6. TRANSFORMERS

The first representation of transformers in the EMTP was in the form of branch resistance and inductance
matrices [R] and [L]. The support routine XFORMER was written to produce these matrices from the test data of
single-phase two- and three-winding transformers. Stray capacitances are ignored in these representations, and they
are therefore only valid up to a few kHz.

A star circuit representation for N-winding transformers (called "saturable transformer component” in the

BPA EMTP) was added later, which uses matrices [R] and [L]" with the alternate equation

(L1 [v] = [LITY[R][] + [di/di] 6.1)

in the transient solution. This formulation also became useful when support routines BCTRAN and TRELEG were
developed for inductance and inverse inductance matrix representations of three-phase units. An attempt was made
to extend the star circuit to three-phase units as well, through the addition of a zero-sequence air-return path
reluctance. This model has seldom been used, however, because the zero-sequence reluctance value is difficult to
obtain.

Saturation effects have been modelled by adding extra nonlinear inductance and resistance branches to the
inductance or inverse inductance matrix representations, or in the case of the star circuit, with the built-in nonlinear
magnetizing inductance and iron-core resistance. A nonlinear inductance with hysteresis effects (called "pseudo-
nonlinear hysteretic reactor” in the BPA EMTP) has been developed as well. An accurate representation of
hysteresis and eddy current effects, of skin effect in the coils, and of stray capacitance effects is still difficult at this
time, and some progress in modelling these effects can be expected in the years to come.

Surprisingly, the simplest transformer representation in the form of an "ideal" transformer was the last

model to be added to the EMTP in 1982, as part of a revision to allow for voltage sources between nodes.

6.1 Transformers as Part of Thevenin Equivalent Circuits

If a disturbance occurs on the high side of a step-up transformer, then the network behind that transformer,
plus the transformer itself, is usually representation as a voltage source behind R-L branches. Since the transformer
inductances tend to filter out the high frequencies, such a low-frequency R-L circuit appears to be reasonable.

To explain the derivation of such Thevenin equivalent circuits, the practical example of Fig. 6.1 shall be
used [80], where the feeding network consists of three generators and two three-winding transformers. The
transformer short-circuit reactances are X,; = 0.117 p.u., X,y = 0.115 p.u., X;; = 0.241 p.u., and the generator

reactance is X", = 0.1385 p.u., all based on 100
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SENDING RECEIVING
END 345kV-line END (open)

—fo—of ©

398km

three-winding
transformers

The 4th generator was disconnected
for acceptance testing.

Fig. 6.1 - Network configuration for various field tests at CEMIG, Brazil [80]

MVA at 60 Hz. With the well-known equivalent star circuit for three-winding transformers (see Section 6.3.2), the
power plant in Fig. 6.1 can be represented with the positive and zero sequence networks of Fig. 6.2. For simplicity,
resistances are ignored, but they could easily be included. It is further assumed here that the zero sequence reactance
values of the transformer are the same as the positive sequence values, which is only correct for three-phase banks

built from single phase units, but not quite correct for three-phase units (if the zero sequence values were known,

0.1385

0.1215

Attt llii it

-0.0045

(a) Positive sequence (negative (b) Zero sequence
sequence identical, except that
voltage sources are shorted)
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Fig. 6.2 - Equivalent circuits for the power plant (reactance values in p.u. based

on 100 MVA at 60 Hz)

then those values could of course be used in Fig. 6.2(b)). Furthermore, the generator is modelled as a symmetrical
voltage source E" behind X",. Note that the delta-connected windings act as short-circuits for zero sequence currents

in Fig. 6.2(b), while the generators are disconnected to force I,,, = 0. The zero sequence parameters of the

generators are therefore irrelevant in this example.

The networks of Fig. 6.2 can now be reduced to the three Thevenin equivalent circuits of Fig. 6.3, which
in turn can be converted to one three-phase Thevenin equivalent circuit as shown in Fig. 6.4. This three-phase
circuit is used in the EMTP for the representation of the power plant, with the data usually converted from p.u. to
actual values seen from the 345 kV side (X, = X, = 99.90 Q, X, = 33.17 Q, or X{ = 77.65 Q, X, = -22.25
Q at 60 Hz). The symmetrical voltage sources E,, E,, E_ behind the coupled inductances in Fig. 6.4 are the open-

circuit voltages of the power plant on the 345 kV side. In the transient simulation, the matrix [X] is obviously

replaced by the inductance matrix [L].

0.08393 p.u. 0.08393 p.u.

i i

Fig. 6.3 - Thevenin equivalent circuits in sequence quantities
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0.06524 p.u.
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-0.01869 p.u.
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Fig. 6.4 - Three-phase Thevenin equivalent circuit in phase quantities

6.2 Inductance Matrix Representation of Single-Phase Two- and Three-Winding Transformers

Transformers can only be represented as coupled [R]-[L]-branches if the exciting current is not ignored.

The derivations are fairly simple, and shall be explained with specific examples.
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6.2.1 Two-Winding Transformers
Assume a short-circuit reactance of 10%, short-circuit losses of 0.5%, and an exciting current of 1%, based

on the ratings V Siaing Of the transformer. The excitation losses are ignored, but could be taken into account as

rating

explained in Section 6.6. If the given quantities are Z then the resistance

- 10ad losses P, and power rating S

rating >

and reactance part of the short-circuit impedance are

Rpu - Ploss/S rating (623)
2 2
Xpu = Zpu - Rpu (6.2b)

Since the load losses do not give any information about their distribution between windings 1 and 2, it is best to

assume

1
tpu ~ R2pu = ERpu (6.2¢)

then R, , and R

If the winding resistances are known, and not calculated from P apu

may of course be different,

loss? 1pu

and R, = R, + R, is then used in Eq. (6.2b). With the T-circuit representation found in most textbooks, the p.u.
impedances are then as shown in Fig. 6.5. The short-circuit impedance 0.005 + j0.10 p.u. is divided into two equal
parts, and the magnetizing reactance j99.95 p.u., which is purely imaginary when excitation losses are ignored, is
chosen to give an input impedance of 100 p.u. from one side, with the other side open, to make the exciting current
0.01 p.u. (the resistance 0.0025 p.u. is so small compared to 100 p.u. that it can be ignored in finding the value

799.95). The equations with the branch impedance matrix in p.u. are then

0.0025+30.05 p.u. 0.0025+3j0.05 p.u.

399.95 p.u.

Fig. 6.5 - T-circuit representation of transformer

Vipu| 1]0.0025 0 1100 99.95|| [l
= +J (6.3a)
Vo 0  0.0025 99.95 100 || |1,
for steady-state solutions, or
v, [ di /dt
= [R + [L 6.3b
v, I I 5 di, / dt (6.3b)
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for transient solutions, with [R] being the same matrix as in Eq. (6.3a), and [L] = 1 / w [X]. Most EMTP studies
are done with actual values rather than with p.u. values. In that case, the matrix in Eq. (6.3) must be converted to

actual values, with

L [p-002sv 0 100V} 99.95V,V,
[Z] = + (6.4)
2| Y 2
S rating 0 0.0025 V, 99.95V,V, 100V,
where S, = apparent power rating of transformer,

V., V, = voltage ratings of transformer.

Eq. (6.4) gives the [R] and [X]-matrices of coupled branches in Q, as required by the EMTP, with the correct turns
ratio V,/V,. If all quantities are to be referred to one side, say side 1, then simply set V, = V, in Eq. (6.4).

It is important to realize that the branch impedance matrix [Z] in Eq. (6.4) does not imply that the two
coupled branches be connected as shown in the T-circuit of Fig. 6.5. If it were indeed limited to that connection,
one could not represent a three-phase bank in wye/delta connection, because both sides would always be connected
from node to ground or to some other common node. Instead, [Z] simply represents two coupled coils (Fig. 6.6).
The connections are only defined through node name assignments. For example, if three single-phase transformers
are connected as a three-phase bank with a grounded wye connection on side 1 and a delta connection on side 2, then
the first transformer could have its two coupled branches from node HA to ground and from LA to LB, the second
transformer from HB to ground and LB to LC, and the third transformer from HC to ground and LC to LA. This
connection will also create the correct phase shift automatically (side 2 lagging behind side 1 by 30° for balanced

positive sequence operation in this particular case).

F —)
2
@ 211 %22 (:D
f —
N—
%12

Fig. 6.6 - Two coupled coils

6.2.2 TlI-Conditioning of Inductance Matrix

The four elements in the [X]-matrix of Eq. (6.3) contain basically the information for the exciting current
(magnetizing reactance X, = 100 p.u.), with the short-circuit reactance being represented indirectly through the
small differences between X, and X,,, and between X,, and X,,. If all four values were rounded to one digit behind
the decimal point (X,, = X,, = X,, = 100 p.u.), then the short circuit reactance would be completely lost X" =

0). In most studies, it is the short-circuit reactance rather than the magnetizing reactance, however, which influences

the results. It is therefore important that [X] be calculated and put into the data file with very high accuracy
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(typically with at least 5 or 6 digits), to make certain that the short-circuit reactance

Xshort = X X122 ide 1
=X, - X_zz seen from side 6.5)
is still reasonably accurate. It is highly recommended to calculate X*™" from Eq. (6.5), to check how much it differs
from the original test data. For a transformer with 10% short-circuit reactance and 0.4 % exciting current, the values
of Z,,, Z,,, Z,, would have to be accurate to within +0.001% to achieve an accuracy of +10% for X" This
accuracy problem is one of the reasons why Z,,, Z,,, Z,, cannot be measured directly in tests if this data is to contain
the short-circuit test information besides the excitation test information. Mathematically, [X] is almost singular and
therefore ill-conditioned, the more so the smaller the exciting current is. Experience has shown that the inversion
of [X] inside the EMTP does not cause any problems, as long as very high accuracy is used in the input data.
Problems may appear on low-precision computers, however. The author therefore prefers inverse inductance matrix

representations, as discussed in Section 6.3.

