5. UNDERGROUND CABLES

There is such a large variety of cable designs on the market, that it is difficult, if not impossible, to develop
one computer program which can calculate the parameters R', L', C' for any type of cable.
For lower voltage ratings, the cables are usually unscreened and insulated with polyvinyl chloride. An

example of a three-phase 1 kV cable with neutral conductor and armor is shown in Fig. 5.1.

Fig. 5.1 - Armored 1 kV cable (1 = stranded conductor, 2 = insulation, 3 = bedding, 4 = flat
steel wire armor, 5 = helical steel tape, 6 = plastic outer sheath). Reprinted by permission from
Siemens Catalog 1980

Fig. 5.2 - 12 to 35 kV distribution cable with concentric neutral conductors (1 = stranded
conductor, 2, 4 = conductive layers, 3 = plastic insulation , 5 = conductive tape, 6 = concentric
neutral conductors, 7 = helical copper tape, 10 = inner sheath, 11 = plastic outer sheath).

Reprinted by permission from Siemens Catalog 1980

At the distribution voltage level, the cables are usually screened with concentric neutral conductors, as

shown in Fig. 5.2.



At the transmission voltage level, two types of cables are in widespread use today, namely the pipe-type
cable (Fig. 5.3) and the self-contained cable (Fig. 5.4). In the pipe-type cable, three paper-insulated oil-impregnated
cables are drawn into a steel pipe at the construction site. The helical skid wires make it easier to pull the cables.
After evacuation, the pipe is filled with oil and pressurized to a high pressure of approx. 1.5 kPa. Pipe-type cables

are used for voltages from 69 to 345 kV, with 550 kV cables under development. The typical

Steel pipe
(filled with nsulating o)
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Metatlic topes

Paper /oil insulation
Screen

Conductor
(stranded copper)

Fig. 5.3 - Pipe-type oil-filled cable [148]. © 1979 John Wiley & Sons,
Ltd. Reprinted by permission of John Wiley & Sons, Ltd

self-contained oil-filled cable is a single-core cable (Fig. 5.4). Its stranded core conductor has a hollow duct which
is filled with oil and kept pressurized with low-pressure bellow-type expansion tanks. Underground and submarine

self-contained cables are essentially identical, except that underground cables do not always have an armor.
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Fig. 5.4 - Single-core self-contained cable (C = stranded core conductor
with oil-filled duct, I = paper insulation, S = metallic sheath, B =
bedding, A = armor, P = plastic sheath). Details of conductive layers
left out

Gas-insulated systems with compressed SF, gas are used for compact substation designs. The busses in such
substations consist of tubular conductors inside a metallic sheath, with the conductors held in place by plastic spacers
at certain intervals (Fig. 5.5). SF,-busses are in use in lengths of up to 300 m. A similar design can be used for
cables, but SF-cables are still experimental, with the sheath usually being corrugated. In EMTP studies, such

relatively short

conductor @

sheath

SF6 gas @ @

(a) Single-phase (b) Three-phase

Fig. 5.5 - SF; bus

busses can often be ignored, or represented as a lumped capacitance. Only in studies of fast transients with high

frequencies must SF;-busses be represented as transmission lines. Since the single-phase geometry is essentially
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similar to that of a self-contained cable, and since the three-phase geometry is similar to that of a pipe-type cable,
no special programs are needed to handle SF-busses or cables, except that the three-phase arrangement of Fig.
5.5(b) has no electrostatic screens as in the case of a pipe-type cable of Fig. 5.3.

Fig. 5.1 t0 5.5 are only a few examples for the large variety of cable designs. The support routine CABLE
CONSTANTS was developed by A. Ametani essentially for the coaxial single-core cable design of Fig. 5.4 and
5.5(a), and later expanded for the pipe-type cable of Fig. 5.3 and for the three-phase SF -busses of Fig. 5.5(b). At
this time, there is no support routine for the types of lower voltage cables shown in Fig. 5.1 and 5.2, but calculation

methods applicable to such non-coaxial arrangements are briefly discussed in Section 5.7.

5.1 Single-Core Cables

The cable parameters of coaxial arrangements, as in Fig. 5.4, are derived in the form of equations for
coaxial loops [150, 152]. In Fig. 5.4, loop 1 is formed by the core conductor C and the metallic sheath S as return,
loop 2 by the metallic sheath S and metallic armor A as return, and finally loop 3 by the armor A and either earth

Or sea water as return.

5.1.1 Series Impedances

The series impedances of the three loops are described by three coupled equations

-dVl-
dx Z'\y Z', 0L,
av,

222 2z ozl 7z 5.1
e a L Linlih (5.1

dv, 0 Z/32 Z/33 L

The self impedance Z',, of loop 1 consists of 3 parts,

21 = 7 oeon T L' coressneancinsutation T 2 sheanin (5.2)
with
Z' oreou = internal impedance (per unit length) of tubular core conductor with return path outside
the tube (through sheath here)
Z' ore/sheath-insulation = impedance (per unit length) of insulation between core and sheath, and
Z' eahin = internal impedance (per unit length) or tubular sheath with return path inside the tube
(through core conductor here).
Similarly,
L'y = 2 yeanou T Z' sheatvamor insutaion T Z'armor-in (5.3)
and

54



1 — 1 ' '
Z 3 ™ Z armor-out +Z armor/earth-insulation +Z earth (54)

with analogous definitions as for Eq. (5.2). The coupling impedances Z',, = Z',, and Z',; = Z';, are negative
because of opposing current directions (I, in negative direction in loop 1, I; in negative direction in loop 2),
', =7y =-2'
Ly=1y=-17

(5.52)
(5.5b)

sheath-mutual

armor-mutual

with Z'gonmea = ~ Mmutual impedance (per unit length) of tubular sheath between the inside loop 1 and the
outside loop 2, and
Z mormuwa =  Mutual impedance (per unit length) of tubular armor between the inside loop 2 and the

outside loop 3.
Finally, Z',; = Z';, = 0 because loop 1 and loop 3 have no common branch.

The simplest terms to calculate are the impedances of the insulation, which are simply

) r
/insulation =Jw % IHE (56)

with u, = permeability of insulation (u, = 2¢10* H/km),

r = outside radius of insulation,

q = inside radius of insulation, in identical units (e.g. in mm)
If the insulation is missing, e.g., between armor and earth, then Z';  .ion = O-

The internal impedance and the mutual impedance of a tubular conductor with inside radius q and outside

radius r (Fig. 4.5) are a function of frequency, and are found with modified Bessel functions [149].

Z' hein = pm/2ngD {I,(mq) K,(mr) + K, (mq) I,(mr)} (5.7a)

Z' oo = pm/21rD {I (mr) K;(mq) + Ky(mr) I,(mq)} (5.7b)

Z' jpemua = P/21qrD (5.7¢)

with D = I;(mr) K,(mq) - I;(mq) K,(mr) (5.7d)

The parameter

m = yjoul/p (5.7e)

is the reciprocal of the complex depth of penetration (OVERLINE) p defined earlier in Eq. (4.5).
wheout OF Eq. (5.7b) was developed at BPA for the
support routine LINE CONSTANTS, and later modified at UBC to "TUBE" for the calculation of Z',,.;, and Z' ...

A subroutine SKIN for calculating the impedance Z'

et 38 Well. - All arguments of the modified Bessel functions I, I;, K, K, are complex numbers with a phase angle

of 45° because of Eq. (5.7¢). In such a case, the following real functions of a real variable can be used instead:

ber(x) + jbei(x) = I,(xy))
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ber'(x) + jbei'(x) = jI,(x\)) (5.8)
ker(x) + jkei(x) = K, (xJ)

ker'(x) + jkei'(x) = - K, (x\}j)

These functions are evaluated numerically with the polynomial approximations of Eq. (9.11.1) to (9.11.14) of [149].
For arguments x < 8, the absolute error is < 107, whereas for arguments x > 8, the relative error is < 3¢107.
To avoid too large numbers in the numerator and denominator for large arguments of x, the expressions f(x) and g(x)
in Eq. (9.22.9) and (9.11.10) of [149] are multiplied with exp (- 1 + j/v2 x). If both arguments mq and mr have
absolute values greater than 8, then in addition to the above multiplication, the K- and K;- functions are further
multiplied by exp (2mq) to avoid indefinite terms 0/0 for very large arguments.

When the support routine CABLE CONSTANTS was developed, subroutine TUBE did not yet exist, and
A. Ametani chose slightly different polynomial approximations for the functions I, I;, K;, K, in Eq. (5.7). He uses
Eq. (9.8.1) to (9.8.8) of [149] instead, with the accuracy being more or less the same as in the polynomials used in
subroutine TUBE.

