8. THREE-PHASE SYNCHRONOUS MACHINE

Co-author: V. Brandwajn

The details with which synchronous machines must be modelled depend very much on the type of transient
study. Most readers will be familiar with the simple representation of the synchronous machine as a voltage source
E" behind a subtransient reactance X,". This representation is commonly used in short-circuit studies with steady-
state phasor solutions, and is also reasonably accurate for transient studies for the first few cycles of a transient
disturbance. Switching surge studies fall into that category. Another well-known representation is E' behind X,,'
for simplified stability studies. Both of these representations can be derived from the same detailed model by making
certain assumptions, such as neglecting flux linkage changes in the field structure circuits for E" behind X", and
in addition, assuming that the damper winding currents have died out for E' behind X;'.

The need for the detailed model described here arose in connection with subsynchronous resonance studies
in the mid-1970's. In such studies, the time span is too long to allow the use of simplified models. Furthermore,
the torsional dynamics of the shaft with its generator rotor and turbine rotor masses had to be represented as well.
Detailed models are now also used for other types of studies (e.g., simulation of out-of-step synchronization). To
cover all possible cases, the synchronous machine model represents the details of the electrical part of the generator
as well as the mechanical part of the generator and turbine. For studies in which speed variations and torsional
vibrations can be ignored, an option is provided for by-passing the mechanical part of the UBC EMTP.!

The synchronous machine model was developed for the usual design with three-phase ac armature windings
on the stator and a dc field winding with one or more pole pairs on the rotor. For a reversed design (armature
windings on the rotor and field winding on the stator), it is probably possible to represent the machine in some
equivalent way as a machine with the usual design. Even though the model was developed with turbine-driven
generators in mind, it can be used for synchronous motors as well (e.g., pumping mode in a pumped-storage plant).

The model cannot be used for dual-excited machines (one field winding in direct axis and another field
winding in quadrature axis) at this time, thought it would be fairly easy to change the program to allow for it. Since
such machines have not yet found practical acceptance, it was felt that the extra programming was not justified.
Induction machines can also not be modelled with it, though program changes could again be made for that purpose.
For these and other types of machines, the universal machine of Section 9 should be used.

While the equations for the detailed machine model have been more or less the same in all attempts to
incorporate them into the EMTP, there have been noticeable differences in how their solution is interfaced with the
rest of the network. K. Carlsen, E.H. Lenfest and J.J. LaForest were probably the first to add a machine model to
the EMTP, but the resulting "MANTRAP" - program [97] was not made available to users outside General Electric
Co. M.C. Hall, J. Alms (Southern California Edison Co.) and G. Gross (Pacific Gas & Electric Co.), with the

assistance of W.S. Meyer (Bonneville Power Administration), implemented the first model which became available

'The synchronous machine model is the UBC EMTP is experimental and has not been released.
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to the general public. They opted for an iterative solution at each time step, with the rest of the system, as seen from
the machine terminals, represented by a three-phase Thevenin equivalent circuit [98]. To keep this "compensation”
approach efficient, machines had to be separated by distributed-parameter lines from each other. If that separation
did not exist in reality, short artificial "stub lines" had to be introduced which sometimes caused problems. V.
Brandwajn suggested another alternative in which the machine is basically represented as an internal voltage source
behind some impedance. The voltage source is recomputed for each time step, and the impedance becomes part of
the nodal conductance matrix [G] in Eq. (1.8). This approach depends on the prediction of some variables, which
are not corrected at one and the same time step in order to keep the algorithm non-iterative. While the prediction
can theoretically cause numerical instability, it has been refined to such an extent by now that the method has become
quite stable and reliable. Whether an option for repeat solutions as correctors will be added someday remains to be
seen. Numerical stability has been more of a problem with machine models partly because the typical time span of
a few cycles in switching surge studies has grown to a few seconds in machine transient studies, with the step size

At being only slightly larger, if at all, in the latter case.

8.1 Basic Equations for Electrical Part

Since there is no uniformity on sign conventions in the literature, the sign conventions used here shall first
be summarized:
(a) The flux linkage A of a winding, produced by current in the same winding, is considered to have

the same sign as the current (A = Li, with L being the self inductance of the winding).

(b) The "generator convention" is used for all windings, that is, each winding k is described by
dr ()
v(@) = -Ri() - — 8.1
(O = R0 - = &)
(with the "load convention," the signs would be positive on the right-hand side).
(©) The newly recommended position of the quadrature axis lagging 90° behind the direct axis in the

machine phasor diagram is adopted here [99]. In Park's original work, and in most papers and
books, it is leading, and as a consequence the terms in the second row of [T]! of Eq. (8.7b) have
negative signs there.

The machine parameters are influenced by the type of construction. Salient-pole machines are used in hydro
plants, with 2 or more (up to 50) pole pairs. The magnetic properties of a salient-pole machine along the axis of
symmetry of a field pole (direct axis) and along the axis of symmetry midway between two field poles (quadrature
axis) are noticeably different because a large part of the path in the latter case is in air (Fig. 8.1a). Cylindrical-rotor
machines have long cylindrical rotors with slots in which distributed field windings are placed (Fig. 8.1b). They
are used in thermal plants, and have 1 or 2 pole pairs. For cylindrical-rotor machines the magnetic properties on
the two axes differ only slightly (because of the field windings embedded in the slots), and this difference

("saliency") can often be ignored. The word saliency is used as a short expression for the fact that the rotor has
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different magnetic properties on the two axes.

(a) Salient-pole machine (b) Cylindrical-rotor machine

Fig. 8.1 - Cross sections of synchronous machines (d = direct axis, q = quadrature axis)
[101]. Reprinted by permission of I. Kimbark

The machine model in the EMTP always allows for saliency; if saliency is ignored, the same equations will still be

used, except that certain parameters will have been set equal at input time (X, = X, etc.).

The electrical part of the synchronous machine is modelled as a two-pole machine with 7 coupled windings®:

1
2
3
f

D
Q

three armature windings (connected to the power system),

one field winding which produces flux in the direct axis (connected to the dc source of the
excitation system),

one hypothetical winding in the quadrature axis to represent slowly changing fluxes in the
quadrature axis which are produced by deep-flowing eddy currents (normally negligible in salient-
pole machines)

one hypothetical winding in the direct axis to represent damper bar effects,

one hypothetical winding in the quadrature axis to represent damper bar effects.

For machines with more than one pole-pair, the electrical equations are the same as for one pole-pair, except that

the angular frequency and the torque being used in the equations of the mechanical part must be converted as follows:

2Another, more modern approach is to measure the frequency response from the terminals, which can then be
used to represent the machine with transfer functions between the terminals, without assuming a given number of
lumped windings a priori. One can also use curve fitting techniques to match this measured response with that
from a series and parallel combination of R-L branches [100]. The end results in the latter case is basically the
same model as described here, except that damper bars are sometimes represented by more than one winding,
and that the data is obtained from frequency response tests.
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_ ©2-pole-machine (8.2a)

waclual p /2
T2 -pole—-machine (8 . 2b)

actual

(Y

where p/2 is the number of pole pairs.

The behavior of the 7 windings is described by two systems of equations, namely by the voltage equations
D = -RIG - 2 8.3)
dt
with

[1] = [ila iz’ i3’ if, ig7 iD, 1Q]’

[)“] = [)“I’ }\'2’ )“3’ }\‘f’ )“g’ }\‘D’ )“Q]’

[vl = [vy, vy, V3, V4, 0, 0, O] (zero in last 3 components because g-, D-, and Q- windings are short-
circuited)
[R] = diagonal matrix of winding resistances R, R,, R,, R;, R, Ry, R, (subscript "a" for armature),

and by the flux-current relationship

L. L

h

11 12

Ly Ly ... Ly,

[A] = [L]1[i] with [L] = 8.4)

L, L L

Qr Tzttt T

To make the equations manageable, a number of idealized characteristics are assumed, which are reasonable for
system studies. These assumptions for the "ideal synchronous machine" [76, p. 700] are’:
1) The resistance of each winding is constant.
2) The permeance of each portion of the magnetic circuit is constant (corrections for saturation effects
will be introduced later, however).
3) The armature windings are symmetrical with respect to each other.
4) The electric and magnetic circuits of the field structure are symmetrical about the direct or
quadrature axis.
&) The self inductance of each winding on the field structure (f, g, D, Q) is constant.
6) The self and mutual inductances of the armature windings are a constant plus a second-harmonic
sinusoidal function of the rotor position 3 (second-harmonic component zero if saliency ignored),

with the amplitude of the second-harmonic component being the same for all self and mutual

3For a detailed design analysis of synchronous machines, many of these idealizations cannot be made. Since
they imply that the field distribution across a pole is a fundamental sinusoid, harmonics produced by the
nonsinusoidal field distribution in a real machine could not be studied with the ideal machine implemented in the
EMTP.
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inductances.
@) The mutual inductance between any winding on the field structure and any armature winding is a
fundamental sinusoidal function of the rotor position 3.
) Effects of hysteresis are negligible.
) Effects of eddy currents are negligible or, in the case of cylindrical-rotor machines, are represented
by the g-winding.
Then,

L, =L, + L,cos2p, similarforL,,, L.,
L, =1L, =M, + L, cos(2p -120°) similar for L
Ly =L, = M,cosp similar for L,, Ly
w = Lp; = M,,cosP similar for L, L., (8.5)
L,=L, =M,sinp similar for L,,, L,,
L, =L, = M,,;sinf similar for L,,, Ly,

20’
Ly Loy Lips Log, My, M, constant  (not functions of )

L

13> 723

L

DD’ oo

with {3 being the angular position of the assumed two-pole rotor relative to the stator (Bya = B pote-machine / P/2)>

which is related to the angular frequency,

_ dp
© = (8.6)

Some authors (e.g., Kimbark [101]) use a different sign for M, in Eq. (8.5). With the sign used here, the numerical
value will be negative.

The solution of the two systems of equations (8.3) and (8.4) is complicated by the fact that the inductances
in Eq. (8.4) are functions of time through their dependence on § in Eq. (8.5). While it is possible to solve them
directly in phase quantities*, most authors prefer to transform them from phase quantities to d, g, O- quantities
because the inductances become constants in the latter reference frame. This transformation projects the rotating
fluxes onto the field axis, from where they appear as stationary during steady-state operation. The transformation
was first proposed by Blondel, and further developed by Doherty, Nickle and Park; in North America, it is now often
called Park's transformation. The transformation is identical for fluxes, voltages, and currents, and converts phase

quantities 1, 2, 3 into d, q, 0- quantities, with quantities on the field structure remaining unchanged,
(Aol = [T1'[A]  identical for [v], [i] (8.7a)

with

*If space harmonics in the magnetic field distribution had to be taken into account, then L, and L,, in Eq.
(8.5) would have added 4th, 6th, and higher harmonics terms, and L,; etc. would have added 3rd,
5th,...harmonics terms. In that case, solutions in phase quantities would probably be the best choice.
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gl = D Ape Agw A Ay Ay Ayl . and

Remain unchanged

Qcosﬁ QCOS(B—12OO) QCOS(BHZOO) 0000

V3 V3 3

Qsinﬁ Qsin(ﬁ—lZOO) Qsin(ﬁ+l20°) 0000

3 3 V3

mt-| L L L 0000 (8.7b)

V3 V3 V3
0 0 0 1 000
0 0 0 0100
0 0 0 0010

| O 0 0 0001

Eq. (8.7) is an orthogonal transformation; it therefore follows that

[T] = [T]t;(lznxposed (8 8)

The matrices [T] and [T]"! are normalized here. This has the advantage that the power is invariant under
transformation, and more importantly, that the inductance matrix in d, q, 0- quantities is always symmetric. The
lack of symmetry with unnormalized quantities can easily lead to confusion, because it is often removed by rescaling
of field structure quantities which in turn imposes unnecessary restrictions on the choice of base values if p.u.
quantities are used. Authors who work with unnormalized transformations use a factor 2/3 in the first two rows of
Eq. (8.7b), and 1/3 in the third row. In many older publications the position of the quadrature axis is assumed 90°
ahead of the direct axis, rather than lagging 90° behind d-axis as here, and the second row of Eq. (8.7b) has
therefore negative signs there.

