7. SIMPLE VOLTAGE AND CURRENT SOURCES

Most of the simple sources are either voltage or current sources defined as a time-dependent function f(t),

v = fiv), or 1) = fo)

Frequently used functions f(t) are built into the EMTP. There is also a current-controlled dc voltage source for
simplified HVDC simulations, which is more complicated than Eq. (7.1). In addition to the built-in functions, the
BPA version of the EMTP allows the user to define functions through user-supplied FORTRAN subroutines, and
to declare TACS output variables as voltage or current source functions. The UBC version of the EMTP does not

have these two options, but allows the user to read f(t) step by step in increments at At. This option has rarely been

used, however.

Note that f(t) = O for a current source implies that the source is disconnected from the network (i = 0),

whereas for a voltage source it implies that the source is short-circuited (v = 0).

7.1 Connection of Sources to Nodes

If a voltage or current source is specified at a node, it is assumed to be connected between that node and
local ground, as shown in Fig. 7.1. A voltage source of v(t) = +1.0 V means that the potential at that node is +1.0

V with respect to local ground, whereas a current source of +1.0 A implies that 1.0 A flows from the local ground

into that node.
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Fig. 7.1 - Source connections
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7.2 Current Sources Between Two Nodes

Current sources between two nodes, e.g., a current leaving node B and entering into node A as shown in

Fig. 7.1(c), must be specified as two current sources, namely as

Lo =f, and iy®) = -f) (7.2)

7.3 Voltage Sources Between Two Nodes

Until recently, voltage sources could not be connected between two nodes. With the addition of ideal
transformers to the BPA EMTP in 1982 (Section 6.8), voltage sources between two nodes are easy to set up now.
In Fig. 6.25, simply ground node &, connect the voltage source from node j to ground, and use a transformer ratio
of 1:1. This will introduce a voltage source between nodes k and m. A special input option has been provided for
using the ideal transformer for this particular purpose.

The UBC EMTP and older versions of the BPA EMTP do not accept voltage sources between nodes. One
could use the equivalent circuit of Fig. 6.27 for the ideal transformer, however, which turns into the circuit of Fig.
7.2. This representation works in the transient solution part of the UBC EMTP, provided the branches of Fig. 7.2
are read in last. In that case, the node "extra" will be forced to the bottom of the equations as shown in Fig. 6.26.
The steady-state subroutine in both versions, as well as the transient solution in the BPA version, use optimal re-
ordering of nodes, which may not force the row for node "extra" far enough down to assure nonzero diagonal
elements during the Gauss elimination. Using Fig. 7.2 may therefore not always work, unless minor modifications

are made to the re-ordering subroutine.

-1 Q

extra ¢ «— i(t) = —

1Q

-1 m

Fig. 7.2 - Equivalent circuit for voltage source
v(t) between nodes k and m

In all versions, a voltage source in series with a (nonzero) impedance can always be converted into a current

source in parallel with that impedance. The current source between the two nodes is then handled as shown in Eq.
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(7.2). The conversion from a Thevenin equivalent circuit (v in series with Z) to a Norton equivalent circuit (i in

parallel with Z) is especially simple if the impedance is a pure resistance R, as shown in Fig. 7.3.

R k'l kl’
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v(t) convert to: i(t) = v;t) I R
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’
m\\ ) m\\

Fig. 7.3 - Conversion of v(t) in series with R into i(t) =
v(t)/R in parallel with R

Converting a voltage source in series with an inductance L into a current source with parallel L is slightly more
complicated. L is again connected between nodes k and m, in the same way as R in Fig. 7.3. The definition of the

current source depends on the initial conditions, however. For example, if

W) = V. cos(wi + ¢) (7.3)

and if the case starts from zero initial conditions, then

vV
i(t) = 2 [sin(w? + ¢) - sind] (7.4a)
wlL
If the case starts from linear ac steady-state conditions, with that voltage source being included in the steady-state
solution, then

\%
i(t) = = cos(wt + ¢ - 90°) (7.4Db)
oL

7.4 More Than One Source on Same Node

If more than one voltage source is connected to the same node, then the EMTP simply adds their functions

f,(t),...f,(t) to form one voltage source. This implies a series connection of the voltage sources between the node

and local ground, as shown in Fig. 7.4(a).
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Fig. 7.4 - Multiple voltage or current sources on same node

If more than one current source is connected to the same node, then the EMTP again adds their functions
f,(t),...f,(t) to form one current source. This implies a parallel connection of the current sources, as shown in Fig.
7.4(b).