6.2.3 Three-Winding Transformers

The impedance matrix of single-phase three-winding transformers can be obtained in a similar way with the
well-known star circuit used in Fig. 6.2. In that circuit, the magnetizing reactance is usually connected to the star
point, but since its unsaturated value is much larger than the short-circuit reactances, it could be connected to either
the primary, secondary or tertiary side as well. Assuming that the exciting current for the example of Fig. 6.2 is
1% measured from the primary side, with excitation losses ignored, the magnetizing reactance in the star point would

then be 100.0045 p.u. Then

100 100.0045 100.0045
[X] = [100.0045 100.1260 100.0045| p.u. (6.6)
100.0045 100.0045 100.1240

The particular connection would again be established through the node names at both ends of the branches. For
example, the three branches could be connected from node HA to ground, LA to LB, and TA to TB. To convert

Eq. (6.6) to actual values, divide all elements by the power rating S and multiply the first row and column with

rating >
voltage rating V,, the second row and column with V,, and the third row and column with V.

The [R]- and [X]-matrices can either be derived by hand, or they can be obtained from the support routines
XFORMER, BCTRAN, or TRELEG in the BPA version of the EMTP. The latter two support routines were

developed for three-phase units, but can be used for single-phase units as well.

6.3 Inverse Inductance Matrix Representation of Single-Phase Two- and Three-Winding Transformers
If the exciting current is ignored, then the only way to represent transformers is with matrices [R] and [L],
which are handled by the EMTP as described in Section 3.4.2. The author prefers this representation over all others,

because the matrices [R] and [L]! are not ill-conditioned, and because any value of exciting current, including zero,
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can be used. The built-in star circuit in the BPA version of the EMTP uses this representation internally as well.
For three-phase transformers, the conversion of the test data to [R]- and [L]'-matrices is best done with the
support routine BCTRAN. For single-phase units and for three-phase transformers where Z,,,, = Z,,, the conversion

is fairly simple, and can easily be done by hand, as explained next.

6.3.1 Two-Winding Transformers
First separate the short-circuit impedance into its resistance and reactance part with Eq. (6.2). The [R]- and
[wL]!-matrices in p.u. can then be written down by inspection from the equivalent circuit of Fig. 6.5 (after the

magnetizing inductance has been removed),

I
R, 0 X X
put Pt Pt
R]-= and [wL 17! = 6.7
(R,,] 0 R, [wL,] o : 6.7)
Xpu Xpu

The inverse branch reactance matrix [(J.)Lpu]'I is the well-known node admittance matrix of a series branch with p.u.

reactance X,,,. For the example of Fig. 6.5, with exciting current ignored, the p.u. matrices would be

0.0025 0 (oL ] 10 -10 6.8)
= , . = .
b 0 0.0025 b -10 10
The matrices in Eq. (6.7) are converted to actual values with
R V2 0
R] = —— | " | e (6.92)
S rating 0 Rz pit V2
11
S V12 Viv,
[wL] ! = [ in S (6.9b)
X 1 1
pu | — _—
ViV, V22

with S,uing = apparent power rating

V., V, = voltage ratings.
Eq. (6.9) contains the correct turns ratio V,/V,. If all quantities are to be referred to one side, say side 1, then
simply set V, = V, in Eq. (6.9). To obtain [L]", the matrix in Eq. (6.9) is simply multiplied with w.

As already mentioned in Section 3.1.2, the two coupled branches described by Eq. (6.9) can also be

represented as six uncoupled branches. Ignoring the resistances for the sake of this argument, and setting
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produces the steady-state branch equations (3.3) and the alternate representations with uncoupled branches of Fig.
3.3.

6.3.2 Three-Winding Transformers

Separating R and X is more complicated now. Therefore, R shall be ignored in the following explanations.
Resistances can be included, however, if the support routines BCTRAN or TRELEG are used (see Section 6.10.2
and 6.10.3). The starting point is the well-known star circuit of Fig. 6.7. Its reactances are found from the p.u.

short-circuit reactances Xy, Xurpys

Hpu

Tpu

Fig. 6.7 - Star circuit for three-winding
transformer with p.u. values based on voltage
ratings, or with actual values referred to one
side

X 1p,» based on the voltage ratings and one common power base S,,... Since the power transfer ratings Sy; between
H-L, S,;; between H-T, and S, ; between L-T are usually not identical, a power base conversion is usually needed.

If we choose S;,. = 1.0 (in same units as power ratings Sy, , Syr, Sir), then

_1 XHLpu . XHTpu _ XLTPM
Hpu 2 XHL SHT SLT
v o L K, Xpe  Xin (6.10)
e s,, Sur Sur .
X - 1 XHTpu . XLTpu _ XHLpu
7
pu 2 SHT SLT SHL
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For the example used in Section 6.1, with X,;; = 0.117 p.u., Xy = 0.115 p.u., X;; = 0.241 p.u. based on 100

MVA, these star-circuit reactances based on 1 MVA would be

X

Hpu

= -0.000045, X, = 0.001215, X, = 0.001195

Next, the well-known star-delta transformation is used to convert the star-circuit of Fig. 6.7 into the delta

circuit of Fig. 6.8,

B
HLpu

B
LTpu

HTpu

Fig. 6.9 - Delta circuit

which gives us the susceptances’

By = —2 (6.11a)

with  X* = X, X0+ X0 X+ X X (6.11b)

For the numerical example,

By, =889.48, B, =904371, B, = -33.495

HTpu LTpu

Note that the susceptances in Eq. (6.11a) are not the reciprocals of the short-circuit reactances X used in Eq. (6.10).
The p.u. matrix [wL,,]" based on S, = 1.0 is easily obtained from Fig. 6.8 with the rules for nodal admittance

matrices as

"Susceptance" B is used here for the reciprocal of reactance X. This is not strictly correct, because
susceptance is the imaginary part of an admittance (which implies B = -1/X).
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B, .. *B -B -B

HLp HTIpu HLpu HTpu
-1 _ — —
[('oLpu] - BHLpu BHLpu * BLTpu BLTpu (6 12)
B BHTpu B BLTpu BHTpu + BLTpu

or for the numerical example,

1793.855 -889.484 -904.371
[ooLpu]’1 = |-889.484 855.989  33.495 based on 1 MVA
-904.371 33.495  870.876

The matrix [ooLpu]'l in actual values is found as

st row and column of (6.12) multiplied with 1/V,
[(.)L]*l = | 2nd row and column of (6.12) multiplied with 1/V, | in § (6.13)
3rd row and column of (6.12) multiplied with 1/V,.

This matrix will contain the correct turns ratios. If all quantities are to be referred to one side, say side H, then
simply set V, = V; = V;; in Eq. (6.13). Since the p.u. values are based on 1 MVA, the voltages in Eq. (6.13) must
be in kV.

6.4 Matrix Representation of Single-Phase N-Coil Transformers

The newer support routines BCTRAN and TRELEG are not limited to the particular case of two or three
coils, but work for any number of coils. If each winding is represented as only one coil?, then transformers with
more than three coils will seldom be encountered, but if each winding is represented as an assembly of coils, then
transformer models for more than three coils are definitely needed. Breaking one winding up into an assembly of
coils may well be required for yet to be developed high-frequency models with stray capacitances.

To explain the concept, only single-phase N-coil transformers are considered in this section. The extension
to three-phase units is described in Section 6.5. For such an N-coil transformer, the steady-state equations with a

branch impedance matrix [Z] are

%A coil is "an assemblage of successive convolutions of a conductor," whereas a winding is "an assembly of
coils." [76] Since a winding may either be represented as one or as more coils, the more general term "coil" is
used here.
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ZN |

u Zp 1
£ Zy Zy, ... Z)N L

) : (6.14)

V| v Zn

NN _IN_

The matrix in Eq. (6.14) is symmetric. Its elements could theoretically be measured in excitation tests: If coil k is
energized, and all other coils are open-circuited, then the measured values for I, and V,,...V produce column k of

the [Z] matrix,

Z, = VI, (6.15)

Unfortunately, the short-circuit impedances, which describe the more important transfer characteristics of
the transformer, get lost in such excitation measurements, as mentioned in Section 6.2. It is therefore much better

to use the branch admittance matrix formulation

] = Y[V (6.16)

which is the inverse relationship of Eq. (6.14). Even though [Z] becomes infinite for zero exciting current, or ill-
conditioned for very small exciting currents, [Y] does exist, and is in fact the well-known representation of
transformers used in power flow studies. Furthermore, all elements of [Y] can be obtained directly from the standard
short-circuit test data, without having to use any equivalent circuits. This is especially important for N > 3, because
the star-circuit "saturable transformer component” in the BPA EMTP) is incorrect for more than three coils.

For an intermediate step in obtaining [Y], the transfer characteristics between coils are needed. Let these

transfer characteristics be expressed as voltage drops between coil i and the last coil N,

[ _ | reduced reduced reduced 17 ]
V1 VN Zu le e Zl,N—l Il
V.-V reduced reduced reduced L
2N 2 Zy Zy Ny 2
- : 6.17)
\% -V reduced reduced reduced ]
" N-1 TN _ZN—1,1 Zyya e Ly | [N-1]

with [Z™%/] again being symmetric. Since the exciting current has negligible influence on these transfer
characteristics, it is best to ignore the exciting current altogether. Then the sum of the p.u. currents® (based on one

common base power S,,.., and on the transformer voltage ratings of the N coils) must be zero, or

3From here on it is best to work with p.u. quantities, or with quantities referred to one side, to avoid carrying
the turns ratios through all the derivations.
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N
D fp = 0 (6.18)

k=1

The p.u. values of the matrix elements in Eq. (6.17) can then be found directly from the short-circuit test data, as

first shown by Shipley [108]. For a short-circuit test between i and N, only I, , in Eq. (6.17) is nonzero, and Vy

ipu

s = 0. Then the i-th row becomes

v -7z reduced I (6 19)

ipu ii pu ipu

The impedance in this equation is the short-circuit impedance between coils i and N by definition,

reduced _ short
Ziow = Linpu (6.20)

reduced
ik pu

=-L,, and V,

based on one common base power S,,.. The off-diagonal element Z is found by relating rows i and k of Eq.