Transforming Eq. (8.3) to d, q, 0- quantities yields

—wkq

+0A,

Wagol = R liggol ~ 5ol + 8.9

o O O o O

which is almost identical in form to Eq. (8.3), except for the "speed voltage terms" -wA, and wA, (voltage induced
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in armature because of rotating field poles). They come out of Eq. (8.3) by keeping in mind that [T] is a function

of time,

(71 % {71 gyl = %Mm] <1 {% [ﬂ} Pagol

Transforming Eq. (8.4) yields flux-current relationships which can be partitioned into two systems of equations for

the direct and quadrature axis, and one equation for zero sequence,

Ay L, Mdf Mp||ig
Af = Mdf Lﬁ MfD if (8.10a)
Apl My MfD Lpp|ip

where Mdf = ﬁMaf, M, = EMQD
V2 V2
)”q Lq ng MqQ iq
Ag = ng ng MgQ ig (8.10b)
)”Q MqQ MgQ LQQ iQ
where ng = ﬁMﬂg, MqQ = ﬁMaQ
/2 /2
and Ay = Lyi, (8.10c)

Most elements of these inductance matrices with constant coefficients have already been defined in Eq. (8.5), except
for

direct axis synchronous inductance Ly = L, - My + 3/2 L,

quadr. axis synchronous inductance L, = L, - M, - 3/2 L, (8.11)

zero sequence inductance L, = L, + 2M..

8.2 Determination of Electrical Parameters’

The assistance of S. Bhattacharya and Ye Zhong-liang in research for this section is gratefully
acknowledged.
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A set of resistances and of self and mutual inductances is needed in the two systems of equations (8.9) and
(8.10), which are not directly available from calculations or measurements. According to IEEE or IEC standards

[102, 103] the known quantities are

armature resistance R,
armature leakage reactance X,

Zero sequence reactance X,s
transient reactances Xy X'
subtransient reactances Xg" X"
transient short-circuit time constants T, T ',
subtransient short-circuit time constants T,", Tq“.

All reactances and time constants must be unsaturated values, because saturation is considered separately, as
explained in Section 8.6. This is the reason why short-circuit time constants are preferred as test data over open-
circuit time constants, because the measurement of the latter is influenced by saturation effects [104]. Fortunately,
one set of time constants can be converted precisely into the other set [104], as explained in Appendix VI in Eq. (VI.

14c) and (VI. 21),

X
TpTy =T/ T/X—d (8.12)

for the direct axis, and identically for the quadrature axis by replacing subscript "d" with "q."

The number of known parameters is less than the number of resistance and inductance values in Eq. (8.9)
and (8.10), and some assumptions must therefore be made before the data can be converted. Since the procedure
for data conversion is the same for the direct and quadrature axis parameters, only the direct axis will be discussed
from here on.

Winding D is a hypothetical winding which represents the effects of the damper bar squirrel cage. We can
therefore assume any number of turns for it, without loss of generality. In particular, we can choose the number

of turns in such a way that

M, = M, (8.13a)
in Eq. (8.10a), and similarly
M, = My, (8.13b)

in Eq. (8.10b). Many authors represent the flux-current relationships with an equivalent star circuit, which requires

8-8



all three mutual inductances in Eq. (8.10a) to be equal. This is achieved by modifying (rescaling) the field structure

quantities as follows:

Ap = ﬁk Ap, and iy = ! 0
V2 V3, (8.14a)
2
M
with k= M“f (8.14b)
fD
(identical for Ay and ip,). Then Eq. (8.10a) becomes
}“d Ld Mm Mm id
)Lfm =M, LW M, ifm (8.15a)
}“Dm Mm Mm LDDm Z.Dm
with
M —3kM L —3k2L L —3k2L
m S af? fm "~ S “ff 2 DDm "~ DD (8.15b)
and
3 3
R, = E1<2Rf, R, = EkZRD (8.16)

Fig. 8.2 shows the equivalent star-circuit for the direct axis, with the speed voltage term and resistances added to
make it correct for Eq. (8.9) as well. Modifying the field structure quantities is the same as changing the number
of turns in the field structure windings. It does not influence the data conversion, but it is simpler to carry out if the
modified form of Eq. (8.15a) is used. The correct turns ratio is then introduced later from the relationship between
rated no-load excitation current and rated terminal voltage.

The best data conversion procedure seems to be that of Canay [104]. It uses the four equations which define
the open- and short-circuit time constants, as derived in Appendix VI.2, to find R, Rp,,, Ly, and Ly, ("m"
dropped in Appendix VI to simplify the notation). Usually, only one pair of time constants (either T,,', T4" or T,',
T,") plus X,', X" are known; in that case, the other pair must first be found from Eq. (8.12). Solving the four
equations for the four field structure quantities presupposes that the mutual inductance M, in Eq. (8.15a) is already

known. Its value has traditionally been found from leakage flux calculations. While turns ratios have been
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Fig. 8.2 - Equivalent circuit for direct axis with modified field structure quantities

unimportant so far, they must be considered in the definition of leakage flux, since it is the actual flux ¢, rather than
the flux linkage A = N¢ (N = number of turns) which is involved. In defining the leakage flux we must either use

actual flux quantities, or flux linkages with turns ratios of 1:1. The leakage flux linkage produced by i, is then

Ay = Lyiy ~ Lyi,,  provided NgN, = 1:1 (8.17)

Let us assume that all field structure quantities are referred to the armature side, which implies N,:N; = 1:1 in the
original equations (8.4) with phase quantities, with the mutual inductance being M,; (cos f = 1.0 if magnetic axis
of phase 1 armature winding lined up with direct axis). After transforming to d, q, 0- quantities, the mutual

inductance in Eq. (8.10a) between d and f changes to v3/v2 M,,, which implies that the ratio is now NN, = v3/V2

af»
: 1. To convert back to a ratio of 1:1, the second row and column in Eq. (8.10a) must be multiplied with v3/v2,
which changes the mutual inductance to 3/2 M. Then the leakage flux linkage produced by i, with a 1:1 ratio

becomes

or for the leakage inductance,
L,=L 3 M
g~ Hd 7 (8.18)

Unfortunately, this equation is still not enough for finding M,, in the modified matrix of Eq. (8.15a) because of the

unknown factor k in Eq. (8.14b). To find k, an additional test quantity must be measured which has not yet been
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prescribed in the IEEE or IEC standards. It has therefore been common practice to assume k = 1, which implies
M, = M,;. With this assumption, the results for armature quantities will be correct, but the amplitude of the fast
oscillations in the field current will be incorrect, as pointed out by Canay [104] and others. Fig. 8.3 shows the
measured field current after a three-phase short-circuit [104], compared with EMTP simulation results with k = 1,

and with the correct value of k. Note that the "d-branch" in the star circuit of Fig. 8.2 is the leakage inductance only

if all quantities are referred to the armature

£ - S S S
SR B O S -
(p.u.) SO S S R L N N S
I AR A S AR A N
T R R R L T R
PP e A :'l:c‘ :lt:’l‘:" P
Y N A OV Y SRR \
SN PREE! A AW AL A i
Y A : " :
::: .\ g :‘
4.0 41 % 3 M >
VAR N S
2.0 - v
...... k= 1
-—==== correct k
field test
0.0 . : l - '
0.0 0.05 0.10 0.15 0.20

—_— t (3)

Fig. 8.3 - Field current after three-phase short-circuit [104]. Reprinted by permission

of IEE and the author
side and if k = 1. If the factor k is known, then the "d-branch" with field structure quantities referred to the
armature becomes Canay's "characteristic inductance"

3
Lo=Ly~ kM,

(8.19)
The data conversion of the modified quantities on the direct axis can now be done as follows: If k is

unknown, assume k = 1, find M,, from Eq. (8.18),
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M, =L, - Ly (8.20a)

and realize that the fast oscillations in the field current will have a wrong amplitude, but the armature quantities will

be correct. If the characteristic inductance is known (which can be calculated from k), find M,, from Eq. (8.19),

Mm = Ld 7LC (820b)

and the fast oscillations in the field current will be correct. Then use the conversion procedure of Appendix VI.4
to obtain the field structure quantities R, Ry, Ly, Lpp, ("m" dropped in Appendix VI), which will be rescaled
according to Eq. (8.14). It is not necessary to undo the rescaling if one is only interested in quantities on the
armature side, because scaling of field structure quantities does not influence the armature quantities. If the
conversion was done with p.u. quantities, which will usually be the case, then multiply all resistances and inductances
with V_.;*/S,,.q t0 Obtain physical values (V,,., = rated line-to-line RMS armature voltage, S,,., = rated apparent

rated rated

power) for wye-connected machines, followed by another multiplication with a factor 3 for delta-connected machines.

The data conversion for the quadrature axis quantities is the same as that for the direct axis, except that one
does not have to worry about correct amplitudes in the oscillations of the current i,. This current cannot be
measured, because the g-winding is a hypothetical winding which represents eddy or damper bar currents. It is

therefore best to use k = 1 and

Mm(quadrature axis) - Lq B Lﬁ (820C)

on the quadrature axis.

Rather than undo the rescaling of Eq. (8.14) by using t = 1 / (vV3/v2 k) with the procedure described after
Eq. (8.22), it makes more sense to choose a factor t which introduces the correct turns ratio between physical values
of the armature and field structure quantities. To find this factor, we must look at the open-circuit terminal voltage
produced by the no-load excitation current i, - FOr open circuit, i; = iy = i, = 0, and, in steady-state operation,

dA,/dt = 0, which leads to

v =wM i

q m " fin

Since we know that the modified current must be t-times the actual current,

and since v, is equal to v3 ® V, s (assuming symmetrical voltages in the three phases), we can find t from

V3V
1= phwe 8.21
oM i ( )

m “f-no load

with V.. = rated RMS line-to-ground voltage for wye connection, and line-to-line voltage for delta connection,

Itno10aa = rated no-load excitation current which produces rated voltage at the terminal.
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Sometimes the no-load excitation current is not known. Then any system of units can be used for the field structure.
One possibility is to set t = 1 (field structure quantities referred to the armature side). Another possibility is to say

that a field voltage |v,;| = 1.0 should produce the rated terminal voltage. Then

. vl 10
lfﬂw load ~— " p
Rf tzRfm
which, when inserted into Eq. (8.21) gives
oM,
t = — "
R (8.22)
‘/gvphase fm

Once t is known, the inductances are converted by multiplying the second and third row and column of the inductance
matrix in Eq. (8.15a) with t, and by multiplying R,,, and Ry, with t*. The quadrature axis inductances and resistances
are also multiplied with t or 2, respectively.

Sometimes, generators are modelled with less than 4 windings on the field structure (D-winding on the direct
axis missing, and/or g- or Q-winding on the quadrature axis missing). In such cases, the EMTP still uses the full
7-winding model and simply "disconnects”" the unwanted winding by setting its off-diagonal elements in the
inductance matrix to zero, and its diagonal element to an arbitrary value of WL = 1 Q. Its resistance is arbitrarily
set to zero. The inductances and resistances of the other windings on the same axis are calculated from Eq. (VI.4)

and (VL.5) (Appendix VI), e.g., for a missing g-winding,

M =0, M

2 w0=0, R =0, L, =1

88

and

L. = , R, = > where M = L, - Ly

8.3 Basic Equations for Mechanical Part

There are many transient cases where the speed variation of the generator is so small that the mechanical
part can be ignored. Simulating short-circuit currents for a few cycles falls into that category. In that case, w in
Eq. (8.6) and in the other equations is constant, and the angular position 3 of the rotor needed in Eq. (8.7) and (8.9)

is simply
B = BO) + wr (8.23)
with  and w being angle and speed on the electrical side.
For other types of studies it may be necessary to take the speed variations into account. The simplest model
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for the mechanical part is the single mass representation as used in stability studies,

d? d
J?E + DF? = Tturbine B Tgen (8.24a)

and

i SN 8.24b

dr ( )
with = moment of inertia of rotating turbine-generator mass,
= rotor position,

speed

O e & <
Il

= damping coefficient for viscous and windage friction (linear dependence on speed is a
crude approximation),
Tuwine = torque input to turbine,
Tyen = electromagnetic torque of generator.

