4. OVERHEAD TRANSMISSION LINES

4.1 Line Parameters

The parameters R', L', and C' of overhead transmission lines are evenly distributed along the line!, and can,
in general, not be treated as lumped elements. Some of them are also functions of frequency; therefore, the term

"

"line constants" is avoided in favor of "line parameters.” For short-circuit and power flow studies, only positive

and zero sequence parameters at power frequency are needed, which are readily available from tables in handbooks,

or can easily be calculated from simple formulas. For the line models typically needed in EMTP studies, however,
these simple formulas are not adequate enough. Usually, the line parameters must therefore be computed, with either
one of the two supporting routines LINE CONSTANTS or CABLE CONSTANTS.

These supporting routines produce detailed line parameters for the following types of applications:

(a) Steady-state problems at power frequency with complicated coupling effects. An example is the calculation
of induced voltages and currents in a de-energized three-phase line which runs parallel with an energized
three-phase line. Both lines would be represented as six coupled phases in this case.

(b) Steady-state problems at higher frequencies. Examples are the analysis of harmonics, or the analysis of
power line carrier communication, on untransposed lines.

(©) Transients problems. Typical examples are switching and lightning surge studies.

Line parameters could be measured after the line has been built; this is not easy, however, and has been
done only occasionally. Also, lines must often be analyzed in the design stage, and calculations are the only means
available for obtaining line parameters in that case.

The following explanations describe primarily the theory used in the supporting routines LINE
CONSTANTS and CABLE CONSTANTS, though other methods are occasionally mentioned, especially if it appears
that they might be used in EMTP studies some day. The supporting routine LINE CONSTANTS is heavily based

on the work done by M.H. Hesse [27], though some extensions to it were added.

4.1.1 Line Parameters For Individual Conductors
The solution method is easier to understand for a specific example. Therefore, a double-circuit three-phase
line with twin bundle conductors and one ground wire will be used for the explanations (Fig. 4.1). There are 13

conductors in this configuration. They will be called

'"The "prime" in R', L' and C' is used to indicate distributed parameters in Q/km, H/km and F/km.
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Fig. 4.1 - Line parameters

individual conductors?, to distinguish them from the 6 equivalent phase conductors which are obtained after pairs

have been bundled into phase conductors and after the ground wire has been eliminated.

4.1.1.1 Series Impedance Matrix
It is customary to describe the voltage drop along a transmission line in the form of partial differential

equations, e.g., for a single-phase line as

0 . oi
*a—: = R/i +L/§; @.1)

The parameters R' and L' of overhead lines are not constant, however, but functions of frequency. In that case it
is improper to use Eq. (4.1); instead, the voltage drops must be expressed in the form of phasor equations for ac

steady state conditions at a specific frequency. For the case of Fig. 4.1,
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’In the output of the supporting routine LINE CONSTANTS, they are called "physical conductors."
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with  V, = voltage phasor, measured from conductor i to ground,
I, = current phasor in conductor i,
or in general
av /
_18¥l -1z 4.2b
[ dx] [(Z71] (4.2b)

with [V] = vector of phasor voltages (measured from conductor to ground), and
[I] = vector of phasor currents in the conductors.

Implied in Eq. (4.2) is the existence of ground as a return path, to which all voltages are referenced. The matrix
[Z'] = [R'(w)] + jo [L'(w)] is called the series impedance matrix; it is complex and symmetric. The diagonal
element Z'; = R'; + jwL';; is the series self impedance per unit length of the loop formed by conductor i and ground
return. The off-diagonal element Z', = Z'; = R'; + jwL',; is the series mutual impedance per unit length between
conductors i and k, and determines the longitudinally induced voltage in conductor k if a current flows in conductor
i, or vice versa. The resistive terms in the mutual coupling are introduced by the presence of ground, as briefly
explained in Section 3.1.

Formulas for calculating Z'; and Z', were developed by Carson and Pollaczek in the 1920's for telephone
circuits [28, 29]. These formulas can also be used for power lines. Both seem to give identical results for overhead
lines, but Pollaczek's formula is more general inasmuch as it can also be used for buried (underground) conductors
or pipes. Carson's formula is easier to program than Pollaczek's and is therefore used in both supporting routines
LINE CONSTANTS and CABLE CONSTANTS, except that the latter includes an extension of Carson's formula
for the case of multilayer stratified earth [30] as well. Carson's, Pollaczek's and other earth return formulas are
compared in [31].

Two recent new approaches to the calculation of earth-return impedances are those of Hartenstein, Koglin
and Rees [32], and of Gary, Deri, Tevan, Semlyen and Castanheira [33, 34]. Hartenstein, Koglin and Rees treat
the ground as a system of conducting layers 1, 2, 3...n, with uniform current distribution in each layer (Fig. 4.2(a)).
Their results come close to those obtained with Carson's formula. One advantage of their method is the fact that
it is very easy to assume difference earth resistivities for each of the layers. Gary, Deri, et al. calculate self and
mutual impedances with the simple formulas originally proposed by Dubanton,

2h.+p
Z/ii = R/ifimemal * J{" 'U‘O gen ( l p) * X/ (43)

i-internal
21 7

and

\/(hi+hk+2ﬁ)2 rxty,

4.4
y 4.4)

z' = jwﬂ sn
2n i

in which p represents a complex depth,
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All other parameters are explained after Eq. (4.8), except for  x, = horizontal distance between conductors i and
k (Fig. 4.4), and p = earth resistivity. The results agree very closely with those obtained from Carson's formula,
with the differences peaking at 9% in the frequency range between 100 Hz and 10 kHz and being lower elsewhere.
This is a very good agreement, indeed, and Eq. (4.3) and (4.4) may therefore supplant Carson's formula some day.

Fig. 4.2(b) shows a comparison of positive and zero sequence parameters for a typical 500 kV line.
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Fig. 4.2(a) - Alternative to Carson's
formula: Ground represented as layers 1,
2,...1n

Carson's formula
Carson's formula for homogeneous earth is normally accurate enough for power system studies, especially
since the data for a more detailed multilayer earth return is seldom available. The supporting routine CABLE
CONSTANTS does have an option for multilayer or stratified earth, however. Carson's formula is based on the
following assumptions:
(a) The conductors are perfectly horizontal above ground, and are long enough so that three-dimensional end
effects can be neglected (this makes the field problem two-dimensional). The sag is taken into account

indirectly by using an average height above ground (Fig. 4.3).
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Fig. 4.2(b) - Alternative to Carson's formula: formula by Gary, Deri et al. (comparison with Carson's
formula for a typical 500 kV line with bundle conductors; skin effect in conductors ignored)

(b) The aerial space is homogeneous without loss, with permeability u, and permittivity e,.
(c) The earth is homogeneous with uniform resistivity p, permeability u, and permittivity €,, and is bounded
by a flat plane with infinite extent, to which the conductors are parallel. The earth behaves as a conductor,

i.e., 1/p > > weg,, and hence the displacement currents may be neglected. Above the critical frequency

fiea = 1/(2Teyp), other formulas [35, 36] must be used (for p = 10,000 Qm in rocky ground, f ;.. =
1.8 MHz, which is still on the high side for most EMTP line models).
(d) The spacing between conductors is at least one order of magnitude larger than the radius of the

conductors, so that proximity effects (current distribution within one conductor influenced by current in an

adjacent conductor) can be ignored.
The conductor profile between towers (Fig. 4.3) can be described
(a) as a parabola for spans < 500 m,
(b) as a catenary for 500 < spans < 2000 m, and

(©) as an elastic line for spans > 2000 m.

45



height at midspan

¥

Fig. 4.3 - Conductor profile between towers
If the parabola is accurate enough, then the average height above ground is

h=height at midspan+%sag, (4.6)

4.6)
which is the formula used by both supporting routines LINE CONSTANTS and CABLE CONSTANTS. The
elements of the series impedance matrix can then be calculated from the geometry of the tower configuration (Fig.

4.4) and from characteristics of the conductors. For the self impedance,

i-internal i-internal

2,
Z' = R AR + j(w%lnTHXﬂ SAX) @.7)

1

images

é

Fig. 4.4 - Tower geometry
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and for the mutual impedance

Z/

. By, D,
k=2 = ARy + ](wz—zlnd—’k +AXY) (4.8)

ik
with p, = permeability of free space. Using
po/2m = 2-10°* H/km (4.9)

produces impedances in Q/km. The parameters in Eq. (4.7) and (4.8) are

R';iema = ac resistance of conductor i in Q/unit length,

h; = average height above ground of conductor i,

D, = distance between conductor i and image of conductor k,
d, = distance between conductors i and k,

T, = radius of conductor i,

Ximema = internal reactance of conductor i,

® = 2nf with f = frequency in Hz,

AR', AX' = Carson's correction terms for earth return effects.

Carson's correction terms AR' and AX' in Eq. (4.7) and (4.8) account for the earth return effect, and are
functions of the angle ¢ (¢ = 0 for self impedance, ¢ = ¢, in Fig. 4.4 for mutual impedance), and of the parameter

a:

a=-4nf5-10%-D- | L (4.10)
p
with D = 2h, in m for self impedance,
D, in m for mutual impedance,
p = earth resistivity in Qm.
AR' and AX' become zero for a - « (case of very low earth resistivity). Carson gives an infinite integral for AR’
and AX', which he developed into the sum of four infinite series for a < 5. Rearranged for easier programming,

it can be written as one series, and for impedances in {/km, becomes

AR'= 40010*{/8 AX'=  40e{1/2(0.6159315-1na)
-b,a®cosd +b,a®cosd
+b,[(c,-1na)a*cos2¢p + a’sin2¢)] -d,a*cos2¢
+b,a’*cos3¢ +b,a*cos3¢
-d,a*cos4 -b,[(c,-1na)a‘cos4d + PpasingdP]
-bsa’cos5¢ +bsa’cos5¢
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+by[(cs-1na)a’cos6¢p + Pa’sin6d -dsa®cos6¢

+b,a’cosTd +b,a’cosTd
-dgabcos8¢ -bg[(c-1na)abcos8Pp + Ppa’sin8d]
. +

inQ/km (4.11)

Each 4 successive terms for a repetitive pattern. The coefficients b,, ¢, and d; are constants, which can be

precalculated and stored in lists. They are obtained from the recursive formulas:

b, = g Jor odd subscripts,

sign
ST vy
! i(i+2

with the starting value

1 . 4.12)
b2:1_6 for even subscripts,

Ci=6172+l_+_—12 with the starting value ¢,=1.3659315,
i i+
diZE'bi’
4
with sign = +1 changing after each 4 successive terms (sign = +1 fori =1, 2, 3, 4; sign = -1 fori = 5, 6, 7,
8 etc.).

The trigonometric functions are calculated directly from the geometry,

b
cosd,, = and  sing, = Rk
Dy

and for higher-order terms in the series from the recursive formulas

a’‘cosi¢p = [a' cos(i-1)¢p-cosd -a’ sin(i-1)¢ sind]-a

a'sini¢ = [a' ‘cos(i-1)¢-sind +a’ 'sin(i-1)$p-cosd]-a 4.13)

For power circuits at power frequency only few terms are needed in the infinite series of Eq. 4.11.
However, at frequencies and for wider spacings (e.g., in interference calculations) more and more terms must be
taken into account as the parameter a becomes larger and larger [37, discussion by Dommel]. Once Carson's series
starts to converge, it does so fairly rapidly. How misleading the results can be with too few terms in the series of
Eq. 4.11 is illustrated for the case of a = 4 and ¢ = 0O: If the series were truncated after the 1st, 2nd,..., 15th term,
the percent error in Re{Z';} would be

+312, -748, -16, +798, 416, +365, -121, -93, +28, -15, +5.2,

+1.7, -0.35, +0.14, -0.04

For a > 5 the following finite series [38] is best used:

4-8



AR/ - cosd  y/2cos2¢ . cos3¢ . 3cos5¢p 45cos7d | 4w-107*
a a? a’ a’ a’ V2

AX' =

in Q/km (4.14)

cos¢p cos3¢p . 3cos5¢ . 4500574)] 4w 10

5 7 \/i

a a’ a a

Internal impedance and skin effect

In the old days of slide-rule calculations, the internal reactance X',.,...... a0d external reactance w u,/21 ¥n
2h/r for lossless earth were often combined into one expression, by replacing radius r with the smaller "geometric

mean radius" GMR to account for the internal magnetic field,

% + / _ I'l’()gen 2h

r X internal 21 GMR (4 15)

wﬂ%ﬁn
27
GMR was often included in conductor tables. Instead of or in addition to GMR, North American handbooks have
also frequently given the "reactance at 1 foot spacing"? X',, which is related to GMR,

X', - olog 10000

4.16
4 21 GMR(feet) (4.16)

with GMR in feet (or in m if X', is to be the reactance at 1 m spacing).

The concept of geometric mean radius was originally developed for nonmagnetic conductors at power
frequency where uneven current distribution (skin effect) can be ignored. In that case, its meaning is indeed purely
geometric, with GMR being equal to the geometric mean distance among all elements on the conductor cross section
area if this area were divided into an infinite number of equal, infinitesimally small elements. For a solid, round,

nonmagnetic conductor at low frequency,

GMR/r = e V*
This formula changes to

GMR/r = ¢ "

if the conductor is made of magnetic material with relative permeability u,; its geometric meaning is then lost. If

skin effect is taken into account, its geometric meaning is lost as well. The name geometric mean radius is therefore

’The name comes form the positive sequence reactance formula X' pos = @ po/21 Yn GMD/GMR discussed in
Eq. (4.56), for the case where the spacing among the three phases (expressed as geometric mean distance GMD)
is 1 foot, with GMR given in feet as well.
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misleading, and it is questionable whether it should be retained.
Eq. (4.15) gives the conversion formula between GMR and internal reactance,

The internal reactance can be calculated for c%tain types of conducts [39, 40] as part of the internal impedance
X ! 'mer/m[/ (0=

)
R'iernat T 31X inernat-  SinceGUIR/r dsenly a vet§ small part of the total reactance for nonmagnetic conduc%'r%,ﬂlts

accurate determination is somewhat academic. More important is the calculation of R’ because the increase

internal »
of resistance with frequency due to skin effect can be considerable.

The internal impedance of solid, round wires can be calculated with well-known skin effect formulas, with
R‘

being of more practical interest than X' Stranded conductors can usually be approximated as solid

internal internal ®

conductors of the same cross-sectional area* [41]. It has been claimed that steel-reinforced aluminum cables (ACSR)
can usually be approximated as tubular conductors when the influence of the steel core is negligible, which is more
likely to be the case with an even number of layers of aluminum strands, since the magnetization of the steel core
caused by one layer spiralled in one direction is more or less cancelled by the next layer spiralled in the opposite
direction. The supporting routine LINE CONSTANTS uses this approximation of an ACSR as a tubular conductor.
If the magnetic material of the steel core is of influence, then calculations probably become unreliable, and current-
dependent, measured values should be used instead. Since the solid conductor is a special case of the tubular
conductor, the supporting routine LINE CONSTANTS uses only the formula for the latter, which is described as
Eq. (5.7b) in Section 5.1.

Table 4.1 shows the increase in resistance and the decrease in internal inductance due to skin effect for a
tubular conductor with R',, = 0.0398 Q/mile, ratio inside radius/outside radius q/r = 0.2258 (Fig. 4.5), and p, =
1.0. The internal inductance of a tube at dc is [48, p. 64]

4 22
L', =2 104{q7gn1 _3q7r”

Hlkm
(r’-q®* 4 4’-q?)

or 0.454866 - 10* H/km in this case. At high frequencies, R' =X with both components being

'
internal internal »

proportional to vVw. This is the region of pronounced skin effect. From Table 4.1 it can be seen that R', ..,
X' mema ar€ almost equal at 10 kHz (difference 2.2%), with the difference decreasing to 0.7% at 100 kHz, or 0.2%
at 1 MHz.

, and

*There are cases, however, where this approximation is not good enough. More accurate formulas are
needed, for instance, for calculating the attenuation in power line carrier problems [39], as explained in
Appendix VII.
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Table 4.1 - Skin effect in a tubular conductor

f(HZ) R'ac/ R'dc L' imernal—ac/ L' internal-dc
2 1.0002 0.99992
4 1.0007 0.99970
6 1.0015 0.99932
8 1.0026 0.99879
10 1.0041 0.99812
20 1.0164 0.99254
40 1.0632 0.97125
60 1.1347 0.93898
80 1.2233 0.89946
100 1.3213 0.85639
200 1.7983 0.66232
400 2.4554 0.47004
600 2.9421 0.38503
800 3.3559 0.33418
1000 3.7213 0.29924
2000 5.1561 0.21204
4000 7.1876 0.15008
6000 8.7471 0.12258
8000 10.0622 0.10617
10000 11.2209 0.09497
20000 15.7678 0.06717
40000 22.1988 0.04750
60000 27.1337 0.03879
80000 31.2942 0.03359
100000 34.9597 0.03004
200000 49.3413 0.02124
400000 69.6802 0.01502
600000 85.2870 0.01227
800000 98.4441 0.01062
1000000 110.0357 0.00950
2000000 155.5154 0.00672
4000000 219.8336 0.00475

Fig. 4.5 - Tubular conductor
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Fig. 4.6 - Current distribution within an 8-conductor bundle [42]. ©
1976 IEEE

Example for using series impedance matrix of individual conductors
The matrix of Eq. (4.2) can be used to study the uneven current distribution within a bundle conductor.