(6.17) to the short-circuit test between i and k. For this test, I, = 0, with all other currents being

k pu k pu
zero. Then rows i and k become
reduced reduced
Vipu - VNpu = (Zii;:w - Zikepl:tce )1, pu (6.21a)
Vi = (g - el (6.21b)

or after subtracting Eq. (6.21b) from (6.21a), with Z,;®¢ = 7, reduced,

v _ (Zreduced 4 Zkrkezli;lzced - 27 reduced) I ( 621C)

ipu ii pu ik pu i pu

short

By definition, the expression in parentheses of Eq. (6.21c) must be the short-circuit impedance Z, ,,”", or
Zreduced _ 1 (Z short 4 Zshort _ Zslwrt)
ik pu - 5 iN pu kN pu ik pu (622)

based on one common base power S This completes the calculation of the matrix elements of Eq. (6.17) from

base*
the short-circuit test data, which is normally supplied by the manufacturer.
Eq. (6.17) cannot be expanded to include all coils, since all matrix elements would become infinite with the

exciting current being ignored. To get to the admittance matrix formulation (6.16), Eq. (6.17) is first inverted,

[ Yp;educed] = [ Zp’:dufed] -1 (6.23)
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In this inverse relationship, the voltage V ,, of the last coil already exists, and all terms associated with it can be

N pu

collected into a N-th column for V The N-th row is created by taking the negative sum of rows 1,...N-1 based

Nopu*

on Eq. (6.18). This results in the full matrix representation

IlP” Yllpu Y12pu Yleu le“

IZP” 21 pu Y22pu YZNpu 2 pu
= ’ (6.24a)

_IN pu] _YNI pu YNZ pu YNN pu _VN pul

with
Yoo = Yol from Eq. (6.23) for i, k < N-1 (6.24b)
N-1
YiN pu - YNi pu - _kz; YH?)ZZCM fOl’ i*N (4240)
=IN-1
YNNpu - 21: Yinu (624(1)
i

To convert from p.u. to actual values, all elements in Eq. (6.24) are multiplied by the one common base power S,,.,
and each row and column i is multiplied with 1/V,.

For transient studies, the resistance and inductance parts must be separated, in a way similar to that of
Section 6.3. This is best accomplished by building [Z™***?] only from the reactance part of the short-circuit test data,

which is

X =z - R, ¢ R (6.25)

with Zy pus‘“’” = p.u. short circuit impedance (magnitude),

R; ,, + R, ,, = either p.u. load losses in short-circuit test between i and k, or sum of p.u. winding

pu
resistances.

The winding resistances then form a diagonal matrix [R], and
(L] = jwlY) (6.26)

with [Y] being purely built from reactance values jwL. Both [R] and [L]* are used in Eq. (6.1) to represent the N-
coil transformer.

Support routine BCTRAN uses this procedure for obtaining [R] and [L]" from the transformer test data,
with two additional refinements:

a. If the winding resistances are not given, but the load losses in the short-circuit tests are known,

then the resistances can be calculated from Eq. (6.2) for N=2, and from the following three
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equations for N = 3,

_ loss
Rlpu * R2pu - p12pu
_ loss
R2 pu * R3 pu P23 pu (627)
_ loss
Rlpu * R3pu - P13pu

Strictly speaking, Eq. (6.2) and (6.27) are not quite correct, because the load losses contain stray
losses in addition to the I’R-losses, but the results should be reasonable. For transformers with 4
or more coils there is no easy way to find resistances from the load losses, and coil resistances
must be specified as input data if N > 4.
b. Additional branches can be added to represent the exciting current, as described in Section 6.6.
To short derivations for a numerical example, let us first use the two-winding transformer of Fig. 6.5, with
exciting current ignored. The resistance and reactance part is already separated in this case, with R, = 0.005 and
X,, = 0.10. The reduced reactance matrix of Eq. (6.17) is just a scalar in this case, jXPureduced = j0.10, and its

inverse is the reciprocal Ypureduced = -j10. Adding a second row and column with Eq. (6.24) produces

10 -10
Loz, =1
j P j|-10 10
which, together with R, ,, = R, ,, = 0.0025, is the same result shown in Eq. (6.8).

For the example of the three-winding transformer used after Eq. (6.10), the reduced reactance matrix

(without the factor j) is

redicea;, |0-1150 0.1195

(X, = based on 100 MVA
r 0.1195 0.2410

which, after inversion, becomes

17.9386 -8.8948
-8.8948 8.5599

[Y reduced-

o based on 100 MVA

1
J
or after adding the third row and column with Eq. (6.24),

17.93856 -8.89484 -9.04372
vl = l -8.89484 8.55989 0.33495 based on 100 MVA

/ -9.04372 0.33495 8.70877
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which is the same answer as the one given after Eq. (6.12), except for minor round-off errors and for a change in
base power from 1 MVA to 100 MVA. The star-circuit equivalent circuit of a three-winding transformer is therefore

just a special case of the general method for N coils discussed here.

6.5 Matrix Representation of Three-Phase N-Coil Transformers

The first attempt to extend single-phase to three-phase transformer models was the addition of a zero-
sequence reluctance to the equivalent star-circuit ("saturable transformer element” in the BPA EMTP). This was
similar to the approach used on transient network analyzers, where magnetic coupling among the three core legs is
usually modelled with the addition of extra delta-connected winding to a three-phase bank consisting of single-phase
units. To relate the available test data to the data of the added winding is unfortunately difficult, if not impossible.
For example, a two-winding three-phase unit is characterized by only two short-circuit impedances (one from the
positive sequence test, and the other from the zero sequence test). Adding delta-connected windings to single-phase
two-winding transformers would require three short-circuit impedances, however, because this trick converts the
model into a three-winding transformer. Adding extra delta-connected windings becomes even more complicated
for three-phase three-winding units, not only in fitting the model data to the test data, but also because a four-winding
model would be required for which the star-circuit is no longer valid [109]. It was therefore reasonable to develop
another approach, as described here.

The extension from single-phase to three-phase units turned out to be much easier than was originally
thought. Conceptually, each coil of a single-phase units becomes three coils on core legs I, II, III in a three-phase

unit (Fig. 6.9).

II I III II I ITI

(a) Three-legged core (b) Five-legged core (c) Shell-type design
design design

Fig. 6.9 - Three-phase transformers

In terms of equations, this means that each scalar quantity Z or Y must be replaced by a 3 x 3 submatrix of the form
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(6.28)

where Z, is the self impedance of the coil on one leg, and Z,, is the mutual impedance to the coils on the other two

legs*. As in any other three-phase network component (e.g., overhead line), these self and mutual impedances are

related to the positive and zero sequence values,

1
Zs = E (Zzero * 2Zp05)
1
Zm = E(Zzem B Zpos) (6.29)

6.5.1 Procedure for Obtaining [R] and [L]*

By simply replacing scalars by 3 x 3 submatrices of the form (6.28), the [R]- and [L]"-matrix representation

of a three-phase transformer is found as follows:

1.

Set up the resistance matrix [R]. If the winding resistances are known, use them in [R]. If they are to be
calculated from load losses, use Eq. (6.2) for N = 2, or Eq. (6.27) for N = 3. For N > 4, there is no easy
way to calculate the resistances. Use positive sequence test data in these calculations, and assume that the
three corresponding coils on legs I, II, IIT have identical resistances.

Find the short-circuit reactances from Eq. (6.25) for positive sequence values. Use the same equation for
zero sequence values, provided the zero sequence test between two windings does not involve another
winding in delta connection. In the latter case, the data must first be modified according to Section 6.5.2.
Build the reduced reactance matrix [Xpu”d”"ed] from Eq. (6.20) and (6.22), by first calculating the positive
and zero sequence values separately from the positive and zero sequence short-circuit reactances, and by
replacing each diagonal and off-diagonal element by a 3 x 3 submatrix of the form (6.28). The elements
of this matrix are calculated with Eq. (6.29).

Since the 3 x 3 submatrices contain only 2 distinct values X and X,,, it is not necessary to work with 3 x
3 matrices, but only with pairs (X, X,). D. Hedman derived a "balanced-matrix algebra" for the
multiplication, inversion, etc., of such "pairs" [110], which is used in the support routines BCTRAN and

TRELEG.

*From Fig. 6.9 it is evident that the mutual impedance between legs I and II is slightly different from the one

between legs II and III, etc. Data for this unsymmetry is usually not available, and the unsymmetry is therefore
ignored here. To take it into account would require that a three-phase two-winding transformer be modelled as a
six-coil transformer (Section 6.4), with 15 measured short-circuit impedances.
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Invert [X "] to obtain [B,,"“"*'], again using Hedman's "balanced-matrix algebra," and expand [B,, "]
to the full matrix [B,,] with Eq. (6.24).
the inverse inductance matrix [L]" in actual

with o S, / V,V,, where V, and V,

Since the reactances were in p.u. based on one common S, .,

values 1/H is obtained from [B,,] by multiplying each element B

ik pu base

are the voltage ratings of coil i and k. For the conversion of p.u. resistances to actual values in Q, multiply

R, with V2/ S

base*

6.5.2 Modification of Zero-Sequence Data for Delta Connections

The procedure of Section 6.5.1 cannot be used directly for the zero sequence calculation of transformers

with three or more windings if one or more of them are delta-connected. Assume that a three-winding transformer

has wye-connected primary and secondary windings, with their neutrals grounded, and a delta-connected tertiary

winding. In this case, the zero-sequence short-circuit test between the primary and secondary windings will not only

have the secondary winding shorted but the tertiary winding as well, since a closed delta connection provides a short-

circuit path for zero-sequence currents. This special situation can be handled by modifying the short-circuit data for

an open delta so that the procedure of Section 6.5.1 can again be used. With the well-known equivalent star circuit

of Fig. 6.7, the three test values supplied by the manufacturer are ("pu" in the subscript dropped to simplify

notation),

X X

XrlosedA =X LT
HL g 7XL S X, (6.30a)
X, =X, + X, in p.u. values (6.30b)
Xir =X, + Xy (6.30c)

which can be solved for X,;, X;, X;:

Xy = Xyp (X X - X" X, (6.31a)
X =X, - X; + X, in p.u. values (6.31b)
Xr = Xyr - Xy (6.31c)

After this modification, the short-circuit reactances X,; + X, X;; + X; and X; + X are used as input data, with

winding T no longer being shorted in the test between H and L.