Eq. (8.24) is valid for quantities referred to the electrical or the mechanical side with the conversion from one to the

other being®

mech

J = =
ef (p/2)2
Beg = %Bmm (8.25)
Dmech
et (p/2)2
T Tmech
V)

With voltages given in V, and power in W, the unit for the torque T becomes N ® m, for the damping coefficient
D it becomes Nem / rad/s and for the moment of inertia J it becomes kgm? (kg as mass).
Instead of the moment of inertia, the kinetic energy at synchronous speed is often given, which is identical

for the mechanical and electrical side,

1 2 1

E = Jecr Onecn = 7 Jea Ve (8.26)

mech

The inertia constant h (in seconds) is the kinetic energy E (e.g., in k€Ws) divided by the generator rating S,,;,, (€.g.,

®Subscript "mech" is used for the mechanical side, and subscript "eX" for the electrical side.
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in kVA),

E
h=-— (8.27)

rating

The relationship between the inertia constant h and the acceleration time T, of the turbine-generator is

T,P

h o= rating (828)
2§ rating
with Poing = rated power of turbine-generator (e.g., in MW),
Siating = rated apparent power of generator (e.g., in MVA).

A single mass representation is usually adequate for hydro units, where turbine and generator are close
together on a stiff shaft. It is not good enough, however, for thermal units, if subsynchronous resonance or similar
problems involving torsional vibrations are being studied. In such cases, a number of lumped masses must be
represented. Usually 6 to 20 lumped masses provide an adequate model’. The model in the EMTP allows any
number of lumped masses n > 1, and automatically includes the special case of n = 1 in Eq. (8.24). Each major
element (generator, high pressure turbine, etc.) is considered to be a rigid mass connected to adjacent elements by
massless springs. Fig. 8.4 shows a typical 7-mass model.

The shaft/rotor system is assumed to be linear, which is reasonable for the small amplitudes of typical
torsional vibrations. The n spring-connected rotating masses are then described by the rotational form of Newton's

second law,

. T . . . . T
Tturbl.ne 1 turbine 2 Ttuxblne 3 Tturbxne 4 Tturbme 5 gen exc

HP IP LPA LPB LPC GEN EXC

Fig. 8.4 - Mechanical part of a steam turbine generator with 7 masses (HP = high pressure
turbine, IP = intermediate pressure turbine, LPA, LPB, LPC = low pressure turbine stages A,
B, C, GEN = generator, EXC = exciter)

d? d
[J]E[G] + [D]E[e] +KIO) = [T, pine] ~ [Typnenc] (8.29a)

and

"There are studies where the lumped mass representation is no longer adequate, and where continuum models
must be used.
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do

[E = [w] (8.29b)
where
[J] = diagonal matrix of moments of inertia (J,,...J; in Fig. 8.4),
[0] = vector of angular positions (0,,...0, in Fig. 8.4, with 0, = p),
[w] = vector of speeds,
[D] = tridiagonal matrix of damping coefficients,
K] = tridiagonal matrix of stiffness coefficients,
[Tuwine = vector of torques applied to the turbine stages (T, imee = 0 and T ey = 0 in Fig. 8.4),
[Teenrexe] = vector of electromagnetic torques of generator and exciter (components 1 to 5 = 0 in Fig. 8.4).

The moments of inertia and the stiffness coefficients are normally available from design data. The spring
action of the shaft section between masses i - 1 and i creates a torque which is proportional to the angle twist 6, ,-0,.
The proportionality factor is the stiffness coefficient or spring constant K; ;. This spring action torque acts in

opposite directions on masses i - 1 and i,

Tspring,#l = 7Tspring,i = I{ifl,i (eifliei) (830)

If these torques are included in Eq. (8.29), they create the term [K][0]. From Eq. (8.30) it can be seen that [K] has

the following form

(K] = Ky, KytKy, K,
_anl,n anl,n

Two damping effects are included with the damping coefficients, namely the self-damping D, of mass i
(mostly friction between the turbine blades and steam), and the damping D, , ; created in the shaft when the shaft

between masses i - 1 and i is twisted with the speed w, - w,;. The damping torque acting on mass i is therefore

b, do, do,_, b, db,., 8.31
Laanping: = Pz * P 7 =47 | P g~ &30

From Eq. (8.31) it can be seen that [D] has the same structure as [K], except that the diagonal element is now D, | ;

+ Di + Di.i+l’
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It is very difficult to obtain realistic values for these damping coefficients. Fortunately, they have very little
influence on the peak torque values during transient disturbances. However, for estimating the low cycle fatigue one
must consider the damping terms, which, unfortunately until now, have often been derived from unsuitable models
[107]. The damping of torsional oscillations is measured by observing the rate of decay when the shaft system is
excited at one of its natural frequencies (modes). It is difficult to convert these modal damping coefficients into the
diagonal and off-diagonal elements of [D].

For the vector of turbine torques it is best to assume that the turbine power P, =weT remains

urbine turbine

constant. This implies that the torque decreases with an increase in speed, which is more reasonable than constant
torque because if the turbine were to reach the same speed as the steam (or water) jet the torque on the blades would
obviously drop to zero. It is possible to include the effects of the speed governor through TACS modelling, but
usually the time span of transient simulations is so short that the governor effects will normally not show up.

The vector of electromagnetic torques and the rotor position of the generator provide the link between the

equations of the mechanical and electrical part, with

p

emechfgen ) 5 - Be;ﬂ (8.32a)

Tmechfgen - %()\‘d iq B )‘q ld) (832b)
-v.i, + i’R

Tm@chfexc = % (8320)

mech

where it is assumed that (Eq. 8.29) is written for the mechanical side. If it is written for the electrical side, then the
conversion of Eq. (8.25) must be used. The term iR, in Eq. (8.32¢c) represents the losses incurred in the exciter
machine; the negative sign for v, comes from the source convention of Eq. (8.1). If there is no exciter machine, as
in the case of rectifier excitation systems, then mass no. 7 in Fig. 8.4 would obviously be deleted, and Eq. (8.32c)

would not be needed. T is not in the BPA EMTP.

mech-exc

8.4 Steady-State Representation and Initial Conditions

Transient studies with detailed turbine-generator models practically always start from power frequency
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steady-state conditions. The EMTP goes therefore automatically into an ac steady-state solution whenever the data
file contains turbine-generator models.

In some versions of the BPA EMTP, the machine is represented as a symmetrical voltage source at its
terminals. This approach is only correct if the generator feeds into a balanced network. In that case, the generator
currents are purely positive sequence. In an unbalanced network, there are negative and zero sequence currents,
which would see the generator as a short-circuit. This is incorrect, because generators do have nonzero negative and

In the M39 version of the BPA EMTP, the user can specify unsymmetrical

Zero *

zero sequence impedances Z,,, and Z
voltage sources at the terminals. This is still not good enough, however, unless the user adjusts the negative and zero
sequence components of the terminal voltage iteratively until V.., = -Z,. L., and V,,,, = -Z,, L., with L., L., being
the currents from the steady-state network solution. The UBC EMTP does include negative and zero sequence
impedances correctly, as explained next.

The negative sequence impedance can be calculated as part of the data conversion. Its imaginary part is very

close to

X+ X
~ 47 g (8.33)

neg 2

and this value can be used without too much error if the negative sequence impedance is needed for preliminary
calculations. The real part R, is larger than the armature resistance R, because of double-frequency circulating
currents in the field structure circuits; its value is difficult to guess, and is therefore best taken from the data
conversion. For calculations internal to the UBC EMTP, the correct values from the data conversion are always
=R, + kX

used. The zero sequence impedance Z is part of the input data, but its value becomes immaterial

Ze1r0 Zero

if the generator step-up transformer is delta-connected on the generator side and if the disturbance occurs on the line
side.
The positive sequence representation can be a voltage source behind any impedance, as long as it produces

the desired values for the terminal voltage V , and the current [,,.. Knowing only V  may require a preliminary

pos

steady-state solution with a voltage source V  at the terminal, to find [,,.. Then the value needed for the voltage

pos

source behind the impedance is

=V +ZI

source pos pos

Any value can be chosen for Z, but Z = Z,,, simplifies programming for the following reason: The EMTP solves
the network in phase quantities, and assumes that all phase impedance matrices are symmetric. Only Z = Z,., will
produce a symmetric phase impedance matrix, however. Changing the program to handle unsymmetric matrices just
for generators would have required a substantial amount of re-programming.

The generator positive sequence representation is then a voltage source behind Z,,, while the negative and

respectively (or zero voltage sources or short-

Zero?

Zero sequence representations are passive impedances Z,,, and Z

circuits behind Z,,, and Z

Zero.

). Converted to phase quantities, these 3 single-phase sequence representations become
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a three-phase symmetrical voltage source (E,", E,", E;") behind a 3 x 3 impedance matrix, as shown in Fig. 8.5(a),
with

ZS Zm Zm

zZ Z Z

m m s

@, +22,), Z,=-2, -Z,)

m 3 zero neg

To be able to handle any type of connection, including delta and impedance-grounded or ungrounded wye
connections, the voltage sources behind [Z] are converted into current sources in parallel with [Z], as indicated in

Fig. 8.5(b), with

- -1
I
|
Il [z
l L
|
. -l
(a) Thevenin equivalent circuit (b) Norton equivalent circuit

Fig. 8.5 - Turbine-generator representation for steady-state solution

Il El//
L| = [Z]|E)” (8.35)
]3 E3//

This is done because the EMTP could not handle voltage sources between nodes until recently and even after such
voltage sources are allowed now, this Norton equivalent circuit is at least as efficient. For armature winding 1, the

internal voltage source is
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E/ - Viss + Zogg Lo (8.36)

with V., I, being the unnormalized positive sequence values. Unnormalized values are a more convenient input
form for the user, because with the unnormalized transformation of Eq. (8.38) the positive sequence values are
identical with the phase values V, and I, for armature winding 1 for balanced network conditions. For armature

windings 2 and 3, the internal voltages are

E/ = a*E/ and  E/ =aE/ (8.37)

a =),

In the UBC EMTP, either V ,; and I, can be specified as input data, in which case E," is calculated from
Eq. (8.36), or E," can be specified directly. Specifying E," is not as unusual as it may seem, because short-circuit
programs use essentially the same generator representation (E" behind X,;"). If users want to specify active and
reactive power at the terminals, or active power and voltage magnitude, then the load flow option described in
Section 12.2 can be invoked, which will automatically produce the required V  and I.

The UBC EMTP connects the generator model of Fig. 8.5(b) to the network for the steady-state solution,
which will produce the terminal voltages and currents at fundamental frequency. For unbalanced network conditions,
this solution method is not quite correct because it ignores all harmonics in the armature windings and in the network.
Experience has shown, however, that such an approximate initialization is accurate enough for practical purposes.
Fig. 8.6 shows simulation results for a generator feeding into a highly unbalanced load resistance (R, = 1.0 Q, R,
= 1.0 Q, R, = 0.05 Q), with an initialization procedure which ignores the harmonics on the armature side, and
considers only the second harmonics on the field structure side, as discussed in Section 8.4.2. The final steady state
is practically present from the start. The mechanical part is totally ignored in the steady-state solution, because it

is assumed that the generator runs at synchronous speed. Again, for unbalanced conditions this is not quite correct

i (ka)

T

ANNAARAN
AVVVVUUY

0 50 100

Fig. 8.6 - Steady-state behavior of generator with highly
unbalanced load

because, in that case, the constant electromagnetic torque has oscillations superimposed on it which produce torsional
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vibrations whose effects are ignored.
After the steady-state solution at fundamental frequency has been obtained, the terminal voltages and

currents are converted to unnormalized symmetrical components to initialize the machine variables:

1 a a?||V,|, identical for currents (8.38)

(a = &), The inverse transformation is

(D U O L

v
Vil=11 a® a||Vys|, identical for currents (8.39)

neg

8.4.1 Initialization with Positive Sequence Values
If the positive sequence voltage is obtained as a peak (not RMS) phasor value |V |e"™, then from Eq.

(8.39),

pos|

V(1) = \pr| cos(f + ¥,

V(1) = |Vpos\ cos(wr + v, - 120°) (8.40)

v = |V,

pos

| cos(or + v, + 120°)
Inserting these voltages into the transformation of Eq. (8.7) produces

3 .
Vd—pos(t) = % \pr| sm(ypw - 9)

VoposD) = %VWJ COS(Y,,; ~ 0) (8.41)

where 0 is the angle between the position of the quadrature axis and the real axis for phasor representations (Fig.