Simpler formulas with hyperbolic cotangent functions in place of Eq. (5.7) were developed by M. Wedepohl
[150], which also give fairly accurate answers as long as the condition (r-q)/(r+q) < 1/8 is fulfilled. This was
verified by the author for the data of a 500 kV submarine cable.

The only term which still remains to be defined is Z',,,;, in Eq. (5.4). This is the earth or sea return

carth
impedance of a single buried cable, which is discussed in more detail in Section 5.3.

Submarine cables always have an armor, while underground cables may only have a sheath. The armor
often consists of spiralled steel wires, which can be treated as a tube of equal cross section with u, = 1, without too
much error (153]. A more accurate representation is discussed in [151].

Eq. (5.1) is not yet in a form suitable for EMTP models, in which the voltages and currents of the core,
sheath, and armor must appear, in place of loop voltages and currents. The transformation is achieved by

introducing the terminal conditions

Vl = Vcore - Vsheath Il = Icore
VZ = Vsheath - Varmor and 12 = Isheath + Icore
V3 = Varmor I3 = Iarmor + Isheath + Icore (59)

where V. = voltage from core to ground,
Vean = Voltage from sheath to ground,
Vmer = Vvoltage from armor to ground.

By adding row 2 and 3 or Eq. (5.1) to the first row, and by adding row 3 to the second row, we obtain
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av_lax| |\Z'. 7', Z' |1

core cc a core
- |dV

sheath/dx = Z /5(‘ Z /ss Z /5(1 I:heath (5 . 10)
dVarmor/dx Z/ll(’ Z/as Z/llll Iarmor

with Z' . =2'\,+2Z2', +2Z'y, +272'y;, + 7'y,

2'.=2'.=7",+2Zy +22';+ 7',

7. =72,=2,=27",.=2Zy+7Z,

7' =17y +27';+ 7',

2'.=7 (5.10b)

Some authors use equivalent circuits without mutual couplings, in place of the matrix representation of Eq.
(5.10) with self impedances (diagonal elements) and mutual impedances (off-diagonal elements). For example, [150]
shows the equivalent circuit of Fig. 5.6 for a single-core cable without armor, which is essentially the same as the

TNA four-conductor representation of overhead lines in Fig. 4.28.

1 1
211 * 217

core

sheath

TT_]‘ 1 T_l_]'
212 * 23
earth

Fig. 5.6 - Three conductor m-circuit suitable for TNA's

5.1.2 Shunt Admittances
For the current changes along the cable of Fig. 5.4, the loop equations are not coupled,
- dl/dx = (G'| + joC')V,
- dLjdx = (G', + joC’) V, (5.11)

- dljdx = (G'; + joC'y)V,

G', and C', are the shunt conductance and shunt capacitance per unit length for each insulation layer. If there is no
insulation (e.g., armor in direct contact with the earth), then replace Eq. (5.11) by
V, =0 (5.12)

The shunt capacitance of tubular insulation with inside radius q and outside radius r is
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(5.13)

with e, = absolute permittivity or dielectric constant of free space (g, defined in Eq. (4.22)) and €, = relative
permittivity or relative dielectric constant of the insulation material. Typical values for €, are shown in Table 5.1

[54].

Table 5.1 - Relative permittivity and loss factor of insulation material [54]. Reprinted by permission of Springer-
Verlag and the authors

Relative Permittivity at | Loss Factor tand at 50
Insulation Material 20°C Hz and 20°C
butyl rubber 3.0t04.0 0.05
insulating oil 2.21t02.8 0.001 to 0.002
oil-impregnated paper 33t04.2 0.003 to 0.008
polyvinyl chloride 3.0t04.0 0.02 t0 0.10
polyethylene 2.3 0.0002
crosslinked polyethylene 2.4 0.0004

The shunt conductance G' is ignored in the support routine CABLE CONSTANTS, which is probably
reasonable in most cases. It cannot be ignored, however, if buried pipelines are to be modelled as cables, as
explained in Section 5.6. If values for G' are available for cables, it is normally in the form of a dielectric loss angle
0 or loss factor tand. Then

G' = oC' * tand (5.14)
Typical values for tand are shown in Table 5.1. In the literature on electromagnetics, the shunt conductance is

usually included by assuming that €, in Eq. (5.13) is a complex number €, = €' - je", with Eq. (5.13) rewritten as

jW2TE
G+ joc = 2750 ¢ _ ey
o’ (5.15)

q

For cross-linked polyethylene, both €' and €" are more or less constant up to 100 mHz [168], with the typical values
of Table 5.1. For oil-impregnated paper insulation, both €' and €" vary with frequency. Measured values between
10 kHz and 100 mHz [154] showed variations in €' of approximately 20%, whereas &" varied much more. Fig. 5.7

shows the variations which can be expressed as a function of frequency with the empirical formula
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Fig. 5.7 - Measured values of €' and €" for a cable with oil-
impregnated paper insulation at 20°C [154]. Reprinted by
permission of IEE and the authors

The support routine CABLE CONSTANTS now assumes €¢" = 0 and €' being constant, but it could easily be
changed to include empirical formulas based on measurements, such as Eq. (5.16). At this time, formulas based
on theory are not available because the frequency-dependent behavior of dielectrics is too complicated. Except for
very short pulses (< 5 us), the dielectric losses are of little importance for the attenuation [154], and using a constant
e' with ¢" = 0 should therefore give reasonable answers in most cases.

Again, Eq. (5.11) is not yet in a form suitable for EMTP models. With the conditions of Eq. (5.9), they

are transformed to

/ /
dl core/ dx Y 1 Y 1 0 Vcore
- \dl

sheath/dx = _Y/1 Y/1+Y/2 _Y/z V:heath (5.17)

dl armor/ dx 0 - Y/2 Y/z +Y /3 Varmor

where Y';, = G'; + joC',.

5.2 Parallel Single-Core Cables
There are not many cases where single-core cables can be represented with single-phase models. A notable
exception is the submarine cable system, where the individual cables are laid so far apart (to reduce the risk of

anchors damaging more than one phase) that coupling between the phases can be ignored. In general, the three
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single-core cables of a three-phase underground installation are laid close together so that coupling between the
phases must be taken into account.

If we start out with loop analysis, then it is apparent that it is only the most outer loops (armor with earth
return, or sheath with earth return in the absence of armor) through which the phases become coupled. The magnetic
field outside the cable produced by loop 1 and 2 in Fig. 5.4 is obviously zero, because the field created by I, in the
core is exactly cancelled by the

earth
]7///////]/////]///7/////////////7/////7//I/////I///////]fl//llHIII//7/////777//I///I surface

Fig. 5.8 - Three single-core cables

returning current I, in the sheath, etc. The first two equations in (5.1) are therefore still valid, whereas the third

equation now has coupling terms among the three phases a, b, c, or

- Z\aZ'ya 0 00 O o
Z'ya Z'ya Z'ya 00 0 0
0 Za Zya 00 Z% 002z,
Z\b Z'p 0
12 ] - Ziyb Z'yh Z'yp| 00 0 (5.18)
0 Z'yb z'p| 00 Z'y]

Z'\cZ, O

: / / /
symmetric Z's¢c Z'yc Z'yc

0 Zye Z'ie |

withZ',, Z',., Z',. being the mutual impedances between the three outer loops of Fig. 5.8. By using Eq. (5.9) for

the transformation from loop to phase (core, sheath, armor) quantities, the matrix in Eq. (5.18) becomes
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(Z' a2 z’ ]

self-a mutuala-b mutuala-c

[Z ' phase] = [Z /Selffb] [Z /mutualb fc] (5 1 9)

/
selffc]

symmetric [Z
The 3 x 3 submatrices [Z;,] etc. on the diagonal are identical to the matrix in Eq. (5.10a) for each cable by itself,

whereas the 3 x 3 off-diagonal matrices have identical elements, e.g.,

Z/ab Z/ab Z/ab
1=z z, 7, (5.20)

/
[Z mutuala—b

/ / /
Zab Zab Zab

The only elements not yet defined are the mutual impedances Z',, Z',,, Z',. of the outer earth return loops, which
are discussed in more detail in Section 5.3. If one of the cables does not have an armor, its self submatrix is
obviously a 2 x 2 matrix and its mutual submatrix is a 2 x 3 matrix. For cables without sheath and armor, the
submatrices become 1 x 1 and 1 x 3, respectively.