The modification scheme becomes more complicated if resistances are included. For instance, Eq. (6.30a)

becomes
R, +jX) (R, +jX
‘Z;IIZSMA‘ _ RH +jXH 4 ( L J L)(.T J T) in p.u. values (632)
(R, +Rp +j(X, + X))

with ‘ZHL“"S“' A‘ being the value supplied by the manufacturer, and Ry, R;, R; being the winding resistances. This
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leads to a system of nonlinear equations, which is solved by Newton's method in the support routine BCTRAN. It
works for three-winding transformers with wye/wye/delta- and with wye/delta/delta- connections so far, which

should cover most practical cases.

6.6 Exciting Current

The exciting current is very much voltage-dependent above the "knee-point" of the saturation curve A =
f(i). Fig. 6.10 shows a typical curve for a modern high-voltage transformer with grain-oriented steel, with the knee-
point around 1.1 to 1.2 times rated flux [114]. The value of the incremental inductance dA/di is fairly low in the
saturated region, and fairly high in the unsaturated region. The exciting current in the unsaturated region can easily
be included in the [L]- or [L]'-representations. Extra nonlinear branches are needed to include saturation effects,

and extra resistance branches to include excitation losses.

AA
pu
Tqu’———,
0.81
0. 49
. el
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 PuU
1
u ON H
-0.4 P 3
-0.8 -

Fig. 6.10 - Typical saturation curve [114]. © 1981
IEEE

6.6.1 Linear (Unsaturated) Exciting Current

For single-phase units and for three-phase units with five-legged core or shell-type design (Fig. 6.9(b) and
(c)), the linear exciting current is very small and can often be ignored. If it is ignored, then the [L]'-matrix
representation described in Section 6.3 to 6.5 must be used. A (small) exciting current must always be included,
however, if [L]-matrices are used, as explained in Section 6.2. For three-phase units with three-legged core design,
the exciting current is fairly high in the zero sequence test (e.g., 100%), and should therefore not be neglected.

The exciting current has an imaginary part, which is the "magnetizing current" flowing through the
magnetizing inductance L. It also has a smaller real part (typically 10% of the imaginary part), which accounts for
excitation losses. These losses are often ignored. They can be modelled reasonably well, however, with a shunt

conductance G,, in parallel with the magnetizing inductance L,,. The p.u. magnetizing conductance is
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P

exc

Gpu = < (6.33)

rating

and the reciprocal of the p.u. magnetizing reactance is

I 2
Xl - J(I) (G} (6.34)

m pu rating

with P, = excitation loss in excitation test,
Ly = magnitude of exciting current in excitation test,
S.ing = power rating, and
Lating = current rating.

To assess the relative magnitudes of G,, and 1/X,,, let us take the values from the example of Section 6.2 as typical
Kgow = 10%, Ry, = 0.5%, I, = 1%). Furthermore, assume that the excitation loss V°G,, at rated voltage is 25%

of the load loss I’Ry, , at rated current (a typical ratio for power transformers). Then G,, , = 0.00125 and I I ating

m pu exc/

= 0.01. The reciprocal of the p.u. magnetizing reactance is therefore close to the value of the p.u. exciting current,

1 Iex C

= (6.35)

m pu rating

with the error being less than 1% in the numerical example.
How to include the linear exciting current in the model depends on whether an [L]!- or [L]-matrix

representation is used, and whether the transformer is a single-phase or a three-phase unit.

6.6.1.1 Single-Phase Transformers
In the [L]-matrix representation, the magnetizing inductance L, will already have been included in the
model. Usually, the T-circuit of Fig. 6.5, or the star circuit of Fig. 6.7 with L connected to star point S, is used

in the derivation of [L]. Since L,, ,, is much larger than L, it could be placed across the terminals of the high,

short pu?
low or tertiary side with equal justification. Alternatively, 2L, ,, could be connected to both high and low side,
which would convert the T-circuit of the two-winding transformer into a m-circuit, or 3L, ,, could be connected to
all 3 sides in the case of a three-winding transformer. The conversion of L,, ,, into actual values is done in the usual
way by using the voltage rating for that side to which the inductance is to be connected. For example, connecting

the p.u. inductance 3L, , to all 3 sides would mean that the actual values of these 3 inductances are

‘m pu
2
VH

H 'm pu
rating
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rating

In the [L]'-matrix representation, the "internal" nodes of the T- or star circuit are not available, and the magnetizing
inductance must therefore be connected across one or all "external” terminals, as discussed above. Connecting it
across side i is the same as adding 1/L, to the i-th diagonal element of [L]". This makes [L]" nonsingular, and it
could therefore be inverted if the user prefers [R]- and [L]-matrices. This inversion option is available in the support
routine BCTRAN, even though this writer prefers to work with [L]"' because [L] is more or less ill-conditioned as
discussed in Section 6.2.2.

While L, does not create extra branches, but "disappears" instead into the [L]- or [L]'-matrix, one or more
extra resistance branches are needed to model excitation losses with G, ,, from Eq. (6.33). Again, G, ,, can either
be added to one side, or 1/2 G, ,, to both sides of a two-winding transformer and 1/3 G,, ,, to all three sides of a
three-winding transformer. The conversion to actual values is again straightforward, and R, = 1/G,, is then used

as input data for the extra resistance branch.

6.6.1.2 Three-Phase Transformers
The inclusion of the linear exciting current for three-phase units is basically the same as for single-phase
units, except that G, and 1/X, from Eq. (6.33) and (6.34) are now calculated twice, from the positive as well as

from the zero sequence excitation test data. The reciprocals of the two magnetizing inductances,

B pos - I/mepos ’ Bzero - 1/mezero
are converted to a 3 x 3 matrix
BS Bﬂl Bm
Bm BS Bm
Bm Bﬂl BS
where
B -L@®. 2B
s 5( zero * pos)
1
Bm - g (Bzero B Bpos) (6.36)

which is added to the 3 x 3 diagonal block in [L] "’ of the high, low, or some other side. Alternatively, 1/N-times
the p.u. 3 x 3 matrix could be added to the 3 x 3 diagonal blocks of all sides of an N-winding transformer, after

conversion to actual values with the proper voltage ratings. After these additions, [L]" becomes nonsingular and
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can therefore be inverted for users who prefer [L]-matrices. Support routine TRELEG builds an [L]-matrix directly
from both the short-circuit and excitation test data, as briefly described in Section 6.10.3.
To include excitation losses, three coupled resistance branches must be added across the terminals of one

side. The diagonal and off-diagonal elements of this resistance matrix are

! - ! 6.37
G G ( . )

The excitation test for the positive sequence is straightforward, and the data is usually readily available.
Some precautions are necessary with the zero sequence test data, if it is available, or reasonable assumptions must
be made if unavailable.

If the transformer has delta-connected windings, the delta connections should be opened for the zero
sequence excitation test. Otherwise, the test really becomes a short-circuit test between the excited winding and the
delta-connected winding. On the other hand, if the delta is always closed in operation, any reasonable value can be
used for the zero sequence exciting current (e.g., equal to positive sequence exciting current), because its influence
is unlikely to show up with the delta-connected winding providing a short-circuit path for zero sequence currents.

If the zero sequence exciting current is not given by the manufacturer, a reasonable value can be found as
follows: Imagine that one leg of the transformer (A in Fig. 6.11) is excited, and estimate from physical reasoning
how much voltage will be induced in the corresponding coils of the other two legs (B and C in Fig. 6.11). For the
three-legged core design of Fig. 6.11, approximately one half of flux A, returns through phases B and C, which
means that the induced voltages V, and V. will be close to 0.5 V, (with reversed polarity). If k is used for this
factor 0.5, then

Iexcfzero 1 +k

- = 1 - 2k (6.38)
exc-pos
approx
+
r-
[}
'
U
VB ‘——l b
o~
]
L -
B

Fig. 6.11 - Fluxes in three-legged core-type design
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Eq. (6.38) is derived from

=Z]1, (6.392)

Vy=Ve=2,1, (6.39b)

with Z,, Z_, being the self and mutual magnetizing impedances of the three excited coils. With

Z zZ, 6 -Z
Vp = Vo= -V, = —==——=V, = -kV, (6.40)
ZS ZZEI'U * ZZPUS
and Z,, Z,,, inversely proportional to L. e Lexczeror EQ. (6.38) follows. Obviously, k cannot be exactly 0.5,

because this would lead to an infinite zero sequence exciting current. A reasonable value for | in a three-legged

€XC-zero

core design might be 100%. If I were 0.5%, k would become 0.49626, which comes close to the theoretical

exc-pos
limit of 0.5. Exciting the winding on one leg with 100 kV would then induce voltages of 49.6 kV (with reversed
polarity) in the windings of the other two legs.