8.7). This angle is related to the rotor position B, on the electrical side by

By = + 8 + g (8.42)
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The positive sequence values v, and v, in Eq. (8.41) are dc quantities and hence do not change as a function of time;
the argument (t) can therefore be dropped. From Eq. (8.41) it is evident that v, and v, can be combined into a

complex expression
— + jL — - (8.4 )
q-pos d-pos \/» pos 3

with V. being the complex quantity \Vpos|e”"°5. While V. is a phasor of frequency w in the network solution

reference frame, V e in Eq. (8.43) becomes a dc quantity in the d, g-axes reference frame. Similarly,

qupos * jid*pos = 7 pos l (8.44)

with I, being the complex current |I,,|e*** with respect to the real axis. With V,,  and I,

direct
axis

guadrature
axis

v
g-pos

5 15

real axis for network

phasor solution

Fig. 8.7 - Definition of &

known, we still need the angle & to find the d, g-values. To calculate 8, use Eq. (8.9) and Eq. (8.10), with i, =
i, =iy = 0, as well as dA,/dt = 0 and dA,/dt = O (no currents in damper windings and all d, g-quantities constant

in symmetrical operation with positive sequence values only),

vd*pos = 7Ra id*pos B (")Lqiquos (8453)

vq*pos - 7Ra iquos * (’)Ldidfpos * (")Mdfiffpos (845b)

Eq. (8.452) and (8.45b) can be rewritten as a complex equation relative to the quadrature axis
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vquos +jvd*pos = (Ra +j(")Lq) (iquos +jid*pos) * qupos (8450)

where E . is a quantity whose position on the quadrature axis is important, but whose magnitude

qupos = (de - o)Lq) idfpw + o)Mdfl'ﬁpos

is immaterial here. By inserting Eq. (8.43) and Eq. (8.44) into Eq. (8.45¢), and by multiplying with (v2/v3)e®, all
dc quantities become phasors in the network solution reference frame again. The angle 0 is then obtained from the

phasor equation

V2 o _ :
ﬁAvquos e =V, + R, +joL), (8.46)

quadrature
axis

I
a pos

real axis for network

phasor solution

Fig. 8.8 - Calculation of angle &

With & known, the initial values vy ,,(0), Vg 05(0), 140s(0), ig05(0) are found from Eq. (8.43) and (8.44). As

q-pos

mentioned before, the remaining currents i, 1i,, i, are zero from the positive sequence effects, except for i;, whose

initial value is calculated from Eq. (8.45b),

v () +Ri (0)-wL,i, (0
. _ g-pos a q-pos d”d-pos
lf’PUS(O) - def (8'47)
I o5(0) is used to initialize v;
Vf*pos(o) -7 Rf if*pos(o) (8 48)
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The initial value of the torque produced by the positive sequence quantities is needed in the mechanical part.

It is calculated from the fluxes A, ,,(0) = Lyig0(0) + Mgy 05(0) and Ay, (0) = Lyig,,(0) as

Tgenfpos(o) = )“dfpos(o) iquos B )\‘quos(o) id*pos(o) (849)

The initial positive sequence torque can also be calculated from energy balance considerations (wT = power

delivered to the network + losses in the armature windings),

3 x 3
(L)Tgmfpw(O) = ERe{I v+ = |2Ra (8.50)

pos ' pos 9 "pos

(division by 2 because the phasors are peak values).

8.4.2 Initialization with Negative Sequence Values®
If the network is balanced in steady state, then there are no negative sequence values. This part of the

initialization can therefore be skipped if the negative sequence (peak) phasor current

Leg = 0] € (8.51)

neg

obtained from the steady-state solution is negligibly small.

Negative sequence currents in the armature windings create a magnetic field which rotates backwards at a
relative speed of 2w with respect to the field structure. Second harmonic currents are therefore induced in all
windings on the field structure, which the EMTP takes into account in the initialization. These second harmonic
currents induce third harmonics in the armature windings, which in turn produce fourth harmonics in the field
structure windings, etc. Fortunately, these higher harmonics decrease rapidly in magnitude. They are therefore
ignored. Calculating the field structure harmonics or order higher than 2 could be done fairly easily, but the
calculation of the armature harmonics of order 3 and higher would involve solutions of the complete network at these
higher frequencies. While the network solutions for harmonics may be added to the EMTP someday, this addition
does not appear to be justified for this particular purpose.

First, the negative sequence current must be defined on the direct and quadrature axis. By starting with the

negative sequence currents in the three armature windings,

i) = |I”eg\ cos(of + a,,.)
it) = \Ineg| cos(wrf + @, + 120°) (8.52)

i) = |I”eg\ cos(of + 0, - 120°)

The negative sequence currents in the BPA EMTP can be incorrect (see beginning of Section 8.4).
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these d, g-axes values are obtained through the transformation (8.7),

Iy g = —% \Ineg| sin(e,,, + 0 + 2wi)

V3

ﬁ|

Iy eg( = |, \cos(ocneg + 0 + 2wi) (8.53)

eg

N

While the positive sequence d, g-axes currents are dc quantities, the negative sequence d, g-axes currents are second

harmonics. This is important to keep in mind when we represent them with a phasor of frequency 2w,

3 .
Ly voe = £1 el (8.54)
q-neg neg .
2
with the understanding that
Ly negD) = —Im i, g-neg e/2eh)
iyneD) = Relly . e (8.55)

For the initialization of i, and ij, the negative sequence values at t = 0 from Eq. (8.55) must be added to the
respective positive sequence values from Eq. (8.44) to obtain the total initial values i,(0) and i (0). The negative
sequence d, g-axes voltages are not needed in the initialization, but they could be obtained analogously to the
currents.

The second harmonic currents in the field structure windings are found by using the d, g-axes phasor current
of frequency 2w as the forcing function. The procedure is outlined for the direct axis; it is analogous for the

quadrature axis. From Eq. (8.1),

. d . . .
vffneg = 7Rflffneg - E(Mdfldfneg * Lﬁ”lffneg * MfDlDfneg)

+ M, i +L

. d . .
VD -neg -7 RD lD -neg E (MdD ldfneg 1D f-neg DD lD fneg) (8 . 56)

The voltages on the left-hand side are zero because the damper winding is always shorted, and the dc voltage source
supplying the field winding is seen as a short-circuit by second harmonic currents. With zero voltages, and knowing

that all currents are second harmonics, Eq. (8.56) can be rewritten as two phasor equations
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Rpvj20ly  j2oMp |1 | [j20M, (8.57)
J20Myy Ry +j20L |y | [20M,,| 47 |

which are solved for the two phasors I, | Their initial values are found on the basis of Eq. (8.55) as

D-neg*

ieg®) = ~ Il )

inneg(O) = -Im {IDfneg} (858)

The value i;,,,(0) is then added to i, (0) from Eq. (8.47) for the total initial field current, whereas iy, ., (0) is already
the value of the total damper current.
and Iy

The phasor currents I

o neg for the quadrature axis are obtained analogous to Eq. (8.58), by replacing

neg

subscripts f and D with g and Q. Their initial values on the basis of Eq. (8.55) are then

i 0) = Rell,_}

gfneg( g-neg

Iy 0 = Rell, ) (8.59)

which are the total initial values since the respective positive sequence values are zero.
The negative sequence phenomena produce torques which influence the initialization of the mechanical part.
Recall that the electromagnetic torque on the electrical side is A4, - A,i;. With both fluxes and currents consisting

of positive and negative sequence parts, the total torque can be expressed as the sum of three terms,
Tgen - Tgenfpos + Tgenfneg + Tgenfpos/neg (860)

The positive sequence torque was already defined in Eq. (8.49), and the negative sequence torque is

Tgen—neg B )\‘d—neg lq -neg

™ Agoneg bi-neg (8.61)

The third term

Tgenfpos/neg B }“dfpos quneg + }“dfneg qupox B }“quos ldfneg B }“qfneg ldfpox (862)

is an oscillating torque produced by the interaction between positive and negative sequence quantities, with an
average value of zero. That it is purely oscillatory can easily be seen since all positive sequence values in Eq. (8.62)
are constant, and all negative sequence values oscillate at a frequency of 2w. This and other oscillating terms are
ignored in the initialization of the mechanical part, where torsional vibrations are not taken into account.

The negative sequence torque of Eq. (8.61) consists of a constant part, which must be included in the
initialization of the mechanical part, and of an oscillating part with frequency 4w which is ignored. To find the

constant part, the fluxes are first calculated as phasors,
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Adfneg - Ldldqfneg + Mdflffneg + MdDIDfneg (8633.)

Aq*neg - Lq[dq*neg * nglg*neg - MqQIQ*neg (8.63b)

With the definition of Eq. (8.55) for the instantaneous values of currents and fluxes, and after some manipulations

of the equations, it can be shown that the constant part is

RelA Hmil } - Im{A JRell }

gen-neg-constant - average dg-neg average dg-neg

(8.64a)
with

average

(Adfneg * Aqfneg) (864b)

(SR

The oscillatory part is not needed, but could be calculated from

A -A
_ - ;
Tgen*negfoscillalory = Im {w qufneg eﬂw} (8.65)

Identical values for the constant part are obtained from energy balance considerations (wT = power delivered to
network + losses in all windings),

-R) + \If

~neg

PRy + Iy I*R,
Iy e ’Ry) (8.66)

gen-neg-constant 1 g-neg

*Rp + |

neg

1
wT - S 13, ®

* ‘IDfneg

Because 3rd and higher order harmonics are ignored in the armature windings, and 4th and higher order
harmonics are ignored in the windings on the field structure, the initial torque values are not exact. They are good
approximations, however, as can be seen from Table 8.1. This table compares the values obtained from the
initialization equations with the values obtained from a transient simulation (Fig. 8.9), for the severely unbalanced
case described in Fig. 8.6. The constant torque from the initialization procedure is almost identical with the average
torque of the transient simulation (difference 1.6%). Fig. 8.9 further shows that the initial torque from Eq. (8.73)
can be quite different from the average torque. Table 8.1 also compares the values for the 2nd and 4th harmonics
(not needed in the initialization, though). The values for the 2nd harmonic agree quite well, but not the values for
the smaller 4th harmonic. This is to be expected, because the 4th harmonic torque is influenced by 3rd harmonic
currents in the armature windings, which are ignored in this initialization procedure. The average value in Fig. 8.9
lies not exactly halfway between the maximum and minimum values because the 4th harmonic is phase-shifted with

respect to the second harmonic.
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gen initial value
(Mnm) , from EQ. (8.73)

/

3 - — - - —f—{— — - - average
2.5 A

-2.5

0 50 100

—_—

t (ms)

Fig. 8.9 - Torque obtained with transient simulation for case described in Fig. 8.6

Table 8.1 - Electromagnetic torque for test case of Fig. 8.6 (At = 46.2963 us)

From Fourier Analysis
Between 80 ms and
100 ms (MNm) Relative Error
Torque Component From Equations (%)
(MNm)

pos = 2.953 from (8.49)
or (8.50)
average neg = 0.017 from (8.64)
or (8.66)

sum = 2.970 3.019 1.62

2nd harmonic 4.673 4.634 0.84

4th harmonic 0.262 0.517 49.32

8.4.3 Initialization with Zero Sequence Values’

The initial zero sequence values are easy to obtain, either from the d, q, O-transformation of Eq. (8.7), or

from the symmetrical component transformation of Eq. (8.38). Physically, both are the same quantities, except that

°The zero sequence currents in the BPA EMTP can be incorrect (see beginning of Section 8.4).
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the d, g, O-transformation is normalized and the symmetrical component transformation chosen in Eq. (8.38) is not.

Since the d, q, 0-quantities are normalized,

. 1. . .
i(0) = ﬁ(la(o) + 1,(0) + i(0) (8.67a)

or
iy(0) = y3Rell, } (8.67b)

The zero sequence quantities do not produce any torque, and therefore do not influence the initialization of

the mechanical part.

8.4.4 Initialization of the Mechanical Part'
The links between the electrical and the mechanical part are the angle (3,,(0) from Eq. (8.42), which is
converted to the mechanical side with Eq. (8.25), and the electromagnetic torques T,,, and T,,. from Eq. (8.32).