There is no coupling among the three phases in the shunt admittances. Therefore, the shunt admittance

matrix for the three-phase system is simply

Y1 0o 0
(Y aeed =| O [Y',] 0 (5.21)
0 0 [Y]

where [Y',] is the 3 x 3 matrix of Eq. (5.17) for phase a, etc.

The screening effect of the sheath and armor depends very much on the method of grounding. For example,
if cable a is operated at 100 A between core and ground, with sheath and armor ungrounded and open-circuited, then
the full 100 A will flow in the outer loop (loop currents I, = 100, I, = 100, I; = 100 in Fig. 5.4). This will produce
maximum induced voltages in the conductors of a neighboring cable b. How much nuisance this induction effect
creates depends again on the method of grounding within cable b itself. If cable b is operated between core and
ground (loads connected from core to ground), and if its sheath and armor are ungrounded and open-circuited, then
the induced voltage will drive a circulating current through the core, ground and load impedances. If cable b is
operated between core and sheath (loads connected from core to sheath), then there will be no circulating current
in that loop, because according to Eq. (5.20), the induced voltages are identical in core and sheath. There would
be a circulating current through the sheath and armor in parallel with earth return if the sheath (and armor) is
grounded at both ends.

If both the sheath and armor in the current-carrying cable a are grounded at both ends, then the voltage

induced in the conductors of the neighboring cable b would be small. For the practical example of a 500 kV ac
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submarine cable at 60 Hz, 14% of the core current would return through the sheath, 87.8% through the armor, and
only 5.6% through the outermost loop with ground or sea water return. The induction effect in neighboring cables
would then be only 5.6% compared to the case with ungrounded sheath and armor. The algebraic sum is larger than

100% because there are phase shifts among the three currents (I, = 14e, 1 == 87.8¢™"", I, = 5.6e%9).

5.3 Earth-Return Impedances’
In Eq. (5.4), the impedance of the loop formed by the outermost tubular conductor and the earth (or sea
water) as return path is needed. This shall be called the "self earth-return impedance." For the matrix of Eq. (5.18),
the "mutual earth-return impedance" Z'; between the loop formed by the outermost tubular conductor and the earth
return path of cable i, and the analogous loop of cable k, is needed as well.
The four main methods of installing cables are as follows [148]:
(a) The cable is laid directly in the soil, in a trench which is filled with a backfill consisting of either the

original soil or of other material with lower or more stable thermal resistivity.

(b) The cable is laid in ducts or troughs, usually of earthenware or concrete.

(©) The cable is drawn into circular ducts or pipes, which allows additional cables to be installed without
excavation.

(d) The cable is installed, in air, e.g. in tunnels built for other purposes.

In cases (a), (b) and (c) the cable is clearly buried underground, and formulas for buried conductors must
therefore be used. In case (a), the radius R of the outermost insulation is simply the outside radius of the cable. In
cases (b) and (c) it should be the inside radius of the duct if the duct has a similar resistivity as the soil, or the outside
radius if it is a very bad conductor, or possibly some average radius if it is neither a good nor a bad conductor. What
to do in case (d) is somewhat unclear. Reasonable answers might be obtained by representing the tunnel with an
equivalent circular cross section of radius R. Another alternative is to assume that the tunnel floor is the surface of
the earth, and then use the earth-return impedance formula for overhead conductors. This would ignore current

flows in the earth above the tunnel floor.

5.3.1 Buried Conductors in Semi-Infinite Earth

Exact formulas for the self and mutual earth-return impedances of buried conductors were first derived by
Pallaczek [29]. In these formulas, the earth is treated as semi-infinite, extending from the surface downwards and
sideways to infinity. If the horizontal distance between cable i and cable k is x, and if cable i and k are buried at

depth h and y, respectively (Fig. 5.9), then the mutual earth-return impedance is [150]

’ - expl-(h+ywo+m? .
Z/utual:%{Ko(md)_Ko(mD)+fwexp ( +y) - m CXPOOLX)dOC}

m
[ y2 2

lo| +yas+m

(5.22)

IThe assistance of N. Srivallipuranandan and L. Marti in research for this section is gratefully acknowledged.
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where
d = vx*+(h-y)* = direct distance between cables i and k,
D = vx*+(h+y)* = distance between cable i and image of cable k in air,
m = reciprocal of depth of penetration for earth from Eq. (5.7¢),

o = integration constant.

air

NS S S
earth

v

cable 1

Y I D

R

Fig. 5.9 - Geometric configuration of two
cables

The self earth-return impedance is obtained from Eq. (5.22) by choosing the x,y- coordinate on the surface of the

outermost insulation, e.g., x = Randy = H,

Z' .., = (same as Eq. (5.22), withy = h, x = R) (5.23)
with R = outside radius of outermost insulation. The permeability u of earth and air are assumed to be identical in
these equations. Furthermore, they are written in a slightly different form than in Pollaczek's original paper, but
they are in fact identical.

While the K, terms in Eq. (5.22) are easy to evaluate, the integral terms in both (5.22) and (5.23) cannot
be calculated that easily. Wedepohl [150] gives an infinite series, which has been compared by Srivallipuranandan
[168] with a direct numerical integration method based on Romberg extrapolation. Both results agreed to within
0.1%. Since the function under the integral is highly oscillatory, direct numerical integration is not easy, and the
series expansion is therefore the preferred approach.

The support routine CABLE CONSTANTS does not use the exact Pollaczek formula. Ametani recognized
that the integral terms in Eq. (5.22) and (5.23) become identical with Carson's earth return impedance if the
numerator exp {-(h+y)ve*+m?’} is replaced by exp {-(h+y)|«|}. Accepting this approximation, which is valid

for || > >|m]|, he can then use Carson's infinite series or asymptotic expansion discussed in Section 4.1.1.1. Fig.
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5.10 and 5.11 show the errors in Ametani's results from support routine CABLE CONSTANTS, as well as the errors

of Wedepohl's approximate formulas [150] for self impedance,

2
_ pm YmR 4
Z/ean‘h - 2Tc {_ IHT + 0.5 - E mh}
and for mutual impedance
2
_ pm ymd 2
Z/mutual = E{_IHT + 0.5 - Emgf}

with  y = Euler's constant, and

¢ = sum of the depths of burial of the two conductors.

(5.24)

(5.25)

Wedepohl's approximations are amazingly accurate up to 100 kHz (error < 1%), and then become less

accurate as the

frequency 2
increases (25%
~ WEDEPOHL
error at 1 mHz) e« "1 AMETAN /
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Fig. 5.10 - Relative errors in self earth-return impedance formulas for
buried conductors (R = 48.4 mm, p = 100 Qm) [168]. Reprinted by

permission of N. Srivallipuranandan
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Fig. 5.11 - Relative error in mutual earth-return impedance formulas for

buried conductors (d = 0.3 m, h = 0.75 m, y = 0.75 m) [168].
Reprinted by permission of N. Srivallipuranandan

Semlyen has recently developed a very simple formula based on complex depth (OVERLINE) p = 1/m

[156], analogous to Eq. (4.3) for the case of overhead lines. For the self earth-return impedance, the formula is

@) 1
2 = TEWMR = ) (5.26)

while a similar formula for the mutual impedance has not yet been found. The error of Eq. (5.26) is plotted in Fig.
5.10. Considering the extreme simplicity of this formula as compared to Pollaczek's formula, it is amazing to see

how reasonable the results from this approximate formula are.

5.3.2 Buried Conductors in Infinite Earth

In some cases, it may be reasonable to assume that the earth is infinite in all directions around the cable.

This assumption can be made when the depth of penetration in the earth
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dyyn = V2 53 % (m) (5.27)
m 4

becomes much smaller than the depth of the burial. For submarine cables, where p is typically 0.2 Qm, this is
probably more or less true over the entire frequency range of interest, whereas for underground cables it would only
be true above a few MHz or so. Bianchi and Luoni [151] have used this infinite earth assumption to find the sea
return impedance of submarine cables.

The self earth-return impedance for infinite earth is easily obtained from the tubular conductor formula

(5.7a), by letting the outside radius r go to infinity. Then with q = R,

K (mr)
/earth - b - (528)
2nR K(mR)
The mutual earth-return impedance was derived in [168] as
Z mnal = (5.29)
TR, R, K, (mR) K, (mR,)

5.3.3 Overhead Conductors

If the cable is installed in air, or laid on the surface of the ground, then the earth-return impedances are the
same as those discussed for overhead lines in Section 4. The support routine CABLE CONSTANTS uses Carson's
formula in that case. For a cable laid on the surface of the ground, the height is equal to R. Ametani has tried a
special formula of Sunde for conductors on the surface of the ground, but the answers were found to be very

oscillatory around the seemingly correct answer. Sunde's formula was therefore not implemented.