Source functions can be set to zero by using parameters tgpagr and Tgrop. The EMTP sets f(t) = 0 for t <
Tgrarr and for t > Tgrop. By using more than one source function at the same node with these parameters, more
complicated functions can be built up from the simple functions, as explained in the UBC User's Manual and in the
BPA Rule Book.

If voltage and current sources are specified at the same node, then only the voltage sources are used by the
EMTP, and the current sources are ignored. Current sources would have no influence on the network in such a case,

because they would be directly short-circuited through the voltage sources.

7.5 Built-in Simple Source Functions

Commonly encountered source functions are built into the EMTP. They are:

(a) Step function (type 11). In cases which start from zero initial conditions, the step function is

approximate in the sense that the EMTP will see a finite rise time from f(0) = 0 to f(At) = F,..» as shown
in Fig. 7.5.
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Fig. 7.5 - Step function

(b) Ramp function (type 12) with f(t) as shown in Fig. 7.6. The value of the function rises linearly from

Tyrart to Tgrarr + T, to a value of F, ., and then remains constant until it is zeroed at t > Tgyep.

max?

TSTART TsToP t

Fig. 7.6 - Ramp function

A modified ramp function (type 13) has the same rise to F,,, at Tgrarr + T, as in Fig. 7.6, but decays or rises with
a linear slope thereafter. By setting Tgrarr = 0 and T, = O, this becomes a step function with a superimposed linear
decay or rise.

(c) Sinusoidal function (type 14) with

fy = F_, cos(wi + ¢) if Tgupr < 0 (7.5a)
or
) = Fpcos(@( = Tgppr) + @) U Tspr > 0 (7.5b)

with — ft) =0 fort < Tgp,

This is probably one of the most used source functions. Note that the peak value F,,, must be specified,

rather than the RMS value. To start a case from linear ac steady-state conditions, or to obtain a sequence of steady-
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state solutions at a number of frequencies, use Tgrarr < O to indicate to the EMTP that this sinusoidal source should
be used for the steady-state solution. The value of Tg;rr is immaterial as long as its value is negative, and the
complex peak phasor used for that source is then
Vorl =F,, € (7.6)
(d) Impulse function (type 15) of the form

1@y = kle™ - &™) (1.7)

This function has been provided for the representation of lightning or switching impulses, as used in standard impulse
tests on transformers and other equipment. A typical lightning impulse voltage is shown in Fig. 7.7 [126], and a
typical switching impulse voltage is shown in Fig. 7.8 [126]. There is no simple relationship between the time
constants 1/c; and a/e, in Eq. (7.7) and the virtual front time T, (or time to crest T,,) and the virtual time to half-
value T,. Table 7.1 shows the values for frequently used waveshapes, as well as values for k which produce a
maximum value of f,,, = 1.0 in Eq. (7.7). The time at which the maximum occurs is found by setting the derivative
df/dt = 0 from Eq. (7.7) and solving for t,,,. Inserting t,. . into Eq. (7.7) then produces f_,. Note that 1/a, and

1/e, in Table 7.1 are in us, whereas the EMTP input is usually in s.