Fig. 4.6 shows measured and calculated values for the unequal current distribution in the 8 subconductors of an
asymmetrical bundle for various degrees of asymmetry [42]. Asymmetrical bundling was proposed to reduce audible
noise, but this advantage is offset by the unequal current distribution. The currents in this case were found from Eq.

(4.2) with an 8 x 8 matrix, assuming equal voltage drops in the 8 conductors,

1] = -[Z'T" [aV/dx] (4.18)

4.1.1.2 Shunt Capacitance Matrix

The voltages from the 13 conductors in Fig. 4.1 to ground are a function of the line charges:
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-Vl- -P/u Py . P/1,13- -‘11-
V2 Py Py . Physll%
= ’ (4.192)
[V13) _P/13,1 P/13,2 P/13,13_ 913}
with q; = charge per unit length on conductor i, or in the general case
vl = [P]1q] (4.19b)

Maxwell's potential coefficient matrix [P'] is real and symmetric. Its elements are easy to compute from the
geometry of the tower configuration and from the conductor radii if the following two assumptions are made: (a) the
air is lossless and the earth is uniformly at zero potential, (b) the radii are at least an order of magnitude smaller than

the distances among the conductors. Both assumptions are reasonable for overhead lines. Then the diagonal element

becomes
1 2h,
Ply = S—In— (4.20)
Y 2me, 1
and the off-diagonal element
1 D.
P =P/ = In—* 4.21)
k k .
! ' 2me, d,

with g, = permittivity of free space. The factor 1/(27e,) in these equations is ¢* - u,/27, where ¢ is the speed of

light. With ¢ = 299,792.5 km/s and p,/(21t) = 2 - 10" H/km, it follows that

1/2me,) = 17.975109- 10° km/F 4.22)

The inverse relationship of Eq. (4.19) yields the shunt capacitance matrix [C'],

[q] = [C1DVI,  with [C] = [P (4.23)

The supporting routine LINE CONSTANTS uses a version of the Gauss-Jordan process for this matrix inversion
which takes advantage of symmetry [43]. This process was chosen because it can easily be modified to handle matrix
reductions as well, which are needed for eliminating ground wires and for bundling conductors. Appendix III
explains this Gauss-Jordan process in more detail.

The capacitance matrix [C'] is in nodal form. This means that the diagonal element C'; is the sum of the
shunt capacitances per unit length between conductor i and all other conductors as well as ground, and the off-
diagonal element C';, = C',; is the negative shunt capacitance per unit length between conductors i and k. An

example for a three-phase circuit from [44, p. 457] is shown in Fig. 4.7, with
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12.161 -2.625 -2.625
[C] =|-2.625 11.729 -1.349| nF/mile
-2.625 -1.349 11.729

or C' p = 2.625, C' =2.625, C' =1.349, C = 7.755 nF/mile, etc.

13-mutual 23-mutual 2-ground

1.349 nF/mile

£ 0 feet
2.625 nF/mile [ JO feet 10 feet

/ N :
F—p——: S

7.755 obtained from the [ | l
nF/mile == nF/mile=e= following data: 40 feet

\ . conductor diameter
6.911|nF/mile = 0.5 inches
AAANTRKARX AAA/ .

Fig. 4.7 - Mutual and shunt capacitances

For ac steady-state conditions, the vector of charges (as phasor values) is related to the vector of leakage

currents [-dI/dx] by

0] - ﬂ%} (4.24)

Therefore, the second system of differential equations is

{%} = jo[C1[V] (4.25)

which, together with Eq. (4.2), completely describes the ac steady-state behavior of the multi-conductor line. Shunt
conductances G' have been ignored in Eq. (4.25), because their influence is negligible on overhead lines, except at
very low frequencies approaching dc, where the line behavior is determined by R' and G', with wL' and wC'

becoming negligibly small. With G', the complete equation is

4Ly
[dx} [Y][V] (4.26a)
where
[Y'1 =[Gl + jw[C'] (4.26b)

At very high frequencies, the shunt capacitances are also influenced by earth conduction effects, and

correction terms must then be added to Eq. (4.20) and (4.21). However, the earth conduction effect is normally
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negligible below 100 kHz to 1 MHz [45]. In that case, the capacitances are constant, in contrast to series resistances

and series inductances which are functions of frequency.

4.1.2 Line Parameters for Equivalent Phase Conductors

Equations (4.2) and (4.19) for all individual conductors contain more information than is usually needed.
Generally, only the phase quantities are of interest. For the case of Fig. 4.1, the reduction from 13 equations to 6
equations for the phases R, S, T, I, V, W is accomplished by introducing the following conditions,
for grounding conductor 13: dV,;/dx = 0 in (4.2), v;; = 0 in (4.19),
for bundling conductors 1 and 2 into phase R:

I, + I, = I, dV,/dx = dV,/dx = dVy/dx in (4.2),
and
g+ =0qr V; =V, = vz in (4.19)

and analogous for bundling the other phases. With these conditions, the matrices can be reduced to 6 x 6, as

explained next. These reduced matrices will be called matrices for the equivalent phase conductors.

4.1.2.1 Elimination of Ground Wires

Normally, ground wires are continuous and grounded at every tower’, which are typically 250 to 350 m
apart. In that case it is permissible for frequencies up to approximately 250 kHz to assume that the ground wire
potential is continuously zero [46]. This allows a reduction in the order of the [Z']- and [P']-matrices, with the
reduction procedure being the same for both. Let the matrices and vectors in Eq. (4.2) be partitioned for the set "u"

n.n

of ungrounded conductors, and for the set "g" of ground wires,

[avyaxl| |(Z',) 12|l
aviad| iz 1 1zl #-27)
[ i ] [Zgu] [Zgg] [g]
Since [V,] and [dV,/dx] are zero, Eq. (4.27) can be reduced by eliminating [L,],
av,
- dx - [Z/reduced] [Iu] (4283')
where
VAR I VAN Il VAR | VAR il VA (4.28b)

Rather than using straightforward matrix inversion and matrix multiplications in Eq. (4.28b), the more efficient
Gauss-Jordan reduction process of Appendix III is used in the supporting routine LINE CONSTANTS. [P'] is

reduced in the same way, and [C',,..q] 15 found by inverting [P' .,...d]- At first sight it may appear as if less work

*Non-continuous "segmented" ground wires are discussed in Section 4.1.2.5.
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were involved in reducing [C'], where the reduction simply consists of "scratching out" the rows and columns for
ground wires "g." However, [C'] must first be found from the inversion of [P'], and it is faster to reduce a matrix

than to invert it.

4.1.2.2 Bundling of Conductors

On high voltage power lines, bundle conductors are frequently used, where each "phase" or bundle
conductor consists of two or more subconductors held together by spacers (typically 100 m apart). The bundle is
usually symmetrical (S = 1.0 in Fig. 4.6), but unsymmetrical bundles have been proposed as well. Two methods
can be used for calculating the line parameters of bundle conductors. With the first method, the parameters are
originally calculated with each subconductor being represented as an individual conductor. Since the voltages are
equal for the subconductors within a bundle, this voltage equality is then used to reduce the order of the matrices
to the number of "equivalent phase conductors.” With the second method, the concept of geometric mean distances
is used to replace the bundle of subconductors by a single equivalent conductor. Both methods can be used with the
supporting routine LINE CONSTANTS. The supporting routine CABLE CONSTANTS is limited to the second

method.

Method 1 - Bundling of subconductors by matrix reduction

As in the elimination of ground wires, the matrix reduction process is the same for [Z'] and [P'], and will
therefore only be explained for [Z']. Let us assume that the individual conductors i, k, 1, m are to be bundled to

make up phase R. Then the conditions

and

must be introduced into Eq. (4.2). The first step is to get I; into the equations. This is done by writing I in place

of I,. By doing this, an error is of course made, which amounts to the addition of terms
Z/W.(Ik + 1, + 1)

in all rows u; they must obviously be subtracted again to keep the equations correct. In effect, this means subtraction

of column i from columns k, &, m. These changes are shaded in Fig. 4.8.
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subtract column i
from colums k, £, m;
colum i remains
unchanged

Fig. 4.8 - First step in bundling procedure

Columns k, &, m are assumed to be the last ones in the matrix to make the explanation easier. The currents I, L,
I, are still in the equations after execution of the first step of Fig. 4.8. To be able to eliminate them, there should
be zeros in the left-hand side of the respective rows. This is easily accomplished by subtracting row i from rows
k, <, m, which produces zeros because dV,/dx = dV,/dx etc. These changes are shaded in Fig. 4.9. The equations
are now in a form which permits elimination of I, L;, I,, in the same way as elimination of ground wires in Eq.
(4.28). The four rows and columns for subconductors i, k, &, m are thereby reduced to a single row and column
for bundle conductor R.

Method 1 is more general than method 2 discussed next. For instance, it can easily handle the unequal

current distribution in asymmetrical bundles described in Fig. 4.6.

b 1 subtract row i from
= R .

rows k, £, m; row i
remains unchanged

xW L L AL T

I VPPN I

2 77777777 S
m

Fig. 4.9 - Second step in bundling procedure

Method 2 - Replacing bundled subconductors with equivalent single conductor

This method was developed for hand calculations [47], and while theoretically not limited to symmetrical
bundles, formulas have usually only been derived for the more important case of symmetrical bundles. The
following formulas are based on the assumption that
(a) the bundle is symmetrical (S = 1.0 in Fig. 4.6), and

(b) the current distribution among the individual subconductors within a bundle is uniform.
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Fig. 4.10 - Symmetrical bundle with N individual
subconductors

With these assumptions, the bundle can be treated as a single equivalent conductor in Eq. (4.15) by replacing

GMR with the equivalent geometric mean radius of the bundle,

N
GMRequiv = VN. GMR - A M (429)

where
GMR = geometric mean radius of individual subconductor in bundle,
A = radius of bundle (Fig. 4.10).

Similarly, the radius r in Eq. (4.20) must be replaced with the equivalent radius

N———
requiv = N- r.ANil (430)

Comparison between methods 1 and 2

Both methods for bundling conductors give practically identical answers, at least in the example chosen for
this comparison. The example was a 500 kV three-phase line with horizontal tower configuration, with phases 40
feet apart at an average height above ground of 50 feet. The symmetrical bundle consisted of 4 subconductors spaced
18 inches apart. Conductor diameter = 0.9 inches, dc resistance = 0.1686 Q/mile, GMR = 0.3672 inches, 1.,
= 7.80524 inches from Eq. (4.30), and GMR,,,, = 7.41838 inches from Eq. (4.29). Table 4.2 compares the results

in the form of positive and zero sequence parameters at 60 Hz. Obviously, the results are practically identical.

Table 4.2 - Comparison between methods 1 and 2 for bundling

Positive and zero sequence Method 1 (Bundling by matrix Method 2 (Equivalent
parameters at 60 Hz reduction) conductors)
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R',,, (Q/mile) 0.042223 0.042205
X' pos (Q/mile) 0.53394 0.53399
C',s (uF/mile) 0.021399 0.021397
R, (Q/mile) 0.31740 0.31738
X' oo (Q/mile) 2.0065 2.0065
C' .o (pF/mile) 0.013456 0.013455

4.1.2.3 Reduced Matrices for Equivalent Phase Conductors
For the case of Fig. 4.1, elimination of ground wires and bundling of subconductors reduces the 13 x 13

matrices for the individual conductors to 6 x 6 matrices for the phases, e.g., for the series impedances,

-VR- Z/RR Z/RS Z/RT Z/RU Z/RV Z/RW -IR_
Vg Zly 20 Z'g Z'g Z', Z'g, I
d Vy ~ Z/TR Z/TS Z/TT Z/TU Z/TV Z/TW I
dx VU Z/UR Z/US Z/UT Z/UU Z/UV Z/UW IU
Vy Zhg Zly Z'yy Z'yy 20y 2oy Iy
V. I
LW _Z/WR Z/ws Z/WT Z/WU Z/WV Z/WW_ W]
or in general,
av.,
- ixam =1Z /phase] [Iphaxe] “.3D)
and
a, )
_|:_2xase =Jjw [C/phaxe] [Vphaxe] (432)
For a three-phase single circuit with phases A, B, C, Eq. (4.31) would have the form
-dVA-
& Z/AA Z/AB Z/AC 1
av,
| T 2 2| |l (4.33)
dv, Z/CA Z/CB Z/cc lc

The diagonal element Z',, in Eq. (4.33) is the series self impedance of phase k for the loop formed by phase k with
return through ground and ground wires, and the off-diagonal element Z';, is the series mutual impedance between

phases i and k. The self impedance of phase k is not the positive sequence impedance. To obtain impedances which
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come close to the positive sequence values, we would have to assume symmetrical currents in Eq. (4.33),

I

_ 2 _ . _ ,j120°
p=a°l, and I.=al, , with a-=e

and then express the voltage drop in phase A as a function of I, only,

dVA / . / / 27/ /
s =Z gk Wih 274y = (04 v Q7L v L7, 0) (4.34a)
and similarly for phases B and C,
dVB _ 7/ . / _ / / 27/
i Z'y ymlpy With Z'g_ oy = (L g+ A g+ a2 ) (4.34b)
dVC _ Z/ I ith Z/ _ Z/ ZZ/ Z/
o Coomdo wil Cosymm = L et Q7L o+ Al pe) (4.34¢)
The values of the three impedances Z', ¢ ,ums Z'p symm> Z' ¢ symm 10 Eq. (4.34) are not exactly equal, but their

average value is the positive sequence impedance. Because of slight differences in the three values, the voltage drops
are slightly unsymmetrical (or the currents become slightly unsymmetrical for given symmetrical voltage drops).
As discussed in Section 4.1.3, transposing a line eliminates or reduces these unsymmetries at power frequency,
though not necessarily at higher frequencies.

In the capacitance matrix of a three-phase line, C',, would be the sum of the coupling capacitances to phases
B and C and of the capacitance to ground, and C,, would be the negative value of the coupling capacitance between
phases A and B. Assuming symmetrical voltages, Eq. (4.32) would show slight unsymmetry in [dl,./dx],
analogous to that of Eq. (4.34).

4.1.2.4 Nominal n-Circuit for Equivalent Phase Conductors

The matrices in Eq. (4.31) and (4.32) are the basis for practically all EMTP line models. Even in studies
where ground wires must be retained, it is still these matrices which are used, with phase numbers assigned to the
ground wires as well. A three-phase line with one ground wire is conceptually a four-phase line, with phase no. 1,
2, 3 for phase conductors A, B, C and phase no. 4 for the ground wire.

One type of line representation uses cascade connections of nominal 7m-circuits, as discussed in Sections
4.2.1.1 and 4.2.2.1. This polyphase nominal m-circuit with a series impedance matrix and equal shunt capacitance

matrices at both ends, as shown in Fig. 3.10, is directly obtained from the matrices in Eq. (4.31) and (4.32),
[R] + jolL] = & - [Z/,,,] (4.35)

and
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%jw[C_I = %jw&’ [C phase] (4.36)

where ¢ is the length of the line.

The cascade connection of nominal w-circuits approximates the even distribution of the line parameters
reasonably well up to a certain frequency. It does ignore the frequency dependence of the resistances and inductances
per unit length, however, and is therefore reasonably accurate only within a certain frequency range.

Strictly speaking, it may not be quite correct to treat the real part of [Z',.] as a resistance, and the

phase

imaginary part as a reactance, as done in Eq. (4.35), especially for lines with ground wires. For a three-phase line

with phases A, B, C and ground wire g, the original 4 x 4-matrix is reduced to a 3 x 3-matrix with elements

/ /
Z/ Z/ _ Z ig-original Z kg -original
ik-reduced ~ ik-original / (4 3 7)

g g-original

Even if Z'; igina COuld be separated into resistance and reactance without any doubt, the real part of the second term
in Eq. (4.37) depends on the imaginary parts of the three impedances as well, unless the R/X-ratios of all three

impedances were equal. There is also some doubt about separating Z' into resistance and reactance because

ik-original
of the earth as an implied return conductor, as mentioned in Section 3.1. Nonetheless, experience has shown that
nominal 7-circuits do give reasonable answers in many cases, and they are at least correct at the frequency at which

the matrices were calculated (and probably reasonably accurate in a frequency range around that specific frequency).

Example for using nominal m-circuits

Electrostatic and magnetic coupling effects from energized power lines to parallel objects, such as fences
or de-energized power lines, are important safety issues, and have been well described in two IEEE Committee
Reports [37, 49]. A case of a fence running parallel to a power line (Fig. 4.11) is discussed here, as an application
example for nominal 7t-circuits.® By simply treating the fence as a fourth phase conductor, the following series

impedance and shunt capacitance matrices are obtained:

0.4054+j0.9859  symmetric!
iz 0.0574+j0.4265 0.4054+j0.9859 Ok
= m
phase 0.0574+j0.4265 0.0574+j0.3742 0.4054+j0.9859

0.0581+j0.3168 0.0581+j0.3291 0.0581+j0.3044 1.8607+j0.9953

and

SFor electrically short lines, as in this example, electrostatic coupling effects can be solved by themselves
with [C' ], and magnetic coupling effects by themselves with [Z',,.]. For solving such cases with the EMTP,
it is usually easier to use nominal m-circuits which combine both effects. With that approach, electrically long
lines can be studied as well, provided an appropriate number of m-circuits are connected in cascade.
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7.5709 symmetric
, -1.6266  7.3088
[C phased = nF/km
-1.6304 -0.8349 7.2999

-0.1688 -0.2758 -0.1189 6.9727

From these matrices, the nominal w-circuit matrices are calculated with Eq. (4.35) and (4.36).