5.3.4 Mutual Impedance Between Overhead Conductor and Buried Conductor

There is inductive coupling between the loop of an overhead conductor with earth return and the loop of
a buried conductor with earth return. The mutual impedance between these two loops is needed, for example, for
studying the coupling effects in pipelines from overhead lines, as discussed in Section 5.6. This case was treated

by Pollaczek as well, with

/ _ e expl-h|a] - yyoim?
mutual 7‘[

- || + yo+m?

} exp(jox) do (5.30)

As in the case of buried conductors, Ametani uses an approximation for this integral by replacing yva*+m?* with
y|e|. With this approximation, the formula becomes identical with Carson's equations, with the height of the buried
conductor having a negative value. In connection with a pipeline study [158], it was verified that Carson's formula
and Pollaczek's formula give identical results at 60 Hz. At higher frequencies, the differences would probably be

similar to those shown in Fig. 5.11.
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5.4 Pipe-Type Cable

Compared to the geometry of the single-core cable of Fig. 5.4, the geometry of the pipe-type cable of Fig.
5.3 is more complicated. It is therefore more complicated to obtain the impedances of a pipe-type cable, mainly for
two reasons,

(a) The single-core cables inside the pipe are not concentric with respect to the pipe.

(b) The steel pipe is magnetic, and subject to current-dependent saturation effects.

The analysis is somewhat simplified by the fact that the depth of penetration into the pipe is less than the
pipe thickness at power frequency and above. At 60 Hz, it is 1.5 mm from Eq. (5.27), with typical values of p =
0.2¢10° Qm and pu, = 400, whereas a typical pipe thickness for a 230 kV cable is 6.4 mm. For transient studies
with frequencies above power frequency, the pipe thickness can therefore be assumed to be infinite, or equivalently,

the earth-return can be ignored. Table 5.2 shows the current returning in the earth for a single-phase-to-ground

Table 5.2 - Earth-return current in a 230 kV pipe-type cable for single-phase fault (u, = 400)

f current in earth
(Hz) (percent of core current)
0.6 94.50
6 31.00

60 0.85
600 0.00

fault in a 230 kV pipe-type cable, with the pipe being in contact with the earth. To arrive at these values, it was
assumed that the core of the faulted phase was in the center of the pipe, and that the two unfaulted phases can be
ignored. With these assumptions, the impedance formulas of Section 5.1 can be used. If the two unfaulted phases
were included, the earth-return current would probably be even less because some current would return through the
shield tapes and skid wires of the unfaulted phases. The relative permeability u, influences the values of Table 5.2;

with u, = 50, 6% of the current would return through the earth at 60 Hz, or 0.02% with u, = 1600.

5.4.1 Infinite Pipe Thickness (No Earth Return)

If the depth of penetration is less than the pipe thickness, then no voltage will be induced on the outside of
the pipe (Z' ;e mua = 0 from Eq. (5.7¢)), and consequently, the loop current pipe/earth return will be practically
zero. In that case, the pipe is the only return path. The configuration is then essentially the same as that of three
single-core cables in Fig. 5.8, except that the pipe replaces the earth as the return path.

If we assume that each phase consists of three conductors (e.g., core, shield tapes represented as sheath,
skid wires represented as armor), then the loop impedance matrix is the same as in Eq. (5.18). Coupling will only

exist among the three outermost loops of each armor (skid wires) with return through the pipe. What is needed then
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is a formula for the self impedances Z's;,, Z'53,, Z'55, of the loops formed by each armor (skid wires) and the pipe,
and a formula for the mutual impedances Z',, Z',., Z'., between two such loops.

The support routine CABLE CONSTANTS finds these impedances with formulas first derived by
Tegopoulos and Kriezis [159], and later used by Brown and Rocamora [160]. In these formulas it is assumed that
the current is concentrated in an infinitesimally small filament at the center of each single-core cable. This model
can be applied to conductors of finite radius if proximity effects are negligible, either because of symmetrical
positioning within the pipe, or because the conductor radius is small compared to the distance to other conductors
or the pipe wall. In pipe-type cables, neither condition is met since the conductors are relatively large and lie on the
bottom of the pipe. The pipe-type cable impedances from CABLE CONSTANTS are therefore not completely
accurate, but no better analytical models are available at this time. Brown and Rocamora, who proposed the
formulas originally, recommend methods based on the subdivision into partial conductors discussed in Section 5.7,
for more accurate impedance calculation [161]. Hopefully, a support routine based on the subdivision method will
become available some day.

The self impedance Z',,, etc. of the loop between the armor (skid wires) and the pipe consists again of three

terms, as in Eq. (5.4). The first term Z' is the same as in Eq. (5.7b), with the assumption that proximity

armor-out

effects can be ignored. The second term for the insulation becomes more complicated than Eq. (5.6), because of

the eccentric geometry,

! :jwﬁln

q
z insulation m E G. 31 )

with g, R, and d, l
defined in Fig.
5.12.  The third
term  for  the
internal impedance
of the pipe, with
return on the —_
inside, replaces

Z' ... in Eq. (5.4):

Fig. 5.12 - Geometry of pipe-type cable (q,r = inside and outside
radius of pipe; R;, R, = outside radius of single-core cables i, k; d,,
d, = offset from center)

5-18



Z/- - wii
pipertn 21 |mgK (mq) 1=

o 2n
Koma) [ d"] K, mg) (5.32)
1 np,

q K, (mq) - mgK 'mq)

with m from Eq. (5.7¢), and p = pyu, = permeability of the pipe,

K, = modified Bessel function of the second kind of order i
K', = derivative of K.

For the concentric case with d, = 0, Eq. (5.32) becomes identical with Eq. (5.28).

The mutual impedance Z',,, etc. between two outermost loops formed by armor (skid wires) and pipe is

+ 1,
Jd?+d2-2dd.cosS,  ™eKi(mq)

/ w0

= Jjw n
mutual 27

= dd K
Y (’—2")” cos(n©,) 2ur mq)

1
-1y |
= K (mq) - mqK ' (mg) 7 -39

Except for replacing Z',,.,, with Z' and for using Z' from Eq. (5.33) instead of (5.22), all

pipe-in? mutual

calculations remain the same as in Section 5.2, including the transformation from loop to phase quantities. If the
cables inside the pipe do not have an armor (skid wires) or a sheath (shield tapes), then some of the matrices will
be reduced to 2 x 2, or 1 x 1, as discussed in Section 5.2. In practice, the shield tapes and skid wires can probably
be represented as one single sheath.

The magnetic properties of the steel pipe are easily taken into account by using the proper values for the
relative permeability u, in Eq. (5.32) and (5.33). Unfortunately, u, depends on the current because of saturation
effects, as shown in Fig. 5.13 [192]. To model saturation effects accurately is not simple, because even at one
frequency, say at 60 Hz, the permeability would not remain constant over one cycle. A two-slope saturation curve
was tried in [161], with the conclusion that reasonably accurate answers can be obtained with a constant value of .
The sensitivity of the results

with respect to p, can then

— 30
be checked by re-running W
25
the case with one or more T
0
different values of u,. s
10

L

04 &4 &0 400

— .1 /D (A/mm)
p'p

Fig. 5.13 - Relative permeability as a function of
pipe current (I, = pipe current, D, = pipe

diameter) [192]. © 1964 IEEE
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Since the shield tapes and skid wires are in contact with the pipe wall, the values of the capacitances between
the shield tapes/ skid wires of the three phases and between them and the pipe are immaterial. They are shorted out.
Eq. (5.21) can therefore be used directly for the shunt admittance matrix. The support routine CABLE
CONSTANTS does not assume this contact with the pipe in the beginning, however, and is therefore more general.