For the five-legged core-type design of Fig. 6.9(b), maybe 2/3 of approximately (1/2)A, would return
through legs B and C. In that case, k would be 1/3, or L sero/Iexcpos = 4-

The excitation loss in the zero sequence test is higher than in the positive sequence test, because the fluxes
Aas Ag, Ac in the three cores are now equal, and in the case of a three-legged core-type design must therefore return
through air and tank, with additional eddy-current losses in the tank. Neither the value of the zero sequence exciting
current nor the value of the zero sequence excitation loss are critical if the transformer has delta-connected windings,
because excitation tests really become short-circuit tests in such cases.

The modification of [L]"' for magnetizing currents and the addition of resistance branches for excitation
losses create a model which reproduces the original test data very well. Table 6.1 compares the test data, which was
used to create the model with the support routine BCTRAN, with steady-state EMTP solutions in which this model
was used to simulate the test conditions (e.g., voltage sources were connected to one side, and another side was
shorted, to simulate a short-circuit test). In this case, the three winding resistances were specified as input data, and
an [L]-matrix with 10-digit accuracy was used to minimize the problem of ill-conditioning. The excitation data was
specified as being measured from the primary side, but 1/L, and shunt conductance G,, were placed across the
tertiary side, for reasons explained in Section 6.6.2. BCTRAN modifies L, and R, in this situation, to account for
the influence of the short-circuit impedance between the primary and tertiary side. For the zero sequence short-

circuit impedance between the primary and secondary side, the modifications of Section 6.5.2 were applied to

account for the effect of the delta-connected tertiary winding.

Table 6.1 - Data for three-phase three-winding transformer in Yyd-connection

TYPE OF TEST TEST DATA SIMULATION RESULTS
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pos. sequence exciting current (%) 0.428 0.4281 (in phase A)
excitation test 0.4280 (in phase B)
0.4230 (in phase C)

excitation loss (kW) 135.73 135.731
Zero sequence exciting current (%) 0.428 0.4280 in all phases
excitation test” o

excitation loss (kW) 135.73 135.731
short-circuit test 8.74 8.740

impedances, with | Z;, (%) (300)
three-plane MVA

base in paren- pos 8.68 8.680

thesis Z; (%) (76)
pos 5.31 5.310
Zy (%) (76)
7.343194™7 7.34318
Z, (%) (300)
Jero 26.258183™" 26.25806
Z; (%) (300)
zer0 18.552824™ 18.55284
Zy; (%) (300)

*) With open delta on side 3 (values were unavailable from test; since they are unimportant if delta is closed

in operation, as explained in text, the positive sequence values were used for zero sequence as well).

#k) With closed delta on side 3.

**%)  These values were calculated from the original test data given as R and X in percent with an accuracy of
2 digits after the decimal point.

6.6.2 Saturation Effects

For the transient analysis of inrush currents, of ferroresonance and of similar phenomena it is clearly
necessary to include saturation effects. Only the star circuit representation in the BPA EMTP ("saturable transformer
component") accepts the saturation curve directly, while the [L]- and [L]'-representations require extra nonlinear
inductance branches for the simulation of saturation effects.

Nonlinear inductances of the form of Fig. 6.10 can often be modelled with sufficient accuracy as two-slope
piecewise linear inductances. Fig. 6.12 shows two- and five-slope piecewise linear representations from a practical
case [80] for the system shown before in Fig. 6.1. The simulation results (Fig. 6.13) are almost identical, and agree
reasonably well with field test results (Fig. 6.14). The slope in the saturated region above the knee is the air-core
inductance, which is almost linear and fairly low compared with the slope in the unsaturated region. Typical values
for air-core inductances are 2L, ., (L, = short-circuit inductance) for two-winding transformers with separate
windings [111], or 4 to 5 times L, for autotransformers. In the unsaturated region, the values can be fairly high
on very large transformers (see Fig. 6.10).

While it makes little difference to which terminal the unsaturated inductance is connected,
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Fig. 6.12 - Two-slope and five-slope piecewise linear inductance
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Fig. 6.14 - Comparison between simulation and field test results

it may make a difference for the saturated inductance, because of its low value. Ideally, the nonlinear inductance
should be connected to a point in the equivalent circuit where the integrated voltage is equal to the iron-core flux.
To identify that point is not easy, however, and requires construction details not normally available to the system
analyst. For cylindrical coil construction, it can be assumed that the flux in the winding closest to the core will
mostly go through the core, since there should be very little leakage. This winding is usually the tertiary winding
in three-winding transformers, and in such cases it is therefore best to connect the nonlinear inductance across the
tertiary terminals. Fig. 6.15 shows the star circuit derived by Schlosser [112] for a transformer with three cylindrical
windings (T closest to core, H farthest from core, L in between), where the integrated voltage in point A is equal
to the flux in the iron-core. The reactances of -0.58 Q between A and T is normally not known, but it is so small
compared to 7.12 Q between S and T, that the nonlinear inductance can be connected to T instead of A, with little
error. Fig. 6.15 also identifies a point B at which the integrated voltage is equal to yoke flux. Zikherman [113]
suggests to connect another nonlinear inductance to that point B to represent yoke saturation. Since -4.9 Q between
H and B is small compared to 22 Q between H and S, this second nonlinear inductance could probably be connected

to H without too much error. The knee-point and the slope in the saturated region of this second nonlinear
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Fig. 6.15 - Reactances (in Q) of a three-winding transformer
(from [112], which provides the data for 5 cylindrical
windings; the two windings farthest from the core are
ignored here)

inductance are higher than those of the first nonlinear inductance (Fig. 6.16). Since it is already difficult to obtain
saturation curves for the core, this secondary effect of yoke saturation is usually ignored. Dick and Watson [114]
came to similar conclusions about the proper placement of the nonlinear inductance when they measured saturation
curves on a three-winding transformer. Table 6.2 compares the air-core inductance (= slope in saturated region)
obtained from laboratory tests with values obtained from the star circuit® if the nonlinear inductance is connected to
the tertiary T, or to the star point S. The authors also show a more accurate equivalent circuit which would be useful
if yoke saturation or unsymmetries in the three core legs are to be included. If L is connected to T, then the
differences are less than +5%, whereas the differences become very large for the connection to S. Unfortunately,
the built-in saturation curve in the BPA star-circuit representation ("saturable transformer component") is always
connected to the star point. This model could become more useful if the code were changed so that L, could be

connected to any terminal.

This star circuit also had a zero sequence inductance of 1.33 p.u. connected to the high side (see Section
6.6.2.2).
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Fig. 6.16 - Nonlinear inductances connected to H (yoke saturation)
and L (core saturation) of a two-winding transformer. Reprinted
with permission from [113], Copyright 1972, Pergamon Journals Ltd

The proper placement of the nonlinear inductance may or may not be important, depending on the
circumstances. For example, if the transformer of Table 6.2 with L in S were energized from the high side, then
the amplitude of the inrush current would be correct. If it were energized from the tertiary side, however, then the
amplitude of the inrush current would be 56% too low for high levels of saturation®. If details of the transformer
construction are not known, then it is not easy to decide where to place L . In the example of Fig. 6.12-6.14, no
construction details were known, and L, was simply placed across the high voltage terminals. In spite of this,

simulation results came reasonably close to field test results.

6.6.2.1 Single-Phase Transformers

If the [L]'-model of Section 6.3 or 6.4 is used without the corrections for linear exciting current described
in Section 6.6.1, then the nonlinear inductance is simply added across the winding closest to the core. If the [L]-
model of Section 6.2 is used, or if [L]" has already been corrected for the linear exciting current, then a modified
nonlinear inductance must be added in which the unsaturated part has been subtracted out (Fig. 6.17). This modified

nonlinear inductance has an infinite slope below the knee-point.

Table 6.2 - Comparison between measured and calculated air-core inductances. © 1981 IEEE

air-core inductance (p.u.)

excited flux measured calculated error calculated error
winding at ” test with L_in T (%) with L_ in S (%)

SInrush current approximately proportional to 1/L,;. .. for flux above knee-point if unsaturated L, > > L,

core*
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H H 0.198 0.207 +4.5 0.198 0.0
L 0.124 0.129 +4.0 0.120 -3.2
T 0.076 0.076 0.0 0.120 +58.0
L H 0.127 0.129 +1.6 0.120 -5.5
L 0.131 0.125 -4.8 0.116 -11.0
T 0.078 0.076 -2.6 0.120 +54.0
T H 0.076 0.076 0.0 0.120 +58.0
L 0.076 0.076 0.0 0.120 +58.0
T 0.076 0.076 0.0 0.173 +128.0

“Measured by integrating the voltage at that terminal. The measured short-circuit inductances were L, = 0.0738
p-u., Ly = 0.1305 p.u., L;; = 0.0493 p.u., which produces the star-circuit inductances of L,; = 0.0775 p.u., L,
= -0.0037 p.u., L; = 0.0530 p.u.

6.6.2.2 Three-Phase Transformers

Usually only the positive sequence saturation curve (or the saturation curve for one core leg) is known.
Then it is best to connect the same nonlinear inductance across each one of the three phases (e.g., across the tertiary
terminals TA-TB, TB-TC, TC-TA). This implies that the zero sequence values are the same as the positive sequence
values, which is probably a reasonable assumption for the five-legged core and shell-type construction.

For the three-legged core design, the zero sequence flux returns outside the windings through an air gap,
structural steel and the tank. Fig. 6.18 shows the measured zero sequence magnetization curve for the transformer
described in Table 6.2 [114]. Because of the air gap, this curve is not nearly as nonlinear as the core saturation
curve of Fig. 6.10. It is therefore reasonable to approximate it as a linear magnetizing inductance. In [114] it is
shown that this zero sequence magnetizing inductance should be connected to the high side. With the [L]'-model,

= 1/L

Zero

in Eq. (6.36), and by adding the 3 x 3 matrix with

Zero

this is accomplished by setting B,,,; = 0 and using B
B, = B,, = B, /3 to the 3 x 3 diagonal block of the high side’. This "buries" the zero sequence magnetizing
inductance in [L]"'. The positive sequence (core leg) nonlinear inductance (Fig. 6.10 for the example taken from

[114]) can then again be added across each one of the phases.

