tht)} for i =1,...n (13.6a)

u,(t) = lujfl(t) - {uj(tht) + Aituﬂ(tht)} forj=1,...m (13.6b)

t

where x, = x and uy;, = u.
Expressing x, as a function of x,, in Eq. (13.5) with Eq. (13.6), and then again expressing X, , as a function

of x_, etc., until only x is left, and using the same procedure for u, produces a single output-input relationship of

the form [189]
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cx(t) = Kdu(t) + hist(t - Ar) (13.7)

This is the equation which is used in the transient solution of the control system. After the solution at each time step,
n history terms must be updated to obtain the single term "hist" for the solution over the next time step. If recursive

formulas are used, then

hist,(t) = Kd u(t) - ¢ x(t) - hist,(t-Ar) + hist,(t-Ar)

hist(t) = Kd.u(t) - ¢;x(t) - hist(t-Ar) + hist, (t-A)

hist (t) = Kd, u(t) - c,x(t)
with (13.8)
hist = hist,

The coefficients c,, d, are calculated once at the beginning from the coefficients N;, D, of the transfer

function, with the recursive formula

if /i 2 i i+ 2 i+ n 2 n
¢, = ¢, + (-2 ()'Di+ N ) 'D, ...+ O ) D,) (13.9)

where (ji) is the binomial coefficient, and where the starting value is

¢, - 2(; (%]IDI., with ¢ = ¢, (13.10)
The formulas for d, are identical, if D is replaced by N, and if the upper limit is m rather than n.

Instead of a single input signal u, TACS accepts the sum of up to five input signals u,,...us, as illustrated
in Fig. 13.5 (subscripts 1,2,... are no longer used to indicate internal variables of a block from here on). To model
a summer by itself, a zero-order transfer function block is used with K = N, = D, = 1. This zero-order transfer

function is contained in Eq. (13.7) as a special case, with K = ¢ = d = 1 and hist = 0.
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Fig. 13.5 - Transfer function with summer (4 = u, - u, - u; + u, -
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If the control system consists solely of interconnected transfer function blocks and summers, then the entire
system is described by using an equation of the form (13.7) for each one of the blocks. For the example of Fig.

13.6, there would be four equations

x|
e, -Kd, Kd 0 Kd, 0 ||| [nis)]
Kd, 0 0 ¢ 0 -Kd|l| s,
Kd e, 0 0 0 0 || |ns
0 0 -Kd, c, O 0 u,| |hist,
1N

which is the same form as in Fig. 13.2(a), with

X nvreryar 1 = X X5 X5

Kopr] = Ix,]

(u] = [u, u,)
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Fig. 13.6 - Control system with linear transfer functions

In TACS, this system of equations

(A, 11X] + [A,,]1u] = [hist] (13.11)

is solved by first performing a triangular factorization on {[A,,]. [A, ]} before entering the time step loop. In each
time step, the unknown variables [x] are then found by

(a) assembling the right-hand side [hist],

(b) performing a downward operation on it,

(©) doing a backsubstitution to obtain [x], and

(d) updating the history terms of each block.

The solution procedure is very similar to the one indicated in Fig. 13.3(b), except that the elimination does
not stop on the vertical line which separates the columns of [X;yrgraar] @and [Xoyurl, but continues to the diagonal
(indicated by dots in Fig. 13.3(b)). Since the matrix is unsymmetric here, both the upper and lower triangular matrix
coming out of the triangularization must be stored, in contrast to the matrix in NETWORK where only the upper
triangular matrix is stored. Since the matrix is sparse, optimal ordering techniques are used to minimize the number
of fill-in elements. Only the nonzero elements are stored with a compact storage scheme similar to the one discussed

in Appendix III. Whether pivoting is needed is unclear to the authors.