3.048 m 3.048 m

Power line conductors: | € y l

R'intemal = 0348 Q/km a— . O .
2 1l

X', = 0.4755 Q/km (60 Hz) 3
(reactance at 1 m spacing)

diameter = 12.7 mm I
frequency = 60 Hz

| - 12.192 m

Fence:
R'intemal = 1802 Q/km i . — .0.4— . l
solid conductor (nonmagnetic) !

diameter = 4.064 mm 3.048 m fe— 9.144 m_,l
length = 2 km —f

Fig. 4.11 - Fence 4 running parallel with power line phase conductors 1, 2, 3

Assume that the fence is insulated from the posts and nowhere grounded. To find the voltage on the fence
due to capacitive coupling, simply connect voltage sources to phases 1, 2, 3 at the sending end, and leave 1, 2, 3
at the receiving end as well as 4 at both ends open-ended. Assuming V = 345 kV RMS, line-to-line, the fence
voltage becomes V, = 3.97 kV. If phase 1 were at zero potential because of a phase-to-ground fault, with phases
2 and 3 still at rated voltage 345/v/3 kV, then the fence voltage would increase to V, = 6.84 kV. These answers are
practically independent of fence length.

Now assume that the 2 km long fence is grounded at the sending end and open-ended at the receiving end.
To find the voltage in the fence for a load current of 1 kA RMS, simply add current sources to phases 1, 2, 3 at the
receiving end, with symmetrical voltage sources at the sending end. Phase 4 is connected to ground at the sending

end and open-ended at the receiving end. The answer will be V. = 0.043 kV, which increases dramatically

4-receiving end
to 6.442 kV if the currents are changed to I, = 10 kA, I, = I = 0 to simulate a phase-to-ground fault. For this last
case, the fence current would be 1.526 kA if the fence were grounded at both ends. These answers are practically

independent of the voltage on phases 1, 2, 3, which can easily be verified by setting them zero.

4.1.2.5 Continuous and Segmented Ground Wires

(a) Circulating Currents in Continuous Ground Wires

Assume that ground wire no. 13 of Fig. 4.1 is grounded at each tower. If the ground wire is not eliminated,
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then the series impedance matrix for equivalent phase conductors will be a 7 x 7 matrix. Its elements can then be

used to calculate the longitudinally induced voltage in the ground wire,

dVg_ / / / / I
*E‘ZgRIRJngsIs*---ZgWIW+Zggg (4.38)

If tower and tower footing resistances are ignored, then V, = 1 at all towers as long as span < < wavelength, or

z L+ Z I+ ...Z 1
Ig _ _ T 8RR gSZ/S W W (439)
88

Since the mutual impedances from the phase conductors to the ground wire are never exactly equal, the numerator
in Eq. (4.39) does not add up to zero even if the phase currents are symmetrical. Therefore, there is a nonzero
ground wire current I,, produced by positive sequence currents, which circulates through ground wire, towers and
ground (Fig. 4.12). This circulating current produces additional losses, which show up as an increase in the value
of the positive sequence resistance, compared with the resistance of the phase conductors. Handbook formulas would
not contain this increase, but the elimination of the ground wires discussed in Section 4.1.2.1 will produce it

automatically. In one particular case of a single-circuit 500 kV line, this increase was 6.5%.

I

g

Fig. 4.12 - Circulating current in ground wire

The inclusion of tower and tower footing resistances may change the results of Eq. (4.39) somewhat. If
we assume equal resistance at all towers, then it appears that the voltage drop produced by the current in the left loop
(Fig. 4.13) is canceled by the voltage drop produced by the current in the middle loop, and Eq. (4.39) should
therefore still be correct, except in the very first and very last span of the line. This assumes that the phase currents

do not change from one span to the next, which is reasonable up to a certain frequency.

Fig. 4.13 - Cascade connection of
loops
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(b) Segmented Ground Wires

To avoid the losses associated with these circulating currents, some utility companies use segmented ground
wires which are grounded at one tower, and insulated at adjacent towers to both ends of the segmentation interval,

where they are interrupted as well (Fig. 4.14).

1 .

7777 7T TP P T I AIIT T T N7 7 A T T 777l

v
A —

"T-configuration”
in segmentation interval
A = insulator

Fig. 4.14 - Segmented ground wires

They still act as electrostatic shields for lightning protection, but when struck by lightning, the segmentation gaps
and the small insulators will flash over, thereby making the ground wire continuous again. The supporting routine
LINE CONSTANTS has an option for segmented ground wires, which ignores’ them in the calculation of the series
impedance matrix since they have no influence on the voltage drops in the phase conductors, but takes them into

account in the calculation of the capacitance matrix because the electrostatic field is not influenced by segmentation.

(©) Reduction Effect of Continuous Ground Wires on Interference

Interference from power lines in parallel telephone lines becomes a problem if there are high zero-sequence
currents in the power line, e.g., in case of a single-phase-to-ground fault. Assume a three-phase line with one
ground wire g and a parallel telephone line P as shown in Fig. 4.15. For zero sequence currents, which implies
equal currents in phases A, B, C, the voltages in P induced by currents in A, B, C will add up in the same direction

(Fig. 4.16). The voltage induced by the ground wire current I, will have opposite polarity, however, since this

"An exception are studies where it can be assumed that the gaps and insulators have flashed over. For such
studies, ground wires must be treated as continuous, as suggested by W.A. Lewis. Switching and lightning
surge studies may fall into this category.
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Fig. 4.15 - Parallel telephone line P close to a
power line with phases A, B, C and ground
wire g

current flows in opposite direction, thereby reducing the total induced voltage - dV /dx. Part of this beneficial
reduction may be offset by an increase in the zero sequence currents because ground wires also reduce the zero

sequence impedance of lines (typically by 5 to 15% with one

~dV,/dx z'1

Pg7g
> | 2 PJ
VA PAIA A PBIB A PCIC

Fig. 4.16 - Induced voltage caused by currents I, = I = I and by I,
steel ground wire, or 15 to 30% with one ACSR ground wire). The reduction effect of the ground wire on
interference can be included in the calculations in two different ways:
(a) Obtain the mutual impedances from matrices in which ground wires have been eliminated and in which the
parallel telephone lines has been retained as an additional conductor. Then the reduction effect of the

ground wires is automatically contained in calculating the magnetically induced voltage from

av, .

- E =Z PA freducedIA * Z/PBfreducedI Bt Z/PCfreducea‘I C (4403')

and, if needed, the electrostatically induced voltage for an insulated parallel telephone line from

0=C /PA ~reduced VA +C /PBfreduced VB +C /PC freducedVC +C /PPfreduced VP (440b)
(b) Calculate the mutual impedances from P to the phases as well as to the ground wires (or obtain them from

matrices in which the ground wires were retained), and recover the value of the ground wire currents with
a "screening matrix" from the phase currents. By setting V, = 0 in Eq. (4.27), the ground wire currents

are obtained as

(] = -2/, 1'Z, 1, (4.41)

[Fscreen]
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with "u" indicating ungrounded phase currents here. The screening matrix [F,..,] is the transpose of the

distribution factor matrix [D,,] of Eq. (II.14) in Appendix III, and as indicated there, can easily be obtained
as a by-product of the matrix reduction process. As an example, Fig. 4.17 shows the standing waves of
the phase currents of the sixth harmonic of 60 Hz in the two poles A, B of the Pacific Intertie HVDC line,

as well as the currents in the two ground wires recovered with Eq. (4.41) [11].

8.0

60

\/ \ /'\/“\ /\ \
SO DNTAIT O T
X /\ /\ /POLEA

[
%V \/ ~ DO!LERB
11V oo

400 600 800 000

X IN MILES
(DISTANCE FROM SENDING ENO)

LINE CURRENTS IN AMPERES

\
2ol
“

Fig. 4.17 - Currents of sixth harmonic in HVDC line [11]. ©
1969 IEEE

4.1.3 Positive and Zero Sequence Parameters of Balanced® Lines
A "balanced" transmission line shall be defined as a line where all diagonal elements of [Z',,..] and [C' ;]

are equal among themselves, and all off-diagonal elements are equal among themselves,

z, 7, .. z| e, ¢, c,
z' 7' ... z| e, . c,

(4.42)
AN AN z'| e, €y ' |

8Also called "continuously transposed” in the EMTP Rule Book.
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Fig. 4.18 - Bipolar dc line

The only line which is truly balanced is the symmetric bipolar dc line (Fig. 4.18), where Z',, = Z2',, = Z';and Z',,
= Z',.. Single-circuit three-phase lines become more or less balanced if the line is transposed, as shown in Fig.
4.19, provided the length of the "barrel" ( = 3 sections, or one cycle of the transposition scheme) is much less than
the wavelength of the frequencies involved in the particular study. While the Westinghouse Reference Book [51,
p- 777] mentions that a barrel may be 80 to 160 km in length on long lines, a German handbook [52, p. 555]
recommends that one barrel be no longer than 80 km (at 50 Hz, or 67 km at 60 Hz) for lines with triangular
conductor configuration, or 40 km (at 50 Hz, or 33 km at 60 Hz) for other conductor configurations. Whatever the

length of the barrel, it is important to realize that while

i .

A o - -
: % k% -

B o —
m m m

C o R
I IT III

Fig. 4.19 - Transposition scheme for single three-phase
circuit

a line may be reasonably balanced at power frequency, there may be enough unbalance at higher frequencies®. If
the barrel length is much shorter than the wavelength, then series impedances can be averaged by themselves through
the three sections, and shunt capacitances can be averaged by themselves, e.g., for the impedances of the line in Fig.

4.19,

Z/ Z/In Z/m

i ik im kk km ki mm mi mk s
1 / / / / / / / / / / / /
gzkizkk ka+kameZmi+Zim ZiiZik :ZstZm
/ / / / / / / / / / / /
Z mi Z mk Z mm Z ik Z im Z ii Z km Z ki Z kk 4 m Z m Z s

with

°At the time of writing, studies at B.C. Hydro seem to indicate that transposed single-circuit lines with
horizontal conductor configuration cannot be treated as balanced lines in switching surge studies.
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ot Z) (4.43)

The averaging process for the shunt capacitances is analogous.

4.1.3.1 Positive and Zero Sequence Parameters of Single-Circuit Three-Phase Lines
Balanced single-circuit three-phase lines can be studied much easier with symmetrical or ¢, 3, 0-components

because the three coupled equations in the phase domain,

Z/s Z/m Z/m
av,
- éxase = Z/m Z/s Z/m [Iphase] (4.44)

Z /In Z/m Z /S

become three decoupled equations with symmetrical components,

-dv. _Jdx = Z. I

zero zero- zero
/
/ - aneg/dx = ZpOS Ineg
~dv,, Jdx = Z), 1 (4.45)

or with «, 3, O-components,

-dv. _Jdx =Z. I

zero zero” zero

-dV,Jdx = Z,,1, (4.46)
/
-dVyldx = Z,,1,

Since transformation to symmetrical components involves complex coefficients, symmetrical components
are not well suited for transient analysis where all variables are real, and are therefore only briefly discussed in
Section 4.1.4. The impedances needed in both systems (4.45) and (4.46) are the same, however, namely Z',.., and

Z' - The balanced distributed-parameter line models in the EMTP use transformations to «, 8, O-components, due
to Edith Clarke [44],

Donasel = [T1Voyp) Woopl = (717 1V ]

and
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lpase] = [T 1igyp) lgopl = (717" [ 5,]

where
Yo
[V()aﬁ] = Ve
p
with
1 2 0 |
s
[11 = — 2 2
IR
T ]
o
and
o1 1]
1 1
r L L
(7! e V2 2
3
Bl B B
V2 2

The columns in [T] and [T]" are normalized; in that case [T] is orthogonal,
(11" = (17

Applying this transformation to Eq. (4.44) produces

dV/dx z'+22", 0 0 Lo
-|av jdx| = 0 z' -7 0 I,
dVgldx 0 0 z' -7, I,

which is identical with Eq. (4.46), with

Z,., =2 +2Z

zero
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Eq. (4.50) and its inverse relationship is the same as discussed previously in Eq. (3.6) and (3.4). Going from the

/ / /
Z, =2, -Z (4.50b)

three coupled equations in (4.44) to the three decoupled equations in (4.46) allows us to solve the line as if it
consisted of three single-phase lines, which is much simpler than trying to solve the equations of a three-phase line.

The positive sequence inductance of overhead lines is practically constant, while the positive sequence
resistance remains more or less constant until skin effect in the conductors becomes noticeable, as shown in Fig.

4.20. Zero sequence inductance and resistance are very much frequency-dependent, due to skin effects in the earth

return.
m, 3m
61 Llokl-ul earth resistivity = 100am ’,
<9 6 O ACSR treated as tubular ~ R'aro
conductor for skin effect ~
12m calculation Pad
L* }10?

{ mH /¥m)

4 4

2.

L 10-1
o - i U 2 [ i . )
102 10% f(Hz) —» 100
Fig. 4.20 - Positive and zero sequence resistance and inductance of a three-phase line
The shunt capacitance matrix of a balanced three-phase line becomes diagonal in «, [, O-components as
well, with
/ / /
C.,=C, +2C, (4.51a)
/ / /
Cos = C - C, (4.51b)
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which is the inverse relationship of Eq. (3.13). The capacitances are constant over the frequency range of interest

to power engineers.

Comparison with results from handbook formulas

The positive and zero sequence parameters obtained from the supporting routines LINE CONSTANTS and
CABLE CONSTANTS may differ from those obtained with handbook formulas. Since some EMTP users may make
comparisons, it may be worthwhile to explain the major differences for a specific example. Assume a typical 500
kV line with horizontal phase configuration, with phases 40 feet apart at an average height above ground of 50 feet.
Each phase consists of a symmetrical bundle with 4 subconductors spaced 18 inches apart. Subconductor diameter
= 0.9 inches, dc resistance = 0.1686 Q/mile, GMR = 0.3672 inches. Throughout this comparison, the bundle
= 7.80524 inches from Eq. (4.30) and GMR,_,,, =

equiv

conductors are represented as equivalent conductors with .

7.41838 inches from Eq. (4.29).

equiv

For positive sequence capacitance, most handbooks give the formula

d, (4.52)

with d,, = 3Vd,pd,cdpe (geometric mean distance among the three phases).
This produces a value approx. 4% lower than the more accurate value from Eq. (4.51) for the 500 kV line described

above. The formula for zero sequence capacitance in [52] and [53],

, 21e, .
o T T (Siemens)
in 2h,D,, (4.53)
requiv m2
with
h,, = *Vh,hghe (geometric mean height),
D,, = *VD,zDDjc (geometric mean distance between one phase and image of another phase),

can be derived by averaging the diagonal and off-diagonal elements in the [P’} ]-matrix among themselves to

account for transposition. Eq. (4.51) has this averaging process implied in the [C' . ]-matrix. Both give practically

phase.

the same answer, with results from Eq. (4.53) 0.23% lower than those from Eq. (4.51). In [51], Eq. (4.53) is
further simplified by assuming D,, = 2h,,,

;o 2mg,

zero

- (Westinghouse)
3
(2h,,) (4.54)

requi v'm

which produces a value 4% higher than the value from Eq. (4.51). While Eq. (4.54) is theoretically less accurate,

the value may actually be closer to measured values because the influence of towers, which is neglected in all
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formulas, typically increases the calculated zero sequence capacitance by about 8 to 9% on 110 kV lines, about 6%
on 220 and 380 kV lines, and about 4% on 700 kV lines [54, p. 218].

The formulas for zero and positive sequence impedances in most handbooks are based on the assumption
that parameter a in Eq. (4.10) is so small that only the first term in the series of Eq. (4.11) must be retained. For
normal phase spacings this is probably a reasonable assumption at power frequency 50 or 60 Hz. Then, after all

diagonal and off-diagonal elements have been averaged out among themselves through transposition,

3 wn- 107

AR’ = AR’ in Q/km
and
AX' = 20-107*[0.6159315 - ln(2hmkﬁ)] in Q/km (4.55)
/o
AX', = 2w-107*[0.6159315 - ln(Dmkﬁ)] in Qlkm
p
with
k =4n-/5-10*

This leads to the expression

Z' =R+ 2w-10*1 n in Q/k

‘pos ac T JAW nGi in m (456)

equiv

with R',. = ac resistance of equivalent phase conductor. It is interesting that the influence of ground resistivity and
of conductor height, which is present in Z'; and Z',,, completely disappears here in taking the difference, Z' . =
Z'.-7',. Eq. (4.56) is the formula found in most handbooks. Table 4.3 compares results from Eq. (4.50) with
results from Eq. (4.56) for the 500 kV line described above with the following additional assumptions: Earth
resistivity = 100 Qm; skin effect within conductors ignored to limit differences to influence of earth return (that is,

R', = R', and GMR

equiv

= constant).