For this general case, a potential coefficient matrix is found first,

[P’] (P’ J P, [P',]
[P /phase] = [P /b] + P/ba] [P /bb] [P /bc] (534)
[P’ ] (P’ [P, [Pl

where [P',], [P',], [P'] are the 3 x 3 matrices of each single-core cable found by inversion of Eq. (5.17) with G'
= 0,

P’]=|-¢/ c¢c+c -¢ (5.35a)

or [163]
P1/+P2/+P3/ P2/+P3/ P,
[P,] = |P,+P; P,+P; Py (5.35b)
P3/ P3/ P3/
with P = 1/C,". (5.35¢)

The dielectric between the armors (skid wires) and the pipe is represented by the second term in Eq. (5.34). Each

of the submatrices [P;'] and [P, '] in the second term is a 3 x 3 matrix with 9 equal elements,

2
1 - [ﬁ) (5.362)
q

p/:Lmi

i 2nee, | R

JE— In q
2me e, \/dl.z +d? - 2dd.cosO,

' (5.36b)

with the essential terms in Eq. (5.36) being the same expressions appearing in Eq. (5.31) and (5.33). The admittance

matrix is then found by inverting [P",,.],

[Y/phase] - jw [P /phase] . (537)
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5.4.2 Finite Pipe Thickness with Earth Return

At lower frequencies, there is mutual coupling between the inner and outer surface of the pipe. The induced
voltage on the outer surface will then produce a circulating current through the pipe and earth return. This extra loop

must be added to the loop impedance matrix of Eq. (5.18),

[ as in Eg. (5.18), 0
with el enents defined 0
in Section 5.4.1 -Z' m
0
[Z 1% 0 (5.38a)
7 m
0
0
7 m
00-z 00-2z 00-7, Z m m s
with
Z', = Zjpemua from Eq. (5.7¢), (5.38b)
Z'=Zoeon T Linsuation T L carth- (5.38¢)

Thefirst two termsin Eq. (5.38c) are found from Eq. (5.7b) and (5.6) (Z’ion = O if pipe in contact with earth), and
Z' . IS the earth-return impedance discussed in Section 5.3. Transforming Eq. (5.384a) to phase quantities produces

samemafrixas 0 27272 ..Z|Z [ e |
forinfinitel 0 272 ..Z227Z e
[ZA pipe thickness . .............. . (p.39a)
VAVA VANVA R
00... o z7z7 .7 7 e e R s

with Z. from Eq. (5.38c)

Z.=2.-27, (5.39b)
2=2.-27
Thelast row and column in Eq. (5.39a) represent the pipe quantities, while the first 9 rows and columns refer to core,
sheath (shield tapes), armor (skid wires) of phases a, b, and c.
If the pipeisin contact with the earth, then the shunt admittance matrix isthe same asin Section 5.4.1. If it

isinsulated, then the potential coefficient matrix of Eq. (5.34) must be expanded with one extrarow and column for the
pipe, and the same element
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P/ - 1 In rpipefinsulation

21-EeOSr r pipe-outside

(5.40)

must be added to this expanded matrix,

sameagin 0 PP P T
Eq.(5.39) O PP ..P
[P’ ondsw N (3.41)
PP P’
00.. 0

The admittance matrix is then again found by inversion with Eq. (5.37).

5.5 Building of Conductorsand Elimination of Grounded Conductors

Conductors are sometimes connected together ("bundled"). For example, the concentric neutral conductors
in the cable of Fig. 5.2 arein contact with each other, and therefore electrically connected. 1n a pipe-type cable, the
shield tapes and skid wires are in contact with the pipe. 1n a submarine cable, the sheath is often bonded to the armor

at certain intervals, to avoid voltage differences between the sheath and armor.
I'n such cases, the connected conductors 1,...m can be replaced by (or bundled into) one equivalent conductor,

by introducing the bundling conditions
L+l = g Vi =V, =V =V (5.42)

into the equations for the series impedance and shunt admittance matrices. The bundling procedure for reducing the

equiv

equations from m individual to one equivaent confluctgr is the same as Method 1 of Section 4.1{2.2 for overhead lines,

and is therefore not explained again. It is exact |f the conguctors are continuously connected with zero connection
resistance (asthe neutr@l conductorsin Fig. 5.2), ajd accuratd enough if the connections are madg at discrete points with

negligible resistance (gs in bonding of the sheath {o the armdr), as long as the distance betweer) the connection points

is short compared to trriwavel ength of the highest freguendy in the transient simulation.
Asinthe case of overhead lineswith ground wires, some conductorsin acable may be grounded. For example,
the steel pipe of a pipe-type cable can usually be assumed grounded, because its asphalt mastic coating is not an electric
insulation. Also, neutral conductors may be connected to ground at certain intervals, or at both ends. If a conductor
i is grounded, then the condition is simply
V,=0 (5.43)
and conductor i can then be eliminated from the system of equations in the same way as described in Section 4.1.2.1.
Again, the elimination is only exact if the conductor is grounded continuously with zero grounding resistance, and
accurate enough if the distance between discrete grounding points is short compared to the wavelength of the highest
freguency.
An example of bundled aswell as grounded conductors would be a single-core submarine cable which hasits

sheath bonded to the armor. Since the asphalt coating of the armor is not an electric insulation, the armor isin effect
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in contact with the sea water, and both sheath and armor are therefore grounded conductors. By eliminating both of
them, the submarine cable can be represented by single-phase equations for the core conductor, with the current return
combined in seawater, armor and sheath. For an overhead line, the equivalent situation would be a single-phase line
with two ground wires.

The case of segmented ground wires in overhead lines discussed in Section 4.1.2.5(b) can exist in cables as
well. For example, if the sheath is grounded at one end, but open and ungrounded at the other end, then the sheath could
be eliminated in the same way as segmented ground wires, provided the cable length is short compared to the wavelength
of the highest frequency. The support routine CABLE CONSTANTS does not have an option for such eliminations.
The user must represent the sheath as an explicit conductor, instead, with one end connected to ground. This offersthe

advantage that the induced voltage at the other end can automatically be obtained, if so desired.

5.6 Buried Pipelines
Pipelines buried close to power lines can be subjected to hazardous induction effects, especialy during single-
line-to-ground faults. To study these effects, one can include the pipeline as an additional conductor into the
transmission line representation (Fig. 5.14(a)). For steady-state anaysis, one can aso use the single-phase
representation of Fig. 5.14(b), with an impressed voltage

(z']
[Y']
g — T AT T T T ) AV, iced
a o—t—A—~TIN x _l___= - Z' dx
-
b o—p—A—~TTN - T bad e p o—A—TIN—A —)—g— — - - ——~
¢ ATV o -:_l;_-_ .
I PP

P o——dA—TTN - -TFE - oo L L

steady-state analysis, oRe ¢ se the sipgl ph%e representation of Fig. 5.14(b), with an impressed voltage
PP
-~ = - = = =

(a) polyphase representation o (b) s-ingle—phase representation

Fig. 5.14 - Pipeline representation (g = ground wire, a, b, ¢ = phase
conductors, p = pipeline)

dV'd d
_ l;xuce _ Z/pala + Z/pblb + Z/pclc + Z/pglg (544)

There is no capacitive coupling between the power line and the pipelineif it is buried in the ground.

Asexplained later, nominal w-circuits can only be used for very short lengths of pipeline (typicaly < 0.3 km
at 60 Hz). The single-phase representation is therefore preferable for steady-state analysis, because the distributed
parameters of Fig. 5.14(b) are more easily converted into an exact equivalent r-circuit than the polyphase parameters

of Fig. 5.14(a). This results in the active equivalent n-circuit of Fig. 5.15, with Y o, and Y, being the usua
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parameters obtained from Eq. (1.14), while |, 4, 1S an active current [158],

B dVinduced/dx

- — (5.45)
/
4 pp

induced

Iinduced

—

Y ,
series
1 1
2 Yshunt Q IE-Z- Yshunt

Fig. 5.15 - Active equivalent m-circuit

The correctness of the active n-circuit can easily be shown. Starting from the differential equations

av
B a = Z/pp + Z/pp Iinduced
a .,
e YV
the introduction of a modified current
Imodified = | linduced

transformsthe differential equations into the normal form of the line equations, with the assumption that I, does not
change aong the line (dl qiea/dX = dl/dX),

awv
a - pp " modified
_ dImodiﬁed _ Y/ \%
dx pp

The solution for aline between nodes k and mis given in Eq. (1.13), except that the current is NOW | iieq» OF FEWTittEN,

Ikm * Iinduced _ Yseries * (1/2)Y shunt B Yseries Vk
Imk B Iinduced = L series Yseries * (1/ 2)Yslmm Vm

Thisis exactly the same equations which comes out of the equivalent circuit of Fig. 5.15.
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With this single-phase approach, the currents in the power line are assumed to be known, e.g., from the usual
type of short-circuit study. It isaso assumed that they are constant over the length of the exposure to the pipeline, and
that the pipeline runs parallel to the power line (mutual impedances constant). If either assumption is not true, then the
power line-pipeline system must be split up into shorter sections as is customarily done in interference studies. The
effect of the pipe on the power line zero sequence impedance is usually ignored, but could be taken into account.