13.3 Limiters

There are two types of limiters, the windup limiter with clipped output ("static limiter" in the EMTP Rule
Book) and the non-windup limiter with clamped output ("dynamic limiter" in the EMTP Rule Book). The windup
limiter can be visualized as a measuring instrument in which the needle (position = output signal) can only be seen
within a limited window, but the needle is allowed to move freely (wind up) outside the window (Fig. 13.7(a)). In
the non-windup limiter, the needle is restrained from moving outside the window (Fig. 13.7(b)). In both cases, the

movement of the needle is described by differential equations. The equation describing the limiting function has the
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same form in both cases, but the criteria for backing off are different.

lower upper lower upper
limit limit limit limit

X

(a) Windup limiter (b) Non-windup limiter

Fig. 13.7 - Limits in a measuring instrument

13.3.1 Windup Limiter
The output x of the windup limiter of Fig. 13.8 is

Ku , if x,, < Ku < X o
x = if Ku<x, (13.12)
X if Ku>x_,

max

Either one of the three equations is still a linear algebraic equation of the form of Eq. (13.7), with¢c = d = 1, hist

= 0 inside the limits, and ¢ = 1, d = 0, hist = (X,,,, Or X,,;,) at the limit. The proper way of handling this limiter
is to change the linear equations (13.11) at instants when x hits the limit and when it moves off the limit again. This
requires occasional re-triangularizations, which are no different in principle from those required in NETWORK

whenever switch positions change or when the solution in piecewise linear elements moves from one segment to

another.
X
max

X e

max
u
—™G(s) slope=K [* X .

X - X

min
X_ . Ku
min
(a) Block diagram representation (b) Limiting action
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Fig. 13.8 - Windup limiter

If there are only a few limiters, one could also use the compensation method described in Section 12.1.2.
Assume that the control system contains only two limiters which limit x; and x,. In that case, one could precalculate
column i and column k of the inverse matrix of [A,,] with two repeat solutions before entering the time step loop.
In each time step, the variables would first be calculated as if no limits exist. Call this solution [X,,J- If both x;
withour A4 Xy inoue r€ oOULside their limits, then the necessary corrections Ahist and Ahist, in the right-hand side of Eq.

(13.11) to produce limited values are found by solving the two equations

X timit| Piowinowr| (P Di||ARISE;
= + . (13.13a)
—limit kowithour]  (Pri Die||APESE
If only X, o 1 Outside its limits, then
X gimit = Xiwiow * Dy AMISL;
Ahist, = 0 (13.13b)
The final solution is found by superposition,
by by
by by Ahist,
[X] - [xwitlwul] * Ahis tk (13130)

The coefficients b in Eq. (13.3) are the elements of column i and k of [Z_] .

At the time when TACS was first written, both the re-triangularization procedure and the compensation
method were regarded as too costly, and the simpler method discussed in Section 13.4 was introduced instead. It
suffered initially from unnecessary time delays, which have now been mostly removed with the recent code changes
of Ma Ren-ming in version M36. Whether re-triangularization or compensation will be used in future versions to
remove the remaining time delays remains to be seen.

In comparing Fig. 13.8(a) with the piecewise linear representation of network elements discussed in Section
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12.1.3, one notices that the slope in the saturated region is always zero (hard limit) rather than finite (soft limit).
In rewriting TACS, it may be worth considering whether soft limits would be a useful enhancement. In Fig. 13.8(c)
the limits become soft if the internal resistances of the diodes and dc voltage sources are taken into account, or if
resistors are specifically added for that purpose. The equation for soft limits, with the notation from Fig. 13.9,

would be

Ku if x., < Ku < x,,
X = { Xy + K -ugy) I Kuo< x (13.14)

xmax * I{ITlaX (u_u l'f' Ku 2 xmax

max)
These equations have again the form of Eq. (13.7), and soft limits can therefore be implemented in the same way
as hard limits. As a matter of fact, the hard limit would become a special case of the soft limit of Eq. (13.14) by

simply setting K, or K . to zero.

X
slope=K
max
X — - —
max ‘
]
]
u_, '
min 0
i
u ,
: max u
!
slope‘=K
|
|
----- X .
min
slope=K .
in

Fig. 13.9 - Soft limits

13.3.2 Non-Windup Limiter

In the windup limiter, the output of a transfer function block is just clipped, without affecting the dynamic
behavior of the transfer function block on the input side itself. In a non-windup limiter, this is no longer true. Here,
the dynamic behavior of the transfer function block is changed by the limiting action.