Table 4.3 - Accurate and approximate positive sequence resistance and inductance

ACCURATE APPROXIMATE
R' and L' . from Eq. (4.50) R'and L' . from Eq. (4.56)
f R' L' R' L'
(Hz) (Q/mile) (mH/mile) (Q/mile) (mH/mile)
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106 0.04215 1.417 0.04215 1.417

10 0.04215 1.416 0.04215 1.417

100 0.04229 1.416 0.04215 1.417

1 000 0.05003 1.416 0.04215 1.417
10 000 0.3528 1.413 0.04215 1.417
100 000 6.229 1.401 0.04215 1.417

Table 4.3 shows that L', from Eq. (4.56) is quite accurate over a wide frequency range, whereas R' , becomes less
accurate as the frequency increases (0.33 % error at 100 Hz, but wrong by orders of magnitude at 100 kHz). The
increase in R’ in the higher frequency range is caused by eddy currents in the earth, as indicated in Fig. 4.21 for
a bipolar dc line. Ground wires also influence the positive sequence impedance, as mentioned in Section 4.1.2.5

(a). Both influences are ignored in Eq. (4.56), but automatically included in the method described here.

- -
Pl - .

e

i 7 i{/

Fig. 4.21 - Eddy currents in earth
The zero sequence impedance obtained from Eq. (4.55) is

4 658.877P
r L 3em 10t 10— W i Qi

T2 3/GMR, . -d?

Z - @ (4.57)

zero

with f in Hz, p in Qm, and GMR,

equiv

and d, in m. Eq. (4.57) is the same equation as in [51, 52, 53]. Table 4.4
compares the approximate results from Eq. (4.57) with the accurate results from Eq. (4.50). The inductance L',
is reasonably accurate over a wide frequency range (-0.75% error at 100 Hz, -33% error at 100 kHz), but the

resistance R'_ is less accurate (4.6% error at 100 Hz, 159% error at 100 kHz).

Zero

Table 4.4 - Accurate and approximate zero sequence resistance and inductance

ACCURATE APPROXIMATE
R',.,and L' _ from Eq. (4.50) R',.,and L' _ from Eq. (4.57)
f R’ L' R’ L'
(Hz) (Q/mile) (mH/mile) (Q/mile) (mH/mile)
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107

10

100

1 000
10 000
100 000

0.04215
0.08905
0.4960
4.169
32.12
184.0

13.94
6.170
5.084
4.052
3.164
2.568

0.04215
0.08980
0.05187
4.807
47.69
476.6

13.94
6.158
5.046
3.934
2.823
1.711

4.1.3.2 Positive and Zero Sequence Parameters of Balanced M-Phase Lines

The EMTP can handle balanced distributed-parameter lines not only for the case of a three-phase line, but

for any number of phases M. For this general case, the «, 3, O-transformation of Eq. (4.47) has been generalized

to M phases, with the transformation matrix [55]

where again

1
M 2 6
11
M 26
1 5 2
M /6
L 0 o
/M
[

__M-1)

YMM-1))

(4.58)

(4.59)

[T] of Eq. (4.48) is a special case of Eq. (4.58) for M = 3 if we assume that the phases are numbered 2, 3, 1 in Eq.

(4.47) and if the «, B, O-quantities are ordered O, 3, -« (sign reversal on «).

Applying this M-phase «, B, O-transformation' to the matrices of M-phase balanced lines produces diagonal matrices

of the form

Tn the UBC EMTP, and in older versions of the BPA EMTP, Karrenbauer's transformation [57] is used
instead, which produces the same diagonal matrices, but does not have the property of Eq. (4.59). This property
is important because it makes the balanced line just a special case of the untransposed line discussed in Section

4.1.5.
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1
Z zero
L
YA pos

with the first diagona eement being the zero sequence (ground mode) impedance, and the next M-1 diagonal elements

being the positive sequence (aerial mode) impedance,
z, =27+ M - 1)Z

zero m

z =z -7

‘pos s m

and similarly for the capacitances,
Clop = C + (M - 1)C,,

zero

c =c -c

pos s m

(4.60a)

(4.60b)

(4.61a)

(4.61b)

To refer to the two distinct diagonal elements as zero and positive sequence may be confusing, because the

concept of sequence values has primarily been used for three-phase lines. "Ground mode" and "aerial mode" may be

more appropriate. Confusion is most likely to arise for double-circuit three-phase lines, where each three-phase line
hasits own zero and positive sequence vaues defined by Eq. (4.50) and (4.51) with symmetrical components used for
each three-phase circuit, while in the context of this section the double-circuit line is treated as a six-phase line with
different zero and positive sequence values defined by Eq. (4.60) and (4.61). The fact that the terms zero and positive
sequence are used for M = 3 as well comes from the generalization of symmetrical components of Section 4.1.4to M

phases with the transformation matrix [56, p. 155]

S S Sim
S So1 Sw Som
[ prhase]

Sur Suz Sum
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with

S, =

. exp(527 - 1)k 1) (4.62b)

1
/M
A special case of interest for symmetric bipolar dc lines" isM = 2. Inthiscase[T] of Eqg. (4.58) and [S] of
Eq. (4.62a) areidentical,

[T 2 fphase] =

11
L (4.63)

4.1.3.3 Two ldentical Three-Phase Lineswith Zero Sequence Coupling Only

Just as a transposed single-circuit three-phase line can usually be approximated as a balanced line, so two
identical and paralld three-phase lines can often be approximated as "amost balanced" lines with an impedance matrix
of theform

(4.64)

The transposition scheme of Fig. 4.22 would produce such amatrix form, which implies that the two circuits are only
coupled in zero sequence, but not in positive or negative sequence. Such a complicated transposition schemeis seldom,
if ever, used, but the writer suspects that positive and negative sequence couplings in the more common double-circuit
transposition scheme of Fig. 4.23 is often so weak that the model discussed here may be a useful approximeation for the
case of Fig. 4.23 aswell.

"To be consistent, lines with M = 1 and M = 2 are called "single-phase" and "two-phase" lines,
respectively, in this manual. This differs from the IEEE Standards [76, p. 647], in which circuits with one phase
conductor and one neutral conductor (which could be replaced by ground return), as well as circuits with two
phase conductors and one neutral conductor (or ground return) are both called single-phase circuits for historical
reasons. For M > 3, the definition in the IEEE Standards is the same as in this manual.

4-36



=& X :

cI
X - AII
X » —— —— —~= gg

Fig. 4.22 - Double-circuit transposition scheme with zero sequence coupling
only

The
matrix of Eq. (4.64) is diagonalized by modifying the transformation matrix of Eq. (4.58) to

11 43 1 0 0
11 31 0 0
- _1jtr 0 20 0 (4.65)
VJel[t -1 0 0 3 1
1 -1 0 0 /3 1
1 -1 0 0 0 -2

with [T]™* = [T]" again, which produces the diagonal matrix
Z 5 1
Z, IL
A L
z . (4.66)
Z L

If each circuit has three-phase sequence parameters Z',,, Z',,, and if the three-phase zero sequence coupling between
the two CircuitS i Z',, couping: then the ground mode G, inter-line mode IL and line mode L values required by the EMTP

are found from

/ _ / /
Z G~ Z zero +Z zero-coupling

Z/IL - Z/zero B Z/zerofcoupling (467)
Z/ — Z/

L pos

with identical equations for the capacitances.
If the two three-phase circuits are not identical, then the transformation matrix of Eq. (4.65) can no longer be

used; instead, [T] depends on the particular tower configuration.
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4.1.4 Symmetrical Components

Symmetrical components are not used as such in the EM TP, except that the parameters of balanced lines after
transformation to M-phase ¢, 3, 0-components are the same as the parameters of symmetrical components, namely zero
and positive sequence values. The supporting routine LINE CONSTANTS does have output options for more detailed
symmetrical component information, however, which may warrant some explanations.

In addition to zero and positive sequence values, LINE CONSTANTS also prints full symmetrical component
matrices. Its diagonal elements are the familiar zero and positive sequence values of the line; they are correct for the
untransposed line as well as for a line which has been balanced through proper transpositions. The off-diagonal
elements are only meaningful for the untransposed case, because they would become zero for the balanced line. For
the untransposed case, these of f-diagonal elements are used to define unbalance factors[47, p. 93]. Thefull symmetrical
component matrices are no longer symmetric, unless the columns for positive and negative sequence are exchanged [27].
This exchange is made in the output of the supporting routine LINE CONSTANTS with rows listed in order "zero, pos,
neg,..." and columnsin order "zero, neg, pos,...". With thistrick, matrices can be printed in triangular form (elements
in and below the diagonal), as is done with the matrices for individual and equivalent phase conductors.

Symmetrical components for two-phase lines are cal culated with the transformation matrix of Eq. (4.63), while

those of three-phase lines are calculated with
Vel = S1y]  and vy, 1 = 1S, (4.682)

identical for currents,

where [vjymm] = | Vpos
vneg
1 1 1
1
[S] = —1 a? a
V3 2
1 a a
1 1 1
51° - L1 a a? (4.68b)
\/51 a* a

and a= %",

The columns in these matrices are normalized™; in that form, [S] is unitary,

[SI7' = [S*T (4.69)

“The electric utility industry usually uses unnormalized transformation, in which the factor for the [S]-matrix
is 1 instead of 1 / v3, and for the [S]!-matrix 1/3 instead of 1 / V3. The symmetrical component impedances are
identical in both cases, but the sequence currents and voltages differ by a factor of v'3.
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where "*" indicates conjugate complex and "t" transposition.
For M > 3, the supporting routine LINE CONSTANTS assumes three-phase linesin parallel. Examples:
M =6: Two three-phaselinesin parallel
M =9: Three-phaselinesin parallel
M =8: Two three-phase lines in paralel, with equivalent phase conductors no. 7 and 8 ignored in the

transformation to symmetrical components.

The matrices are then transformed to three-phase symmetrical components and not to M-phase symmetrical components

of Eq. (4.62). For example for M = 6 (double-circuit three-phase line),

(st o
0 s

[s1 0
0 I[S]

(4.70)

[ /Symm [Z/phm]

with [S] defined by Eq. (4.68), Eq. (4.70) produces the three-phase symmetrical component values required in Eq.
(4.67).

Balancing of double-circuit three-phase lines through transpositions never completely diagonalizes the
respective symmetrical component matrices. The best that can be achieved iswith the seldom-used transposition scheme
of Fig. 4.22, which leads to

Z /zerofl 0 zero-coupling 0 0
0z, 0 0 0 0
0 o z,, 0 0 0
[Z/symm] = /
zero-coupling 0 Z zero—{I 0 0
0 0 0 o z ., 0
0 0 0 0 0 Zu]

(4.71)

If both circuitsareidentical, then Z',q. = Z'se11 = Zyeror AN Ziyos) = Zipey = Zpys; inthat case, the transformation matrix

pos-I1

of Eq. (4.65) can be used for diagonalization. The more common transposition scheme of Fig. 4.23 produces positive

and zero seguence coupling between the two

CI BI
AI AI
ATII CIT
CII BII
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@ barrelsrolled in (b) barrelsrolled in
opposite direction same direction

Fig. 4.23 - Double-circuit transposition scheme

circuits as well, with the nonzero pattern of the matrix in Eg. (4.71) changing to

X 0 0/x 0 0]
0 X 0/0 X0
00 X0 0X
0 X 00 X0
0 0 X[0 0 X

where " X" indicates nonzero terms. Re-assigning the phasesin Fig. 4.23(b) to ClI, BI, Al, All, Bll, CIl fromtop to
bottom would change the matrix further to cross-couplings between positive sequence of one circuit and negative

sequence of the other circuit, and vice versa,

X 0 0/x 0 0]
0 X 000X
00 X[0 X 0
00 X[0 X 0
0 X 0/0 0 X|

4.1.5Modal Parameters

From the discussions of Section 4.1.3 it should have become obvious that the solution of M-phase transmission
line equations becomes simpler if the M coupled equations can be transformed to M decoupled equations. These
decoupled equations can then be solved as if they were single-phase equations. For balanced lines, this transformation
is achieved with Eq. (4.58).

Many lines are untransposed, however, or each section of a transposition barrel may no longer be short
compared with the wave length of the highest frequencies occurring in a particular study, in which case each section
must be represented as an untransposed line. Fortunately, the matrices of untransposed lines can be diagonalized as
well, with transformations to "modal" parameters derived from eigenvalue/eigenvector theory. The transformation
matrices for untransposed lines are no longer known a priori, however, and must be calculated for each particular pair
of parameter matrices [Z' e and [Y el -

To explain the theory, let us start again from the two systems of equations (4.31) and (4.32),
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dehase /
- dx - [Z phase] [I phase] (4 . 723—)
and
dl
_ Z;lse ] _ [Y/phase] [Vphase] (4 . 72b)

With [Y el = jo[Clyee] if shunt conductances areignored, asis customarily done. By differentiating the first equation
with respect to x, and replacing the current derivative with the second equation, a second-order differential equation for

voltages only is obtained,

2
Vphase

e

phase] [ Y! phase] [ Vphase] (4 73 a)

Similarly, a second-order differential equation for currents only can be obtained,

2

1
phase | _ [Y/ ][Z/ (473b)
de

phase phase] [Iphase]

where the matrix products are now in reverse order from that in Eq. (4.73a), and therefore different. Only for balanced
matrices, and for the lossless high-frequency approximations discussed in Section 4.1.5.2, would the matrix products
in EQ. (4.73a) and (4.73b) be identical.

With eigenvalue theory, it becomes possible to transform the two coupled equations (4.73) from phase
quantitiesto "modal" quantitiesin such away that the equations become decoupled, or in terms of matrix algebra, that
the associated matrices become diagonal, e.g., for the voltages,

2
mode

= [AILV,,,] 4.74)

with [A] being a diagonal matrix. To get from Eq. (4.73a) to (4.74), the phase voltages must be transformed to mode

voltages, with
WVonasel = [TV 04.] (4.752)
and
WVoodel = [T 1V ] (4.75b)
Then Eq. (4.73a) becomes
2
| T 2 s 1Y sl [T V) (4.762)
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which, when compared with Eq. (4.74), shows us that

[A] = [T Z Y sl [T (4.76b)

phase]

Tofind the matrix [T,] which diagonalizes [Z',.|[Y el 1S the eigenval ue/eigenvector problem. The diagonal elements
of [A] are the eigenvalues of the matrix product [Z' .| [Y ‘el @0d [T,] is the matrix of eigenvectors or modal matrix
of that matrix product. There are many methods for finding eigenvalues and eigenvectors. The most reliable method
for finding the eigenvalues seems to be the QR-transformation due to Francis [3], while the most efficient method for
the elgenvector calculation seemsto be the inverse iteration scheme due to Wilkinson [4, 5]. In the supporting routines
LINE CONSTANTS and CABLE CONSTANTS, the "EISPACK"-subroutines [67] are used, in which the eigenvalues
and eigenvectors of acomplex upper Hessenberg matrix are found by the modified LR-method due to Rutishauser. This
method is a predecessor of the QR-method, and where applicable, asin the case of positive definite matrices, is more
efficient than the QR-method [68]. To transform the original complex matrix to upper Hessenberg form, stabilized
elementary similarity transformations are used. For a given eigenvalue ,, the corresponding eigenvector [t,] (= k-th

column of [T,]) isfound by solving the system of linear equations
{[Z /phase] [Y/phase] - A‘k[U]} [tvk] =0 (477)

with [U] = unit or identity matrix. EQ. (4.77) shows that the eigenvectors are not uniquely defined in the sense that they
can be multiplied with any nonzero (complex) constant and still remain proper eigenvectors', in contrast to the
eigenvalues which are always uniquely defined.

Floating-point overflow may occur in eigenval ue/eigenvector subroutines if the matrix is not properly scaled.
Unless the subroutine does the scaling automatically, [Z' . [ Y naed ShoUld be scaled before the subroutine call, by
dividing eachelement by  -(w?,,), as suggested by Galloway, Shorrows and Wedepohl [39]. This division brings
the matrix product close to unit matrix, becausg[Z' JIY' 1is a diagonal matrixeldthentsw?e,|, if resistances,
internal reactances and Carson's correction terms are ignored in Eq. (4.7) and (4.8), as explained in Section 4.1.5.2. The
eigenvalues from this scaled matrix must of course be multiplied wAth, to obtain the eigenvalues of the original
matrix. In[39] it is also suggested to subtract 1.0 from the diagonal elements after the division; the eigenvalues of this
modified matrix would then be the p.u. deviations from the eigenvalues of the lossless high-frequency approximation
of Section 4.1.5.2, and would be much more separated from each other than the unmodified eigenvalieslogech
together. Using subroutines based on [67] gave identical results with and without this subtraction of 1.0, however.

In general, a different transformation must be used for the currents,

Uppase] = [T 00] (4.78a)

BThis is important if matrices [T,] obtained from different programs are compared. The ambiguity can be
removed in a number of ways, e.g., by agreeing that the elements in the first row should always be 1.0, or by
normalizing the columns to a Euclidean vector length of 1.0, that is, by requiring t,t,,;* + t,t,* + ... = 1.0,
with t* = conjugate complex of t. In the latter case, there is still ambiguity in the sense that each column could
be multiplied with a rotation constant € and still have vector length = 1.0.
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and
[Imode] = [Ti]i1 [Iphase] (478b)

because the matrix products in Eq. (4.73a) and (4.73b) have different eigenvectors, though their eigenvalues are
identical. Therefore, Eq. (4.73b) is transformed to

a
d:;de = [A] [Inwde] (479)

with the same diagonal matrix asin Eq. (4.74). While[T] is different from [T,], both are fortunately related to each
other [58],

(7] = [T)]]" (4.80)

where"t" indicates transposition. It is therefore sufficient to calculate only one of them.