For the generator torque, the constant part is

Tgen—consmnt - Tgen —pos(O) * Tgen—neg—consmnt (868)

on the electrical side, which is converted with Eq. (8.25) to the mechanical side. Since torsional vibrations coming
from the oscillating torques of Eq. (8.62) and Eq. (8.65) in unbalanced cases are ignored in the steady-state
initializations, the oscillating term is left off in Eq. (8.68). For the exciter torque, the oscillating terms are ignored
as well. Then,

wTexcfconsmnt - vffpos(o) iffpos(o) * ‘Iffneg ‘ 2 Rexc (869)

N =

with I; ., from Eq. (8.57).
Without torsional vibrations, the speeds of all turbine-generator masses are one and the same, and the

acceleration of each mass is zero. Then Eq. (8.29) simplifies to

[K] [e] - [Tturbine] B [Tgen/exc] B (“)[Dself] (870)

with w being the synchronous angular speed and [D,,] being the diagonal matrix of self-damping terms D,. The sum
of the turbine torques must, of course, equal the sum of the electromagnetic and speed self-damping torques, so that

there is zero accelerating torque initially,

Z Tturbinefi - Tgenfconxtant + Texcfconsmnt +t W Z Di (871)

9The initial angles in the BPA EMTP can be incorrect in unbalanced cases, because the negative sequence
torques are not included in Eq. (8.68) and (8.69). If Table 8.1 is typical, these torques are very small, however.
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Eq. (8.71) is used to find the sum of the turbine torques first, and then to apportion the total to the individual stages

from the percentage numbers to be supplied in the input (e.g., 30% of torque in high pressure stage, 26% in

intermediate pressure stage, etc.). The right-hand side of Eq. (8.70) is then known, as well as the angle of the

generator mass from Eq. (8.32a). [K] is singular. Assume the generator to be mass no. k (with 0, known); then

the remaining initial angles may be found in 2 ways:

1) Multiply the diagonal element K,, with an arbitrary large number (e.g., 10%°), and reset the k-th right-hand
side value to this number times 0,. This will, in effect, change the k-th equation to variable 6, = specified
value of 6,. Then solve the system of linear equations (8.70), preferably with a subroutine for tri-diagonal

matrices (required in the time-step loop anyhow).

2 Starting to the left of generator mass k, find the angles of the lower-numbered masses recursively from
il
Y RHS
0,.,=06+ L, i=k,..1 (8.72a)
K

i-1,i

(RHS = right-hand side terms of Eq. (8.70)), and starting to the right of generator mass k, find the angles

of the higher-numbered masses recursively from

n
Y RHS
0. =0+ MT i=k,...n

ii+l

(8.72b)

These recursive equations are derived by summing up rows 1,...i, or by summing up rows i,...n in Eq.
(8.70); in either case, most terms on the left-hand side cancel out because of the special structure of [K], as shown
after Eq. (8.30).

While the oscillating terms of T, and T,,, are ignored in finding the initial angles of the mechanical part,
they must be included in initializing the electromagnetic torques for solving the differential equations in the time-step

loop. This is best done using
T oon-10a®) = 20)0,(0) = A,(0)i,0) (8.73)
where the currents are

id(O) = id—pos(o) + id—neg(o)

i,(0)

iq —pos(O) * iq—neg(o)

and the initial fluxes are calculated from Eq. (8.10). Similarly,

(")Texcftoml(o) = vffpos(o) lf(o) * Rexc {lf(o)}z (874)
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where

10) = ir i (0) + ir,, (0)

8.5 Transient Solution

The numerical methods for the transient solution part are based on [13]. The basic idea is to reduce the
machine equations to a three-phase Thevenin equivalent circuit, similar to that of Fig. 8.5 for the steady-state
initialization. The equivalent circuit for the transient solution differs from Fig. 8.5 mainly in two aspects:

(a) The impedance matrix [Z] of Fig. 8.5 becomes a resistance matrix [R], after integrating the
machine equations (8.9) with the trapezoidal rule of integration, and after reducing the seven
equations for all windings to three equations for the armature windings.

(b) The sinusoidal voltage sources E" of Fig. 8.5 become instantaneous voltage sources which must
be updated from step to step.

The updating procedure for the voltage sources requires the prediction of certain variables from the known
solution at t - At to the yet unknown solution at t. Different prediction methods have been tried over the years, and
their behavior with respect to numerical stability has gradually improved. Some earlier versions of the TYPE-59
synchronous machine model produced too much numerical noise [131], but beginning with version M36, the
prediction methods are quite stable and the simulation results are fairly reliable now [132]. Further progress with
respect to numerical stability can only be achieved if the overall EMTP algorithm is changed from a direct to an

iterative solution in each time step.

8.5.1 Brief Outline of Solution Method
Assume that the solution at t - At is already known, and that the solution at t has to be found next. Then
the method works roughly as follows:
(D) Predict the generator rotor angle [3(t) (first predicted variable).
2) Apply the trapezoidal rule of integration to the R-L branches of Fig. 8.2, in the direct axis as well
as in the quadrature axis. Conceptually, this converts each R-L branch into an equivalent
resistance in parallel with a known current source, as indicated in Fig. 8.10(a) and (b). The zero

sequence consists of only one branch (Fig. 8.10(c)).
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ud(t-At)+ud(t)

, vf(t-At)+vf(t)
2

(a) d-axis

(4

s, _<_ \
(b) g-axis

(c) zero sequence

Fig. 8.10 - Resistive networks resulting from trapezoidal rule of integration (u = speed
voltages defined in Eq. (8.75))

3) Reduce the e- and g-axis resistive networks of Fig. 8.10 to one equivalent resistance in series with
one equivalent voltage source as shown in Fig. 8.11. For this reduction, assume that v(t) = vt -
At), which is exact if the excitation system is not modelled, or use some other prediction (e.g.

linear extrapolation).

(a) Direct axis (b) Quadrature axis (c) Zero sequence

Fig. 8.11 - Resistive networks
Unfortunately, the speed voltages

u, = —wkq
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u, = 0, (8.75)

at time t are also unknown, but since fluxes can never change abruptly, their values can be
predicted reasonably well. With predicted values for uy(t), u(t) and v(t) (2nd, 3rd and 4th
predicted variable), the reduction is straightforward. Conceptually, branches M, f, D for the d-axis
in Fig. 8.10(a) are paralleled, and then connected in series with the c-branch (analogous for the g-
axis).

4) Convert the 3 resistive Thevenin equivalent circuits for d, q, O-quantities to phase quantities. If
this were done directly, then the resulting 3 x 3 resistance matrix would be time-dependent as well
as unsymmetric. To obtain a constant, symmetric matrix, the equivalent resistances of the d- and
g-axis are averaged, as indicated in Fig. 8.12, and the "saliency terms" Ry-R, / 2 @ iy(t) and R-R,

/2 i (t) are combined with the voltage sources e, and e, into one voltage source.

+ - + -R
Re*Rq . RaRq Ra*Rg RRa
i i
2 d / 2 d q
- ="
1
4 | becomes becomes
! : one one
: ! source source
t
_____ J
o— o—
(a) direct axis (b) quadrature axis
R 1
oo
o— 4Y; r+---|--- -1
' !
I VIR
v e A B D equiv
o o

(c) zero sequence
(d) phase quantities

Fig. 8.12 - Modified resistive networks

This can only be done at the expense of having to use a predicted value for iy(t) and i (t) (5th and
6th predicted variable). After conversion to phase quantities, the d, q, O-networks become one

three-phase network, with three source voltages behind a symmetric, constant resistance matrix
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[Requiv]-

5) Solve the complete network, with the machine representation of Fig. 8.12(d). In the EMTP,
current sources in parallel with [R,,,;,] are used in place of voltage sources in series with [R,,,;,].

6) From the complete network solution in phase quantities, extract the generator voltages and convert
them to d, q, O-quantities. Calculate the armature currents in d, q, O-quantities and the field
structure currents, and use them to find the electromagnetic torques of the generator and exciter
from Eq. (8.32) at time t. Then solve the equations of the mechanical part.

@) Compare the predicted values of 3, uy, u,, iy, i, with the corrected values from the solution of step
(6), and repeat steps (6) and (7) if the difference is larger than the acceptable tolerance. When
returning to step (6), it is assumed that the terminal voltages in phase quantities remain the same.

®) Return to step (1) to find the solution at the next time step.

Some of the implementation details, which have been omitted from this brief outline, are discussed next.

Variations of the iteration and prediction methods are described in Section 8.5.4.

8.5.2 Transient Solution of the Electrical Part
Consider the equations for the direct axis first, which are obtained from rows 1, 4, 6 of Eq. (8.9) and from

Eq. (8.10a) as

v R | Le My My digdr|
vl = -R{lif|- M, Ly Mpl|dijdr|+|o (8.76a)

0]  [Rillin] My My Lyylldiydr [0

with u, being the speed voltage from Eq. (8.75), or in short-hand notation,

bl = -[RIL] - (L] [g} - [l (8.76b)

Because of numerical noise problems in pre-M32 versions of the BPA EMTP, this equation is integrated with the

"damped trapezoidal rule" of Section 2.2.2"', with a damping resistance matrix [R,] in parallel with [L],

1+« 2
- = [L
|~ o At[] (8.77)

R) -

where « is the reciprocal of the damping factor defined in Eq. (2.21). For o = 1 there is no damping, while o =
0 is the critically damped case. In the present version of the BPA EMTP, a default value of (1 + a)/(1 - «) = 100

is used.

UThe (unreleased) UBC version with synchronous machines uses the normal trapezoidal rule. By setting o
= 1 in the input, the BPA EMTP would use the normal trapezoidal rule as well.
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Applying the damped trapezoidal rule of Eq. (2.20) for v = L di/dt to Eq. (8.76), with v replaced by [u] -
[v] - [R][i], results in

[v(0)] = [w(@)] + [hist(c - Ar)] ~{[R] + % L1 [i®)] (8.782)
with the known history term
hist(t-Ad)] = (- a[R] + % L]} [iGc - AD)] - [z - AD] + afu(z - AD)] (8.78b)

At

Eq. (8.78a) described a voltage source [u(t)] + [hist(t - At)] behind a resistance matrix

(R = 1R+ 4% 1L 8.79)

Subscript "comp" is used because such equivalent resistive networks are called "resistive companion models" in
network theory [133].

For interfacing the synchronous machine equations with the network equations, the field structure quantities
are eliminated from Eq. (8.78). Dropping subscript "comp" and using subscripts d, f, D again, the field structure

currents can be expressed from the last two rows of Eq. (8.78a) with [R,,,,] from Eq. (3.79) as

-1 R

a
R

i{n)

ip(0)

Ry Ry, ]| [hist(t-An

hist(1-Af)

v f(l)

0

i(0) (8.80)

RfD Ry dp

which, when inserted into the first row of Eq. (8.78a), produces a single equation for the d-axis,

V(1) = e, - R,if0) (8.81)

with the reduced companion resistance

R. R, ['|R
/o a
R =R,_-[R, R, I (8.82a)
d dd ar tap
R Rpp| [Rap
the voltage source
e, = ut) + hist]“(t - Ap) (8.82b)
and the reduced history term
R, R, [!|histv(t)
histj = hist, - R, Ryl T L[ f (8.82¢)
Ry, Rpp hist
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By predicting the speed voltage uy(t) = -w()A(t), and by assuming that v(t) = v(t - At), the simple
resistive network of Fig. 8.11(a) is obtained, with a voltage source e, behind the companion resistance R;. If R < <

2L/At in all R-L branches of Fig. 8.10(a), then

2L//
R, ~ ¢

8.83a
Y (8.83a)

Therefore, Eq. (8.81) essentially represents the trapezoidal rule solution of a voltage source behind the subtransient
reactance X,". In publications based on [13]. R, is called a,,.

If the dynamic behavior of the excitation system is to be simulated as well, then using v(t) = vt - At)
implies a one time-step delay in the effect of the excitation system on the machine. Such a delay is usually
acceptable, because At is typically much smaller than the effective time constant between the input and output of the
excitation systems. Alternatively, some type of prediction could be used for v(t).

The derivations for the g-axis are obviously analogous to those just described for the d-axis, and lead to the

single equation for the g-axis,
v, =e, - R i () (8.84)
with the voltage source

e, = u0) + hist,"(t - Af) (8.85)

Here, only the speed voltage u,(t) = w(t)A4(t) must be predicted because the voltage v (f) is zero. The g-axis
resistive network is shown in Fig. 8.11(b). Again, if R < < 2L/At in all R-L branches of Fig. 8.10(b), then

2L
R ~ 4 (8.83b)
T At
Therefore, Eq. (8.84) essentially represents the trapezoidal rule solution of a voltage source behind the subtransient
reactance X,". In publications based on [13], R is called a,,.

The equations for the zero sequence quantities (row 3 in Eq. (8.9) and Eq. (8.10c)) are also integrated with

the damped trapezoidal rule, which leads to

V() = histy(t ~ Aty ~ Ry iy(0) (8.86a)

with the companion resistance

(8.86b)

and the known history term
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histy(t - Aty = (%LO - aRa) iyt~ AD) — avy(t-Ar) (8.86¢)

The zero sequence resistive network of Eq. (8.86a) with e, = hist,(t - At) is shown in Fig. 8.11(c). In publications
based on [13]. R, is called a;.