Before describing the limiting action with equations, it is important to understand that non-windup limiters
should only be used with first-order transfer functions. For second and higher-order transfer functions, it is no
longer clear which variables should be limited. Take a second-order transfer function G(s) = 1/ 2 as an example.
It can easily be shown [190] that backing off the limit will occur in three different ways in this case, depending on
whether the internal variables dx/dt or d’x/dt% or both, are forced to remain at zero after the limit is hit. This

ambiguity can only be removed if the user defines the problem as two cascaded first-order transfer function blocks,
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with the proper limits on each of them. Even for the first-order transfer function, the meaning of the limiting
function is confused if it has any zeros (N; # 0) [191]. It is because of these ambiguities why the limiter in the
current-controlled dc voltage source described in Section 7.6.2 may be incorrect.

To make the definition of non-windup limiters unique, they should only be allowed on first-order transfer

functions with no zeros of the form

K

s =
G(s) [+ sT (13.15)
The equations are
x+T%:Ku if x, <x <x,.
X =X if x<x,, and (Ku-x) <0 (13.16)
X=X, if x>x, and (Ku-x)>0

X

max
u —p L —» x

1+sT
—
min
(a) Block diagram
representation
¥ ax 7 T
" i(t) R c a |V
(input) T — 1 |(output)
— U
*min X Zener I
Ku diode -
(b) Limiting action (c) Circuit implementation

Fig. 13.10 - Non-windup limiter

For operation within the limits, the differential equation is converted to the algebraic equation (13.7). That
equation, and the equations valid at the limit, are all linear algebraic equations, as in Eq. (13.12) for the windup
limiter. The non-windup limiter can therefore be handled in exactly the same way as the windup limiter, either with

re-triangularization or with the compensation method. While the windup limiter has the coefficients c = d = 1, and
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hist = O inside the limits, the non-windup limiter has

For deciding when to back off, the derivative T dx/dt = Ku - x must be used, rather than Ku.

Changing from a hard to a soft limit would also be possible with the non-windup limiter. In the
implementation of Fig. 13.10(c), the limits would become soft if R, # 0, where R, can either be the internal
resistance of the Zener diode, or a resistor specifically added to create soft limits.

From the limited (unpublished) information available to the authors, it appears that TACS handles the non-
windup limiters with a pseudo-compensation method, in which corrections are made to the right-hand sides [hist]
in Eq. (13.11) a priori at the beginning of each time step. As explained above Eq. (13.13), a correct implementation
of the compensation method requires a complete solution of the control system without limiters, followed by
superposition of correction terms for which elements of [A_]* are needed. This does not seem to be done in TACS,
and the treatment of limiters is therefore somewhat suspicious. Since TACS does reset the variable to its limit value
whenever it exceeds its limits, the answers are probably correct, except that the procedure is unable to eliminate the
time delays in closed loops discussed in Section 13.4.

The pseudo-compensation method also seems to create subtle differences in the way it backs off the limit.

It seems to use the equation

T
E{Zx(t) = X! = Ku(t) - x(t)

in the first step after backing off, which would be the backward Euler formula if the factor 2 were missing, while

Eq. (13.7) would back off with

u(t) + ut-Ary  XO + Xy,
2 2

T
E {x(t) - xlimit} = K

13.4 Limiter Implementation with Possible Time Delay

With the code changes of Ma Ren-ming in 1983/84, the variables are now ordered in such a way that most
of the time delays which were caused by limiters no longer exist in version M36 and later versions. For example,
the open loop control system of Fig. 13.11 was originally solved in the sequence S;, G,(s), G5(s), S,, S; and finally
G,(s), because of a rule that transfer function blocks feeding into special or supplemental device blocks S should be

solved first. This has been changed, and the blocks are now solved in their functional order S;, G,(s), G,(s), S,,
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G;(8), S;. With this order, it is simple to observe the limits on the output x,, without having to re-triangularize the
matrix or without having to use the compensation method, because x is limited first before any other variables are
computed. In the system of equations (13.11), this means that the equation for G,(s) must be the last one, with
enforcement of the limits on x, being done in the backsubstitution. Ma Ren-ming observes correctly [187] that there
is no difference between n-th order and zero order transfer functions, or between windup and non-windup limiters
in this simple ordering scheme.