Modal analysisisapowerful tool for studying power line carrier problems [59-61] and radio noise interference
[62, 63]. Itsuseinthe EMTPisdiscussed in Section 4.1.5.3. It isinteresting to note that the modes in single-circuit
three-phase lines are almost identical with thea, B, 0-components of Section 4.1.3.1 [58]. Whether the matrix products
in Eq. (4.73) can aways be diagonalized was first questioned by Pelissier in 1969 [64]. Brandao Faria and Borges da
Silva have shown in 1985 [65] that cases can indeed be constructed where the matrix product cannot be diagonalized.
Itisunlikely that such situationswill often occur in practice, because extremely small changes in the parameters (e.g.,
in the 8th significant digit) seem to be enough to make it diagonalizable again. Paul [66] has shown that diagonalization
can be guaranteed under simplifying assumptions, e.g., by neglecting conductor resistances.

The physical meaning of modes can be deduced from the transformation matrices[T,] and [T;]. Assume, for
example, that column 2 of [T;] has entries of (-0.6, 1.0, -0.4). From Eq. (4.78a) we would then know that mode-2 current

flows into phase B in one way, with 60% returning in phase A and 40% returning in phase C.

4.15.1 Line Equationsin Modal Domain
With the decoupled equations of (4.74) and (4.79) in moda quantities, each mode can be analyzed asif it were

asingle-phase line. Comparing the modal equation

da*v
mode-k
ﬁ = )Lk Vmodefk
with the well-known equation of asingle-phaseline,
2
d 12/ -2y
dx

with the propagation constant y defined in Eg. (1.15), shows that the modal propagation constant 4.« iS the square
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root of the eigenvalue,

Viode—x = % + JBy = \/7k (4.81)

with
o, = attenuation constant of mode k (e.g., in Np/km),
Bk = phase constant of mode k (e.g., in rad/km).

The phase velocity of modek is

phase velocity = Bﬁ (4.82a)
%

and the wavelength is

wave length = % (4.82b)

k

While the modal propagation constant is always uniquely defined, the modal series impedance and shunt
admittance as well as the modal characteristic impedance are not, because of the ambiguity in the eigenvectors.
Therefore, modal impedances and admittances only make sense if they are specified together with the eigenvectors used
intheir calculation. To find them, transform Eq. (4.72a) to modal quantities

mode

= [Tv]i1 [Z/phase] [Tz] [Imode] (483)

The triple matrix product in Eq. (4.83) is diagonal, and the modal seriesimpedances are the diagonal elements of this

matrix

(Z' o] = [T Z 0 [T (4.842)
or with Eq. (4.80),

(Z' i) = [TZ 0 ) (T (4.84b)

Similarly, Eq. (4.72b) can be transformed to modal quantities, and the modal shunt admittances are then the diagonal
elements of the matrix

Wnoaed = [T17 (¥l [T)] (4.852)

or with Eqg. (4.80),

[Y/mode] - [Tvl] [Y/phase] [Tv] (485b)
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The proof that both [Z'4] and [Y' .4 @€ diagona is given by Wedepohl [58]. Finally, the modal characteristic

impedance can be found from the scalar equation

4 de-k
Zcharfmodefk = /”70 : (4863)
Y mode-k
or from the simpler equation
VA — Y mode-k
‘char-mode-k Y / (4 . 86b)

mode-k

A good way to obtain the modal parameters may be as follows: First, obtain the eigenvalues %, and the
eigenvector matrix [T,] of the matrix product [Z'yeel[Y (el - Then find [Y',e] from Eq. (4.85b), and the modal series

impedance from the scalar equation

A

k
Z /mode % - Y/ (4 . 86C)

mode-k

The modal characteristic impedance can then be calculated from Eq. (4.864), or from Eq. (4.86b) if the propagation
constant from Eq. (4.81) is needed aswell. If [T] isneeded, too, it can be found efficiently from Eq. (4.859)

[T] = [V ) [TITY )™ (4.85¢)

phase

because the product of thefirst two matricesis available anyhow when [Y',..J] isfound, and the post-multiplication with
[Y’oad ™ is simply a multiplication of each column with a constant (suggested by Luis Marti). Eq. (4.85c) also
establishes the link to an alternative formulafor [T;] mentioned in [57],

(7] = 1Y ) [T,1 D]

with [D] being an arbitrary diagonal matrix. Setting [D] = [Y ", |€ads us to the desirable condition [T] = [T, of
Eq. (4.80). If the unit matrix were used for [D], al modal matricesin Eq. (4.84) and (4.85) would still be diagonal, but
with the strange-looking result that all modal shunt admittances become 1.0 and that the modal series impedances
become %,. EQ. (4.80) would, of course, no longer be fulfilled. For alosslessline, the modal series impedance would
then become a negative resistance, and the modal shunt admittance would become a shunt conductance with a value of
1.0S. Aslong asthe caseis solved in the frequency domain, the answers would still be correct, but it would obviously

be wrong to associate such modal parameters with

_v R'i and _o G'v
ox ox

(with R' negative and G’ = 1.0) in the time domain.

4-45



4.1.5.2 Lossless High-Frequency Approximation

In lightning surge studies, many simplifying assumptions are made. For example, the waveshape and amplitude
of the current source representing the lightning stroke is obviously not well known. Similarly, flashover criteriain the
form of volt-time characteristics or integral formulas [8] are only approximate. I1n view of all these uncertainties, the
use of highly sophisticated line modelsis not aways justified. Expertsin the field of lightning surge studies normally
use asimple line model in which all wave speeds are equal to the speed of light, with a surge impedance matrix [Zg,]

in phase quantities, where

Zqurge = 00 In(2h/r) (4.87a)
Zikfsurge = 60 ll’l(D ik/dik) (487b)
all wave speeds = speed of light 4.87c)

with r; being the radius of the conductor, or the radius of the equivalent conductor from Eq. (4.30) in case of abundle
conductor.*

Typicaly, each span between towers is represented separately as aline, and only afew spans are normally
modelled (3 for shielded lines, or 18 for unshielded linesin [8]). For such short distances, losses in series resistances
and differencesin modal travel timesare negligible. The effect of coronais sometimesincluded, however, by modifying
the ssmple model of Eq. (4.87) [8].

Itis possibleto develop a specia line model based on Eq. (4.87) for the EMTP, in which al calculations are
done in phase quantities. But as shown here, the smple modd of Eq. (4.87) can aso be solved with modal parameters
as aspecial case of the untransposed line. The simple model follows from Eqg. (4.72) by making two assumptions for
a"lossless high-frequency approximation”:

1 Conductor resistances and ground return resistances are ignored.

2. The frequencies contained in the lightning surges are so high that all currents flow on the surface of

the conductors, and on the surface of the earth.

Then the elements of [Z',....] become
' jetmeny Z' = jonD, id
Z; = Jo)%ln(Zhl. ) k= J‘*’E n(D,/d;) (4.88)
while[Y] is obtained by inverting the potential coefficient matrix,
[Y] = jo[P! (4.89)

with the elements of [P] being the same asin Eq. (4.88) if the factor jw,/(21) is replaced by 1/f2,). Then both matrix

“Ground wires are usually retained as phase conductors in such studies. If they are eliminated, the method
of Section 4.1.2.1 must be used on [Z,,].
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productsin Eq. (4.73) become diagonal matrices with al elements being

A, = -, k=1,..M (4.90)

These values are automatically obtained from the supporting routines LINE CONSTANTS and CABLE
CONSTANTS as the eigenvalues of the matrix productsin Eg. (4.73), by simply using the above two assumptionsin
the input data (all conductor resistances = 0, GMR/r = 1.0, no Carson correction terms). The calculation of the
eigenvector matrix [T,] or [T;] needed for the untransposed line model of Section 4.2 breaks down, however, because
the matrix productsin Eq. (4.73) are aready diagona. To obtain [T,], let usfirst assume equal, but nonzero conductor
resistances R'. Then the eigenvectors|t,,] are defined by

(-weuglU] + joR'[PT) [2,] = Alz,] (4.91)

with the expression in parentheses being the matrix product [Z'y,.[Y el @d [U] = unit matrix. Eq. (4.91) can be

rewritten as
P [t,] = )“k—nwdiﬁed [z, (4.92)
with modified eigenvalues

j(‘)R/}“kfmodiﬁed = A + wegu, (4.93)

Eq. (4.92) isvalid for any value of R’, including zero. It therefore followsthat [T,] is obtained as the eigenvectors of
[P]?, or alternatively as the eigenvectors of [P] since the eigenvectors of amatrix are equal to the eigenvectors of its
inverse. Theeigenvalues of [P]™ are not needed because they are aready known from Eq. (4.90), but they could aso
be obtained from Eq. (4.93) by setting R’ = 0.

For this simple mode, [T,] isareal, orthogonal matrix,

[T]IT) = [U] (4.94)
and therefore,

(7] = [T)] (4.95)

D.E. Hedman has solved this case of the lossless high-frequency approximation more than 15 years ago [45]. He
recommended that the eigenvectors be calculated from the surge impedance matrix of Eq. (4.87), which isthe same as
calculating them from [P] since both matrices differ only by a constant factor.

One can either modify the line constants supporting routines to find the eigenvectors from [P] for the lossless
high-frequency approximation, as was done in UBC's version, or use the same trick employed in Eq. (4.91) in an
unmodified program: Set all conductor resistances equal to some nonzero value R’, set GMR/r = 1, and ask for zero
Carson correction terms. If the eigenvectors are found from [P7], then it is advisable to scale this matrix first by
multiplying al elements with 2re,,.

The lossless high-frequency approximation produces eigenvectors which differ from those of the lossy case
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at very high frequencies [61]. This is unimportant for lightning surge studies, but important for power line carrier

problems.

Example: For adistribution line with one ground wire (Fig. 4.24) the lossless high-frequency approximation produces

the following modal surge impedances and transformation matrix,

mOde Zsurqe-mode (Q)

1 993.44
2 209.67
3 360.70
4 310.62

Fig. 4.24 - Position of phase conductors A, B,
C and ground wire D (average height, all
dimensions in m). Conductor diameter =
10.1092 mm

).52996 0.82860 -0.18I
).49080 -0.21322 0.462
).49080 -0.21322 0.462
).48721 -0.47170 -0.73:

Converted to phase quantities, the surge impedance matrix becomes [T J[Z,qe mocel [ TJ]" OF

490.33
176.95 484.89 symmetric
[Zsur e ha:e] - Q
sep 176.95 174.27 484.89

190.74 144.26 144.26 495.31
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The dements from Eq. (4.87) are dightly larger, by afactor of 300,000/299,792, because the supporting routine LINE
CONSTANTS uses 299,792 kmi/s for the speed of light, versus 300,000 knvsimplied in Eq. (4.87).

Representation in EM TP then would be by means of a 4-phase, constant-parameter, lossless line. The following
branch cards are for the first of 4 such cascaded sections:

-11A 2A 99344 3E6 2 4
-11B 2B 99344 3E-6 2 4
-11C 2C 99344 3E-6 2 4
-11D 2D 99344 3E-6 2 4

The modelling of long lines as coupled shunt resitances [R] = [Zqe ol Nas already been discussed in Section
3.1.3. In the example above, such a shunt resistance matrix could be used to represent the rest of the line after the 4
spans from the substation. Simply using the 4 x 4 matrix would be unrealistic with respect to the ground wire, however,
because it would imply that the ground wire is ungrounded on the rest of theline. More redlistic, though not totally
accurate, would be a3 x 3 matrix obtained from [Z'..] and [Y',,.] in which the ground wire has been eliminated. This
model implies zero potential everywhere on the ground wire, in contrast to the four spans where the potential will more

or less oscillate around zero because of reflections up and down the towers.

Comparison with More Accurate Models: For EM TP users who are reluctant to use the simple model described in this

section, afew commentsarein order. Firgt, let us compare exact vaues with the approximate values. 1f we use constant
parameters and choose 400 kHz as a reasonabl e frequency for lightning surge studies, then we obtain the results of table
4.5 for the test example above, assuming T/D = 0.333 for skin effect correction and internal inductance calculation with
the tubular conductor formula, R',, = 0.53609 ©/km, and p = 100 Qm.

Table 4.5 - Exact line parameters at 400 kHz

mode | Zgieeme (£2) | wavevelocity (nvs) R’ (€2/km)
1 1027.6-j33.9 285.35 597.4
2 292.0-j0.5 299.32 7.9
3 361.9-j0.5 299.37 8.2
4 311.1-j0.5 299.32 8.0

The differences are less than 0.5% in surge impedance and wave speed for the aerial modes 2 to 4, and not more than
5% for the ground return mode 1. These are smdll differences, considering all the other approximations which are made
in lightning surge studies. If seriesresistances are included by lumping them in 3 places, totally erroneous results may
be obtained if the user forgets to check whether R/4 < Z, .. in the ground return mode. For the very short line length
of 90 min this example, this condition would still be fulfilled here.

Using constant parameters at a particular frequency is of course an approximation as well, and some users may
therefore prefer frequency-dependent models. For very short line lengths, such as 90 min the example, most frequency-

dependent models are probably unreliable, however. It may therefore be more sensible to use the simple model
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described here, for which answers are reliable, rather than sophisticated models with possibly unreliable answers.

A somewhat better lossless line model for lightning surge studies than the preceding one has been suggested
by V. Larsen [92]. To obtain this better model, the line parameters are first calculated in the usual way, at a certain
frequency whichistypical for lightning surges (e.g., a 400 kHz). The resistances are then set to zero when the matrix
product [Z'yael[ Y rese] iS formed, before the modal parameters are computed. With this approach, [T;] will always be
real. Table 4.6 shows the modal parameters of this better lossless model. They differ very little from those in Table
45,

Table 4.6 - Approximate modal parameters at 400 kHz with R=0

mode | Zgeme (€2) | wave velocity (m/s)
1 1026.3 285.50
2 292.0 299.32
3 362.0 299.37
4 3111 299.32

In particular, the wave velocity of the ground return mode 1 is now much closer to the exact value of Table 4.5. The

transformation matrix which goes with the modal parameters of Table 4.6 is

0.40795 0.84115 -0.22316 0

0.55628 -0.18448 0.44910 -0.70711
7l = 0.55628 -0.18448 0.44910 0.70711

0.46335 -0.47371 -0.73947 0

Inthiscase[T,] isno longer to [T]; Eq. (4.80) must be used instead.

4.1.5.3 Approximate Transformation Matricesfor Transient Solutions

The transformation matrices [T,] and [T;] are theoretically complex, and frequency-dependent as well. With
a frequency-dependent transformation matrix, modes are only defined at the frequency at which the transformation
matrix was calculated. Then the concept of converting a polyphase line into decoupled single-phase lines (in the modal
domain) cannot be used over the entire frequency range. Since the solution methods for transients are much simpler
if the modal composition is the same for all frequencies, or in other words, if the transformation matrices are constant
with real coefficients, it is worthwhile to check whether such approximate transformation matrices can be used without
producing too much error. Fortunately, thisis indeed possible for overhead lines [66, 78].

Guidelines for choosing approximate (real and constant) transformation meatrices have not yet been worked out
at the time when these notes are being written. The frequency-dependent line model of J. Marti discussed in Section
4.2.2.6 needs such a real and constant transformation matrix, and wrong answers would be obtained if a complex

transformation matrix were used instead. Since areal and constant transformation matrix is always an approximation,
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its use will always produce errors, even if they are small and acceptable. The errors may be small in one particular
frequency region, and larger in other regions, depending on how the approximation is chosen.

One choice for an approximate transformation matrix would be the one used in the lossless approximations
discussed in Section 4.1.5.2. This may be the best choice for lightning surge studies.

For switching surge studies and similar types of studies, the preferred approach at this time seems to be to
calculate[T,] at aparticular frequency (e.g., a 1 kHz), and then to ignore the imaginary part of it. In thisapproach, [T,]
should be predominantly real before the imaginary part is discarded. One cannot rely on this when the subroutine
returns the eigenvectors, since an eigenvector multiplied with € or any other constant would still be a proper
eigenvector. Therefore, the columns of [T,] should be normdized in such away that its components lie close to the real
axis. One such normalization procedure was discussed by V. Brandwajn [79]. The writer prefers a different approach,
which works as follows:

1 Ignore shunt conductances, asis customarily done. Then [Y’,.] ispurely imeginary. Use Eq. (4.85)

to find the diagonal elements of the modal shunt admittance matrixX Y’ oge k- praiminary-

2. In general, these "preliminary” modal shunt admittances will not be purely imaginary, but joC' e €

Ik instead. Then normalize [T,] by multiplying each column with € ®2, With this normalized
transformation matrix, the modal shunt admittances will become joC', gk, OF purely imaginary asin
the phase domain.

3. To obtain the approximate (real and constant) transformation matrix, discard the imaginary part of

the normalized matrix from step 2.