In both representations of Fig. 5.14, the mutual impedances between the pipe and the overhead conductors, as
well as the self impedance of the pipe with earth return, are needed. The mutual impedances are obtained with the
formulas discussed in Section 5.3.4. At 60 Hz, Carson’s formula will give practically identical results as the more
complicated formula of Pollaczek.

The salf impedance Z',; of the pipeline consists of the same three terms shown for the armor in Eq. (5.4). The
first two terms are calculated with Eq. (5.7b) and (5.6), while R, is found from the equations discussed in Section
5.3.

For the shunt admittance Y’,, = G’ + joC’, the capacitive part is calculated in the usual way with Eg. (5.13).
In contrast to the underground cable, the shunt conductance G’ of the pipeline can no longer be ignored. The insulation
around pipelinesis electrically poor, either originally or because of puncturing during the laying operation. The loss
angled in Eg. (5.14) is so large on pipelines insulated with glass-fiber/bitumen that G’ becomes much larger than wC’
a power frequency, and if one part of the shunt admittance isignored it should be »C' rather than G’. On PV C-insulated
pipelines, G’ may still be smaller than wC’, though.

If the shunt resistance of theinsulation isrelatively small, then the grounding resistance of the pipe should be

connected in series with it> [170], or

G =

/ / (5.46)

. . + .
insulation R grounding

where  R'qaion = esistance of pipe insulation,
R grounding = grounding resistance.

A useful formulafor the grounding resistance is [170]

[ L)?
2+ =] +
/ _ pearth 24 \( ) (2)

grounding 41 2In—+In 733 >
2n+ =| -
{3

with  pom = €arth resistivity (e.g., in Qm),

(5.47)

R Talu FY [Ta}

h = depth of burial of pipe
¢ = length of pipe

’If the sheath, armor, or pipe of an underground cable or the ground wire of an overhead line is grounded,
then it has been standard practice to ignore the grounding resistance (V = 0). An alternative would be to use a
finite shunt admittance Y' = 1/R',;;,uqing» @8 recently suggested [186].
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D = outside diameter of pipe.

Grounding grids must generally be analyzed as three-dimensional problems, even if they consist of only one
pipe. The grounding resistance from Eq. (5.47) istherefore no longer an evenly distributed parameter, but depends on
thelength. Fortunately, the dependence of G’ on length is very small for typical values of G'qxion [158]. INn the region
of measured values for G’ between 0.1 S/km for newly-layed pipeines and 0.3 S/lkm for older pipelines with glass
fiber/bitumen insulation [170], the dependence of G’ on length is practically negligible, as shown in Fig. 5.16. Treating
G’ as an evenly distributed parameter is therefore a reasonabl e approximation.

10.0 A
~~o R’ = 10 Qm

G' (S/km) *-,>.__£E§ulation—

-
-
T ————— .
-

R’ = 100 Qm

1.0 -

- 9= =t
R'. . = 1000 Om
insulation
H =1.2 m
D = 400 mm
pearth= 100 Qm
0.1 T T \J
10 100 1000 10000

— 2 (m)

Fig. 5.16 - Shunt conductance of buried pipe

Because of G’ >> wC, the wavelength of buried pipelines is significantly shorter than that of underground
cables, asshown in Table 5.3 [170]. Therefore, anomina r-circuit of acircuit which includes a buried pipeline should
not be longer than approximately 0.8 km for

Table 5.3 - Wavelength of pipeline at 50 Hz [170]

G’ (S/km) wavelength (km)
0.1 41.3
10 131
10.0 4.13
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steady-state analysis, or approximately 0.08 km for switching surge studies [158].
Fig. 5.17 shows a comparison between measured and cal culated voltages and currents in a pipeline, induced

by currents in a neighboring power line, with the pipeline representation as discussed here [158].

Ipipe/Ipower (p.u.)

6--3\\
/\ P bl S v . /1 (V/a)
pipe’ power

o ] // \‘\a

0.3 .T

OO M - + PR 4 " 4 N B o i S| 4 i 1 +
. v A T o A A A

! 2 2 & S & 7 & 8 10 0 12 13 15 15 1§ 17 18 18 20 2
pipe node numbers

distance along

pipeline
PIPE VOLTAGE PIPE CURRENT
¢ BBcker measured A BHcker measured
o calculated from single-phase e calculated from single-phase
m-model T-model

I = fault current in power line
power

Fig. 5.17 - Induced voltages and currents in a buried pipeline

5.7 Partial Conductor and Finite Element M ethods

The support routine CABLE CONSTANTS uses anadytical formulas which are essentially only applicable to
configurationswith axial symmetry. The formulasfor the nonconcentric configuration in pipe-type cables (Section 5.5)
are only approximate, and the authors of these formulas themselves suggest improvements along the lines discussed
here.

To find the impedances and capacitances for conductor systems with arbitrary shapes (e.g., for the cable of Fig.
5.1), numerical methods can be used in place of analytical formulas, which are either based on subdivisions into partial
conductors or on finite element methods. There is no support routine yet in the EM TP which uses these numerical

methods. The principle of these methods is therefore only outlined very briefly.
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5.7.1 Subdivision into Partial Conductors
With this method, each conductor is subdivided into small "partial” conductors ("subconductors' in [162],

"segments" in [164]), as shown in Fig. 5.18. Various shapes can be used for the partial conductors, with rectangles
being the preferred shape for strip linesin

Fig. 5.18 - Subdivision of the main conductors into partial
conductors

integrated circuits (Fig. 5.19).

#1 &N
(1.4) [ (1,5)}(1,6) (N[N (N.6)
L]
O,DED L) (N DINDNN3)Y
N,=6 Ny =6
(0,4) (0.5) 0,2)
0.1) (0.0) (0,3)
=S 20 N,=5

0

Fig. 5.19 - Subdivision of strip lines into partial conductors
of rectangular shape [164]. Copyright 1979 by International
Business Machines Corporation; reprinted by permission

In deriving the equations for the system of partial conductors, uniform current density is assumed within each
partial conductor. Then the voltage drops along a system of n partial conductors at one frequency are described by the
phasor equations

avyax] [[R, ] A
AV Jdx R Ly, L, - - L, "
2 2 2
Ly Ly 0 Ly,
- = + jw (5.48)
Ln] Ln2 t Lnn
dv /dx R, I,

The diagonal resistance matrix contains the dc resistances, and the full inductance matrix contains the self and mutual
inductances of the partia conductors. The formulas for the matrix elements depend on the shape of the partial
conductor, but they are well known.

To obtain the frequency-dependent impedance of a cable system, the matrices [R] and [L] are first computed.
At each frequency, the complex matrix [Z] =[R] + jw[L] isformed, and reduced to the number of actual conductorswith
Bundling Method 1 of Section 5.5. For example, if partial conductors 1,...50 belong to the core conductor, and partial
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conductors 51,...120 to the sheath, then this bundling procedure will reduce the 120 x 120-matrix to a 2 X 2-matrix,
which produces the frequency-dependent impedances

Z (@) Z ()
Z (0) Z (o)

This numerical method works well as long as the conductors are subdivided into sufficiently small partial
conductors. The size of these partial conductors must be of the same order of magnitude as the depth of penetration.

5.7.2 Finite Element M ethods

Finite e ement methods are more powerful than partial conductor methods in one sense, inasmuch asit is not
necessary to assume uniform current density within each element. However, it isvery difficult to handle open-boundary
conditions with finite element methods, that is configurations where the magnetic field diminishes gradually as one
moves away from the conductors, with no clearly defined boundary of known magnetic vector potential reasonably close
to the conductors. In situations where a boundary is clearly defined, e.g., in pipe-type cables at high frequency where
the depth of penetration becomes much less than the wall thickness, finite element methods can be quite useful.

With finite element methods, the region inside and outside of the conductorsis subdivided into small elements,
usually of triangular shape. Fig. 5.20(a) shows the example of a stranded conductor inside a pipe of radius R, asthe
return path (clearly defined boundary with zero magnetic field A = 0 outside the pipe and zero derivative along the two
edges of the "wedge"). Because of axial symmetry, it is sufficient to analyze the "wedge" shown in Fig. 5.20(8). This
wedge region is then subdivided into triangular el ements as shown in Fig. 5.20(b), with longer triangles as one moves
away from the conductor.