'By setting B, = 0, [L]" will remain singular. This causes no problems if the inverse inductance is used.
Users who prefer [L]-matrices would have to add another 3 x 3 matrix with B, = 2B /3 and B,, = -B,,,/3 to one
of the sides, with B,,; = 1/L,,;, where L is the linear (unsaturated) positive sequence magnetizing inductance.
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Fig. 6.18 - Zero sequence magnetization curve [114]. © 1981 IEEE

6.6.3 Hysteresis and Eddy Current Losses

The excitation losses obtained from the excitation test are mostly iron-core losses, because the I’R-losses
are comparatively small for the low values of the exciting current. These iron-core losses are sometimes ignored,
but they can easily be approximated with the linear shunt conductance of G,, of Eq. (6.33).

A linear shunt conductance G,, cannot represent the iron-core losses completely accurately. These losses

consist of two parts,

Pironfcore =P hysteresis + P eddy current (641)

namely of hysteresis losses P ... and of eddy current losses Py curen-  In the excitation tests, these two parts
cannot be separated, and only the sum P, .. is obtained. Before discussing more accurate representations, it is
useful to have some idea about the ratio between the two parts. Ref. [51], which may be somewhat outdated, gives

ratios of

hysteresis/ P eddy current =3 f or silicon steel
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nsieresis! Eeddy currens = 213 Jor grain-oriented steel

while a more recent reference [125] quotes a typical ratio of 1/3. On modern transformers, hysteresis losses are
therefore much less important than they used to be before the introduction of grain-oriented steel.

It is generally agreed that eddy current losses are proportional to A* and to f* [51], at least in the low-
frequency range, which seems to change to ' in the high-frequency range because of skin effect in the laminations.
Frequency-dependent eddy current representations were discussed in [115], where R, is replaced by a number of
parallel R-L branches. It is doubtful whether this sophistication is needed, however, because the reduction caused
by a proportionality change from f* to f'-* at high frequencies is probably offset by other types of loss increases (e.g.,
by increases in coil resistance due to skin effect, etc.). At any rate, laboratory tests would first have to be done to
verify the correctness of the frequency dependence proposed in [115]. In such tests it may be difficult to separate
eddy current and hysteresis losses. If we accept a proportionality with A* and 12, then a constant resistance R, does

model these losses very well, because P = Vpua /R, and Vyy® = @*A%y, for sinusoidal excitation.

eddy current

Hysteresis losses are a nonlinear function of flux and frequency,

Physteresis - k()h)a ) (f)b (642)

In [51], a is said to be close to 3 for grain-oriented steel, and b = 1. In[116],a =2.7andb = 1.5. Ifa=b =
2 were used, then the sum of hysteresis and eddy current losses could be modelled by the constant resistance R, or
conductance G,, of Eq. (6.33). This is a reasonable first approximation [125], especially if one considers that
hysteresis losses are only 25% of the total iron-core losses in transformers with grain-oriented steel. Fig. 6.19(a)
shows the nonlinear inductance of a current transformer, which was used by C. Taylor to duplicate field test results
in a case where the secondary current was distorted by saturation effects [117]. Fig. 6.19(b) shows A as a function
of the exciting current in the transient simulation, if iron-core losses are modelled with a constant resistance R, =
80 Q. It can be seen that R, not only creates the typical shape of a normal magnetization curve (with lower dA/di

coming out of the origin, compared to A = f(i) in Fig. 6.19(a)), but also creates minor loops with reasonable shapes.
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Fig. 6.19 - Saturation in current transformer [117]. Reprinted by permission of
C.W. Taylor

If the flux-current loop® for sinusoidal excitation is available, then R, can also be calculated from

v
R = —

m A (6.43)
as an alternative to Eq. (6.33), with Ai being half of the horizontal width of the loop at A = 0 (Fig. 6.20), and v =

WA Eq. (6.43) is derived from realizing that at A = 0 all the current must flow through the parallel resistance

R,, and that the voltage reaches its peak value wA,,, at A = 0 because of the 90° phase shift between voltage and
flux.

If more values of Ai are used at various points along the A-axis, together with the corresponding values for
v = dA/dt, then a resistance R,, can be constructed which becomes nonlinear. This parallel combination of nonlinear
resistance and nonlinear inductance has been proposed by L.O. Chua and K.A. Stromsmoe [118] to model flux-
current loops caused by hysteresis and eddy current effects. They give convincing arguments why this representation
is reasonable. In particular, they did make comparisons between simulations and laboratory tests, not only for a
small audio output transformer with laminated silicon steel, but for a supermalloy core inductor as well. Fig. 6.21

shows the nonlinear inductances and resistances for this audio output transformer [118]. Fig. 6.22 compares the

laboratory test results with simulation results [118] (first row laboratory results, second row simulation results). Fig.

8The author is reluctant to call it "hysteresis loop" because the losses associated with this loop are the sum of
hysteresis and eddy current losses, with the latter actually being the larger part in transformers with grain-
oriented steel.

6-31



6.22(a) is a family of flux-current loops for 60 Hz sinusoidal flux linkage of various amplitudes. Fig. 6.22(b) shows
two loops, one with a sinusoidal flux linkage and the second with a sinusoidal current. Fig. 6.22(c) is a family of
loops obtained at 60 Hz for various amplitudes of sinusoidal current. Fig. 6.22(d) shows a family of loops for
sinusoidal flux linkages at 60, 120, and 180 Hz. In all cases, the agreement between measurements and simulation
results is excellent. The minor loops in Fig. 6.22(e) were obtained with a 60 Hz sinusoidal current superimposed

on a dc bias current. Again, there appears to be excellent agreement.

Al i—

Fig. 6.20 - Flux-current loop

The major drawback of this core-loss representation with a linear or nonlinear resistance is its inability to
produce the correct residual flux when the transformer is switched off. This was one of the motivations for the
development of more sophisticated hysteresis models, but even these models do not seem to produce the residual flux
very accurately. This writer believes that there are no models available at this time which can predict residual fluxes
reliably, and that reasonable assumptions should therefore be made. There is no difficulty with the linear or
nonlinear R -representation in starting a transient simulation with a residual flux if its value is provided as input data,

as explained in Section 6.6.4.
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Fig. 6.21 - Model for exciting current with parallel, nonlinear resistances and inductances
[118]. © 1970 IEEE

The more sophisticated models mentioned above use pre-defined trajectories or "templates” in the A, i-plane
to decide in which direction the curve will move if the flux either increases or decreases [114, 119]. The technique
of [119] has been implemented in the BPA-EMTP ("pseudolinear hysteretic reactor") but a careful comparison with
the simpler R -representations (either linear or nonlinear) has not yet been done. More research may be needed
before reliable hysteresis models become available. Such models may be based on the duality between magnetic and
electric circuits, which would then require the dimensions of the iron-core as input data [121], or they may be based

on the physics of magnetic materials [120].
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Fig. 6.22 - Comparison between measured and simulated flux-current loops [118]. © 1970 IEEE

6.6.4 Residual Flux

Residual flux is the flux which remains in the iron core after the transformer is switched off®. It has a major
influence on the magnitude of inrush currents. Starting an EMTP simulation from a known residual flux is relatively
easy, with simple as well as with sophisticated hysteresis models. To find the residual flux from a simulation is more
complicated, and the results still seem to be unreliable at this time, even with sophisticated hysteresis models. Until
this situation improves, it might be best to use a typical value for the residual flux as part of the input data.
Unfortunately, not much data is available on residual flux. A recent survey by CIGRE [122] has not added much
to it either, except for the quotation of 2 maximum values of 0.75 and 0.90 p.u. This survey does contain a
reasonable amount of information about values of air-core inductances and saturation curves, however.

The UBC version of the EMTP starts the simulation from a nonzero residual flux with the following

approach, in connection with piecewise linear inductances'® (see also Section 12.1.3): At t = 0, the starting point

A lies at A

Tesidu:

. and i = 0, and the simulation moves along a slope of L, (unsaturated value), as shown in Fig. 6.23.

The slope is changed to L, (saturated value) in point B as soon as A > A At the same time, a value A, is

knee*

calculated which will bring the characteristic back through the origin when the slope is changed back to L, as soon

as A < A Thereafter, the normal A/i-curve will be followed. More details, in particular the problem of

switch*
overshoot (A slightly larger than A, .. when going into saturation), are discussed in Section 12.1.3.3. For typical
saturation curves, such as the one shown in Fig. 6.10, the linear slope is almost infinite; in that case, the first move

into saturation practically lies on the given A/i-curve, rather than somewhat higher as in Fig. 6.23.

There seems to be some confusion in terminology between "residual" and "remanent” flux. It appears that
remanent flux is the flux value at i = 0 in the hysteresis curve under the assumption of sinusoidal excitation.

In the BPA version, this branch type has been generalized from 2 to n slopes ("pseudolinear inductor"), but
it appears that is no longer accepts residual flux as input data.
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Fig. 6.23 - Starting from residual flux

The simple hysteresis model of a nonlinear L in parallel with a resistance R, cannot be used to predict the
residual flux after the transformer is switched off. The energy stored in L will simply be dissipated in R, in this
model, with an exponential decay in current and flux to zero values. The flux value at the instant of switching could
possibly be close to the residual flux, but this has never been checked. Also, this value would only be meaningful

if the transformer is switched off by itself, without lines or other equipment connected to it.

6.7 Autotransformers

If an autotransformer is treated the same way as a regular transformer, that is, if the details of the internal
connections are ignored, the models discussed here will probably produce reasonably accurate results, except at very
low frequencies. At dc, the voltage ratio between the low and high side of a full-winding transformer will be zero,
whereas the voltage ratio of the autotransformer of Fig. 6.24 becomes R;/R, (dc voltage divider effect).