4, Use the approximate matrix [T, o] from step 3 to find modal series impedances and modal shunt

admittances from Eq. (4.84) and (4.85) over the frequency range of interest. If [T]] is needed, use

[ lfapprox.] = [Tvtfazppro)c.]i1 (496)
5. If theline model requires nonzero shunt conductances, add them as modal parameters. Usually, only

conductances from phase to ground are used (with phase-to-phase values being zero); in that case,
the modal conductances are the same as the phase-to-ground conductances if the latter are equal for
all phases.
An interesting method for finding approximate (real and constant) transformation matrices has been suggested
by Paul [66]. By ignoring conductor resistances, and by assuming that the Carson correction terms AR’; + jAX’; in EQ.
(4.7) and AR, +jAX in Eq. (4.8) are dl equal (all elementsin the matrix of correction terms have one and the same

value), the approximate transformation matrix [T, ., ] iS obtained as the eigenvectors of the matrix product

with all elements of the second matrix being 1. To find [T, 4o, EQ. (4.96) would have to be used. Wasley and
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Selvavinayagamoorthy [93] find the approximate transformation matrices by simply taking the magnitudes of the
complex elements, with an appropriate sign reflecting the values of their arguments. They compared results using these
approximate matrices with the exact results (using complex, frequency-dependent matrices), and report that fairly high
accuracy can be obtained if the approximate matrix is computed at alow frequency, even for the case of double-circuit
lines.

If the M-phase line is assumed to be balanced (Section 4.1.3.2), then the transformation matrix is always redl
and constant, and known a priori with Eq. (4.58) and Eq. (4.59). Two identical and balanced three-phase lines with zero
seguence coupling only have the real and constant transformation matrix of Eq. (4.65).

42LineModelsintheEMTP

The preceding Section 4.1 concentrated on the line parameters per unit length. These are now used to develop
line models for liens of a specific length.

For steady-state solutions, lines can be modelled with reasonable accuracy as nominal z-circuits, or rigorously
as equivalent n-circuits. For transient solutions, the methods become more complicated, as one proceeds from the smple
case of asingle-phase lossless line with constant parameters to the more realistic case of alossy polyphase line with

frequency-dependent parameters.

4.2.1 AC Steady-State Solutions

Lines can be represented rigoroudly in the steady-state solution with exact equivalent n-circuits. Less accurate
representations are sometimes used, however, to match the model to the one used in the transient simulation (e.g.,
lumping R in three places, rather than distributing it evenly along the line, or using approximate real transformation
meatrices instead of exact complex matrices). For lines of moderate "electrical” length (typically < 100 km at 60 Hz),
nomina r-circuits are often accurate enough, and are probably the best modelsto use for steady-state solutions at power
frequency. If the steady-state solution is followed by atransient simulation, or if steady-state solutions are requested
over awide frequency range, then the nominal r-circuit must either be replaced by a cascade connection of shorter
nominal w-circuits, or by an exact equivalent -circuit derived from the distributed parameters.

4.2.1.1 Nominal M-Phase n-Circuit

For the nominal M-phase n-circuit of Fig. 3.10, the series impedance matrix and the two equa shunt
susceptance matrices are obtained from the per unit length matrices by simply multiplying them with the line length, as
shown in Eq. (4.35) and (4.36). The equations for the coupled lumped elements of this M-phase r-circuit have already
been discussed at length in Section 3, and shall not be repeated here.

Nominal z-circuits are fairly accurate if the line is electrically short. Thisis practicaly always the case if
complicated transposition schemes are studied at power frequency (60 Hz or 50 Hz). Fig. 4.25 shows atypica example,
with three circuits on the same right-of-way. In this case, each of the five transposition sections (1-2, 2-3, 3-4, 4-5, 5-6)

would be represented as anomina 9-phase rn-circuit. While anominal w-circuit would already be reasonably accurate
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for the total line length of 95 km, nominal r-circuits are certainly accurate for each transposition section, since the

longest section isonly 35 km long. A comparison between measurements on the de-energized line L3 and computer

resultsis shown in table 4.7 [80]. The coupling in this case is predominantly capacitive.

distances in km
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Fig. 4.25 - Transposition scheme for three adjacent circuits

Table 4.7 - Comparison between measurements and EM TP results (voltages on energized line L1 =

372kV and on L2 =535 kV)

phase measurement EMTP results
Induced voltages on de-energized line L3 if open at A 30kV 27.5kV
both ends B 15kV 13.8kV
C 10 kV 7.8kV
Grounding currents if de-energized line L3 is A 11A 105A
grounded at right end B 5A 32A
C 1A 15A

Because nominal w-circuits are so useful for studying complicated transposition schemes, a"CASCADED PI"
option was added to the BPA EMTP. With this option, the entire cascade connection is converted to one single z-

circuit, which is an exact equivalent for the cascade connection. Thisis done by adding one "component” at atime, as

shown in Fig. 4.26. The"component" may either be an M-phase n-circuit, or other types of network elements such as
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shunt reactors or series capacitors. Whenever component K is added, the nodal admittance matrix

@ © OO O,
. Equivalent : Equivalent
o for ° Compo- ° ﬁ ° for °
components nent K components
P 1,2,....,K-1{_o —e ® 1,2,..... K —e

Fig. 4.26 - Schematic illustration of cascading operation for K-th component

for nodes 1, 2, 3isreduced by eliminating the inner nodes 2, to form the new admittance matrix of the equivalent for
the cascaded components 1, 2, ... K. This option keeps the computational effort in the steady-state solution as low as
possible by not having to use nodal equations for the inner nodes of the cascade connection, at the expense of extra

computational effort for the cascading procedure.

4.2.1.2 Equivalent a-Circuit for Single-Phase Lines

Lines defined with distributed parameters at input time are always converted to equivalent r-circuits for the
steady-state solution.

For lines with frequency-dependent parameters, the exact equivalent z-circuit discussed in Section 1 is used,
with Eq. (1.14) and (1.15). The same exact equivalent n-circuit is used for distortionless and lossless line models with
constant parameters.

In many applications, line models with constant parameters are accurate enough. For example, positive
sequence resistances and inductances are fairly constant up to approximately 1 kHz, as shown in Fig. 4.20. But even
with constant parameters, the solution for transients becomes very complicated (except for the unrealistic assumption
of distortionless propagation). Fortunately, experience showed that reasonable accuracy can be obtained if L’ and C’
are distributed and if

R =R'Y 4.97)
islumpedin afew placesaslong asR << Z,.. Inthe EMTP, R/2islumped in the middle and R/4 at both ends of an

otherwise lossless line, as shown in Fig. 4.27, and as further discussed in Section 4.2.2.5. For this transient

representation, the EM TP uses the same assumption®® in the

The EMTP should probably be changed to by-pass this option if only steady-state solutions are requested,
either at one frequency or over a range of frequencies.

4-54



R R R
4
1 2 2 3 4 4
e Ve < o—-/\,-—o——————o—/\,—o m
lossless lossless
line line

Fig. 4.27 - Line representation with lumped resistances

steady-state solution, to avoid any discrepancies between ac steady-state initialization and subsequent transient
simulation, even though experiments have shown that the differences are extremely small at power frequency. By using
equivaent n-circuits for each lossless, half-length section in Fig. 4.27, and by eliminating the "inner" nodes 1, 2, 3, 4,
an equivalent rr-circuit (Fig. 1.2) was obtained by R.M. Hasibar with

2
Zprins = Rcos’wt - [0.5 +0.03125R—) R sin*wt + j sinwt coswt:
ZZ
2
(0.375R7 +22)
2
(-2 - 0.125R—)sin2wr + jgsinw‘rcosw‘r
1y _ Z? VA (4.98)
2 s Zseries
where
T = length y|L'C’
/
Z = L_
A\ C/
R = length- R’ (4.99)

4.2.1.3 Equivalent M-Phase n-Cir cuit

To obtain an equivalent M-phase n-circuit, the phase quantities are first transformed to modal quantities with
Eq. (4.84) and (4.85) for untransposed lines, or with Eq. (4.58) and (4.59) for balanced lines. For identical balanced
three-phase lines with zero sequence coupling only, Eq. (4.65) is used. For each mode, an equivalent single-phase -
circuit is then found in the same way as for single-phase lines; that is, either as an exact equivalent n-circuit with Eq.
(1.14) and (1.15), or with Eqg. (4.98) and (4.99) for the case of lumping R in three places. These single-phase modal
n-circuits each has a series admittance Y oics mose 8N two equal shunt admittances 1/2 Y 4,imoger BY 8SSembling these

admittances as diagonal matrices, the admittance matrices of the M-phase rt-circuit in phase quantities are obtained from
[Yseries] - [Tt] [Yseriesfmode] [Tl]t (4 100)

and
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1 1
5 [Yshunt] - 5 [Tt] [Yshum*mode] [Tl]t 4.101)

While it is always possible to obtain the exact equivalent M-phase r-circuit at any frequency in this way,
approximations are sometimes used to match the representation for the steady-state solution to the one used in the
transient solution. One such approximation isthe lumping of resistances as shown in Fig. 4.27. Another approximation
isthe use of real and constant transformation matrices in Eg. (4.100) and (4.101), as discussed in Section 4.1.5.3.

4.2.2 Transient Solutions

Historically, the first [ine models in the EM TP were cascade connections of z-circuits, partly to prove that
computers could match switching surge study results obtained on transient network analyzers (TNA's) at that time. On
TNA'’s, balanced three-phase lines are usually represented with decoupled 4-conductor r-circuits, as shown in Fig. 4.28.
This representation can easily be derived from Eq. (4.44) by rewriting it as

dVA / / /
_E = s A m)IA +Z m(IA * IB * IC) (4.102)

N1 N2

Fig. 4.28 - Four-conductor m-circuit used on
TNA's

for phase A, and similar for phases B and C. The first termin Eq. (4.102) is Z',Jl, (or branch A1-A2in Fig. 4.28),
while the second term is the common voltage drop caused by the earth and ground wire return current 1, + 1 + |
(branch N1-N2in Fig. 4.28). Note, however, that Fig. 4.28 isonly valid if the sum of the currents flowing out through
aline returns through the earth and ground wires of that sameline. For that reason, the neutral nodes N2, N3, ... must
be kept floating, and only N1 at the sending end is grounded. V oltages with respect to ground at location i are obtained
by measuring between the phase and node N;. 1n meshed networkswith different R/X-ratios, this assumption is probably
not true. For this reason, and to be able to handle balanced as well as untransposed lines with any number of phases,
M-phase rt-circuits were modelled directly with M x M matrices, as discussed in Section 4.1.2.4. Voltages to ground
are then simply the node voltages. Comparisons between these M-phase r-circuits, and with the four-conductor -

circuits of Fig. 4.28 confirmed that the results are identical.

4-56



The need for travelling wave solutions first arose in connection with rather simple lightning arrester studies,
where lossless single-phase line model s seemed to be adequate. Section 1 briefly discusses the solution method used
in the EMTP for such lines. This method was aready known in the 1920's and 1930's and strongly advocated by
Bergeron [81]; it istherefore often called Bergeron's method. In the mathematical literature, it is known as the method
of characteristics, supposedly first described by Riemann.

It soon became apparent that travelling wave solutions were much faster and better suited for computers than
cascaded w-circuits. To make the travelling wave solutions useful for switching surge studies, two changes were needed
from the simple single-phase lossless line: Firgt, losses had to be included, which could be done with reasonable
accuracy by simply lumping R in three places. Secondly, the method had to be extended to M-phase lines, which was
achieved by transforming phase quantities to moda quantities. Origindly, this was limited to balanced lines with built-
in transformation matrices, then extended to double-circuit lines, and finally generalized to untransposed lines. Fig. 4.29
compared EM TP results with results obtained on TNA's, using the built-in transformation matrix for balanced three-

phase lines and simply lumping R in three places.

R1=R0=6'75 Q
C /v length=202.8 km .
X =X =127 Q z2.=0.04+30.318 Q/km
£f=50 Hz 1o 1 .
v=1 p.u. ZO=O.26+31.015 2/km
Cl=ll.86 nF /km Co=7.66 nF/km

V (p.u.)

0 20 40

—> t (ms)

Fig. 4.29 - Energization of athree phase line. Computer simulation results (dotted line) superimposed on 8 transient

4-57



network anayzer results for receiving end voltage in phase B. Breaker contacts close at 3.05 msin phase A, 8,05 ms
in phase B, and 5.55 msin phase C (t=0 when source voltage of phase A goes through zero from negative to positive)
[82]. Reprinted by permission of CIGRE

While travelling wave solutions with constant distributed L', C’ and constant lumped R produced reasonable
accurate answers in many cases, as shown in Fig. 4.29, there were also cases where the frequency dependence,
especidly of the zero sequence impedance, could not be ignored. Choosing constant line parameters at the dominant
resonance frequency sometimes improved the results. Eventually, frequency-dependent line models were devel oped
by Budner [83], by Meyer and Dommel [84] based on work of Snelson [85], by Semlyen [86], and by Ametani [87].
A careful re-evaluation of frequency-dependence by J. Marti [88] led to afairly reliable solution method, which seems
to become the preferred option as these notes are being written. J. Marti’s method will therefore be discussed in more
detail.

4.2.2.1 Nominal =-Circuits

Nominal r-circuits are generally not the best choice for transient solutions, because travelling wave solutions
are faster and usually more accurate. Cascade connections of nominal w-circuits may be useful for untransposed lines,
however, because one does not have to make the approximations for the transformation matrix discussed in Section
4.1.5.3. On the other hand, one cannot represent frequency-dependent line parameters and one has to accept the
spurious oscillations caused by the lumpiness. Fig. 4.30 shows these oscillations for the simple case of a single-phase
line being represented with 8 and 32 cascaded nominal w-circuits. The exact solution with distributed parametersis
shown for comparison purposes aswell. The proper choice of the number of w-circuits for onelineisdiscussed in [89],
as well as techniques for damping the spurious oscillations with damping resistances in parallel with the series R-L
branches of the r-circuit of Fig. 4.28.
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Fig. 4.30 - Voltage at receiving end of asingle phase lineif adc voltage of 10V is connected to the sending end at t=0
(line data: R=0.0376 {¥mile, L=1.52 mH/mile, C=14.3 nF/mile, length-320 miles; receiving end terminated with shunt
inductance of 100 mH)

The solution methods for nominal w-circuits have aready been discussed in Section 3.4. With M-phase
nominal w-circuits, untransposed lines (or sections of aline) are as simple to represent as balanced lines. In the former
case, one simply uses the matrices of the untransposed line, whereas in the latter case one would use matrices with
averaged equal diagonal and averaged equal off-diagonal elements.

4.2.2.2 Single-Phase LosslessLinewith Constant L’ and C’

The solution method for the single-phase case has already been explained in Section 1. The storage scheme
for the history terms is the same as the one discussed in the next Section 4.2.2.3 for M-phase |ossless lines, except that
each single-phase line occupies only one section in the table, rather than M section for M modes. Similarly, the

initialization of the history terms for cases starting from linear ac steady-state initial conditionsis the same asin Eq.
(4.108).
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The solution is exact as long as the travel time T is an integer multiple of the step size At. If thisisnot the case,
then linear interpolation is used in the EMTP, as indicated in Fig. 4.31. Linear interpolation is believed to be a
reasonable approximation for most cases, since the curves are usualy smooth rather than discontinuous. If
discontinuities or very sharp peaks do exit, then rounding t to the nearest integer multiple of At may be more sensible
than interpolation, however. There is no option for this rounding procedure in the EMTP, but the user can easily
accomplish this through changesin theinput data. Fig. 4.32 compares results for the case of Fig. 4.30 with sharp peaks
with and without linear interpolation. The line was actually not lossless in this case, but the losses were represented
in asimple way by subdividing the line into 64 lossless sections and lumping resistances in between and at both ends.
Theinterpolation errors are more severe if lines are split up into many sections, as was done here. If the line were only
split up into two lossless sections, with R lumped in between and at both ends, then the errors in the peaks would be
less (thefirst peak would be 18.8, and the second peak would be -15.4).

The accumulation of interpolation errors on aline broken up into many sections, with t of each section not
being an integer multiple of At, can easily be explained. Assume that atriangular pulse is switched onto along, lossless
line, which islong enough so that no reflections come back from the remote end during the time span of the study (Fig.
4.33). Let uslook at how this pulse becomes distorted through interpolation as it travels down the line if

@ the line is broken up into short sections of travel time 1.5 At each, and

(b) the line from the sending end to the measuring point is represented as one section (t = k - 1.5 At, withk =1,
2,3,..).
v T —
o= -0~ >~ - - = - -
i .
1 42 12
v(t) v,
- vit)
0 248t t

Fig. 4.33 - Single-phase lossless line energized with triangular
pulse

At any point on the line, the current will be

and between points 1 and 2 separated by t (Fig. 4.33),

v2(t + 1) = vI()

This last equation was used in Fig. 4.34, together with linear interpolation, to find the shape of the pulse asit travels
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down theline. The pulselosesits amplitude and becomes wider and wider if it is broken up into sections of travel time
1.5 At each. On the other hand, the pulse shape never becomes as badly distorted if the line is represented as one single
section.