The reduced generator equations (8.81), (8.84) and (8.86a) can be solved in one of two ways:

(D) Find a three-phase Thevenin equivalent circuit (resistive companion model) for the network seen

from the generator terminals, and solve it together with the generator equations.

2) Add the reduced generator equations to the network equations, and solve them simultaneously.

The first approach was used in [98]. It has the advantage that iterations can easily be implemented for the
correction of predicted values. However, generator must be separated by distributed-parameter lines with travel time
for reasons of numerical efficiency, so that an independent three-phase Thevenin equivalent circuit can be generated
for each generator (otherwise, M generators would have to be interfaced with one 3 x M-phase Thevenin equivalent
circuit). If there are no such lines in reality, artificial stub-lines with T = At must be used to separate the generators.
This can result in incorrect answers. For this reason, the first approach has been abandoned in the EMTP.

With the second approach, there is no restriction on the number of generators connected to the network,
or even to the same bus. However, it does require the prediction of certain variables, which makes this approach
more sensitive to the accumulation of prediction errors. It is the only method retained in the present BPA EMTP,
and only this method is discussed here. To solve the generator equations with the network equations, the generator
resistive networks of Fig. 8.12 in d, q, 0-quantities must be converted to phase quantities, which produces a time-
dependent and unsymmetric 3 x 3 resistance matrix. To accommodate such matrices would have required a complete

restructuring of the basic (non-iterative) solution algorithm of the EMTP. Instead, an average resistance

R, = (R, + R)I2 (8.87)

is used on both axes. This requires "saliency terms" i,(Ry-R,)/2 on the d-axis and i(R-R,;)/2 on the g-axis, which
are added to the known voltage sources €4, €, by using predicted values for iy, i, (Fig. 8.12). For generators with
X" = X,", these saliency terms are practically negligible. For the IEEE benchmark model [74] with different values
of X;" = 0.135 p.u. and X" = 0.200 p.u., the companion resistances are R; = 3.5844 p.u. and R, = 5.3103 p.u.
for At = 200 ps. These values are practically identical with 2L;"/At = 3.5810 p.u. and 2L,"/At = 5.3052 p.u.,
as mentioned in Eq. (8.83). The voltage drop across the saliency terms (R4-R,)/2 would be 20% of the voltage drop
across (R;+R,)/2 with At = 200 ps.

With the average resistance of Eq. (8.87), the modified equations in d, q, 0-quantities become

vd(t) edfmod Rav id(t)
VD] = €, moa| - R, i (0 (8.882)
vy(0) e Ry||iy(®
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where

R,-R,

€imed = i~ i0) (8.88b)

d q :
g-mod eq + ) Zq(l)

o
|

(8.88¢c)

Predicted values i, i, are used in the last two equations, and the voltage sources behind resistances are then converted

into current sources in parallel with the resistances,

, 1
La-source = R_edfmod (8.89a)
av
. ]
lqﬂource - R_equod (8.89b)
av
1
€0-source Feo (8.89¢)
0

Finally, the d, q, O-quantities are converted to phase quantities with a predicted angle [3(t), which produces a resistive

companion model with current sources

. 1]
cosf’ sinf —
. 2]
Yy source \/17 La-source
ifoource = ﬁ COS(ﬁ?lZOO) Sin(Bileo) = iqfsource (890)
| V3 V2|
lexource 1 ZOfsource
cos(f+120°) sin(f+120°) 7
2
and parallel with
RS Rﬂl Rm
[Requiv] =R, R, R, (8.91a)
Rm Rﬂl RS
where
R = (R, + 2R, )/3, R, =R, -R,)/3 (8.91b)

Since this model is identical with the resistive companion model of Eq. (3.8) for coupled inductances, generators are

interfaced with the network equations as if they were coupled inductances. The matrix [R,]" enters the nodal

equiv.
conductance matrix [G] of Eq. (1.8) once and for all outside the time step loop, while the parallel current sources
are updated from step to step.

After the complete network solution has been obtained at time t, the generator phase voltages are converted
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to d, q, 0-quantities,

Va cosp cos(B-120°) cos(B+120°)||V:
v |= @ sinfB sin(B-120°) sin(B+120°)||v, (8.92)

v V3 1/2 1/2 1y2 v,

and the armature currents are found from

id - (edfmod B vd)/Rav
iq - (equod B vq)/Rav (893)

iy = (e, =~ Vy)/R,

The field structure currents are recovered from Eq. (8.80) for the d-axis, and from an analogous equation for the
g-axis. Finally, the fluxes A,, A, are calculated from Eq. (8.10a) and (8.10b), and the electromagnetic torques from

Eq. (8.32), which are then used to solve the mechanical equations as described next.

8.5.3 Transient Solution of the Mechanical Part

The mechanical part is described by Eq. (8.29), which can be rewritten as

V] {%} + [Dllw] + [KT[O] = [T,,] (8.94a)

with the speeds of the system of masses

[w] = [d_ﬁ} (8.94b)

and the net torque
[Tnet] - [ turbine] B [T gen/exc] (8940)

The torque [T,,.,] provides the only direct link with the electrical part, with another indirect link through 0, =
[ which had to be predicted to solve the electrical part.

Applying the trapezoidal rule (or central difference quotients) to Eq. (8.94a) and (8.94b) yields

1 el —EJ(I—AI)] + (p) @1+ [zw(l—At)] + [k 10OI [ze(t—Al)]
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T + [T (t-A
_ 11,0 im(f Nl (8.95)

and

[o®] + [w@-An] _ [6(] - [6¢ - A)]

) Ar (8.96)
Replacing [0(t)] in Eq. (8.95) with the expression from Eq. (8.96) produces
{%m - D] - %{K}}[wm] - [T,,,(0)] + [hist(t-Ao)]
(8.97a)
with the known history term
[hist(1-Ar)] = {%[J] -[D] - %[K]} [w(z-An] - 2[K][6(z-An]
+ [T, (1-An)] (8.97b)

Normally, it is assumed that the turbine power is constant. In that case, the torque on each mass i is

calculated by using predicted speeds w;,

turbine, i

Turbine.s = — (8.98)

If constant turbine torque is assumed, then Eq. (8.98) is skipped. With the turbine torques from Eq. (8.98), and with
the electromagnetic torques at time t already calculated in the electrical part, Eq. (8.97a) can be solved directly for

the speeds [w(t)]. The matrices

- 2oy - A - 2i-mpy- A
(Al = A /] + [D] 5 K] and [B] A V1 -1D] > (K]

are tridiagonal, and remain constant from step to step. They are triangularized once and for all before entering the
time step loop, with a Gauss elimination subroutine specifically written for tridiagonal matrices, which saves storage
as well as computer time. Inside the time step loop, the information in the triangularized matrix is used to apply the
elimination to the right-hand sides, followed by backsubstitution ("repeat solution," as explained in Section III.1).

It is worth noting that the form of Eq. (8.94) is the same as the system of branch equations for coupled R-L-

C branches. In that analogy, the matrix [J] is equivalent to a matrix [L] of uncoupled inductances, the matrix [D]
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to a matrix [R] of coupled resistances, and the matrix [K] to an inverse capacitance matrix [C]' of coupled

capacitances. [T,.] would be equivalent to the derivatives [dv/dt] of the applied branch voltages.

8.5.4 Prediction and Correction Schemes
The synchronous machine code in the EMTP has undergone many changes, especially with respect to the

prediction and correction schemes. The presently used schemes, as well as variations of it, are summarized here.

8.5.4.1 Prediction of w and [

The speeds of all masses are predicted with linear extrapolation,

[w®)] = 2 [w( - AD] - [w(-2A7)] (8.99)

Since the speeds change slowly, in comparison with the electrical quantities, this prediction should be accurate
enough. Predicted speeds are needed in two places, namely for the prediction of speed voltages (see Section
8.5.4.3), and for the calculation of turbine torques from Eq. (8.98). The accuracy of the predicted generator rotor
speed w,,, is more important because there is no speed voltage correction in the present iteration scheme. The
accuracy of the turbine rotor speeds prediction is less important, because the torque calculations Eq. (8.98) are
corrected in the iteration scheme of Section 8.5.1, if constant turbine power is assumed (default option in UBC
EMTP, only option in BPA EMTP). If constant turbine torque is assumed, then the turbine speed predictions are
not needed at all.

Fig. 8.13 shows the speed and the electromagnetic torque of a generator by itself (no turbine connected to
it), which runs unloaded at synchronous speed and is then switched into a resistance load at t = 0 [134] (data in
Table 8.2). The generator slows down very quickly in this case. The curves were obtained with the UBC EMTP
without iterations (no return from step 7 to 6 in Section 8.5.1), and verified with a 4th-order Runge-Kutta-Merson
method (agreement to within 4 digits). Both the UBC and BPA EMTP had bugs in the speed calculation, which were
not noticed before in cases of small speed changes. They were corrected after J. Mechenbier proved their existence
by using principles of energy conservation as suggested by H. Boenig and S. Ranade [134].

The angle P of the generator rotor must be predicted so that the d, q, O-networks of Fig. 8.12 can be
converted to phase quantities for the complete network solution in step 5 of Section 8.5.1. There is no correction
for this conversion in the present iteration scheme. The angle [ is also needed for converting the voltage solution
back from phase to d, q, O-quantities in step 6 of Section 8.5.1; here, corrected values are obtained from the solution

of the mechanical part if steps (6) and (7) are iterated.
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Fig. 8.13 - Speed and electromagnetic torque of an unloaded generator when switched
into a resistance load. (a) Speed, (b) Electromagnetic torque.

In the UBC EMTP, the predicted value for [3 is calculated from the predicted speed w,,, with the trapezoidal
rule of integration (8.96),

o) = B - A0+ Tl 0 - A) + @y, 0) (8.100)

8-42



M36 and later versions of the BPA EMTP use a predictor formula suggested by Kulicke [135], which is based on

the assumption that 3 is a fourth-order polynomial of t,
B =a,+ar+ay*+ar’ +art (8.101)
By using three known values of {3 at t - At, t - 2At, t - 3At, and two known values of the speed

o - %F: —a, + 2a,t + 3ay? + da,r (8.102)

att - At, t - 2At, the coefficients a,,...a, can be found from the solution of 5 linear equations. This is a Hermite

interpolation formula and leads to the predictor formula [7; p. 184, P6 in Table 5.1]

B@) = -AP@-Ar) -B(-2A0)} + B(r-3A1) + 6AH w, (1-A1) + w, (t-2A7)} (8.103)

gen gen

Table 8.2 - Generator test case no. 1 [134]

Ratings: 160 MVA (three-phase), 15 kV (line-to-line), wye-connected.
Reactances: Xy =17pu., X' =0.245p.u., X;" = 0.185 p.u.
X, = L64p.u., X" = 0.185 p.u. (no g-winding)

X, = 0.15p.u., X5, = 0.14 p.u.

Time constants: Ty = 5.9s, Ty,," = 0.03046 s
T," =0.075s
Resistances: R, = 0.001096 p.u.

R, = 10® Q in steady state (no effect; added because some versions
cannot handle isolated generator)

R4 = 1 Q after switching att = 0

Moment of inertia: J = 999.947 (N-m)s*. One pole pair.

Terminal voltage: V, = 12.247 &?'9" kV (peak) in steady state in phase 1 (symmetrical in 3
phases).

Step size At = 200 pus. f = 60 Hz

With coefficients ay,...a, known, a predictor formula for w,,, = df/dt for use in the speed voltages could be written

down with Eq. (8.102) as well,

Atw(@) = 14Are(1-Af) + 17 Atw(t-2A1) - 27 B(1-Af) + 24B(-2A7)

+ 3B(r-3A7) (8.104)
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The BPA EMTP uses the predicted speed from Eq. (8.99), though. It is not clear whether the 4th order predictor
of Eq. (8.103) is really superior to the predictor of Eq. (8.99).

8.5.4.2. Averaging of d- and g-Axis Companion Resistances

Instead of an average resistance (R; + R,_/2 in Fig. 8.12, the M39 version of the BPA EMTP uses R, on
both d- and g-axes. To compensate for this, a term (R-R;) ® i, is added to the voltage source on the g-axis, and no
compensating term is needed on the d-axes. Whether this method is better than the averaging procedure of Fig. 8.12

is unclear. Both procedures are special cases of a class of averaging methods discussed in [136].