The magnetic vector potential A is assumed to vary linearly along the edges and inside of each triangle,

A=ax+by+c, (5.49)
when afirst-order method is used (higher-order methods exist as well). The unknowns are essentially the values of A
in the node points. If they were shown in the z-direction of athree-dimensional picture, then the triangles would appear
in ashape similar to a geodesic dome, with the roof height being the value of A. The equations for finding A are linear
algebraic
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(a) Stranded conductor inside pipe of radius R,

(b) Subdivision of region into triangular elements

Fig. 5.20 - Analysis of stranded conductor with finite element method [171]. Reprinted by permission of Yin Yanan

equations with a sparse matrix, but the number of node points or the number of equations is usually quite high (146
equations for the example of Fig. 5.20). Once the magnetic vector potential is known in the entire region, the
impedances can be derived fromiit.

For readersinterested in finite element methods for cable impedance cal culations, the papers by Konrad, Weiss
and Csendes [165, 166, 167] are a good introduction.

5.8 Modal Parameters
Once the series impedance and shunt admittance matrices per unit length [Z'.e], [Y 'pasel @re known, the
derivation of modal parametersis exactly the same as described in Section 4.1.5 for overhead lines. They could be used,

for example, to develop exact equivalent n-circuits for steady-state solutions as explained in Section 4.2.1.3.
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For transient simulations, it is more difficult to use modal parameters, as compared to overhead lines, because
the transformation matrix [T;] can no longer be assumed to be constant as for asingle-circuit overhead line. Fig. 5.21
shows the variation of the elementsin the third column of [T}] for atypical three-phase arrangement of 230 kV single-
core cables with core conductor and sheath in each [155]. Especially around the power frequency of 50 or 60 Hz, the

variations are quite pronounced.

O O O O O O O O O — —
wn

Magnitude of Elements of Elgenvector 3

]
o
o
1o

100 10° 100 1 10 18 100 10° 168 10 10
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Fig. 5.21 - Magnitude of the elements of column 3 of [T}]

Above afew kHz, the loop between core conductor and sheath becomes decoupled from the outer loop between sheath
and earth return, because the depth of penetration on the inside of the sheath for loop 1 becomes much smaller than the
sheath thickness. Inthat case, Z, e mua ~ 0. This makes the transformation matrix constant above afew kHz, as evident
from Fig. 5.21. For asingle-phase single-core cable with sheath and armor, the three modes are identical with the 3
loops described in Eq. (5.1) at high frequency where Z',, ~ 0 and Z’,; ~ 0. The transformation matrix between loop and
phase quantities of Eq. (5.9),

100 1 00
[T]' =110 and [T]=|-1 1 0O (5.50)
111 0 -11

5.9 CableModelsintheEMTP
Co-author: L. Marti

As of now (Summer 1986), there are no specific cable modelsin the BPA EMTP. The only way to simulate
cablesisto fit cable datainto the models available for overhead lines. It has long been recognized, of course, that this
is only possible in a limited number of cases. A method specifically developed for cables, as discussed in Section
5.9.2.3, will hopefully be implemented in late 1986 or early 1987. It has already been tested extensively in the UBC
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EMTP.

5.9.1 Ac Steady-State Solutions

In principle, there is no difficulty in representing cables as nominal or equivalent z-circuits in the same way
as overhead lines (Section 4.2.1). If nominal w-circuits are used, it should be realized that the wavelength of
underground cablesis shorter than on overhead lines. If anominal r-circuit should not be longer than 100 km at 60 Hz
for overhead lines, the limit is more typically 30 km for underground cables. If apipelineis modelled, the limit can be
aslow as 1 km, as discussed in Section 5.6.

Underground cables are often very short compared to the length of connected overhead lines. In such cases,
the (complicated) series impedances have very little effect on the results because the system sees the cable essentially
as a shunt capacitance. The cable can then be modelled as a simple lumped capacitance.

5.9.2 Transient Solutions

The accurate representation of cables with frequency-dependent impedances and frequency-dependent
transformation matrices is discussed in Section 5.9.2.3. Situations where simpler models should be accurate enough
are discussed first.

5.9.2.1 Short Cables

If arectangular wave pulse travels on an overhead line and hits arelatively short underground cable, then the
cable termination is essentially seen as alumped capacitance. The voltage then builds up exponentially with atime
constant of T = Z,eneai®Ceae: ShOWN in Fig. 5.22(a). If the cable is modelled somewhat more accurately as a lossless
distributed-parameter line, then the voltage build-up has the staircase shape of Fig. 5.22(b), with the average of the
sending and receiving end curve being more or less the same as the continuous curve in Fig. 5.22(a). As long as the
travel time [] of the cable is short compared to the time constant T, reasonably accurate results can be obtained if the

cable is represented as a lumped capacitance.

v
= Zoverhead.ccable T
—— T —

7
/!

/

—_ t ——)-l L—— — t
@) Cable represented as lumped (b) Cable represented as
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capacitance lossless transmission line
------ sending end of cable
...... receiving end of cable

Fig. 5.22 - Voltage build-up in a cable connected to an overhead line

Nominal w-circuit representations have often been suggested as approximate cable models. They obviously
represent the capacitance effect correctly, but the pronounced frequency-dependence in the seriesimpedance isignored.
Nominal r-circuits give reasonable answers probably only in those cases in which the simpler lumped capacitance

representation is already accurate enough.

5.9.2.2 Single-Phase Cables
There are Situations where single-phase representations are possible. An example is a single-phase submarine
cable in which the sheath and armor are bonded together, with the armor being in contact with the seawater. In such

a case, the sheath and armor can be eliminated from Eq. (5.10), which results in the reduced single-phase equation

with Z'. being the impedance of the core conductor with combined current return through sheath, armor and sea water.
Coupling to the cables of the other two phases can be ignored because the three cables are layed relatively far apart, to
reduce the risk of anchors damaging more than one phase in the same mishap.

When the equations have been reduced to single-phase equations, then it is straightforward to use the
frequency-dependent overhead line model described in Section 4.2.2.6.

Sometimes it is not necessary to take the frequency-dependence in the series impedances into account. For
example, single phase SF,-busses have been modelled quite successfully for fast transients with two decoupled lossless
single-phase lines, one for the inside coaxial loop and a second one for the outside |oop between the enclosure and the
earth-return. The coupling between the two loops through the enclosure is negligible at high frequencies because the
depth of penetration is much less than the enclosure wall thickness. The only coupling occurs through reflections at
the terminations. Agreement between simulation results from such simple models and field tests has been excellent
[169].

5.9.2.3 Polyphase Cables[155]
The simple overhead line models with constant parameters discussed in Section 4.2.2 are of limited use for

underground cables for two reasons:

@ The transformation matrix [T] is frequency-dependent up to a few kHz, though a constant [T] would be
acceptable for transients which contain only high frequencies (e.g., lightning surge studies).

(b) The moda parameters (e.g., wave velocity and attenuation) are more frequency-dependent than on overhead
lines, as shown in Fig. 5.23 for three single-core cables with core and sheath [150].
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Fig. 5.23 - Modal parameters as afunction of frequency [150]. Reprinted by permission of |EE and
the authors

To derive an accurate model for an n-conductor cable system between nodes k and m, we can start from the
phasor equation (4.121) for the overhead line, if we replace that scalar equation, which was written for one phase or

mode, by a matrix equation for the n conductors,

[YILV,] - [1,,] = [ANYILV,] + 1,0 (5.51)
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with[Y ] = [Z]™" = characteristic admittance matrix in phase quantities,
[A] = €!"¥ = propagation factor matrix.
Eq. (5.51) istransformed to modal quantities, with

Ul = [T],,,] (5.52a)
and
V1 = [T [V,,.]) (5.52b)
which yields
i model = e moae Vi -moded = moded Yo moe) Vi -moded * Ui moae)?
(5.53)
with both [Y ¢ meel @Nd [A o] PEING diagona matrices,
(Y, o = [T YT (5.542)
[4,50] = [T17[A]11T)] (5.54b)
The diagonal element of [A,,,] is obtained from thei-th eigenvalue y; of the product [Y' e | [ Z phese |
modes = € (5.54¢)

and [T] isthe matrix of eigenvectors of the same product [Y' el [Z el - EG. (5.53) consists of n decoupled (scalar)
equations, with one equation for each mode.