What are the practical consequences of this interpolation error? Table 4.8 compares peak overvoltages from
a BPA switching surge study on a 1200 kV three-phase line®®, 133 miles long. Each section was split up into two
lossless half-sections, with R lumped in the middle and

Table 4.8 - Interpolation errors in switching surge study with At = 50 us

Peak overvoltages (MV)
Run Line model
phase A phase B phase C
1 single section 1.311 1.191 1.496
2 7 sections 1.276 1.136 1.457
3 single section with 1.342 1.167 1.489
rounded

at both ends, as explained in Section 4.2.2.4. Run no. 1 shows the results of the normal line representation as one
section. Run no. 2 withubdivision into 7 sections produces differences of 2.6 to 4.7%. In run no. 3 the zero and
positive sequence travel timgs= 664.93 us and = 445.74 ps were rounded to 650 and 450 ps, respectively, to make
them integer multiples okt = 50 ps. These changes could be interpreted as a decrease ig both I;' and C' of 2.25%,
and as an increase in both L' and C' of 0.96%, with the surge impedances remaining unchanged. Since line parameters
are probably no more accurate than +5% at best anyhow, these implied changes are quite acceptedaiadivigth
a slightly modified case is then solved without interpolation errors. Whether an option for routalthg nearest
integer multiple ofAt should be added to the EMTP is debatable. In general, rounding may imply much larger changes
in L', C' than in this case, and if implemented, warning messages with the magnitude of these implied changes should
be added as well. In Table 4.8, runs no. 3 to 1 differ by no more than 2.3%, and the interpolation error is therefore
acceptable if the line is represented as @wian. Breaking the line up into very many sections may produce
unacceptable interpolation errors, however.

If the user is interested in a "voltage profile" along the line, then a better alternative to subdivisions into

sections would be a post-processor "profile program" which would calculate

1The problem of interpolation errors is basically the same for single-phase and M-phase lines; therefore, a
three-phase case is presented here for which data was already available. Choosing a step size At which makes
the travel time T an integer multiple of At is more difficult for three-phase lines, however, because there are two
travel times for the positive and zero sequence mode on balanced lines (or three travel times for the 3 modes on
untransposed lines).
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(a)

LINE FROM SENDING END TO X
BRCKEN UP INTO SECTIONS CF
T= 1.5 At

ff at sending end

1.5 At down the line

VAN

3 At down the line

AN

4.5 At down the line

SN

6 At down the line

PN

(b)

LINE FROM SENDING END TO X
REPRESENTED AS ONE SINGLE
SECTION

7.5 At down the line

.

9 At down the line

A
VAN
A
/\
A
/\
/

Fig. 4.34 - Pulse at incremental distances down the line
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voltages and currents at intermediate points along the line from the results at both ends of the line. Such aprogramis
easy to write for lossless and distortionless lines. Luis Marti developed such a profile algorithm for the more
complicated frequency-dependent line models, which he merged into the time step loop of the EMTP [90]. Thiswas
used to produce moves of travelling waves by displaying the voltage profile at numerous points along the line at time
intervals of At.

Fig. 4.34(a) suggests adigital filtering effect from the interpolation which is similar to that of the trapezoidal
rule described in Section 2.2.1. To explain this effect, Eq. (1.6) must first be transformed from the time domain

% V(O - i (1) - % v (-1) + i (1-7)

into the frequency domain,

1 1 ;
1= Ve Ty - (EV'" v Imk) - e o (4.103)

For smplicity, let us assume that voltage and current phasors V,, and I, a node m are known, and that we want to find
| =VJZ-1,,a nodek. Without interpolation errors, Eq. (4.103) provides the answer. If interpolation isused, and if
for the sake of simplicity we assume that the interpolated value lies in the middle of an interval At, then Eq. (4.103)

becomes
1 interpolated ~ ( % Vo +Imk) ) % ( e jm(ﬁ%) te jm(?%)) (4.104)
Therefore, the ratio of the interpolated to the exact value becomes
IintIerpolated _ cos( w%) (4.105)
exact

which isindeed somewhat similar to Fig. 2.10 for the error produced by the trapezoidal rule.

Single-phase lossl ess line models can obviously only approximate the complicated phenomenaon rea lines.
Nonetheless, they are useful in a number of applications, for example

@ in simple studies where one wants to gain insight into the basic phenomena,

(b) in lightning surge studies, and

(c) as abasis for more sophisticated models discussed later.

For lightning surge studies, single-phase lossless line models have been used for along time. They are
probably accurate enough in many cases because of the following reasons:

D Only the phase being struck by lightning must be analyzed, because the voltages induced in the other

phases will be much lower.
()] Assumptions about the lightning stroke are by necessity very crude, and very refined line models are

therefore not warranted.
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3 Therisk of insulation failure in substations is highest for backflashovers at a distance of approx. 2
km or less. Insulation co-ordination studies are therefore usually made for nearby strokes. In that
case, the modal waves of an M-phase line "stay together," because differences in wave velocity and
distortion among the M waves are still small over such short distances. They can then easily be
combined into one resultant wave on the struck phase. There seems to be some uncertainty, however,
about the value of the surge impedance which should be used in such simplified single-phase
representations. It appears that the "self surge impedance” Z; . of Eq. (4.872) should be used. For
nearby strokes it is also permissible to ignore the series resistance. Attenuation caused by corona may
be more important than that caused by conductor losses. At the time of writing these notes, corona

isdtill difficult to model, and it may therefore be best to ignore losses altogether to be on the safe side.

4.2.2.3M-Phase Losdess Linewith Constant L’ and C’

Additional explanations are needed for extending the method of Section 1 from single-phase linesto M-phase
lines. In principle, the equations are first written down in the modal domain, where the coupled M-phase line appears
as if it consisted of M single-phase lines. Since the solution for single-phase lines is already known, this is
straightforward. For solving the line equations together with the rest of the network, which is always defined in phase
quantities, these modal equations must then be transformed to phase quantities, as schematically indicated in Fig. 4.35.

la 2a
= - _— o

|A o— °2A

Linear b | b Linear

ations lc ; 2c | ations
Co [, M [ [, v [°2C

k- PHASE~] ~—— MODAL DOMAIN ——=|~—PHASE—
DOMAIN DOMAIN

Fig. 4.35 - Transformation between phase and modal domain on a three-phase line

For simplicity, let us assume that the line has 3 phases. Then, with the notations from Fig. 4.35, each mode

is described by an equation of the form of Eq. (1.6), or

. 1 .
ZlafZa(l) - 7‘}1(1([) * hlsrlafZa(l_‘ca)

. 1 . “
Iy (D) = 7"11;(’) + histy, o, (t-1,) (4.106)
b
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. 1 .
llC*ZC(t) = ?Vlc(t) + hlStlcfZC(t_Tc)

where each history term hist was computed and stored earlier. For mode a, this history term would be

. 1 .
hlsrlafZa(t_ra) - _7V2a(t_1a) - lZafla(t_ra) 4.107)

a

and analogous for modes b and ¢. These history terms are calculated for both ends of the line as soon as the solution
has been obtained at instant t, and entered into atable for use at alater time step. Asindicated in Fig. 4.36, the history
terms of athree-phase line would occupy 3 sections of the history tables for modes a, b, ¢, and the length of each section
would be Ty yeed/ Al, With Ty eneeq DEING the travel time of the particular mode increased to the nearest integer multiple
of AtY. Sincethe modal travel timest,, 1., 7. differ from each other, the 3 sections in this table are generally of different
length. Thisis also the reason for storing history terms as modal values, because one has to go back different travel
times for each mode in picking up history terms. For the solution at timet, the history terms of Eq. (4.106) are obtained
by using linear interpolation on the top two entries of each mode section.

A single-phase line would simply occupy one section, whereas a six-phase line would occupy six sections in
this table.
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Table Table
for for
hist hist

km mk
§ | |
[ ! 1
starting address
for mode a of a
line
mode a

oldest 2 wvalues

t-T.
used for inter- { .1ncreased

polation : mode ¢
t-2At
enter t-4t l

—-—-}t
newest values

Fig. 4.36 - Table for history terms of transmission lines
After  the
solution in each time step, the entries in the tables of Fig. 4.36 must be shifted upwards by one location, thereby
throwing away the values at the oldest point at t-7; .- THiSiS then followed by entering the newly cal culated history
terms hist(t) at the newest point t. Instead of physically shifting values, the EM TP moves the pointer for the starting
address of each section down by 1 location. When this pointer reaches the end of the table, it then goes back again to
the beginning of the table ("wrap-around table") [91].

The initial values for the history terms must be known for t = 0, -At, -2At, ... “Tigexea- 1€ NECESSItY fOr
knowing them beyond t = 0 comes from the fact that only terminal conditions are recorded. If the conditions were also
given along the line at travel time increments of At, then the initial values at t = 0 would suffice. For zero initial
conditions, the history table is simply preset to zero. For linear ac steady-state conditions (at one frequency ), the

history terms are first computed as phasors (peak, not rms),
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1
HISTkm - 72 Vm - Imk (4.1082)

whereV,, and |, are the voltage and current phasors at line end m (analogous for HIST,,). With HIST = |HIST| - &,

the instantaneous history terms are then

hist,,(t) = |HIST, | -cos(wt +a) , with t=0, -At, -2At, ...

(4.108b)
Eq. (4.108) is used for single-phase lines as well as for M-phase lines, except that mode rather than phase quantities
must be used in the latter case.
Eq. (4.106) are interfaced with the rest of the network by transforming them from modal to phase quantities
with Eq. (4.78a),

5] - ] - i @105

surge

with the surge admittance matrix in phase quantities,

z' 0 0
Yoo = [T O 2,5 O |[T] (4.109b)
0o o0 z*

and the history terms in phase quantities,

hlsrlafZa

st ] = [ st 2 (4.109¢)

hmu—zc

For a lossless line with constant L' and C', the transformation matrix [T] will always be real, as explained in the last
paragraph of Section 4.1.5.2. It is found as the eigenvector matrix of the product [C'][L'] for each particular tower
configuration, where [L'] and [C'] are the per unit length seridadtance and shunt capacitance matrices of the line.
For balanced lines, [T] is known a priori from Eq. (4.58), and for identical balanced three-phase lines with zero
sequence coupling only it is known a priori from Eq. (4.65).

The inclusion of Eq. (4.109) into the system of nodal equations (1.8a) for the entire network is quite
straightforward. Assume that for the example of Fig. 4.35, rows and colummzdis 1A, 1B, 1C follow each other,
as do those for nodes 2A, 2B, 2C (Fig. 4.37). Thenthe 3 x 3 magix [Y ] enters into two 3 x 3 blocks on the diagonal,
as indicated in Fig. 4.37, while the history terms [H8® ] =[hist ghist ,chist ]of Eq. (4.109c) enter into rows

1A, 1B, 1C, on the right-hand side with negative signs. Analogous history terms for terminal 2 enter into rows 2A, 2B,
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2C ontheright-hand side. While[Y ] isentered into [G] only once outside the time-step loop, the history terms must
be added to the right-hand side in each time step.

+(Y ]

surge

/

7
¥
1B VY | - histip om
e [ \ 1 s
22 [ /| A T PiStyaiia
2B 1 /. ] T histyp gp
= ' 2 - sty
. —_— — [N —— N

[G] [v] {i]-[hist]

Fig. 4.37 - Entries for a three-phase line into system of equations

M-phase lossless line models are useful, among other things, for

@ simple studies where one wants to investigate basic phenomena,

(b) in lightning surge studies, where single-phase models are no longer adequate, and

(©) as abasis for more sophisticated models discussed later.

Lightning surge studies cannot always be done with single-phase models. For simulating backflashovers on
lineswith ground wires, for example, the ground wire and at |east the struck phase must be modelled ("2-phase line").
Since it is not always known which phase will be struck by the backflashover, it is probably best to model all three
phasesin such asituation ("4-phase line"). An example for such a study is discussed in Section 4.1.5.2, with 4-phase
lossless line models representing the distribution line, and single-phase lossless line models representing the towers.
Not included in the data listing are switches (or some other elements) for the simulation of potential flashovers from

the tower top (nodes D) to phases A, B, C.

4.2.2.4 Single and M-Phase Distortionless Lineswith Constant Parameters
Distortionless line models are seldom used, because wave propagation on power transmission linesis far from
distortionless. They have been implemented in the EMTP, nonetheless, simply because it takes only a minor

modification to change the lossless line equation into the distortionless line equation.
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A single-phase transmission line, or amode of an M-phase line, is distortionless if

R’ G’

? = F (4.110)
Losses areincurred in the series resistance R’ as well as in the shunt conductance G'. The real shunt conductance of
an overhead line is very small (close to zero), however. If its value must be artificially increased to make the line
distortionless, with a resulting increase in shunt losses, then it is best to compensate for that by reducing the series
resistance losses. The EM TP does this automatically by regarding the input value R’y &S an indicator for the total
losses, and uses only half of it for R’,

@.111)

With thisformula, the ac steady-state results are practically identical for the line being modelled as distortionless or with
R lumped in 3 places; the transient response differs mainly in the initial rate of rise. From Eqg. (4.111), the attenuation

R/ /
o = —eur | C (4.112)
2 L’

Thefactor 1/2 can also bejustified by using an approximate expression for the attenuation constant for lines with low
attenuation and low distortion [48, p. 257],

o = R/INPUT g N G/INPUT L_/ (4113)
2 L’ 2 C’

which isreasonably accurate if R’ << wL'and G’ << oC'. This condition isfulfilled on overhead lines, except at very

constant o becomes

low frequencies. Eq. (4.112) isthen obtained by dropping the term with G’y @nd by ignoring the fact that the waves
are not only attenuated but distorted as well.

If auser wants to represent a truly distortionless line where G’ is indeed nonzero, then the factor 1/2 should
of course not be used. The factor 1/2 is built into the EM TP, however, and the user must therefore specify R’y twice
as large as the true series resistance in this case.

With o known, an attenuation factor ¢ is calculated (< = length of ling). Thelosdessline of Eq. (1.6) isthen
changed into a distortionless line by simply multiplying the history term of Eq. (1.6b) with this attenuation factor,

hist,, (1-7) = |- %vm(m) i (T e @.114)
The surge impedance remains the same, namely vL'/C..

For M-phase lines, any of the M modes can be specified as distortionless. Mixing is allowed (e.g., mode 1

could be modelled with lumped resistances, and modes 2 and 3 as distortionless).
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Better results are usually obtained with the lumped resistance model described next, even though lumping of
resistancesin afew placesis obviously an approximation, whereas the distortionless line is solved exactly if the travel
timeis an integer multiple of At.

4.2.2.5 Singleand M-Phase Lineswith Lumped Resistances

Experience has shown that a lossy line with series resistance R' and negligible shunt conductance can be
modelled with reasonable accuracy as one or more sections of lossless lines with lumped resistances in between. The
simplest such approach is one lossless line with two lumped resistances R/2 at both ends. The equation for this model
is easily derived from the cascade connection of R/2 - losdessline - R/2, and leads to aform which isidentical with that
of Eg. (1.6),

ikm([) =

v(t) + hist, (1-7) (4.115)
‘modified

except that the values for the surge impedance and history terms are dightly modified. With Z, R and t calculated from
Eq. (4.99),

Zmodiﬁed =Z~

(S

and

. 1
hist,, (1-1) = -

v (-1 + @By @)
‘modified 2

Thismode with R/2 at both endsisnot used inthe EMTP. Instead, the EM TP goes one step further and lumps
resistancesin 3 places, namely R/4 at both ends and R/2 in the middle, as shown in Fig. 4.27. This approach was taken

because the form of the equation still remains the same asin Eq. (4.115), except that

V4 =Z +

‘modified (4 .1 16)

NS

now. The history term becomes more complicated®, and contains conditions from both ends of thelineat t - 1,

hist, (t-7) = -—Z

v (-1 + @-B)i (1-0)
72 4
‘modified

8The equation at the bottom of p. 391, left column, in [50] contains an error. I, and I should not be
computed from Eq. (7b); instead, use I, = -(1/Z) e(t - t) -hi, ,(t - T) with the notation of [50], where Z is
Z . oairiea Of Eq. (4.116). For I, exchange subscripts k and m.
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R/4

2
Zmodiﬁed

v (1) + (Z—f)ikm(t—r) @.117)

Users who want to lump resistances in more than 3 places can do so with the built-in three-resistance model,
by simply subdividing the line into shorter segmentsin the input data. For example, 32 segments would produce lumped
resistances in 65 places. Interestingly enough, the results do not change much if the number of lumped resistancesis
increased as long as R << Z. For example, results in Fig. 4.30 for the distributed-parameter case were practically
identical for lumped resistancesin 3, 65, or 301 places. Fig. 4.29 shows as well that TNA results are closely matched
with R lumped in 3 places only.

One word of caution isin order, however. The lumped resistance modd gives reasonable answers only if R/4
<< Z, and should therefore not be used if the resistance is high. High resistances do appear in lightning surge studies
if the parameters are calculated at a high frequency, e.g., at 400 kHz in Table 4.5, where R’ = 597.4 Q/km in the zero
sequence mode. Lumping R in 3 places would still be reasonable in the case discussed there where each tower span of
90 mismodelled asoneline, since 13.4 Q2 is still reasonably small compared with Z = 1028 Q. If it were used to model
alonger line, say 90 km, then R/4 = 13,400 2, which would produce totally erroneous results'®. In such asituation it
might be best to ignore R altogether, or to use the frequency-dependent option if higher accuracy is required.