8.5.4.3. Prediction of i, i,

The armature currents iy, i, must be predicted so that the saliency terms i;(R,-R,)/2 and i (R -R,)/2 can be
combined with the known voltage sources €, €, (Fig. 8.12). No correction is made for this in the present iteration
scheme. Note that the saliency terms are practically zero if X" = X;". In the UBC version and in BPA versions
until M32, the predicted currents i, i, are also used to find predicted speed voltages, as described in the next section.

In the UBC EMTP, linear extrapolation is used,

i(7) = 2i(t - Ar) - i(t - 240 (8.105)

Hin

where "i" is either i; or i;. The BPA version uses a linear three-point predictor formula which smoothes numerical

oscillations. With the current known at t - At, t - 2At and t - 3At as

i(t-2At)

-

-
i(t) (predicted)

i(t-34t)

Fig. 8.14 - Linear prediction with smoothing

indicated in Fig. 8.14, averaged values are first found at the two midpoints by linear interpolation

it -2t ap - =340 +it-2A0
2 2
it - I%At) _ =240 . i(t - Ap)

Then a straight line is drawn through the two midpoints, with a slope of
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i(t - Ar) - i(t - 3A0)

slope =
P 2 At

to predict the current i(t),

oy~ S an L 3.
i(r) = 4z(t Ar) 2z(t 2Ar) 4z(t 3A1) (8.106)

This linear prediction with smoothing is conceptually similar to fitting a straight line through three points in the least
squares sense. Such a straight line least square fitting would have the same slope, but a value at t - 2At of {i(t - 3At)
+ i(t - 2At) + i(t - At)}/3 instead of {i(t - 3At) + 2i(t - 2At) + i(t - At)}/4 in Fig. 8.14, which would yield a

predictor

i) = %i(r—At) . %i(z—2At) - %i(t—3At) (8.107)

Which predictor performs best is difficult to say. All predictor formulas discussed in this section depend
solely on past points, and not on the form of the differential equations for iy, i,. Eq. (8.76), and an analog equation
for the g-axis, were tried at one time as Euler predictor formulas, but they performed worse than the predictors
discussed here. It might be worth exploring other predictor formulas, because the accuracy of the solution depends
primarily on the prediction of i, i,, especially if the speed voltages are calculated from iy, i, as well, as discussed
in the next section. One could use Eq. (8.103), for example, by replacing [} with i and w with di/dt calculated from
Eq. (8.76).

Fig. 8.15 shows the current in phase 1 after a three-phase short-circuit of a generator with unrealistically
low armature resistance R, = 0.0001 p.u. The data for this case is summarized in Table 8.3. Since speed changes

were ignored, the only predicted values are iy, ij, as well as speed voltages in the BPA EMTP.
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Fig. 8.15 - Current in phase 1 after a three-phase short-circuit. R, = 0.0001 p.u.

8-46



Table 8.3 - Generator test case no. 2

Ratings: 400 MVA (three-phase), 18 kV (line-to-line), wye-connected
Reactances: X;=0.92p.u., X;' =0.18 p.u., X;" = 0.161 p.u.

X, =0.748 p.u., X" = 0.161 p.u. (no g-winding)

X, = X, = 0.082 p.u.

Time constants: Ty = 6.6s, T,," =0.05s
To" =0.05s
Resistances: R, = 10 p.u. (unrealistically low value)

R, = 10° p.u. (more realistic value)

R = 1 Q

Moment of inertia: J = « (constant speed)

Terminal voltage: V, = 4.926 ¢7*"" kV (peak) in steady state in phase 1 (symmetrical in
3 phases).

Step size At = 200 ps. f = 60 Hz

Disturbance: Three-phase short-circuit at terminals att = 0

In such a case with low damping, the errors caused by the prediction do accumulate noticeably if the simulation runs
over 5000 steps to t,,, = 1 s. The errors are decreased if the complete network solution is iterated (not yet available
as an option in the production codes of the EMTP). For comparison purposes, the exact solution is shown as well,
which was found for i, i, with the eigenvalue/eigenvector method discussed in Appendix I.1, and then transformed
to phase quantities with p from Eq. (8.23). Fig. 8.16 shows the results if the armature resistance is changed to a

more realistic value of R, = 0.001 p.u. As can be seen, the answers are now closer to the exact solution.

8.5.4.4. Prediction of Speed Voltages

Starting with M32 of the BPA EMTP, the speed voltages ug, u, of Eq. (8.75) are predicted in the same way
as iy, i, with Eq. (8.106). In some of these versions, the prediction was done in a synchronously rotating reference
frame, and then converted directly to phase quantities without going through d, q-axes parameters. This has been
abandoned in Feb. 1986, and the speed voltages are now again predicted in d, g-quantities because the latter turned

out to be superior when applied to test case no. 1 of Table 8.2.
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Fig. 8.16 - Current in phase 1 after a three-phase short-circuit. R, = 0.001 p.u.
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In pre-M32 versions of the BPA EMTP, and in the (unreleased) UBC version with synchronous machines,
the speed voltages u, = -wA, and u, = wA, are not predicted explicitly. Instead, the predicted currents iy(t), i,(t)

and the predicted speed w,,,(t) are used to calculate the speed voltages from Eq. (8.10a) and (8.10b). The field

gen

structure currents appearing in these equations are expressed as a function of iy with Eq. (8.80), which leads to the

expression

A = L") + Ay, (8.108)

with the known reduced inductance

R, R ['R
Ldreduced _ Ld _ [Ldf LdD] ) p 4 (8109)
Rp Rop| R
and the known flux A, for zero current (i; = 0),
R. R, [!|hist-v(F)
Moo = [Ldf Ll row f f( (8.110)
Ry, Rpp hist

The reduced inductance L /"¢ is practically identical with L," if R < < 2L/At. For the IEEE benchmark model
[74] with At = 200 ps, wL; = 0.135129 p.u. compared to wL,;" = 0.135 p.u. In publications based on [13],

oL is called -a,, and oL, is called a,,.

8.5.4.5. Iteration Schemes

Up to now, the complete network solution is direct, without iterations. The iteration scheme of Section
8.5.1 does not repeat the network solution, and predicted values are therefore never completely corrected. There
is only one exception, namely the three-phase short-circuit at the generator terminals with zero fault resistance. In
that case the terminal voltages are always zero, and going back to step 6 in the iteration scheme of Section 8.5.1
should be a complete correction of all predicted values.

It is doubtful whether the predictors can be improved much more. Further improvements can probably only
be made if the network solution is included in the iterations as well. This could be a worthwhile option, not only

for machines, but for other nonlinear or time-varying elements as well.

8.6 Saturation

Saturation effects in synchronous machines can have an influence on load flow, on steady-state and transient
stability, and on electromagnetic transients. While transformer saturation usually causes more problems than
machine saturation (e.g., in the creation of so-called "temporary overvoltages"), there are situations where saturation
in machines must be taken into account, too.

To model machine saturation rigorously is very difficult. It would require magnetic field calculations, e.g.

8-49



by finite element methods [181], which is already time-consuming for one particular operating condition, and
practically impossible for conditions which change from step to step. Also, the detailed data for field calculations
would not be available to most EMTP users. An approximate treatment of saturation effects is, therefore, commonly
accepted. The modelling of saturation effects is discussed in four parts,

(a) basic assumptions,

(b) saturation effects in steady-state operation, and

(c) saturation effects under transient conditions, and

(d) implementation in the EMTP

8.6.1 Basic Assumptions

The data which is normally available is the "open-circuit saturation curve" (Fig. 8.17), which shows the
terminal voltage as a function of the field current for open-circuited armature windings (no-load condition). In the
transient simulation, a flux-current relationship is required, rather than V = f(i;). This is easily obtained from Eq.

(8.9), which becomes

<
Il

g = QX (8.111a)

(can be re-labelled as flux)

1.2 4
1.0 4

0.5 4

*f-no load
Fig. 8.17 - Open-circuit saturation curve

for balanced, open-circuit steady-state conditions, where both A, and the transformer voltages dA/dt, dA/dt are zero.

Since v, is equal to V3V gy, this equation can be rewritten as
VBV s = ©A, (8.111b)

where V| zys is the RMS terminal voltage of armature winding 1 (line-to-ground RMS voltage for wye-connected
machines). It is therefore very simple to re-label the vertical axis in Fig. 8.17 from voltage to flux values with Eq.
(8.111).

The saturation effects in synchronous machines do not produce harmonics during balanced steady-state
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operation, because the open-circuit saturation curve describes a dc relationship between the dc flux of the rotating
magnets (poles) and the dc field current required to produce it. The magnitude of the dc flux determines the
magnitude of the induced voltages in the armature, while the shape of the flux distribution across the pole face
determines the waveshape of the voltage. If the distribution is sinusoidal, as assumed in the ideal machine
implemented in the EMTP, then the voltage will be sinusoidal as well. In reality, the distribution is distorted with
"space harmonics," and it is this effect which produces the harmonics in synchronous machines.

There are many different ways of representing saturation effects [182], and it is not completely clear at this
time which one comes closest to field test results. More research on this topic is needed. At this time, the
representation of saturation effects in the EMTP is based upon the following simplifying assumptions:

1. The flux linkage of each winding in the d- or g-axis can be represented as the sum of a leakage flux (which
passes only through that winding) and of a mutual flux (which passes through all other windings on that axis

as well), as illustrated in Fig. 8.18,

g Ay, (8.112)

where

Ay = leakage flux unaffected by saturation,

A,, = mutual flux subjected to saturation effects.
In reality, the leakage fluxes are subjected to saturation effects as well because they pass partly through iron
[180], but to a much lesser degree than the mutual flux. Saturation effects are therefore ignored in the leakage
fluxes. The data is not available anyhow if only one saturation curve (open-circuit saturation curve) is given.
In terms of equivalent circuits, this assumption means that only some of the inductances are nonlinear (shunt
branch in star point in Fig. 8.2), while the others remain constant.

2. The degree of saturation is a function of the total air-gap flux linkage A,

A = ) (8.113a)

with
Moe = Vo * Ponga (8.113b)

and
)“mdfu - Mdu(id * Z.f * ZD) ’ A‘mqm - Mqu(iq * Z.g * lQ) (81130)
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mutual
flux A
m

Fig. 8.18 - Leakage fluxes and mutual flux

where subscript "m" indicates mutual, and "u" indicates unsaturated values. In Eq. (8.113c) it is important to

use the proper mutual inductances for the representation of the mutual flux. This leads back to the data

conversion problem discussed in Section 8.2. If Canay's characteristic reactance X, is not known, then assume

k = 1 in Eq. (8.14b), and use

from Eq. (8.20a) and (8.20c). In,this case, the equivalent star circuit of Fig. 8.2 shows the correct separation
Ag}iufied_el‘g’ %Zufgq_ggﬁ

into the mutual inductance M,, = M,, or M, for the mutual flux (subject to saturation) and into the leakage
inductances for the leakage fluxes (linear d-, f-, and D-branches). If Canay's characteristic reactance is used,
then Fig. 8.2 can no longer be used, as explained in Section 8.6.5.

Only one flux, namely the total air-gap flux, is subjected to saturation. The saturated mutual fluxes A4, A,

on both axes are found from their unsaturated values by reducing them with the same ratio (similar triangles

in Fig. 8.19),

A A

e T T . (8.114)

m-u m-u
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This assumption is based on the observation that there is only one mutual flux, which lines up with the pole axis

if A, is very small, and which will shift to one side of the pole as A,,, increases (Fig. 8.20).

\
RELD et
N

i) COMBINED CURRENTS

(a) flux from i; alone (A, = 0) (b) flux from i; and stator currents A, # 0

'mq

Fig. 8.20 - Flux in turbogenerator [181]. © 1981 IEEE

4. Saturation does not destroy the sinusoidal distribution of the magnetic field over the face of the pole, and all
inductances therefore maintain their sinusoidal dependence on rotor position according to Eq. (8.5).

5. Hysteresis is ignored, while eddy currents are approximately modelled by the g-winding, and maybe to some
extent with the D- and Q-windings. More windings could be added, in principal, to represent eddy currents

more accurately.

8.6.2 Saturation in Steady-State Operation

At this time, the saturation effects are only modelled correctly in the ac steady-state initialization if the
terminal voltages and currents are balanced. More research is needed before saturation can be represented properly
in unbalanced cases.

As explained in Section 8.4, the initialization of the machine variables follows after the phasor steady-state
solution of the complete network. The initialization for balanced (positive sequence) conditions is described in detail
in Section 8.4.1, and only the modifications required to include saturation effects will be discussed here.