Transforming these scalar equations into the time domain is the same procedure as described in Section 4.2.2.6
for the overhead line. For mode i, the second term in Eqg. (5.53) is found with the same convolution integral asin Eq.
(4.124),

h l St Tmax l'

propagation -

(t-wya(u)du for each mode (5.55)

m-total
min

with the current i,,, .y PeINg the sum of the line current i, and of a current which would flow through the characteristic
impedance of mode i if the voltage v, of mode i were connected acrossit. Only known history terms appear in Eq.
(5.55), and hist,, yegaion CAN therefore be found by n recursive convolutions for the n modes, in the same say asin Section
4.2.2.6. Themoda propagation factors are very similar in shape to those of an overhead line, as shown for A 4.3 (®)
in Fig. 5.24.
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Fig. 5.24 - Magnitude of propagation factor for mode 3 of a 6-conductor
system (three single-core cables with core and sheath in each)

With
propagation of the conditions from mto k being taken care of through Eqg. (5.55), the only unresolved issue in the modal
domain equationsisthe representation of theterm Y .V, in Eq. (5.53). Again, the frequency dependence of Y, issimilar
to that of an overhead line, as shown in Fig. 5.25, and can be represented with the same type of Foster-1 R-C network
shown in Fig. 4.42(a), and reproduced here as Fig. 5.26. By applying the trapezoida rule of integration to the
capacitances, or by using recursive convolution as discussed in Appendix V, the R-C

.045 q

[en] o o o o o o o o
N)
w
1

Magnitude of Element 3 of Yc' (mhos)

107 10° 100 i 10 1 180 10" 180 10° 10
Frequency in Hz

Fig. 5.25 - Magnitude of characteristic admittance for mode 3 (same 6-
conductor system as in Fig. 5.24)
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Fig. 5.26 - Representation of one mode seen from side k

network is converted into an equivalent conductance G,

in parallel with aknown current source histyc + hist,ageion-
After the network solution at each time step, the current flowing through the characteristic impedance represented by

the R-C network must be calculated for both ends of the cable from G,,v + histc, because this term is needed after

equiv
the elapse of travel time to form the expression i,y Needed in Eq. (5.55).
From Fig. 5.26(b), it can be seen that each mode is now represented by the scalar, algebraic equation

n(t) = G Vi(0) + (it + NSty opegeor) (556)
with an analogous equation for i, (t) a the other end. If the transformation matrix were constant and real, then Eq.
(5.56) could very easily be transformed back to phase quantities,

[ prese()] = [T Gequid [T TVicprese] + [Til[hiSt]

asexplained in Eq. (4.109) for the overhead line. Asshown inFig. 5.21, the transformation matrix [T;] of cablesisvery
much freguency-dependent, and the transformation back to phase quantities now requires convolutions based on Eq.

(5.52),

[iphase(t)] - fil[ti(tiu)] [inwde(u)] du (5573)
[vmode(t)] - f:; [ti(tiu)]t [Vphase(u)]du (557b)

where [t] is amatrix obtained from the inverse Fourier transform of the frequency-dependent matrix [T]. Similar to
the curve fitting used for the modal characteristic impedances, each element of [T,] is again approximated by rational

functions of the form
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T (w) =k, + !
@) =y - Y o ” (5.58)

with k,, k; and p, being real constants which, when transformed into the time domain, becomes

tlw(t) = k,o(t) + Zki exp(-pt) u(z) (5.59)
i=1

With the simple sum of exponentialsin Eq. (5.59), recursive convolution can be applied again (Appendix V). Then,
the convolution integrals in EQ. (5.57) can be split up into aterm containing the yet unknown voltages and currents at

timet, and the known history terms which can be updated recursively,

[iphaxe(l)] - [IO] [imode([)] * [hiSIcurrent] (5603)

[vmode(t)] = [to]t [vphase(t)] * [hiSIvoltage] (560b)

with [t,] being areal, constant n x n-matrix. With Eq. (5.60), the transformation of the modal equations (5.56) to phase

quantitiesis now fairly simple,
i -prase®] = [G 5] Vi prase®D] + [hist ] (5.61a)
with
[Gpasel = 11 [G ] L16] (5.61b)

and the history term
[Nty = [NiStayrerd] + [t [Gaqi] [Nt e
+ [Nistec] + [ty o} (5.610)
Sincetheformof Eg. (5.61a) isidentical to that of Eq. (4.109) for the overhead line with constant [T,], adding the model
to the EMTP isthe same as described there. The extra effort lies essentially in the evaluation of the two extra history
Vectors [Niste and [hist ... After the network solution at each time step, Eq. (5.60) is used to obtain the modal
quantities from the phase quantities.

The principle of the frequency-dependent cable model isfairly simple, but its correct implementation depends
on many intricacies, which are described in [155]. In particular, it isimportant to normalize the eigenvectorsin such
a way that the elements of [T,] as well as the modal surge admittances Y .. bOth become minimum phase shift
functions. Thisisachieved by making one element of each eigenvector area and constant number through the entire
frequency range. Furthermore, standard eigenvalue/eigenvector subroutines do not produce smooth curves of [T;] and
[Y .mosel @S afunction of frequency, because the order in which the eigenvalues are calculated often changes as one
moves from one frequency point to the next. This problem was solved by using an extension of the Jacobi method for

complex symmetric matrices. Symmetry is obtained by reformulating the eigenproblem
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[Y/phase] [Z /phase] [)C] = k[x]

intheform
[H] [r] = Alr] (5.62a)
where
[H] = [LI'[Z' ] L] (5.62b)
and
[x] = [L][r] (5.62¢c)

with [L] being the lower triangular matrix obtained from the Choleski decomposition of [Y’ ;.| [157]. The Choleski
decomposition is amodification of the Gauss elimination method, as explained in Appendix I11. One can aso replace
[L] in Eq. (5.62) with the square root of [Y'.| obtained from

(Y sl = IXTAYT [XT! (5.63)

where[A"?] is the diagonal matrix of the square roots of the eigenvalues, and [X[ is the eigenvector matrix of [Y’,. ..
Both approaches are very efficient if G’ isignored, or if tand is constant for all dielectrics in the cable system, because
[L] or [V’ phasel Y2 must then only be computed once for all frequencies.

For parallel single core cables layed in the ground (not in air), [ Y] is diagonal if loop equations are used. In
that case it is more efficient to find the eigenvalues and eigenvectors for [Y',,,][Z'0p], Where both [L] and [Y),,] vz
become the same diagonal matrix with VY’ ; asits elements. The conversion back to phase quantitiesis trivial with
Eq. (5.50).

The reason why the Jacobi procedure produces smooth eigenvectorsis that the Jacobi algorithm requires an
initial guess for the solution of the eigenvectors. This initial guess is readily available from the solution of the
eigenproblem of the preceding frequency step; consequently, the order of the eigenvectors from one calculation to the
next is not lost.

Figure 5.27(a) shows the magnitude of the elements of row 3 of the eigenvector matrix [T;] for the same 6-
conductor system asin Fig. 5.24, when standard eigenval ue/eigenvector routines are used. Fig. 5.27(b), on the other
hand, shows the same elements of [T;] calculated with the modified Jacobi algorithm.

As an application for this cable model, consider the case of three 230 kV single-core cables (with core and
sheath), buried side by side in horizontal configuration, with alength of 10 km. A unit-step voltage is applied to the
core of phase A, and the cores of phases B and C aswell asal three sheaths are left ungrounded at both ends. The unit-
step function was approximated as a periodic rectangular pulse of 10 ms duration and a period of 20 mswith a Fourier

series containing 500 harmonics,
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500
v(t) = a, + Y {a,cos(wf) + b sin(wr)}
i1

The wave front of this approximation is shownin Fig. 5.28. Choosing a Fourier series
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Fig. 5.28 - Fourier series approximation of unit-step

approximation for the voltage source offered the advantage that exact answers could be found as well, by using ac
steady-state solutions with exact equivalent w-circuits (Section 4.2.1.3) at each of the 500 frequencies, and by
superimposing them. Fig. 5.29 and 5.30 show the EMTP simulation results in the region of the third pulse,

superimposed on the exact answers. The two
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(a) Standard eigenvalue/eigenvector subroutines
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Fig. 527 -
Magnitude of the elements of row 3 of [T;] (same 6-conductor system asin Fig. 5.24)

curves are indistinguishable in this third pulse region where the phenomena have aready become more or less periodic.
This shows that the EMTP cable model is capable of producing highly accurate answers. Theinsert on the right-hand
side of Fig. 5.29 shows the response to thefirst pulse, where the EM TP simulation results differ slightly from the exact
answers, not because of inaccuracies in the model but because the EM TP starts from zero initial conditions while the

exact answer assumes periodic behavior evenfort < 0.
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Fig. 5.29 - Step response, receiving end voltage of core (phase A)
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Fig. 5.30 - Step response, receiving end voltage of sheath (phase A)
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