A more complicated example for the new ordering rule is shown in Fig. 13.12, with 10 transfer function
blocks of which three have limits. The first four blocks G,, G,, G;, and G, form one set of equations which are
disconnected from the others. This first set of equations is solved simultaneously, with rows in Eq. (13.7) ordered
G,, G,, G;, and G,. With this order, the output of G, is the first variable to be found in the backsubstitution. By
keeping it within its limits at that point, the properly limited value will be used in the rest of the backsubstitution in
finding the outputs of G;, G,, and G,. Using the known output of G,, the output of G, is found from one single
equation, and knowing the output of G, the output of G, is found from another single equation and then kept within
its limits. Finally, the equations for G,, Gq, Gy, and G,, for another independent set of equations, and if ordered in
that sequence, the limits on the output of G,, can again be easily observed because it is the first variable found in the
backsubstitution. So in spite of feedback loops and limiters, the control system of Fig. 13.12 is now solved
simultaneously without the time delays observed in pre-M36 versions. Note that this ordering scheme developed
for easy implementation of limiters may not completely minimize the fill-ins in the triangularization, but this is a

small price to pay for the proper implementation of limiters.

/—' Xl max

u —»{ S G,(s) P G,(s) S
1 L2

G3(S) — S, X

*1 mif
Fig. 13.11 - Simple open loop control system
Time delays cannot be avoided completely with the new ordering scheme. Fig. 13.13 shows an example
where two limiters are within the same loop. In this case, TACS inserts a time delay of At (if not explicitly done

so by the user) and the solution is then no longer simultaneous. Note that with re-triangularization or with the

compensation method, the solution of that system would again become simultaneous.
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Gl(s) G

GS(S) — X

X X X
L@ G,(s) 3G3(s) - 10 Gyp(s Gg(s) |l
T
min
Fig. 13.12 - Control system with feedback loops
ya ya
+u Gl(s) - GZ(S) - G3(s) —’-IGA(S) X
- ~ -
time
delay At he—ro CG5(s)

Fig. 13.13 - Two limiters within same loop

13.5 Signal Sources

TACS has signal sources built into it, similar to the voltage and current sources in NETWORK. They serve
as input signals to transfer function blocks and other blocks. In the system of equations (13.11), they are handled
as known values in vector [u].

Resident sources are signal sources with reserved names, which are available by simply referring to their
names. Resident sources can also be used as voltage or current sources in NETWORK through the TACS-
NETWORK interface. They are

TIMEX = simulation time in seconds (0 in steady state),

ISTEP = number of time step,

DELTAT = step size in seconds,

FREQHZ = network frequency in Hz of first sinusoidal source,

OMEGAR = 2nFREQHZ,

ZERO = 0.0,
MINUSI = -1.0,
PLUS1 = +1.0,
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INFTY = + (very large number which still fits computer system),
PI = m.
There are also signal sources with data specifications supplied by the user, such as
single rectangular pulse,
sinusoidal function,
repetitive pulse,
repetitive ramp function,
node voltage from NETWORK,
switch current from NETWORK,
special NETWORK variables (e.g., rotor angle of machines),
switch status,

any voltage or current source defined in NETWORK.

13.6 Special Devices

Transfer function blocks, limiters and signal sources are not enough to model realistic control systems.
Other building blocks have therefore been added to TACS under the heading of "Special Devices" ("Supplemental
variables and devices" in the EMTP Rule Book). They make TACS extremely versatile, but they do not fit neatly
into the control system equations (13.7). They are therefore solved sequentially, rather than simultaneously as for
the transfer function blocks, with the user controlling the sequence. In Fig. 13.11, the special device S, would be
solved after G, has been solved, and S, would be solved after G, has been solved. The solution would still be
simultaneous in this case. In general, the sequence of calculations is more complicated, with non-simultaneous
solutions through time delays. For details, the reader should consult the EMTP Rule Book.

All special devices can either be designated as input devices, as output devices, or as internal devices by
the user. To make the solution as much simultaneous as possible, the user should keep the number of internal
devices as low as possible, and use input or output devices instead whenever possible. The rules for the designation
are as follows:

(a) Input devices: All inputs must either be TACS signal sources or output from other input devices. They are

essentially used to pre-process signals before they enter transfer function blocks (e.g., S, in Fig. 13.11).
(b) Output devices: Their output must not be used as input to any other block, except to other output devices.