The nonlinear characteristic of Fig. 8.17 makes it impossible to use the initialization procedure of Section
8.4.1 in a straightforward way. To get around this problem, it is customary to use an "equivalent linear machine"
in steady-state analysis which gives correct answers at the particular operating point and approximate answers in the
neighborhood. This equivalent linear machine is represented by a straight line through the operating point and the
origin (dotted line in Fig. 8.21). Whenever the operating point moves, a new straight line through the new operating
point must be used.

The concept of the equivalent linear machine is used in the EMTP as follows.

1. Obtain the ac steady-state solution of the complete network. From the terminal voltages and currents of the
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machine (positive sequence values), find the internal machine variables with the method of Section 8.4.1.

Assume that the machine operates in the unsaturated region at this time.

air gap
line

equivalent
linear machine

0 m

Fig. 8.21 - Linearization for steady-state analysis

Determine the total magnetizing current

M 2
i, = J(idqqu)Z + [ W) (l},”'g*l'Q)z (8.115a)
Mdu

with iy, i, i, being zero for balanced conditions. Eq. (8.115) assumes turns ratios of N;:N;:N,, = 1:1:1 (same

for quadrature axis). If any other turns ratios are used, the first term would be

My i,y = My, iy + My i+ My, i (8.115b)

and the second term

Moty = My, iy + My iy + Myy i (8.115¢)
with
My i, = (Myi,0° + (M, i,)° (8.115d)

Find the operating point on the nonlinear characteristic of Fig. 8.21. If this point lies in the linear region, then
the initialization is complete. Otherwise:

Calculate the ratio K from Fig. 8.21,
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(8.116a)

>
I

:n‘hx

Ol

and multiply the unsaturated mutual inductances with that ratio to obtained the saturated values of the equivalent

linear machine,

M,-K-M,: M, -K-M, (8.116b)

Use these values to repeat the initialization procedure of Section 8.4.1. Then re-calculate the magnetizing
current from Eq. (8.115). If it agrees with the previously calculated value within a prescribed tolerance, then
the initialization is finished. If not, repeat step 3. Convergence is usually achieved with 1 to 2 iterations of
step 3.

In the BPA EMTP steady-state solution, machines are now represented as voltage sources at the terminals,
and the terminal currents are obtained from that solution. With terminal voltages and currents thus known, their
positive sequence components can be calculated and then used to correct the internal variables for saturation effects.
Since this correction does not change the terminal voltages and currents, the complete network solution does not have
to be repeated in step 3.

This will also be true in future versions of the EMTP, where the machine will be represented as symmetrical
voltage sources behind an impedance matrix. Again, the terminal voltages and currents and their positive sequence
components will be known from the steady-state solution.

In unbalanced cases, the present representation will produce negative sequence values, while the future
representation will produce correct values. How to use these negative sequence values in the saturation corrections
has not yet been worked out. Since they produce second harmonics in the direct and quadrature axes fluxes, it may
well be best to ignore saturation effects in the negative sequence initialization procedure of Section 8.4.2 altogether.

The equivalent linear machine produces correct initial conditions for the different model used in the transient
simulation, as can easily be verified if a steady-state solution is followed by a transient simulation without any

disturbance.

8.6.3 Saturation under Transient Conditions

The equivalent linear machine described in Section 8.6.2 cannot be used in the transient solution, because
the proper linearization for small disturbances (as they occur from step to step) is not the straight line 0-C in Fig.
8.21 ("linear inductance"), but the tangent to the nonlinear curve in point C ("incremental inductance").

The saturation effect enters the transient solution discussed in Section 8.5 in two places, namely through
the speed voltages and through the transformer voltages. Consider the direct axis equations (8.76) first, which can

be rewritten as
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Ayq M *wlﬁq *(J\)Amq
. d d
- R - 2| - A N (8.117)
[v] [R][7] a1 al | 0 0
A A 0 0

<D 'md.

for the d, f, D-quantities if each flux linkage is separated into its leakage flux and the common mutual flux,

Ay = Agq + Ay
}\.f = )“gf + )“md (8.118)
Ap = Agp * Ay

assuming turns ratios of Nyg:N;:N;, = 1:1:1 (analogous for quadrature axis). Only the terms with A4 and A, in Eq.
(8.117) are influenced by saturation, and only those terms are therefore discussed.

Consider first the speed voltage term -wA,,, in Eq. (8.117), which is properly corrected for saturation by
simply using the correct saturated value A,,,. The saturation correction has already been described in Eq. (8.114),
and is conceptually the same as the one used in Eq. (8.116) for the steady-state solution. Since the transient solution
works with predicted values of speed voltages wA, and wA,, as explained in Section 8.5.4.4, they are used directly
in Eq. (8.117) (not split up into two terms).

Next consider the transformer voltages -[dA,,/dt] in Eq. (8.117), where incremental changes ("incremental
inductances") are important. By using the tangent of the nonlinear characteristic in the last solution point, one can

linearize the flux-current relationship to

R (8.119)
Xm slope=
T ,Mdu _ ”.2/ 510pe=Mslope
/ —
‘ solution at t-At
Aknee

Fig. 8.22 - Linearization around last solution point

with M, . being an incremental inductance (Fig. 8.22). This equation can be used over the next time step, because

slope
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the fluxes change only very slowly with typical step sizes of 50 to 500 us. In the EMTP implementation, the
problem is even simpler because the saturation curve is represented as a two-slope piecewise linear curve. In that
case, the linearization of Eq. (8.119) changes only at the instant where the machine goes into saturation, and at the

instant when it comes out again. With Eq. (8.113) and (8.115), the unsaturated total flux is
)“mfu - Mdu lm (8120)
which, inserted into Eq. (8.119), produces

)“m - )\‘knee * b}“mfu (81213)

with the ratio between incremental inductance M, and linear (unsaturated) inductance M,

slope

b = M slope

Mdu

(8.121b)

After saturation has been defined for the total flux, it must be separated into d- and gq-components again.

With assumption (3) from Section 8.6.1, and with Fig. 8.19,

}“mq - }“kneefq + b}“mqfu (81223)

where

A = MioeCOSP; A = ApeSinP; B = tant(A, /A, )

knee-d knee-q mq-u

(8.122b)
If Eq. (8.117), and the analogous equation for the quadrature axis, are solved with the trapezoidal rule of

integration, then the transformer voltage term affected by saturation,

v, ] = -d,)ld

is transformed with Eq. (8.122) into

0] = =22 (01 = V(8 - A0)

—é{[ka,da)] - DAy ft-AD) = [, (t-AD)] (8.123)

This equation shows how the transformer voltages must be corrected for saturation effects:

(a) multiply all mutual inductances by the factor b, and
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(b) add correction terms to account for the variation of the knee fluxes [A,...q], and [A .|
8.6.4 Implementation in the EMTP

Saturation effects were modelled for the first time in the M27 version of the BPA EMTP, based on the
concept of two independent saturation effects, one in the direct axis and the other in the quadrature axis. This was
replaced with a newer model in the M32 version, which was essentially the model discussed here. It was not quite
correct, however, because the correction terms in Eq. (8.123) related to the knee fluxes were not included. The
model described here was implemented for the first time in the DCG/EPRI version to be released in 1986.

The open-circuit saturation curve is approximated as a two-slope piecewise linear characteristic (0-1 and
1-2 in Fig. 8.22). The number of linear segments could easily be increased, but a two-slope representation is usually

adequate.

8.6.4.1 Steady-State Initialization

The initialization procedure is only correct for balanced networks at this time. The extension to unbalanced
cases is planned for the future. Until this is done, some transients caused by incorrect initialization can be expected
in unbalanced cases. Hopefully, they will settle down within the first few cycles.

The initialization follows the procedure of Section 8.6.2. For the reactances X, X,» which consist of a

constant leakage part and a saturable mutual part,

X, =X, + oMy X, = X, + oM, (8.124)

unsaturated values M, M, are first used to obtain the internal machine variables with the method of Section 8.4.1.
If the resulting magnetizing current lies in the saturated region, then the mutual reactances M;, M, in Eq. (8.124)
must be corrected with Eq. (8.116). The calculation of the internal machine variables is then repeated with saturated
reactances one or more times, until the changes in the magnetizing current become negligibly small.

With the two-slope piecewise linear representation implemented in the EMTP, the ratio K needed in Eq.

(8.116) is

K = Mslope lm + )\‘knee

M, i

du"m

(8.125)

with the meaning of the parameters shown in Fig. 8.22, and with i, calculated from Eq. (8.115).

8.6.4.2 Transient Solution
Saturation effects in the time step loop are modelled according to Section 8.6.3. The coefficient b of Eq.

(8.121b) is set to 1.0 in the unsaturated region, and to M,../M,, in the saturated region. Whenever the solution

slope!
moves from one region into the other, it is reset accordingly.
This coefficient b affects the values in the equivalent resistance matrix [R.,,,] of Eq. (8.91a) and in the

history term matrix of Eq. (8.82c). To include this coefficient, the inductance matrix of Eq. (8.76) is split up into
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md-u md-u md-u <Ld

[L] =D Lmdfu Lmdfu

™~

(8.126)

md-u <f

™~

md-u md-u md-u <D

(analogous for quadrature axis). Whenever b changes, [L] is recalculated and then used to recalculate [R.,,] and
the history term matrix of Eq. (8.82c). With the two-slope representation implemented in the EMTP, there are only
two values of b, and the matrices could therefore be precalculated outside the time step loop for the two values of
b = 1and b = M,

of Eq. (8.18), however, which contains [Requiv]’I and therefore changes whenever the machine moves into the

/My,. The major effort lies in the re-triangularization of the network conductance matrix [G]

saturated region, or out of it.

An additional modification is required in the calculation of the history terms with Eq. (8.78b). As shown
in Eq. (8.123), the knee fluxes A,..(t) and A, (t - At) must now be included. Since the trapezoidal rule of
integration is not very good for the calculation of derivatives, the knee fluxes are included with the backward Euler
method. First, the knee fluxes A, 4(t) and A, (1) are predicted, using the three-point predictor of Eq. (8.106).
Then the trapezoidal rule expression

2
E {[}“kneefd([)] B [}“kneefd([ B Al)]}

is replaced with the backward Euler expression

i{[li,ﬁii’f;”(t)] = [Ayep o1 = ADD (8.127)

and the voltage term [v,4(t - At)] is replaced by a voltage term which excludes the knee flux.

8.6.5 Saturation Effects with Canay's Characteristic Reactance

If saturation is ignored, then it does not matter whether Canay's characteristic reactance is used or not,
because it only affects the data conversion part. With saturation included, however, the nonlinear inductance can
only be identified as the shunt branch M,, in Fig. 8.2 if k = 1 in Eq. (8.14b). If Canay's characteristic reactance
is known, then k = 1. This factor k must then be removed again from the rotor quantities in Eq. (8.15a), by

multiplying the second and third row and column with its reciprocal value,

d id
@A L, M, M, Ql’
2= M, L, oM, |37 (8.128)

M, c*M, c’L

DDm

S
B
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where

(8.129)

x|

and where M, L, and L, are the modified parameters straight out of the data conversion routine of Appendix
VI1.4. As explained in the text between Eq. (8.17) and (8.18), the factor v3/v2 in Eq. (8.128) is needed to produce
turns ratios of Ny:Ni:Np = 1:1:1. Only with turns ratios of 1:1 can the fluxes be separated into their main and
leakage parts. The circuit of Fig. 8.23, which is equivalent to Eq. (8.128), has the correct separation into the mutual

inductance cM,, = 3/2 M,; subjected to saturation (for the mutual flux), and into the linear leakage

Fig. 8.23 - Equivalent circuit for direct axis with identity of leakage and main fluxes restored
from Fig. 8.2

inductances in the three branches d, f, D. For the quadrature axis, Fig. 8.2 can still be used, with M,, being the
nonlinear inductance, because Canay's characteristic reactance cannot be measured on that axis (current split between
g- and Q-windings unmeasurable because both windings are hypothetical windings).

Most EMTP users will not know Canay's characteristic reactance because it is not supplied with the standard
test data. Therefore, it has not yet been included in the saturation model in the EMTP, e.g. in the form of Fig. 8.23,
because of lower priority compared to other issues. When it is implemented, one would have to decide whether the

inductance ¢*M,, - ¢M, , which is mutual to both f- and D- windings, should be constant or saturable as well.
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