10f---
09[ ~B

Fig. 7.7 - General shape of lightning impulse voltage (IEC definitions: T, = virtual front time,
typically 1.2 us + 30%; T, = virtual time to half-value, typically 50 us + 20%). Reprinted with
permission from [126], © 1984, Pergamon Books Ltd
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Fig. 7.8 - General shape of switching impulse voltage (IEC definitions: T, = time to crest,
typically 250 ps + 20%; T, = virtual time to half-value, typically 2500 us + 60%, T, = time

above 90%). Reprinted with permission from [126], © 1984, Pergamon Books Ltd

In impulse testing, the capacitance of the test object is usually much smaller than the capacitance of the
impulse generator. It is then permissible to regard the impulse generator as a voltage source with the function of

Eq. (7.7). In cases where the impulse generator is discharged into lines, or into other test objects with impedances

which can influence the wave

Table 7.1 - Relationship between T,, T,, and «,, &,. Reprinted with permission from [126], ©
1984, Pergamon Books Ltd

T,/T, (us) T./T, (us) 1 (us) 1 (us) k to produce
o, o, f = 1.0

1.2/5 - 3.48 0.80 2.014

1.2/50 - 68.2 0.405 1.037

1.2/200 - 284 0.381 1.010

250/2500 - 2877 104 1.175

- 250/2500 3155 62.5 1.104

shape, it may be better to simulate the impulse generator as a capacitance and resistance network, as shown in Fig.
7.9 for a simple single-stage impulse generator. The initial voltage across C, would be nonzero, and the switch
closing would simulate the gap firing. Fig. 7.10 compares measurements against EMTP simulation results for the
waveshape of a multistage impulse generator, where the generator was modelled as a network of capacitances,

resistances in inductances [127]. The spark gaps were represented as time-dependent resistances based on Toepler's

formula.

v(0
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(a) Circuit type a
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(b) Circuit type b

Fig. 7.9 - Single-stage impulse generators
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Fig. 7.10 - Waveshape of a multistage impulse generator [127]. © 1971 IEEE

7.6 Current-Controlled dc Voltage Source

This source provides a simplified model of an HVDC converter station [128], and produces simulation
results which come reasonably close to field tests [129]. The current-dependent voltage source is connected between
two nodes (cathode and anode), as indicated in Fig. 7.11. The current can only flow in one direction (from anode
to cathode). This is simulated internally with a switch on the anode side, which opens to prevent the current from
going negative and closes again at the proper voltage polarity. Spurious voltage oscillations may occur between the
anode and cathode side after the switch opens, unless the damping circuits across the valves are also modelled. Good
results were obtained in [128] when an RC branch was added between the anode and cathode (R = 900 Q and C =
0.15 ps in that case).

The current regulator is assumed to be an amplifier with two inputs (one proportional to current bias Iy,
and the other proportional to measured current i), and with one output e, which determines the firing angle. The

transfer function of the regulator is

K1 +sT)
(I +sT)A + sTy)

G(s) = (7.8)

with limits placed on the output e, in accordance with rectifier minimum firing angle, or inverter minimum extinction

angle.
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The current-controlled dc voltage source is a function of e,
Vee =k + Kye, (7.9)

as shown in Fig. 7.12. The current regulator output e,, minus a bias value (10V in Fig. 7.12) is proportional to

cosa. The inverter normally operates at minimum extinction angle at the limit e and the rectifier normally

amin>
operates on constant current control between the limits. The user defines steady-state limits for v, which are

converted to limits on e, with Eq. (7.9). If the converter operates at the maximum limit e, (or at the minimum

amax

limit e,,;)), either in initial steady state or later during the transient simulation, it will be back off the limit as soon

amin

as the derivative de,/dt becomes negative (or positive) in the differential equation

de,
dt

i d’e
- Kd,,.-i) - kT, % 1 L%, (7.10)
BIAS 27y B0 «

(T, +Ty

The value for d’,/dt* is zero in Eq. (7.10) as long as the converter operates at the limit.