They are essentially used to post-process control system outputs for its own sake, or before passing them

on as voltage or current sources or switching commands to NETWORK (e.g. S, in Fig. 13.11).
©) Internal devices: They are inside the control system (e.g., S, in Fig. 13.11).

The behavior of the special devices is either defined through user-supplied FORTRAN expressions, or with
built-in types.

13.6.1 FORTRAN-Defined Special Devices
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The FORTRAN expression can be more or less as general as allowed by the FORTRAN-IV language itself
(for details see the EMTP Rule Book). Algebraic operators (+-" etc.), relational operators (.EQ. etc.), logical
operators (.AND. etc.), FORTRAN intrinsic functions (SIN, EXP, etc.) and special functions defined in the EMTP
Rule Book can be used. In the example

ANGLE = DEG(AT AN(CNTRL - BIAS2)) + 36.2,

the output signal is ANGLE, while the input signals are CNTRL and BIAS2. AT AN is the arctangent function,
while DEG is a special function for converting radians to degrees.

A FORTRAN expression of the form

VARIABLE = VARIABLE + {Arithmetic Expression}

is not allowed, because it gives rise to sorting problem within TACS.

13.6.2 Built-In Special Devices
There are 17 built-in special devices at this time, for which the user supplies the parameters only. They
are
(a) accumulator and counter,
(b) controlled integrator,
(c) digitizer,
(d) frequency sensor,
(e) input-IF component,
(f) instantaneous min/max,
(g) level-triggered switch,
(h) min/max tracking,
(i) multi-operation time-sequenced switch,
(j) point-by-point user defined nonlinearity,
(k) pulse transport delay,
(1) relay-operated switch,
(m) RMS value,
(n) sample and track hold,
(o) signal selector,
(p) simple derivative (backward Euler),
(q) transport delay.
Details about their characteristics can be found in the EMTP Rule Book.

13.7 Initial Conditions

The ac steady-state solution for the electric network is found first, before TACS variables are initialized.

All variables from NETWORK are therefore available for the automatic initialization in TACS, but not the other way
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around. This may cause problems, e.g., if a TACS output defines a sinusoidal voltage source in NETWORK whose
initial amplitude and phase angle, supplied by the user, could differ from the values coming out the TACS
initialization. An iterative steady-state solution between NETWORK and TACS would resolve such discrepancies,
but they are probably so rare that such an iteration scheme cannot be justified. An error message (possibly with
termination) would be useful, however.

The automatic initialization of TACS variables is complicated and not foolproof at this time, and
improvements are likely to be added in the future. The present initialization procedure is therefore only described
in broad terms.

The input and output signals of transfer function blocks are usually dc quantities in steady state. For dc

quantities, the output-input relationship of the transfer function (13.2b) becomes

NO
Xpe = K — 1y, (13.17)

which is the same form as Eq. (13.7) for the transient solution, with ¢ = 1, d = Ny/D,, and hist = 0. If the entire
control system consists of transfer function blocks only, a system of equations can be formed, similar to Eq. (13.11),
and solved for the unknown TACS variables [x,]. This is essentially what TACS does automatically now. The
variables [x,] are not needed directly, but only indirectly for initializing [hist] in Eq. (13.11) before entering the time
step loop.

Unfortunately, control systems are more complicated. Any sophisticated control system has integrators G(s)
= K 1/ . Their steady-state output must now be supplied by the user, but these values are not always easy to find.
For example, the output of an unbounded integrator with nonzero input is a continuously increasing ramp function.
In practice, integrators are always bounded within upper and lower limits. Therefore, the steady-state output of a
bounded integrator is either at its minimum or maximum value, which TACS could distinguish from the sign of the

input signal. A realistic steady-state equation of a bounded integrator for nonzero input would therefore be

X _ { 'xmin lf udc <0

de X if u,, >0

max

(13.18)

Evaluation of the steady-state output value of a bounded integrator with zero input or of an unbounded integrator is
impossible from the knowledge of its input alone.

Further complications are introduced because TACS signal sources are not restricted to dc quantities in
steady state. They could be pulse trains, sinusoidal functions, and other periodic functions. To automate the
initialization procedure for all such eventualities is therefore still an unresolved issue. At this time, the user must

supply initial conditions in complicated cases and for most special devices.
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