For a more accurate representation, series winding I and common winding II should be used as building
blocks, in place of high side H and low side L. This requires a re-definition of the short-circuit data in terms of
windings I and II. Since most autotransformers have a tertiary winding, this winding T shall be included in the re-
definition.

First, the voltage ratings are
Vi=Vu-V,

v, -V, (6.44)

The test between H and L provides the required data for the test between I and II directly, since II is shorted
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and since the voltage applied to H is actually applied to I (b and c are at the same potential through the short-circuit

connection). Only the voltage ratings are different, and the conversion from H to I is simply

1% 2
zZ =7 | —2 in p.u. values
111 HL[ V- V] p (6.45)

H L

No modifications are needed for the test between II and III,

Zyy = 2y in p.u. values (6.46)

T = III

Fig. 6.24 - Autotransformer with tertiary winding

For the test between H and T, the modification can best be explained in terms of the equivalent star-circuit of Fig.
6.7, with the impedances being Z,, Z,;, Z;;;, based on V,, V,;, V|; in this case. With III short-circuited, 1 p.u. current
(based on Vy;; = V) will flow through Z;;;. This current will also flow through I and IT as 1 p.u. based on Vy, or

converted to bases V|, V;, [, = (V- V))/V, and I;; = V,/V,. With these currents, the p.u. voltages become

vV, -V .
V, = Z[% + Zy, in p.u. values (6.47)
H
4 .
vV, = 2117L + Z,, in p.u. values (6.48)
H

Converting V; and V; to physical units by multiplying Eq. (6.47) with (Vy - V,) and Eq. (6.48) with V,, adding

them, and converting the sum back to a p.u. value based on V,, produces the measured p.u. value

VH_VL)2 L 7
1

H

2
+ Z,, in p.u. values (6.49)

Vi

Vv

Zyr = Z, [
H

Egs. (6.45), (6.46) and (6.49) can be solved for Z,, Z,,, Z,; since Z,, = Z, + Zyand Z;, ,,, = Z;; + Zy,,
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Z Z ViV V4 Vi Z YL j 1
= + - Z,——=— in p.u. values
1111 HL W, V) HT V.-V, LT V.-V, p (6.50)

The autotransformer of Fig. 6.24 can therefore be treated as a transformer with 3 windings I, II, IIT by
simply re-defining the short-circuit impedances with Egs. (6.45), (6.46) and (6.50). This must be done for the
positive sequence tests as well as for the zero sequence tests. If the transformer has a closed delta, then the zero

sequence data must be further modified as explained in Section 6.5.2, after the re-definition of the short-circuit data.

6.8 Ideal Transformer

An ideal transformer was not added to the BPA EMTP until 1982. The ideal transformer has no impedances

and simply changes voltages and current from side 1 to side 2 (Fig. 6.25) as follows:

Vi 1, i
— == — =n (6.51)
v, n i
i i
k 1 1l :n 2 Jj
o~ o
1
vy V2
m O —0 ¢

Fig. 6.25 - Ideal transformer

It is handled in the system of nodal equations (1.8a) or (1.20) by treating current i, as a variable, and by adding the

equation

nv, - nv, - (vj -vy) =0 (6.52)

The matrix of the augmented system of equations, with an extra column for variable i,, and an extra row for Eq.

(6.52), then has the form of Fig. 6.26.
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Fig. 6.26 - Augmented [G]-matrix

The ideal transformer can also be simulated with 8 resistance branches and one extra node "extra," as shown in Fig.
6.27, because these branches augment the matrix in the same way as shown in Fig. 6.26. In both approaches it is
important that node "extra" (or Eq. (6.52)) is eliminated after nodes k, m, j, &, to assure that the diagonal element

becomes nonzero during the elimination process.

Fig. 6.27 - Resistance modelling of ideal transformer

If the transformer is unloaded (i, = 0), the elimination process will fail with a zero diagonal element. The
UBC version would stop in that case with an appropriate error message, while the BPA version will first print a

warning, and then continue after automatic connection of a very large resistance to the node where the zero diagonal
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element has been encountered. This problem is related to the treatment of floating subnetworks (see next Section

6.9).

6.9 Floating Delta Connections

Most transmission autotransformers have delta-connected tertiary windings for the suppression of third
harmonics. Frequently, nothing is connected to such tertiary windings. In that case, and in similar cases, the delta
windings have floating potential with respect to ground (Fig. 6.28): only the voltages across the windings a-b, b-c,
c-a are defined, but not the voltages in a, b, or ¢ with respect to ground. Since the EMTP solves for node voltages
with respect to ground, the Gauss elimination will fail with a zero diagonal element.

a

Fig. 6.28 - Floating delta
connection

To prevent the solution algorithm from failing, one can either ground one of the nodes (e.g., node a), or
connect stray capacitances or large shunt resistances to one or all 3 nodes. Connecting identical branches to each
of the 3 nodes has the "cosmetic" advantage that the voltages in a, b, ¢ will be symmetrical, rather than one of them
being zero. The BPA version connects a large shunt resistance automatically, with an appropriate warning, whenever
a zero or near-zero diagonal element is encountered. For example, if the zero diagonal is encountered at node c,

then a large resistance will be connected from c to ground which will make v, = 0.

6.10 Description of Support Routines and Saturable Transformer Component

Except for the "Saturable Transformer Component" in the BPA EMTP, which is an input option specifically
for transformers, all other transformer representations discussed here use the general branch input option for -
circuits (with C = 0), and possibly additional linear or nonlinear, uncoupled resistance and inductance branches for
the representation of the exciting current. There are three support routines XFORMER, TRELEG, and BCTRAN,
which convert the transformer data into impedance or admittance matrices, as well as a support routine CONVERT
for the conversion of saturation curves Vyys = f(Izys) into A = f(i). These support routines, as well as the built-in

saturable transformer component, are briefly described here.
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6.10.1 Support Routine XFORMER
This support routine for single-phase transformers is somewhat obsolete, and has been superseded by
support routine BCTRAN. For two-winding transformers, it uses essentially the approach of Section 6.3.1 to form

an admittance matrix

FRNY
Z Z

B ‘pu ‘pu
W=l
Zpu Zpu

without first separating R and L as in Eq. (6.7). One half of 1/ jX, , from Eq. (6.35) is then added to Y, ,, and

m pu
Y2 > Which makes the matrix nonsingular. After its inversion, and conversion from p.u. to actual values, the 2 x
2 branch impedance matrix is obtained. By not separating R and L, this impedance matrix has nonzero off-diagonal
resistances, which would produce wrong results at extremely low frequencies when the magnitude of R becomes
comparable with the magnitude of wL (in one particular example, R = wL at f = 0.002 Hz). At dc, an off-diagonal
resistance would imply a nonzero induced voltage in the secondary winding, which should really be zero in a full-
winding transformer.

For three-winding transformers, the approach of Section 6.3.2 is used. First, the impedances of the
equivalent star circuit are found with Eq. (6.10), which is then converted to the delta circuit with Eq. (6.11) to obtain
the 3 x 3 admittance matrix [Y,,] of Eq. (6.12). Again, there is no separation between R and L, and complex

impedances Z are used in place of X in all these equations. One third of 1 / jX, , from Eq. (6.35) is then added to

m pu
Y1 pur Yoo, and Y35, followed by matrix inversion and conversion to actual values. Again, nonzero off-diagonal
resistances will appear in the branch impedance matrix, as already discussed for the two-winding transformer.
Except for errors at extremely low frequencies, which is caused by not separating R and L, the model
produced by XFORMER is useful if the precautions for ill-conditioned matrices discussed in Section 6.2.2 are

observed.

6.10.2 Support Routine BCTRAN
This support routine works for any number of windings, and for single-phase as well as for three-phase
units. It uses the approach of Section 6.4 and 6.5 to produce the [R] and [L]'-matrices of coupled branches.
BCTRAN has an option for inductance matrices [L] as well, in cases where the exciting current is nonzero. Because
of the ill-conditioning problem (Section 6.2.2), the author prefers to work with [L]" instead of [L], however.
Impedance matrices produced by BCTRAN and XFORMER differ mainly in the existence of off-diagonal
resistance values in the latter case, which should make the model from BCTRAN more accurate than that from

XFORMER at very low frequencies.

6.10.3 Support Routine TRELEG

This support routine was developed by V. Brandwajn at Ontario Hydro, concurrently with the development

6-40



of BCTRAN at UBC. It builds the impedance matrix (6.14) of N-winding single-phase or three-phase transformers
directly from short-circuit and excitation test data, without going through the reduced impedance matrix described
in Section 6.4. The exciting current must always be nonzero, and for very small values of exciting current, the
matrices are subject to the ill-conditioning problem described in Section 6.2.2.

Recall that Eq. (6.14) is valid for three-phase transformers as well, if each element is replaced by 3 x 3

submatrix as discussed in Section 6.5. With this in mind, the imaginary parts of the diagonal element pairs (X

s-ii 2
X..;i) of the excited winding "i" are first calculated from the current of the positive and zero sequence excitation tests.
If excitation losses are ignored, then X;; in per unit is simply the reciprocal of the per-unit exciting current. With
positive and zero sequence values thus known, the pair of self and mutual reactances is found from Eq. (6.29). For
the other windings, it is reasonable to assume that the p.u. reactances are practically the same as for winding "i,"
since these open-circuit reactances are much larger than the short-circuit impedances. This will produce the
imaginary parts of the other diagonal elements''. The real part of each diagonal element is the resistance of the
particular winding.

With the diagonal element pairs known, the off-diagonal element pairs (Z_,, Z,, ;) are calculated from Eq.

(6.5), except that real values X are replaced by complex values Z,

i = &y - Zﬂihm) Zy (6.53)

These impedances are first calculated for positive and zero sequence, and then converted to self and mutual
impedances with Eq. (6.29).