I
BIAS

node name for cathode side

G(s)

1 node name for anode side

Fig. 7.11 - Current-controlled dc voltage source
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Fig. 7.12 - Relationship between v, and e, (k, = -150 000,
k, = 15 000)

7.6.1 Steady-State Solution

Steady-state dc initial conditions are automatically computed by the program with the specified value v, (0).
Since the steady-state subroutine was only written for ac phasor solutions, the dc voltage is actually represented as
Vi = Vg4(t) cos(wt) with a very low frequency of f = 0.001 Hz. Practice has shown that this is sufficiently close
to dc, and still makes reactances wL and susceptances wC large enough to avoid numerical problems in the ac steady-
state solution. When the current-controlled dc voltage source was added to the EMTP, voltage sources between two

nodes were not yet permitted. For the steady-state solution, a resistance R, is therefore connected in series with

equiv

the voltage source, which is then converted into a current source in parallel with R,

equiv*

This produces accurate
results if the user already knows what the initial current i,,(0) is, because the specified voltage source of the rectifier

is automatically increased by R, i

(0), and that of the inverter is decreased by R,;,is(0). The program user
should check, however, whether the computed current i,, does indeed agree with what the user thought it would be.
This nuisance of having to specify i,.(0), without knowing whether it will agree with the computed value, could be
removed by using the methods described in Section 6.3, if this HVDC model is used often enough to warrant the

program changes. The value of R

equiv

is the same as the one used in the transient solution (Section 7.5.2).

The normal steady-state operation of an HVDC transmission link, measured somewhere at a common point
(e.g., in the middle of the line) is indicated in Fig. 7.13. For the converter operating between the limits on constant
current control (which is normally the rectifier), I, is automatically computed to produce the characteristic A-A'

of Fig. 7.13,
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IB[AS = l(O) * 0C]{ 4 lf eocmin < eoc < eocmax (711)

with i(0), e,(0) being the dc initial conditions. For the converter operating at maximum or minimum voltage (which
is normally the inverter), the current setting Iggrrng must be given as part of the input, which defines the point where
the converter backs off the limit and goes into constant current control. Iy, is again automatically computed, which
in this case is

_, ¢,(0)

1 serring T lf eoc(o) = Cumax 9 Cymin (712)

BIAS

Lgerming 18 typically 15% lower than the current order Lyyper at the steady-state operating point for inverters (or 15%

higher for rectifiers).

7.6.2 Transient Solution
In the transient solution, the dynamics of the current controller in the form of Eq. (7.9) and (7.10) must
obviously be taken into account. First, rewrite the second-order differential equation (7.10) as two first-order

differential equations,

dx di

e, + Tx + PE = Ky,s-0 - KTZE (7.13a)
ae. 7.13b

X = .
7 ( )

with the new variable x and with the new parameters

T = Tl + T3 (713C)

P =TT, (7.13d)

After applying the trapezoidal rule of integration to Eq. (7.13a) and (7.13b) (replacing x by [x(t - At) + x(t)]/2 and
dx/dt by [x(t) - v(t - At)]/At, etc.), and after eliminating x(t), one linear algebraic equation between e,(t) and i(t) is

obtained. Inserting this into Eq. (7.9) produces an equation of the form

VD) = v - R, (D) (7.14)

which is a simple voltage source vy(t) in series with an internal resistance R

equiv*

This Thevenin equivalent circuit

is converted into a current source iy(t) in parallel with R,;, (Fig. 7.14).
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whereas the current source iy(t) depends on the values e,(t - At) and x(t - At) of the preceding time step. After the
complete network solution at each time step, with the converter representation of Fig. 7.14, the current is calculated
with Eq. (7.14), and then used to update the variables e, and x.

If e, hits one of the limits e, Or €,.,, it is kept at the appropriate limit in the following time steps, with
x and dx/dt set to zero. B.C. Chiu has recently shown, however, that simply setting x and dx/dt to zero at the limit
does not represent the true behavior of the current controller [130]. The treatment of limits should therefore be

revised, if this current-controlled dc voltage source remains in use. Backing off the limit occurs when the derivative
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de,/dt calculated from Eq. (7.10) becomes negative in case of e, = € or positive in case of e, = ¢

omax? amin*®

The switch opens as soon as i(t) < 0, and closes again as soon as Vyope = Veorroms 1O assure that current
can only flow in one direction. This updating of the current source iy(t) from step to step is not influenced by the

switching actions.
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