For M-phase lines, any of the M modes can be specified with lumped resistances. Mixingisalowed (e.g.,
mode 1 could be modelled with lumped resistances, and modes 2, ... M as distortionless). The lumped resistances do
not appear explicitly as branches, but are built into Eq. (4.115) (4.116) and (4.117) for each mode. Should a user want
to add them explicitly as branches, e.g., for testing purposes, then they would have to be specified asM x M - matrices
[R] in phase quantities, which could easily be done with the M-phase nominal r-circuit input option by setting L =
0 and C=0. All modeswould have to use the lumped resistance model in this set-up, that is, mixing of modelswould
not be allowed in it.

4.2.2.6 Singleand M-Phase Lines with Frequency-Dependent Parameters
The two important parameters for wave propagation are the characteristic impedance

RPN
7 = M (4.118)
‘ G’ + juC’

and the propagation constant

y = JR' + joL)(G' + joC') (4.119)

Both parameters are functions of frequency, even for constant distributed parameters R’, L', G, C’ (except for lossless

and distortionless lines). The line model with frequency-dependent parameters can handle this case of constant

The UBC version of the EMTP stops with an error message if R/4 > Z. It would be advisable to add a
warning message as well as soon as R/4 gets fairly large (e.g. > 0.05 * Z).
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distributed parameters®, even though it has primarily been developed for frequency-dependent series impedance
parameters R'(o) and L'(w). Thisfrequency-dependence of the resistance and inductance is most pronounced in the zero
sequence mode, as seenin Fig. 4.20. Frequency-dependent line models are therefore important for types of transients
which contain appreciable zero sequence voltages and currents. One such typeisthe single line-to-ground fault.

To develop aline model with frequency-dependent parameters which fits nicely into the EMTP, it is best to
use an approach which retains the basic idea behind Bergeron's method. Let ustherefore look at what the expression
Vv + Zi used by Bergeron looks like now, as one travels down the line. Since the parameters are given as functions of
frequency, this expression must first be derived in the frequency domain. At any frequency, the exact ac steady-state
solution is described by the equivalent z-circuit of Eq. (1.13), or in an input-output relationship form more convenient

here,

cosh(ydl)  Zsinh(y<)|ry,

m

y (4.120)

mk

%sinh(ygﬁ) cosh(y<)

which can be found in any textbook on transmission lines. Assume that we want to travel with the wave from node m
to node k. Then the expression V + Z | is obtained by subtracting Z, times the second row from the first row in Eg.
(4.120),

V.-21, =", + chmk)-e’ﬁ (4.121a)
or rewritten as
L, =VJIZ - (V IZ + Imk)-e’ﬁ (4.121b)

with anegative sign on |, since its direction is opposite to the travel direction. Eqg. (4.121) isvery sSimilar to Bergeron's
method; the expression V + Z| encountered when leaving node m, after having been multiplied with a propagation
factor €, the same when arriving at node k. Thisis very similar to Bergeron’s equation for the distortionless line,
except that the factor is e there, and that Eq. (4.121) isin the frequency domain here rather than in the time domain.

Before proceeding further, it may be worthwhile to look at the relationship between the equations in the

frequency and time domain for the simple case of alosslessline. In that case,

/
z - | L , Yy =joyL'C', and e = e "

c C/
Anybody familiar with Fourier transformation methods for transforming an equation from the frequency into the time
domain will recall that a phase sift of €~ in the frequency domain will become atime delay t in the time domain.

Furthermore, Z_ is now just a constant (independent of frequency), and Eq. (4.121) therefore transforms to

This case differs from the line with lumped resistances inasmuch as the resistance becomes truly distributed
now.
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V() - Zi, () =v,(t-1) + Zi,-7)
which isindeed Bergeron’'s equation (1.6).
For the general lossy case, the propagation factor
Alw) = e = g . g IP
withy = o + jB, contains an attenuation factor e** as well as a phase shift €**, which are both functions of frequency.
To explain its physical meaning, let us connect a voltage source V. t0 the sending end m through a source impedance

which is equal to Z(w), to avoid reflectionsin m (Fig. 4.38). Inthat case, V ,,+ ZJd i = Vouee FUrthermore, let us

assume that the receiving end k is open. Then from Eq. (4.121),

Vk - V:ource ’ A((")) (4122)

Z (w)
c

-
p 3

v
mk source

Fig. 4.38 - Voltage source connected to end m through matching
impedance

that is, the propagation factor istheratio (receiving end voltage) / (source voltage) of an open-ended lineif thelineis
fed through a matching impedance Z (o) to avoid reflections at the sending end®. If V. = 1.0 a all frequencies from
dc toinfinity, then its time domain transform vg,,(t) would be a unit impulse (infinitely high spike which isinfinitely
narrow with an area of 1.0), and the integral of v,.(t) would be aunit step. Setting V .« = 1.0 in EQ. (4.122) shows
that A(w) transformed to the time domain must be the impulse which arrives at the other end k, if the sourceis a unit

impulse. This response to the unit impulse,

a(t) = inverse Fourier transform of {A(w)} (4.123)

will be attenuated (no longer infinitely high), and distorted (no longer infinitely narrow). Fig. 4.39 shows these
responses for atypical 500 kV line of 100 miles length. They were obtained

210ne could also connect a matching impedance Z (w) from node k to ground to avoid reflections at the
receiving end as well. In that case, the left-hand side of Eq. (4.122) becomes 2V, rather than V,. Note that the
ratio e starts from 1.0 and becomes less than 1.0 as the line length (or frequency) is increased. This is in
contrast to the open-circuit response V,/V, = 1.0/cosh(y¥) more familiar to power engineers, which increases
with length or frequency (Ferranti rise).
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Fig. 4.39 - Receiving end response v,(t) = a(t) for the network of Fig. 4.38 if vg,(t) = unitimpulse [94]. Reprinted
by permission of J. Marti

fromthe inverse Fourier transformation of A(w) = exp(-y<) calculated by the LINE CONSTANTS supporting routine
at asufficient number of pointsin the frequency domain. The amplitude of the propagation factors A(w) for the case
of Fig. 4.39 isshown in Fig. 4.40.

The unit impul se response of alosdesslinewould be aunitimpulseat t =t with an areaof 1.0. In Bergeron's
method, thisimplies picking up the history termv,/Z +i,, a t - Tt with aweight of 1.0. In the more general case here,

history terms must now be picked up a more than one point, and weighted with the "weighting function" a(t). For the
example of Fig. 4.39(a),

Alw) A(w)
1.0 1.0
. 5: 0.5
o p
0 W T Y TR YTV YT el kinked -
- 3 6
1073 1 100 — 10° 107 1 10° — 10
f (Hz) £ (Hz)
(a) zero sequence mode (b) positive sequence mode

Fig. 4.40 - Propagation factor A(w) for the line of Fig. 4.39 [94]. Reprinted by
permission of J. Marti
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history terms must be picked up starting at 1,.,,, = 0.6 ms back in time, to approx. 7, = 2.0 msback intime. Thevalue
Tmin 1S the travel time of the fastest waves, while 1., is the travel time of the slowest waves. Each terms has its own
weight, with the highest weight of approx. 5400 around t = 0.7 ms back in time. Mathematically, this weighting of

history at the other end of the line is done with the convolution integral

T,

hist . pagaion = = f "y 1ol "WA(W)dU (4.124)

Tmin

which can either be evaluated point by point, or more efficiently with recursive convolution as discussed later. The
expression i, in Eq. (4.124) is the sum of the line current i, and of a current which would flow through the
characteristic impedance if the voltage v,, were applied to it (expression |, + V,/Z. in the frequency domain).

With propagation of the conditions from m to k being taken care of through Eq. (4.124), the only unresolved
issueisthe representation of theterm V,/Z, in Eq. (4.121b). For the same 500 kV line used in Fig. 4.39, the magnitude
and angle of the characteristic impedance Z, are shown in Fig. 4.41. If the shunt conductance per unit length G’ were
ignored, asis usually done, Z, would become infinite a w = 0. This complicates the mathematics somewhat, and since
G'isnot completely zero anyhow, it was therefore decided to use a nonzero vadue, with a default option of 0.03 ps/km.
As originally suggested by E. Groschupf [96] and further developed by J. Marti [94], such a frequency-dependent
impedance can be approximated with a Foster-l R-C
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network. Then the line seen from node k becomes a simple R-C network in parallel with a current source hist,, ouagion
(Fig. 4.42(a)). One can then apply the trapezoidal rule of integration to the capacitances, or use any other method of
implicit integration. This transforms each R-C block into a current source in parallel with an equivalent resistance.
Summing these for all R-C blocks produces one voltage source in series with one eguivalent resistance, or one current
source in paralld with one equivalent resistance (Fig. 4.42(b)). In the solution of the entire network with Eq. (1.8), the

frequency-dependent line is then simply represented again as a constant resistance R,,;, to ground, in parallel with a

equiv
current source histgc + hist,opaaion Which has exactly the same form as the equivalent circuit for the lossless line.

To represent thelinein the form of Fig. 4.42 inthe EMTP, it is necessary to convert the line parametersinto
aweighting function a(t) and into an R-C network which approximates the characteristic impedance. To do this, Z, and
y arefirst calculated with the support routine LINE CONSTANTS, from dc to such a high frequency where both A(w)
= exp(-y<) becomes negligibly small and Z () becomes practically constant. J. Marti [94] has shown that it is best to
approximate A(w) and Z(w) by rational functions directly in the frequency domain. The weighting function a(t) can
then be written down explicitly as a sum of exponentials, without any need for numerical inverse Fourier transformation.
Similarly, therational function approximation of Z(w) produces directly the values of R and C in the R-C network in

Fig. 4.42.
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Fig. 4.42 - Frequency-dependent line representation seen from line end k

The rational function which approximates A(w) has the form

o (8+2)(5+2,)...(s+2,,
Apyls) = ¢ g VRS
($+p)(s+py)...(s4p,,)

(4.125)

with s=jw and n<m. The subscript "approx" indicates that Eq. (4.125) is strictly speaking only an approximation to
the given function A(w), even though the approximation is very good. The factor """ jsincluded to take care of the
fact that a(t) in Fig. 4.39iszero up tot =1, this avoids fitting exponential s through the portion O < t < 1,;, where the
values are zero anyhow (remember that atime shift -t in the time domain is a phase shift e* in the frequency domain).
All poles p; and zeros z in Eq. (4.125) are negative, real and simple (multiplicity one). With n < m, the rationa
function part of Eq. (4.125) can be expanded into partial fractions,

(5+2)(5+2y)...(s+2,) k, k, k,
- * et (4.126)
(s+p1)(s+p2)...(s+pm) s+p, S+p, 5+p,,

The corresponding time-domain form of Eq. (4.15) then becomes

— P T Pt T P m(tirmin)
aappmx(t) = |k,e +kye ...tk e Jor >t

=0 Jor i<t . 4.127)

This weighting function a,,,(t) is used to calculate the history term hist,,aion Of EQ. (4.124) in each time step.

Because of itsform as asum of exponentias, theintegral can be found with recursive convolution much more efficiently
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than with a point-by-point integration. 1f we look at the contribution of one exponential term k,gP-*m",

Sl-(l) = fco i(t—u)kie P Toin) du (4.128)

Tmin

then s(t) can be directly obtained from the value s(t - At) known from the preceding time step, with only 3
multiplications and 3 additions,

s = ¢ s(t-AD + ¢y i(T-T,) + ¢y (T, ~AY) (4.129)
as explained in Appendix V, with ¢,, ¢,, ¢, being constants which depend on the particular type of interpolation used

fori.

The characteristic impedance Z () is approximated by arational function of the form [94]

(5+2)(85+2,)...(s+2,)
Z_ . (s)=k
cfappmx(s ) (S +P1) (S +p2) _ (S +pn)

(4.130)

withs=jw. All polesand zeros are again real, negative and simple, but the number of polesis equal to the number of

zeros now. This can be expressed as

Z (s) = ky + S T
¢-approx 0 s+p, S+p2”'s+p (4.131)
n

which corresponds to the R-C network of Fig. 4.42, with

>
Il
| =

1 .
] , C = - i=1,...n (4.132)

=

Rather than applying the trapezoidal rule to the capacitancesin Fig. 4.42, J. Marti chose to use implicit integration with
Eq. (1.3) of Appendix 1%, with linear interpolation oni. For each R-c block

v, dv,
i=—L +C—
R, "at
which has the exact solution
v(@) = e v -Al) + L1 e iudu
; ; =/ (4.133)
1

2This method is identical to the recursive convolution of Appendix V applied to Eq. (4.131). Whether
recursive convolution is better than the trapezoidal rule is still unclear.
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with o; = Y(R,C). By using linear interpolation on i, the solution takes the form of
vi0) = R, " WD) + eft-An) (4.134)

with e(t - At) being known values of the preceding time step (formula omitted for simplicity), or after summing up over
al R-C blocksand R,,

V() = R, " i) + e(-Ar) (4.135a)
with
R = Ry + lgRequ and e = ,;e" (4.135b)

which can be rewritten as

i(r) =

WE) + hist (4.136)

equiv

The equivaent resistance R, enters into matrix [G] of EQ. (1.8), whereas the sum of the history terms hist -+

equiv
hi St opagaion ENETS iNto the right hand side.

The key to the success of this approach is the quality of the rational function approximations for A(w) and
Z(w). J. Marti uses Bode's procedure for approximating the magnitudes of the functions. Since the rational functions
have no zerosin the right-hand side of the complex plane, the corresponding phase functions are uniquely determined
from the magnitude functions (the rational functions are minimum phase-shift approximations in this case) [94]. To
illustrate Bode's procedure, assume that the magnitude of the characteristic impedance in decibelsis plotted as afunction
of thelogarithm of the frequency, as shown in Fig. 443 [94]. The basic principleis to approximate the given curve by
straight-line segments which are either horizonta or have alope which isamultiple of 20 decibels/decade. The points
where the slopes change define the poles and zeros of the rational function. By taking the logarithm on both sides of

Eqg. (4.130), and multiplying by 20 to follow the convention of working with decibels, we obtain

20log|Z

e—appro®) | = 20logk + 20log|s+z,|...+ 20log|s+z,|

- 20log|s+p, |-~ 20log|s+p,| (4.137)

For s = jo, each one of the terms in this expression has a straight-line asymptotic behavior with respect to w. For
instance, 20 log |jo + z,| becomes 20 log z, for ® << z,, which is constant, and 20 log » for ® >> z, which is a straight
line with adope of 20 db/decade. The approximation to Eq. (4.137) is constructed step by step: Each time a zero corner
(at w = z) is added, the slope of the asymptotic curve isincreased by 20 db, or decreased by 20 db each time a pole
corner (at » = p) is added. The straight-line segments in Fig. 4.43 are only asymptotic traces; the actual function

becomes a smooth curve without sharp corners. Since the entire curve is traced from dc to the

4-81



z-c{""":' LdE}

589 o
T

S6

4 3

Figd4.43 - Asymptotic approximation of the magnitude of Z (w)

52 -—m#mmmmm LSS -

167" ' 1 167 105

highest frequency at which the approximated function becomes practically constant, thet&tite frequency range is
approximated quite closely, with the number of poles and zeros not determined apriori. J. Marti improves the accuracy
further by shifting the location of the poles and zeros about their first positions. Fig. 4.44 shows the magnitude and
phase errors of the approximation of A(w), and Fig. 4.45 shows the errors for the approximation of Z () for the line
used in Fig. 4.39.

L. Marti has recently shown [95] that very good results can be obtained by using lower-order approximations
with typically 5 poles and zeros rather than the 15 poles and zeros used in Fig. 4.44 and 4.45. Furthermore, he shows
that positive and zero sequence parameters at power frequency (50 or 60 Hz) can be used to infer what the tower
geometry of the line was, and use this geometry in turn to generate frequency-dependent parameters. With this
approach, simple input data (60 Hz parameters) can be used to generate a frequency-dependent line model internally

which isfairly accurate.
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Fig. 4.44 - Errorsin approximation of A(w) for line of Fig. 4.39 [94]. Reprinted by permission of J.
Marti

For M-phase lines, any of the M modes can be specified as frequency-dependent, or with lumped resistances,
or asdistortionless. Mixingisadlowed. A word of cautionisin order here, however: At the time of writing these notes,
the frequency-dependent line model works only reliably for balanced lines. For untransposed lines, approximate real
and constant transformation matrices must be used, as explained in Section 4.1.5.3, which seems to produce reasonably
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accurate results for single-circuit lines, but not for double-circuit lines. Research by L. Marti into frequency-dependent
transformation matrices in connection with models for underground cables will hopefully improve this unsatisfactory
state of affairs.
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Fig. 4.46 - Comparison between voltages at phase b for [94]:
(a) Field test oscillograph
(b) BPA's frequency-dependence simulation
(c) New model simulation
Reprinted by permission of J. Marti

Field test results for a single-line-to-ground fault from Bonneville Power Administration have been sued by
various authors to demonstrate the accuracy of frequency-dependent line models [84]. Fig. 4.46 compares the field test
results with simulation results from an older method which used two weighting functions & and a, [84], and from the
newer method described here. The peak overvoltage in thefield test was 1.60 p.u., compared with 1.77 p.u. in the older
method and 1.71 p.u. in the newer method. Constant 60 Hz parameters would have produced an answer of 2.11 p.u.
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