As pointed out in Section 6.2.2, the elements of [Z] must be calculated with high accuracy; otherwise, the
short-circuit impedances get lost in the open-circuit impedances. The lower the exciting current is, the more equal
the p.u. impedances Z;, Z,, and Z, become among themselves in Eq. (6.5). Experience has shown that the positive
sequence exciting current should not be much smaller than 1% for a single-precision solution on a UNIVAC
computer (word length of 36 bits) to avoid numerical problems. On computers with higher precision, the value could
obviously be lower. On large, modern transformers, exciting currents of less than 1% are common, but this value
can usually be increased for the analysis without influencing the results. Since these ill-conditioning problems do

not exist with [L]", support routine BCTRAN should make TRELEG unnecessary, after careful testing of both

routines has been carried out.

6.10.4 Support Routine CONVERT

Often, saturation curves supplied by manufacturers give RMS voltages as a function of RMS currents. The

UIf it is known that the magnetizing impedance should be connected across a particular terminal, then the
diagonal elements are modified to account for the differences caused by the short-circuited impedances between
the terminals.
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support routine CONVERT" changes Vgys/Igms-curves into flux/current-curves A = f(i) with the following

simplifying assumptions:

1. Hysteresis and eddy current losses in the iron-core are ignored,
2. resistance in the winding is ignored, and
3. the A/i-curve is to be generated point by point at such distances that linear interpolation is

acceptable in between points.
For the conversion it is necessary to assume that the flux varies sinusoidally at fundamental frequency as
a function of time, because it is most likely that the Vy,,/Ixys-curve has been measured with a sinusoidal terminal
voltage. With assumption (2), v = dA/dt. Therefore, the voltage will also be sinusoidal and the conversion of Vg

values to flux values becomes a simple re-scaling:

VRMS ﬁ
[}

A = (6.54)

The re-scaling of currents is more complicated, except for point iy at the end of the linear region A-B (Fig. 6.29):
iy = Loys 5V2 (6.55)

The following points i, ip,... are found recursively: Assume that i; is the next value to be found. Assume further

that the sinusoidal flux just reaches the value A at its maximum,

A= )\.E sin wt (6.56)
I I
v N N
RMS | e e e e e A e e e e e e - - — =
E ot e e e e e et e - — — e e e .
[}
Dple - m- = = — e - e = = | = = e = - — '
]
Cefor — = m e e e - — = - = o - — =C t
j
B o e e e - e - - — - -+ - :
 linear
, interpolation
. ' between points
only discrete points used i
A I — A lE | ——
RMS

Fig. 6.29 - Recursive conversion of a Vy,,/Ipys-curve into a A/i-curve

Within each segment of the curve already defined by its end points, in this case A-B and B-C and C-D, i is known

as a function of A (namely piecewise linear), and with Eq. (6.56) is then also known as a function of time. Only the

2CONVERT was developed with the assistance of C.F. Cunha, CEMIG, Belo Horizonte, Brazil.
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last segment is undefined inasmuch as i, is still unknown. Therefore, i = f(t,i;) in the last segment. If the integral

needed for RMS-values,

F = zfiizd(wt) (6.57)
TJO

is evaluated segment by segment, the result will contain i; as an unknown variable. With the trapezoidal rule of

integration (reasonable step size = 1°), F has the form

F =a + bi, + ci? (6.58)

with a, b, ¢ known. Since F must be equal to Iy * by definition, Eq. (6.58) can be solved for the unknown value
ig. This process is repeated recursively until the last point iy has been found.

If the A/i-curve thus generated is used to re-compute a Vyyo/Igys-curve, it will match the original Vyy,o/Ipys-
curve, except for possible round-off errors. As an example, support routine CONVERT would convert the table of

per-unit RMS exciting currents as a function of per-unit RMS voltages,

Vius (p-u) Livs (p-u)
0 0

0.9 0.0056
1.0 0.0150
1.1 0.0401

with base power = 50 MVA and base voltage 635.1 kV, into the following flux/current relationship:

A (Vs) i (A)

0 0
2144.22 0.6235
2382.46 2.7238
2620.71 7.2487

This A/i-curve is then converted back into a Vy,,¢/Ixys-curve as an accuracy check. In this case, the Vyyg and Ipyq
values were identical with the original input data.

Very often, the Vy,,/Izys-curve is only given around the knee-point, and not for high values of saturation.
In such cases, it is best to do the conversion first for the given points, and then to extrapolate on the A/i-curve with

the air-core inductance.

6.10.5 Saturable Transformer Component

This built-in model was originally developed for single-phase N-winding transformers. It uses the star-
circuit representation of Fig. 6.30. The primary branch with R;, L, is handled as an uncoupled R-L branch between
nodes BUS1,, and star point S, whereas each of the other windings 2,...N is treated as a two-winding transformer

(first branch from S to BUS2,, second branch from BUS1, to BUS2,, with k = 2,...N). The equations for each of
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these two-winding transformers are derived from the cascade connection of an ideal transformer with an R-L-branch

(Fig. 6.31). This leads to

)t Ry
di:tar/ dt _ i nl nl v:mr Lk istar ( 6.5 9)
di /dt L, n, . Vv, 0 R.|| i,
n L
L, R : R L BUS1
BUS1, 1 1 n,: oo, 2 2

A C s
winding 1 I: Rm winding 2
i

3

o S
BJS2 ideal . BUS2,
1 .etc.
: . BUS1
n 1 : nN . N
—\- LEFT——o0
R L
N N winding N
ideal BUS2 N
Fig. 6.30 - Star-circuit representation of N-winding transformers
Fig. 6.30 - Star-circuit representation of N-winding transformers
R
i o i
*star — «— 'k

v
star

> ) ©
ideal

Fig. 6.31 - Cascade connection of ideal transformer and R-L-branch

which is the alternate equation (6.1) with an inverse inductance matrix [L]". In the particular case of Eq. (6.59),
the product [L]'[R] is symmetric, which is not true in the general case.

The input data consists of the R, L-values of each star branch, and the turns ratios, as well as information
for the magnetizing branch. For three-winding transformers, the impedances of the star branches are usually

available in utility companies from the data files kept for short-circuit studies. If these values are in p.u., they must

6-44



be converted to actual values by using the proper voltage rating V, for each of the star branches k = 1,...N. If the
short-circuit impedances are known, then the star branch impedances can be calculated from Eq. (6.10).
The saturable transformer component has some limitations, which users should be aware of:

1. It cannot be used for more than three windings, because the star circuit is not valid for N > 3. This is
more an academic than a practical limitation, because transformers with more than three windings are
seldom encountered.

2. The linear or nonlinear magnetizing inductance, with R , in parallel, is connected to the star point, which
is not always the best connecting point, as explained in Section 6.6.

3. Numerical instability has occasionally been observed for the three-winding case. It is not believed to be a
programming error. The source of the instability has never been clearly identified, though it is felt that it
is caused by the accumulation of round-off errors. V. Brandwajn ran a case in 1985 in which the instability
disappeared when the ordering of the windings was changed (e.g., first winding changed to low side from
high side).

4. While the saturable transformer component has been extended from single-phase to three-phase units
through the addition of a zero-sequence reluctance parameter, its usefulness for three-phase units is limited.
Three-phase units are better modelled with inductance or inverse inductance matrices obtained from support

routines BCTRAN or TRELEG.

6.11 Frequency-Dependent Transformer Models
At this time, no frequency-dependent effects have yet been included in the transformer model. There are

basically three such effects:

a. Frequency-dependent damping in the short-circuit impedances,
b. frequency dependence in the exciting current, and
c. influence of stray capacitances at frequencies above 1 to 10 kHz.

CIGRE Working Groups [8, 18] have collected some information on the frequency-dependent L/R-ratios
of short-circuit impedances (Fig. 2.17). As explained in Section 2.2.3, this frequency dependence can easily be
modelled with parallel resistances, which matches the experimental curves reasonably well (Fig. 2.19). When
dealing with matrices [L] or [L]", resistance or conductance matrices [R,] or [G,] could be added automatically by

the program, with the user simply specifying the factor k in

[R,] = k[L], or [G)] = %[L]’1 (6.60)

Frequency-dependent effects in the exciting current were modelled with parallel R-L branches in [115], as
discussed in Section 6.3.3. Whether the linear frequency dependence in these parallel R-L branches can be separated
easily from the nonlinear saturation effects would have to be verified in laboratory experiments.

For transient studies which involve frequencies above a few kHz, capacitances must be added to the R-L-

models. As suggested in [123], capacitances should be included
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a. between the winding closest to the core, and the core,
b. between any two windings, and
c. across each winding from one end to the other.

In reality, inductances and capacitances are distributed, but reasonably accurate results, as seen from
terminals, can be obtained by lumping one half of the capacitance at each end of winding for effects (a) and (b), and
by lumping the total capacitance in parallel with the winding for effect (c), as shown in Fig. 6.32. Each of these
capacitances can be calculated from the geometry of the transformer design. Obviously, the internal voltage
distribution across a winding, which is of such great concern to the transformer design, cannot be obtained with the
simple model of Fig. 6.32. Fig. 6.33 compares measured impedances of a transformer (500 MVA, 765/345/17.25
kV) and calculated impedances with a model where the capacitances were added according to Fig. 6.32. The

agreement is quite good. Similar suggestions for the addition of capacitances have been made by others (e.g., [124]).
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Fig. 6.32 - Addition of capacitances to R-L-model
(subscripts a, b, c refer to the three effects mentioned in
text)
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Fig. 6.33 - Frequency response of single-phase autotransformer with tertiary winding (marking of terminals
according to North American standards: H1 = high voltage terminal, X1 = low voltage terminal, Y1, Y2 =
terminals at both ends of tertiary winding) [123]. © 1981 IEEE
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